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ABSTRACT 

Recalcitrant seeds unlike orthodox seeds are desiccation sensitive, chilling sensitive and initiate 

germination on shedding which precludes their storage using conventional seed storage methods. There 

are different mechanisms that confer protection against the consequences of water loss at different 

hydration levels in desiccation tolerant plant material. The present study aimed to characterise some of 

the desiccation tolerance mechanisms that may be either absent or poorly expressed in recalcitrant seeds, 

rendering them desiccation sensitive. The study involved a comparative analysis of some of the 

physiological, biochemical and proteomic changes associated with desiccation, hydrated storage and 

seed germination in two recalcitrant-seeded species of contrasting storage longevity, viz. Avicennia. 

marina (Forssk.) Vierh (short storage lifespan) and Trichilia dregeana Sond. (relatively longer storage 

lifespan).  This thesis presents results on: (1) viability and redox metabolism between A. marina and        

T. dregeana seeds under conditions of partial dehydration and hydrated storage using biochemical 

assays for superoxide (∙O2
−) and hydrogen peroxide (H2O2) determination; high pressure liquid 

chromatography (HPLC) was also employed to provide quantitative data of glutathione levels  (2) the 

germination capacity, velocity and associated redox metabolism between A. marina and T. dregeana 

seeds using the same molecular techniques as described above (3) proteins in terms of their involvement 

in cellular pathways in T. dregeana seeds. This was done by identifying, quantifying, annotating and 

comparing proteins expressed in T. dregeana seeds exposed to partial dehydration and hydrated storage 

using iTRAQ (isobaric tags for relative and absolute quantification) in conjunction with liquid 

chromatography-tandem mass spectrometry on a Q-Exactive quadrupole-Orbitrap mass spectrometer, 

and (4) the proteomic responses of A. marina and T. dregeana seeds exposed to partial dehydration and 

hydrated storage via  nLC-MS/MS (nano-scale liquid chromatographic tandem mass spectrometry) on 

a Thermo Scientific Fusion mass spectrometer equipped with a Nanospray Flex ionization source to 

obtain protein profiles of these seeds immediately after harvest, partial drying and hydrated storage using  

a label-free LC-MS/MS method. The research objectives for this study were derived from previous 

research which suggested that the hydrated storage lifespan of recalcitrant seeds is contingent on the 

rate at which these seeds germinate naturally as well as studies that have proposed that a decline in 

reactive oxygen species (ROS) production (referred to as a ‘dampening of the biochemical trigger for 

germination’) may be responsible for the reduced germinability in partially dehydrated recalcitrant 

seeds.   
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One of the major challenges in this work, in relation to comparing physiological and biochemical 

parameters between the two contrasting species investigated, was the fact that unlike orthodox seeds, 

recalcitrant seeds do not have a clear identifiable switch from developmental to germinative metabolism. 

Proteomic analysis of the recalcitrant embryonic axes investigated also presented challenges in terms of 

total protein extraction, peptide labelling and trypsin digestion due to the presence of interfering 

compounds which required considerable optimisation. 

The principal findings of this research were: 

- Increased ROS (∙O2
− and H2O2) production is necessary for the completion of germination in 

both species and differences in the timing of a ROS-based trigger for germination may account 

for differences in both germination velocity and storage longevity between A. marina and           

T. dregeana.  

- In slower germinating T. dregeana seeds, GSH levels far exceeded those of GSSG levels at 

harvest and throughout the period leading up to germination which strongly suggested that 

sustained antioxidant protection present in T. dregeana seeds delayed germination-associated 

metabolism i.e. suppression of the ROS based trigger for germination provides reasons for its 

relatively longer storage longevity compared with A. marina seeds.   

- A. marina seeds lost all viability after 40 days in hydrated storage while T. dregeana seeds could 

be stored for 12 months and showed 100% viability when seeds that had not germinated in 

storage were assessed. 

- The ROS-based trigger for germination took place early during storage in A. marina seeds but 

appeared to be delayed in those of T. dregeana which may account for the longer storage 

longevity of the latter. These data suggest that the mechanisms of desiccation-induced seed 

viability loss may differ across recalcitrant-seeded species based on the rate and extent to which 

they lose water during partial drying and storage.  

- Partial dehydration studies revealed that ROS play a deleterious role in A. marina embryonic 

axes as a spike in ROS production (∙O2
− and H2O2) coincided with 50% viability loss. 

Contrastingly, in partially dehydrated T. dregeana axes ROS production decreased with 

prolonged dehydration which supports previous findings that viability loss in this species is 

accompanied by a dampening of the ROS-based trigger for germination. 

- A comparison of the protein profiles of embryonic axes of A. marina and T. dregeana seeds 

immediately after harvest, partial drying and hydrated storage revealed proteomic changes 

during storage and drying in both species. Proteins linked to key metabolic functions (e.g. 

cellular redox balance and cell energy demands) were compromised in both species after drying 



iv 

and storage (which is in effect a mild dehydration stress), which may explain the stress and/or 

viability loss exhibited by the seeds of both species during these processes.  

- A comparison of the proteomic changes during storage and drying in both species further 

support suggestions that higher metabolic activity and faster germinative development in                      

A. marina relative to T. dregeana seeds, are responsible for the reduced seed storage lifespan of 

the former. 

- The relatively higher abundance of proteins found in T. dregeana embryonic axes compared 

with A.marina embryonic axes such as superoxide dismutase (SOD), adenosylhomocysteinase 

and calmodulin proteins in T. dregeana embryonic axes may also account for why T. dregeana 

seeds are less desiccation sensitive relative to A. marina seeds. 

 

Collectively, the results suggest that the syndrome of traits that render recalcitrant seeds sensitive to 

desiccation and unamenable to conventional storage methods appear to be largely common across 

species, irrespective of their storage longevity. However, the comparisons made here suggest that inter-

species differences in storage longevity may be based on differential responses to water loss (during 

physical dehydration and storage) in terms of ROS production, ROS scavenging capacity and the 

expression of proteins related to key metabolic functions. These findings should be used to inform the 

design of short-, medium- and long- term seed germplasm conservation protocols for recalcitrant-seeded 

species. 
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1. CHAPTER 1: INTRODUCTION 

1.1 Biodiversity conservation 

The unprecedented rate of extinction of biodiversity is currently a global crisis and one of the major 

challenges facing humanity. Biological diversity or biodiversity as defined by the International 

Convention on Biological Diversity (2003), refers to the variability among living organisms from all 

sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological 

complexes of which they are part of; this includes diversity within species, between species, and of 

ecosystems. Over the last four decades there has been a global decline in biodiversity, accompanied by 

notable declines in populations of vertebrates, habitat specialist birds, the extent of forest, mangrove and 

sea grass beds, and the condition of coral reefs (Butchart et al., 2010). There are many threats to 

biodiversity including climate change (Walther et al., 2002), the size and distribution pattern of human 

populations (McKee et al., 2004), increased domestic animal populations, increased levels of resource 

consumption, land degradation and deforestation (Groom, 2006). Agricultural expansion, urbanization 

and grazing are regarded as the greatest contemporary threats to terrestrial species worldwide (Bellard 

et al., 2014). In addition, through ever increasing local and global trade, invasive alien species have been 

introduced into most ecosystems across the world, to the severe detriment of ecological networks, 

biodiversity and ecosystem functioning (Bellard et al., 2014).  

 

Conservationists are unable to prioritise all species under threat, mainly due to limited funding (James 

et al., 1999, Waldron et al., 2013). Therefore conservationists have developed a promising approach 

that involves the identification of “hotspots”, or areas featuring exceptional concentrations of endemic 

species and experiencing exceptional loss of habitat (Myers et al., 2000). According to the criteria 

developed by Myers (2000), 34 biodiversity hotspots have been recognized around the world (Bellard 

et al., 2014), which together hold 50% of the world’s plant species and 42% of all terrestrial vertebrates. 

South Africa, the location for the present study, contains three of the 34 hotspots namely the Cape 

Floristic region, Maputaland Pondoland Albany and Succulent Karoo (Bellard et al., 2014). However, 

many hotspots are severely threatened by climate change, land-use change, and biological invasions 

(Bellard et al., 2014).  It is estimated that up to 100000 plants, representing more than one third of all 

the world’s species, are currently threatened or face extinction in the wild (Panis and Lambardi, 2006). 

The value of conserving plant species has never before been more paramount and this has been 

increasingly acknowledged by international organisations, in treaties and legislation, notably, the 

Convention on Biological Diversity (Balmford et al., 2005), the Global Strategy for Plant Conservation 

(Jackson and Kennedy, 2009), the Convention on the Conservation of European Wildlife and Natural 
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Habitats (the Bern Convention) (Genovesi and Shine, 2004), and the Gran Canaria Declaration on 

Climate Change and Plant Conservation (BGCI, 2000, 2006). 

 

Plant biodiversity not only facilitates ecosystem functioning but is extremely important for food and 

agriculture and forms the basis of global food security (Walters et al., 2013, FAO, 2014). In the 1950’s 

and 1960’s the “Green revolution” brought about major advances in plant breeding which led to the 

development of high-yielding crop varieties but such breakthroughs were not without ecological 

consequences. Many of these high-yielding varieties are genetically uniform. The erosion of plant 

genetic resources reduces the adaptive abilities of plant species, making many of them vulnerable to 

disease (Engelmann and Engels, 2002). The need to conserve plant biodiversity is also motivated by the 

fact that 75%-80% of the world population, rely on herbal medicine as a mainstay, especially in 

developing countries (Pal and Shukla, 2003). It is estimated that 60% of anti-tumour and anti-infectious 

drugs already on the market or under clinical trial are of natural origin. The vast majority of these cannot 

yet be synthesized economically and are still obtained from wild or cultivated plants (Rates, 2001).  

 

Conservation of plant genetic diversity is therefore critical to safeguard the present and future wellbeing 

of humankind (Noor et al., 2011). The conservation of plant biodiversity can be achieved using two 

basic strategies, viz. in situ and ex situ conservation, each composed of various techniques. In situ 

conservation refers to the conservation of ecosystems and natural habitats and the maintenance and 

recovery of viable species populations in the area in which they developed their unique properties 

(Engelmann and Engels, 2002). Ex situ conservation in contrast, refers to the conservation of 

components of biological diversity outside their natural habitat. Seed storage is one of the most 

widespread and valuable approaches to the ex situ conservation of plant germplasm as it is both practical 

and economical (Phartyal et al., 2002, Panis and Lambardi, 2006, Rajasekharan, 2015).  The 

conservation of seeds in situ, in particular, has many advantages as it allows for the preservation of the 

species in its natural habitat and allows for natural selection to take place which cannot be recreated ex 

situ. However, factors such as habitat destruction may cause endangered species to become extinct, 

warranting the conservation of such species ex situ. Ex situ plant germplasm conservation affords an 

opportunity to study the biology of an endangered species and uncover the threats to its survival which 

can inform recovery programmes for its’ restoration and even re-introduction (Engelmann and Engels, 

2002, Rao, 2004). Therefore, seed storage is one of the most widespread and valuable approaches to the 

ex situ conservation of plant germplasm as it is both practical and economical (Phartyal et al., 2002, 

Panis and Lambardi, 2006, Rajasekharan, 2015).   
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1.2 Rationale and motivation for this study  

As mentioned above, one of the most effective and widely practiced method of ex situ conservation of 

plant germplasm is in the form of seed storage (Phartyal et al., 2002, Panis and Lambardi, 2006, 

Rajasekharan, 2015). There are currently more than 1750 seed banks established worldwide for the ex 

situ conservation of plant biodiversity (Hay and Probert, 2013). Seed banks play a pivotal role in 

conservation by providing continued availability of genetic resources for crop improvement research, 

food security, breeding and in the case of wild species reintroduction and habitat restoration (Hay and 

Probert, 2013). Since the adoption of the Global Strategy for Plant Conservation (GSPC) in 2002, many 

thousands of seeds from wild species have been placed into long-term storage. However, seed banks are 

not without limitations as the successful long-term preservation of the seeds of any particular species 

depends on its post-harvest physiology, which is species-specific (Berjak and Pammenter, 2013). This 

variability in seed storage longevity is based on the fact that seeds can be desiccation tolerant (orthodox) 

or sensitive (recalcitrant) (Roberts, 1973). 

 

Orthodox seeds acquire desiccation tolerance during development and thereafter enter a phase of 

maturation drying, characterized by metabolic shutdown before shedding (Vertucci and Farrant, 1995). 

Typically orthodox seeds are stored in seed banks in a dry state with low relative humidity, around 15%, 

and at sub-zero temperatures, generally around −18°C (FAO, 2014). In this dry state, metabolic events 

associated with germination are not triggered and seeds will germinate only upon imbibition, provided 

that environmental conditions are favourable (Bewley and Black, 1994). Therefore, orthodox seeds can 

be stored successfully for long periods of time while still retaining high vigour and viability, throughout 

the storage period (Pammenter et al., 2000). Contrary to this, a large proportion of species from tropical 

and sub-tropical regions produce highly hydrated seeds that are intolerant to desiccation and often 

sensitive to low temperatures, which effectively precludes their storage for any useful period of time 

(Roberts, 1973, Chin and Roberts, 1980, Farrant et al., 1993c, Pammenter et al., 2000). These seeds are 

labelled ‘recalcitrant’ (Roberts, 1973). Recalcitrant seeds can only be stored for a short to medium period 

of time (days to months) under hydrated storage conditions that is at high relative humidity and slightly 

reduced temperatures that do not permit water loss (Pammenter and Berjak, 2014). 

 

 

The categories orthodox and recalcitrant (Roberts, 1973) have been suggested to account for only those 

species that display the extremes of post-harvest behaviour: the ability or inability to tolerate desiccation 

(Farrant et al., 1993c, Finch-Savage et al., 1994, Berjak and Pammenter, 2013). This may explain why 

these categories were later augmented by a third seed category, described as being ‘intermediate’ 

between the extremes of recalcitrant and orthodox behaviour. Seeds so categorised are relatively 

desiccation tolerant (but not to the extent of orthodox seeds) and may be chilling sensitive in the dry 
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state, particularly if they are of tropical origin (Ellis et al., 1990, Hong and Ellis, 1996). This wide range 

in post-harvest responses suggests an open-endedness to the three categories, such that post-harvest 

physiology may be considered as constituting an extended continuum of seed behaviour, which grades 

from extreme desiccation-sensitivity, through a range of responses, to seeds capable of extreme 

desiccation tolerance (Pammenter et al., 1993, Finch-Savage et al., 1994, Berjak and Pammenter, 2008) 

 

The phenomenon of desiccation tolerance in orthodox seeds is acquired before or during maturation 

drying and this ability is believed to be dependent on the operation of a suite of interactive protective 

mechanisms (Berjak and Pammenter, 2008).  In a review by Pammenter et al. (1999) these mechanisms  

were suggested to include the following: the ability to retain physical integrity on removal of water; 

intracellular dedifferentiation as suggested by Farrant et al. (1997); a decrease in respiratory rates with 

development resulting in metabolic shutdown (Farrant et al., 1997); the balance between pro- and 

antioxidants, i.e. the activity of antioxidants to control the levels of reactive oxygen species (ROS) 

produced during drying, the ability to synthesise intracellular glasses as well as the presence of important 

protective molecules such as late embryogenic abundant proteins, sucrose and certain oligosaccharides.  

 

The absence or poor expression of many of these protective mechanisms found in desiccation tolerant 

seeds may be the underlying reasons for desiccation sensitivity and hence the reduced storage lifespan 

of recalcitrant seeds (Pammenter and Berjak, 1999). For example, studies on desiccation sensitive seeds 

have revealed that oxidative stress is one of the major causes of viability loss in seeds exposed to drying 

(Pammenter and Berjak, 1999, Pukacka et al., 2011). It has been suggested that directly after seed 

shedding ROS production in recalcitrant seeds is still controlled but that during dehydration metabolism 

becomes unbalanced and ROS production  becomes  uncontrolled, resulting in the inability of protective 

antioxidants to remove/quench ROS effectively (Leprince et al., 1999). High concentrations of activated 

forms of oxygen particularly superoxide (∙O2
− ) and hydrogen peroxide (H2O2) (Berjak and Pammenter, 

2008, Roach et al., 2008) have been reported to be  toxic and to lead to cellular death in desiccation 

sensitive seeds (Halliwell, 2006). However, it has also been suggested that ROS play a dual role in seeds 

(Bailly, 2004, Bailly et al., 2008, Roach et al., 2010). Interestingly, Varghese et al., (2011) found that 

during dehydration of Trichilia dregeana Sond. axes, ∙O2
− production levels decreased and suggested 

that a decline in ROS levels during the later stages of dehydration could have resulted in poor 

germination due to the “dampening of this germination trigger”. Roach et al. (2008), have also suggested 

that reduced ROS levels in dehydrated axes may be as a result of the inactivation of redox enzymes 

involved in the production of ROS. The specific mechanisms underlying desiccation sensitivity have 

yet to be fully elucidated though. A further challenge to understanding desiccation sensitivity in 

recalcitrant seeds is the fact that there is considerable variability among recalcitrant-seeded species 
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particularly in terms of the amount of water loss they can tolerate as well as the rate at which drying 

occurs (Ballesteros et al., 2014) . 

 

Due to their desiccation sensitivity recalcitrant seeds need to be stored at or close to their shedding water 

content; even a mild dehydration can adversely affect their viability (Eggers et al., 2007). Therefore, 

recalcitrant seeds are stored in the short-to-medium term under hydrated storage conditions, which as 

described above involves maintaining seeds under saturated relative humidity conditions (Berjak and 

Pammenter, 2004, FAO, 2013). Recalcitrant seeds of all species will, however, eventually germinate or 

die in hydrated storage but the rate at which this occurs differs across species based on a combination 

of factors, e.g. storage conditions, maturity at collection, metabolic rates and developmental biology 

(Berjak and Pammenter, 2008, 2013). Ultrastructural studies have shown that during hydrated storage 

the embryonic axes of recalcitrant seeds undergo germination-associated changes such as extensive 

vacuolation, increase in cell size, and development of mitochondria which are changes that are very 

similar to those that occur in germinating orthodox seeds (Pammenter et al., 1984, Farrant et al., 1986b, 

Berjak and Pammenter, 2000). These findings suggest that if additional water is not supplied, the seeds 

are vulnerable to water stress and possible viability loss (Farrant et al., 1986b). Recalcitrant-seeded 

species storage longevity can vary greatly across species; for example, Avicennia marina (Forssk.) 

Vierh. seeds are fully developed when shed and the period of time in which signs of germination can be 

observed in storage is very short, placing major constraints on its storage lifespan ( 16-21 d; Farrant et 

al., 1997, Calistru et al., 2000). In contrast, T. dregeana, which are shed relatively immature, display a 

lag between shedding and visible signs of germination and can be stored for months. Berjak et al. (1989) 

suggested that the hydrated storage lifespan of recalcitrant seeds was dependant on the rate at which 

seeds germinated naturally, however, the molecular mechanisms underlying recalcitrant seed storage 

longevity are still unclear. 

  

At present the most promising method to conserve recalcitrant seed germplasm in the long-term is via 

cryopreservation (Berjak and Pammenter, 2014). Cryopreservation generally entails storage of the 

germplasm in liquid nitrogen at −196°C or in the vapour phase above liquid nitrogen at −160°C. It is 

not possible to cryopreserve whole seeds and thus often the embryonic axes/zygotic embryos represent 

the explants of choice (Berjak and Pammenter, 2014). Nevertheless, there are recalcitrant-seeded species 

such as A. marina that possess embryonic axes that are very large making them unamenable for 

cryopreservation. In other species, while sufficiently small zygotic explants can be obtained (e.g.                       

T. dregeana), these do not survive cryopreservation  irrespective of how they are partially dried 

(Pammenter et al., 2000), which is a prerequisite for successful  cryopreservation in all species studied 

to date.  
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At present, it is still unclear why orthodox seeds are able to tolerate the removal of considerable amounts 

of structure-associated water and recalcitrant seeds are unable to do so. Recalcitrant seeds are shed 

highly hydrated (≥ 1.5 g g−1), and the embryonic axes are damaged even after slight dehydration and 

especially during slow drying (Berjak and Pammenter, 2008). Therefore, during cryopreservation 

embryonic axes of recalcitrant seeds are rapidly dried from fully hydrated to 0.3-0.4 g g−1 which is 

somewhere above the level of non-freezable water to prevent ice-crystal formation during cryogenic 

cooling. Many of the sequential manipulations that have to be followed prior to and after cryostorage 

also have the potential to compromise post-cryo survival (Varghese et al., 2011, Walters et al., 2013) 

and there are hence, no generic protocols for the cryopreservation of zygotic germplasm from 

recalcitrant-seeded species (Berjak and Pammenter, 2014). This may explain why so many authors have 

recently suggested that the development of successful cryopreservation protocols for many recalcitrant-

seeded species demands a more fundamental understanding of the factors governing seed recalcitrance 

and more broadly, desiccation sensitivity (Noor et al., 2011, Berjak and Pammenter, 2014). This 

motivated the present study which investigates some of the factors governing seed recalcitrance in two 

species of contrasting storage longevity. The two species selected for investigation are indigenous to 

South Africa and have been shown to produce recalcitrant seeds that can be stored hydrated  (Sershen 

et al., 2010, Whitaker et al., 2010); for 16-21 d in the case of A. marina (Farrant et al., 1997, Calistru et 

al., 2000) and several months in the case of T. dregeana (Goveia et al., 2004). 

 

1.3 Aims 

The broad aim of the study was to characterise some of the physiological, biochemical and proteomic 

changes associated with seed germination, desiccation and hydrated storage in recalcitrant seeds. For 

comparative purposes, two species that differ in terms of the hydrated storage longevity of their seeds 

were selected for investigation: A. marina which has short storage lifespan (16-21 d; Farrant et al. 1997; 

Calistru et al. 2000), and T. dregeana which has relatively long storage lifespan (several months; Goveia 

et al. 2004 ). 

1.4 Objectives 

The specific objectives of the study included: 

• Comparing the responses of A. marina and T. dregeana seeds to partial dehydration and 

storage in terms of viability, ROS production and glutathione redox capacity. 

• Comparing germination capacity, velocity and redox metabolism between A. marina and T. 

dregeana seeds. 
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• Characterizing the proteomic response of T. dregeana seeds to partial dehydration and 

hydrated storage using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) 

• Comparing seed physiological and proteomic responses of A. marina and T. dregeana to 

partial dehydration and hydrated storage using a label-free LC-MS/MS method. 

1.5 Outline of dissertation 

The remainder of this dissertation is presented as a series of research articles, each containing an 

Abstract, Introduction, detailed Materials and Methods, Results, Discussion, and Concluding Remarks. 

These research articles form the four research chapters (Chapters two to five), which are followed by a 

Concluding chapter (Chapter 6). 

In Chapter 2 responses of A. marina and T. dregeana seeds to partial dehydration and storage are 

compared in terms of viability, ROS production and glutathione redox capacity. Germination data are 

related embryonic axis water content (g g−1), rate of water loss, ROS production and glutathione redox 

capacity at different partial dehydration and storage intervals. Calorimetric assays and HPLC analysis 

was used to measure ROS production and total glutathione (GSH+GSSG) levels, respectively. The 

GSH:GSSG ratio was determined since it is known to be a reliable indicator of oxidative stress (Kranner 

et al., 2006) .  

In Chapter 3 A. marina and T. dregeana are compared in terms of their water uptake characteristics, 

germination velocity and redox metabolism during germination. ROS production and glutathione redox 

capacity was measured at various points during germinative development. Calorimetric assays and 

HPLC analysis was used to measure ROS production and total glutathione (GSH+GSSG) levels, 

respectively. These germination associated data are then related to storage data for both species in order 

to explain their contrasting storage longevity. 

Chapter 4 assesses the proteomic responses of T. dregeana seeds to partial dehydration and hydrated 

storage using iTRAQ. Proteins were identified and quantified and differentially expressed proteins were 

in turn arranged into metabolic pathways according to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Pathway Database using the Blast2GO tool. These data are then related to storage data for both 

species in order to explain their contrasting storage longevity. 

Chapter 5 compares proteomic responses of A. marina and T. dregeana seed to partial dehydration and 

hydrated storage using a label-free LC-MS/MS method. The Blast2GO tool was also employed to 

arrange proteins identified in both species into metabolic pathways according to the KEGG Pathway 

Database. Differences in protein expression within treatments, between species were identified.  These 
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data are then related to storage data for both species in order to explain their contrasting storage 

longevity. 

The final chapter, Chapter 6, integrates the major findings of the various research chapters to provide 

the major conclusions of the study and make recommendations for future research on recalcitrant seeds 

and the phenomenon of desiccation sensitivity in general.  

1.6 Study species 

1.6.1 Avicennia marina (Forssk.) Vierh 

Beachwood Mangroves Nature Reserve, Durban, South Africa was selected for the collection of A. 

marina seeds.  The mangrove environment can be described as is a finely balanced intertidal ecosystem. 

The narrow zone where the land meets the sea is neither strictly terrestrial nor marine. The Beachwood 

mangroves Nature reserve lies within the littoral zone, which is continuous for thousands of kilometres, 

but is not uniform (Berjak et al., 2011). Along these fringes of the estuarine banks within the reserve, 

are inlets where the shores are protected and gently sloping (Figure 1.1). The mangrove environment 

belongs to the littoral zone, but only to its warmest, most sheltered shores. The mangroves or mangrove 

trees grow within a tropical climate as they need consistently warm conditions for their development 

and survival (Berjak et al., 2011). Although temperature is often regarded as the most important factor 

governing distribution, little is known with regards to specific temperature effects in mangroves in 

general. Berjak et al., (2011), found that there is no correlation between limits of mangrove occurrence 

and air temperature. It has been further suggested by these authors, that water temperature rather than 

air temperature may has a greater critical influence on mangroves.  

There are two major areas that mangroves occur namely: the Americas-East-Atlantic and Indo-West-

Pacific (Berjak et al., 2011). The mangroves found in these contrasting biogeographic regions are 

characteristically different with each having a unique tree-species composition. Mangroves found along 

the east coast of Southern Africa are classified within the Indo-West-pacific biogeographic zone. 

Noticeable differences can be observed in the distribution of mangroves in this region for example, the 

mangroves found at Kosi Bay, KwaZulu-Natal (lat. 27 ºS) form thick woodlands over vast areas forming 

one community in which all species of the Southern African region can be found but it must be noted 

that this is as a result of development of the KwaZulu-Natal coast line which has drastically reduced the 

size of these mangroves. In comparison, mangroves found along the shores of the Eastern Cape Province 

(latitudes 31° to 33°S), have reached their limits of distribution and often there are patches of trees which 
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usually have a single species but there are exceptions such as the mangroves found at Mngazana on the 

wild coast (Berjak et al., 2011).   

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A mangrove community growing along the estuarine banks at the Beachwood 

Mangroves Nature reserve (Image captured by Anushka Moothoo-Padayachie) 
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Figure 1.2 A mangrove community growing along a protected inlet, with A. marina trees at the 

front in the Beachwood Mangroves Nature reserve (Image captured by Anushka Moothoo-

Padayachie) 

A. marina is generally one of the most dominant trees in mangrove swamps. It is a medium sized tree 

(Fig. 1.3 b), that grows up to 12 m in height.  Its leaves are small (65 × 25 mm), thick and leathery 

(Berjak et al., 2011). They are simple and broadly lance-shaped. The upper surfaces of the leaves are 

smooth and olive green; their lower surfaces are matt, hairy, silver green and exude salty droplets in the 

early mornings (Berjak et al., 2011). A. marina tress also contain specially adapted roots which grow 

upwards from the cable roots and reach a vertical height of 20- 690 mm. These pencil roots called 

‘pneumatophores’ which allows the subterranean portion of the tree to be able to respire (Fig 1.3a). The 

flowers are inconspicuous visually, but are fragrant. The calyx is five-lobed. The corolla is tubular at 

the base, four or five lobed and is creamy yellow (Berjak et al., 2011).  
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Figure 1.3 (a) New seedlings among pneumatophores of A. marina trees, (b) A. marina trees 

(Images captured by Anushka Moothoo-Padayachie) 

The fruit and seeds are most noticeable from February-April, and are found in clusters of 1,2 or more 

capsules (Fig 1.4a). The size of each fruit is variable (average 25 mm, long). The fruits are ovoid laterally 

compressed with a pointed tip and contain a grey-green velvety coat (pericarp). Each fruit only contains 

a single seed (Fig. 1.4b). The fruit coat is intact until after propagule abscission, moisture (water brought 

in from tides) is required for the coat to be sloughed, after which germination is initiated and produces 

a seedling (Fig 1.4 b and c) (Farrant et al., 1993a).  
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Figure 1.4 (a) A. marina seeds are found in clusters, (b) the pericarp sloughs off when the seed is 

in contact with water, (c) the seed germinated and the seedling very quickly ‘rears up’ on several 

roots to establish itself in the mud. (Images (a) and (b) captured by Anushka Moothoo-

Padayachie; Image (c) courtesy of Patricia Berjak).     

Seeds of A. marina contain a large axis (approx. 20 mm × 3mm) with cotyledons that enclose the axis 

except for a distal portion of the hypocotyl. The protruding hypocotyl tip contains a covering made-up 

of a thick mass of bristle-like hairs (Fig 1.5) that prevent the tip from being in direct contact with the 

surrounding environment once the pericarp has been sloughed (Farrant et al., 1993c). The mass of hairs 

on the hypocotyl tip protect the five (sometimes more) root primordia that are enclosed by a very thin 

layer of hypocotyl tissue. Under moist conditions the pericarp is sloughed and when germination is 

initiated roots develop from the primordia.   
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Figure 1.5 A. marina seeds at different stages of germinative development with observable changes 

occurring at the root primordia. (Image courtesy of Patricia Berjak). 

 

In South Africa, A. marina trees are the most abundant and widely distributed mangrove species in the 

mangrove belt region (Berjak et al., 2011). Traditionally, A. marina leaves and seeds  have been used 

in the treatment of ulcers and skin diseases (Bandaranayake, 1998, Kathiresan and Bingham, 2001). 

Chemical compounds such as steroids, triterpens, saponins, flavonoids, alkaloids, tannins and 

naphthoquinones have also been reported to be found in the bark, leaves, flowers and fruit of A. marina 

(Itoigawa et al., 2001, Khafagi et al., 2003, Zhu et al., 2009).  Numerous studies have also demonstrated 

the antiviral, antibacterial and antifungal effects of leaves of A. marina used to treat diseases such as 

urinary tract infections caused by bacterial pathogens and herpes simplex virus type 1 (Bandaranayake, 

1998, Keivan et al., 2009, Ravikumar et al., 2010, Abeysinghe et al., 2012).  A. marina leaf extract has 

also been found to contain bioactive compounds with antimutagenic and antileukemic effects (Karami 

et al., 2012).  
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1.6.2 Trichilia dregeana Sond. 

Seeds of T. dregeana were collected directly from trees growing on the grounds of the University of 

KwaZulu-Natal, Westville campus, Durban, South Africa. T. dregeana is a member of the family 

Meliaceae and is a medium-sized to tall tree, that grows up to 30 m in height, with a round wide 

spreading crown (Pooley, 1993) (Fig. 1.6a). T. dregeana is an evergreen tree that has extensive 

distribution, stretching from Pondoland, KwaZulu-Natal and Mpumalanga in South Africa and 

northwards into tropical Africa (Pooley, 1997).  It is found in regions of high rainfall and the flowers of 

this evergreen tree are visited by both bees and butterflies, as well as numerous birds that are known to 

feed on the seeds of the tree (Pooley, 1993). These trees also provide nestling sites for various species 

of birds (Pooley, 1993).  

It has compound leaves and is imparipinnate with 3-5 leaflets and a terminal one. The leaflets are entire, 

opposite to alternate, glossy and dark green in colour (21 × 8.5 cm). The under surface of the leaves are 

hairless to slightly hairy, and notably paler than the upper surface. The flowers are inconspicuous, with 

a creamy-white colour and are sweetly scented. The five petals are velvety on both surfaces and are 14 

× 24 mm in length (Pooley, 1993, Allaby, 2012). The fruits are velvety green three-lobed capsules that 

are 3 cm in diameter. In each capsule are 6 seeds, with a black seed coat and a bright waxy scarlet aril 

(Fig. 1.6b) (Pooley, 1993). It was observed that seeds of T. dregeana contained an axis (3 × 1.5 mm) 

with cotyledons that completely enclosed the axis (Fig. 1.7). 



15 

 

Figure 1.6 A fruiting Trichilia dregeana tree (a) and T. dregeana seeds within three lobed fruit (b) 

(Images captured by Anushka Moothoo-Padayachie) 
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Figure 1.7 T. dregeana seed with two cotyledons and embryonic axis (as indicated by arrow) 

(Image courtesy of Chandika Ramlall). 

In the 19th century the wood from T. dregeana trees was used for furniture, household implements and 

even to repair ships in the Durban harbour in KwaZulu Natal (Pooley, 1993). Trichilia dregeana seeds 

are a potential source of oil (Grundy and Campbell, 1993). Various parts of the tree have also been used 

traditionally to treat common ailments related to inflammation such as bronchial inflammation, kidney 

pain, a sore back, fever and rheumatism (Watt and Breyer-Brandwijk, 1932, Hutchings et al., 1996, Van 

Wyk et al., 1997). Studies have shown that the aqueous leaf extracts of T. dregeana have antimicrobial 

properties (Hutchings et al., 1996). Interestingly, Mulholland et al. (1980), isolated limonoids from T. 

dregeana seeds which are known to have antimicrobial and anti-inflammatory activities (Eldeen et al., 

2005, Eldeen et al., 2007)
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2. CHAPTER 2: A comparison of partial dehydration and hydrated storage 

induced changes in viability, reactive oxygen species production and 

glutathione redox capacity in two contrasting recalcitrant-seeded species  

2.1 Abstract 

Recalcitrant seeds are desiccation and/or chilling sensitive which curtails their storage lifespan. This 

study compared the responses of two recalcitrant-seeded species with contrasting storage longevity, 

Avicennia marina (Forssk.) Vierh. and Trichilia dregeana Sond., to partial dehydration and storage in 

terms of viability, reactive oxygen species (ROS) production and glutathione redox capacity. Seeds of 

A. marina exhibited a faster rate of water and viability loss (± 50% viability loss in 4d) during partial 

dehydration, compared with those of T. dregeana (± 50% viability loss in 14 d).  In A. marina embryonic 

axes, ROS production peaked on 4 d of dehydration and was accompanied by an increase in the 

GSH:GSSG ratio. However, these seeds still lost ± 50% viability on day 4, implying that the glutathione 

system alone could not overcome dehydration-induced oxidative stress in this species. In A. marina, 

ROS and axis WC levels increased during storage and this was accompanied by a decline in the 

GSH:GSSG ratio and rapid loss of viability (4 d to reach 45%). In T. dregeana embryonic axes, ROS 

production (particularly hydrogen peroxide) initially increased and then decreased during both partial 

dehydration and hydrated storage. Unlike in A. marina embryonic axes, this reduced ROS production 

was accompanied by a decline in the GSH:GSSG ratio. The data suggest that while T. dregeana seeds 

may have incurred some oxidative stress during storage, a delay in and/ or suppression of the ROS-

based trigger for germination may account for their significantly longer storage longevity relative to 

those of A. marina. These data suggest that the mechanisms of desiccation-induced seed viability loss 

may differ across recalcitrant-seeded species based on the rate and extent to which they lose water during 

partial drying and storage. Furthermore, while recalcitrant seed desiccation sensitivity and by 

implication storage longevity is modulated by redox metabolism, the specific ROS and antioxidants that 

contribute to this control may differ across species.  

 

Keywords: Avicennia marina, partial dehydration, reactive oxygen species, recalcitrant, storage, 

Trichilia dregeana. 
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2.2 Introduction 

Desiccation tolerance in seeds, a key feature of orthodox types (Roberts, 1973), is interpreted as an 

adaptive strategy to enable seed survival in natural seed banks and tolerance against severe 

environmental conditions (Ellis and Roberts, 1981) and is the prime basis of seed longevity and 

storability during ex situ storage (Berjak and Pammenter, 2008, Walters, 2015). Recalcitrant, unlike 

orthodox, seeds do not undergo maturation drying, are shed from the parent plant highly hydrated and 

remain desiccation sensitive throughout their development (Pammenter et al., 1994) and are often 

damaged by loss of only a small proportion of water (Berjak and Pammenter, 2008). Additionally, many 

recalcitrant seeds are chilling sensitive (Berjak and Pammenter, 2008) and this together with their 

desiccation sensitivity makes them unamenable to conventional seed storage techniques (i.e. reduced 

temperature, seed moisture content and relative humidity [RH]) and severely curtails even their short- 

to medium-term storage lifespan under hydrated storage conditions (Pammenter et al., 1994). Hydrated 

storage entails storing seeds at high RH, at or slightly below shedding water content [WC] at reduced 

(4-16C) or ambient temperatures depending on their tolerance to chilling and susceptibility to fungal 

proliferation, which is species-specific. Even cryopreservation which is viewed as the only option for 

long-term conservation of the germplasm of recalcitrant-seeded species is not easily achieved due to 

their intolerance to desiccation and low temperatures (Berjak and Pammenter, 2013).   

 

A plethora of literature over the past few decades have reported significant differences across 

recalcitrant-seeded species in terms of seed desiccation sensitivity and storage longevity (reviewed by 

Berjak and Pammenter, 2008). These studies indicate that there is great variability in (1) the degree of 

dehydration that the seeds of individual species will tolerate and (2) the rate at which they lose water(e.g. 

Farrant et al., (1989). Inter-species variability in seed desiccation sensitivity among recalcitrant-seeded 

species is widely reported; for example, Quercus alba seeds are more desiccation sensitive than Q. nigra 

(Connor et al., 1996) and there are also even differences between different Baccaurea species (Normah 

et al., 1997). Studies have shown that while some recalcitrant seeds are poised for germination in a 

matter of hours or days after shedding (Chaitanya and Naithani, 1994, Callistru et al., 2000), seeds of 

yet others have to undergo germinative development (Goveia et al., 2004). Some believe that these 

differences in developmental status have a significant effect on the degree of dehydration recalcitrant 

seeds will tolerate (Berjak and Pammenter, 2008). Studies have also shown that generally axes at higher 

WCs are more desiccation sensitive as shown for Q. robur (Finch-Savage, 1992), Machilus thunbergii 

(Lin and Chen, 1995) and Theobroma cacao (Li and Sun, 1999). Another factor contributing to 

variability in desiccation sensitivity among individual species is that their drying characteristics differ 

both intra- and inter-seasonally (Finch-Savage et al., 1994).  
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This variability in desiccation sensitivity can in turn lead to difference in storability (Berjak and 

Pammenter, 2008). Recalcitrant seed storage longevity can range from a few days to few months. For 

example, seeds of Shorea robusta Gaertn F. (Chaitanya and Naithani, 1994) and Avicennia marina 

(Forssk.) Vierh. (Farrant et al., 1997, Calistru et al., 2000)  can only be stored for a matter of days while 

seed of species like T. dregeana (Goveia et al., 2004) and Encephalartos natalensis Dyer and Verdoorn 

(Woodenberg et al., 2010) are shed considerably undeveloped and can be stored for several months 

during which time embryo development continues. Recalcitrant seeds that are not chilling sensitive (like 

many temperate species) may even have a longer storage longevity if storage conditions are optimised 

(Corbineau and Côme, 1989, Connor et al., 1996). 

 

The diversity in desiccation sensitivity among recalcitrant seeds has been explored but to a limited 

extent. Understanding the basis of seed desiccation sensitivity starts with knowledge of processes and 

mechanisms involved in the acquisition and maintenance of desiccation tolerance and investigating 

whether or not these occur in recalcitrant seeds, and if so, to what extent in different species (Berjak and 

Pammenter, 2013). Lack of ability for metabolic switch-off that occurs during maturation drying in 

orthodox seeds, is one of the basic reasons that recalcitrant seeds are desiccation sensitive (Berjak and 

Pammenter, 2013). When water is lost from recalcitrant tissues, and especially when dehydration 

proceeds slowly, metabolism is said to become unbalanced. This can result in considerable intracellular 

damage (termed metabolism-linked damage) and death of seeds/embryos at relatively high WCs 

(Pammenter et al., 1998, Pammenter and Berjak, 1999, Walters et al., 2001, Walther et al., 2002, Berjak 

and Pammenter, 2008).In recalcitrant seeds, metabolism-linked damage is thought to be intimately 

associated with the uncontrolled generation of ROS under conditions in which the intracellular 

antioxidant defences are inadequate to quench them (Kranner and Grill, 1993). Desiccation induced 

oxidative stress has been widely reported to contribute to the loss of viability in recalcitrant seeds during 

drying (Roach et al., 2008, Varghese et al., 2011) and storage (Pukacka and Ratajczak, 2005). 

Desiccation interferes with metabolic processes resulting in the production of potentially harmful ROS 

such as singlet oxygen (1O2), superoxide (∙O2
−), hydroxyl radical (∙OH) and hydrogen peroxide (H2O2). 

Studies have shown that ROS may disrupt membrane integrity via peroxidation of membrane lipids 

(Pukacka and Ratajczak, 2006, Roach et al., 2008), damage nucleic acids, and alter protein structure and 

activity through oxidative modifications such as carbonylation (Johansson et al., 2004, Oracz et al., 

2007, Sweetlove and Møller, 2009).  

 

While strict control of ROS is taken for granted in hydrated cells, possession and effective operation of 

a suite of both enzymic and non-enzymic antioxidants is of prime importance in tissues encountering 

various stresses including desiccation (Pammenter and Berjak, 1999, Kranner, 2002, Bailly, 2004, 

Kranner and Birtić, 2005, Varghese et al., 2011, Chandrakar et al., 2016). During the early stages of 
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desiccation, the glutathione-ascorbate cycle plays a crucial role in the detoxification of potentially toxic 

H2O2 by using antioxidant metabolites such as ascorbate, glutathione and NADPH, and enzymes like 

superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), 

monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) (Pukacka and 

Ratajczak, 2006; Varghese et al., 2011). Moreover, Kranner et al. (2006) have reported that the ratio of 

reduced glutathione (GSH) to its oxidised form (GSSG) can be used as a stress marker in seeds and there 

are reports that glutathione plays a key role in maintenance of axis viability in recalcitrant seeds during 

drying (Varghese et al., 2011) and storage (Tommasi et al., 2006). 

 

Given our limited understanding of the mechanisms underlying inter-species differences in storage 

longevity and desiccation sensitivity in recalcitrant seeds the present study compared dehydration and 

storage induced changes in viability, ROS production and glutathione redox capacity in two recalcitrant-

seeded species of contrasting storage longevity. The species investigated in this study included A. 

marina (highly recalcitrant) whose seeds can only survive for a matter of days in storage (Farrant et al., 

1993a, Moothoo-Padayachie et al., 2016) and T. dregeana (less recalcitrant) whose seeds can be stored 

under hydrated storage conditions for several months before visible germination or decline of viability 

is observed  (Goveia et al., 2004, Moothoo-Padayachie et al., 2016). 

 

2.3 Materials and methods 

 

2.3.1 Seed collection and processing 

Mature fruits of A. marina were collected from the ground at the Beachwood Mangroves Nature 

Reserve, Durban, South Africa (29°48.470' S 31°02.384' E), during low tides.  Care was taken in 

collecting only those seeds that showed no signs of pericarp browning, which typically occurs from 24 

h after shedding (Calistru et al., 2000, Moothoo-Padayachie et al., 2016).  Freshly harvested seeds of A. 

marina were soaked in distilled water for 30 min to permit sloughing of the pericarp (Calistru et al., 

2000) and blotted dry before use. Pericarp sloughing is part of the natural post-shedding physiology in 

situ and comes about when seeds are shed into water or are immersed by water after shedding. Mature 

and open capsules of T. dregeana were harvested directly from trees at the University of KwaZulu-

Natal, Westville campus, Durban, South Africa (29°49.054' S 30°56.521' E).  Seeds displaying any 

visible signs of damage and predation were removed prior to any further processing.  Seeds were 

collected over two seasons (March-April for A. marina and May-July for T. dregeana in 2012 and 2013). 
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2.3.2 Desiccation 

Pericarp removed seeds of A. marina were sown in soil collected from beneath the parent trees whereas 

freshly harvested seeds of T. dregeana were sown with aril intact (as this is how these seeds are shed in 

situ) in commercial potting soil (Grovida, South Africa). Both soils (mangrove and commercial potting 

soil) were dried for 24 h to remove any excess moisture, prior to sowing of seeds. Approximately 50 

seeds per tray (30 × 20 cm; 15 cm deep) were randomly sown to a depth of 10 mm. The seeds were 

allowed to dry under ambient conditions at 25°C for a period of 14 d; various parameters were assessed 

over this period, as described below. 

2.3.3 Hydrated storage 

Naked seeds of A. marina were surface-sterilized in 1% sodium hypochlorite (NaOCl) for 20 min on a 

shaker. After brief rinsing, the seeds were left to dry for four hours on a bench top back to their shedding 

WC. Thereafter, these seeds were stored hydrated in a monolayer, on plastic mesh grids suspended about 

100 mm over sterile moistened paper towels, within sealed, sterile opaque buckets at 25°C (Calistru et 

al., 2000, Moothoo-Padayachie et al., 2016). Fungal contamination was minimized by an initial 

application of 2.5 ml L−1 of a fungicide (PrevicurN®; active ingredient, propamocarb-HC [AgrEvo, 

Pietermaritzburg, South Africa]) and then spraying the fungicide at three day intervals for approximately 

30 d (Calistru et al., 2000). 

 

For T. dregeana, the arils were removed from seeds before they were surface sterilized using a 1% 

NaOCl solution containing a few drops of Tween 20 for 20 min.  Seeds were subsequently soaked in an 

antifungal cocktail comprising 0.5 ml L−1 Early Impact (active ingredient, triazole and benzimidizole; 

Zeneca Agrochemicals, South Africa) and 2.5 ml L−1 PrevicurN® (active ingredient, propamocarb; 

AgrEvo, South Africa) for 240 min (Calistru et al., 2000, Berjak and Pammenter, 2004).  The seeds 

were then dusted with Benlate (active ingredient: benomyl [benzimidazole], Dupont, USA), and stored 

hydrated (as described for A. marina) at 16°C (after Goveia et al., 2004).  Seeds of both species that 

germinated in hydrated storage were regularly removed from the buckets and discarded. 

2.3.4 Viability assessment 

Seeds of both species were retrieved from partial dehydration (daily for A. marina and at two-day 

intervals for T. dregeana) and hydrated storage (at five day intervals for A. marina and monthly for T. 

dregeana) treatments and assessed for viability. The seeds of A. marina and T. dregeana (n = 15 for 

each sampling day) were sown in mangrove and commercial potting soil respectively, within seedling 

trays (same dimensions used in partial drying experiments, with five seeds per tray). The soil was 

maintained at field capacity using sea water for A. marina and deionised water for T. dregeana for the 
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duration of the germination trial. These studies were conducted within a glasshouse (26/18°C, day/night; 

ambient light) on the grounds of the University of KwaZulu-Natal.  Germination was defined as radicle 

emergence of at least 10 mm and was scored daily (30 d) until no further change in germination was 

recorded.  

As mentioned above, the seeds that germinated in storage were discarded and considered non-viable 

because those seeds eventually died when additional water for germination to progress was not availed. 

Since few seeds of both species germinated in hydrated storage, care was taken in ensuring that stored 

seeds used for these assays showed no signs of in-storage germination.    

2.3.5 Water Content determination 

Freshly harvested, dehydrated and stored seeds were sampled for embryonic axis WC at intervals that 

coincided with the viability assays. Immediately after excision, embryonic axis WC (n=10) was 

measured gravimetrically using a 5-place balance (Mettler, Mt5, Germany).  Axes were weighed before 

and after drying in an oven at 80°C for 48 h.  Water content was expressed on a dry mass basis (dmb; g 

H2O per g dry matter [g g−1]) as described in Varghese et al. (2011).   

2.3.6 Estimation of extracellular superoxide  

Levels of extracellular ∙O2
− production were determined spectrophotometrically at A490  following the 

NADH-mediated oxidation of epinephrine (Sigma, St. Louis, MO) to adrenochrome (Misra and 

Fridovich, 1972) using an extinction coefficient of 4.47 mM−1 cm−1 and expressed as nmol of 

epinephrine oxidized s-1g-1 DW. Embryonic axes excised from A. marina seeds following dehydration 

(after 0, 1, 2, 3 and 4 d) and storage (at 0, 5, 10, 15 and 20 d) were rinsed for approximately 20 s in 

distilled water and subsequently incubated at 100% RH for 5-10 min to allow any wound induced ROS 

to dissipate before assays were initiated (after Roach et al., 2010). This also applied to axes of 

dehydrated (on 0, 2, 4, 7, 12 and 14 d) and stored (at 0, 1, 2, 3, 4, 5, 6, 9 and 12 months) T. dregeana 

axes. Each assay comprised six replicates of a single axis for A. marina and six replicates of five axes 

each for  T. dregeana.  The embryonic axes were gently shaken at 60 rpm in 2.0 ml of 1 mM epinephrine 

(pH 7.0) for 30 min in the dark at 25°C after which the absorbance of the assay mixture was read at 490 

nm using a UV-Vis spectrophotometer (Shimadzu, UV-2600, Japan).  The dry weight of the axes was 

estimated once they were dried in an oven at 80 °C for 48 h (after Roach et al., 2008).  

 

Epinephrine can be also oxidised non-specifically, and possibly by enzymes (e.g., tyrosinases; Baker 

and Orlandi, 1995). Therefore, the specificity of the assay was determined as ≥50% inhibition of ∙O2
− 

production when 250 U. mL−1 of SOD was added to the assay mixture (Table 2.1). Furthermore, 

confirmatory tests included inhibition of ∙O2
− production by both sources using chemical inhibitors: (a)  
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diphenylene iodonium (DPI) which is an inhibitor of NAD(P)H oxidase (Henderson and Chappell, 

1996) and (b) sodium azide (NaN3) which is an inhibitor of peroxidases (Liu et al., 2006). For this, 

freshly excised embryonic axes of A. marina (three replicates of one axis each) and T. dregeana (three 

replicates of five axes each) were left to rest for 5-10 min and then placed in either 10 µM DPI (Whitaker 

et al., 2010) or 1 mM NaN3 (Kranner et al., 2010) for 10 min, followed by incubation in epinephrine for 

30 min, and rates of ∙O2
− production were measured as discussed above.  

2.3.7 Estimation of extracellular hydrogen peroxide  

Extracellular H2O2 production by embryonic axes excised from fresh, dehydrated and stored seeds at 

various intervals was determined spectrophotometrically using the xylenol orange assay by Gay and 

Gebicki (2000).  A working reagent was made by mixing 1 part of “Reagent A” (which comprised of 

25 mM FeSO4, 25 mM (NH4)2SO4 and 2.5 M H2SO4) and 100 parts of “Reagent B” (containing 125 µM 

xylenol orange and 100 mM sorbitol) which was stirred for 15 min prior to performing the assay.  Six 

replicates of single axis of A. marina and six replicates of five axes each for T. dregeana were gently 

shaken at 60 rpm in 2.0 mL of working reagent for 30 min in the dark at 25°C (after Minibayeva et al., 

2009), after which the absorbance of the assay mixture was read at 560 nm. H2O2 production was 

calculated using a standard curve with known concentrations of H2O2.  The specificity of the assay was 

determined by ≥50% inhibition of H2O2 production when 250 U mL−1 of CAT was added to the assay 

mixture (Table 2.2). 

2.3.8 Determination of intracellular GSH and GSH disulphide (GSSG) 

For the determination of GSH and GSSG, three replicates of a single axis (±100 mg) at 0, 1, 2, 3, and 4 

d after sowing were analysed for A. marina and for T. dregeana were analysed five axes (±40 mg) at 0, 

2, 4,7, 14, 16, and 20 d after sowing were analysed.  The embryonic axes were rapidly frozen in liquid 

nitrogen (LN) and ground to a fine powder in LN using a mortar and pestle.  GSH and GSSG were 

extracted on ice in 2 mL 0.1 M HCl containing 1 mM EDTA and transferred into 2 mL amber 

Eppendorf® tubes.  The extracts were then centrifuged at 14000 g for 15 min (after Varghese et al., 

2011).  The supernatants were then diluted (1:1 ratio; v/v) using 20 mM potassium phosphate buffer (pH 

2.7), and the pH of samples were adjusted to 3.4 using 0.004 mL of a saturated potassium hydroxide 

solution.  A 0.2 mL aliquot of each sample was transferred into 0.3 mL clear inserts within 1.5 mL 

amber auto sampler vials (Macherey-Nagel GmbH and Co., Germany) for analyses using high pressure 

liquid chromatography (HPLC; FRC-10A, Shimadzu, Japan).  All samples and buffers were filter-

sterilised using a 0.2 µm syringe filter and bottle-top filter respectively (GVS filter technology, USA) 

prior to HPLC analyses.  A modified method  (adapted fromYilmaz et al., 2009) was employed for the 
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separation of GSH and GSSG by separating both reduced (GSH) and oxidized (GSSG) forms of 

glutathione without further derivatization.  Total glutathione (GSH + GSSG) was separated on a Synergi 

Hydro-RP C18 column (150×4.6 mm, 4 µm; Phenomenex, S/No. 620813-1, USA).  The mobile phase 

consisted of a 20 mM potassium phosphate buffer (pH 2.7) - acetonitrile (99:1 ratio; v/v).  Owing to the 

crude nature of the seed glutathione extract, the flow rate was adjusted to 0.5 mL min−1 for better peak 

separation.  Detection was performed at 210 nm by a UV-vis detector (RID-10A) at 22 °C oven 

temperature.  The analyses of glutathione molecules lasted for 10-15 min, after which the run was 

discontinued. Quantification was carried out by external standardization using LC Lab solutions 

software and a calibration curve of known standards of GSH and GSSG.  Recovery of GSH and GSSG 

were evaluated with homogenates spiked with standards.  Prior to HPLC analysis, 0.01 mL GSH and 

GSSG was added to the seed extract.  The seed extracts were then blindly assayed and the concentration 

of GSH and GSSG was derived from the calibration curves.  The spiking of GSH and GSSG was 

determined as a standard measured in the absence of the real sample.  Accuracy was evaluated by 

comparing the estimated concentration with the known concentrations of both thiols (data not shown). 

 

2.3.9 Statistical analysis 

All data were analysed using IBM SPSS statistics version 22.  Data were tested for normality using a 

Shapiro-Wilk test.  Viability and water uptake percentages were √arsine transformed prior to any 

analyses.  Viability, water uptake, ∙O2
−, H2O2 and glutathione data were subjected to analysis of variance 

(ANOVA), where data was parametric, to test for differences within species, across sampling intervals.  

Means were separated using a Tukey post-hoc test.  Where data did not meet ANOVA assumptions, 

even after transformation, a Kruskal-Wallis test was applied.  Relationships between parameters 

(viability, ROS production and water loss) were tested via Pearson (where data was parametric) and 

Spearman’s rank (where data was nonparametric) correlation analyses.  An independent-samples t-test 

was used to test for significant differences in ROS, GSH, GSSG and total glutathione levels between 

species at harvest and when 50% survival was attained.  All differences were considered significant at 

the 0.05 level. 

2.4 Results 

2.4.1 Seed viability loss and WC in response to partial dehydration and storage 

During partial dehydration, seeds of A. marina lost ± 50% viability within 4 d compared with                        

T. dregeana seeds that lost ± 50% viability after 14 d under the same drying conditions (Figs. 2.1a and 

b). The rate of water loss was twice as fast in dehydrated A. marina (0.2 g d−1) seeds than in dehydrated 



25 

T. dregeana (0.1 g d−1) seeds (data not shown). Freshly excised embryonic axes of A. marina had an 

initial shedding WC of c. 1.7 g g−1. However, following partial dehydration for 4 d when ± 50% viability 

was lost, embryonic axis WCs decreased significantly (P < 0.05) to c.1 g g−1 (corresponding to 40% 

water loss) and coincided with a significant (P < 0.05) increase in seed viability loss compared with the 

control. In contrast, T. dregeana seeds had an initial axis WC of c. 2.3 g g−1 but following partial 

dehydration for 14 d when ± 50% viability loss occurred axis WC dropped to c. 0.8 g g−1 (corresponding 

to c. 62% water loss) (Fig. 2.1a and b).  
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Figure 2.1 Percentage viability loss (◊; a and b), extracellular superoxide production (; c and d) 

and extracellular hydrogen peroxide production (×; e and f) during partial dehydration of A. 

marina and T. dregeana seeds, respectively, following harvest in the absence of water. Embryonic 

axes WC (●) during various stages of partial dehydration is shown for both species in graphs 2.1a 

to 2.1f. Points labelled with different letters are significantly different when compared within 

species, across treatments (P < 0.05 in all cases; ANOVA) 
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During hydrated storage of A. marina seeds no significant difference (P > 0.05) in WC was found 

between 0, 5 and 10 d. However, a significant increase (P < 0.05) in WC was observed in embryonic 

axes when WC was estimated on 15 d and 20 d of hydrated storage, which coincided with 33% ± 6 and 

53% ± 4 seed viability loss, respectively (Fig. 2.2a and b). Loss in A. marina seed viability post 20 d in 

hydrated storage was mainly due to seeds germinating in storage (data not shown). In contrast, a 

significant decrease (P < 0.05) in axis WC occurred in T. dregeana seeds in hydrated storage compared 

with freshly harvested seeds (control). A significant (P < 0.05) decrease in WC was measured in                           

T. dregeana seeds over 5 months in storage and thereafter there were no significant differences                    

(P > 0.05) in axis WC. At 12 months in hydrated storage, 54% ± 0.5 of T. dregeana seeds germinated 

in storage. Although, the non-germinated seeds remained 100% viable, embryonic axis WC of                               

T. dregeana seeds dropped from c. 2.4 g g−1 at day 0 (control) to c. 2.0 g g−1 after 12 months in storage, 

implying that the seeds experienced a water stress.  
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Figure 2.2 Percentage viability loss (◊; a and b), extracellular superoxide production (; c and d) 

and extracellular hydrogen peroxide production (×; e and f) during hydrated storage of A. marina 

and T. dregeana seeds, respectively. Embryonic axes WC (●) during various stages of hydrated 

storage is shown for both species in graphs 2.2a to 2.2f. Points labelled with different letters are 

significantly different when compared within species, across treatments (P < 0.05 in all cases; 

ANOVA). 
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2.4.2 ROS production during partial dehydration  

In embryonic axes of A. marina, there was an initial (between 0 d to 1 d) significant (P < 0.05) decrease 

in ∙O2
− production, with similar levels of superoxide production in axes from 1 d till 3 d following partial 

dehydration (Fig. 2.1c). However, between 3 and 4 d following partial dehydration, there was a 

significant (P < 0.05) increase in ∙O2
−  production in axes of A. marina seeds which also coincided with 

a significant (P < 0.05) decrease in WC (Fig. 2.1c) and ± 50% viability loss (Fig 2.1a). A similar trend 

was also observed in terms of H2O2 production where levels in A. marina axes initially significantly                    

(P < 0.05) decreased (between 0 and 1 d) but levels were comparable between 1 d and 3 d. Similarly, a 

significant increase in H2O2 production occurred in A. marina axes between 3 d and 4 d (Fig. 2.1e), when 

± 50% viability was lost (Fig. 2.1a).  

Although axis WC decreased during partial dehydration in T. dregeana and seed viability loss increased 

over time, no significant differences in superoxide production levels were found up until 14 d (Fig. 2.1d) 

when ± 50% viability loss occurred (Fig. 2.1b). In contrast, there was a significant decrease in H2O2 

production in axes at 7 d of partial dehydration which was maintained constant until 14 d (Fig. 2.1e), 

when ± 50% viability loss occurred (Fig. 2.1b).  

2.4.3 ROS production during hydrated storage  

In the embryonic axes of stored A. marina seeds, there was no significant (P > 0.05) difference in ∙O2
− 

production over 20 d, except at 10 d in storage when there was a significant (P < 0.05) decrease in ∙O2
− 

production (Fig. 2.2c). Interestingly, following 10 d in storage, there was a significant (P < 0.05) increase 

in seed viability loss. During storage, the level of H2O2 production in the axes of stored A. marina seeds 

remained very similar over the first 15 d (Fig. 2.2e). However, after 15 d the level of H2O2 production 

significantly (P < 0.05) increased in axes. Levels of H2O2 production were particularly high at 20 d (Fig. 

2e) which also coincided with ± 50% seed viability loss (Fig. 2.2a). 

In the axes of stored T. dregeana seeds, ∙O2
− production significantly (P < 0.05) increased and peaked 

at 4 months, thereafter ∙O2
− production decreased, with levels being comparable between 6 and 12 

months (Fig. 2.2c). A significant increase (P < 0.05) in seed viability loss occurred from six months 

onwards until ± 50% viability was lost after 12 months (since many seeds germinated in storage)                    

(Fig. 2.2b). H2O2 production peaked at 3-5 months in the axes of stored T. dregeana seeds but thereafter 

significantly (P < 0.05) declined up until six months (Fig. 2.2f). Levels of H2O2 remained relatively 

constant between 6 and 12 months of storage but at 12 months H2O2 production was significantly (P < 

0.05) lower than that at harvest (Fig 2.2d and f). 
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2.4.4 Confirmatory assays for ROS estimation in axes after partial dehydration and hydrated storage  

The specificity of the assay used to measure the ∙O2
− production described above was confirmed by the 

fact that exposure of excised axes of both A. marina and T. dregeana to SOD significantly (P < 0.05) 

decreased adrenochrome formation by >50% in both species (i.e., c. 52% and 65%, respectively; Table 

2.1). Superoxide production in freshly excised axes of T. dregeana was also inhibited (>50%) by known 

enzyme inhibitors, viz., DPI and NaN3 (Table 2.1). Similarly, relatively lower but significant (P < 0.05) 

inhibition of ∙O2
− production was also observed in freshly excised A. marina axes exposed to DPI (43% 

inhibition) and NaN3 (c. 36% inhibition) (Table 2.1). The specificity of the H2O2 assay used was 

confirmed by the fact that exposure of freshly excised axes to CAT significantly (P < 0.05) decreased 

H2O2 production by >50% in both species (Table 2.2). 

Table 2.1: Effects of superoxide dismutase (SOD) and the enzyme inhibitors diphenylene 

iodonium (DPI) and sodium azide (NaN3) on extracellular ∙O2
− production (nmol g−1 DW s−1) in A. 

marina and T. dregeana embryonic axes.  

 ∙O2
− production 

Inhibitor A. marina T. dregeana 

Control (dH2O)             2.3 ± 0.1 a             8.2 ± 0.1a 

DPI (10 µM) 1.3 ± 0.1 (57%)b 2.9 ± 0.4 (35%)b 

NaN3 (1 mM) 1.5 ± 0.1 (64%)b 3.1 ± 0.4 (38%)b 

SOD (250 U/ml) 1.1 ± 0.1 (48%)b 3.0 ± 0.1 (35%)b 

Data represent mean ± SD (n=3 replicates of 1 axis for A. marina and n=3 replicates of 5 axes for                         

T. dregeana). Values labelled with different letters are significantly different when compared within 

species, across treatments (P < 0.05 in all cases; ANOVA). Values within brackets reflect                                               

% increase/decrease relative to control. 

Table 2.2: Effect of catalase (CAT) on extracellular H2O2 production in A. marina and T. dregeana 

embryonic axes. Data represent mean ± SD (n=3 replicates of 1 axis for A. marina, n=3 replicates 

of 5 axes for T. dregeana). Values labelled with different letters are significantly different when 

compared within species, across treatment (P < 0.05; ANOVA). Values within brackets reflect % 

increase/decrease relative to control. 

 H2O2 production 

Inhibitor A. marina T. dregeana 

Control (dH2O)             3.2 ± 0.1a             14.9 ± 0.4a 

CAT (250 U/ml) 0.7 ± 0.1 (21%)b 7.4 ± 0.1 (50%)b 
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2.4.5 Glutathione pool during partial dehydration 

During partial dehydration, total glutathione levels (GSH+GSSG) increased over dehydration time in               

A. marina axes. Total glutathione levels were significantly (P < 0.05) higher dehydrated A. marina axes 

at 4 d of partial dehydration compared with the levels at harvest (Fig. 2.3a). The highest ratio of 

GSH:GSSG occurred in axes of seeds dried for 4 d (Fig. 2.3a) which coincided with ± 50% viability 

loss (Fig. 2.1a). During partial dehydration of T. dregeana seeds, total glutathione levels in the 

embryonic axes were comparatively lower initially (between 0 to 2 d) compared with all other days of 

estimation. However, total glutathione levels were significantly (P < 0.05) high at 4 d and 8 d compared 

with the control. Although total glutathione levels were significantly (P < 0.05) higher in axes at 14 d 

compared with the control, the ratio of GSH:GSSG was higher in axes at harvest (0 d) than 14 d, when 

± 50% viability was lost.  

2.4.6 Glutathione pool during hydrated storage 

In the embryonic axes of stored A. marina seeds, total glutathione levels initially (between 0 d and 10 

d) increased compared with the levels in axes from fresh seeds. However, following 10 d storage, total 

glutathione levels in the axes significantly (P < 0.05) decreased which coincided with an increase in 

seed viability loss (Fig. 2.2a). There was no significant (P > 0.05) difference in total glutathione levels 

in axes from seeds at harvest (control) compared with after seeds storage for 20 d. However, there was 

a higher ratio of GSH:GSSG in A. marina axes at harvest compared with at 20 d in storage. In the 

embryonic axes of stored T. dregeana seeds, the ratio of GSH:GSSG was higher at harvest than after   

12 months in storage. However, in terms of total glutathione levels, a higher amount of total glutathione 

was found at 12 months (when ± 50% viability loss occurred) than at harvest. When ± 50% viability 

loss occurred in both species total glutathione levels were higher in T. dregeana seeds compared to                     

A. marina seeds.  
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Figure 2.3 Reduced (GSH) and oxidized glutathione (GSSG), GSH:GSSG ratio and viability loss 

in embryonic axes from seeds that were partially dehydrated (a and b) and hydrated storage (c 

and d) of A. marina and T. dregeana, respectively. Values are the mean ± SD (n = 3 replicates of 1 

axis for A. marina and 5 axes for T. dregeana); (P < 0.05 in all cases; ANOVA). 
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2.5 Discussion 

 

To improve our current understanding of the biological basis for inter-species differences in desiccation 

sensitivity and storage longevity in recalcitrant seeds, the present study undertook a comparison of the 

responses of two recalcitrant-seeded species (A. marina and T. dregeana) to partial dehydration and 

hydrated storage. In accordance with the definition of recalcitrance (Roberts, 1973), both recalcitrant-

seeded species were shed at high WCs (Figs. 2.1a and b). However, differences were found in the degree 

of dehydration both these individual species would tolerate. For example, A. marina seeds were much 

more desiccation sensitive than those of T. dregeana seeds: A. marina seeds lost ± 50% viability in only 

4 d (corresponding to c. 40% water loss) compared with T. dregeana seeds which took 14 d to lose ± 

50% viability (corresponding to c. 62% water loss).These differences in desiccation sensitivity could 

therefore be a consequence of relatively faster loss of water in A. marina seeds under the same drying 

conditions; the rate of water loss in A. marina axes (0.2 g d−1) was twice as fast as that in T. dregeana 

axes (0.1 g d−1). Farrant et al. (1989) also found that the rate of water loss can differ dramatically across 

recalcitrant seeds of different species (Araucaria angustifolia, Scadoxus membranaceus and Landolphia 

kirkii) dehydrated under identical conditions.  

 

Desiccation-induced oxidative stress is a common cause of death in desiccation sensitive tissues in 

general and recalcitrant seeds in particular (Chaitanya and Naithani, 1994, Pukacka and Ratajczak, 2006, 

Roach et al., 2008, Roach et al., 2010, Sershen et al., 2016). Oxidative stress is created when the 

antioxidant capacity of the tissues is not enough to quench the excessive ROS production as a result of 

various stresses including water loss, as in this study (Leprince et al., 1999, Pukacka and Ratajczak, 

2006, Roach et al., 2010). In the present study, axis WC significantly decreased in A. marina during 

partial dehydration (between 3 d and 4 d) which also coincided with a significant (P < 0.05) increase in 

ROS production (Fig. 2.1c and e) and ± 50 viability loss (Fig. 2.1a). Numerous studies have shown that 

ROS accumulation and associated oxidative stress (especially during dehydration) is one of the major 

causes of loss of membrane structural integrity which leads to seed viability loss (Hendry et al., 1992, 

Leprince et al., 1999, Pukacka and Ratajczak, 2006). Increased ROS production during dehydration of 

A. marina seeds coincided with viability loss which is similar to results found in other recalcitrant-

seeded species  (Chaitanya and Naithani, 1994, Varghese and Naithani, 2002, Pukacka and Ratajczak, 

2006, Roach et al., 2008)  such as Acer saccharinum, (Pukacka and Ratajczak, 2006) and Camellia 

sinensis (Chen et al., 2011). Although there have been numerous studies on the role of ROS production 

during desiccation of recalcitrant seeds, the balance between the pro- and anti-oxidants during 

desiccation is still unclear. It is, however, well established that the presence and effectiveness of various 

antioxidant enzymes and compounds is of paramount importance to maintaining a redox state in viable 

cells. The ratio of GSH:GSSG especially, is a well-known indicator of oxidative stress in plants (Noctor 
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and Foyer, 1998) and orthodox (Tommasi et al., 2001, Garnczarska, 2008) and recalcitrant (Varghese 

et al., 2011) seeds. In axes of A. saccharinum seeds for example, the ratio of GSH:GSSG increased 

during initial dehydration. In the present study, at 4 d when ± 50% viability was lost in A. marina seeds, 

they displayed a high GSH:GSSG ratio, possibly in response to the high ROS levels (Fig. 2.1a), 

however, viability was still lost (at 7 d these seeds were 0% viable (data not shown). In Acer 

saccharinum seeds although total glutathione levels were initially high, with prolonged dehydration both 

the levels of GSH and GSSG declined with the final ratio of GSH:GSSG being higher in the control 

than after dehydration (Pukacka and Ratajczak, 2006). Thus, it is possible that total glutathione levels 

and ratio of GSH:GSSG may have declined in A. marina had these levels been measured  beyond 4 d of 

drying. 

 

In contrast, in T. dregeana axes no significant difference in ∙O2
− production was found in seeds exposed 

to partial dehydration, even though the WC decreased over time (Fig. 2.1b) and ± 50% viability was lost 

at 14 d (Fig. 2.1d). Interestingly, H2O2 production decreased during partial dehydration with 

significantly (P < 0.05) lower levels in seeds exposed to 14 d partial dehydration when ± 50% viability 

was lost relative to the control (Fig. 2.1f). However, this decline in ROS was also accompanied by a 

decrease in the ratio of GSH:GSSG (Fig. 2.3b) on the day (14 d) that coincided with ± 50% viability 

loss (Fig. 2.1b). This suggests that these seeds may have incurred some oxidative stress even at reduced 

ROS levels, which may explain their viability loss. Alternatively, Varghese et al. (2011) also found that 

dehydration decreased axis ROS levels, the ratio of GSH:GSSG and  germinability in this species, 

suggested that dehydration dampens the ROS-based trigger for germination in T. dregeana axes of                     

T. dregeana. The response to dehydration in terms of ROS production and the glutathione system 

appears to differ between T. dregeana and A. marina seeds. Inter-species variability in ROS and 

antioxidant responses to dehydration appears to be a common observation (Farrant et al., 1989, 

Ballesteros et al., 2014, Sershen et al., 2016). 

 

As mentioned earlier, hydrated storage allows recalcitrant seeds to survive in the short- to medium- term 

by maintaining them close to their shedding WC. However, studies have shown that even in hydrated 

storage embryonic axes of recalcitrant seeds undergo germinative development and eventually lose 

viability due to a mild desiccation stress since additional water for germination is not supplied 

(Pammenter et al., 1984, Farrant et al., 1986b, Berjak and Pammenter, 2000). The results obtained for 

A. marina seeds here strongly contradict this suggestion in that WC in stored seeds remained relatively 

unchanged between 0 to 10 d but increased significantly after 10 d which coincided with significantly 

high levels of viability loss (Fig. 2.2a). This increase in axis WC could well be a consequence of the 

axis tissues actively absorbing water from the surrounding humid atmosphere with which they are in 

direct contact with due to the anatomy of these seeds. In contrast, in T. dregeana the axis is sandwiched 
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between large oily cotyledons and is not in direct contact with the humid atmosphere within the storage 

buckets, which may explain why axes of these seeds declined in WC as storage progressed (Fig. 2.2b). 

This increase in axis WC in A. marina axes was accompanied by an increase in H2O2 production from 

15 d onwards (Fig. 2.2e). This increased ROS production (and WC) in A. marina seeds during hydrated 

storage may represent part of the biochemical trigger for germination described by Varghese et al. 

(2011) for this species. However, since this trigger was not accompanied by the provision of additional 

water for germination to progress in this case, the seeds lost viability (Fig. 2.2a). Total glutathione levels 

increased significantly initially (from 0 till 10 d) in these seeds, however, total glutathione levels 

significantly (P < 0.05) decreased on day 15 and 20 coinciding with high viability loss. The ratio of 

GSH:GSSG was also found to be lower in A. marina seeds stored for 20 d compared the control 

indicating that these seeds  experienced oxidative stress due to an imbalance in pro- and antioxidants. 

Similar, findings i.e. reduced glutathione levels during storage have also been reported in recalcitrant 

Ginkgo biloba seeds (Tommasi et al., 2006). 

 

As alluded to above, T. dregeana seeds behaved different to those of A. marina during hydrated storage, 

in terms of axis water content. The data suggest that T. dregeana seeds experienced a mild dehydration 

stress (reduction in axis WC) as storage time progressed (Fig. 2.2b). Seeds of T. emetica have also been 

reported to encounter a mild desiccation stress during hydrated storage (Kioko et al., 2006). At 4 months 

in hydrated storage there was an initial increase in ROS production in axes of T. dregeana, however, 

thereafter the levels of ROS decreased progressively (Figs. 2.2d and 2.2f) This decrease in ROS was 

accompanied by a decline in the ratio of GSH:GSSG (3.4:1 at 12 month)relative to the control (36:1). 

However, unlike in A. marina embryonic axes, in T. dregeana embryonic axes the decline in this ratio 

was accompanied by declining rather than increasing ROS levels. This may explain why T. dregeana 

seeds retained >50% of viability up until 12 months, relative to the 4 days exhibited by A. marina seeds. 

Since the decline in ROS beyond 4 months was not accompanied by a rapid decline in viability these 

results also suggest that the extended storability of these seeds relative to those of A. marina may be due 

to a delay in and/or suppression of the ROS-based trigger for germination. This may be a consequence 

of losing, as opposed, to taking up axis WCs (as in A. marina) during storage.  

2.6 Concluding remarks and recommendations  

The study confirmed that A. marina seeds are much more desiccation sensitive and have a shorter 

lifespan in hydrated storage compared with T. dregeana seeds. Partial dehydration of A. marina seeds 

was associated with a relatively faster rate of water loss compared with T. dregeana seeds and a spike 

in ROS production. Even though this increase in ROS was accompanied by an increase in the 

GSH:GSSG ratio A. marina, seeds lost ± 50% viability in 4 d, suggesting that the glutathione system 

alone is inadequate for overcoming dehydration-induced oxidative stress in this species. T. dregeana 
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seeds exhibited a comparatively lower rate of water loss during partial dehydration and decreased ROS 

production. However, dehydration reduced the GSH:GSSG ratio in T. dregeana seeds compared to the 

control which may have led to oxidative stress; hence the viability loss observed during dehydration. 

The results also suggest that during hydrated storage A. marina seeds may lose viability due to an earlier 

development of in the ROS-based trigger for germination which coincided with a reduced GSH:GSSG 

ratio. This peak in ROS may be brought about by the uptake of water during storage but this suggestion 

requires further investigation. In contrast, T. dregeana seeds appear to encounter a mild dehydration 

stress during storage and their extended storage lifespan appears to be a consequence of delaying and/or 

suppressing the ROS-based trigger for germination in storage. However, as in A. marina seeds storage 

was accompanied by a decline in the GSH:GSSG ratio which may explain why T. dregeana also 

eventually lost viability during storage. The mechanisms of desiccation-induced seed viability loss may 

therefore differ across recalcitrant-seeded species based on the rate and extent to which they lose water 

during partial drying and storage. Furthermore, while recalcitrant seed desiccation sensitivity and by 

implication storage longevity is modulated by redox metabolism, the specific ROS and antioxidants that 

contribute to this control may differ across species. To investigate some of the postulations made in this 

study, the next chapter presents data on water uptake, ROS production and glutathione redox capacity 

during germination in A. marina and T. dregeana seeds. 
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3. CHAPTER 3: Germination associated ROS production and glutathione 

redox capacity in two recalcitrant-seeded species differing in seed longevity 

Anushka Moothoo-Padayachie, Boby Varghese, Norman W. Pammenter, Patrick Govender, and 

Sershen 

3.1 Abstract  

This study investigated the relationship between germination rate and storage lifespan in two 

recalcitrant-seeded species, Avicennia marina (Forssk.) Vierh. and Trichilia dregeana Sond., in relation 

to water uptake and oxidative metabolism. Seeds of A. marina had a higher germination rate and shorter 

hydrated storage lifespan than T. dregeana. Rapid germination of A. marina seeds was associated with 

high water uptake rates and an early increase in reactive oxygen species (ROS) production and decline 

in GSH:GSSG ratio. Slower germination in T. dregeana seeds was associated with lower water uptake 

rates, delayed onset of the ROS-based trigger for germination, and high GSH:GSSG ratio. Positive 

correlations (p < 0.05) between ROS production and percent water uptake, and inhibition of germination 

by ROS scavenging agents confirmed the requirement for heightened ROS levels for germination in 

both species. Germination rate in recalcitrant seeds appears to be governed by the rate of water uptake 

and ROS production; the latter being dependent on antioxidant activity. We propose that poor longevity 

in recalcitrant seeds, such as those of A. marina, is based on high rates of water uptake and low levels 

of ROS scavenging activity that promote the ROS-based trigger for germination during hydrated 

storage. 

Keywords: Avicennia marina, germination, reactive oxygen species, recalcitrant, storage, Trichilia 

dregeana. 

3.2 Introduction 

 

Recalcitrant seeds are sensitive to desiccation and chilling, and therefore cannot be stored under 

conventional storage conditions of low water content (WC) and subfreezing temperatures used for the 

storage of desiccation tolerant, orthodox seeds (Pammenter and Berjak, 1999).  Instead, recalcitrant 

seeds must be stored at or close to their shedding WC; even mild dehydration adversely affects viability 

(Eggers et al., 2007).  Short- to medium-term storage (days [d] to months) of recalcitrant seeds is 

achieved by hydrated storage which involves maintaining the seeds under conditions of saturated 

relative humidity (Berjak and Pammenter, 2004, FAO, 2013).  However, such seeds eventually 

germinate or lose viability in hydrated storage (Farrant et al., 1986b, 1989).  Ultrastructural studies have 
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revealed that during hydrated storage, embryonic axes of recalcitrant seeds undergo germination-

associated changes that are very similar to those occurring during orthodox seed germination; such 

changes include an increase in cell size, extensive vacuolisation, consumption of reserves, and 

development of mitochondria (Pammenter et al., 1984, Farrant et al., 1986b, Berjak and Pammenter, 

2000).  Furthermore, these changes imply that additional water is required to complete the process of 

germination, which if not supplied exposes the seeds to a water stress even under hydrated storage 

conditions (Farrant et al., 1986b). 

 

Whilst the basis of their loss of viability during storage appears to be common across species, recalcitrant 

seeds display vastly contrasting seed-storage longevity.  Seeds of species such as Avicennia marina 

(Forssk.) Vierh., for example, are fully developed when shed and the period between shedding and 

visible germination is extremely short, placing major constraints on hydrated storage (16-21 d; Farrant 

et al., 1997, Calistru et al., 2000).  On the other hand, seeds of T.  dregeana are shed relatively immature, 

and there is a considerable lag between shedding and visible signs of germination; T. dregeana seeds 

can be successfully stored for several months in hydrated storage (Goveia et al., 2004).  Berjak et al. 

(1989) proposed that the hydrated storage lifespan of recalcitrant seeds is dependent on the rate at which 

the seeds germinate naturally. However, the physiological or biochemical basis of this suggestion is 

difficult to investigate/illustrate based on the fact that unlike orthodox seeds, recalcitrant seeds do not 

have a readily identifiable switch from developmental to germinative metabolism (Pammenter and 

Berjak, 2014). Reactive oxygen species (ROS) are known to play a dual role in seeds; although more 

widely recognised for their damaging role in cells, extracellularly produced ROS have been implicated 

in cell wall loosening and elongation (Müller et al., 2009) in germinating  orthodox (Liszkay et al., 

2004, Kranner et al., 2010) and recalcitrant seeds (Roach et al., 2010). 

 

 Compared with orthodox seeds (Wojtyla et al., 2006, Bailly et al., 2008, Gomes and Garcia, 2013), 

germination associated oxidative metabolism is not fully understood in recalcitrant types.  However, 

Roach et al. (2010) have shown that excised embryonic axes of Castanea sativa seeds produced maximal 

∙O2
− just before elongation of axes, while Varghese et al. (2011) showed that slight dehydration of T. 

dregeana embryonic axes stimulated germination that was accompanied by high ∙O2
− levels (which the 

authors termed “a biochemical trigger for germination”).  Those authors postulated that the decrease in 

∙O2
− levels upon dehydration to relatively lower WC’s (which they referred to as “a dampening of the 

biochemical trigger for germination”) may be responsible for the decline in germination in partially 

dried T. dregeana axes.  Additionally, many studies on storage of recalcitrant seeds have indicated that 

their survival and subsequent germination depends on the delicate balance between ROS production and 

antioxidant protection (Walters et al., 2001, Tommasi et al., 2006).  If this balance is upset, free radical-
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induced lipid peroxidation and oxidative stress can damage membranes, enzymes, and nucleic acids, 

resulting in loss of viability (Smith and Berjak, 1995, Bailly, 2004). 

 

This redox balance in seeds is controlled by the action of enzymatic (e.g., glutathione reductase, 

ascorbate peroxidase, catalase [CAT], superoxide dismutase [SOD]), and non-enzymatic (e.g., α-

tocopherol, flavonoids, phenolics, ascorbate, and reduced glutathione) antioxidants (Bailly, 2004, 

Kranner et al., 2006). The glutathione reductase system in particular has been shown to be important in 

this regard, as it serves as a redox  buffer in cells (Schafer and Buettner, 2001). The ratio of the 

components of glutathione/glutathione disulphide (GSH/GSSG) is frequently used as a marker of plant 

stress (Noctor and Foyer, 1998). Of even greater interest to the present study are reports that glutathione 

plays a key role in germination in orthodox seeds, with a rise in GSH levels and GSSG occurring just 

before radical protrusion (Tommasi et al., 2001, Garnczarska and Wojtyla, 2008).  Our study 

investigated the relationship between germination rate and storage lifespan in two recalcitrant-seeded 

species of contrasting storage longevity, in the context of water uptake rate and oxidative metabolism 

during germination.  These studies were conducted on the seeds of  A. marina, a mangrove tree, which 

produces very short-lived seeds (Berjak et al., 1989, Farrant et al., 1992b) and T. dregeana, a 

horticultural tree species, the seeds of which can be stored for much longer periods (Goveia et al., 2004). 

The study first assessed storage longevity in A. marina and T. dregeana using hydrated storage and 

thereafter related germinability in each species to water uptake rate, ∙O2
− and H2O2 production and ratio 

of glutathione to glutathione disulphide (GSH/GSSG). 

3.3 Materials and Methods 

3.3.1 Seed collection   

The methods employed for this aspect of the study follow those described in section 2.3.1 of                     

Chapter 2.  

 

3.3.2 Hydrated storage of seeds 

Seeds of A. marina seeds were soaked in distilled water for 30 min to permit sloughing of the pericarp 

(Calistru et al., 2000).  Naked seeds were then surface-sterilized in 1% sodium hypochlorite for 20 min. 

After brief rinsing, the seeds were left to dry for four h on a bench top back to their shedding WC. 

Thereafter, these seeds were stored hydrated in a monolayer, on plastic mesh grids suspended about 100 

mm over sterile moistened paper towel, within sealed, sterile opaque buckets at 25 °C (Calistru et al., 

2000). Fungal contamination was minimized by an initial application of 2.5 ml L−1 of a fungicide 
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(PrevicurN; active ingredient, propamocarb-HC [AgrEvo, Pietermaritzburg, South Africa]) and then at 

three day intervals for approximately 30 d (Calistru et al., 2000). 

 

For T. dregeana, the arils were removed from seeds before they were surface sterilized using a 1% 

sodium hypochlorite solution, containing a few drops of Tween 80, for 20 min.  Seeds were subsequently 

soaked in an antifungal cocktail comprising of 0.5 ml L−1 Early Impact (active ingredient, triazole and 

benzimidizole; Zeneca Agrochemicals, South Africa) and 2.5 ml L−1 PrevicurN (active ingredient, 

propamocarb; AgrEvo, South Africa) for 240 min (Calistru et al., 2000, Berjak and Pammenter, 2004).  

The seeds were then dusted with Benlate (active ingredient: benomyl [benzimidazole]; Dupont), and 

stored hydrated (as described for A. marina) at 16 °C (after Goveia et al., 2004).  Seeds of both species 

that germinated in hydrated storage were regularly removed from the buckets and discarded.   

3.3.3 Germination 

Fresh and stored seeds of A. marina and T. dregeana were assessed for germinability (at 5 d intervals 

for the former and monthly interval for the latter) by sowing seeds (n = 15 for each season) retrieved 

from hydrated storage in seedling trays (five seeds per tray).  Seeds of T. dregeana were sown (with aril 

intact) in commercial potting soil (Grovida), whereas A. marina seeds were sown in soil collected from 

underneath the parent trees.  In each case, the soil was watered (with deionised water for T. dregeana 

and sea water for A. marina) to field capacity before the seeds were introduced and maintained as such 

for the duration of germination trial; A. marina seeds were watered daily with 500 mL of sea water 

whereas T. dregeana seeds were watered every other day with 500 mL of distilled water.  These 

germination studies were conducted within a glasshouse (25-28 °C) on the grounds of the University of 

KwaZulu-Natal.  Germination was defined as radicle emergence of at least 4 mm and 10 mm in seeds 

of A. marina (after Farrant et al., 1992a) and T. dregeana (after Varghese et al., 2011), respectively, and 

was scored daily until no further change in germination was recorded for 3 d. All assays were performed 

on the same batch of seeds.  The experiment was performed separately over two seasons.  

 

3.3.4 Water content determination 

The methods employed for this aspect of the study follow those described in section 2.3.5 of                     

Chapter 2. Water content was expressed on a dry mass basis (dmb; gram H2O per gram dry matter [gg−1]) 

as described in Varghese et al. (2011).  However, since recalcitrant-seeded species vary in terms of 

embryonic axes shedding WCs (Ballesteros et al., 2014), axes WCs for both species were normalised 

by calculating the percentage water uptake according to the following formula:  
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% Water uptake = Final WC- Shedding WC   × 100 

                                     Shedding WC 

 

3.3.5 Estimation of extracellular superoxide  

The methods employed for this aspect of the study follow those described in section 2.3.6 of                          

Chapter 2. 

 

3.3.6 Estimation of extracellular hydrogen peroxide  

The methods employed for this aspect of the study follow those described in section 2.3.7 of                          

Chapter 2. 

 

3.3.7 Role of superoxide and hydrogen peroxide in seed germination 

To evaluate the role of ∙O2
−  in recalcitrant seed germination, seeds of A. marina and T. dregeana were 

imbibed in 0 (control), 50, 100, or 150 µM (w/v) DPI, an inhibitor of NAD(P)H oxidase (Henderson 

and Chappell, 1996), for 8 h on a shaker at 60 rpm (after Jiang and Zhang, 2002, Xia et al., 2009). 

Dimethylthiourea (DMTU; w/v), a scavenger of H2O2, was used to determine the effect of inhibition of 

H2O2 production on seed germination.  Seeds of A. marina (with pericarp removed) and T. dregeana 

(with aril removed) were imbibed in 0 (control), 150, 1000, or 5000 µM DMTU for 8 h with continuous 

shaking at 60 rpm (after Jiang and Zhang, 2002, Xia et al., 2009).  Germination tests comprised of three 

replicates containing 10 seeds each and the entire experiment was repeated twice.  Seeds were sown in 

sterile plastic buckets (0.5 L) containing moistened filter paper (with either 50, 100, or 150 M DPI; or 

150, 1000 or 5000 µM DMTU, respectively) and maintained in a glasshouse at 25 °C under natural light 

and dark conditions.  The filter papers were kept moistened with the corresponding concentration of DPI 

or DMTU, or distilled water for the control seeds, throughout the 30 d.  To account for any lag in the 

onset of germination that may have been brought about by DPI and DMTU, the experiment was 

continued for an extended period of 30 d. Germination was scored positive when radicle emergence was 

at least 4 mm and 10 mm in A. marina and T. dregeana seeds, respectively.  

 

To ensure that the inhibition of germination by DPI was not a consequence of cytotoxicity, following 

the 8 h treatment with DPI (50, 100, or 150 µM), the embryonic axes were excised and subjected to a 

2,3,5 triphenyl tetrazolium chloride (TTC) test. Using the protocols of Harding and Benson (1995) and 

Verleysen et al. (2004), with modifications, embryonic axes (n=5 for both species) were incubated in 

1.5 mL aqueous TTC solution (0.3 mL 2% TTC [w/v] in 0.05 M Tris-HCl buffer (pH 7.5) + 1.2 mL 
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0.05 M Tris-HCl buffer (pH 7.5), immediately after excision. The reduction of colourless TTC to 

insoluble pink/red triphenyl formazan was taken as a measure of respiratory activity, and hence, viability 

of the embryonic axis (Moore, 1962). Additionally, to determine whether the inhibitory effect of DPI 

on seed germination could be reversed in both species, seeds were treated with DPI (50, 100, or 150 

µM) in the presence of 100 mM H2O2 as described by Ishibashi et al. (2010). Germination was scored 

positive when radicle emergence was at least 4 mm and 10 mm in A. marina and T. dregeana seeds, 

respectively. 

3.3.8 Determination of intracellular GSH and GSH disulphide (GSSG) 

The methods employed for this aspect of the study follow those described in section 2.3.8 of Chapter 2. 

3.3.9 Statistical analysis 

All data were analysed using IBM SPSS statistics version 22.  Data were tested for normality using a 

Shapiro-Wilk test.  Germination and water uptake percentages were √arsine transformed prior to any 

analyses.  Germination, water uptake, superoxide, hydrogen peroxide, and glutathione data were 

subjected to analysis of variance (ANOVA), where data was parametric, to test for differences within 

species.  Means were separated using a Tukey post-hoc test.  Where data did not meet ANOVA 

assumptions, even after transformation, a Kruskal-Wallis test was applied.  Relationships between 

parameters (germination, ROS production, water uptake, DPI and DMTU concentration) were tested via 

Pearson (where data was parametric) and Spearman’s rank (where data was nonparametric) correlation 

analyses.  An independent-samples t-test was used to test for significant differences in ROS, GSH, 

GSSG and total glutathione levels between species at harvest and when maximum germination was 

attained.  All differences were considered significant at the 0.05 level. 

3.4 Results 

3.4.1 Storage longevity 

 

After 40 d of storage, A. marina seeds displayed high levels of fungal infection despite regular antifungal 

treatments, and germinability was reduced from 100% (on day 0) to 35% after 40 d in hydrated storage 

(Fig. 3.1a). Seeds of T. dregeana had a relatively longer storage lifespan, displaying 100% germinability 

after one year in storage (Fig. 3.1b).  This data confirmed that the two species have highly contrasting 

storage longevity.  
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Figure 3.1 A. marina (a) and T. dregeana (b) seed germinability following hydrated storage at               

25 °C and 16 °C respectively. Values represent mean ± SD (n = 30). 

3.4.2 Water uptake, germination and ROS production  

The initial (0-3 days after sowing [DAS]) rate of water uptake, measured in terms of change in 

embryonic axis WC after sowing in soil watered to field capacity, was markedly higher in A. marina 

(0.4 g d−1) than in T. dregeana (0.08 g d−1) (Fig. 3.2a and 2b).  More specifically, WC increased by 

>70% 3 d in A. marina but by only ±7% in T. dregeana embryonic axes over the same time period.  Axis 

WC increased by >70% 20 DAS in T. dregeana, which also coincided with the attainment of 100% 

germination (Fig.3.2a and b).  While 100% of A. marina seeds started germinating 3 DAS, only 27% of 

T. dregeana seeds showed signs of germination 7 DAS.  In both species, percent germination, and rate 

of ∙O2
−, and H2O2 production (Figs. 3.2a-2f) increased as percent water uptake increased.  A strong 

positive correlation was found between percent water uptake and rate of ∙O2
− production in A. marina  

(r = 0.977, p = 0.023) and T. dregeana (r = 1, P < 0.01).  Similarly, a strong positive correlation existed 

between percent water uptake and rate of H2O2 production in A. marina (r = 0.991, P = 0.009) and T. 

dregeana (r = 0.954, p = 0.001). 

 

In both species, maximum percent germination coincided with a peak in percent water uptake and ROS 

production. In A. marina, percent germination was positively correlated with percent water uptake           

(r = 0.775), rate of ∙O2
− (r = 0.775) and H2O2 (r = 0.775) production, but as germination in these seeds 

was highly synchronous (100% of the seeds germinated on 3 DAS), these relationships were not 

significant (P > 0.05 in all cases). In T. dregeana seeds, percent germination was strongly positively 
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correlated with percent water uptake (r = 0.962,    p = 0.001), and rate of ∙O2
− (r = 0.964, P < 0.001) and 

H2O2 (r = 0.938, P = 0.002) production; germination in this species was asynchronous.  However, while 

percent water uptake and ROS production peaked at maximum percent germination in both species, this 

process occurred 6.67 times faster in A. marina seeds. When ROS levels at harvest and when 100% 

germination was attained were compared statistically between species; ∙O2
− levels at harvest were 

significantly (P < 0.001) higher (3.4-times) in the embryonic axes of T. dregeana than in A. marina.  

Levels of H2O2 at harvest were also significantly (P < 0.001) higher (5-times) in T. dregeana than in                

A. marina. When germination reached its maximum in both species, ∙O2
− levels were significantly                    

(P < 0.001) higher (6.6-times) in the embryonic axes of T. dregeana than A. marina. Furthermore, H2O2 

levels at this point were also significantly (P < 0.001) higher (3.5 times) in the embryonic axes of                          

T. dregeana compared to A. marina. 
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Figure 3.2 Percentage germination (; a and b), extracellular superoxide production (; c and d) 

and extracellular hydrogen peroxide production (; e and f) during germination of A. marina and 

T. dregeana seeds respectively, sown in soil maintained at field capacity. Embryonic axes 

percentage water uptake (•) during various stages of germination is shown for both species in 

graphs 2a to 2f. The results of the correlation between variables (r and p values) is given in each 

case.  
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3.4.3 Role of ROS production during germination  

The specificity of the assay used to measure the ∙O2
− production described above was confirmed by the 

fact that exposure of excised axes of both A. marina and T. dregeana to SOD significantly (P < 0.05) 

decreased adrenochrome formation by >50% in both species (i.e. 52% and 65%, respectively; in section 

2.4.4, Table 2.1). Superoxide production in freshly excised axes of T. dregeana was also inhibited 

(>50%) by known enzyme inhibitors, viz. DPI and NaN3 (section 2.4.4, Table 2.1).  Similarly, relatively 

lower but significant (P < 0.05) inhibition of ∙O2
− production was also observed in freshly excised                         

A. marina axes exposed to DPI (43% inhibition) and NaN3 (36% inhibition) (section 2.4.4, Table 2.1).  

The specificity of the H2O2 assay used was confirmed by the fact that exposure of freshly excised axes 

to CAT significantly (P < 0.05) decreased H2O2 production by >50% in both species (section 2.4.4, 

Table 2.2). 

 

Given the positive results of the confirmatory assays for both ROS species, we investigated the effects 

of DPI and DMTU treatment on germination in freshly harvested A. marina and T. dregeana seeds.  Pre-

treatment of A. marina seeds with 50, 100, or 150 µM DPI, a potent inhibitor of NADPH oxidase, 

resulted in a significant (P < 0.05) decline in total germination (100% in control seeds vs 50% at 50 µM 

and 0% in 150 µM DPI-treated seeds after 30 DAS; Fig. 3.3a).  The concentration of DPI was strongly 

negatively correlated (r = −0.960, p = 0.04) with germination in A. marina seeds.  Although lower 

concentrations of DPI had no significant effect on onset of germination or time to reach 50% germination 

(T50) in these seeds (Fig. 3.3a and 3.3c), 150 µM DPI inhibited germination completely.  Pre-treatment 

of T. dregeana seeds with 50 or 100 µM DPI also had no effect on the onset, T50 or total germination 

relative to untreated (control) seeds (100% germination).  However, treatment with 150 µM DPI 

inhibited germination completely. This inhibition was unlikely a consequence of cytotoxicity since all 

(100%) DPI treated seeds (50, 100, or 150 µM, for both species) stained positively when subjected to a 

TTC test. Furthermore, the inhibitory effects of DPI (50, 100, or 150 µM, for both species) were fully 

reversed (i.e., 100% germination) when DPI treated seeds were allowed to germinate in the presence of 

H2O2. 

 

Pre-treatment of A. marina seeds with increasing concentrations of DMTU, a H2O2 scavenger (Jiang 

and Zhang, 2002, Xia et al., 2009), led to a decrease in germination, but lower concentrations of DMTU 

(150 and 1000 µM  DMTU) had no effect on the onset and T50 germination compared with untreated 

seeds (Fig. 3b and 3d).  At the highest concentration (5000 µM DMTU), germination was completely 

inhibited (Fig. 3.3b).  There was a very strong negative correlation (r = −0.963, P = 0.037) between                

% germination and DMTU concentration for A. marina.  However, unlike A. marina, the seeds of                       

T. dregeana were unaffected by DMTU treatment, in terms the onset, T50 and total germination, 

irrespective of DMTU concentration used in the study (Fig. 3.3b, 3.3d and 3.3f).   
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Figure 3.3 Onset (a and b), time taken for 50% of total germination (T50) (c and d) and final 

percentage germination (e and f) in seeds of A. marina and T. dregeana respectively, treated with 

various concentrations of diphenylene iodonium (DPI) and dimethylthiourea (DMTU). Values 

represent mean ± SD (n = 60). Bars labelled with different letters are significantly different when 

compared within species, across treatments (p <0.05 in all cases). When germination was 

correlated with DPI concentration, r = −0.960 and p = 0.04 in A. marina and r = −0.963 and                  

p = 0.037 in T. dregeana. 
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3.4.4 Glutathione pool and germination 

In the embryonic axes of A. marina, GSH levels and the GSH: GSSG ratio were initially high at harvest 

and shortly after sowing (1 DAS), but thereafter decreased, with the lowest levels of GSH and GSH: 

GSSG ratio being recorded 3 DAS, when maximum germination was attained (Fig. 3.4a). In comparison, 

GSH levels in the embryonic axes of T. dregeana far exceeded those of GSSG at harvest and throughout 

the period leading up to, and including the attainment of 100% germination (Fig. 3.4b).  Total 

glutathione (GSH+GSSG) in A. marina axes was significantly (P < 0.001) higher at harvest than when 

maximum germination occurred. However, in the axes of T. dregeana, total glutathione levels at harvest 

were significantly (p < 0.001) lower than when maximum germination was reached.  When the levels 

of GSH and GSSG were compared separately between species at harvest and when germination 

occurred, the embryonic axes of A. marina exhibited significantly (P < 0.001) higher GSH levels than 

T. dregeana at harvest; however, when germination peaked GSH levels in T. dregeana were 

significantly (P = 0.001) higher than in A. marina. Axes of A. marina also possessed significantly            

(P < 0.001) higher levels of GSSG than T. dregeana at harvest. When germination peaked, GSSG levels 

in A. marina were still significantly (P < 0.001) higher (4-times) than in T. dregeana. 

 

 

Figure 3.4 Glutathione (GSH) and oxidized glutathione (GSSG), GSH/GSSG ratio and 

germination in embryonic axes of A. marina (a) and T. dregeana (b) seeds during different stages 

of germination.  Germination data are represented by circles. Values represent mean ± SD (n = 3 

replicates of 1 axis for A. marina and 5 axes for T. dregeana). p <0.05 when initial and final total 

glutathione (GSH+GSSG) were compared between species on day 0 and on the day coinciding 

with maximum germination.  
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3.5 Discussion 

The study began by determining the hydrated storage lifespan of two recalcitrant-seeded species                   

A. marina and T. dregeana. Seeds of A. marina exhibited a substantial decline in germinability after 25 

d in storage and succumbed to fungal infection despite regular treatment with a variety of antifungal 

agents (Fig. 3.1a).  Although the use of fungicides may reduce contamination and increase storage 

lifespan (Calistru et al., 2000), seed associated micro-organisms are systemic, thus surface sterilization 

is not completely effective.  Some A. marina seeds even began germinating in storage after 5 d, which 

is a phenomenon reported in recalcitrant seeds of other species (Sershen et al., 2008).  However, seeds 

of T. dregeana remained 100% germinable even after one year in hydrated storage.  This is in agreement 

with previous findings that both species have contrasting storage longevities (Berjak et al., 1989, Farrant 

et al., 1993c). 

 

According to Berjak et al. (1989), the hydrated storage lifespan of recalcitrant seeds is dependent on the 

rate at which these seeds germinate naturally.  Our results support this hypothesis; when freshly 

harvested seeds of both species were put out to germinate, the rate of water uptake and germination was 

far more rapid in seeds of A. marina than T. dregeana (Fig.3. 2a and 3.2b). By comparison, 100% of        

A. marina seeds germinated 3 DAS, while only 27% of T. dregeana seeds showed signs of germination 

7 DAS.  Previous studies have shown that A. marina seeds accumulate soluble sugars instead of more 

complex carbohydrates such as heteropolysaccharides prior to germination, which allows for immediate 

transport and utilization thus facilitating the rapid onset of germination that follows shedding (Farrant 

et al., 1992b).  The results obtained in this study also suggest that rapid germination in species like              

A. marina may be facilitated by the rapid uptake of water preceding germination: percent water uptake 

in the embryonic axes of A. marina was >70% 3 DAS but only ±7% over the same period of time in              

T. dregeana (Fig. 3.2a and 2b).  This may simply be a consequence of differences in seed anatomy; the 

pericarp surrounding A. marina seeds breaks open shortly after exposure to water (Farrant et al., 1993a), 

whilst water uptake is hampered in seeds of T. dregeana seeds by a waxy aril which decomposes over 

time.  These difference in water uptake and germination rate most likely have an ecological basis:                    

A. marina is a tree species that grows within mangroves in which rapid germination is necessary to 

exploit the availability of water during high tide events and ensure the avoidance of desiccation stress 

during low tide events (Farrant et al., 1992b).  In contrast, T. dregeana is a tree species within sub-

tropical forests in which slow germination can allow for opportunistic seedling establishment, i.e., when 

water and/or light becomes available (Ramlall et al., 2015).  Ultrastructural evidence in germinating            

A. marina seeds suggest the early onset (once germination is initiated) of photosynthetic activity in the 

chlorophyllous cotyledons and embryos of these seeds (Farrant et al. 1992), which could explain their 

rapid water uptake and germination rate. Similarly, photosynthetic activity of Posidonia oceanica seeds 

has been found to improve the rate of germination and seedling growth (Farrant et al., 1992b, Celdrán 
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and Marín, 2013).  Unlike the cotyledons of A. marina, those of T. dregeana seeds only show signs of 

photosynthetic activity after the primary root has been established (>10 days after germination has 

occurred; Sershen, author’s unpublished observations). 

 

In both species, maximum germination coincided with a peak in percent water uptake and ROS 

production (Fig. 3.2a – 2f); there was also a strong positive correlation between percent water uptake 

and rate of ROS production in both species.  Thus, regardless of differences in the rate of germination 

between the two species, both ∙O2
− and H2O2 appear to play a crucial role in germination.  Levels of ROS 

have also been shown to peak at maximum germination in orthodox seeds, e.g., Lupinus luteus L. 

(Garnczarska and Wojtyla, 2008) and Pinus pinea L. (Tommasi et al., 2001).  Additionally, our results 

suggest that hydration level (which influences cytoplasmic viscosity) is intimately linked to germination 

associated ROS production in both rapid and slow germinators.  In orthodox seeds too, ROS are mainly 

able to fulfil their functions as cellular messengers when seeds are hydrated during imbibition and 

germination (Bailly et al., 2008, Kranner et al., 2010).  The faster germination rate in A. marina appears 

to be simply associated with an earlier peak in ROS production compared with T. dregeana.  Inter-

species differences in the timing of germination associated ROS production may have implications on 

their seed longevity.  Varghese et al. (2011) have suggested that the peak in extracellular ROS 

production represents a biochemical trigger for germination. In A. marina, this trigger may develop 

earlier than in T. dregeana during hydrated storage, as recalcitrant seeds progress towards germinative 

metabolism during such storage (Farrant et al. 1989).  However, in hydrated storage this trigger is not 

followed by the supply of additional water for germination to progress to completion, and hence results 

in viability loss. 

 

The results mentioned above strongly suggest that ROS play a role during germination in recalcitrant 

seeds as in orthodox seeds (Liszkay et al., 2004, Kranner et al., 2010).  For ∙O2
−, this was confirmed by 

the fact that germination in A. marina and T. dregeana was inhibited in a dose-response manner when 

seeds were exposed to DPI (Fig. 3.3e), which is a potent NADPH oxidase inhibitor (after Jiang and 

Zhang, 2002, Xia et al., 2009). NADPH oxidase is thought to be the major enzyme involved in ∙O2
− 

production.  It is, however, acknowledged that DPI is not a specific inhibitor for NADPH oxidase and 

can inhibit a number of flavoproteins in plant cells, crossing cell membranes, entering cells/subcellular 

compartments, and blocking respiration irreversibly (Ishibashi et al., 2010). The positive results of the 

TTC test carried out on DPI treated seeds suggest that respiration was not blocked and that the inhibition 

of germination by DPI was not a consequence of cytotoxicity.  

 

Furthermore, percent germination in A. marina seeds was also compromised in a dose-response manner 

with exposure to DMTU (Fig. 3f); DMTU is a known H2O2 scavenger (Jiang and Zhang, 2002, Xia et 
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al., 2009).  Therefore, these results show that H2O2 also plays a role in the germination of A. marina 

seeds.  The seeds of T. dregeana, unlike those of A. marina, remained unaffected by treatment with 

DMTU, irrespective of the concentration used (Fig. 3f).  However, the role of H2O2 in germination of 

T. dregeana seeds cannot be ruled out since the concentration of DMTU used may have been insufficient 

to scavenge the relatively high levels of H2O2 produced in T. dregeana seeds (5-times higher than in                   

A. marina).  It should be noted though, that the inhibitory effects of DPI on seed germination were 

completely reversed by exogenously supplied H2O2, which is a downstream product of ∙O2
− metabolism. 

Previous studies that have shown that the inhibitory effects of DPI (Ishibashi et al., 2010) and DMTU 

(De Agazio and Zacchini, 2001) on germination can be reversed by H2O2.. The results obtained here 

therefore lend support to the suggestion that ROS are required for germination in A. marina and                  

T. dregeana.   

 

Whilst the stimulatory role of ROS in germination has been suggested in other recalcitrant seeds (Roach 

et al., 2010), the balance between pro- and anti-oxidants, and how this is achieved during germination 

in such seeds still remains unclear.  The GSH:GSSG ratio has been well recognized as an indicator of 

oxidative stress in plant tissues (Noctor and Foyer, 1998), including embryonic axes of recalcitrant seeds 

(Varghese et al., 2011).  In A. marina axes, GSH levels and the GSH: GSSG ratio were initially high at 

harvest, whilst the lowest levels of GSH were recorded when maximum germination was attained                

(Fig. 3.4a).  Similarly, total glutathione (GSH+GSSG) levels were highest at harvest (0 DAS) in this 

species and significantly lower at the point of maximum germination (3 DAS).  These data suggest that 

when A. marina seeds reach the point at which germination occurs (3 DAS), ROS production peaks, 

while glutathione levels wane and may not be sufficient to prevent the germination associated oxidative 

burst.  In contrast, in the slower germinating T. dregeana GSH levels far exceeded those of GSSG at 

harvest and throughout the period leading up to and including maximum germination (Fig. 3.4b).  In 

orthodox seeds GSH levels have also reported to be maintained at a higher ratio to GSSG levels 

throughout the process of germination (Tommasi et al., 2001, Garnczarska and Wojtyla, 2008).  These 

results suggest that antioxidant protection may be sustained during hydrated storage in T. dregeana 

seeds, delaying germination associated metabolism i.e., by supressing the ROS signal that triggers 

germination, and hence, extending their storage lifespan relative to A. marina seeds.   

3.6 Concluding remarks and recommendations 

This study confirmed that A. marina had a higher germination rate and shorter storage lifespan than                 

T. dregeana.  This rapid germination rate in A. marina is associated with faster rates of water uptake, 

earlier spikes in ROS production, and reduced levels of antioxidant activity as germination is 

approached.  This may also explain why recalcitrant-seeded species such as A. marina lose viability 

much earlier during hydrated storage than slower germinating species like T. dregeana: the earlier ROS-
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based trigger for germination may develop earlier in A. marina in hydrated storage and when additional 

water is not supplied, viability is lost.  Rapid water uptake and germination in A. marina seeds may also 

have an ecological basis: this species occurs in mangroves where rapid germination and establishment 

is necessary to avoid desiccation stress during low tide events.  

 

The study also showed that ROS, as in orthodox seeds, plays a crucial role in recalcitrant seed 

germination, the timing of which depends on the delicate balance between pro- and anti-oxidant 

processes.  Thus, this study supports findings of Berjak et al. (1989), who suggested that hydrated 

storage lifespan of recalcitrant seeds may be a reflection of the rate at which the seeds germinate 

naturally.  Our current investigations involve measuring parameters related to oxidative metabolism 

during hydrated storage in A. marina and T. dregeana in order to validate the propositions made here.   
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4. CHAPTER 4: Uncovering the basis of viability loss in desiccation sensitive 

Trichilia dregeana seeds using differential quantitative protein expression 

profiling by iTRAQ 

Anushka Moothoo-Padayachie, Angus Macdonald, Boby Varghese, Norman W. Pammenter, Patrick 

Govender and Sershen* 

4.1 Abstract  

Recalcitrant seeds, unlike orthodox types, are desiccation sensitive and hence, cannot be stored using 

conventional seed storage methods. In this study, relative changes of protein expression in T. dregeana 

seeds during desiccation and hydrated storage (a short- to medium-term storage method) were analysed 

to understand the basis of their desiccation- and storage-induced viability loss. Isobaric Tags for Relative 

and Absolute Quantitation (iTRAQ) were used to compare (selected) protein expression levels across 

fresh, partially dehydrated and stored seeds. A total of 114 proteins were significantly differentially 

expressed in embryonic axes of fresh seeds and those seeds exposed to dehydration and hydrated storage 

(which exposed seeds to a mild dehydration stress). Proteins involved in protein synthesis (glycine-

tRNA ligase) were up-regulated in stored and dehydrated seeds, possibly in response to dehydration-

induced repair processes and/or germinative development. A range of proteins related to antioxidant 

protection (L-ascorbate peroxidase and glutathione peroxidase) were variably up- and down-regulated 

in stored and dehydrated seeds respectively. Additionally, a class I heat shock protein was down-

regulated in dehydrated and stored seeds; no late embryogenesis abundant proteins were identified in 

both stored and dehydrated seeds; and storage and dehydration up-regulated proteins involved in the 

provision of energy for cell survival. The results suggest that dehydration- and storage-induced viability 

loss in recalcitrant seeds may be based on proteomic changes that lead to cellular redox imbalance and 

increased cell energy demands. This, together with the absence/down-regulation of proteins associated 

with desiccation tolerance in plant tissues may form part of the proteomic footprint for desiccation 

sensitivity in seeds. 

Keywords: desiccation; hydrated storage; proteomics; recalcitrant seeds; redox metabolism 
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4.2 Introduction 

Recalcitrant seeds, unlike orthodox types, are desiccation and often chilling sensitive (Roberts, 1973, 

Pammenter and Berjak, 1999). Thus, recalcitrant seeds are not well suited to long-term germplasm 

conservation using conventional seed storage methods. They can, however, be stored in the short- to 

medium-term using hydrated storage, which involves maintaining seeds under conditions of reduced 

temperature and saturated relative humidity (Eggers et al., 2007).  Studies have shown though, that even 

under these conditions, embryonic axes of recalcitrant seeds undergo germinative development and if 

additional water is not supplied to complete this process the seeds lose viability as a consequence of a 

mild desiccation stress (Pammenter et al., 1984, Farrant et al., 1986b, Berjak and Pammenter, 2000).  

 

Desiccation sensitivity in recalcitrant seeds has been attributed to the absence or poor expression of a 

range of mechanisms associated with desiccation tolerance (Pammenter and Berjak, 1999), which is a 

polygenic trait (Dussert et al., 2004). Examples of the mechanisms activated during drying in orthodox 

seeds include the following: the active down-regulation/ “switching off” of metabolism (Leprince et al., 

2000), the accumulation of sucrose and other oligosaccharides (Horbowicz and Obendorf, 1994), the 

production of late embryogenesis abundant (LEA) proteins (Farrant et al., 1993c), the presence and 

operation of repair mechanisms during rehydration (Oliver et al., 1998), and the up-regulation of 

“housekeeping” antioxidants that control reactive oxygen species (ROS) generation during water loss 

(Pukacka and Ratajczak, 2007).  

 

Some of the mechanisms associated with desiccation tolerance mentioned above have been shown to be 

absent, poorly expressed or compromised by dehydration in the recalcitrant seeds of a range of species. 

For example, a range of enzymic and non-enzymic antioxidants involved in the quenching of ROS in 

seeds (Bailly, 2004, Kranner et al., 2006), appear to be either inadequate or compromised during 

desiccation (Hendry et al., 1992, Varghese and Naithani, 2002) and hydrated storage (Tommasi et al., 

2006) in recalcitrant seeds. Additionally, in recalcitrant Acer saccharinum (Pukacka and Ratajczak, 

2006) and T. dregeana (Whitaker et al., 2010) seeds, desiccation-induced ROS production, particularly 

hydrogen peroxide (H2O2), has been found to be largely responsible for the loss of structural and 

functional properties of cell membranes and hence, viability loss. However, there are also reports of 

antioxidants being enhanced during desiccation stress in recalcitrant seeds. For example, components of 

the glutathione-ascorbate cycle, a metabolic pathway that detoxifies H2O2 using antioxidant metabolites 

such as ascorbate, glutathione and NADPH, and enzymes like ascorbate peroxidase (APX), glutathione 

reductase (GR), monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR), 

were enhanced at the early stages of desiccation in A. saccharinum seeds (Pukacka and Ratajczak, 2006).  
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Whilst aspects related to desiccation-induced oxidative stress (Varghese and Naithani, 2002), metabolic 

disruption (Roach et al., 2008) and ultrastructural damage (Berjak and Pammenter, 2000) have been 

relatively well researched in recalcitrant seeds, the proteomic basis of their desiccation sensitivity 

remains unclear and under-explored. This is largely because recalcitrant seeds contain many interfering 

compounds that present numerous challenges to proteomic studies (Garnczarska and Wojtyla, 2008, 

Parkhey et al., 2015). Despite these challenges, some proteomic studies have shown that desiccation 

induces a rapid accumulation of antioxidant enzymes including APX, superoxide dismutase (SOD) and 

proteins in recalcitrant seeds (Chen et al., 2011). However, Bai et al. (2011) found that APX, GR, 

MDHAR and DHAR enzyme activities are induced during the early stages of desiccation and then 

decline upon further dehydration, resulting in the inefficient removal of ROS. 

 

Additionally, considerable interest has been directed towards the presence/absence of specific proteins 

known to play a role in desiccation tolerance (Tunnacliffe and Wise, 2007, Battaglia et al., 2008), for 

example LEA proteins in Castanospermum australe (Delahaie et al., 2013) and A. marina (Farrant et 

al., 1996). In a comparative study of the heat-stable proteome of the recalcitrant seeds of C. australe 

and an orthodox legume Medicago truncatula, it was shown that for 12 LEA genes, polypeptides were 

either absent or strongly reduced in C. australe compared with M. truncatula (Delahaie et al., 2013). 

Though those authors showed non-seed specific dehydrins to accumulate at high levels in the cotyledons 

of recalcitrant C. australe compared with orthodox M. truncatula seeds, no dehydrins have been found 

in the recalcitrant seeds of A. marina (Farrant et al., 1996) and T. dregeana (Han et al., 1997).  It has 

been speculated that the desiccation sensitivity of seeds is at least partially due to the insufficient 

accumulation and/or absence of certain dehydrins (Vertucci and Farrant, 1995, Panza et al., 2007) . 

However, it should be noted that proteomic studies conducted on recalcitrant seeds to date are largely 

restricted to studies that have employed two dimensional electrophoresis (2-DE) with subsequent protein 

identification by mass spectrometry (MS/MS) (Bai et al., 2011, Chen et al., 2011, Delahaie et al., 2013, 

Parkhey et al., 2015). Although 2-DE protein separation can be used to produce insightful protein maps, 

there are several limitations to this approach related to technical reproducibility, correct spot matching 

and the low number of proteins identified (Balbuena et al., 2011). A further drawback of at least one of 

these key studies cited above is that it only examined the heat-stable proteome extracted from the 

cotyledons, rather than the more metabolically active, developmentally important embryonic axis 

(Delahaie et al., 2013).   

 

In light of the above, and in line with current proteomic research, the present study aimed to explore the 

total proteome extracted from the embryonic axes of the desiccation sensitive species T. dregeana using 

a high-throughput technique called Isobaric Tags for Relative and Absolute Quantification (iTRAQ), 

coupled to mass spectrometry. iTRAQ is a  powerful gel-free proteomic method, considered to be one 
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of the most robust techniques for differential quantitative proteomic analyses (Latterich et al., 2008, 

Wilm, 2009). The study attempts a global characterization of protein functions, i.e. the functional 

characterization of proteins in terms of their involvement in cellular pathways in recalcitrant seeds. This 

was done by identifying, quantifying, annotating and comparing proteins expressed in T. dregeana seeds 

exposed to partial dehydration and hydrated storage, both of which result in viability loss in recalcitrant 

seeds, with those expressed in freshly harvested (i.e. unstressed) seeds. The data presented allows for a 

more fundamental understanding of the proteomic basis of desiccation sensitivity in recalcitrant seeds.  

4.3 Materials and methods 

4.3.1 Seed collection 

Seeds of T. dregeana were obtained from mature and open capsules harvested directly from trees 

growing on the Westville campus (29°49.054' S 30°56.521' E) of the University of KwaZulu-Natal, 

Durban, South Africa.  Seeds displaying any visible signs of damage and predation were removed prior 

to any further processing for reasons discussed in Moothoo-Padayachie et al. (2016). Seeds were 

collected over two seasons (April-June in 2012 and 2013). 

4.3.2 Water content determination 

The methods employed for this aspect of the study follow those described in section 2.3.5 of                     

Chapter 2. Water content was expressed on a dry mass basis (dmb; g H2O per g dry matter [g g−1]) as 

described in Varghese et al. (2011). 

4.3.3 Hydrated storage treatment 

The arils of T. dregeana seeds were removed prior to surface sterilization with 1% sodium hypochlorite 

solution containing a few drops of Tween 20 for 20 min. The seeds were subsequently soaked in an 

antifungal cocktail comprising of 0.5 ml L−1 Early Impact (active ingredient, triazole and benzimidizole; 

Zeneca Agrochemicals, South Africa) and 2.5 ml L−1 PrevicurN® (active ingredient, propamocarb; 

AgrEvo, South Africa) for 4 h (Calistru et al., 2000, Berjak and Pammenter, 2004).  The seeds were 

then dusted with Benlate (active ingredient: benomyl [benzimidazole], Dupont, USA), and stored 

hydrated at 16°C (after Goveia et al., 2004).  Seeds that germinated in hydrated storage were regularly 

removed from the buckets and discarded. This was because germinated seeds in the buckets would 

eventually die and become a source of fungal inoculum for non-germinated ones (Goveia et al., 2004). 

As alluded to in the Introduction, recalcitrant seeds progress towards germination in hydrated storage 

which progressively leads to a mild dehydration stress, which terminates in death if additional water is 

not supplied (Pammenter and Berjak, 1999). In the present study, after 12 months of storage >50% of 
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the seeds (n=3) had to be removed from the buckets as they showed signs of germination. The remaining 

non-germinated seeds were assessed for viability (germinability) and used for protein analyses described 

below. 

 

4.3.4 Desiccation treatment 

Freshly harvested seeds were sown in commercial potting soil (Grovida, Durban, South Africa); prior 

to sowing, the soil was dried for 24 h to remove any excess moisture. Approximately 50 seeds per tray 

were randomly sown to a depth of 10 mm with the aril intact. The seeds were allowed to dry under 

glasshouse conditions at 25°C for a period of 20 d. Seed germination was assessed as described below. 

Fourteen days after sowing, seeds subjected to 62% loss in axis water content which led to ±50% 

viability loss, were used for the protein analyses described below. 

4.3.5 Germination assessment 

Seeds were retrieved from the storage (at monthly intervals) and desiccation (at two day intervals) 

treatments and assessed for germinability. The seeds (n = 15) were sown in commercial potting soil 

within seedling trays (five seeds per tray) and the soil was maintained at field capacity using deionised 

water for the duration of the trial. These studies were conducted within a glasshouse (26/18°C, day/night; 

ambient light) on the grounds of the University of KwaZulu-Natal.  Germination was defined as radicle 

emergence of at least 10 mm and was scored daily until no further change in germination was recorded 

for 30 d.  

4.3.6 Protein extraction 

For protein extraction, four replicates of ±100 excised embryonic axes each (± 400 mg) were used for 

treatments (partially dehydrated and hydrated stored) and the control (freshly harvested). These 

replicates were generated using two independent experiments, each involving two biological replicates. 

Total soluble proteins were extracted from the embryonic axes according to Boudet et al. (2006) and all 

chemicals used were reagent grade (Sigma-Aldrich, Germany, unless otherwise stated). Embryonic axes 

were snap-frozen in liquid nitrogen and then ground in the presence of PVPP (1:1). The powder was 

then suspended in 1 ml of cold extraction buffer (50 mM HEPES, 1 mM EDTA, complete protease 

inhibitor cocktail [Roche, Germany]). After centrifugation at 20 000 g (4°C) for 15 min the supernatant 

was removed and 20% trichloroacetic acid (v/v) was added. The mixture was stored at -20°C overnight 

and thereafter centrifuged at 20 000 g (4°C) for 15 min. The supernatant was carefully removed and 

discarded. The protein pellet was then sequentially washed with 100 µl of ice cold 100% acetone, 80% 

methanol and 100% methanol. The protein pellet was then centrifuged at 20 000 g (4°C), allowed to dry 
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for 25 min under a fume hood and resuspended in 4% sodium dodecyl sulphate overnight. The protein 

concentration was determined using a BCA protein assay kit (Pierce, USA) (Smith et al., 1985). 

 

4.3.7 In-solution Trypsin Digestion and iTRAQ Labeling 

Total protein (400 µg) was reduced by adding 0.1 volume of dithiothreitol and incubated at 60°C for 1 

h. The reduced total protein was then concentrated down to approximately 30 µl. The 30 µl retentate 

was alkylated with UT buffer (8 M urea, 500 mM triethylammonium bicarbonate [TEAB] and 15 mM 

methyl methanethiosulfonate [MMTS]) and incubated at 20°C for 15 min. Thereafter, SDS was removed 

by repeated washes with UT buffer (excluding MMTS). Sample volumes were normalised using 50 mM 

TEAB buffer. In filter trypsin digestion was performed by adding a trypsin buffer (3 µg of sequencing 

grade trypsin [Promega, USA] in 500 mM TEAB) to the retentate to produce a final protein:trypsin ratio 

of 100:1. Any remaining peptides were washed through by adding TEAB. Labelling of the samples with 

iTRAQ 8-plex reagents (Applied Biosystems, USA) was performed according to the manufacturer’s 

recommendations. After 2 h of labelling at room temperature, 2 µl from the control and treatment 

samples (was pooled for a test run on the liquid chromatography-mass spectrometer (LCMS) to confirm 

that the labelling was successful. Millipore water was added to each sample and incubated at room 

temperature to hydrolyse the labelling reaction. All samples were pooled and ~ 30 µg of total protein 

was desalted on a C18 spin column (Pierce, USA). 

4.3.8 LC-MS/MS analysis 

LC−MS/MS analysis was conducted with a Q-Exactive quadrupole-Orbitrap mass spectrometer coupled 

with a Dionex Ultimate 3000 nano-HPLC system (Thermo Fisher Scientific, USA). The mobile phases 

consisted of solvent A (0.1% formic acid in water) and solvent B (80% acetonitrile, 10% water, and 

0.1% formic acid). Desalted labelled peptides were dissolved in sample loading buffer (95% water, 5% 

Acetonitrile, 0.05% trifluoroacetic acid) and an estimated 1 µg was then loaded onto a C18 trap column 

(100 µm × 20 mm × 5 µm). Chromatographic separation was performed with an Acclaim Pep Acclaim 

(Thermo Fisher Scientific, USA) C18 column (75 µm × 250 mm × 3 µm). The linear gradient for peptide 

separation was generated at 250 nL/min as follows: time change=148 min, gradient change=6-30% for 

Solvent B; time change=34 min, gradient change=30-60% for Solvent B; time change=0.1 min, gradient 

change=60- 90% for Solvent B. The gradient was held at 90% Solvent B for 15 min before dropping 

down to 50% Solvent B for 15 min and finally re-equilibrated to 6% Solvent B for 15 min.  The mass 

spectrometer was operated in positive ion mode with a capillary temperature of 250°C. The applied 

electrospray voltage was 1.95 kV.   
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4.3.9 Database searching 

All MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.4.1) and X! 

Tandem (The GPM, thegpm.org; version CYCLONE [2010.12.01.1]). Mascot was set up to search the 

Sapindales database (579914 entries) assuming the digestion enzyme trypsin. X! Tandem was set up to 

search a subset of the SwissProt_Sapindales database also assuming trypsin as the digestion enzyme. 

Mascot and X! Tandem were searched with a fragment ion mass tolerance of 0.100 Da and a parent ion 

tolerance of 10 ppm. Methylthio of cysteine was specified in Mascot and X! Tandem as a fixed 

modification. Glutamine->pyro-glutamine of the n-terminus, ammonia-loss of the n-terminus, 

glutamine->pyro-glutamine of the n-terminus, oxidation of methionine and iTRAQ8plex of lysine and 

the n-terminus were specified in X! Tandem as variable modifications. Oxidation of methionine and 

iTRAQ8plex of lysine and the n-terminus were specified in Mascot as variable modifications. 

4.3.10 Criteria for protein identification and quantification 

The criteria for protein identification were as follows: Scaffold (version Scaffold_4.4.8, Proteome 

Software Inc., Portland, OR, USA) was used to validate MS/MS based peptide and protein 

identifications; peptide identifications were accepted if they could be established at >95.0% probability 

by the Scaffold Local False Discovery Rate (FDR) algorithm; protein identifications were only accepted 

if they could be established at >99% probability to achieve an FDR less than 1.0% and contained at least 

2 identified peptides.  Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii 

et al., 2003). Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Only proteins that were identified in 

both of the two independent experiments were considered. Sequences from the keratins, trypsin and 

species other than plants were not considered. For protein quantification, the filters were set as follows: 

(1) mean was chosen for the protein ratio type; (2) minimum peptides was set to two, and only unique 

peptides were used for quantitation and (3) normalization by mean and outliers were removed 

automatically. The peptide threshold was set as above for identity. Differentially expressed proteins 

(DEPs) were determined using an analysis of variance (ANOVA, n = 4) at the 0.05 level of significance; 

an identified protein was considered significantly increased or decreased in abundance if the fold change 

met the threshold criterion of an iTRAQ ratio of 1.5. 

4.3.11 Bioinformatics analysis 

Functional analysis of proteins identified was conducted using the Blast2GO tool (Conesa and Götz, 

2008) . FASTA format sequences of the identified and quantified protein set was input to Blast2GO. 

Blast2GO was initially run to incorporate a sequence description by performing a BLASTp search 

against the Swissprot database (e-value cut-off of 1 × 10−50, 20 for the retrieved number of BLAST hits, 



60 

33 for the highest scoring pair (HSP) length cut-off). Subsequently Blast2GO was employed to map the 

gene ontology (GO), Enzyme Commission (EC) numbers and Interpro terms, and to annotate the 

sequences (e-value hit filter of 1 × 10−6, a Hsp-hit coverage cut-off of 0, an annotation cut-off of 55, and 

a GO weight of 5). The automatic annotation performed by Blast2GO was manually revised to guarantee 

accurate assignment. The Blast2GO tool was also used to conduct metabolic pathway analyses of 

identified proteins according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway 

Database (http://www.genome.jp/kegg/pathway.html ).  

4.4 Results  

4.4.1 Germination responses to partial dehydration and storage 

The shedding WC of embryonic axes excised from T. dregeana seeds was 2.5 g g−1. Following partial 

dehydration, axis WC dropped to 0.9 g g−1 and germinability in T. dregeana seeds was lost rapidly from 

100% (on day 0) to ±50% within 14 d (data not shown).   After 12 months of hydrated storage 54.2 ± 

3.2% of seeds germinated in storage. Viability of the remaining non-germinated seeds was 100% but 

these non-germinated seeds showed a significant (P < 0.05) reduction in water content (2.0 g g−1) during 

storage, implying that they were water-stressed during storage. 

4.4.2 Proteins identified by iTRAQ and their functional classification 

The total proteins extracted from the embryonic axes of freshly harvested (control), hydrated stored and 

dehydrated T. dregeana seeds was explored and compared using the iTRAQ technique (Fig. 4.1). 

Analysis of protein extracts from all samples resulted in the identification of 311 proteins (5065 spectra) 

in total that met the criteria for identification as discussed above. Of these, 114 proteins showed 

significant (P < 0.05) differential expression. Functional classification of the differentially expressed 

proteins (DEP) demonstrated that they were associated with a wide range of biological processes in 

plants. Based on the GO analysis, of all the processes observed three major biological processes were 

prominent namely: ‘cellular process’, ‘metabolic process’ and ‘response to stimulus’, representing 80%, 

79% and 63% of protein sequences annotated for these GO-terms, respectively (Fig. 4.2a). The cellular 

component was divided into 10 categories of which 87% of the sequences represented the cell and cell 

part, 82% the organelle, and only 39% the extracellular region (Fig. 4.2 b). In terms of molecular 

function, the proteins were divided into four major categories: binding, catalytic activity, structural 

molecule activity and antioxidant activity representing 71%, 49%, 23% and 10% of all sequences, 

respectively (Fig. 4.2c). This study, however, focused only on the catalytic activity and antioxidant 

activity which included oxidoreductase activity and peroxidase activity as depicted in the molecular 

functional analysis of the DEP (Fig. 4.3).  
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Figure 4.1 Workflow of the iTRAQ experiments for the fresh, partially dehydrated and stored seeds. For each experiment, the extracted proteins were 

trypsin-digested and peptides labelled with iTRAQ tags. After labelling peptides were pooled and desalted on a C18 spin column. The sample was then 

analysed by LC−MS/MS analysis conducted with a Q-Exactive quadrupole-Orbitrap mass spectrometer coupled with a Dionex Ultimate 3000 nano-

HPLC system. Searches and quantitation was done using Scaffold_4.4.8, Proteome Software. Finally, the identified proteins in the set were annotated 

and functionally analyzed using the Blast2GO tool based on gene ontology (GO) terms.
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Figure 4.2 Gene ontology annotations for differentially expressed proteins in T. dregeana axes:            

(a) biological process (b) cellular distribution and (c) molecular functions. 
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Figure 4.3 Molecular functional groups of 114 differentially expressed proteins in embryonic axes of T. dregeana seeds.
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4.4.3 Proteome changes in response to dehydration and hydrated storage 

Proteins that met a quantification ratio cut-off of 1.5 fold (ratio <0.6 for the down-regulated and >1.5 

for the up-regulated proteins), with a significant P-value (P < 0.05) were considered differentially 

expressed. Compared with the axes of freshly harvested seeds, 35 proteins were significantly (P < 0.05) 

up-regulated whilst 38 were down-regulated in axes of dehydrated seeds (Fig. 4.4a). With hydrated 

storage 45 proteins were significantly (P < 0.05) up-regulated and 48 were down-regulated, compared 

with axes from freshly harvested seeds. The average and highest fold change of that set of proteins are 

shown in Fig. 4.4b. When the amplitude of change is considered, the average fold change in the 

embryonic axes of dehydrated and stored seeds was not significantly different from each other but the 

highest fold change in terms of up-regulation was for the protein glycine tRNA ligase 1 (O23627) in the 

axes of dehydrated seeds, and for down-regulation of an uncharacterized protein (V4RZM7), which 

plays a functional role in translation, in axes of stored seeds.  
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Figure 4.4 Overall changes in the protein level in embryonic axes of partially dehydrated and 

stored seeds: (a) the number of sequences quantified between the two treatments - for all the 

proteins that were up- (white bars) and down-regulated (grey bars), and (b) the fold-change of the 

proteins represented as mean (black) and max/min (grey bars) changes. An arbitrary fold change 

cut-off of ± 1.5 was used to select the protein subsets. 
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4.4.4 Molecular functional analysis of dehydrated and stored seeds 

The DEPs identified in the embryonic axes of dehydrated and stored seeds were compared and arranged 

according to their functional categories. Major molecular functions up-regulated in the axes of 

dehydrated and stored seeds included binding, catalytic activity, structural molecule activity and 

antioxidant activity (Fig. 4.3). Further comparison of the individual functional categories revealed that 

proteins up-regulated in response to dehydration and storage were associated with protein binding (GO: 

0005515), organic cyclic compound binding (GO: 0097159), ion binding (GO: 0043167), heterocyclic 

compound binding (GO: 1901363), small molecule binding (GO: 0036094), carbohydrate derivative 

binding (GO: 0097367), cofactor binding (GO: 0048037), lyase activity (GO: 0016829), oxidoreductase 

activity (GO: 0016491), hydrolase activity (GO: 0016787) and transferase activity (GO: 0016740) 

(Table 4.1).  However, functional proteins grouped under the structural constituent of ribosome (GO: 

0003735) and peroxidase activity (GO: 0004601), were only found to be up-regulated in embryonic axes 

of dehydrated seeds. Similarly, proteins up-regulated under the functional categories, like amide binding 

(GO: 0033218) and isomerase activity (GO:  0016853), were found exclusively in axes of stored seeds. 

The functional categories associated with down-regulation in both the axes of dehydrated and stored 

seeds include protein binding (GO: 0005515), ion binding (GO: 0043167), organic cyclic compound 

binding (GO: 0097159), heterocyclic compound binding (GO: 1901363), structural constituent of 

ribosome (GO: 0003735), peroxidase activity (GO: 0004601) and oxidoreductase activity (GO: 

0016491). However, proteins under the functional category SOD activity (GO: 0004784) were only 

significantly (P < 0.05) down-regulated in axes of dehydrated seeds (Table 4.2).  
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Table 4.1: Molecular function of related up-regulated proteins in embryonic axes of stored and dehydrated T. dregeana seeds  

 

                    Protein number  

 

Molecular function 

(GO ID) 
 

Term 

 

Stored 

 

Dehydrated 

 

Shared a 

 

GO: 0033218 amide binding 

 

4 

 

− 

 

0 

 

GO: 0003735 structural constituent of ribosome 

 

− 

 

4 

 

0 

 

GO: 0004601 peroxidase activity 

 

− 

 

3 

 

0 

 

GO: 0005515 protein binding 

 

19 

 

12 

 

9 

 

GO: 0016491 oxidoreductase activity 

 

11 

 

8 

 

6 

 

GO: 0016740 transferase activity 

 

5 

 

5 

 

3 

 

GO: 0016787 hydrolase activity 

 

6 

 

6 

 

3 

 

GO: 0016829 lyase activity 

 

11 

 

9 

 

8 

 

GO: 0036094 small molecule binding 

 

19 

 

14 

 

10 

 

GO: 0043167 ion binding 

 

29 

 

23 

 

14 
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Table 4.1: Continued Molecular function of related up-regulated proteins in embryonic axes of stored and dehydrated T. dregeana seeds  

 

                    

Protein number    

 

Molecular function 

(GO ID) 

 

Term 

 

Stored 

 

Dehydrated 

 

Shared a 

 

GO: 0097159 organic cyclic compound binding 

 

24 

 

22 

 

13 

 

GO: 0097367 carbohydrate derivative binding 

 

16 

 

9 

 

6 

 

GO: 1901363 heterocyclic compound binding 

 

23 

 

21 

 

13 

 

GO: 0016853 isomerase activity  

 

6 

 

− 

 

0 

 

a Shared indicates proteins with a shared molecular function in the dehydrated and stored seeds 
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Table 4.2: Molecular function of related down-regulated proteins in embryonic axes of stored and dehydrated T. dregeana seeds 

 

 

 

 

 

 

 

 

                     Protein number 

Molecular function 

(GO ID) 
Term 

 
Stored  Dehydrated Shared a 

GO: 0003735 structural constituent of ribosome 24 9 9 

GO: 0004601 peroxidase activity 3 5 2 

GO: 0004784 superoxide dismutase activity − 2 0 

GO: 0005515 protein binding 13 9 5 

GO: 0016491 oxidoreductase activity 3 8 2 

GO: 0043167 ion binding 6 8 1 

GO: 0097159 organic cyclic compound binding 19 9 6 

GO: 1901363 heterocyclic compound binding 19 9 6 

a Shared indicates proteins with a shared molecular function in the dehydrated and stored seeds 
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4.4.5 Stress response proteins 

From the functional categories oxidoreductase, peroxidase and superoxide activity (Table 4.2), a group 

of important scavenging enzymes were found to be differentially expressed in the axes of dehydrated 

and stored seeds. In both treatments, the highest percentage of DEPs in response to stress (GO: 0006950) 

were related to oxidative stress (GO: 0006979) and cellular stress [GO: 0033554] (Fig. 4.5 a-d). These 

proteins included the up-regulation of L-ascorbate peroxidase (Q10N21), 2-Cys peroxiredoxin 

(P80602), and isocitrate dehydrogenase (Q8LPJ5) in both treatments (Table 4.3). Interestingly, SOD 

(V4VU13, A8ICW9) and peroxidase (B7UCP4, V4V6S4) were down-regulated significantly (P < 0.05) 

in axes from dehydrated seeds and catalase (CAT) (V4TFV8) was significantly (P < 0.05) down-

regulated in axes of stored seeds, while glutathione peroxidase was down-regulated in both axes of 

dehydrated (B6DVI8, V4VJI5, V4VT52) and stored seeds (B6DVI8, V4VJI5) (Table 4.3). The 

remaining proteins which were categorised into oxidative stress (GO: 0006979) and cellular stress (GO: 

0033554) were up-regulated and related to protein synthesis (B2M1Y5), protein folding (A1ECK2, 

V4TWG4), other metabolic processes (P26520, V4VKP2, V4TM67), or were uncharacterized (Table 

4.3). Most uncharacterized proteins identified in this study showed sequence similarity to proteins from 

the non-orthodox species Citrus clementina (Table 4.3).  

 

Proteins grouped under the sub-category in response to heat (GO:0009408), that is FAM10 family 

protein At4g22670 (Q93YR3), was found to be down-regulated in axes of dehydrated seeds and a 16.9 

kDa class I heat shock protein (Q943E7) was found to be down-regulated in both axes of dehydrated 

and stored seeds (Table 4.3). Proteins under the sub-category response to water deprivation that were 

down-regulated in axes of dehydrated seeds were similarly down-regulated in axes of stored seeds. Of 

these proteins, glutathione peroxidase (V4VT52, B6DVI8, V4VJI5) and peroxidase (B7UCP4) 

exhibited the most marked changes. However, unlike in the axes of dehydrated seeds in which 12% of 

the proteins were up-regulated in response to water deprivation, no proteins related to water deprivation 

were up-regulated in axes of stored seeds (Fig. 4.5a and b). In terms of the percentage of proteins down-

regulated in response to water deprivation, 20% of proteins were found to be down-regulated in axes of 

dehydrated seeds and 13% in axes of stored seeds. In response to stress (GO:0006950), more than 50% 

of up-regulated proteins included those that are reportedly up-regulated in response to cold stress 

(GO:0009409) (Fig. 4.5b); this included proteins such as L-ascorbate peroxidase (Q10N21), 2-Cys 

peroxiredoxin (P80602), ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit-binding 

protein (P08927), ATP synthase subunit alpha (P24459), as well as several metabolic proteins (Table 

4.3). Proteins down-regulated in response to cold stress (GO:0009409) in embryonic axes of stored seeds 

were found to be mainly involved in protein synthesis and included Elongation factor 2 (O23755), 60S 

acidic ribosomal protein (O04204, O50003) and an uncharacterized protein (V4TJQ9) (Table 4.3).  
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Figure 4.5 Molecular functional groups of proteins associated with response to stress were up-

regulated (a and b) and down-regulated (c and d) in the embryonic axes of dehydrated (a and c) 

and stored (b and d) T. dregeana seeds. 
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Table 4.3: Identification of differentially expressed proteins (DEPs) in T. dregeana embryonic axes 

Protein description MWa Acc. No.b SC% c  P valued Species 

Regulation in 

dehydrated 

seedse 

Regulation 

in stored 

seedsf 

Regulation of response to stress (GO:0080134) 
   

Uncharacterized protein 38 kDa V4VRW5 15 0.005 Citrus clementina ↑  

 

Response to water deprivation (GO:0009414) 
       

Uncharacterized protein 81 kDa V4TM62 
 

13 
0.0023 Citrus clementina ↑  

Uncharacterized protein 26 kDa V4TPW1 4 <0.0001 Citrus clementina ↑  

Glutathione peroxidase 23 kDa V4VT52 44 0.02 Citrus clementina ↓  

Glutathione peroxidase 19 kDa B6DVI8 31 <0.0001 Litchi chinensis ↓ ↓ 

Peroxidase 4 39 kDa B7UCP4 7 <0.0001 Litchi chinensis ↓  

Uncharacterized protein 38 kDa V4V6S4 5 <0.0001 Citrus clementina ↓  

Glutathione peroxidase 19 kDa V4VJI5 13 <0.0001 Citrus clementina ↓ ↓ 

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina ↓  

        

Response to oxidative stress (GO:0006979)        

Glyceraldehyde-3-phosphate dehydrogenase 37 kDa P26520 23 <0.0001 Petunia hybrid ↑ ↑ 

Uncharacterized protein 65 kDa V4RNH3 17 <0.0001 Citrus clementina ↑ ↑ 

L-ascorbate peroxidase 1 27 kDa Q10N21 9 <0.0001 
Oryza sativa subsp. 

Japonica 
↑ ↑ 

Uncharacterized protein 77 kDa V4SVQ9 22 <0.0001 Citrus clementina ↑ ↑ 

Uncharacterized protein 26 kDa V4TPW1 4 <0.0001 Citrus clementina ↑  

Aconitate hydratase 2 98 kDa D3GQL2 10 0.0004 Citrus clementina ↑ ↑ 

Uncharacterized protein 38 kDa V4VRW5 15 0.005 Citrus clementina ↑ ↑ 

Glyceraldehyde-3-phosphate dehydrogenase 37 kDa V4VKP2 44 0.0002 Citrus clementina ↑  
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Table 4.3: continued Identification of differential expressed proteins (DEPs) in T. dregeana embryonic axes  

Protein description MWa Acc. No.b SC% c  P valued Species 

Regulation in 

dehydrated 

seedse 

Regulation 

in stored 

seedsf 

Glutathione peroxidase 23 kDa V4VT52 12 0.02 Citrus clementina ↓  

Superoxide dismutase [Cu-Zn] 15 kDa A8ICW9 34 0.0001 Dimocarpus longan ↓  

Peroxidase 39 kDa B7UCP4 7 <0.0001 Litchi chinensis ↓  

Glutathione peroxidase 19 kDa B6DVI8 31 <0.0001 Litchi chinensis ↓ ↓ 

Uncharacterized protein 38 kDa V4V6S4 5 <0.0001 Citrus clementina ↓  

Glutathione peroxidase 19 kDa V4VJI5 13 <0.0001 Citrus clementina ↓ ↓ 

Superoxide dismutase [Cu-Zn] 16 kDa V4VU13 15 0.0001 Citrus clementina ↓  

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina ↓ ↓ 

Peptidyl-prolyl cis-trans isomerase 18 kDa A1ECK2 5 0.018 Citrus hybrid cultivar  ↑ 

Peptidyl-prolyl cis-trans isomerase 29 kDa V4TWG4 10 0.0033 Citrus clementina  ↑ 

Fructose-bisphosphate aldolase 43 kDa V4TM67 6 <0.0001 Citrus clementina  ↑ 

Uncharacterized protein 71 kDa V4S4E8 36 0.0002 Citrus clementina  ↑ 

Uncharacterized protein 18 kDa V4SLT9 18 <0.0001 Citrus clementina  ↓ 

Catalase 57 kDa V4TFV8 9 <0.0001 Citrus clementina  ↓ 
        

Cellular response to stress (GO:0033554)        

Uncharacterized protein 65 kDa V4RNH3 17 0.0001 Citrus clementina ↑ ↑ 

Uncharacterized protein 77 kDa V4SVQ9 22 0.0001 Citrus clementina ↑ ↑ 

Uncharacterized protein 26 kDa V4TPW1 4 0.0001 Citrus clementina ↑  

Uncharacterized protein 38 kDa V4VRW5 15 0.005 Citrus clementina ↑ ↑ 

Superoxide dismutase [Cu-Zn] 15 kDa A8ICW9 34 0.0001 Dimocarpus longan ↓  

Glutathione peroxidase 23 kDa V4VT52 12 0.02 Citrus clementina ↓  

Glutathione peroxidase 19 kDa B6DVI8 31 <0.0001 Litchi chinensis ↓ ↓ 

Glutathione peroxidase 19 kDa V4VJI5 13 <0.0001 Citrus clementina ↓ ↓ 
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Table 4.3: continued Identification of differential expressed proteins (DEPs) in T. dregeana embryonic axes 

Protein description MWa Acc. No.b SC% c  P valued Species 

Regulation in 

dehydrated 

seedse 

Regulation 

in stored 

seedsf 

Superoxide dismutase [Cu-Zn] 16 kDa V4VU13 15 0.0001 Citrus clementina ↓  

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina ↓ ↓ 

Cell division cycle protein 90 kDa B2M1Y5 15 0.0214 Dimocarpus longan  ↑ 

Uncharacterized protein 71 kDa V4S4E8 36 0.0002 Citrus clementina  ↑ 
        

 

Response to heat (GO:0009408) 
       

Uncharacterized protein 81 kDa V4TM62 13 0.0023 Citrus clementina ↑  

Uncharacterized protein 37 kDa V4VKP2 44 0.0002 Citrus clementina ↑  

FAM10 family protein At4g22670 47 kDa Q93YR3 6 <0.0001 Arabidopsis thaliana ↓  

16.9 kDa class I heat shock protein 17 kDa Q943E7 9 0.03 
Oryza sativa subsp. 

Japonica 
↓  

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina ↓  

        

Response to topologically incorrect protein (GO:0035966)    

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina ↓ ↓ 
        

Response to osmotic stress (GO:0006970)        

Peroxidase 39 kDa B7UCP4 7 <0.0001 Litchi chinensis ↓  

Uncharacterized protein 38 kDa V4V6S4 5 <0.0001 Citrus clementina ↓  

        

Response to cold (GO:0009409)        

Uncharacterized protein 65 kDa V4RNH3 17 <0.0001 Citrus clementina  ↑ 

Uncharacterized protein 77 kDa V4SVQ9 22 <0.0001 Citrus clementina  ↑ 



75 

Table 4.3: continued Identification of differential expressed proteins (DEPs) in T. dregeana embryonic axes 

Protein description MWa Acc. No.b SC% c  P valued Species 

Regulation in 

dehydrated 

seedse 

Regulation 

in stored 

seedsf 

2-phospho-D-glycerate hydrolase 48 kDa D7NHW9 39 <0.0001 Poncirus trifoliata  ↑ 

Uncharacterized protein 65 kDa V4VZ80 28 0.0016 Citrus clementina  ↑ 

Uncharacterized protein 31 kDa V4VGJ1 7 <0.0001 Citrus clementina  ↑ 

Enolase 48 kDa Q43321 37 0.036 Alnus glutinosa  ↑ 

Malate dehydrogenase, mitochondrial 36 kDa P46487 16 <0.0001 Eucalyptus gunnii  ↑ 

Uncharacterized protein 61 kDa V4SV61 10 <0.0001 Citrus clementina  ↑ 

RuBisCo large subunit-binding protein 

subunit beta, chloroplastic 
63 kDa P08927 32 <0.0001 Pisum sativum  ↑ 

L-ascorbate peroxidase 1, cytosolic 27 kDa Q10N21 9 <0.0001 
Oryza sativa subsp. 

Japonica 
 ↑ 

2-Cys peroxiredoxin BAS1, chloroplastic 

(fragment) 
23 kDa P80602 8 0.0042 Triticum aestivum  ↑ 

Enolase 48 kDa P26300 20 0.0014 Solanum lycopersicum  ↑ 

Uncharacterized protein 62 kDa V4SL39 20 <0.0001 Citrus clementina  ↑ 

Uncharacterized protein 71 kDa V4S4E8 36 0.0002 Citrus clementina  ↑ 

ATP synthase subunit alpha, mitochondrial 55 kDa P24459 5 <0.0001 Phaseolus vulgaris  ↑ 

Phosphoglycerate kinase 42 kDa V4S9G5 20 0.002 Citrus clementina  ↑ 

Lactoylglutathione lyase 40 kDa V4WDC9 7 0.0024 Citrus clementina  ↑ 

60S acidic ribosomal protein 34 kDa O04204 10 <0.0001 Arabidopsis thaliana  ↓ 

60S acidic ribosomal protein 18 kDa O50003 22 <0.0001 Prunus armeniaca  ↓ 

Elongation factor 2 94 kDa O23755 7 0.0016 Beta vulgaris  ↓ 

Uncharacterized protein 65 kDa V4TJQ9 6 <0.0001 Citrus clementina  ↓ 

a Molecular weight of protein 
b Accession number in Uniprot database 
c Sequence coverage 
d Protein with a significant change in abundance (fold change) by a factor > 1.5-fold compared to the freshly harvested seeds (control) by ANOVA (p<0.05) 
e
 Proteins up -/down-regulated in dehydrated seeds 

f Proteins up-/down-regulated in stored seeds  
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4.4.6 Primary metabolic processes 

The DEP’s in both the embryonic axes of dehydrated and stored seeds were categorized into several 

metabolic processes (Fig. 4.6).  Proteins relating to energy metabolism were up-regulated under the 

primary metabolic processes and included the carbohydrate metabolic process and the tricarboxylic acid 

cycle in both dehydrated and stored seeds (Fig. 4.6 a and b). In axes of stored seeds, proteins associated 

with lipid metabolic processes were also up-regulated. A large percentage of proteins that were down-

regulated in the axes of dehydrated (75%) and stored seeds (82%) were grouped under protein metabolic 

process (Fig. 4.6 c and d).    
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Figure 4.5 Molecular functional groups of proteins associated with primary metabolic processes 

were up-regulated (a and b) and down-regulated (c and d) in the embryonic axes of dehydrated 

(a and c) and stored (b and d) T. dregeana seeds. 
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4.4.7 Functional classification based on KEGG Pathway analysis 

As an alternative to categorizing unique sequences by biochemical functions, sequences were assigned 

to metabolic pathways via KEGG (Kanehisa et al., 2015) using enzyme commission (Ec) numbers as 

the basis for assignment. Major pathways were selected based on the highest number of proteins and 

enzymes found. These pathways include glutathione metabolism, glycolysis/gluconeogenesis, citrate 

cycle (TCA cycle) and pyruvate metabolism (Table 4.4). The enzymes involved in glutathione 

metabolism in both axes of dehydrated and stored seeds showed comparable regulation (Fig. 4.7). 

However, transferase (Ec: 2.5.1.18) was only found to be up-regulated in the dehydrated seeds. The 

majority of enzymes involved in glycolysis, TCA cycle, and pyruvate metabolism were up-regulated in 

axes of both partially dehydrated and stored seeds (Table 4.4).  

 

Table 4.4: KEGG metabolic pathways for T. dregeana embryonic axes 

             Dehydrated seeds                    Stored seeds 

Pathway Sequences Up/down- 

Regulated 

Sequences Up-/down- 

regulated 

Glutathione metabolism    

Dehydrogenase 

Ec: 1.1.1.42   

Q8LPJ5 ↑ Q8LPJ5 ↑ 

Peroxidase  

Ec: 1.11.1.9 

V4VJI5, 

V4VT52, 

B6DVI8 

↓ V4VJI5, 

V4VT52, 

B6DVI8 

↓ 

L-ascorbate 

peroxidase 

Ec: 1.11.1.11 

Q10N21 ↑ Q10N21 ↑ 

Glutathione 

peroxidase 

Ec: 1.11.1.12 

V4VJI5, 

V4VT52, 

B6DVI8 

↓ V4VJI5, 

V4VT52, 

B6DVI8 

↓ 

Transferase 

Ec: 2.5.1.18 

V4TPW1 ↑ - - 

Thioredoxin 

peroxidase 

Ec: 1.11.1.15 

P80602 ↑ P80602 ↑ 

 

Glycolysis/ Gluconeogenesis 

   

Hydratase 

Ec: 4.2.1.11 

 

D7NHW9, 

P26300, 

↑ D7NHW9, 

P26300, 

Q43321 

↑ 

Kinase 

Ec: 2.7.2.3 

 

V4S9G5 ↑ V4S9G5 ↑ 
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Dehydrogenase  

(NADP +) 

Ec:1.2.1.9 

P26520, 

V4VKP2 

↑ P26520 ↑ 

Dehydrogenase 

(phosphorylating) 

Ec: 1.2.1.12 

P26520, 

V4VKP2 

↑ P26520 ↑ 

Aldolase 

Ec: 4.1.2.13 

- - V4TM67 ↑ 

Isomerase 

Ec: 5.3.1.1 

- - V4T6F5 ↑ 

Decarboxylase 

Ec: 4.1.1.1 

- - V4SUL7 ↓ 

Hydratase 

Ec: 4.2.1.11 

 

- - D7NHW9 ↑ 

Citrate cycle (TCA cycle) 
 

   

Dehydrogenase 

Ec: 1.1.1.37 

V4U2L0 ↑ P46487, 

V4U2L0 

↑ 
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Table 4.4: Continued KEGG metabolic pathways for T. dregeana embryonic axes 

             

Dehydrated 

seeds 

                   

Stored seeds 

  

Pathway Sequences Up/down- 

Regulated 

Sequences Up-/down- 

regulated 

Carbon fixation in photosynthetic organisms 
 

  

Dehydrogenase 

Ec: 1.1.1.37 

V4U2L0 ↑ P46487, 

V4U2L0 

↑ 

Dehydrogenase 

(decarboxylating) 

Ec: 1.1.1.39 

P51615 ↑ P51615 ↑ 

Kinase 

Ec: 2.7.2.3 

V4S9G5 ↑ V4S9G5 ↑ 

Dehydrogenase 

(oxaloacetate-

decarboxylating)  

(NADP+) 

Ec: 1.1.1.40 

P51615 ↑ P51615 ↑ 

Dehydrogenase 

(phosphorylating) 

Ec: 1.2.1.12 

P26520 ↑ P26520 ↑ 

Isomerase 

Ec: 5.3.1.1 

- - V4T6F5 ↑ 

Aldolase 

Ec: 4.1.2.13 

- - V4TM67 ↑ 

 

Pyruvate metabolism 
 

    

Dehydrogenase 

Ec: 1.1.1.37 

V4U2L0 ↑ P46487, ↑ 

Lyase  

Ec: 4.4.1.5 

V4WDC9 ↑ V4WDC9 ↑ 

Dehydrogenase 

(decarboxylating) 

Ec: 1.1.1.39 

P51615 ↑ P51615 ↑ 

Dehydrogeanse 

(oxaloacetate-

decarboxylating) 

Ec: 1.1.1.38 

P51615 ↑ P51615 ↑ 

Decarboxylase  

Ec: 4.1.1.3 

P51615 ↑ P51615 ↑ 

Dehydrogenase 

(oxaloacetate-

decarboxylating) 

(NADP+) 

Ec:1.1.1.40 

P51615 ↑ P51615 ↑ 

Dehydrogenase 

(NAD+) 

Ec:1.1.1.82 

- - P21528 ↑ 
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Figure 4.6 KEGG pathway map of glutathione metabolism in embryonic axes of (a) partially dehydrated seeds and (b) stored seeds
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4.5. Discussion 

Via a comparison of a range of stress biomarkers Sershen et al. (2016) illustrated the importance of 

considering both the type and degree of damage incurred when assessing desiccation stress in 

recalcitrant seeds. Though recalcitrant seed responses to desiccation and hydrated storage are relatively 

well characterized in terms of redox metabolism, ultrastructure, physiology and general metabolism, 

changes at the proteomic level are relatively poorly understood. The present study used a proteomic 

approach to explore the possible mechanisms underlying viability loss in T. dregeana seeds during 

partial dehydration and hydrated storage. In the present study, T. dregeana seeds lost 50% viability after 

partial dehydration to 0.9 g g−1 WC and >50% of the seeds germinated in storage after 12 months.  

Though the non-germinated seeds were viable after 12 months storage, in recalcitrant seeds hydrated 

storage is accompanied by the development of a mild dehydration stress as a consequence of germinative 

development which culminates in viability loss if additional water is unavailable (Pammenter et al., 

1994). The germination and significant reduction in axis water content observed during storage of                

T. dregeana seeds in this study therefore suggests that the non-germinated seeds were water-stressed. 

 

In terms of the total average number of fold changes of proteins in the embryonic axes of partially 

dehydrated and stored T. dregeana seeds, there did not seem to be a significant difference (Fig. 4.4a). 

However, glycine tRNA ligase 1 (O23627) in the axes of dehydrated seeds had the highest fold change 

in terms of up-regulation while in the axes of stored seeds an uncharacterized protein (V4RZM7) which 

plays a functional role in translation displayed the highest fold change in terms of down-regulation (Fig. 

4.4b). Mitochondrial glycine tRNA ligase 1 plays a crucial role in protein synthesis in plants (Maréchal-

Drouard et al., 1993, Duchêne et al., 2001). Studies have shown mild/initial dehydration to enhance the 

rate of protein synthesis in recalcitrant seeds (Farrant et al., 1992a, Sershen et al., 2016). The up-

regulation of protein synthesis in  the axes of T. dregeana seeds during partial dehydration may be 

associated with mechanisms involved in the repair of the variety of physical and biochemical lesions 

induced by dehydration, which can lead to metabolic impairment and/or cell death if unrepaired (Sershen 

et al., 2016). Alternatively, slight dehydration has been shown to stimulate germination in T. dregeana 

(Varghese et al., 2011), implying that this enhancement in glycine tRNA ligase 1 may be related to 

germinative development as it is one of the key steps in orthodox (Cheung et al., 1979) and recalcitrant 

(Gumilevskaya et al., 2003) seed germination is de novo protein synthesis, mediated by preformed 

mRNA.  

 

Interestingly, ribulose-1,5-bisphosphate carboxylase (RuBisCo) which regulates photosynthetic carbon 

assimilation in plants was found to be up-regulated in stored seeds (Table 4.3). Recalcitrant seeds of 

some species like T. dregeana can be likened to developing seedlings, since their chlorophyllous 
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cotyledons and axes show signs of being photosynthetically active leading up to and following 

germination (Ramlall et al., 2015). The up-regulation of RuBisCo in the axes of stored T. dregeana 

seeds could therefore be linked to the progression of germinative development in storage. Moothoo-

Padayachie et al. (2016) also suggested that the longevity of recalcitrant seeds like those of T. dregeana 

in hydrated storage is based on the rate and timing of the ROS-based trigger for germination. 

Furthermore, a large body of evidence suggests that the inability of recalcitrant seeds to retain 

germinability after desiccation (Pukacka and Ratajczak, 2006, Roach et al., 2010, Sershen et al., 2016) 

and during hydrated storage (Hendry et al., 1992, Chaitanya and Naithani, 1994) is related to elevated 

ROS levels and inadequate ROS quenching capacity, particularly in relation to ascorbate and glutathione 

levels (Tommasi et al., 2001, Pukacka and Ratajczak, 2007). This may explain why in the present study, 

the majority of DEPs that arose in response to stress were related to oxidative and cellular stress (Fig. 

4.5 a-d) and these are discussed below.   

 

Many proteins regulating redox status were up-regulated after partial dehydration and storage. These 

included L-ascorbate peroxidase, 2-cys peroxiredoxin and thioredoxin peroxidase (Table 4.4) and 

proteins related to glutathione metabolism (Fig. 4.7). Ascorbate peroxidase is present in all cell 

compartments and has a high affinity for hydrogen peroxide (H2O2), making it an important enzyme in 

ROS detoxification (Noctor and Foyer, 1998), including in recalcitrant seeds (Pukacka and Ratajczak, 

2006, Chen et al., 2011). Pukacka and Ratajczak (2006) found ascorbate peroxidase activity to increase 

in A. saccharinum embryonic axes during desiccation and attributed this to the need to counteract ROS 

production. Similarly, in a study on recalcitrant Camellia sinensis seeds Chen et al. (2011) showed L-

ascorbate peroxidase to be up-regulated in response to desiccation. However, those authors also showed 

that with prolonged dehydration ascorbate peroxidase activity decreased.  

 

The proteins 2-cys peroxiredoxin and thioredoxin peroxidase are also involved in protecting lipids, 

enzymes, and DNA against ROS damage (Rouhier and Jacquot, 2005). Their up-regulation in                               

axes of T. dregeana seeds here, suggests that these proteins play a protective role during drying and 

storage in recalcitrant seeds. In a study by José et al.  (2009), Magnolia ovata seeds were dried to 

different water contents to assess their viability and their gene expression at the mRNA level in relation 

to seed development and desiccation tolerance. Those authors found that the expression of the 2-cys-

peroxiredoxin gene showed no significant difference in expression between fresh and partially dried               

M.. ovata seeds. However, during the first days of germination this gene was found to be up-regulated 

in both the fresh and partially dried M. ovata seeds. Thus, the results in the current study suggest that 

the up-regulation of 2-cysperoxiredoxin in partially dehydrated seeds and stored T. dregeana seeds could 

be linked to the progression of germinative development, particularly in storage. Furthermore, 2-

cysperoxiredoxin may be required to protect the seed during early germination because of a rise in ROS 



84 

levels which serves as a biochemical trigger for germination in T. dregeana seeds (Moothoo-Padayachie 

et al., 2016). 

 

Interestingly, KEGG pathway analysis showed glutathione S-transferase, a major antioxidative enzyme 

capable of catalysing GSH-dependent reduction of H2O2 (Noctor and Foyer, 1998), to be up-regulated 

but only in axes of partially dehydrated seeds (Fig. 4.7). This result corroborates other suggestions that 

only selected antioxidant enzymes are enhanced in response to desiccation- versus storage-induced 

stress in recalcitrant seeds (Pukacka and Ratajczak, 2006, Cheng and Song, 2008, Chen et al., 2011). 

This selective response of the antioxidant system may be modulated by the intensity and duration of the 

desiccation stress; hydrated storage has been likened to a mild dehydration stress with low levels of 

water loss and stress over an extended period of time [weeks to months], whilst natural drying involves 

much more rapid water loss and intense stress over a shorter period of time (Varghese et al., 2011). 

 

In the present study, partially dehydrated T. dregeana seeds showed a 50% decline in germinability after 

just 14 d, while stored seeds showed signs of a mild dehydration stress: after 12 months >50% of stored 

seeds germinated in storage and though the non-germinated seeds showed a significant decline in axis 

water content, they were viable. This may also explain (1) why certain antioxidant enzymes (viz. 

glutathione peroxidase) were down-regulated in axes of partially dehydrated and stored T. dregeana 

seeds and (2) why certain antioxidant enzymes (viz.  SOD and peroxidase) were only down-regulated 

in axes of dehydrated seeds, whilst others (viz. catalase) were only down-regulated in axes of stored 

seeds. Superoxide dismutase and catalase have been reported as important ROS scavengers during the 

desiccation (Song et al., 2004, Chen et al., 2011) and storage (Pukacka and Ratajczak, 2005) of 

recalcitrant seeds. These findings are in agreement with those of Song et al. (2004), who also found 

SOD and CAT activities to decrease significantly in embryonic axes of T. dregeana seeds during 

dehydration, and others (Chaitanya et al., 2000, Varghese and Naithani, 2002, Varghese et al., 2011) 

who have shown a correlation between dehydration- and storage-induced loss in seed viability and a 

decline in antioxidant capacity in recalcitrant seeds of a number of species. Furthermore, in a proteomic 

study on recalcitrant seeds of C. sinensis Chen et al., (2011)  also showed prolonged desiccation to result 

in the down-regulation of antioxidant enzymes. In the present study, two proteins identified as 

glutathione peroxidase were down-regulated only in axes of dehydrated seeds while a third was found 

to be downregulated in axes of stored seeds. Peroxidase was also found to be down-regulated in axes of 

dehydrated seeds. Glutathione peroxidase and peroxidase play an important role in the detoxification of 

H2O2 (Noctor and Foyer, 1998) . These results may explain the loss in T. dregeana seed viability upon 

partial dehydration and storage in this study. This is in agreement with findings of Chen et al. (2011)  as 

mentioned above who found that with prolonged desiccation putative antioxidant enzymes involved in 

counteracting ROS were down-regulated and this was accompanied by viability loss. 
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A 16.9 kDa class I heat shock protein identified in Oryza sativa (rice) was also found to be down-

regulated in both axes from partially dehydrated and stored T. dregeana seeds in this study. Wehmeyer 

and Vierling (2000) showed a correlation between the reduction in small heat shock proteins (sHSPs) 

and desiccation intolerance in Arabidopsis seeds, suggesting that  sHSPs play a role in desiccation 

tolerance. In this regard, two general roles of heat shock proteins (HSPs) have been suggested for helping 

cells cope with stress-induced damage to proteins: (1)  HSPs can promote the degradation of abnormal 

proteins; (2) HSPs can reactivate stress-damaged proteins and function as “molecular chaperones” to 

prevent the aggregation or promote the proper refolding of denatured proteins (Parsell and Lindquist, 

1993).  

 

Another set of stress-related proteins that has long been implicated in the acquisition of desiccation 

tolerance are the LEA proteins (Galau et al., 1986). Delahaie et al. (2013) found that polypeptides of 12 

LEA genes identified in the heat stable genome of an orthodox-seeded species, M. trancatula, were 

either absent or poorly expressed in the cotyledonary tissues of the closely related recalcitrant-seeded 

species C. australe upon dehydration. However, their study was conducted on cotyledonary tissue and 

hence, could not establish the implications of this dehydration-induced absence/poor expression of LEA 

proteins in the more developmentally important axis tissues of these recalcitrant seeds. As in the axes 

of other recalcitrant-seeded species (e.g. A. marina [Farrant et al., 1996]), the present study identified 

no LEA proteins in T. dregeana embryonic axes. The absence of LEA proteins in T. dregeana axes and 

the down-regulation of sHSPs like16.9 kDa class I heat shock proteins during drying and storage may 

have therefore also contributed to their desiccation sensitivity and reduced storage lifespan.  

 

Energy demand for cell survival increased in both partially dehydrated and stored seeds of T. dregeana, 

as seen by the up-regulation of key enzymes involved in glycolysis: phosphopyruvate hydratase, 

phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+) and glyceraldehyde-3-

phosphate dehydrogenase (phosphorylating) (Table 4.4). These enzymes are essential for the glycolytic 

pathway (Plaxton, 1996) and a possible explanation for their up-regulation is the heavy ATP demand 

associated with desiccation stress as shown in desiccation tolerant plant tissues (Farrant et al., 2015). 

The up-regulation of phosphoglycerate kinase is particularly significant as it catalyzes the reaction 

which is the first ATP-generating step of glycolysis, i.e. substrate level phosphorylation (which involves 

a phosphoryl group transfer from the ‘high-energy’ mixed anhydride 1,3-bisphosphoglycerate to ADP, 

generating ATP). Interestingly, certain glycolytic enzymes (aldolase, isomerase and decarboxylase) 

were also found to be up-regulated in axes of stored seeds but not in axes of dehydrated ones (Table 

4.4), which suggests that stored and dehydrated seeds may differ in terms of their energy demands. This 

could be related to the fact that while stored seeds were experiencing germinative development in 
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parallel with a prolonged mild dehydration stress, partially dried seeds were subjected to a more intense 

dehydration stress over a relatively shorter duration.   

 

Lastly, the demand for ATP when T. dregeana seeds were exposed to a desiccation stress is further 

demonstrated by the up-regulation of enzymes involved in the TCA cycle (Table 4.4). These enzymes, 

viz. malate dehydrogenase, isocitrate dehydrogenase (NADP+) and aconitate hydratase, were up-

regulated in both partially dehydrated and stored seeds. Furthermore, in both stored and dehydrated 

seeds enzymes up-regulated in pyruvate metabolism were found to be associated mainly with the 

carboxylation of pyruvate to produce oxaloacetate which is one of the citric acid cycle intermediates. 

The citric acid cycle enzymes up-regulated are involved in the conversion of S-malate to oxaloacetate, 

citrate to isocitrate and isocitrate to oxalosuccinate, suggesting that pyruvate is being fed into the TCA 

cycle and driving ATP production, possibly needed in repair mechanisms in dehydrated seeds, and in 

repair and germination in stored seeds.  

4.6 Concluding remarks and recommendations 

The nature and degree of response of recalcitrant seeds to desiccation stress is based on both the intensity 

and duration of the stress. This was evidenced in the present study by the differential seed viability and 

proteomic responses of T. dregeana seeds to partial dehydration (more intense desiccation stress, over 

short duration) and hydrated storage (mild stress over a prolonged duration). Despite these differences, 

both stresses (partial dehydration and storage) perturbed parts of the proteome responsible for protein 

synthesis, maintenance of cellular redox balance, stress tolerance and provision of energy for cell 

survival significantly. Additionally, LEAs which have been shown to be essential for desiccation 

tolerance in seeds and plant tissues in general were not expressed in T. dregeana axes. Future research 

should focus on how the over-expression of certain antioxidant enzymes shown to be up-regulated 

during drying and storage in this study (e.g. SOD and peroxidase) will influence desiccation tolerance 

in plants and their propagules. The results presented here are in agreement with other proteomic studies 

on recalcitrant seeds and though more comparative studies on moderately and highly recalcitrant-seeded 

species are needed, these data represent at least part of the proteomic footprint for desiccation sensitivity 

in seeds.  
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5. CHAPTER 5: Proteomic responses of recalcitrant Avicennia marina 

Forssk. Vierh and Trichilia dregeana Sond. seeds to partial dehydration 

and hydrated storage   

Anushka Moothoo-Padayachie, Angus Macdonald, Boby Varghese, Norman W. Pammenter, Patrick 

Govender and Sershen* 

5.1 Abstract 

Recalcitrant seeds are desiccation and generally chilling sensitive which severely curtails their hydrated 

storage lifespan. The aim of the present study was to compare seed physiological and proteomic 

responses of a highly (A. marina (Forssk.) Vierh.) and moderately (T. dregeana) recalcitrant-seeded 

species to partial dehydration and hydrated storage using a label-free LC-MS/MS method. A total of 30 

proteins were identified for the embryonic axes of A. marina and 105 for those of T. dregeana; these 

proteins were thereafter classified according to their molecular function and arranged into metabolic 

pathways. Differences in protein expression within treatments, between species were evidenced by 

proteins such as superoxide dismutase (SOD), adenosylhomocysteinase and calmodulin which was 

found in higher abundance in dehydrated T. dregeana than A. marina axes. A glyceraldehyde-3-

phosphate dehydrogenase and a 70 kDa heat shock protein was also found in higher abundance in axes 

of stored seeds of T. dregeana compared with axes of stored A. marina seeds. In embryonic axes of 

dehydrated A. marina seeds triose phosphate isomerase and a proteasome subunit alpha type were found 

in higher abundance than in the axes of dehydrated T. dregeana seeds. Interestingly, in axes of stored 

seeds of A. marina proteins related to photosynthesis (photosystem II reaction center protein) and a 

nucleotide diphosphate kinase were found in higher abundance than in axes of stored T. dregeana seeds. 

These results support previous suggestions that the higher metabolic activity and faster germinative 

development in A. marina relative to T. dregeana seeds, are responsible for the reduced seed storage 

lifespan of the former. The relatively higher abundance of proteins such as superoxide dismutase (SOD) 

adenosylhomocysteinase and calmodulin protein in T. dregeana seeds may also provide reasons for why 

T. dregeana seeds are less desiccation sensitive than those of A. marina. 

Key words: desiccation sensitive; dehydration; storage; proteins; LC-MS/MS 
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5.2 Introduction 

 

Recalcitrant, unlike orthodox, seeds remain sensitive to dehydration throughout their development (Chin 

and Roberts, 1980, Berjak and Pammenter, 2008), placing major constraints on both their short- to 

medium- term and long-term storage (Farrant et al., 1997, Calistru et al., 2000). Therefore, to develop 

more effective germplasm storage methods for recalcitrant-seeded species, it is essential to understand 

the mechanisms underlying the desiccation sensitivity of their seeds. Many studies on storage of 

recalcitrant seeds have indicated that their survival during hydrated storage, a method which involves 

maintaining the seeds under conditions of saturated relative humidity (Berjak and Pammenter, 2004, 

FAO, 2013), depends on the delicate balance between reactive oxygen species (ROS) production and 

antioxidant protection (Walters et al., 2001, Tommasi et al., 2006). Studies have shown that in 

recalcitrant seeds desiccation interferes with metabolic processes leading to an accumulation of 

potentially toxic ROS such as superoxide (∙O2
−), singlet oxygen, hydrogen peroxide (H2O2) and hydroxyl 

radicals (Pukacka and Ratajczak, 2006, Roach et al., 2008, Roach et al., 2010).  In plants and their 

propagules, ROS have been reported to disrupt membrane integrity via lipid peroxidation (Pukacka and 

Ratajczak, 2006, Roach et al., 2008); damage nucleic acids; and alter protein structure and activity 

through oxidative modifications such as carbonylation (Johansson et al., 2004, Oracz et al., 2007, 

Sweetlove and Møller, 2009).   

 

To avoid oxidative damage, seeds contain antioxidant systems which regulate redox metabolism by 

quenching ROS; these antioxidants include both enzymatic (e.g. glutathione reductase, ascorbate 

peroxidase, catalase [CAT], superoxide dismutase [SOD] and non-enzymatic (e.g. α-tocopherol, 

flavonoids, phenolics, ascorbate and reduced glutathione) types (Bailly, 2004, Kranner et al., 2006). 

However, desiccation, depending on its intensity and duration, can lead to the accumulation of ROS, if 

not efficiently removed by increased levels of antioxidants (Chen et al., 2011). For example,  in Ginkgo 

biloba seeds enzymatic antioxidants were found to be inadequate for counteracting oxidative stress 

during storage (Tommasi et al., 2006), which itself has been shown to impose a low intensity but 

protracted water stress (Pammenter et al., 1994).  Similarly, dehydration of T. dregeana Sond. 

embryonic axes, has been shown to compromise superoxide dismutase (SOD) and ascorbate peroxidase 

(APX) activities and result in elevated levels of ROS (Song et al., 2004). Additionally, those authors 

showed that catalase (CAT), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) 

activities increases during the initial phase of dehydration but rapidly decreased with further drying. 

Moothoo-Padayachie et al. (2016) (results featured in Chapter 3) also showed that rapid germination of 

A. marina seeds was associated with an increase in ROS production and decline in GSH: GGSG ratio. 

However, slower germination in T. dregeana seeds was associated with a delayed onset of the ROS-

based trigger for germination and a high GSH:GSSG ratio. The authors proposed that poor storage 
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longevity in recalcitrant seeds of species such as A. marina may be based on low levels of ROS 

quenching which allow for the ROS-based trigger for germination to progress during hydrated storage. 

 

Though recalcitrant seed responses to desiccation and hydrated storage are relatively well characterized 

in terms of redox metabolism, ultrastructure, physiology and general metabolism, the exact mechanisms 

underlying their desiccation sensitivity are still unclear. Proteomic responses are particularly poorly 

understood, given the fact that comparisons among species whose seeds differ in their degree of 

desiccation sensitivity are rare (Balbuena et al., 2011). This is mainly due to the many challenges 

recalcitrant seeds pose to current proteomic methods; these challenges are largely a consequence of the 

interfering compounds they contain (Balbuena et al., 2011). Nevertheless, a study by Chen et al.  (2011) 

on recalcitrant Camellia sinensis embryonic axes found that desiccation induced a rapid accumulation 

of antioxidant enzymes including APX, SOD and other proteins. In a  study on Antiaris toxicaria seeds 

Bai et al., (2011) found that APX, GR, MDHAR and DHAR enzyme activities were induced during the 

early stages of desiccation but then declined with further dehydration, resulting in the inefficient removal 

of ROS. In both proteomic studies mentioned above, 2DE-gels and LC/MS/MS shotgun proteomics was 

employed. This method is, however, very limited in its sensitivity, has low dynamic range, and is limited 

in its reproducibility (Panchaud et al., 2008); although, reproducibility can be enhanced with the use of 

differential imaging gel electrophoresis (DIGE) (Ünlü et al., 1997, Tonge et al., 2001).  

 

An alternative to this approach involves the use of  non-gel based LC-MS/MS (Wang et al., 2008, 

Schulze and Usadel, 2010). One particular gel-free proteomic method, isobaric tag for relative and 

absolute quantitation (iTRAQ), has been shown to be among the most robust techniques for differential 

quantitative proteomic analyses (Latterich et al., 2008, Wilm, 2009). However, labelling of proteins in 

the presence of interfering compounds can be challenging, especially in recalcitrant-seeded species 

(Balbuena et al., 2011). Label-free proteomics allows for the quantification of peptides using spectral 

characteristics, such as retention time, m/z ratio and peak intensity, by comparing the direct mass 

spectrometric signal intensity for any given peptide or by counting the number of acquired tandem mass 

spectra matching (Old et al., 2005, Stevenson et al., 2009). It is a relatively new approach that has been 

successfully used in different systems such as humans (Old et al., 2005), yeast (Foss et al., 2007) and 

fly (Xun et al., 2009) but reports of its application in plants are rare (Katz et al., 2010).  

 

In light of the need to understand the molecular mechanisms underlying desiccation sensitivity in 

recalcitrant seeds, and recent advances in proteomic research, the present study compared the seed 

physiological and proteomic responses of a highly (A. marina Forssk. Vierh.) and moderately (T. 

dregeana) recalcitrant-seeded species to partial dehydration and hydrated storage using a label-free LC-

MS/MS method. 
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5.3 Materials and methods 

5.3.1 Seed collection   

The methods employed for this aspect of the study follow those described in section 2.3.1 of                     

Chapter 2.  

5.3.2 Desiccation treatment 

The methods employed for this aspect of the study follow those described in section 2.3.2 of                          

Chapter 2. 

 

5.3.3 Hydrated storage of seeds 

The methods employed for this aspect of the study follow those described in section of Chapter 2.3.3 of 

Chapter 2. 

5.3.4 Viability assessment 

Seeds were retrieved from storage (at monthly intervals; n = 15) and desiccation (at two day intervals; 

n = 15) treatments and assessed for viability as described in section 2.3.4 of Chapter 2.  

5.3.5 Protein extraction 

Three replicates of two excised embryonic axes (±300 mg) for A. marina and ±100 axes (±400 mg) for 

T. dregeana axes belonging to partial dehydration and hydrated storage intervals associated with ±50% 

viability loss and the control (freshly harvested seeds) were extracted for total soluble proteins according 

to Boudet et al. (2006). All chemicals used were reagent grade (Sigma-Aldrich, Germany) unless 

otherwise stated. Embryonic axes were snap-frozen in liquid nitrogen and frozen material was ground 

in the presence of PVPP (1:1). The powder was then suspended in 1 ml of cold extraction buffer (50 

mM HEPES, 1 mM EDTA, protease inhibitor [Roche, Germany]). After centrifugation at 20 000 g (4°C) 

for 15 min the supernatant was removed and 20% trichloroacetic acid (v/v) was added. The mixture was 

stored at -20°C overnight and thereafter centrifuged at 20 000 g (4°C) for 15 min. The supernatant was 

carefully removed and discarded. The protein pellet was then sequentially washed with 100 µl of ice 

cold 100% acetone and twice with 80% methanol. The protein pellet was centrifuged at 20 000 g (4°C), 

allowed to dry for 15 min under a fume hood and re-suspended in 4% sodium dodecyl sulphate 

overnight. The protein concentration was determined using a BCA protein assay kit (Pierce, USA) 

(Smith et al., 1985). 
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5.3.6 In-solution digest 

All chemicals used were analytical grade (Sigma-Aldrich, Germany) unless otherwise stated. Samples 

(200 µg of protein each) were reduced by adding 50 mM triscarboxyethyl phosphine (TCEP; Fluka) in 

100 mM TEAB (final concentration 5mM TCEP) for 30 min at 37°C. Following reduction, cysteine 

residues were modified to methylthio using 200 mM methyl methanethiosulphonate (MMTS) in 100 

mM triethylammonium bicarbonate (TEAB) solution (final concentration of 20 mM) for 30 min. After 

modification, the samples were diluted to 98 µL with 100 mM TEAB. Proteins were digested by adding 

5 µL trypsin (Pierce) solution (1 mg/1 mL) and incubated for 18 h at 37°C. The samples were then dried 

down and re-suspended in 50 µL of 2% acetonitrile: water; containing 0.1% formic acid (v/v). 

5.3.7 Desalting 

Residual digest reagents were removed using an in-house manufactured C18 stage tip (Empore Octadecyl 

C18 extraction discs; Supelco). The samples were loaded onto the stage tip after activating the C18 

membrane with 30 µL methanol (Sigma) and equilibration with 30 µL 2% acetonitrile: water; 0.05% 

trifluoroacetic acid (TFA) (v/v). The bound sample was washed with 30 µl 2% acetonitrile: water; 0.1% 

formic acid (FA) (v/v) before elution with 30 µL 50% acetonitrile: water; 0.1% FA. The eluate was 

evaporated to dryness. The dried peptides were dissolved in 25 µL 2% acetonitrile: water; 0.1% FA for 

LC-MS/MS analysis as described below.        

5.3.8 Liquid chromatography 

Liquid chromatography was performed on a Thermo Scientific Ultimate 3000 RSLC equipped with a 2 

cm × 100 µm C18 trap column and a 35 cm × 75 µm in-house manufactured C18 (Luna C18; 5 µm; 

Phenomenex) analytical column. The solvent system employed was as follows: 2% acetonitrile: water 

loading solvent, containing 0.1% FA; solvent A: 2% acetonitrile: water, containing 0.1% FA; and 

solvent B: 100% acetonitrile, containing 0.1% FA. The samples were loaded onto the trap column using 

loading solvent at a flow rate of 5 µL/min from a temperature controlled auto sampler set at 7°C. Loading 

was performed for 10 min before the sample was eluted onto the analytical column. Flow rate was set 

to 350 nL/min and the gradient generated as follows: 2.0% solvent A for 5 min; 2-4% solvent B from 5-

10 min; 4-10% from 10-20 min solvent B; and 10-40% solvent B from 20-95 min using Chromeleon 

non-linear gradient 7; and 40-80% solvent B from 95-100 min. Thereafter, the column was washed for 

10 min with 80% solvent B followed by equilibration. Chromatography was performed at 50°C and the 

outflow delivered to the mass spectrometer through a stainless steel nano-bore emitter. 

5.3.9 Mass spectrometry 

Mass spectrometry was performed using a Thermo Scientific Fusion mass spectrometer equipped with 

a Nanospray Flex ionization source. The sample was introduced through a stainless-steel emitter as 
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mentioned above. Data was collected in positive mode with spray voltage set to 2 kV and ion transfer 

capillary set to 275°C. Spectra were internally calibrated using polysiloxane ions at m/z = 445.12003 

and 371.10024. MS1 scans were performed using the orbitrap detector set at 12 000 resolution over the 

scan range 350-1650 with AGC target at 3 E5 and maximum injection time of 40 ms. Data was acquired 

in profile mode. 

 

MS2 acquisitions were performed using monoisotopic precursor selection for ion with charges +2 to +6 

with error tolerance set to ±10 ppm. Precursor ions were excluded from fragmentation once for a period 

of 30 seconds. Precursor ions were selected for fragmentation in HCD mode using the quadrupole mass 

analyzer with HCD energy set to 35%. Fragment ions were detected in the ion trap mass analyzer using 

rapid scan rate. The AGC target was set to 1E4 and the maximum injection time to 45 ms. The data was 

acquired in centroid mode.  

5.3.10 Data Analysis 

The raw files generated by the mass spectrometers were imported into Proteome Discoverer v1.4 

(Thermo Scientific) and processed using the Mascot algorithm (Matrix Science), as well as the 

SequestHT algorithm included in Proteome Discoverer. Data analysis was structured to allow for 

methylthio as a fixed modification as well as NQ deamidation (NQ), oxidation (M) and N-terminal 

acetylation. Peptide validation was performed using the percolator node set to search against a decoy 

database with FDR less than 1%. An additional analysis, was performed using the X! Tandem 

Sledgehammer (2013.09.01.1) algorithm using the same settings as before. Database interrogation was 

performed against the Uniprot green plants with semi-tryptic cleavage allowing for two missed 

cleavages. The output files generated were combined using Scaffold software version 4.4.3 

(Proteomesoftware).  

5.3.11 Criteria for protein identification and quantification  

Scaffold (version Scaffold_4.7.2, Proteome Software Inc., Portland, OR) was used to validate MS/MS 

based peptide and protein identifications. Peptide identifications were accepted if they could be 

established at greater than 95.0% probability by the Peptide Prophet algorithm (Keller et al., 2002) with 

Scaffold delta-mass correction. Protein identifications were accepted if they could be established at 

greater than 99 % probability and contained at least two identified peptides.  Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar 

peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the 

principles of parsimony. Quantitation was based on fold change (by sample; n=3) and was performed 

using total spectra, statistically significant differences were determined by Fisher’s exact test using a 

significance level set to (P<0.05).  
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5.3.12 Bioinformatics analysis 

Functional analysis of proteins identified was conducted using the Blast2GO tool (Conesa and Götz, 

2008). FASTA format sequences of the identified and quantified protein set were assigned to gene 

ontologies using Blast2GO. Blast2GO was initially run to incorporate a sequence description by 

performing a BLASTp search against the Swissprot database (e-value cut-off of 1 × 10−50, 20 for the 

retrieved number of BLAST hits, 33 for the highest scoring pair (HSP) length cut-off). Subsequently, 

Blast2GO was employed to map the gene ontology (GO), Enzyme Commission (EC) numbers and 

Interpro terms, and to annotate the sequences (e-value hit filter of 1 × 10−6, a Hsp-hit coverage cut-off 

of 0, an annotation cut-off of 55, and a GO weight of 5). The automatic annotation performed by 

Blast2GO was manually revised to guarantee accurate assignment. The Blast2GO tool was also used to 

conduct metabolic pathway analyses of identified proteins according to the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) Pathway Database (http://www.genome.jp/kegg/pathway.html ). 

5.4 Results 

5.4.1 Physiological responses to desiccation and storage   

The shedding WC of embryonic axes from A. marina was c. 1.7 g g−1. Following four days of partial 

dehydration, axis WC dropped to 1 g g−1 and germinability declined from 100% on day 0 to ± 50% on 

day four (data not shown). After 30 d in hydrated storage, the WC of A. marina embryonic axes increased 

from a shedding WC of c. 1.8 g g−1 to 2.2 g g−1. When seeds were planted in soil at 20 d of storage only 

± 50% of the seeds germinated. In contrast, embryonic axes of T. dregeana seeds had a shedding WC 

of c. 2.5 g g−1. Following partial dehydration, axis WC dropped to c. 0.9 g g−1 on day 14 and 

germinability in these seeds was lost relatively slower than in A. marina, from 100% (on day 0) to ±50% 

on day 14(data not shown).  In hydrated storage c. 54.2 ± 3.2% of T. dregeana seeds germinated after 

12 months. The remaining non-germinated seeds were 100% viable but these non-germinated seeds 

showed a significant (P < 0.05) reduction in water content (c. 2.0 g g−1) during storage, implying that 

they were water-stressed during storage. 

5.4.2 Proteins identified by LC MS/MS and their functional classification 

The total proteome extracted from the embryonic axes of freshly harvested (control), partially 

dehydrated and hydrated stored A. marina and T. dregeana seeds was explored using LC MS/MS (Fig. 

5.1). Analysis of protein extracts from all samples (n = 3) collectively resulted in the identification of 

30 proteins (436 spectra) in A. marina and 105 proteins (2107 spectra) in T. dregeana, when the criteria 

for identification discussed in section 5.4.1 were applied. Functional classification of identified proteins 

based on the National Resource for Biotechnology Information (NCBI) putative protein database gene 
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annotations (gene ontology[GO] level 3) demonstrated that they were associated with a wide range of 

biological processes, ranging from growth and reproductive processes, to response to stimulus. Based 

on the GO analysis, of all the processes observed three major biological processes stood out in both               

A. marina (Fig. 5.2a) and T. dregeana (Fig. 5.2b) namely: ‘cellular processes’; ‘response to stimulus’ 

and ‘metabolic process’. Most proteins identified in both species were also located mainly in the 

following cellular components: ‘cell part’; ‘organelle’; ‘organelle part’ and ‘membrane’ (Figs. 5.2c and 

5.2d). In terms of molecular function the majority of the proteins identified in both species were 

associated with ‘binding’ followed by ‘catalytic activity’ and then ‘antioxidant activity’; the percentage 

of proteins within these categories was comparable between species (Figs. 5.3a and 5.3b). Since the 

number of proteins identified in A. marina was markedly lower than that identified in T. dregeana it is 

difficult to draw any reliable conclusions on the similarity/dissimilarity between the total proteomes of 

the two species. Nevertheless, we can say that the number of proteins shared between A. marina and             

T. dregeana was relatively comparable between species, irrespective of the treatment (Table 5.1). Thus, 

the results presented below explore differences in individual protein expression levels between 

treatments, within species. The comparisons made focus on differences in proteins associated with redox 

metabolism and primary metabolic activity. 
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Figure 5.1 Workflow of LC-MS/MS experiments for the fresh, partially dehydrated and stored seeds. For each experiment, the extracted proteins were 

trypsin-digested. Peptides were desalted on a C18 spin column. The sample was then analysed by LC−MS/MS analysis using a Thermo Scientific Fusion 

mass spectrometer equipped with a Nanospray Flex ionization source. Searches and quantitation was done using Scaffold_4.4.8, Proteome Software. 

Finally, the identified proteins in the set were annotated and functionally analyzed using the Blast2GO tool based on gene ontology (GO) terms. 
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Figure 5.2 Gene ontology annotations for differentially expressed proteins (DEP’s) in terms of 

biological process (a) A. marina; (b) T. dregeana, cellular components (c) A. marina and                               

(d) T. dregeana embryonic axes. 
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Figure 5.3 Gene ontology annotations for differentially expressed proteins in terms of molecular 

function in (a) A. marina and (b) T. dregeana embryonic axes 
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Table 5.1: Species-specific and shared proteins identified in the axes of freshly harvested 

(control), hydrated stored and partially dehydrated seeds of A. marina and T. dregeana. 

 

Note: the data represent the total number of proteins identified in each of the treatments within the 

respective species. Proteins identified in one treatment may also appear in another. Shared refers to the 

number of proteins found in both species in each of the treatments. 

5.4.3 Molecular functional analysis of partially dehydrated A. marina and T. dregeana seeds 

Proteins identified in axes of freshly harvested (control) seeds and dehydrated seeds were classified into 

functional groups based on NCBI gene annotations (GO level 3) for both species (Figs. 5.4a -d).  In axes 

of freshly harvested A. marina seeds (control), proteins were categorized according to 12 functional 

groups (Fig. 5.4a), of which nine were also found in axes of dehydrated seeds (Fig. 5.4c). There was a 

noticeable increase in the percentage of proteins identified within the following functional groups: 

isomerase activity (GO: 0016853); lyase activity (GO:0016829); ion binding (GO:0043167); and 

oxidoreductase activity (GO: 0016491) categories in the embryonic axes of dehydrated seeds of this 

species compared with the control axes(Figs. 5.4a and c). Conversely, upon dehydration fewer proteins 

were identified under the following categories relative to control axes: organic cyclic compound binding 

(GO:0097159); heterocyclic compound binding (GO:1901363); small molecule binding (GO:0036094); 

and carbohydrate derivative binding (GO:0097367). Proteins identified in the control axes under the 

categories transferase activity (GO:0016740) and hydrolase activity (GO:0016787) were not present as 

major functional categories in axes of dehydrated A. marina seeds. Alternatively, proteins identified 

under the categories transferase activity (GO: 0016740), cofactor binding (GO:0048037) and SOD 

activity (GO:0004784) in the axes of dehydrated seeds were not major functional categories in the 

control seeds (Figs. 5.4a and c).  

Proteins identified in the axes of control and partially dehydrated seeds of T. dregeana were categorized 

under 12 and 10 major functional categories, respectively (Figs 5.4b and d). This was based on the fact 

that proteins identified under the functional categories peroxidase activity (GO:0004601) and transferase 

activity (GO: 0016740) in the control did not represent major functional categories in the dehydrated 

 

Treatment 

 

Number of proteins 

                                               

 
A. marina       T. dregeana 

 

 

Shared 

Freshly harvested (control) 17 54 5 

Partially dehydrated 7 79 4 

Stored 9 86 5 



99 

axes. Unlike seeds of A. marina, there was little change in the percentage of proteins identified in the 

10 functional categories in the axes of partially dehydrated seeds compared with the axes of the control 

T. dregeana seeds. There was also no marked change in the percentage of proteins under the categories 

carbohydrate derivative binding (GO: 0097367) and small molecule binding (GO: 0036094) in the axes 

of control and partially dehydrated seeds (Figs. 5.4 b and d). However, there was a slight increase in the 

percentage of proteins under the categories oxidoreductase activity (GO:0016491) and ion binding 

(GO:0043167) in the axes of dehydrated seeds compared with the control (Fig. 5.4d).  
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Figure 5.4 Molecular functional groups of proteins in the embryonic axes of A. marina (a) control 

and (c) partially dehydrated, and T. dregeana (b) control and (d) partially dehydrated seeds. 
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5.4.4 Molecular functional analysis of A. marina and T. dregeana seeds in hydrated storage   

Proteins identified in the embryonic axes of control and hydrated stored seeds of A. marina were grouped 

under 12 major functional categories (Figs. 5.5 a and c). There was an increase in the percentage of 

proteins identified under the categories oxidoreductase activity (GO: 0016491) and protein binding (GO: 

0005515) in the axes of stored seeds of this species, compared with the control (Figs. 5.5 a and c). There 

was, however, a decrease in heterocyclic compound binding (GO: 1901363) and no change observed in 

the percentage of proteins under the functional category small molecule binding (GO: 0036094) in the 

axes of stored seeds compared with the control. There was a slight increase in the percentage of proteins 

identified in the remaining categories in the axes of stored seeds relative to the control. Unlike in axes 

of dehydrated seeds, there were proteins in the category peroxidase activity (GO:000461) that were 

identified in axes of stored seeds of A. marina and compared with the control these increased slightly 

(1%) with storage (Fig 5.5c). Similar to axes of dehydrated seeds, a percentage of proteins within the 

functional category SOD activity (GO:0004784) were identified as a major category only in the axes of  

stored seeds and not in the control (Figs. 5.5 a and c). 

In T. dregeana seeds proteins identified in the control and stored embryonic axes were grouped under 

12 and 10 categories, respectively (Figs. 5.5b and d). The percentage of proteins identified in the control 

and stored axes were grouped under functional categories that were very similar, with no differences 

between the control and stored axes in the percentage of protein sequences found within four of these 

major categories, namely: small molecule binding (GO: 0036094); transferase activity (GO: 0016740); 

carbohydrate derivative binding (GO: 0097367); and cofactor binding (GO: 0097159). A slightly higher 

percentage of proteins were grouped under organic cyclic compound binding (GO: 0097159), ion 

binding (GO: 0043167), oxidoreductase activity (GO: 0016491), heterocyclic compound binding (GO: 

1901363) and hydrolase activity (GO: GO:0016787) in the stored axes compared with the control.  

Alternatively, a slight decrease in the percentage of proteins was observed in terms of protein binding 

(GO:0005515). Proteins in the control were also grouped under the functional categories peroxidase 

activity (GO:000461) and lyase activity (GO:0016829) but these groups were absent in the molecular 

functional graph (up to GO level 3) of proteins in dehydrated T. dregeana axes.  
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Figure 5.5 Molecular functional groups identified for proteins in the embryonic axes of (a) control 

and (c) hydrated stored A. marina, and (b) control and (d) hydrated stored T. dregeana seeds. 
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5.4.5 Functional analysis of identified proteins in embryonic axes of A. marina and T. dregeana seeds 

during partial dehydration  

In partially dehydrated A. marina seeds, proteins identified to be related to the response to stress                  

(GO: 0006950) were grouped under six major categories, namely: cellular response to oxidative stress 

(GO: 0034599); drought recovery (GO: 0009819); response to salt stress (GO: 009651); cellular 

response to osmotic stress (GO: 0071470); response to endoplasmic reticulum (ER) stress (GO: 

0034976); and response to ROS (GO: 0000302) (Fig. 5.6a). The antioxidant enzyme superoxide 

dismutase (W1NYZ2; P27082) was identified under the following categories: cellular response to 

oxidative stress (GO:0034599); cellular response to osmotic stress (GO: 0071470); response to ROS 

(GO: 0000302); and response to salt stress (GO: 009651) (Table 5.2). Several other proteins were also 

identified under the response to ROS (GO: 0000302) category and these included an uncharacterised 

protein (U5DCI6) and glyceraldehyde-3-phosphate dehydrogenase 2 (Q7FAH2) (Table 5.2). Additional 

proteins identified under the response to salt stress (GO: 009651) category included triose phosphate 

isomerase (W1PJM9, P48491) and glyceraldehyde-3-phosphate dehydrogenase 2 (Q7FAH2).  Only one 

protein was identified in axes of partially dehydrated A. marina seeds under the response to ER stress 

category (GO: 0034976), which was an uncharacterised protein (U5DCI6) (Table 5.2). 

Proteins identified under the response to stress (GO: 0006950) category in axes of dehydrated T. 

dregeana seeds were grouped into two major categories, namely, response to ROS (GO: 0000302) and 

response to ER (GO: 0034976) (Fig. 5.6b). Under the response to ER stress category (GO: 0034976) 

there were several proteins, namely, a probable mediator of RNA polymerase II transcription subunit 

37c (Q9LHA8), molecular chaperone Hsp90 (Q6UJX6) and nine uncharacterised proteins (M0TS86, 

M0TXA5, U5DCI6, M0U8Q0, W1PHT9, M0RF29, M0U2M9, W1NRJ1, W1NRE0) (Table 5.3). In the 

response to ROS (GO: 0000302) category several proteins were identified and included the following:  

17.7 kDa heat shock protein (Q39930); alcohol dehydrogenase 1 (P25141); glyceraldehyde-3-phosphate 

dehydrogenase GAPC2 (Q9FX54, P26518); nucleoside diphosphate kinase (M0SZK9); superoxide 

dismutase (P35017, M0TEF8, W1NYZ2); chaperone protein ClpB1 (P42730), and uncharacterised 

proteins (M0TXA5, W1NRJ1, M0TS86, M0S9F7, U5DCI6) (Table 5.3). 
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Figure 5.6 Molecular functional groups of stress response proteins in embryonic axes of A. marina 

(a) partially dehydrated & (c) hydrated stored, and T. dregeana (b) partially dehydrated & (d) 

hydrated stored seeds. 
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Table 5.2: Stress response proteins identified in the embryonic axes of A. marina seeds after partial dehydration 

Protein name Accession  Mw (kDa) SC% Unique peptides Species 

response to stress (GO: 0006950) 

cellular response to oxidative stress (GO:0034599)     

Superoxide dismutase [Cu-Zn]  W1NYZ2 22 7 1 Amborella trichopoda 

Superoxide dismutase [Cu-Zn] P27082 15 9 1 Nicotiana plumbaginifolia 

      

response to salt stress (GO:009651) 

Uncharacterized protein U5DCI6 75 4 2 Amborella trichopoda 

Triosephosphate isomerase W1PJM9 27 11 2 Amborella trichopoda 

Superoxide dismutase [Cu-Zn] W1NYZ2 22 7 1 Amborella trichopoda  

Superoxide dismutase [Cu-Zn]  P27082 15 15 2 Nicotiana plumbaginifolia 

Triosephosphate isomerase P48491 27 11 2 Arabidopsis thaliana 

Glyceraldehyde-3-phosphate dehydrogenase 2 Q7FAH2 37 4 1 Oryza sativa subsp. japonica  

      

drought recovery (GO:0009819) 

Uncharacterized protein W1P5L1 19 5 1 Amborella trichopoda 

      

cellular response to osmotic stress (GO:0071470) 

Superoxide dismutase [Cu-Zn]  W1NYZ2 22 7 1 Amborella trichopoda 

Superoxide dismutase [Cu-Zn]  P27082 15 9 1 Nicotiana plumbaginifolia 
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Table 5.2: continued Stress response proteins identified in embryonic axes of A. marina seeds after partial dehydration 

Protein name Accession  Mw (kDa) SC% Unique peptides Species 

response to endoplasmic reticulum stress (GO:0034976) 

Uncharacterized protein  U5DCI6 75 4 2 Amborella trichopoda 

      

 

response to reactive oxygen species (GO:0000302) 

Uncharacterized protein  U5DCI6 75 4 2 Amborella trichopoda 

Superoxide dismutase [Cu-Zn]   W1NYZ2 22 7 1 Amborella trichopoda 

Superoxide dismutase [Cu-Zn]  P27082 15 9 1 Nicotiana plumbaginifolia 

Glyceraldehyde-3-phosphate dehydrogenase 2 Q7FAH2 37 4 1 
Oryza sativa subsp. japonica  
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Table 5.3: Proteins identified in embryonic axes of partially dehydrated seeds of T. dregeana in response to stress  

Protein name Accession 
Mw 

(kDa) 

SC

% 

Unique 

peptides 
Species 

response to stress (GO: 0006950) 

response to endoplasmic reticulum stress (GO: 0034976) 

Uncharacterized protein  M0TS86 71 25 10 
Musa acuminata subsp. 

malaccensis  

Uncharacterized protein  M0TXA5 56 25 1 
Musa acuminata subsp. 

malaccensis 

Uncharacterized protein  U5DCI6 75 6 3 Amborella trichopoda  

Uncharacterized protein  M0U8Q0 27 10 1 
Musa acuminata subsp. 

malaccensis  

Uncharacterized protein W1PHT9 50 9 2 Amborella trichopoda 

Uncharacterized protein  M0RF29 72 10 6 
Musa acuminata subsp. 

malaccensis 

Uncharacterized protein  M0U2M9 91 4 2 
Musa acuminata subsp. 

malaccensis 

Uncharacterized protein  W1NRJ1 72 26 4 Amborella trichopoda 

Probable mediator of RNA polymerase II transcription subunit 

37c 
Q9LHA8 71 22 2 Arabidopsis thaliana 

Molecular chaperone Hsp90 Q6UJX6 80 9 2 Nicotiana benthamiana  

Uncharacterized protein  W1NRE0 90 6 3 Amborella trichopoda 
      

response to reactive oxygen species (GO: 0000302) 

17.7 kDa heat shock protein  Q39930 18 16 2 Helianthus annuus 

Uncharacterized protein  M0TXA5 56 25 1 

Musa acuminata subsp. 

malaccensis 
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Table 5.3: continued Proteins identified in embryonic axes of partially dehydrated seeds of T. dregeana in response to stress 

 

Protein name Accession 
Mw 

(kDa) 

SC

% 

Unique 

peptides 
Species 

Alcohol dehydrogenase 1  P25141 42 9 1 Petunia hybrida 

Uncharacterized protein  W1NRJ1 72 26 4 Amborella trichopoda  

Glyceraldehyde-3-phosphate dehydrogenase GAPC2 Q9FX54 37 20 5 Arabidopsis thaliana 

Nucleoside diphosphate kinase  M0SZK9 16 26 4 
Musa acuminata subsp. 

malaccensis 

Superoxide dismutase [Mn], mitochondrial   P35017 26 7 1 Hevea brasiliensis 

Uncharacterized protein  M0TS86 71 25 10 
Musa acuminata subsp. 

Malaccensis 

Superoxide dismutase [Cu-Zn]   M0TEF8 15 24 4 
Musa acuminata subsp. 

Malaccensis 

Uncharacterized protein  M0S9F7 94 2 2 
Musa acuminata subsp. 

Malaccensis 

Uncharacterized protein  U5DCI6 75 6 3 Amborella trichopoda  

Superoxide dismutase [Cu-Zn]  W1NYZ2 22 13 3 Amborella trichopoda 

Chaperone protein ClpB1  P42730 101 5 3 Arabidopsis thaliana 

Glyceraldehyde-3-phosphate dehydrogenase P26518 37 19 2 Magnolia liliiflora 

Probable mediator of RNA polymerase II transcription subunit 

37c  
Q9LHA8 71 22 2 Arabidopsis thaliana 
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5.4.6 Stress response proteins identified in embryonic axes of stored seeds of A. marina and                                  

T. dregeana  

In A. marina, proteins identified in axes of stored seeds were grouped under the same six categories 

found in axes of dehydrated seeds (Fig 5.6c).  As in the dehydrated axes, a 22 kDa and 15 kDa SOD 

(W1NYZ2, P27082) was found under the following categories: cellular response to oxidative stress 

(GO:0034599); response to salt stress (GO:009651); cellular response to osmotic stress (GO:0071470) 

and response to ROS (GO:0000302) (Table 5.4). Other proteins grouped under response to salt stress 

(GO:009651) included: triosephosphate isomerase (W1PJM9, P48491); ascorbate peroxidase 

(B2NIX3); putative Hsp90 (B1Q477); glyceraldehyde-3-phosphate dehydrogenase 2(Q7FAH2) and an 

uncharacterized protein (U5DCI6) (Table 5.4). A glycine-rich protein (A9YWR4) was also found under 

the cellular response to osmotic stress (GO:0071470) category. In the response to ROS (GO:0000302) 

category several other proteins were identified: ascorbate peroxidase (B2NIX3); glyceraldehyde-3-

phosphate dehydrogenase 2 (Q7FAH2); nucleoside diphosphate kinase (P39207); genomic scaffold 

(W6L5X4); and an uncharacterized protein (U5DCI6). In the stored axes two additional proteins were 

also found under the category response to ER stress (GO:0034976) namely, a putative Hsp90 (B1Q477) 

and genomic scaffold (W6L5X4) (Table 5.4). 

Proteins identified in the stored seeds of T. dregeana were also grouped into two major categories 

namely, response to ER stress (GO:0034976) and response to ROS (GO:0000302) (Fig. 5.6d). In 

response to ER stress (GO:0034976), several proteins such as molecular chaperone Hsp90 (Q6UJX6), 

probable mediator of RNA polymerase II transcription subunit 37c (Q9LHA8), genomic scaffold 

(W6L5X4) and 12 uncharacterised proteins (M0T775, M0TXA5, M0U8Q0, M0TZY1, M0RF29, 

M0U2M9, W1NRJ1, M0TS86, U5DCI6, W1PHT9, M0REB7 and W1NRE0), were grouped under this 

category (Table 5.5). Stored T. dregeana seeds also possessed several additional proteins compared with 

the dehydrated seeds and these were grouped under the response to ROS (GO:0000302) category. 

Proteins identified in this category included the following: alcohol dehydrogenase 1(P25141); 

glutathione peroxidase (W1NIT9); glyceraldehyde-3-phosphate dehydrogenase (P09094; P26518, 

Q9FX54); 17.7 kDa heat shock protein (Q39930); nucleoside diphosphate kinase (M0SZK9); genomic 

scaffold (W6L5X4); superoxide dismutase (P35017, M0TEF8, W1NYZ2); ascorbate peroxidase 

(Q9SXT2); probable mediator of RNA polymerase II transcription subunit 37c (Q9LHA8), and seven 

uncharacterised proteins (M0T775, M0TXA5, W1NRJ1, W1NKL9, M0TS86, U5DCI6, M0REB7).  
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Table 5.4: Proteins identified in embryonic axes of stored A. marina seeds in response to stress 

Protein name Accession 
MW 

(kDa) 
SC% Unique peptides Species 

response to stress (GO: 0006950) 

cellular response to oxidative stress (GO:0034599) 

Superoxide dismutase [Cu-Zn] W1NYZ2 22  13 2 Amborella trichopoda  

Superoxide dismutase [Cu-Zn]  P27082 15  9 1 Nicotiana plumbaginifolia 
      

drought recovery (GO:0009819) 

Uncharacterized protein W1P5L1 19  5 1 Amborella trichopoda 
      

response to salt stress (GO:009651) 

Uncharacterized protein  U5DCI6 75  2 1 Amborella trichopoda 

Triosephosphate isomerase  W1PJM9 27  6 1 Amborella trichopoda 

Superoxide dismutase [Cu-Zn]  W1NYZ2 22  13 2 Amborella trichopoda  

Superoxide dismutase [Cu-Zn]  P27082 15  9 1 Nicotiana plumbaginifolia 

Ascorbate peroxidase (Fragment)  B2NIX3 20 12 2 Capsicum chinense  

Triosephosphate isomerase P48491 27  6 1 Arabidopsis thaliana  

Putative Hsp90-2  B1Q477 80 5 3 Capsicum chinense 

Glyceraldehyde-3-phosphate dehydrogenase 2 Q7FAH2 37  9 2 Oryza sativa subsp. japonica 
      

cellular response to osmotic stress (GO:0071470) 

Superoxide dismutase [Cu-Zn]  W1NYZ2 22  13 2 Amborella trichopoda  

Superoxide dismutase [Cu-Zn]  P27082 15  15 2 Nicotiana plumbaginifolia 

Glycine-rich protein   A9YWR4 96  13 5 Medicago truncatula  
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Table 5.4: continued Proteins identified in embryonic axes of stored A. marina seeds in response to stress 

Protein name Accession 
MW 

(kDa) 
SC% Unique peptides Species 

Uncharacterized protein  U5DCI6 75  2 1 Amborella trichopoda 

Putative Hsp90-2   B1Q477 80  5 3 Capsicum chinense 

Genomic scaffold W6L5X4 73  9 5 Phytomonas sp. isolate Hart1 
      

response to reactive oxygen species (GO:0000302) 

Superoxide dismutase [Cu-Zn]  W1NYZ2 22  13 2 Amborella trichopoda  

Uncharacterized protein  U5DCI6 75  2 1 Amborella trichopoda 

Nucleoside diphosphate kinase  P39207 17  21 2 Arabidopsis thaliana 

Superoxide dismutase [Cu-Zn]  P27082 15  9 1 Nicotiana plumbaginifolia 

Ascorbate peroxidase (Fragment)  B2NIX3 20  12 2 Capsicum chinense 

Glyceraldehyde-3-phosphate dehydrogenase 2 Q7FAH2 37  9 2 Oryza sativa subsp. japonica  

Genomic scaffold W6L5X4 73  10 5 Phytomonas sp. isolate Hart1 
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Table 5.5: Stress response proteins identified in axes of stored T. dregeana seeds 

Protein name  Accession: 
Mw 

(kDa) 
SC% Unique peptides Species 

Response to stress (GO: 0006950)    

Response to endoplasmic reticulum stress (GO:0034976)   

Uncharacterized protein  M0T775 50 18 2 Musa acuminata subsp. malaccensis 

Uncharacterized protein  M0TXA5 56 26 2 Musa acuminata subsp. malaccensis 

Uncharacterized protein  M0U8Q0 27 14 2 Musa acuminata subsp. malaccensis 

Uncharacterized protein  M0TZY1 45 7 2 Musa acuminata subsp. malaccensis 

Uncharacterized protein M0RF29 72 12 7 Musa acuminata subsp. malaccensis 

Uncharacterized protein  M0U2M9 91 2 1 Musa acuminata subsp. malaccensis 

Uncharacterized protein   W1NRJ1 72 27 5 Amborella trichopoda 

Genomic scaffold W6L5X4 73 12 3 Phytomonas sp. isolate Hart1 

Molecular chaperone Hsp90-1  Q6UJX6 80 8 2 Nicotiana benthamiana 

Uncharacterized protein M0TS86 71 28 12 Musa acuminata subsp. malaccensis 

Uncharacterized protein  U5DCI6 75 14 7 Amborella trichopoda 

Uncharacterized protein  W1PHT9 50 9 2 Amborella trichopoda 

Uncharacterized protein  M0REB7 53 25 2 Musa acuminata subsp. malaccensis 

Probable mediator of RNA polymerase II transcription subunit 37c  Q9LHA8 71 24 3 Arabidopsis thaliana 

Uncharacterized protein  W1NRE0 90 9 5 Amborella trichopoda 
      

Response to reactive oxygen species (GO:0000302) 

 
   

Uncharacterized protein M0T775 50 18 2 Musa acuminata subsp. malaccensis 

17.7 kDa heat shock protein  Q39930 18 17 3 Helianthus annuus 

Uncharacterized protein  M0TXA5 56 26 2 Musa acuminata subsp. malaccensis 

Alcohol dehydrogenase 1  P25141 42 12 2 Petunia hybrida 

Glyceraldehyde-3-phosphate dehydrogenase P09094 36 18 3 Nicotiana tabacum 

Glutathione peroxidase  W1NIT9 28 7 2 Amborella trichopoda 

Uncharacterized protein  W1NRJ1 72 27 5 Amborella trichopoda 



113 

Table 5.5: continued Stress response proteins identified in axes of stored T. dregeana seeds 

Protein name  Accession: 
Mw 

(kDa) 
SC% Unique peptides Species 

Glyceraldehyde-3-phosphate dehydrogenase GAPC2 Q9FX54 37 18 5 Arabidopsis thaliana 

Nucleoside diphosphate kinase M0SZK9 16 20 3 Musa acuminata subsp. malaccensis 

Genomic scaffold W6L5X4 73 12 3 Phytomonas sp. isolate Hart1 

Superoxide dismutase [Mn] P35017 26 12 3 Hevea brasiliensis 

Uncharacterized protein  W1NKL9 28 6 2 Amborella trichopoda 

Ascorbate peroxidase (Fragment)  Q9SXT2 19 14 2 Cicer arietinum 

Superoxide dismutase [Cu-Zn]  M0TEF8 15 22 2 Musa acuminata subsp. malaccensis 

Uncharacterized protein M0TS86 71 28 12 Musa acuminata subsp. malaccensis 

Superoxide dismutase [Cu-Zn]  W1NYZ2 22 13 3 Amborella trichopoda 

Uncharacterized protein  U5DCI6 75 14 7 Amborella trichopoda 

Glyceraldehyde-3-phosphate dehydrogenase P26518 37 18 2 Magnolia liliiflora 

Uncharacterized protein  M0REB7 53 25 2 Musa acuminata subsp. malaccensis 

Probable mediator of RNA polymerase II transcription subunit 37c Q9LHA8 71 24 3 Arabidopsis thaliana 
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5.4.7 Identification of differential expressed proteins (DEP’s) in embryonic axes of partially 

dehydrated and stored A. marina and T. dregeana seeds 

Twelve proteins in axes of partially dehydrated seeds of A. marina and T. dregeana seeds were found 

to be significantly (P<0.05) differentially expressed relative to each other (Table 5.6). Of these proteins, 

proteasome subunit alpha type (MORJE7), triose phosphate isomerase (P48491) and an uncharacterised 

protein (U5DCI6) were found in greater abundance in dehydrated A. marina axes than T. dregeana axes. 

However, the remaining nine proteins which included, adenosylhomocysteinase (Q9LK36), calmodulin 

(P62201), probable mediator of RNA polymerase II transcription subunit 37c (MED37C), SOD 

(MOTEF8) and five uncharacterised proteins (MORE63; MOTXA5; MOTS86; W1PYC8; W1NRJ1), 

exhibited a higher level of expression in axes of dehydrated T. dregeana seeds than A. marina seeds 

(Table 5.6). 

In the embryonic axes of stored seeds of A. marina and T. dregeana, 10 proteins were significantly 

(P<0.05) differentially expressed relative each other (Table 5.7). Five of these proteins, namely, 

nucleoside disphosphate, kinase 1 (P39207), photosystem II reaction center protein (Q85AJ6), 

triosephosphate isomerase (P48491) and two uncharacterised proteins (W1NN68 and W1P2I9), 

occurred at higher abundance in axes of stored A. marina than T. dregeana seeds. In contrast, the 

remaining five proteins which included, glyceraldehyde-3-phosphate dehydrogenase (Q9FX54), 

probable mediator of RNA polymerase II transcription subunit 37c (Q9LHA8) and three uncharacterised 

proteins (MORE63; MOTXA5; W1PYC8), had a higher abundance in axes of stored T. dregeana than 

A. marina seeds (Table 5.7). 
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Table 5.6: Quantitative analysis of proteins found in embryonic axes of partially dehydrated seeds of A. marina and T. dregeana using Fisher’s exact 

test (P<0.05) 

 

Note: 

High represents a higher abundance of the individual protein relative to the abundance of that protein in dehydrated seeds of the other species                                                                                                                                                              

Low represents a lower abundance of the individual protein relative to the abundance of that protein in dehydrated seeds of the other species 

 

 

 

 

 

 
Accession 

Mw 

(kDa) 

Dehydrated 

A. marina 

Dehydrated 

T. dregeana 
P-value 

 

Adenosylhomocysteinase Q9LK36 53 Low high 0.015 

Calmodulin P62201 17 Low high 0.0034 

Glyceraldehyde-3-phosphate dehydrogenase P26518 37 Same same 0.56 

Proteasome subunit alpha type M0RJE7 26 High Low 0.012 

Probable mediator of RNA polymerase II 

transcription subunit 37c 
MED37C 71 low high 0.0062 

Triose phosphate isomerase P48491 27 high Low 0.0001 

Superoxide dismutase [Cu-Zn] MOTEF8 15 low high 0.0037 

Uncharacterised protein MORE63 17 low high 0.0009 

Uncharacterised protein MOTXA5 56 low high 0.016 

Uncharacterised protein MOTS86 71 low high 0.0015 

Uncharacterised protein U5DCI6 75 high low 0.0012 

Uncharacterised protein W1PYC8 48 low high 0.0001 

Uncharacterised protein W1NRJ1 72 low high 0.0009 
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Table 5.7: Quantitative analysis of proteins found in embryonic axes of stored seeds of A. marina and T. dregeana using Fisher’s exact test (P <0.05) 

                                                                                                                                                                            

Note: 

High represents a higher abundance of the individual protein relative to the abundance of that protein in stored seeds of the other species                                                                                                                                                             

Low  represents a lower abundance of the individual protein relative to the abundance of that protein in stored seeds of the other species 

 

 

 

 

 

 

 

Accession Mw 

(kDa) 

Stored seeds 

A. marina 

Stored seeds 

T. dregeana 

P-value 

Glyceraldehyde-3-phosphate dehydrogenase Q9FX54 37 low high 
0.036 

Nucleoside diphosphate kinase 1 P39207 17 high low 0.011 

Proteasome subunit alpha type M0RJE7 26 low high 0.67 

Photosystem II reaction center protein Q85AJ6 3 high low 0.011 

Superoxide dismutase [Cu-Zn] MOTEF8 15 same same 0.49 

Probable mediator of RNA polymerase II 

transcription subunit 37c 

Q9LHA8 71 low high 0.028 

Triosephosphate isomerase P48491 27 high low 0.0001 

Uncharacterised protein MORE63 17 low high 0.0001 

Uncharacterised protein MOTXA5 56 low high 0.036 

Uncharacterised protein W1NN68 17 high - 0.0001 

Uncharacterised protein  W1PYC8 48 low high 0.0001 

Uncharacterised protein W1P2I9 106 high low 0.012 
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5.4.8 Pathway analysis of proteins identified in embryonic axes of stored and partially dehydrated A. 

marina and T. dregeana seeds 

In addition to categorizing identified protein sequences based on biochemical function in both species, 

sequences were assigned to metabolic pathways via KEGG (Kanehisa et al., 2015) using enzyme 

commission (Ec) numbers as the basis for assignment. Identified proteins in both axes of control and 

stored A. marina seeds were grouped under 13 different pathways: glycolysis/ gluconeogenesis; carbon 

fixation in photosynthetic organisms; fructose and mannose metabolism; inositol phosphate metabolism; 

pentose phosphate pathway and methane metabolism; purine metabolism; phenylpropanoid 

biosynthesis; glutathione metabolism; ascorbate and aldarate metabolism; pentose phosphate pathway; 

pyrimidine metabolism; and thiamine metabolism (Table 5.8). However, proteins identified in the axes 

of dehydrated seeds of A. marina could only be grouped under six of these categories: purine 

metabolism; phenylpropanoid biosynthesis; glutathione metabolism; ascorbate and aldarate metabolism; 

pentose phosphate pathway; pyrimidine metabolism; and thiamine metabolism (Table 5.8). 

Proteins identified in axes of control seeds of T. dregeana were grouped into 12 pathways: 

glycolysis/gluconeogenesis; methane metabolism, thiamine metabolism; fructose and mannose 

metabolism; ascorbate and aldrate metabolism; alanine; aspartate and glutamate; metabolism; 

glutathione metabolism; galactose metabolism; amino sugar and nucleotide sugar metabolism; pentose 

and glucuronate interconversions; butanoate metabolism; and beta-alanine metabolism (Table 5.9). 

When the identified proteins in the axes of the control were compared with the dehydrated and stored 

axes, the proteins identified in the treatments were grouped under 11 additional pathways: carbon 

fixation in photosynthetic organisms; purine metabolism; pyruvate metabolism; cysteine and methionine 

metabolism; glyoxylate and dicarboxylate metabolism; citrate cycle (TCA cycle); pentose phosphate 

pathway; phenylpropanoid biosynthesis; glycine, serine and threonine metabolism; fatty acid 

degradation; and starch and sucrose metabolism (Table 5.9).  
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Table 5.8:  KEGG pathway analysis of proteins identified in embryonic axes of dehydrated and stored seeds of A. marina 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Control         Dehydrated            Stored 

Pathways 
No. of 

sequences 

No. of 

enzymes 

No. of 

sequences 

No. of 

enzymes 

No. of 

sequences 

No. of 

enzymes 

Glycolysis/ gluconeogenesis 7 7 5 6 3 4 

Carbon fixation in photosynthetic 

organisms 
6 6 4 4 3 3 

Fructose and mannose metabolism 3 2 3 2 2 1 

Inositol phosphate metabolism 2 1 2 1 2 1 

Pentose phosphate pathway 2 2 2 2 1 1 

Methane metabolism 3 2 2 2 0 0 

Purine metabolism 3 3 0 0 2 3 

Phenylpropanoid biosynthesis 1 1 0 0 1 1 

Glutathione metabolism 1 1 0 0 1 1 

Ascorbate and aldarate metabolism 1 1 0 0 1 1 

Pentose phosphate pathway 2 2 0 0 1 1 

Pyrimidine metabolism 2 1 0 0 1 1 

Thiamine metabolism 1 1 0 0 1 1 
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Table 5.9: KEGG pathway analysis of proteins identified in embryonic axes of dehydrated and stored seeds of T. dregeana 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Control       Dehydrated           Stored  

Pathways 
No. of 

sequences 

No. of 

enzymes 

No. of 

sequences 

No. of 

enzymes 

No. of 

sequences 

No. of 

enzymes 

Glycolysis/ gluconeogenesis 12 12 18 12 14 12 

Carbon fixation in photosynthetic organisms 0 0 18 11 14 9 

Purine metabolism 0 0 13 5 15 5 

Pyruvate metabolism 0 0 11 9 7 8 

Methane metabolism 6 3 11 3 7 3 

Thiamine metabolism 8 1 10 1 12 1 

Cysteine and methionine metabolism 0 0 10 6 7 5 

Glyoxylate and dicarboxylate metabolism  0 0 8 4 4 2 

Citrate cycle (TCA cycle) 0 0 8 5 6 5 

Pentose phosphate pathway 0 0 7 3 7 3 

Phenylpropanoid biosynthesis 0 0 5 2 6 2 

Fructose and mannose metabolism 4 2 5 2 5 2 

Glycine, serine and threonine metabolism  0 0 4 4 2 2 

Fatty acid degradation  0 0 4 2 2 2 

Ascorbate and aldrate metabolism  3 3 4 3 4 3 

Starch and sucrose metabolism  0 0 3 3 4 4 

Alanine, aspartate and glutamate metabolism  2 2 3 5 2 2 

Glutathione metabolism  2 3 2 2 4 4 

Galactose metabolism 2 3 2 3 2 3 

Amino sugar and nucleotide sugar metabolism 2 3 3 4 3 4 

Pentose and glucuronate interconversions 2 3 7 3 7 3 

Butanoate metabolism 2 2 2 2 2 2 

Beta-alanine metabolism 2 3 3 3 2 3 
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5.5 Discussion 

Moothoo-Padayachie et al. (2016) (as shown in Chapter 3), showed through assessments of both 

recalcitrant-seeded species in hydrated storage that as in other studies (Farrant et al., 1989, 1992b)               

A. marina seeds are extremely short-lived (16-21 days [d], Farrant et al., 1997, Calistru et al., 2000)  

compared with T. dregeana seeds which can be successfully stored for months (Goveia et al., 2004). 

Although, recalcitrant seeds are maintained under conditions of saturated relative humidity in hydrated 

storage (Berjak and Pammenter, 2013, FAO, 2013), the seeds eventually germinate or lose viability 

(Farrant et al., 1989, Farrant et al., 1996, Moothoo-Padayachie et al., 2016). Physiological and 

ultrastructural studies have shown that the embryonic axes of recalcitrant seeds undergo germinative 

development in hydrated storage (Farrant et al., 1986a, Pammenter et al., 1994, Berjak and Pammenter, 

2000, Moothoo-Padayachie et al., 2016).  

 

Furthermore, these changes imply that the seeds require additional water which if not supplied exposes 

the seeds to a water stress even under hydrated storage conditions (Farrant et al., 1986a, Moothoo-

Padayachie et al., 2016). Berjak et al. (1989) suggested that the rate at which seeds germinated in storage 

was dependent on how the seeds germinated naturally.  Findings by Moothoo-Padayachie et al. (2016)  

support this suggestion as the rate of water uptake and germination was far more rapid in seeds of A. 

marina than in T. dregeana. Germination in seeds of A. marina was also associated with an earlier spike 

in ROS production, and reduced levels of antioxidant activity compared with seeds of T. dregeana 

during hydrated storage.  

 

In the present study, a label-free proteomic LC-MS/MS analysis of highly (A. marina) and moderately 

(T. dregeana) recalcitrant seeds exposed to partial dehydration and storage was conducted.                                        

A considerably higher number of proteins was identified in seeds of T. dregeana (105 proteins) 

compared with A. marina (30 proteins). The number of proteins identified in embryonic axes of T. 

dregeana seeds is comparable to other recalcitrant species such as in Araucaria angustifolia in which 

96 proteins were identified (Balbuena et al., 2009). The lower number of proteins identified in A. marina 

axes may be  due to a combination of factors which include the low protein content of these seeds which 

has been previously reported and is not a general feature of desiccation sensitive seeds (Farrant et al., 

1992a). Proteomic studies of recalcitrant seeds in general are also difficult because they contain many 

interfering compounds (e.g. polyphenolic compounds) which present challenges in key steps namely, 

protein extraction and solubilisation (Balbuena et al., 2011). Seeds of A. marina are high in polyphenolic 

compounds (Farrant et al., 1992a, Anguelova-Merhar et al., 2003), which are known to combine 

reversibly with proteins via covalent condensation reactions (Carpentier et al., 2005).  Although, a lower 

number of proteins were identified in axes of A. marina seeds compared with axes of T. dregeana seeds, 
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the number of proteins identified in A. marina axes (30) was still comparable to that of recalcitrant 

species such as Camellia sinensis in which 34 individual proteins were identified. Due to the large 

discrepancy in number of proteins identified in each of the species, an interspecies comparison based on 

the number of proteins identified was not possible thus the study focuses instead on determining 

interspecies differences based on differential expression of individual proteins/functional categories 

found in both species. 

 

Differential expression of proteins was evident from the total number of proteins identified within 

treatments within species (Table 5.1). In seeds of A. marina, a higher number of proteins were identified 

in the axes of the control in comparison to axes of partially dehydrated and stored seeds. However, 

because of the relatively lower yield it is difficult to determine if the lower expression is a consequence 

of the treatments or a result of challenges with protein extraction as mentioned above. In contrast, a 

lower number of proteins were identified in the axes of the control T. dregeana seeds and a higher 

number of proteins were identified in the axes of partially dehydrated and stored seeds. These results 

suggest that there is definitely an up-regulation/increase in expression of proteins in response to partial 

dehydration and storage in T. dregeana seeds, which will be discussed in greater detail below. 

 

The major functional categories that differed between the proteome of the control (freshly harvested 

seeds) and the treatments in terms of presence or absence were related to transferase activity, SOD 

activity and peroxidase activity (Fig. 5.4-5.5). Studies have shown that both SOD and peroxidase activity 

are induced during desiccation but decrease with prolonged desiccation treatment (Bai et al., 2011, Chen 

et al., 2011). Interestingly, Song et al. (2004) showed that SOD and ascorbate peroxidase (APX) 

activities were compromised in dehydrated T. dregeana seeds resulting in elevated levels of ROS. In 

this study peroxidase activity was identified as a functional category in control seeds of T. dregeana 

(Fig. 5.4b and 5.5b) but was absent as a functional category in dehydration and storage treatments, 

further suggesting that peroxidase activity may be compromised during these treatments.  

 

In the axes of dehydrated and stored A. marina seeds (Fig. 5.6 a and c) six major categories were evident 

which included the following: response to ROS; response to ER; cellular response to osmotic stress; 

cellular response to oxidative stress; drought recovery and response to salt stress. A higher percentage 

of proteins were classified under the functional categories response to ROS and response to ER in axes 

of stored A. marina seeds compared with dehydrated A. marina seeds (Fig. 5.6a and c). These results 

further substantiate findings by Moothoo-Padayachie et al. (2016) that the poor storage longevity of A. 

marina seeds may be due to increased levels of ROS that trigger germination in A. marina seeds during 

storage. A lower percentage of proteins were classified under the following functional categories: 

cellular response to osmotic stress; cellular response to oxidative stress; drought recovery; and response 
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to salt stress in the axes of stored seeds of A. marina compared with axes of dehydrated A. marina seeds. 

A possible reason for the identification of proteins related to salt stress in A. marina seeds when a stress 

involving partial dehydration or mild dehydration in storage was applied in this study (Pammenter et 

al., 1994) can be explained by the cross-tolerance phenomenon. Biotic and abiotic stress responses use 

common signals, pathways and triggers making it possible for one type of stress to activate plant 

responses that facilitate tolerance to several other types of stress (Wang et al., 2012, Foyer et al., 2016). 

This allows plants to withstand multiple mild and severe environmental stresses simultaneously, using 

the same mechanisms.  

 

In terms of response to stress, two major functional categories were evident based on NCBI gene 

annotations to a GO level 3 in both treatments for T. dregeana seeds namely, response to ROS and 

response to ER stress (Fig. 5.6b and d). Proteins identified within the response to ROS category in both 

treatments confirm  previous findings for recalcitrant seeds: that partial dehydration (Hendry et al., 1992, 

Varghese and Naithani, 2002) and storage (Tommasi et al., 2006) is accompanied by increased potential 

for oxidative stress, which necessitates heightened enzymic antioxidants (Pukacka and Ratajczak, 2006).  

Earlier ultrastructural studies, suggested that there was a probable onset of metabolic stress in embryonic 

axes of recalcitrant seeds during drying and that the ER played a pivotal role during dehydration and 

storage (Motete et al., 1997, Berjak and Pammenter, 2000, Kioko et al., 2006). For example, Wesley-

Smith (2001) found that the ER cisternae in axes dried slowly often became rearranged into concentric 

rings which was also associated with cessation of growth in drought-stressed mustard seeds (Bergfeld 

and Schopfer, 1984), and with the inhibition of protein synthesis in pollen tubes subjected to heat shock 

(Kandasamy and Kristen, 1989). Thus, the results in this study confirm on a molecular level what was 

observed in terms of ultrastructural changes in previous studies.  

 

In response to ROS, a 15 and 22 kDa SOD (P27082, W1NYZ2) was identified in the embryonic axes of 

both dehydrated and stored A. marina seeds (Table 5.4). However, interestingly a 15 kDa SOD 

(MOTEF8) was found in higher abundance in the axes of T. dregeana than A. marina seeds, following 

partial dehydration (Table 5.6). SOD is an enzyme that can regulate concentrations of both intracellular 

superoxide and peroxide efficiently in order to prevent formation of hydroxyl radicals through the 

Fenton reaction (Bowler et al., 1994). Thus, this result may in part provide reasons for why T. dregeana 

seeds were able to survive took longer (14 d) to reach ±50% viability loss, compared with A. marina 

which exhibited similar levels of mortality in a relatively shorter period of time (4 d). Certain 

‘housekeeping’ antioxidants may be up-regulated in seeds of recalcitrant species during oxidative stress; 

Chen et al.  (2011) for example, found that desiccation initially induced antioxidant enzymes such as 

SOD in Camellia sinensis seeds but with prolonged desiccation these activities declined.  
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In T. dregeana, a 17.7 kDa heat shock protein (Q39930) was identified in axes of both dehydrated and 

stored seeds in response to ROS (Fig. 5.2-5). A study by Wehmeyer and Vierling (2000) has shown a 

correlation between the decline in small heat shock proteins (sHSPs) and desiccation intolerance in 

Arabidopsis seeds, suggesting that  sHSPs play a role in desiccation tolerance. This phenomenon has 

also been shown during development and germination of maize embryos (Huang et al., 2012). In Chapter 

4 (section 4.5.5) a 16.9 kDa heat shock protein was also identified in T. dregeana and was shown to be 

down-regulated during dehydration and storage. In the present study, no significant differences (P > 

0.05) in the abundance of the 17.7 kDa heat shock protein was evident between the treatments and the 

control (data not shown). However, in response to ER stress a probable mediator of RNA polymerase II 

transcription subunit 37c (MED37C), also known as heat shock 70 kDa protein 4, was found to have a 

higher abundance in axes of dehydrated T. dregeana than axes of dehydrated A. marina seeds (Table 

5.6). This 70 kDa heat shock protein (MED37C) was also found to be in greater abundance in axes of 

stored T. dregeana than A. marina seeds (Fig. 5.7).  Heat shock proteins have been suggested to play an 

important role as “molecular chaperones” to prevent the aggregation or promote the proper refolding of 

denatured proteins (Parsell and Lindquist, 1993). In doing so, HSPs play an important role in 

maintaining cellular homeostasis and proper biogenesis (Lin et al., 2001). Although it was shown in 

Chapter 4 that HSPs may be down-regulated during desiccation in T. dregeana seeds, the comparatively 

higher abundance of this protein compared with dehydrated A. marina seeds may be a contributing factor 

to its relatively greater ‘tolerance’ to dehydration and longer storage longevity.  

 

Another interesting protein, proteasome alpha subunit type (M0RJE7), was found to be   slightly higher 

in abundance in axes of dehydrated A. marina seeds than axes of dehydrated T. dregeana seeds (Table 

5.6).  In plants, the 26S proteasome is essential for protein quality control because it degrades misfolded 

and denatured proteins during normal plant development and under adverse conditions (Kurepa et al., 

2009). With a lower abundance of HSPs, as mentioned above for axes of dehydrated A. marina seeds, 

more proteasome alpha subunit may be required than in T. dregeana axes which have a higher 

abundance of HSPs (Table 5.6),  promoting the proper refolding of denatured proteins (Parsell and 

Lindquist, 1993). During storage, the proteasome alpha subunit occurred at a higher abundance in axes 

of T. dregeana than A. marina seeds but this difference was not significant (P > 0.05) (Table 5.7). 

However, a decrease in proteasome activity has been reported to accompany ageing in recalcitrant 

Shorea robusta seeds (Parkhey et al., 2015).  

 

Studies have likened the recalcitrant seeds of species like A. marina and T. dregeana to developing 

seedlings, since their chlorophyllous cotyledons and axes show signs of being photosynthetically active 

leading up to, and following germination (Berjak et al., 1984, Farrant et al., 1986b, Ramlall et al., 2015). 

Interestingly, a photosystem II reaction center protein (Q85AJ6) occurred in higher abundance in axes 
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of stored A. marina seeds than in T. dregeana seeds (Table 5.7). This result provides further evidence 

for the comparatively higher metabolic and faster germination rate of A. marina in storage, relative to 

T. dregeana seeds and confirms on a molecular level what other authors have suggested based on 

ultrastructural and physiological observations (Berjak et al., 1984, Farrant et al., 1986b, 1993b). 

Furthermore, a nucleoside diphosphate kinase (NDP) (P39207) was identified in higher abundance in 

axes of stored seeds of A. marina relative to axes of stored T. dregeana seeds (Table 5.7). Nucleoside 

diphosphate kinase (NDP) is a ubiquitous housekeeping enzyme that catalyses the transfer of γ-

phosphate from ATP to NDP through autophosphorylation (Parks and Aganwal, 1973). In a study by  

Pan et al. (2000), reversed genetics were used to suppress NDP kinase gene expression in  Oryza sativa 

L. These transgenic plants exhibited developmental abnormalities, in particular suppression of cell 

elongation processes. Cell elongation is a key requirement for germination (Obroucheva, 2008). Thus, 

a higher abundance of this enzyme in axes of stored A. marina compared with stored T. dregeana seeds 

may also contribute to the faster germination rate in the former (as discussed in Chapter 3, section 3.4.2).    

 

Calmodulin (CaM) (P62201) a calcium (Ca2+) sensing protein was found in higher abundance in axes 

of dehydrated T. dregeana than A. marina seeds (Table 5.6). The calmodulin family is a major class of 

calcium sensor proteins which collectively play an important role in cellular signalling cascades through 

the regulation of numerous target proteins. Calcium (Ca2+) plays a key role in the structural integrity of 

the cell wall and membrane system and has been shown to act as an intracellular regulator in plant 

growth and development including stress responses (Reddy, 2001, Sanders et al., 2002, Shabala et al., 

2006). Osmotic stress can induce a series of responses at the molecular and cellular levels, one of which 

is an increase in cytosolic Ca2+ concentration and subsequent transduction of Ca2+ signals that promote 

appropriate cellular responses in an effort to alleviate potential damage (Xiong and Zhu, 2002, Xu et 

al., 2011). In a study by Xu et al. (2011), expression of a novel calmodulin-like protein OsMSR2 (Oryza 

sativa L. Multi-Stress-Responsive gene 2) was found to confer enhanced salt and drought tolerance in 

Arabidopsis thaliana accompanied by altered expression of stress/ABA-responsive genes. These results 

suggest an additional reason for the improved tolerance of T. dregeana to desiccation compared with A. 

marina seeds. Interestingly, maize cytosolic Hsp70 was identified to bind to CaM in the presence of 

Ca2+ induced by heat shock and could inhibit the activity of CaM-dependent NADK in a concentration-

dependent manner, but its role in desiccation stress response has not been reported. As mentioned earlier, 

a 70 kDa HSP (MED37C) was also found at a higher abundance in axes of dehydrated T. dregeana than                            

A. marina seeds (Sun et al., 2000).  

 

The KEGG pathway analysis of proteins performed for both A. marina and T. dregeana seeds revealed 

that during partial dehydration and storage, most proteins identified were associated with primary 

metabolic processes such as glycolysis and carbon fixation in photosynthetic organisms (Tables 5.8- 
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5.9). A greater number of identified sequences were related to specific metabolic pathways in the treated 

seeds than in the control seeds, suggesting that both dehydration and storage leads to increased 

expression of metabolically-related proteins (Tables 5.8 – 5.9).  In both treatments of A. marina and                    

T. dregeana seeds the majority of proteins within the energy metabolism category were related to 

glycolysis (Tables 5.8 - 5.9), illustrating the high energy demand for cell survival during stress. 

Interestingly, the glycolytic enzyme, triose phosphate isomerase (P48491) was relatively more abundant 

in axes of A. marina than T. dregeana seeds during dehydration and storage (Tables 5.6 – 5.7). This 

suggests a higher energy requirement in A. marina seeds compared with T. dregeana seeds, which again 

can be related to the fact that A. marina seeds possess higher metabolic activity (Farrant et al., 1992b) 

and a faster germination rate (Moothoo-Padayachie et al., 2016) than T. dregeana seeds (Chapter 3, 

section 3.4.2). Triose phosphate isomerase has also been reported to show increased abundance 

following desiccation in C. sinensis seeds (Chen et al., 2011).  Another glycolytic enzyme, 

glyceraldehyde-3-phosphate dehydrogenase (Q9FX54) was found in higher abundance in stored T. 

dregeana than stored A. marina seeds (Table 5.7). These results suggest that the retention of functional 

metabolically-related proteins such as glyceraldehyde-3-phosphate dehydrogenase (Q9FX54) during 

hydrated storage in T. dregeana seeds, may be a contributing factor their longer storage lifespan relative 

to those of A. marina.  

 

Interestingly, another metabolism-related enzyme, adenosylhomocysteinase (Q9LK36), occurred at 

significantly (P<0.05) higher abundance in axes of dehydrated T. dregeana than dehydrated A. marina 

seeds (Table 5.6).  The abundance of this enzyme was also relatively higher in axes of stored T. dregeana 

than A. marina seeds but this difference in abundance was not significant (P > 0.05) (data not shown).  

Adenosylhomocysteinase plays a major role in the synthesis of the one-carbon carrier                                                 

S-adenosylmethionine (SAM) from methionine which is a major methyl donor in methylation reactions 

in plants (Rocha et al., 2005). Adenosylhomocysteinase catalyses the conversion of 

adenosylhomocysteine to homocysteine. Adenosylhomocysteine is a competitive inhibitor of S-

adenosylmethionine dependent methyl transferase reactions. Therefore, adenosylhomocysteinase 

(Q9LK36) during dehydration, particularly in T. dregeana seeds, may play a major role in the control 

of DNA or other substrates that require methylation via the regulation of the intracellular concentration 

of adenosylhomocysteine. In a study by Rocha et al.  (2005) Arabidopsis hog1-1 mutant plants were 

shown to have reduced adenosylhomocysteinase activity. The hog1 mutant plants also grew slowly, had 

low fertility and reduced germination. Complementation of the hog1-1point mutation with a T-DNA 

containing the gene coding for adenosylhomocysteinase restored DNA methylation, fast growth and 

normal seed viability. Adenosylhomocysteinase has also been identified in the recalcitrant species                         

A. angustifolia during seed development (Balbuena et al., 2009). Therefore, low abundance of 

adenosylhomocysteinase in A. marina seeds may represent one of the reasons for its higher desiccation 
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sensitivity and shorter storage lifespan than T. dregeana seeds. It seems likely that desiccation (be it via 

physical dehydration or storage) leads to reduced expression of adenosylhomocysteinase which by 

interfering with DNA methylation reactions compromises viability/germinability in recalcitrant seeds.   

5.6 Concluding remarks and recommendations 

 

Although considerable research effort has been devoted towards characterising the physiological and 

biochemical responses of recalcitrant seeds to desiccation and storage, the molecular mechanisms 

underlying desiccation sensitivity in these seeds are still poorly understood. In this regard, proteomics 

which is fast becoming a powerful tool for functional analysis in plants, can be used to understand the 

molecular basis of desiccation sensitivity in recalcitrant seeds (Bai et al., 2011, Chen et al., 2011). 

However, labelling of proteins in the presence of interfering compounds can be challenging, especially 

in recalcitrant-seeded species. Analyses of the total proteome extracted from the embryonic axes of                       

A. marina seeds was not possible using iTRAQ due to the presence of interfering compounds in 

particular a high amount of phenolic compounds (despite several attempts at optimisation of the protocol 

for its removal; unpublished findings). Therefore, in this study, a label-free proteomics method was 

employed to compare the protein profiles of A. marina and T. dregeana seeds exposed to partial 

dehydration and during storage.   

 

The nature and degree of responses of recalcitrant seeds to desiccation stress are species-specific. This 

was evident from the present study by the differential seed viability and proteomic responses of A. 

marina (highly recalcitrant) and T. dregeana (moderately recalcitrant) seeds to partial dehydration 

(intense desiccation stress, over a short duration) and hydrated storage (mild desiccation stress, over a 

prolonged duration). Despite these differences, both stresses (partial dehydration and storage) perturbed 

parts of the proteome responsible for protein synthesis, maintenance of redox status, stress tolerance and 

provision of energy for cell survival significantly. Proteins found in higher abundance in  the embryonic 

axes of A. marina seeds compared with T. dregeana seeds included triose phosphate isomerase, 

photosystem II reaction center protein and nucleoside diphosphate kinase, and are thought to contribute 

to the faster germination rate and hence, shorter storage lifespan of A. marina seeds. In the axes of 

dehydrated and stored T. dregeana seeds, proteins in higher abundance compared with A. marina seeds 

included SOD, a 70 kDa HSP, calmodulin, glyceraldehyde dehydrogenase and adenosylhomocysteinase 

all of which are believed to have contributed to the lower levels of desiccation sensitivity and longer 

storage lifespan of T. dregeana seeds. Pammenter and Berjak (1999) suggested that seed recalcitrance 

was a consequence of the absence and/or poor expression of some of the mechanisms involved in 

desiccation tolerance in orthodox seeds. The proteomic responses to partial dehydration and storage 

identified in the two recalcitrant-seeded species investigated here now allow us to narrow these potential 
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mechanisms down to proteins involved in a few key metabolic processes, e.g. protein synthesis, 

maintenance of redox status, stress tolerance and provision of energy for cell survival. Future research 

should focus on comparing expression levels of some of the functionally important proteins identified 

here between recalcitrant and orthodox seeds. Additionally, the difference in protein expression patterns 

between A. marina and T. dregeana uncovered here should be used to explore the continuum of seed 

desiccation sensitivity proposed by Berjak et al. (2008). Such studies will provide further mechanistic 

clues to the factors underlying desiccation sensitivity in recalcitrant seeds.  
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6. CHAPTER 6: Concluding Remarks and Recommendations 

This study provides mechanistic insight into the desiccation sensitivity and reduced storage 

longevity of recalcitrant seeds and its findings can be used to improve on the design of short, 

medium- and long- term seed germplasm conservation protocols. The key conclusions of this study 

and how they relate to previous findings are discussed below. Recommendations for future avenues 

for research on recalcitrant seeds and the phenomenon of desiccation sensitivity/tolerance are also 

provided. 

Comparison of A. marina and T. dregeana seed responses to partial dehydration and storage in terms 

of viability, ROS production and glutathione redox capacity, led to the confirmation that A. marina 

seeds are much more desiccation sensitive and have a shorter lifespan in hydrated storage compared 

with T. dregeana seeds. During partial dehydration A. marina seeds lost water at a much faster rate 

than those of T. dregeana seeds which substantiated earlier findings (Farrant et al., 1989, Farrant et 

al., 1997) regarding inter-species variability in drying rates. Partial dehydration studies also revealed 

that ROS play a deleterious role in the embryonic axes of dehydrated A. marina seeds as evidenced 

by a spike in ROS production (∙O2
− and H2O2) which coincided with 50% viability loss. However, 

in dehydrated T. dregeana seeds ROS levels in embryonic axes declined and were found to be highly 

reduced compared with the control, which supports previous suggestions that a dampening of the 

ROS-based trigger for germination during dehydration can lead to reduced germinability (Varghese 

et al., 2011). This ROS-based trigger for germination manifested in hydrated stored seeds of both 

A. marina and T. dregeana as well and given that extra water was not provided to these seeds for 

the completion of germination they lost viability in storage. Interestingly, this trigger for 

germination occurred much earlier in A. marina seeds than T. dregeana seeds. The level of 

glutathione in A. marina seeds compared with T. dregeana seeds also suggested that T. dregeana 

seeds may have more prolonged/higher antioxidant protection than A. marina seeds.  These results 

suggest that the mechanisms underlying desiccation-induced seed viability loss may differ across 

recalcitrant-seeded species based on the rate and extent to which they lose water during partial 

drying and storage. Although, recalcitrant seed desiccation sensitivity and storage longevity is 

modulated by redox metabolism, the specific ROS and antioxidants that contribute to this control 

may differ across species.  

 

Through an assessment of the relationship between germination rate and storage lifespan in these 

two recalcitrant-seeded species of contrasting storage longevity it was confirmed that the shorter-

lived A. marina seeds have a faster germination rate compared with T. dregeana seeds. Rapid 
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germination in A. marina was found to be associated with earlier spikes in ROS production and 

reduced antioxidant activity as germination was approached. In contrast, in slower germinating                  

T. dregeana seeds, there was a delay in this spike in ROS production and these seeds had sustained 

antioxidant activity.  These findings suggests that differences in the timing and intensity of the ROS-

based trigger for germination may account for differences in storage longevity in recalcitrant seeds. 

These results were found to support the hypothesis suggested by Berjak et al.  (1989), that the 

hydrated storage lifespan of recalcitrant seeds is dependent on the rate at which these seeds 

germinate naturally. Assessing germination in both recalcitrant-seeded species in terms of its 

physiology and biochemistry did present some challenges though, as unlike orthodox seeds 

recalcitrant seed post-harvest development is unabbreviated and even within the same harvest seeds 

can vary in terms of their developmental stage.  Inter- and intra- seasonal variation in seed quality 

also meant that related parameters had to measured on the same batch of seeds  this can be 

extremely time consuming and logistically very challenging.  

 

Assessment of the proteomic responses of T. dregeana seeds to partial dehydration and hydrated 

storage using isobaric tags for relative and absolute quantitation (iTRAQ) revealed that despite the 

differences in the intensity and duration of the desiccation stress imposed during partial dehydration 

(intense, short stress) and hydrated storage (less intense, prolonged stress), both treatments led to 

proteomic changes related to cellular redox imbalance and increased cell energy demands. Most 

importantly, key antioxidant proteins such as 2-cysperoxiredoxin were up-regulated in stored                        

T. dregeana seeds which points towards their importance in protecting recalcirant seeds against 

oxidative stress during hydrated storage and possibly suppressing the biochemical trigger for 

germination during storage, as in T. dregeana seeds (Moothoo-Padayachie et al., 2016). 

 

To compare the proteomic responses of A. marina and T. dregeana seeds to partial dehydration and 

hydrated storage, a label-free proteomics LC-MS/MS method was employed as proteins in                  

A. marina protein extracts (from freshly harvested, partially dehydrated or stored seeds) could not 

be identified due to problems encountered with peptide labelling because of high amounts of 

interfering compounds, in particular phenolic compounds. Again, despite differences in the intensity 

and duration of the desiccation stress drying and storage key metabolic functions such as cellular 

redox balance and cell energy demand were compromised in both species during both treatments. 

The relatively longer storage lifespan of T. dregeana seeds in storage appears to be a consequence 

of specific proteins occurring at higher levels than in A. marina seeds; these include superoxide 

dismutase (SOD), adenosylhomocysteinase and calmodulin proteins. LEA proteins which are 

associated with desiccation tolerance (Galau et al., 1986) were not found in in both species, using 

iTRAQ or label-free LC-MS/MS analysis. This result supports the argument that the degree of 
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desiccation sensitivity in recalcitrant seeds in part is due to the lack of accumulation/absence of LEA 

proteins (Han et al., 1997, Delahaie et al., 2013). The proteomic profile of recalcitrant- seeds is not 

well characterised compared with orthodox types. The proteomic data presented here therefore 

provides part of the proteomic footprint for desiccation sensitivity in seeds but more comparative 

proteomic studies are needed. 

 

In this study, a ROS-based trigger for germination was found to play a key role in both desiccation 

sensitivity and storage longevity in both species; this trigger was also shown to be under the control 

of antioxidants. Since the timing of the ROS-based trigger for germination may determine the 

storage longevity of recalcitrant seeds, future studies should look at manipulating the timing of this 

ROS-based trigger by possibly using ROS blocking agents such as DPI and DMTU and/or adding 

an exogenous supply of antioxidants such as glutathione in order to extend the storage lifespan of 

recalcitrant seeds. Since changes in the proteome were evident in both recalcitrant species during 

dehydration and storage. Given the similarities in proteomic responses of both species to partial 

dehydration and hydrated storage investigated here it is clear that that proteins related to cellular 

redox metabolism, redox metabolism and protein synthesis (amongst others) play a key role in 

desiccation tolerance and deserve further investigation in this context. Differential protein 

expression patterns between A. marina and T. dregeana uncovered should also be used to design 

studies that explore the continuum of seed desiccation sensitivity suggested by Berjak et al. (2008) 

and others. These future studies may provide further mechanistic clues to the factors underlying 

desiccation sensitivity in recalcitrant seeds.  Protein data for recalcitrant-seeded species are also 

very limited and even rare when one considers global protein databases (Balbuena et al., 2011); 

more research on the proteomic profile of recalcitrant seeds is therefore needed. 

 

In conclusion, this study adopted a multidisciplinary approach to understand the phenomenon of 

seed recalcitrance and more broadly desiccation sensitivity. The strength of its findings and more 

importantly value of the questions these findings have in turn generated, validate this 

multidisciplinary approach to recalcitrant seed biology. The results from this study have provided a 

basis for many new avenues of research on recalcitrant seeds and will be extremely useful in 

designing/improving protocols for the short-, medium- and long- term storage of recalcitrant seeds.  
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