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ABSTRACT

The majority of Eskom's 22kV lines use wood as the support structure material. The economics of

wood pole cross arms and their flashover withstand capabilities outweigh those of steel cross arms.

However, wood pole structures are vulnerable to what is known as a Pole Top Fire. When insulators

and wood cross arms become polluted, small and sustained leakage currents flow along the surface of

the insulator and thereafter into the wood itself. This eventually leads to burning of the wood. Many of

the 22kV lines traverse vast rural lands, going over people's path ways. If this fire is not discovered

timeously, it can cause breakage of the relevant cross arm or the pole itself. A broken cross arm

usually causes the outer phase conductor to hang between one and two meters above ground. When it's

dark, rural inhabitants cannot see clearly and walk directly into these low lying energized conductors

which cause severe injuries and often fatalities. Low hanging conductors cannot be detected

electrically and are potentially hazardous to humans and animals. Safety is currently one of the highest

priorities for Eskom Distribution and hence there is a dire need to mitigate Pole Top Fires. The

researcher hypothesizes that the implemented mitigating technique of bonding does not eliminate Pole

Top Fires.

In this study accurate statistics on Pole Top Fires in KwaZulu - Natal are provided and causes of fires

investigated to provide an understanding thereof. Two basic mechanisms of burning have been

identified and explained. These are surface tracking and sparking, and internal sparking. This has

helped to explain what mitigation techniques will be effective. A critical analysis on the performance

of recommended mitigation techniques is conducted. This study therefore aims to conclude on the

effectiveness of implemented techniques to mitigate Pole Top Fires. By comprehensive and critical

analysis of a complex operational and safety related problem technical options for mitigating or

eliminating the fires are identified, critically analyzed and only those options that are really technically

feasible are proposed. This has not been properly done in Eskom before. It is within this context that

this research has been undertaken.

11



3.2

3.2.1

3.3

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

APPENDICES v

LIST OF TABLES ··· .. ·· .. ·.. ·· .. ·· .. · vi

LIST OF FIGURES vi

LIST OF SYMBOLS AND ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Motivation 3

1.3 Outline of chapters 3

CHAPTER 2: POLE TOP FIRES IN KWAZULU - NATAL 5

2.1 The extent of Pole Top Fires in KZN 5

2.2 Various designs leading to different types of burning 9

2.2.1 Implementation of Bonding in KwaZulu - Natal... 9

2.2.1.1 Use of Solid Copper Wire 10

2.2.1.2 Use of Stranded Aluminium Conductor 12

2.2.1.3 Use of Stranded Copper Conductor 13

2.2.1.4 Tracking on a wood pole that is secured to a bonded cross arm with U - bolts 15

2.2.1.5 Internal burning of cross arms 16

CHAPTER 3: LITERATURE REVIEW 20

3.1 The mechanism of burning and the controlling parameters 20

3.1.1 Mechanism of burning 20

3.1.2 Controlling parameters 21

3.1.2.1 Sources of pollution and their significance 21

3.1.2.2 Weather patterns in KwaZulu - Natal 24

3.1.2.3 Effects of Leakage Current Activity 27

3.1.2.4 Influence of insulator specific creepage on leakage current activity 30

Field investigations beyond KwaZulu - Natal 34

Experiences in Kenya 34

Laboratory studies 38

Cross arm wood series resistance measurements 39

Cross arm maintained series impedance investigation 40

Artificial pollution tests on wood cross arms .41

Silicone coated EP303 porcelain insulator tests 45

Cross arm voltage gradient measurements .46

Future preventative methods of controlling leakage currents 48

1lI



3.3.6.1 Maintained series impedance test 48

3.3.6.2 Conductive paint test 49

3.3.6.3 Banding test 50

3.3.6.4 Guarding test 51

3.3.6.5 Conclusions from the above tests 51

3.4 Insulation co - ordination 52

3.5 Bonding of line hardware 54

3.5.1 Bonding of Wood Pole Structures 54

3.5.2 Principle of Bonding 54

3.5.2.1 Electrical model of a bonded wood cross arm 56

3.5.3 Review of bonding design 56

3.5.3.1 Current Designs 57

3.5.4 Implementation of Current Designs 58

3.6 Summary of literature survey 59

CHAPTER 4: CRITICAL ANALYSIS OF EFFECTIVE BONDING 62

4.1 Installation of effective bonding 62

4.1.1 Mhlatuze sites 62

4.1.2 Nseleni sites 62

4.2 Follow up inspections 63

4.3 Monitoring of Nseleni sites 63

4.4 Researcher's findings 64

4.4.l Inspections with a Pole Top Camera 64

4.4.2 Live - line inspections with a digital camcorder. 65

4.4.3 Removal and inspection of steel cross arm structures 70

4.5 Findings beyond Esikhaweni NIB 17 72

4.6 Analysis of findings 73

4.6.1 Performance of the silicone insulators 73

4.6.2 Voltage gradients and electric fields 73

4.6.3 External burning caused by sparking on a properly bonded wood cross arm 75

4.6.4 Internal burning of the wood cross arm 76

4.6.5 Performance of steel cross arms 77

4.6.6 Loose Link Brackets 77

4.6.7 The Esikhaweni structure 78

4.6.8 Conclusion on the analysis of effective bonding 78

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 80

5.1 Conclusions 80

5.2 Recommendations 82

IV



APPENDICES

Appendix A: Engineering Instruction RLC/I0 including D-EN-900904

Appendix B: Explanation ofNeutral Shift

Appendix C: Detailed wood pole leakage current recordings for August 1995.

Appendix D: Detailed Temperature COC) recordings in Mtubatuba area for August 1995.

Appendix E: Detailed Relative Humidity (%) recordings in Mtubatuba area for August 1995.

Appendix F: Graph ofTemperature (0C) and Relative Humidity (%) versus Time for August 1995.

Appendix G: Equivalent Salt Density Deposit (ESDD) pollution level graph.

Appendix H: Graph of results of leakage currents on the EP303 Insulator between June 1996 and

November 1996.

Appendix I: Specification for Insulator EP303 (Booyens, 2006).

Appendix J: Graph of results of leakage currents on the EP965 Insulator between June 1996 and

November 1996.

Appendix K: Specification for Insulator EP965 (Booyens, 2006).

Appendix L: Calculation of Electric Field inside a cross arm.

v



LIST OF TABLES

Table 2 - 1: Number of incidents of Pole Top Fires on 22kV wood pole lines in KZN from January
2001 to January 2007 6

Table 2 - 2: MYAhrs lost in KZN due to Pole Top Fires on 22kV wood pole power lines from January
2001 to January 2007 7

Table 3 - 1: Relationship between pollution level, ESDD value and creepage distance 22

Table 3 - 2: Equivalent Salt Deposit Density tests results 30

Table 3 - 3: Results of Resistance measurement.. 39

Table 3 - 4: Results of measured voltage gradients [distribution] on a wooden cross arm with an
artificially polluted EP 303 porcelain insulator. 47

Table 4 - 1: Nseleni NIB 19 voltage readings at the substation 64

Table 4 - 2: Voltage readings taken at various points on the steel and wood cross arm structures 67

Table 4 - 3: Voltage readings taken at various points on the wood cross arm 68

LIST OF FIGURES

Figure 1 - 1: A common wood pole structure design (D DT l740B) 1

Figure 1 - 2: A burnt cross arm resulting in a low hanging conductor 2

Figure 1 - 3: Extent of the damage (charring) at the ends of cross arms 2

Figure 2 - 1: Seasonal pattern of Pole Top Fires on 22kV wood pole power lines in KZN 7

Figure 2 - 2: Number of Pole Top Fire incidents occurring monthly in KZN 8

Figure 2 - 3: Figure showing the annual variations of Pole Top Fires in KZN 8

Figure 2 - 4: Application of binding wire to strain off conductor. 10

Figure 2 - 5: Illustration of solid 4mm2 copper wire used for bonding 11

Figure 2 - 6: Illustration of solid lmm2 copper wire and method used for bonding in Stanger 12

Figure 2 - 7: The balance of the cross arm that is illustrated in Fig 2 - 6 above 12

Figure 2 - 8: Poor application of bonding leading to a severely burned hole of eye bolt. 13

Figure 2 - 9: Bonding wire pressed against the cross arm surface " 14

Figure 2 - 10: Galvanic corrosion between dissimilar metals 14

VI



Figure 2 - 11: Broken strands of bonding wire 14

Figure 2 - 12: Electrical model of the steel bracket and wood cross arm (Persadh, 2007) 15

Figure 2 - 13: Severe tracking between bracket (A) and wood pole surface (B) 16

Figure 2 - 14: Cross arm secured via a U - bolt. 16

Figure 2 - 15: Magnified view of tracking adjacent to the U - bolt bracket.. 16

Figure 2 - 16: Burned section of threaded rod number 1 17

Figure 2 - 17: Burned section of threaded rod number 2 17

Figure 2 - 18: Good electrical connection maintained between bonding wire, clips, washers and nuts .
......................................................................................................................................................... 18

Figure 2 - 19: Burned section of spindle of a "capped" ceramic insulator. 18

Figure 2 - 20: Severely burned spindle of another ceramic insulator. 18

Figure 3 - 1: Pollution map of South Africa indicating shore winds and coastal currents (Ellis, 2005) 24

Figure 3 - 2: Pollution type map for SA highlighting coastal pollution (Ell is, 2005) 26

Figure 3 - 3: Tracking starts on the wood surface from metal fittings 26

Figure 3 - 4: Tracking gets more severe and starts to ignite the wood surface 27

Figure 3 - 5: The wood surface suffered serious burns. The fire has damaged most of the cross arm .. 27

Figure 3 - 6: Diagram of measurement system on wooden cross arm (Loxton, 1995) 29

Figure 3 -7: The test jig erected near Mtubatuba TSC (Loxton, 1996) 32

Figure 3 - 8: Electrical model of a steel cross arm. Pollution related currents on a horizontal
configuration and vertical wood pole structure (Britten, 1995) 36

Figure 3 - 9: Diagram to determine the resistance of a cross arm (Loxton, 1996) 39

Figure 3 - 10: Laboratory measurement of leakage current on a cross arm with maintained series
resistance using a Silicone cover. (Specific creepage of the insulator = 24mm/kY) (Loxton, 1996).... 40

Figure 3 - 11: Maintained series resistance on a cross arm - leakage current results (Loxton, 1996).. 41

Figure 3 - 12: Laboratory test set up for artificial pollution tests on wood cross arms (Loxton, 1996).42

Figure 3 - 13: Results of leakage currents at varying applied Yoltages and at various pollution
conditions (Loxton, 1996) 44

Figure 3 - 14: Laboratory configuration for Silicone Coated EP303 porcelain insulator leakage current
tests (Loxton, 1996) 45

VII



Figure 3 - 15: Laboratory measurement of voltage gradients on a wooden cross arm under polluted
conditions using an EP 303 porcelain insulator (Loxton, 1996) 47

Figure 3 - 16: Illustration of maintained series impedance test showing the 300mm long silicone cover.
(Loxton, 1998) 48

Figure 3 - 17: Illustration of conductive paint applied to the cross arm 100mm on either side of the
insulator pin (Loxton, 1998) 49

Figure 3 - 18: Illustration of the application of banding to the cross arm (Loxton, 1998) 50

Figures 3 - 19: Illustration of copper strip attached to the bottom of the insulator pin and fixed
approximately 200mm from the insulator pin (Loxton, 1998) 51

Figure 3 - 20: Diagram illustrating insulation co - ordination (03TB - 034) 53

Figure 3 - 21: Bonding of all metal hardware and insulator "dead" ends on a common wood pole
structure 55

Figure 3 - 22: Flow ofleakage current on a properly bonded cross arm (Persadh, 2003) 55

Figure 3 - 23: Electrical model of a bonded wood cross arm (Geldenhuys, 2004) 56

Figure 3 - 24: Inadequate materials supplied. A washer at the bonding clip was missing 57

Figure 3 - 25: Linesmen failed to install the extra washer required to ensure a tight connection 57

Figure 3 - 26: Effective bonding at one threaded rod on a cross arm 58

Figure 3 - 27: An example of how effective bonding was implemented 59

Figure 4 - 1: Mix of steel and wood cross arms installed at Nseleni late in 2002 63

Figure 4 - 2: Diagram of measurement of voltages on a wood cross arm section link structure (D DT
1848) with Silicone long rod insulators 65

Figure 4 - 3: Diagram of measurement of voltages on a steel cross arm strain structure CD DT 1733)
with Silicone long rod insulators 66

Figure 4 - 4: Diagram of measurement of voltages on a wood cross arm suspension structure (D DT
1740B) with Ceramic insulators 66

Figure 4 - 5: Electrical model of diagram of measurement with Ceramic insulators 68

Figure 4 - 6: Live - Line inspection and voltage measurements on a D DT 1740B structure 70

Figure 4 - 7: Early stages of tracking were observed between insulator base and wood surface 70

Figure 4 - 8: Illustration of tracking / sparking from steel cross arm to wood surface 71

Figure 4 - 9: Comparison of threaded rods from different installations 71

VllI



Figure 4 - 10: A burning bonded wood pole with smoke exiting a threaded rod hole 72

Figure 4 - 11: Flames exiting the threaded rod hole and at other crevices along the pole. Silicone link
cut outs were closest to the affected area 73

Figure 4 - 12: Diagram illustrating the electric field E from the oval shaped washer edge and insulator
base 74

Figure 4 - 13: Sectionalized cross arm with spindle and insulator base showing direction of electric
fields from spindle washer and tracking on the wood surface 74

Figure 4 - 14: Diagram illustrating pollution deposits from insulator washed onto wood surface..... ~. 75

Figure 4 - 15: Illustration of cavities inside the wood cross arm 76

IX



LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

kV kilovolt

QC degrees Celcius

Il micro

A Amperes

mg milligrams

% percentage

cm centimeter

NaCl Sodium chloride

mm millimeter

R Radius

> is greater than

ABBREVIATIONS

KZN

DDT 

IARC 

FSA

TSC

CD

DVD

MVA 

RLC

ESDD 

IEC

Fig

RMS

AC

Umax 

KPLC 

TSI

KwaZulu - Natal

Drawing Distribution Technology (now IARC)

Industry Association Resource Centre

Field Service Area

Technical Service Centre

Compact Disk

Digital Video Disk

Megavolt Ampere

Reticulation Line Construction

Equivalent Salt Deposit Density

International Electro - Technical Commission

Figure

Root Mean Square

Alternating Current

Maximum supply voltage

Kenya Power and Light Company

Technology Services International (Eskom)

x



TRI

CSIR 

ERID 

BIL

NIB

PTF

Km

E

APP

Test, Research and Investigations (Eskom)

Council for Scientific and Industrial Research

Eskom Research and Innovation Department

Basic Insulation Level

Network Breaker

Pole Top Fire

Kilometer

Electric Field

Air Pollution Potential

xi



CHAPTER 1: INTRODUCTION

1.1 Background

Overhead power lines are designed and constructed so as to be electrically insulated from earth

whilst distributing power. Wood and steel poles are the material that is used to construct power

lines in Eskom Distribution. A common element of Eskom Distribution's infrastructure is cross

arms. Cross arms are basically used at the top of poles to suspend overhead conductors which

distribute power.

The majority of Eskom's 22kV overhead lines use wood as the support structure material. Although

the details of individual pole design vary from area to area, a feature common to the design used in

Kwazulu - Natal (KZN) is the use of the wood cross arms to give additional inter-phase and phase

to-ground insulation (Britten, 1995). This method helps to improve their performance in high

lightning areas. An example of such a design is shown in the picture below.

Insulators

Figure 1 - 1: A common wood pole structure design (D DT 1740B).

The above design can be vulnerable to what is known as a Pole Top Fire. It is not the only design

that is vulnerable. Other designs such as the verticals (D DT 1710 and D DT 1370), link structures

(D DT 1848 and D DT 1849) and strain assembly structures, to name a few are also vulnerable to

Pole Top Fires. These occur if high leakage currents flow along the surface of the insulator (if and

when it becomes polluted and wetted) and thereafter into the wood itself by direct contact or by

means of sparking. This is a well known problem in coastal areas where salt spray periodically

creates the pollution necessary to allow high leakage currents to flow (Britten, 1996).



The practice of using wood as the inter - phase insulation has for many years been widely and

successfully applied in Eskom and in most other countries where 11, 22 and 33kV overhead lines

are used. If a Pole Top Fire is not discovered timeously, it can cause breakage of the relevant cross

arm or the pole itself. A broken cross arm usually results in the outer phase conductor hanging low,

without making contact with the ground This is usually between one to two meters above ground

level. This condition cannot be detected electrically and is the main reason why the consequences of

Pole Top Fires are potentially hazardous to humans and animals (Britten, 1996). Figures 1 - 2 and

1 - 3 respectively illustrate this. Many incidents have occurred including a few human fatalities,

resulting in huge financial losses to Eskom. Almost 600 cross arms on 22kV over head lines

throughout Kwazulu - Natal have burned from January 2001 to January 2007.

Figure 1 - 2: A burnt cross arm resulting in a low hanging conductor.

The outer ends of the cross anns
have completely burned away.

Figure 1 - 3: Extent of the damage (charring) at the ends of cross arms.
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In Figure 1 - 2 above, the left of the cross ann has burned away resulting in the insulator and phase

conductor hanging precariously low. Fig 1 - 3 highlights the extent of charring where the outer

section of cross anns has completely burned away. This has resulted in that particular phase

conductor either parting or hanging low which is of serious concern to Eskom.

1.2 Motivation

For Eskom, incidents of the above nature lead to legal, financial, safety and publicity risks and must

be minimjzed or even eliminated while still providing affordable energy to its people. The

researcher focuses on the basic mechanisms which cause burning which underpins the performance

of Eskom Distribution infrastructure and hampers the business quality of supply.

In this study, the researcher provides statistics on the occurrence of Pole Top Fires in KZN. The

researcher also investigates the causes of pole top fires and provides an understanding thereof. A

critical analysis on the effectiveness of technically feasible mitigation techniques over the last

decade is conducted. This study therefore aims to conclude whether or not the mitigating technique

of bonding that was implemented in Eskom Distribution actually reduces or even eliminates Pole

Top Fires or if fires can still occur because of the combined neutral shift phenomena and electric

field. It was also believed that properly bonded structures will not burn. This assertion is

investigated.

By analyzing a complex problem of this nature, possible and effective mitigation measures can be

identified. This has not been properly done in Eskom before. The researcher also examines other

technical alternatives to minimize Pole Top Fires and proposes only those that are really technically

feasible. It is within this context that this research is being undertaken.

1.3 Outline of chapters

The background in the Introductory chapter introduces the wood pole structure for overhead power

lines and highlights the phenomenon that it is vulnerable to viz. Pole Top Fires. The research

problem contextualization is also addressed. The motivation includes the aims and the objectives of

the study.

3



Chapter 2 highlights the extent of the phenomenon of pole top fires since the early 1990's. Accurate

statistics for Kwa Zulu - Natal since 2001 are given and of which illustrate the seasonal patterns on

22kV wood pole power lines. The researcher also critically analyses the various initial designs

implemented since the early 1990's and subsequently the different types of burning experienced.

Chapter 3 forms the extensive part of the dissertation report, where the theoretical review of the

study is highlighted in greater detail. It focuses on the mechanisms of burning and the controlling

parameters thereof, field and laboratory investigations, bonding of line hardware and insulation co

ordination. An understanding of how and why pole top fires occur will also be discussed.

Furthermore, the researcher explains why the phenomenon is common to KwaZulu - Natal although

other areas use the same design of wood pole structures. Occasional fires do occur elsewhere in

Eskom.

The research methodology used in the study is presented in the fourth chapter. Field work in terms

of piloting and implementing Eskom standard structure designs and the monitoring of test sites

thereof is addressed. A critical analysis of effective bonding is covered. Measures that were taken to

prevent the phenomenon are discussed and evaluated.

The final chapter concludes by highlighting the researcher's fmdings and whether the objectives of

this study have been achieved. In addition, the researcher forwards recommendations and provides

an overall conclusion of the study.

4



CHAPTER 2: POLE TOP FIRES IN KWAZULU -NATAL

2.1 The extent of Pole Top Fires in KZN

Eskom field personnel in the Northern parts of KwaZulu - Natal have regularly complained of pole

top fires. During the 1990's, the Nongoma, Mtubatuba, Hluhluwe, Kwambonambi, Pongola,

Stanger and Empangeni areas have experienced extensive cross - arm failures on llkV and 22kV

overhead lines. The south coast of KwaZulu - Natal had also experienced cross arm failures in the

early parts of January 1994. The failures were directly related to the burning of the wooden cross

arm and sometimes the main pole (Loxton et al, 1996).

As a result, numerous injuries and fatalities amongst the local inhabitants have taken place because

of undetected low lying conductors. These incidents which resulted in unsafe conditions to local

inhabitants became a major concern to Eskom. Eskom has been involved in numerous legal claims

in respect of deaths, severe injury and fatalities to both the locals and their livestock (Narsai, 2005).

The majority of the failures reported had occurred over the dry winter months peaking in September

and October prior to the annual rains in November. However, once rain showers have washed the

insulators on these lines, the number of failures had reduced. However, sporadic incidents still

occur continually over the summer period (Ranjin, 2004).

In September of 1993, the Eskom Durban Distributor convened technical meetings to look into the

abnormally high incidence of pole top fires in Northern KwaZulu - Natal. Approximately 78 fires

had been reported in an 8 month period in that year. About 60% of these occurred in the Mtubatuba

area. The remainder had occurred in areas which were further inland (Crossley, 1993). The

occasional fire was reported in other areas where similar designs were used, example Southern

Natal, Free State and the old Transvaal. Investigations by Britten in 1996 revealed that:

All burnt cross arms were either un-bonded or poorly bonded.

Dust and pollution had contributed to failures.

80% of the failures occurred during the dry seasons.

Majority of the fires occurred in the Northern KwaZulu - Natal stretching from Mandini in the

South to Mkuze in the North.

The northern KwaZulu - Natal networks were exposed to high pollution from industries in

Richards Bay.
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Measures to mitigate the phenomenon have been introduced and implemented since the early

1990's (Hartman, 1994). However, due to poor management, time or financial constraints not all

networks were covered in the implementation of the mitigation techniques. Hence the burning

continued on those networks.

Accurate statistics of the phenomenon from the Eskom Distribution Plant Department have been

collected and these are tabled below per FSA (Bouwer, 2006). The tables and graphs below indicate

the number of incidents of pole top fires and the subsequent total MYA hours lost. These statistics

indicate incidents on 22kV lines only and for all Field Service Areas (FSA's) within Kwazulu 

Natal from January 2001 to January 2007 (Bouwer, 2006). The total line length per FSA is also

included. Note from the table that the number of incidents in the Empangeni FSA is far greater than

those in the other areas. When the statistics were collected from field staff, finer details as to

whether cross arms were bonded or un-bonded were not ascertained. However, many of the

networks are old and it is possible that these figures are mainly for un-bonded cross arms.

Statistics of Pole Top Fires on 11 and 33kV overhead lines for the same period are available and are

very similar. However, the author is concentrating on the predominantly 22kV overhead lines.

Hence statistics for 1land 33kV networks are omitted.

Table 2 - 1: Number of incidents of Pole Top Fires on 22kV wood pole lines in KZN from January
2001 to January 2007.

Year Empaneeni Petermaritzbul"2 Newcastle Mareate Totals
2001 54 4 18 9 85
2002 117 7 20 16 160
2003 74 4 12 11 101
2004 45 2 14 8 69
2005 77 4 25 13 119
2006 37 4 11 3 51

Jan 2007 3 0 2 2 7
Totals 403 25 102 62 592
Line

Length
(km) 65989.51 2944.54 15460.32 7985.43 92379.80
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Table 2 - 2: MYAhrs lost in KZN due to Pole Top Fires on 22kV wood pole power lines from
January 2001 to January 2007.

Total
MVAhrs

Year Empao2eoi Petermaritzbure Newcastle Mareate lost
2001 701.9 26.31 103.56 286.69 1118.46
2002 1775.7 39.06 126.71 184.92 2126.39
2003 860.61 9.39 73.29 96 1039.29
2004 610.68 18.12 163.33 175.15 967.28
2005 593.14 39.35 194.41 98.78 925.68
2006 340.53 8.95 230.09 19.52 599.09

Jao 2007 5.86 0 16.13 5.96 27.95
Total

MVAhrs
lost 4888.42 141.18 907.52 867.02 6804.14

The data was also filtered and consolidated into total number of incidents occurring per month.

These were then tabled according to seasons. The graph below illustrates the seasonal pattern of

Pole Top Fires from January 2001 to January 2007. Monthly and annual variations are also

illustrated below.

Illustration of seasonal patterns of Pole Top Fires on
22kV wood pole power lines in KZN, Jan 01 - Jan 07

Spring, 233,
39%

Summer, 70,
12%

Autumn, 55,
9%

o Summer

• Autumn

o Winter

o Spring

Figure 2 -1: Seasonal pattern of Pole Top Fires on 22kV wood pole power lines in KZN
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umber of Pole Top Fire incidents occurring per month between
January 2001 and January 2007.
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Figure 2 - 2: Number of Pole Top Fire incidents occurring monthly in K.ZN

umber of Pole Top Fire incidents occurring every year from
Jan 2001 to Jan 2007

Isum of INCIDENTSI180 -

YEAR-------------l 2001

.2002
02003
02004
_2005
.2006
.2007

180 +--------

140 +--------

20+----1

40+----1

0+---......---...;;

1120 +-------

) 100+-------
~i 80 .\---r---:;
e
i. 8O+---~

Total

p.,Vea,

Figure 2 - 3: Figure showing the annual variations of Pole Top Fires in K.ZN
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It is seen from the above figures that majority of fires occur in the winter months and extend far into

spring. The reasons for the high failures during these months are explained in detail in chapter 3.

The researcher will now examine the different types of burns experienced and will also speculate

what the mechanisms ofburning could be.

2.2 Various designs leading to different types of burning

It is known that the different types of burning that had occurred are a result of un-bonded structures

or structures that were poorly bonded. It is a common belief in Eskom Distribution that such wood

pole structures will eventually burn.

2.2.1 Implementation ofBonding in Kwazulu - Natal

Following many investigations on Pole Top Fires which were done in the early 1990's and also

further research into the various mitigation techniques, Eskom Distribution decided then to adopt

the method of bonding on all wood pole structures in northern KZN. The intention then was to

reduce or even eliminate the cross arm burning phenomenon. This change or modification in

technology required an effective implementation or change control plan. Bonding provides an

alternative medium for leakage currents to flow away from the insulator and wood surface of the

cross arm. In this technique, the bonding wire is not connected to earth and hence bonding is not the

same as earthing.

The researcher is employed in the Technology and Quality department of Eskom Distribution in

KZN since 1999 and has since been involved in various initiatives to ensure proper bonding on

wood pole structures. While collecting the above statistics, various investigations were done by the

researcher to ascertain reasons for the burning phenomenon. It must be noted that the examples

given below have largely contributed to these statistics. The various practices since the early 1990's

shall now be critically analyzed and the poor implementation thereof highlighted.

On 10 March 1993, an Eskom Engineering Instruction (RLC/IO) was published by R.T. Green

(Appendix A). This instruction was applicable to Kwazulu - Natal and gave explicit details on the

bonding method to be applied. The materials consisted of three strands of copper conductor (3/1 04),

galvanized steel washers and clips which were fastened by hexagonal nuts. Various retro - fitting

exercises were put into place and effected to bond structures in the areas affected by the burning
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phenomenon. However, not all structures were bonded. To date there exist many structures that are

still un - bonded and these structures have become part of the statistics associated with Pole Top

Fires. Investigations by the researcher uncovered various non - conforming practices since 1993

and their shortcomings are highlighted.

2.2.1.1 Use of Solid Copper Wire

Prior to 1995, a common Eskom Distribution design included the double wrap binding wire method

to strain off conductors via glass disc type insulators or long rod porcelain type insulators. This is

illustrated in Fig 2 - 4 below. Notice the tracking at the mounting bolt of the cut out link on the

opposite side.

Figure 2 - 4: Application of binding wire to strain off conductor.

Many of the above type structures were 'bonded' via solid 4mm2 copper wire. The method of

bonding included passing the copper wire underneath the binding wire that terminated each phase

conductor. This is illustrated below.
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Figure 2 - 5: Illustration of solid 4mm2 copper wire used for bonding.

As can be seen from Fig 2 - 5, the method has not worked since the cross arm is severely burned.

This application was not as per the requirements of Engineering Instruction (RLC/l0) that was

published. In this type of installation, the leakage current flowed in both the copper wire and surface

of the cross arm. Not all current was diverted away from the cross arm surface and those that did

flow onto the surface caused the ignition. Also, there is a very poor electrical connection between

the binding wire and the copper wire. Hence, this type of bonding could be considered as poor

bonding as there is sufficient evidence that it has not worked and that is the burnt cross arm.

Other designs also included metal based post ceramic insulators ("capped") of specific creepage

25mm/kV. Bonding of structures with these insulators was often via Imm2 solid copper wires. The

copper wire was merely wrapped around the insulator spindles and secured onto the cross arm via

washers and nails. This is illustrated in Fig 2 - 6 below. Once again, this application was not as per

the requirements of the Engineering Instruction published and hence could be considered as poor

bonding. Figure 2 - 7 shows the balance of the bonded cross arm that has burned away. The

principle ofbonding has again not been implemented correctly.
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Figure 2 - 6: Illustration ofsolid 1mm2 copper wire and method used for bonding in Stanger.

Figure 2 -7: The balance of the cross arm that is illustrated in Fig 2 - 6 above.

From Fig 2 - 6, there is little evidence of tracking between the ceramic insulator and wood surface.

Thus it is speculated that the burning has started from the inside of the cross arm. This is due to a

neutral shift which is explained further in Appendix B.

2.2.1.2 Use of Stranded Aluminium Conductor

Further investigations by the researcher revealed the use of stranded aluminium conductor to bond

wood cross arms in Mhlatuze just outside of Empangeni on the north coast of KZN. This area is

severely affected by cross arm burns. On these structures, the stranded aluminium conductor was

merely wrapped around the "dead" ends of the insulator eye - bolts and stapled at various positions

onto the cross arm. No real effort was made to ensure proper electrical connections. The pictures

below bear testimony to the loose connections and poor application.
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Figure 2 - 8: Poor application of bonding leading to a severely burned hole of eye bolt.

The method applied above did not conform to Engineering Instruction RLC/IO. The pictures above

clearly show that the principle of bonding was poorly implemented. It is speculated that the leakage

current was not properly diverted away from the eye bolt resulting in high leakage current densities

to exist at the eye bolt causing it to heat to very high temperatures. With time or age, the cross arm

shrinks and allows the wind to penetrate the gap between the eye bolt and cross arm. This air flow

combined with the heat of the eye bolt stimulates the burning process.

2.2.1.3 Use of Stranded Copper Conductor

There were many incidents of Pole Top Fires reported in the Mtubatuba area. In 2003 the researcher

followed through with one such complaint from the Mtubatuba Technical Service Centre. The

complaint was that a bonded cross arm had burned and field personnel were subsequently

convinced that bonding of cross arms was not the answer to prevent Pole Top Fires. Investigations

by the researcher revealed the use of stranded copper wire to serve as the bonding wire. The

application was also wrong as it did not comply with Engineering Instruction RLC/l O.

The method consisted of stranded copper wire pressed tightly against the wood cross arm surface

via the curved washer and eye - bolt (Fig 2 - 9). The copper wire was also attached to copper

bonding clips (Fig 2 - 10) at the steel galvanized threaded rods and merely passed over and adjacent

to binding wires as in Fig 2 - 5. This practice led to another problem. Bi - metallic corrosion started

to manifest between the copper clips and galvanized threaded rods. This jeopardized the electrical

connection and hence the bonding of the structure. This is illustrated in Fig 2 - 10 below.

Unfortunately many structures were built with this design. These are some reasons as to why

bonded structures continued to burn. The cross arm was severely burned at one end (Fig I - 3).

Hence this application did not work. This is illustrated below.
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Figure 2 - 9: Bonding wire pressed against the cross arm surface.

Figure 2 -10: Galvanic corrosion between dissimilar metals.

Figure 2 - 11: Broken strands of bonding wire.
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2.2.1.4 Tracking on a wood pole that is secured to a bonded cross arm with U - bolts

During other investigations in the Empangeni area, the researcher had found scrap samples of burnt

poles and cross arms that were returned from the field after breakdowns. These samples were

dumped in an area allocated for scrap materials at the Empangeni Technical Service Centre yard.

One interesting sample was a section of a bonded cross arm that was secured to a pole via a steel

U - bolt bracket. Pictures of the sample can be seen below. It is shown that the bracket was tightly

pressed against the surface of the wood. It was very interesting to find severe tracking at the

interface between the U - bolt bracket and a section of the wood pole surface. There were no

insulators connected in the immediate vicinity of the pole.

Initially, it was difficult to understand how the leakage current got to the U - bolt bracket and then

tracked onto the wood surface. It was speculated that a higher voltage gradient existed on the

U - bolt bracket than on the cross arm. The U - bolt bracket has rough edges along its surface.

These rough edges create local non - uniform electric fields which causes self sustained electric

discharges to take place between the metal surface and wood cross arm surface. Figure 2 - 13 can

be electrically modeled as shown in Figure 2 - 12. As can be seen in Figure 2 - 13, the letter A

represents the steel U - bolt bracket and the letter B represents the wood cross arm. Steel has a

characteristic of very low resistance. That is RA is very low. Wood has a characteristic of very high

resistance. That is RB is very high. For self sustained electric discharges, a higher induced voltage

(VA) is required on the U - bolt bracket than on the wood surface. From Ohm's Law (V = IR), a

higher current (lA) will flow in the bracket compared to a lower current (la) flowing in the wood.

CB

} High induced voltage VA

RBhigh } Low induced voltage V.

Figure 2 -12: Electrical model of the steel bracket and wood cross arm (Persadh, 2007).
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Figure 2 - 13: Severe tracking between bracket (A) and wood pole surface (B).

Figure 2 - 15: Magnified view of tracking adjacent to the U - bolt bracket

2.2.1.5 Internal burning of cross arms

Amongst the scrap mentioned above, the researcher also found one continuous piece of stranded

copper bonding wire that was still attached to the threaded rods and bonding clips. Field staff
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indicated that this bonding was part of a cross arm where the burning had started from the inside

and had completely damaged the cross arm. The bonding installation was still intact. The copper

bonding wire was still securely attached to the various threaded rods via clips and washers. The

electrical connection was observed to be very good. Sufficient evidence existed to suggest that the

burning did start from the inside of the cross arm. The threaded rods were severely burned along its

shaft that traverses the cross arm. Once again, this is due to a phenomenon called neutral shift

which is explained further in Appendix B. Many such samples were found in that same heap of

scrap and some are illustrated below.

Figure 2 - 16: Burned section of threaded rod number 1.

Figure 2 - 17: Burned section of threaded rod number 2.
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Figure 2 - 18: Good electrical connection maintained between bonding wire, clips, washers and

nuts.

Figure 2 - 19: Burned section of spindle of a "capped" ceramic insulator.

Figure 2 - 20: Severely burned spindle of another ceramic insulator.

The researcher had also found that many of the bonded cross arms that did burn had ceramic

insulators of varying specific creepage levels installed. The use of ceramic insulators of different

specific creepages has a direct influence on the burning process. The level of pollution on each of
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these insulators can be variable and thus contribute different leakage currents. As a result the

leakage currents on the three phase system do not summate to zero. So there existed poorly bonded

and un - balanced systems that contributed to burning.

Thus, from the time that bonding of wood cross arms was introduced, the implementation thereof

was poorly managed. Thus far, fires have been experienced on bonded and un - bonded structures

with mainly ceramic type insulators of varying specific creepage per structure. The bonding

methods illustrated above eventually signaled their flaws as can be seen from above pictures. The

choice of materials, design and poor application thereof were some of the reasons thought as to why

bonded cross arms continued to burn.
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CHAPTER 3: LITERATURE REVIEW

The researcher shall now review literature and studies that have already been undertaken to explain

the burning phenomenon.

3.1 The mechanism of burning and the controlling parameters

3.1.1 Mechanism of burning

One of the major causes of pole top flIes is air pollution. According to the International

Electrotechnical Commission (lEC, 1979), the sequence of events is as follows:

Essentially, the problem is due to a build up of pollution on insulators and wood cross arms. The

pollutions contain soluble salts or dilute acids or alkalis. When the pollution is dry, it is non

conductive. However, when lightly wetted by dew or mist, it becomes conductive. Also, if the

pollution layer on the insulator and cross arm is deposited as a layer of liquid electrolyte such as salt

sprays, then it is already conductive and hence wetting is not a prerequisite (lEC, 1979).

Once the pollution layer becomes conductive, it provides a path for leakage currents to flow from

the phase insulators and onto the wood cross arm. The surface leakage currents cause a heating

effect which dries out parts of the pollution layer. This gives rise to dry bands on the insulator and

wood surface. These dry bands interrupt the flow of leakage current. The dry bands are then bridged

by arcs (dry band arcing) which cause a surge of leakage current (IEC, 1979).

Research in the 1940's (Bellaschi, 1947) showed that ignition of the wood is caused by the flow of

leakage currents from line fittings, insulators and bolts, into the surrounding wood area. If the

magnitude of the leakage current and its density is high enough, ignition of the wood can result.

Laboratory tests have shown the excellent insulation characteristics of wood when dry. It was

hypothesized that dry poles were rapidly moistened due to rising humidity, fog, dew or light drizzle.

This increases the moisture content on the surface of the pole. However, areas which are under

metal fittings are temporarily kept dry. These areas are typically near energized metal fittings and as

a result have high voltage gradients (electric fields) across them. This causes local discharges and

current activity to penetrate the wood surface, resulting in the surface burning or charring (Hartman,

1994). If these currents are sustained for long periods of time, they could lead to ignition of the pole

20



or cross arm. This effect can be seen in Figures 3 - 3 and 3 - 4 respectively below. The result of

further burning can be seen in Figure 3 - 5 below (persadh, 2003).

The mechanism of burning is further explained in the next section which identifies the controlling

parameters for pole top fires.

3.1.2 Controlling parameters

3.1.2.1 Sources ofpollution and their significance

Pollution on an insulator or wood pole surface can range from light to medium to heavy, depending

on the distance from the coast, prevailing winds, and chemical deposits from local industrial

complexes and dust from local agricultural operations (Bradwell, 1983). Pollution typically consists

of insoluble oxides, soluble carbonates, nitrates, hydroxides, sulphates and chlorides. The

contamination layer can therefore be defined as a mixture between conductive and inert materials.

The conductive part consists of ionic salts such as Sodium Chloride, Potassium Chloride and

Calcium Nitrate.

The severity of the pollution layer is expressed in terms of equivalent salt deposit density (ESDD)

(Van Wyk, 1996). Pollution severity is determined by measuring the ESDD on the surface area of

an insulator. ESDD is the equivalent deposit ofNaCl in mgcm~ on the surface area of an insulator

which will have an electrical conductivity equal to that of the actual deposit dissolved in the same

amount of water (Van Wyk, 1996). The relationship between ESDD and site pollution severity is as

follows:

Pollution level

Light

Medium

Heavy

Very Heavy

ESDD (mg NaCl cm-:1)

0,03 to 0,06

0,10 to 0,20

0,30 to 0,60

>0,80
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IEC 60815 Specification shows the relationship between pollution level, ESDD value and the

minimum creepage distance (mm/lcV) required as follows:

Table 3 - 1: Relationship between pollution level, ESDD value and creepage distance.

Pollution level ESDD Value in Minimum creepage Distance

mg NaCI cm""2 (mmlkV)

Light 0,03 to 0,06 16

Medium 0,10 to 0,20 20

Heavy 0,30 to 0,60 25

Very Heavy >0,80 31

3.1.2.1.1 Veld fires

The hot dry Berg wind conditions that prevail in KZN prior to the pole top fire events are typically

severe fire hazard days. Smoke from these fires is transported to the coast via the north-westerly

winds that also prevail during these times. Without rain, this smoke remains suspended in the

atmosphere and eventually settles on the insulators and wood cross arm surfaces (Diab, 1991).

3.1.2.1.2 Sugar cane burning

Sugar cane is the dominant crop in Kwazulu - Natal. Cane burning is an accepted harvesting

technique in KZN and is an alternative to trashing. However, it has a number of negative

environmental effects. It is a huge contributor to the air pollution load of the region. It has been

estimated that cane fire faults account for up to 30% of all transmission line failures (Naidoo, 1989).

Cane burning normally takes place from late April to the middle of December. This coincides with

the dry season. Cane burning is responsible for the emission of sucrose and carbon particles which

bond to the insulator surface. This contributes to the slow build up of pollution on the insulators

during the dry winter season (Naidoo, 1989).

3.1.2.1.3 Industrial Pollution

Within South Africa and in particular Kwazulu - Natal, major pollution sources exist in the vicinity

of Durban and Richards Bay. This area is on the north coast ofKZN. The huge industrial growth in

the Richards Bay area has resulted in a lot of chemical fumes being released into the atmosphere,

thus contributing to industrial pollution. Sulphur dioxide (S02) emissions are a major contributor of

pollution in this area. The conversion rate of S02 to sulphate increases by a factor of 8 as the
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relative humidity increases from 70% to 80% (Wallace et aI, 1977). The high humidities of the

coastal environment enhance the conversion and increase the build up of pollution on power lines.

3.1.2.1.4 Dust pollution

Dust particles originate from a variety of sources such as construction activities, agricultural

practices and wind blown soil particles. Because of the soil particles small size, they are likely to be

transported over vast distances. The north coast ofKZN is noted for the above (Diab, 1991).

3.1.2.1.5 Marine pollution

Natural pollutants of salt aerosols sprays are formed over the ocean when water droplets are ejected

into the air from breaking waves. The water evaporates leaving behind salt particles which may be

transported for considerable distances in the sea breeze circulation, inland (Diab, 1991). The build

up of salt is a process that occurs throughout the year and the layer of NaCl on the insulators is

likely to act as a base on to which other pollutants settle until the insulator strength is sufficiently

reduced to cause pole top fires.

In 1998 Loxton showed winds to be predominantly northerly and south easterly in direction.

Northern KZN is directly in line with these prevailing winds which carry contaminants directly

from the ocean and industrial areas of Richards Bay. Thus existing pollution in the air could be

directed over areas ranging from Stanger in the south to Mtubatuba in the north and also inland to

Nongoma where cross - arm burning is experienced each year. These are major driving forces of

leakage current activity, resulting in pole top fires (Loxton, 1998).

IEC classifies South Africa as having 75% light to medium pollution and 25% heavy to very heavy

pollution (Eills, 2005). The very heavy pollution areas are highlighted below. The far inland area of

Gauteng falls within the area classified as having very heavy pollution. This is mainly due to the

huge industrial infrastructure in the area which contributes significantly to pollution. There have

been very few incidents ofpole top fires in the Gauteng area. The Western Cape is also classified as

having very heavy pollution. Feedback from the University of the Western Cape indicates that there

have been a few incidents of pole top fires in the Western Cape area CVosloo, 2006). This then

raises the question as to why KZN is more prone to pole top fires, whereas other areas which use

the same line design are not. The researcher shall now briefly analyze weather patterns in KZN to

attempt to answer the above question.
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Figure 3 - 1: Pollution map of South Africa indicating shore winds and coastal currents (Ellis,

2005).

3.1.2.2 Weather patterns in Kwazulu - Natal

During the period August to November, the KZN coast experiences a unique sequence of weather

events that lead to patterns of air pollution potential (APP) (Diab, 1991). Three synoptic regimes

exist and each is characterized by distinct APP viz;

a) An established high pressure system: This is characterized by light north - easterly winds and

a low mixing depth caused by an upper level subsidence inversion. This is when nocturnal

surface inversions develop resulting in poor dispersal capacity of the atmosphere and hence

APP is high.

b) Pre - fontal stage: APP increases even further as the subsidence inversion dips towards the

surface ahead of the coastal low.

c) Post - frontal stage: This is characterized by strong winds, lifting of the subsidence inversion

and often accompanied by rain giving rise to a low APP.
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The sequence of changes in the heights of inversions, mixing depths and winds is the characteristic

of the movement of coastal lows along the KZN coast As per Table 2 - 2, most of the pole top fire

incidents occur in August. This is at the end of a long dry winter period and of which is

characterized by below average rainfall. The presence of elevated inversions is common along the

east coast of South Africa. The frequency ranges between 40% in June and 80% in September

(preston -Whyte et at, 1977). Heights of elevated inversions and mixing depths undergo a sequence

of changes which are closely linked to the movement of coastal lows and the associated cold front

along the Natal coast. The pole top fire incidents in KZN fit neatly into this pattern (Diab, 1991).

The above is now summarized to assist in understanding why KZN is unique to the phenomenon of

pole top fires.

Incidents of pole top fires coincide with a period of high air pollution potential. Pre - frontal

conditions over KZN are characterized by light winds and well developed mesoscale wind systems

which facilitate the recirculation of pollution, low mixing depths and under extreme cases the

occurrence of hot and dry offshore Berg winds. All these factors reduce the capacity of the

atmosphere to disperse pollution. These conditions coupled with the timing of the phenomenon

which is at the end of a long dry winter season during which marine salt and contaminants from

sugar cane burning and industrial pollution, settle on the insulator and cross arm surfaces, further

increases the potential for pole top fires. Also, the occurrence of runaway veld flres and cane fIfes

immediately prior to the phenomenon result in rapid deposition of contaminants onto the insulators,

thus reducing their insulation strength sufficiently to cause high leakage currents (Diab, 1991).

Some of the driving forces along the west coast are (Vosloo, 2006):

Mainly marine pollution.

Pollution wind which is driven and directional.

Fungal growth problems.

Nearly daily occurrences of marine fog.

High humidities with directional wetting.

All of the above driving forces contribute directly to the phenomenon of pole top fires. Other areas

do not experience these factors as much and hence experience little or no burning of cross arms.
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Figure 3 - 2: Pollution type map for SA highlighting coastal pollution (Eills, 2005).

The subject of pollution is further expanded on in the next section where an investigation was

carried out in the mid 1990's to determine leakage current characteristics and the environmental

effects of prevailing environmental conditions.

The following pictures were taken on structures in the Mtubatuba area, by the author. The areas

highlighted in Figures 3 - 3 and 3 - 4 respectively show signs of early stages of burning. If these are

un - detected, they will eventually lead to burns of the extent shown in Figures 3 - 5 and 1 - 3

respectively. These are serious problems as they lead to low hanging conductors of which pose a

major safety risk to humans and animals.

Notice that a metal fitting was pressed
against the surface of the cross arm.

Figure 3 - 3: Tracking starts on the wood surface from metal fittings.
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Severe tracking from an insulator base
that was pressed against the surface of
the cross arm.

Figure 3 - 4: Tracking gets more severe and starts to ignite the wood surface.

Figure 3 - 5: The wood surface suffered serious burns. The fire has damaged most of the cross arm.

3.1.2.3 Effects of Leakage Current Activity

In 1997 Loxton showed that leakage current activity depends on the presence of moisture in the air,

humidity, temperature and pollution present on the insulator at the time of failure (Loxton A, 1997).

Under clean and dry conditions, wood that is in series with porcelain provides exceptional

insulation properties « 410M ohms.m-I
). However, once this series combination is lightly wetted

and polluted, the high resistance of wood rapidly reduces to less than lOOkohms.m- l . Leakage

current activity on these polluted insulators is prevalent under high humidity levels. At dusk and the

early hours of the morning, humidity and light wetting is common. Hence during these times,

surface burning occurs. However, with an increase of ambient temperature following sunrise,

temperatures increase rapidly in the Kwazulu - Natal northern region, causing the humidity levels

to drop and drying of the wood-pole surface to occur (Loxton A, 1997).
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3.1.2.2.1 Investigation determining Leakage Current Characteristics on 22kV Lines

Seasonal burning of wood pole cross arms in the Northern Zululand is a major concern. During

June and November of 1995 Loxton carried out investigations to determine leakage current

characteristics on 22kV lines and environmental effects of prevailing environmental conditions. He

aimed to measure the magnitude of leakage current present between phases on wooden cross arms

and show the effect of humidity, temperature and pollution levels on leakage current activity

(Loxton, 1995).

The following tests were conducted:

Measurement of 22kV leakage currents.

Monitoring of environmental conditions, that is temperature and humidity.

Determination of the pollution level- ESDD tests.

These tests were carried out in the Mtubatuba area which is north of Richards Bay. Wood pole

burning is common in this area between June and November. A 22kV line was used for the

experiments. The line was ideally situated away from any forest area and well exposed to the

prevailing wind conditions. The investigation was planned over this period to ascertain the effect of

the winter period progressing into summer (Loxton, 1995).

a) Measurement of 22kV leakage currents

Leakage current measurements were made directly from the 22kV line. One phase on the cross arm

was bonded and the other phase left open to allow leakage current to flow between the phases. The

un-bonded side of the cross arm was drilled 300mm from the outer insulator pin to accommodate a

dummy pin to be fitted. A current measuring unit was then fitted to the bottom of each pin allowing

the current flowing between them to be measured and recorded. The current measurement range

was set to measure AC current ranging from 0 - 9mA RMS. This allowed for the low 0 - lmA area

to be recorded with good sensitivity.
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Figure 3 - 6: Diagram of measurement system on wooden cross arm (Loxton, 1995).

The leakage currents that were measured had varying amplitudes. The higher amplitudes were

measured at periods of increased pollution which occurred between August and September. These

were often at high humidity values. During September, which is a period of high humidity a

maximum leakage current of 9.0mA was experienced. The corresponding relative humidity was

recorded at 85% and the corresponding ambient temperature was 19.5°C. Many of the recorded

currents were found to be of low amplitude (±O.5mA), but of long duration (±3-5hrs) and with

sporadic transients of ±3-5mA occurring at various intervals. Appendix C shows the recordings for

August 1995. A maximum leakage current of3.9mA was experienced during this month. However,

this tapered to O.7mA within 45 minutes. The relative humidity was recorded at 99010 and

corresponding temperature was 18°C.

b) Temperature and humidity monitoring.

These were measured and recorded using data loggers. It was observed that when the humidity was

high, there was an increase in leakage current amplitudes. Increased activity was also recorded

when the humidity changed suddenly. Ambient temperature was found to have little influence on

leakage current activity. However an increase in temperature coupled to a warm inland wind could

cause severe resistive and humidity gradients upon the wood pole system when drying and heating
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of the cross arm occurs, resulting in cross arm fires. Detailed results and graph of the recorded

values for the month of August can be found in Appendices D, E and F respectively.

c) Pollution tests

ESDD (Equivalent Salt Deposit Density) tests were carried out to determine the level of pollution in

the area. Six insulators of type U70BL were strung beneath the cross arm on the side opposite to the

current monitor. An insulator was removed monthly and the ESDD measured.

The Equivalent Salt Deposit Density pollution levels obtained from the suspended insulators were

found to be as follows:

Table 3 - 2: Equivalent Salt Deposit Density tests results.

Month Suspended Solids (mgl-1) Calculated ESDD (mgcm-J)

June 8.4 0.0024

July 7.2 0.0020

August 54.2 0.0152

September 131.6 0.0369

October 34.2 0.0096

November 103.2 0.0018

A graph of the results can be found in Appendix G. Although the ESDD measurements indicate a

light pollution area high leakage currents were experienced during times of high humidity. When

the humidity is high. it results in the light wetting of the light pollution layer which then becomes

conductive. It is this conductive layer that promotes the leakage current activity. It is these high and

sustained leakage currents that cause burning. Loxton's work is very significant in that the

investigations show that, all that is required for wood pole ignition is light pollution and light

wetting ofwhich is caused by the high humidity.

3.1.2.4 Influence of insulator specific creepage on leakage current activity

Eskom Field Services staff indicated that wood pole burning occurred over the winter period and

prior to the annual rains in northern Kwazu1u - Natal (Mathews et aI, 1994). This was verified by

Loxton's investigations pointed out in the previous section. The high incidents of pole top fires are

prevalent over this period due to dry dusty conditions which is aided by dust and salt pollution from

the coast. This area has particularly high relative humidity levels (>70%), which allows dampening
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of the wood pole structure and insulator surface, thus assisting in contaminating these surfaces

(Loxton, 1995).

Insulation level is thus reduced over these periods of high humidity, due to pollutants, such as dust

and salt air conditions, resulting in a conductive path causing current flow between phases along the

un-bonded w~d path. Erratic discharge levels into the wood surface causes burning and tracking

from metal fixtures finally resulting in ignition of the wood surface (Loxton, 1996). Evidence of

these can be seen in Figures 3 - 3 and 3 - 4 respectively.

Another experiment was conducted by Loxton in 1996 to determine the influence of insulator

specific creepage on leakage current activity. This investigation looked at the use of different

insulator creepage levels to observe the leakage current activity and amplitude of each insulator

respectively. These were the 24mm/kV and 31mm/kV ceramic insulators and specified for a

maximum supply (Umax) of 24kV. These insulator types were the Cullinan EP303 (24mm/kV) and

a model of higher specific creepage level, EP965 (31mm/kV). The specifications for these

insulators appear on Appendices I and K respectively. The measurements were carried out on a

22kV line (Loxton, 1996).

Once again the investigation was carried out in the Matubatuba area. As mentioned in section

3.1.2.2.1 wood pole burning is common in this area between June and November. Hence in order to

provide meaningful results, Loxton found it imperative to carry out the investigation during this

time and in an area where wood pole burning was prevalent to obtain results which related to the

environmental and pollution conditions common to the area.

The measurement was as follows:

Two 22kV wood poles were erected and set up 10 meters apart on a separate test line situated near

the Mtubatuba Technical Service Center (TSC). Each cross arm was fitted with a current monitor as

illustrated in the pictures below.
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Figure 3 - 7: The test jig erected near Mtubatuba TSC (Loxton, 1996).

One of the wood poles was fitted with a clean set of porcelain insulators of 24mm/kV specific

creepage level and the other with a clean set of 3lmm/kV creepage insulation level. Figure 3 - 7

refers.

The aim was to investigate the magnitude, duration and frequency of leakage current activity on the

two types of insulators. Measurements were carried out between June 1996 and November 1996.

Heavy rainfall that started at the end of October 1996 washed the insulators and thus reduced

leakage current activity. Measurements for the entire period were recorded and the results appear on

Appendix H (Insulator EP303) and Appendix J (Insulator EP965). To make a realistic comparison

between the insulators, only leakage current amplitudes of> l.OmA RMS were extracted from the

results and tabulated (Loxton, 1996). Note that sustained currents above l.OmA have been shown to

cause burning.

The claim of lmA as the threshold is based on earlier research fmdings which showed that

sustained currents of about lmA flowing into the wood are liable to cause ignition (Loxton, 1994).

These results and their respective "Time durations" or period of activity measured was tabulated. A

graph of the results was drawn for both insulators in respect of current amplitude, number of events

recorded and their associated time durations. These appear in Appendices H and J respectively.

The insulators are referred to as follows: 24mm/kV unit - "Insulator EP303"

31mm/kV unit - "Insulator EP965"

Specifications for the above insulators appear in Appendices I and K respectively. The number of

events relating to leakage currents exceeding lmA RMS and above were recorded as follows:
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Insulator EP303

69 events

Insulator EP965

31 events

Time duration of each event number was added to obtain the maximum time of each insulator's

activity period over the total number of events taken. These results were as follows:

Insulator EP303

310 minutes

Insulator EP965

86 minutes

From the results it was seen that the 24mm1kV insulator was susceptible to sustained leakage

currents of low amplitude «0.5mA). However, peak currents of 9.0mA RMS were recorded on

both insulator types. These peak currents were of extremely short durations of 1 - 1.5 minutes and

at different periods. Many of the recorded currents were found to be of low amplitude (±O.5mA) but

of long duration (±l - lObe) with sporadic transients of ± 2 - 3mA occurring at various intervals.

These intervals were less in the case of the 3lmmlkV insulator. Graphical comparisons (Appendix

H) revealed insulator EP303 as being four times (310 to 86 minutes) more susceptible to leakage

current activity in comparison to insulator EP965 (Appendix 1). Insulator EP303 showed sustained

time durations often in excess of 20 minutes at levels over lmA. This indicated that the higher

specific creepage level suppressed leakage current activity and the lower EP303 (24mm1kV)

insulator was inferior in containing leakage current activity.

Furthermore, the EP303 insulator experienced more activity periods in excess of five minutes

duration. This indicated reduced insulation levels thus creating a low resistive path which is

conducive to increased leakage current activity and longer duration.

The findings and subsequent conclusions of the above investigation are as follows:

The higher creepage insulator maintained a higher level of insulation. In contrast, the smaller

creepage insulator experienced increased levels of leakage activity of 1.8mA. This indicated a

possible need for an increased specific creepage level in heavily polluted environments.

Measurements showed that once environmental pollution on the surface of both insulators had

occurred, currents often of similar amplitudes were measured from the EP965 insulator. They

occurred much less frequently and were of much lower duration.
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The EP965 insulator is valuable in reducing leakage current activity and durations on 22kV

wood pole lines. It was recommended that the EP965 insulator be used in areas of KwaZulu 

Natal where wood pole flres were prevalent to improve the integrity of speciflc creepage

insulator levels.

It was concluded that the EP965 insulator (3lmmlkV creepage) could not be used as an

alternative option to bonding. There is no guarantee that there will be seasonal rainfall as dry

periods do occur during spring and summer. No rainfall will mean that the pollution on the

EP965 insulators will not be washed away and hence the same results will not be produced.

That is, leakage currents will not be reduced. Without bonding, these leakage currents will

accelerate burning of cross arms. However, these insulators could be used in conjunction with

bonding in areas where the bonding is considered to be of an inferior nature, thus enhancing

the speciflc insulator creepage levels.

3.2 Field investigations beyond KwaZulu - Natal

3.2.1 Experiences in Kenya

Since the early 1990's, various minor investigations have been conducted in the northern parts of

KwaZulu - Natal and reports produced. Many of the reports concluded that cross arms that had

burned were either due to no bonding being applied on the said cross arms or that bonding was

poorly applied on the said cross arms (Loxton et al, 1996).

During May 1995, Eskom Engineers and the Kenya Power and Light Company (KPLC) inspected

parts of the Mombassa - Malindi 33kV coastal distribution wood pole line. Many parts of the

network near Mambrui had experienced burning of wood cross arms (Britten, 1995). An idea was to

compare the KPLC's problems with those experienced by Eskom in KwaZulu - Natal. Another aim

was to deduce the appropriateness of the solutions used in the two organizations. Background

details of the burning problem are summarized below (Britten, 1995).

The 33kV scheme was in service for approximately 15 years.

The line comprised of unshielded wood pole structures with horizontal wood cross arms. The

poles were of Eucalyptus Saligna type.

The line was mainly parallel to the coast, about 1 to 3km inland on average and approximately

85km long.
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The area is of low isokeraunic level, namely, about 10 to 20 thunderstorm days per year.

The structures on which burning had occurred were initially fully insulated. That is, the cross

arms were un - bonded and the insulation below the attachment point of the two braces was

provided by the unearthed wood path of the main pole itself.

Most of the burning incidents had occurred on the wood cross arms and seldom on the main

pole. Furthermore, burning had occurred mainly on the outer phases, at the point where the

insulator spindle, washer and nut make contact with the wood surface.

The KPLC staff attributed the cause of the burning to pollution related leakage currents

flowing along the insulator surface and thereafter into the inter-phase wood path of the un

bonded cross arm.

The line was supplied at 33kV by a solidly grounded star connected transformer (assumed to

be 1OMVA) (Britten, 1995).

The methods used by the KPLC to reduce or eliminate the burning were as follows:

The replacement of the 33kV porcelain pin - type insulators (of specific creepage 17 to

22mm/kV) by porcelain line post insulators (of specific creepage 25mm/kV). The un - bonded

wood cross arms and fully insulated structures were retained after this modification.

In areas of chronic burning, such as at Mambrui, wood cross arms were replaced with steel

cross arms which were also fitted with line post insulators (Britten, 1995).

It was reported that the above two changes almost completely eliminated the burning problem.

Britten offered the following comments on the corrective action taken by the KPLC:

The mitigation measures taken were technically valid and appropriate.

The use of steel cross arms instead of un-bonded cross arms is good engineering practice and

technically valid as it will almost entirely eliminate burning. However, Britten identified a

small risk that burning could still occur at the interface between the bracing straps and wood

pole.

The reasons for the small risk of burning are as follows:

For burning to occur at the interface between wood and steel, unbalanced pollution related currents

must flow, as shown in Figure 3 - 8. The unbalanced resistive load due to the pollution layer causes

the potential of the steel cross arm to rise with respect to the local pole "earth". The pole itself has a

finite resistance to true earth, and hence forms the earth of the supply system. In extreme pollution
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conditions this may cause the cross arm potential to reach the fulllin~to-ground voltage for short

periods, probably for seconds at a time. 84>

Ib

Insulator

•

C3

• Ic<lb

Cross arm

Metal brace

Rpole

C2

• Iw

Ct

• Irf
Pollution layer
with dry band

Ip

!Q = !r + Iw + Ib
~O

• Ir ~ Iw ~ Ib > Ip (usually)

Figure 3 - 8: Electrical model of a steel cross arm. Pollution related currents on a horizontal
configuration and vertical wood pole structure (Britten, 1995).

Although there is a small risk of this mechanism causing ignition, it is lower than that associated

with wood cross arm burning. The reasons for the lower risk of burning are as follows:

a) Sustained unbalanced impedances would have to exist for several minutes at least for ignition

to occur. Britten's experience indicated that this will be a rare event compared to cross arm

burning. An earth return leakage current of the order of 1mA RMS means that the insulator

leakage currents will usually be higher than a few milliamperes. This will be caused by
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moderate to severe pollution, as opposed to light pollution conditions. Thus cross arm burning

occurs more often than pole burning because:

Milliampere - level phase - to - cross arm pollution currents will flow whether there

are unbalanced impedances or not.

Currents of such levels can occur in light pollution conditions.

b) With regards to the well aged KPLC poles, it was likely that the resistance of the pole itself

was as high as several tens ofMO. If values of approximately 20 to 50 MO are assumed, then

the corresponding earth return currents, for light pollution, would range from about 0.97mA

down to 0.38mA and probably lower. The higher current could cause ignition, but it would

have to be of long duration.

c) The use of line post insulators with the relatively high specific creepage of 25mm/kV tends to

keep phase - to - cross arm leakage currents lower than was previously the case with the pin

insulators used by KPLC.

d) As far as Britten was informed, there was no evidence of burning occurring at the bracing

interface with the pole in the Malindi and Mambrui areas. Similar burning at this point on

Eskom's 22kV wood poles is rare compared with the incidence of cross arm burning.

In view of the above, Britten felt that the KPLC should tolerate the low risk of burning at this

position on steel cross arm structures and that no protective measures needed to be applied

retrospectively. However, on future installations, Britten advised to wrap a metal band around the

pole at the point of attachment of the two bracing straps. This was to ensure that the brace-to-wood

pole current density remains uniformly low. Conductive paint could also be used instead of banding

to achieve the same effect (Britten, 1995).

The significance of the above field investigation was the role of a high insulator specific creepage in

helping to reduce the magnitude of pollution leakage currents. At the time of the investigation, the

specific creepage of many porcelain line post insulators used in Kwazulu - Natal lines was about

19 to 20mm/kV (Britten, 1995). This creepage was too low. Following the investigation, the Eskom

Distribution Insulator Specification was modified to require the use of a specific creepage of

31 mm/kV where severe pollution was experienced and caused pole top fires. The use of the steel

cross arms should have also been considered as an alternative at the time.
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Darveniza has shown that the following essential conditions are necessary for the ignition of wood

cross arms and poles by electric currents (Darveniza, 1980):

a) Sustained leakage currents of the order of a few milliamperes (rms) or more must flow from

the insulator surface into the wood. As illustrated in section 3.1.2.3, actual cross arm leakage

currents in the order of a few milliamperes can last for tens of minutes.

b) High current densities must exist at the points of contact between the metal fittings and the

wood surface. This occurs when the insulator spindle fits loosely in the spindle hole, thus

creating poor electrical contact with the wood. A further example is sparking between the

spindle washer and the wood. The sparking is caused by the presence of a zone of dry high

resistance wood (for example, on the weather protected underside of the cross arm adjacent

to the washer) which in turn causes a high voltage gradient across this region. If the voltage

gradient across the dry zone is high enough to cause sparking, high current densities at the

point of entry of the spark into the wood will usually occur. This is assuming poor or no

electrical contact between the spindle and the hole that is drilled through the cross arm.

c) Local air movement, such as a slight wind to provide additional oxygen to initiate and sustain

ignition.

The overriding and necessary condition is the existence of milliampere - level leakage currents.

Such currents can only flow on medium voltage structures if the insulators become coated with

conductive pollution. Under clean and dry conditions, the quiescent capacitive currents are much

lower and do not cause ignition.

3.3 Laboratory studies

In 1996 studies were carried out at the then Technology Services International (TSI) (Loxton et al,

1996).

Investigations had covered the following areas:

Resistance measurements on a cross arm that had suffered a burn off.

The effect ofa maintained dry band in the centre of the cross arm.

Artificial pollution tests on wood cross arm.

Silicone coated porcelain line post insulator EP303 insulator measurements.

Cross arm voltage gradient measurements.

Future preventative methods ofcontrolling leakage currents.
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3.3.1 Cross arm wood series resistance measurements

Copper wire band

I Insulation Tester I II I

I I Wood cross arm ~ I
1000 mm

... •
Figure 3 - 9: Diagram to determine the resistance of a cross arm (Loxton, 1996).

In this experiment, a eucalyptus cross arm which had suffered a burn - off was retrieved from site

and left in the laboratory to completely dry out at a controlled temperature of 23°C and a humidity

of 50%. Copper wire was fixed into grooves which were filed 1000mm apart into the surface of the

cross arm. The resistance of the wood was measured across this length under its normal dry

condition and under different levels of wetting. This was to determine the effect of moisture on the

wood surface. The cross arm was subjected to wetting with distilled water (Loxton et aI, 1996). The

following results were recorded:

Table 3 - 3: Results ofResistance measurement.

Measurement conditions Measured Resistance (n)

Completely dry pole 410 M

Lightly Wetted llM

Medium Wetted 650k

Heavily Wetted 101k

From the above results, it can be seen that wood is an excellent insulation material when dry. The

results also show a rapid decrease in resistance when the surface is lightly wetted. This illustrates

the effect of sudden light drizzle in the field, after which cross arm burning often occurs (Loxton et

aI, 1996). Note that these results refer only to the surface resistance and not the internal resistance

of which an insulator spindle might see.
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3.3.2 Cross arm maintained series impedance investigation

Further tests were carried out on the above cross arm to determine the effect of a maintained dry

band in the centre of the cross arm. A maintained dry band will maintain a continuous high

resistance under all weather conditions (Loxton et aI, 1996). The aim was to prevent leakage

currents from occurring in or around the insulator area.

Earth

Fluke 87 DVM ammeter

/

1000mm

A

Zenith supply
Transformer

220V/44000V

Zenith STD
Measuring
Transformer
22000V/IIOV

Copper wire band

Figure 3 - 10: Laboratory measurement of leakage current on a cross arm with maintained series
resistance using a Silicone cover. (Specific creepage of the insulator = 24mm/kV) (Loxton, 1996).

The method of measuring the leakage current was as follows (Loxton et aI, 1996):

Silicone sheets of 500mm, 300mm and 100mm were cut and applied to the centre of the

cross arm for each test to maintain a dry band of high resistance. The use of silicone was to

maintain good hydrophobic properties and subsequently maintain a high creepage level

across the surface of the wood under high levels of pollution. The silicone sheet was

wrapped around the centre of the cross arm and secured at each end with a piece of copper

wire.

Distilled water was lightly sprayed over the whole surface of the cross arm and insulator to

wet the surfaces to initiate current activity.

The insulator had been polluted with a medium pollution level mixture of Kaolin and

Sodium Chloride.

The leakage current was recorded as the voltage was increased to approximately 12.5kV.

This was carried out for each silicone sheet that was applied to the cross arm, starting with

the 500mm sheet.
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The results were as follows:

Maintained series resistance: Leakage
currents measured on a cross arm.

20

-~
::::J 15--c
~ 10
::::J
0
tJ)

5~
~

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Voltage (kV)

--- Measured current with a 500mm sheet (uA)

Measured current with a 300mm sheet (uA)

--++- Measured current with a 100mm sheet (uA)

Figure 3 - 11: Maintained series resistance on a cross arm -leakage current results (Loxton, 1996).

From the graph, it can be seen that the leakage current is limited to a very low level. Also, the

results show that the current activity is controlled by the length of the series resistance imposed on

the series circuit, that is the longer the silicone sheet, the lower will be the leakage current (Loxton

et aI, 1996). The cross arm surface was kept dry maintaining a high wood path resistance, thus

preventing a path for leakage currents to occur.

3.3.3 Artificial pollution tests on wood cross arms.

Further laboratory tests were conducted at the then Technology Services International (TSI) by

Loxton to investigate artificially imposed pollution on a cross arm that was again taken from the

field in KwaZulu - Natal. The cross arm was allowed to dry in a controlled environment of ±25°C

and 30% humidity.
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High voltage tests were carried out using the standard test transformers available in the laboratory.

The Zenith supply transformer of ratio 220V/44000V and rated at 3kVA was monitored using a

Zenith standard measuring transformer set on a ratio of 22kVIII OV. Since the operating voltage of

the 22kV line is 22kV I .../3, the primary voltage output was varied from 0 - 12kV RMS (Loxton et

aI, 1996).

Zenith supply
Fluke 87 DVM ammeter Transfonner

A
• 220VI44000V

Porcelain EPC 303

~~
::>
::>

c ::>

I 1t1 I I Zenith STD
Measuring

le ~ • B Transfonner
1000mm 22000V/l1OV

er wire bandCopp

Figure 3 - 12: Laboratory test set up for artificial pollution tests on wood cross arms (Loxton,
1996).

The test required a completely dried out cross arm. This was necessary to simulate long dry winter

conditions and be wetted through varying tests relating to site conditions. The resistance of the cross

arm was measured to be in excess of 40 megohms. The cross arm was wetted using a fme spray

mist bottle containing distilled water. Pollution of the insulator was achieved using a 2% Sodium

Chloride solution that was sprayed onto a clean insulator (Loxton et aI, 1996).

Tests were also aimed at investigating the area around the base of the insulator under clean and

polluted conditions. This area has a direct bearing on the ignition mechanism and leakage current

activity. The following tests were carried out:

To verify current flow with the system clean and dry.

To determine if any current flow is present when the insulator and entire cross arm is wetted.

To determine if leakage current activity exists only when the insulator is polluted and the cross

arm is dry.

To determine what current activity is present when the insulator is polluted and the cross arm

is lightly wetted.

To determine what activity is present when the insulator is heavily wetted with pollutant and

the cross arm is wet.

To determine ifleakage current activity is confined only to the base of the insulator.
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The results of the above tests were as follows:

Under clean and dry conditions, a maximum current of4.4uA was measured in the circuit.

The cross arm was kept dry and the insulator wetted with distilled water. This revealed an

extremely low leakage current of 11.8uA, indicating that ideal insulation conditions exist.

When the whole circuit was wetted with distilled water, it showed a small increase in current

activity to 41.4uA.

Hence, under clean conditions, leakage current activity is less than 80uA (RMS). Pollution however

has the following effects:

The cross arm was maintained at a dry level and the insulator was lightly polluted. The wood

path impedance maintained a high insulation factor thus limiting the current to a maximum of

21.3uA only. Thus the lightly polluted insulator has a low effect on the circuit (Loxton et aI,

1996).

The cross arm was moistened by light wetting from the mist spray to simulate a light drizzle.

The insulator became polluted with the pollutant and immediately 190uA was experienced at

only lkV. As the voltage was increased to 7kV, the current climbed steadily to 2.2mA at

which point smoke started to develop from the base and washer end of the circuit. At 3.5mA

and 9kV, the whole insulator was emitting surface sparks and the pollutant started to ignite

(Loxton et aI, 1996).

The base of the insulator developed sparking which was transferred into the wood by the pollutant

dripping into the area. As the pollutant found a pathway into the grain of the wood, it caused the

wood to ignite in tiny bursts of energy. Once the pollutant was dried from the heating, the current

started to gently subside. A very important question is now addressed. That is, does leakage current

amplitude of lmA (RMS) sustain ignition of the wood cross arm? The current was maintained at

O.8mA to 1.1 mA and the lower end of the insulator continued to exude smoke. If it was left on and

maintained at this level, the burning inside the area would have kept on burning. This verified that

one of the primary requirements of the mechanisms of ignition is moisture. This can be in the form

of a mist, a drizzle or elevated humidity %. Coupled to this condition, the pollution level of the

insulator played a major role in that the insulator became a resistive device allowing tracking of the

line voltage to occur (Loxton et aI, 1996). Finally, the cross arm was allowed to dry overnight and

again tested to measure the current flowing under dry and wet conditions. The insulator was shorted

between points A and B. This reduced the circuit to a purely resistive one between points B and C.
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It was seen that under dry conditions, the current increased to a maximum of 8.1uA at 12kV (RMS).

Once the wood was wetted with distilled water, the current immediately increased at 1kV (RMS) to

4.3mA, thus showing the direct effect of wetting of a wood structure. Note that this pole was

removed from site and may have been impregnated with pollutants such as chlorides. When wet,

these produce a conductive path for the current (Loxton et aI, 1996).

The following Figure indicates the amplitudes of leakage currents at varying voltages and at various

pollution conditions.

Artificial pollution tests on wood cross arms.

15 -1-------"FI'-------:~:::::....;;,;;.--____.._l

10 +-----;:r---~~--= .....~- ----l

~~~~~~~=:j

Pole dry & Insulator wet
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~ Pole & Insulator wet
(IJA)

-.- Pole dry & Insulator wet
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Figure 3 - 13: Results ofleakage currents at varying applied voltages and at various pollution
conditions (Loxton, 1996).

The conclusions of the above test can be summarized as follows:

A clean dry cross arm and a lightly polluted insulator has a low effect on the circuit. The leakage

current activity was kept below the burning threshold of 1mA. The light pollution consisted of a

mere 2% solution of Sodium Chloride. When the cross arm was moistened to simulate a light

drizzle and with a mere 2% pollution severity on the insulator, a large leakage current of 3.5mA (at

9kV) started to flow causing sparks and ignition of the pollutants. Thus, one can appreciate the

magnitude of leakage currents that would flow at 22kV. From this it can be seen that pollution

severity becomes significant at a mere 2%. Hence severity of pollution has a major influence in the

burning process. Furthermore, once the pollutant was dried from the heat, the current started to
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slowly subside. However, once the wood surface was wetted again the currents immediately

increased to the burning threshold, thus showing the direct effect ofwetting.

Hence, one of the main requirements of the mechanisms of burning is moisture which can be in the

form of mist, light drizzle or high humidity. Furthermore the pollution level on the insulator

provides the resistive device that allows tracking of the line voltage. This then explains why burning

of cross arms in the field occur on the onset of light drizzles and during times of heavy mist and

high humidity levels. Heavy mist is usually experienced during the early hours of the morning and

late evenings.

3.3.4 Silicone coated EP303 porcelain insulator tests

The insulator was coated with silicone and tested to evaluate its specific creepage capabilities in the

laboratory after a two year period of climatic and environmental exposure on site. The insulator

surface was seen to have surface contaminants and had changed colour slightly to a light grey

colour (Loxton et al, 1996). The specification for the EP303 porcelain insulator is given in

Appendix I.

Earth
Zenith supply

Fluke 87 DVM ammeter Transformer

A
220V144000V

.a
Silicone coated insulator EPC303 ...~ J

J
<. :>

I 11 I I
'---- Zenith STD

Measuring.B Transformer
C ~ lOOOmm 22000V/11OV

Figure 3 - 14: Laboratory configuration for Silicone Coated EP303 porcelain insulator leakage
current tests (Loxton, 1996).

The surface was lightly wetted with distilled water to verify the surface capability with respect to its

hydrophobic properties following lengthy environmental exposure. The total insulator surface was

then subjected to light wetting including the cross arm surface to evaluate its specific creepage

capabilities under normal applied voltage levels of 12.5kV and again at elevated levels of voltage,

namely 14kV which is 20% higher than normal operating conditions (Loxton et ai, 1996).
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The surface of the insulator was then left to dry and then artificially polluted with a medium

solution mixture of Sodium Chloride. The total cross arm surface and the insulator was again lightly

wetted with the distilled water to see if current of higher magnitude would result when energized to

the above levels of voltage.

The result of the test was as follows:

The silicone surface maintained a good level of hydrophobicity with beading immediately taking

place. Under both conditions of wetting in the laboratory, the maximum leakage current recorded

was O.lmA RMS even though the surface had been artificially polluted to create a resistive path for

leakage currents. The results showed the excellent capabilities of this silicone coating. Silicone has

thus far proved its excellent capabilities in maintaining a high resistance path, thus reducing leakage

currents. However, it is not practical to coat all existing porcelain insulators in the field with

silicone to get the desired effect. It is however, practical to rather use silicone insulators.

3.3.5 Cross arm voltage gradient measurements

The aim of this test was to ascertain the voltage grading along a wood cross arm on an energized

structure. The insulator / cross arm combination was configured as shown below. The insulator was

artificially polluted using a medium pollution mixture of Sodium Chloride, Kaolin and distilled

water. The set was energized to 12.5kV RMS and the voltage measured at each copper strip placed

at 200mm intervals with a Sensorlink 8014 fibre optic high voltage probe calibrated in the

laboratory. The current was measured on the in line Fluke multi-meter (Loxton et aI, 1996).
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Figure 3 - 15: Laboratory measurement ofvoltage gradients on a wooden cross ann under polluted
conditions using an EP 303 porcelain insulator (Loxton, 1996).

The results were as follows:

Leakage currents in the order of 25mA RMS were measured with a surface voltage of 5.6kV at the

800mm mark measured from point C towards point B, reducing to 1.1kV at the 200mm mark

measured from point C. The voltage gradients were seen to be present on the surface of the cross

ann and increasing in severity closer to the insulator base area.

Table 3 - 4: Results of measured voltage gradients [distribution] on a wooden cross ann with an
artificially polluted EP 303 porcelain insulator.

[-------------- Distance from ground (C) towards point B ------------------------]

Applied voltage 200mm 400mm 600mm 800mm

12.5kV 1.lkV 2AkV 3.8kV 5.6kV

The conclusion from the above test can be summarized as follows. Voltage gradients are present on

the surface of wood cross arms of energized structures. The voltage gradient increases closer to the

line voltage or base of insulator.

47



3.3.6 Future preventative methods of controlling leakage currents

A number of alternative solutions to prevent cross arms from burning were investigated (Loxton,

1998). These are briefly described below.

Maintained series impedance on the cross arm.

Conductive paint applied to the surface at 100mm on either side of the insulator.

Banding which involves the application of a copper strip from the insulator pin to a point

about 200mm away from the pin and encircling the pole.

Guarding, which is a short length of copper strip is fixed to the insulator pin and fixed to the

cross arm 200mm away.

Each of these methods were set up in the laboratory and tested under clean fog conditions.

Measurements were carried out under an applied humidity that was controlled between 50 to 90%.

The objective of the tests were to prove their capabilities in being effective in overcoming leakage

current activity or in preventing any form of burning or ignition taking place on wood pole surfaces

(Loxton, 1998).

3.3.6.1 Maintained series impedance test

Figure 3 - 16: lllustration of maintained series impedance test showing the 300mm long silicone
cover. (Loxton, 1998).

This test was similar to that in section 3.3.2 above. The section of the cross arm surface was kept

dry maintaining a high wood path series resistance, thus restricting any leakage current flow that

would ignite or bum the wood surface.
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3.3.6.2 Conductive paint test

Figure 3 - 17: illustration of conductive paint applied to the cross arm 100mm on either side of the
insulator pin (Loxton, 1998).

The test sample was exposed to the same conditions as in 3.3.6.1 above, except that the insulator

was changed to one with a specific creepage level of 24mm/kV. The test sample was energized to

12.5 kV and the current recorded. The results were as follows:

On energizing the sample, the wetted insulator started emitting flashover sparks between the sheds

and onto the surface of the conductive paint. The current immediately rose to 32 - 40mA RMS. The

unit remained energized for 20 minutes. After the insulator sheds had become dry from the heating

activity on the surface, little or no activity was observed. At all times during the test, no traces of

surface burning or smoke were seen at all. There was no burning to the cross arm surface at all

(Loxton, 1998).

The conductive paint was applied with a paintbrush on the brushed wooden surface. After nine

months of being in service, the paint started to flake and crack at various points on the cross arm.

This was due to the unstable surface of the wood and the harsh weather conditions causing wetting,

heating and cooling of the wood. Although this method showed extremely positive results in

overcoming burning, the results were disappointing as the lifespan of the conductive paint had

reduced by three quarters. The formula for the conductive paint needs to be further investigated and

worked on to cater for the longer durations in the field. It should have a lifespan of at least twenty

years. Hence applying conductive paint is an excellent method to overcome pole top fires, however,

it is not yet practical as the paint is not yet durable for the long periods required.
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3.3.6.3 Banding test

Figure 3 -18: lllustration of the application of banding to the cross arm (Loxton, 1998).

Banding is a method whereby a copper strip is taken from the bottom of the insulator pin and taken

once around the circumference of cross arm. The strip is nailed into the cross arm to maintain a

good connection (Loxton, 1998). The copper strip allows any leakage current to be diverted away

from the insulator area into the resistive area of the cross arm. The test was carried out on in a fog

chamber with the relative humidity controlled to 80%. The test sample was allowed to soak for 30

minutes prior to being energized to 12.5kV RMS and the current recorded. The results indicated

that the current immediately rose to 31 - 35mA RMS and subsided to 1.2mA after 5 minutes. Also,

throughout the duration of this activity, sparking was observed between the sheds of the insulator

but no visible surface burning was seen. No smoke was observed at all (Loxton, 1998). The method

was successful in preventing burning from taking place however; there is no evidence of what is

happening inside of the wood where the spindle is in contact with the wood. Further investigations

need to be conducted to ascertain what happens between the spindle and wood.
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3.3.6.4 Guarding test

Figures 3 - 19: illustration of copper strip attached to the bottom of the insulator pin and fixed
approximately 200mm from the insulator pin (Loxton, 1998).

The copper strip was bolted to the bottom of the insulator pin and taken towards the centre of the

cross arm. This removed the leakage current concentration away from the insulator pin thus

preventing any form of ignition or surface burning. The test sample was set up the same as in the

maintained series impedance test described in 3.3.6.1 above and the same environmental conditions

were adhered to. The result was similar to that of the banding experiment above. On energizing the

test, the current immediately rose to 21mA and slowly subsided after 7 minutes to 1.3mA as the

pollutant dried on the surface of the insulator. No ignition or burning was observed (Loxton, 1998).

Due to ease of application and efficiency in preventing burn offs on un - bonded cross arms, this

method was suggested for implementation in the field. The important feature with this method is

that it maintains the series wood path impedance required under high lightning conditions.

3.3.6.5 Conclusions from the above tests

Although the results of all of the above tests proved to be successful in preventing pole top

fires, not all are practical. The proposed methods need to be applied easily with long lasting

capabilities (Loxton, 1998).

The method of guarding was seen to prevent burning even under high levels of leakage current

activity on the wood surface under wetted conditions. It was also considered an alternative to

bonding in areas where high lightning activity is present. This is due to maintaining the high
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wood path series resistance (Loxton, 1998). However, the activity between the insulator spindle

and inside of the wood cross ann needs to be further investigated.

The silicone coated porcelain insulators reduced the leakage currents considerably (Loxton,

1998). However, due to the current skills shortages it is not practical to coat all existing

porcelain insulators in the field with silicone to get the desired effect. It is however, practical to

rather use silicone insulators.

3.4 Insulation co - ordination

Insulation co - ordination is achieved when the insulation strengths of all components of the

electricity system are adequate to withstand the electrical stresses of service within selected

reliability margins (Crowdy, 1999). In Eskom Distribution's medium voltage (llkV and 22kV)

networks, the insulation co-ordination is designed to ensure the lowest probability of power outages

and failures for the capital spent. The selection of the bonding and basic insulation level (B.I.L)

rating for a line is dependent on the lightning activity in the area and the pollution levels (Crowdy,

1999).

For medium voltage wood pole lines, the Eskom Distribution standard arrangement is that all the

spindles of all phases are bonded and an earth wire is installed down along the pole. A gap of

500mm is left between the bonding wire and the earth wire. A circumferential strap is utilized on

either side of the gap and connected to the earth wire and bonding wire respectively

(Stanford, 2004). The arrangement is to provide the following:

An alternative path for the leakage current, hence preventing concentrated leakage current

activity at the insulator spindles that eventually cause burning.

300kV insulation level between the phase conductors and ground.

Reduced probability of wood pole top burning and pole degradation resulting in reduced

operational cost and improved safe conditions.
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Figure 3 - 20: Diagram illustrating insulation co - ordination (03TB - 034).

The type and extent of lightning damage that occurs on pole and cross arms depend on factors such

as the moisture content and the lightning penetration into the wood (Stanford, 2004). Wood poles

and cross arms suffer the least damage when the lightning arc can be restricted to the surface of the

wood where superficial splintering may occur. This is achieved by having a minimum wood path

gap in the earth wire of 500mm and applying circumferential strapping at termination points of the

BIL down wire and bonding wire on either side of the gap. The circumferential strapping prevents

the arc from penetrating the wood pole to bolts (Crowdy, 1999).
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One of the main findings from research carried out by the CSIR and Eskom is that on an unsbielded

wood pole structure 8m bigb, the probability of an induced surge exceeding 200kV is far lower than

the probability of a direct strike to the line. For tbis reason, and to allow for tolerance for wet

insulation performance, a basic insulation level of about 300kV on each structure will minimize the

outages caused by induces surges (Erikson, 1986).

3.5 Bonding ofline hardware

3.5.1 Bonding of Wood Pole Structures

Based on the literature studies above, research demonstrates that due to various factors such as

pollution, moisture content or humidity, wind and sustained leakage currents, un - bonded cross

arms can eventually burn. Research has also demonstrated that the bonding on wood pole structures

reduces burning. The principle of bonding discussed below must be read in conjunction with the

Engineering Instruction RLC/IO and drawing DEN 900904 in Appendix A.

3.5.2 Principle ofBonding

The principle of bonding is that all the metal hardware and insulator "dead" end fittings on a wood

pole structure shall be effectively and electrically connected together. The bonding wire provides an

alternative circuit for the high density leakage current to flow away from the base of the insulator

and wood surface of the cross arm. The principle of bonding was thought to have the following

effect. That is, with the leakage current flowing away from the wood surface, there is little chance

of burning occurring. The principle of bonding is illustrated in the following figure. The bonding

connections are as per drawing D-EN-900904 in Engineering Instruction (RLC/IO) that appears in

Appendix A.
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Figure 3 - 21: Bonding of all metal hardware and insulator "dead" ends on a common wood pole
structure.
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Figure 3 - 22: Flow of leakage current on a properly bonded cross arm (persadh, 2003).

From the above figure, one can see the direction of flow of leakage current on a polluted insulator.

With the base of the insulator insulated from the cross arm surface, the leakage current flows along

the insulator surface and directly onto the spindle and not onto the cross arm surface. Note that the

spindle has a lower resistance than that of the cross arm, hence from Ohms law, the current will

flow into the spindle.
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3.5.2.1 Electrical model ofa bonded wood cross arm

RC!>

Pollution layer
with dry band

Insulator

R5

wC!> BC!>

Ic< Ib

Ib

.IQ =k + Iw + IQ
~ 0 (for an unbalanced system)

Ir ~ Iw ~ Ib > Jp (due to varying
pollution levels)

Figure 3 - 23: Electrical model of a bonded wood cross arm (Geldenhuys, 2004)

With a cross arm effectively bonded, unbalanced pollution related leakage currents flow away from

the wood surface and onto the bonding wire as shown in Figure 3 - 23. The unbalanced resistive

load (pollution layer) causes the potential of the bonding wire to rise with respect to the local pole

"earth". This shall be further discussed in chapter four which critically analyses the performance of

effective bonding.

3.5.3 Review of bonding design

In section 2.2 the researcher analyzed the various types of burning. In doing so, he critically

examined the implementation of bonding in Eskom and in particular in Kwazulu - Natal. Over the

next few years, Eskom's then Distribution Technology department continued to review designs and

removed the copper bonding wire and replaced it with galvanized steel wire. Hence bonding

materials subsequently consisted of only galvanized steel. At the time it was thought that the ideal

design was attained. However, there existed other problems. Eskom Distribution Technology (DT)

published drawings were incomplete. As per the principle discussed in section 3.5.2 and Fig 3 - 21

in particular, a washer was excluded on the one side of the bonding clip.
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Further to this, the researcher had questioned the design of the bonding clip. The position of the

M22 hole within the bonding clip was slightly inadequate to ensure a tight connection. These flaws

also jeopardized the integrity of the electrical connections between the bonding wire and clips.

Upon many site visits and project audits, the researcher had verified that this created a loose

connection. The researcher had taken pictures of materials supplied by the manufacturers. These are

illustrated below.

Figure 3 - 24: Inadequate materials supplied. A washer at the bonding clip was missing.

Figure 3 - 25: Linesmen failed to install the extra washer required to ensure a tight connection.

3.5.3.1 Current Designs

The current Eskom Distribution Eastern Region design is as illustrated in Fig 3 - 26. The design

requires three strands of a 3.35mm2 galvanized wire that is effectively connected to all metal

hardware and insulator "dead" end fittings. This bonding wire is passed through galvanized bonding

clips of which is fastened to the spindles via galvanized M20 steel nuts and round flat washers on

either side of the bonding clip. These designs have been implemented since 1999.
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Figure 3 - 26: Effective bonding at one threaded rod on a cross arm.

3.5.4 Implementation of Current Designs

The researcher is employed in the Eskom Distribution Technology and Quality department. Since

the year 2000, the researcher has been actively involved in implementing standards, specifications,

procedures and guidelines. One such standard is the bonding of wood poles and cross arms. The

researcher followed through and ensured that the standard is applied by taking the following

measures:

That all projects were to the latest design. Projects were Electrification, Reticulation and

Refurbishment ofmedium voltage lines up to 33kV.

Since designs were being standardized, the design packages were created and regularly

updated.

Training of project engineers on scoping ofwork on projects.

That only approved manufacturers and suppliers were used to provide materials for projects.

That only good quality material was used on projects as per specifications.

Training of Eskom field personnel and approximately 700 contractor linesmen on the effective

application of bonding.

Auditing of projects of total capital expenditure exceeding RlOOm since 2001 to ensure

compliance to standards.

Hosting of and presenting in various forums such as the Clerk of Works Forum and Project

Construction Quality Forum on albeit the bonding philosophy and application thereof.
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Figure 3 - 27: An example of how effective bonding was implemented.

3.6 Summary of literature survey

The researcher shall now summarize the salient points gained from the literature above.

The mechanism of burning illustrates that the flow of sustained leakage currents from polluted line

insulators onto a lightly polluted and wet wood cross arm surface can result in ignition of the wood.

Furthermore, high voltage gradients or electric fields near energized metal fittings cause local

discharges and current activity to penetrate the wood resulting in surface burning.

The controlling parameters for ignition in KZN included marine and industrial pollution which is

aided by on - shore winds, high temperature and humidity levels and a subtropical coastal area with

lots of fog banks and light drizzles that creates the necessary conductive paths for the leakage

currents to flow. The other important factor is the specific creepage level of insulator used.

Investigations concluded that a higher specific creepage level insulator (3lmmlkV) be used in

medium to heavily polluted environments such as KZN. Higher specific creepage insulators

reduced the magnitude of pollution related leakage currents. It was also concluded that these

insulators be used in conjunction with bonding so as to enhance specific insulator creepage levels.

The controlling parameters are significant during winter and spring. This explains why the majority

of bums have occurred over that period as can be seen from Figure 2 - 1.

Investigations in Kenya verified that an increased specific creepage level insulator reduced the

magnitude of pollution related leakage currents. Following this, Eskom Distribution modified its

insulator specification to require the use 31mmlkV specific creepage where severe pollution was

experienced. Furthermore, wood cross arms were replaced with steel cross arms in areas where

chronic burning was experienced. By implementing the above two methods, the Kenya Power and
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Lighting Company almost completely eliminated the burning problem. However, with the use of

steel cross arms, a small risk was identified. It was shown that burning could still occur where the

steel cross arm bracing straps are attached to the main wood pole. Considering that there was little

or no evidence of burning at the bracing interface with the pole in both Kenya and Eskom,

investigators thought it wise to tolerate the low risk on existing structures. However, future

installations required wrapping of a metal band or applying conductive paint around the pole at the

bracing interface. This was to ensure that the brace-to-wood pole current density remains uniformly

low.

The various laboratory investigations can be summarized as follows:

Wood is an excellent insulating material when clean and dry. However, when the wood

surface is lightly wetted the resistance decreases rapidly and higher leakage currents flow

along it. This results in pollutants on the cross arm igniting. Hence, one of the main

requirements for burning to occur is moisture which can be in the form of mist, light drizzle or

high humidity.

A clean dry cross arm and a lightly polluted insulator has a low effect on the circuit. The light

pollution consisted of a mere 2% solution of Sodium Chloride. When the cross arm was

moistened to simulate a light drizzle and with a mere 2% pollution severity on the insulator, a

large leakage current of 3.5mA (at 9kV) started to flow causing sparks and ignition of

pollutants to occur. Thus, one can appreciate the magnitude of leakage currents that would

flow at 22kV. From this it can be seen that pollution severity becomes significant at a mere

2%. Hence severity of pollution has a major influence in the burning process.

The pollution level on an insulator provides a resistive device that allows tracking of the line

voltage. This explained why burning of cross arms in the field occurred on the onset of light

drizzles and during times ofheavy mist and high humidity levels.

Leakage current activity on a ~ross arm can be reduced by applying a sheet of silicone around

the cross arm and in series with the insulator. This sheet maintained a high resistance across

the surface of the wood under high levels of pollution. Thus it prevented a path for high

leakage currents to flow. Silicone has proved its excellent capabilities in maintaining a high

resistance path and thus reducing leakage currents. However, due to the current skills

shortages it is not practical to coat all existing porcelain insulators in the field with silicone to

get the desired effect. It is however, practical to rather use silicone insulators.
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Voltage gradients are present on the surface of wood cross arms of energized structures. The

voltage gradient increases closer to the line voltage or base of insulator.

From the investigations on alternative solutions to prevent pole top fires, all tests proved to be

successful. However, not all are practical. The proposed methods cannot be easily applied on

existing structures to achieve their desired effects. However, the method of guarding, which is

explained in section 3.3.6.4, was considered as an alternative to bonding in areas where high

lightning activity was present. This was not implemented though. The activity between the insulator

spindle and inside of the wood cross arm needs to be further investigated.

The principle of bonding was illustrated and thought to be the most practical method to implement.

Bonding was also thought to have the effect of reducing the chances of burning by diverting leakage

currents away from the cross arm surface. However, investigations by the researcher highlighted the

poor implementation of the bonding principle prior to the year 2000. This was critically examined

in chapter two. Although there were reports of burning bonded cross arms, Eskom field staff did not

produce evidence of an effectively bonded and burnt cross arm. Hence the reports of fires were

dismissed as a result of poor bonding. There has always been strong belief in Eskom Distribution

that properly bonded cross arms do not burn. Subsequent to the year 2000, the researcher was

actively involved in implementing and monitoring the latest bonding design standards. These will

be analyzed in the next chapter.
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CHAPTER 4: CRITICAL ANALYSIS OF EFFECTIVE BONDING

Following various investigations, the researcher highlighted the poor implementation of bonding in

KZN prior to the year 2000. Considering that the principle of bonding was the most practical to

implement, Eskom in KwaZulu - Natal embarked on various initiatives to ensure that proper

bonding was effectively implemented. As pointed out in section 3.5.4 above, the researcher has

been actively involved in this implementation and shall now analyze the performance of effective or

correct bonding in KZN.

4.1 Installation of effective bonding

4.1.1 Mhlatuze sites

During the year 2002, Eskom Distribution in KZN decided to benchmark the performance of

effectively bonded wood cross arms against structures containing steel cross arms. Historically, the

Empangeni Field Service Areas were mainly affected by the phenomenon of pole top fires. It was

thought appropriate to use projects in the Empangeni area for this purpose. As such Mhlatuze and

Nseleni areas were chosen. A few structures in the Mhlatuze area were refurbished to the latest

standard of which bonding was a part. This included the use of 3lmm/kV specific creepage line

post porcelain insulators and 31 mm/kV specific creepage silicone long rod type insulators.

The bonding was applied as per section 3.5.2. To ensure a proper benchmark, these structures were

installed adjacent to structures that were experiencing burning of cross arms. Figure 3 - 26 and

Figure 3 - 27 illustrate the above.

4.1.2 Nseleni sites

Nseleni network breaker 19 is a project that was completed in the year 2003. It was classified as a

medium voltage line upgrade to 22kV and refurbishment and consisted of a combination of Mink

conductor on the backbone and Fox conductor on the tee - offs. The first 4.2km of Mink backbone

along a dusty road was designated for the piloting of steel cross arms. A total of 35 x 1.3m steel

cross arms were installed with a mix of a number of 2.5m wood cross arms. The objective was to

compare the performance of both steel and effectively bonded wood cross arms in an area troubled

by pole top frres.
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o DT 1773 structure containing a
l.3m steel cross arm.

o DT 1748 structure containing a
properly bonded 2.5m wood
cross arm.

Figure 4 - 1: Mix of steel and wood cross arms installed at Nseleni late in 2002.

4.2 Follow up inspections

Once the above projects were completed, the researcher had inspected them and ensured

compliance to Eskom's Distribution Technology standards. Of particular importance was the

application of bonding and use of Eskom approved materials. Once again Figure 3 - 26 and Figure

3 - 27 bear testimony to the good bonding connections at Mhlatuze. Figure 4 - I also refers. The

bonding was compliant to standards.

Incidentally, the researcher has been auditing projects since January 2001. One such project

inspected in October 2005 was the refurbishment of a 22kV line beyond Esikhaweni network

breaker 17. The performance of bonding on this network will briefly be discussed later.

4.3 Monitoring ofNseleni sites

Since the steel and wood cross arms were installed in the late 2002, the researcher maintained

constant contact with the Empangeni TSC to monitor the performance of the structures. There were

initial fears that the Mink conductor may clash at mid span due to the steel cross arms being short.

However, to date there have been no incidences of clashing conductors on the spans with steel cross

arms. Furthermore, Nseleni is noted for experiencing very high lightning activity. The sites were

visited in June 2006 by the project designer viz. Lebone Consulting Engineers. Visual inspections

were conducted from ground level on various structures and the following was reported.

All of the steel cross arms were in good working order in terms of position, corrosion and

bending.
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There was no evidence of tracking or burning at the interface between the metal bracing straps

and the vertical wood pole surface.

Although a considerable amount of dust pollution was evident on most of the steel cross arms,

wood cross arms and silicone long rod type insulators, there was no physical evidence of

tracking or burning on the wood cross arms.

Lebone Engineering Consultants had concluded that the steel cross arm installations had

perfonned satisfactory for a period of four years.

4.4 Researcher's fmdings

The researcher had inspected parts of Nseleni network breaker 19 in September and November

2006 respectively. As per the objectives of the project, only those structures that were refurbished

and found compliant to standards were further inspected Voltage and current readings for Nseleni

network breaker 19 were taken at the substation to ascertain if any imbalance existed on the supply

system. These are shown below.

Table 4 - 1: Nseleni NIB 19 voltage readings at the substation.

Phase Voltage (kV)

Red phase 22.23

White phase 22.29

Blue phase 22.13

4.4.1 Inspections with a Pole Top Camera

Inspections during September 2006 were done via a digital Pole Top Camera. The camera was

attached to an operating link stick and video recordings were done while the structures were

energized at 22kV. It was difficult to get steady recordings as it was windy and this made the

handling of the link stick difficult.

The following observations were made on a D DT 1848 (section link structure with 2.5m wood

cross arm) and D DT 1733 (strain structure with a 1.3m steel cross arm) at T312L1:

The wood structures were bonded to standard. There were no visible signs of tracking or

leakage current activity on the wood cross arm surface. There were no visible signs of flre.

The steel cross arm was still in a good condition. There were no visible signs of tracking or

leakage current activity at the interface between the wood pole and steel cross arm.
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The pole was splintering at the through bolt between the wood pole and steel cross arm.

The link cut outs were mounted onto the cross arm via brackets and threaded rods. Some of

these brackets were slightly loose. The Eskom operator was able to move it with the link stick.

This is an important finding and shall be discussed later.

22kV silicone long rod type insulators with specific creepage 3lmmlkV and 22kV silicone

rubber link cut outs with specific creepage 31 mmlkV were used.

The pollution level appeared heavy and looked even on all insulators although the area had

experienced heavy rainfall a few weeks prior to this inspection. The line is along a dusty road.

4.4.2 Live -line inspections with a digital camcorder

Inspections during November 2006 were done via a digital camcorder. The researcher had arranged

with the Eskom Live - Line department to assist in getting very close to the energized 22kV line to

inspect and video record. Voltages were measured with respect to earth and were taken with a

portable voltage tester (phasing sticks). Diagrams of measurement are illustrated below.

r--------------,--,----,.-----{ ~ .-Voltage tester
(phasing stick)

A

B'----.=:::JI::= .- 22kV Si Link Cut Out

._~_._._._._._._._.-

Bonding wire

600mm

E I

160mm [ Wood cross ann

2500mm

c

I
Voltage tester
(phasing stick)

Figure 4 - 2: Diagram of measurement of voltages on a wood cross arm section link structure (D
DT 1848) with Silicone long rod insulators.
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...---------------,-----.----,-----t _ .-Voltage tester
(phasing stick)

'---.=:U= .... 22kV Si Long Rod
Insulator

E

160mm [ Steel cross arm

I 1300mm

Figure 4 - 3: Diagram of measurement of voltages on a steel cross arm strain structure (D DT 1733)
with Silicone long rod insulators.

22kV Ceramic
k" Post Top Insulator

B

c

2500mm

Wood cross ann

600mm

Bonding wire---.t

...---------------,-----.--......-,.---(.... .- Voltage tester

(phasing stick)

.--- 22kV line

I

160mm[

Figure 4 - 4: Diagram of measurement ofvoltages on a wood cross arm suspension structure (D DT
1740B) with Ceramic insulators.
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The following voltage readings and observations were made on the above D DT 1848 (section link

structure with 2.5m wood cross arm) and D DT 1733 (strain structure with a 1.3m steel cross arm)

beyond T309Ll: Figures 4 - 2 and 4 - 3 respectively has reference.

Table 4 - 2: Voltage readings taken at various points on the steel and wood cross arm structures.

Measurement Between Points Voltage measured on Voltage measured on

Wood cross arm Steel cross arm

structure (kV) structure (kV)

Live - middle of silicone link cut out (A-B) 2.7

Live - end of silicone link cut out (A-C) 12.8

Live - middle of cross arm wood surface (A-D) 6.5 12.8

Live - end of cross arm (A-E) 6.3 12.8

Bonding wire - wood cross arm surface (F-G) 0.3

Bonding wire - stay wire 0.1

Bonding wire - end of silicone link cut out (F-C) 2.4

Live - middle ofsilicone long rod (A-B) 2.8

Live - end of silicone long rod (A-C) 12.5

Steel cross arm - wood pole l.lkV

The observations with the digital camcorder were the same as in 4.4.1. Note again that the same

specific creepage silicone long rod type insulators and link cut outs were used. There were no signs

of tracking or leakage current activity.
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The researcher took the following voltage readings and made observations on a D DT 1740B (2.5m

wood cross arm) structure beyond T2209Ll. Measurements were done on a clear sunny and slightly

windy day. Figure 4 - 4 has reference. The measurements are significant in that they verify that a

voltage gradient exists along the wood cross arm.

Table 4 - 3: Voltage readings taken at various points on the wood cross arm.

Measurement Between Points Voltage measured on Wood

cross arm structure (kV)

Live - middle ofceramic insulator (A-B) 4.1

Live - end of ceramic insulator (A-C) 4.9

Live - end ofcross arm (A-E) 6.9

Live - bonding wire (A-F) 12.7

Bonding wire - wood cross arm surface 0

Bonding wire - bottom of insulator (C-F) 0.3

Bonding wire - BIL down wire (earth) 0

Live - directly below insulator and cross arm (in air) (A-G) 3

300V

--..y500mm wood path gap

--

Bonding wire

RspindJe« Rwood

Cinsulator

Rspindle

Figure 4 - 4 can be electrically modeled into that shown in Figure 4 - 5 below.

22kV

Figure 4 - 5: Electrical model of diagram of measurement with Ceramic insulators.
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The 300V measured between points C and F appears to be suspiciously low. Note that point C is at

the bottom end of the insulator. Considering that the voltmeter / phasing stick has a very high

internal resistance which is in the range of mega ohms, the following explanation refers. The

resistance of the insulator is in the range of mega ohms. Similarly, the resistance of the wood cross

arm is very high (possibly in the range of mega ohms as well). The resistance of the spindle /

threaded rod is far less than that of the wood. That is, Rs « Rwood. Hence, greater leakage current

will flow from the insulator surface and into the spindle. This would yield a lower voltage drop.

Therefore the low measured voltage is the voltage drop across the spindle.

However, if the researcher had measured between the surface of the wood cross arm and the

bonding wire, the reading would have been much higher for the following reasons. Smaller amounts

of leakage currents flow though the wood surface and meters internal resistance. Due to the wood

surface and meter having much higher resistances, the voltage drop will be higher. Therefore the

measured voltage would be a summation of the voltage drop across the wood surface and that

across the meter.

The experiment was running since 2002. The following observations were made in November 2006:

The wood cross arm was bonded 100% to standard.

The structure was fitted with post top ceramic insulators of specific creepage 31mm/kV.

These outer phase insulators were loose. The researcher was able to physically and easily

rotate them with his hands.

Traces of burning was observed on the cross arm at the outer phase insulator bases.

There was evidence of tracking or leakage current activity between the insulator base and

cross arm surface. This was evident at both insulators. The insulators did not have a metal

base.

Upon closer examination, the tracking had emanated from the insulator spindle oval shaped

washer and onto the wood surface.

There was a very thin and almost transparent layer of pollution on the sides of the insulators

where the tracking was evident. The pollution appeared to be washing away onto the wood

surface.

The following are pictures of the correctly bonded structure and show early signs of burning of the

wood cross arm surface.
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Phasing sticks were
used to measure the
voltage.

Figure 4 - 6: Live - Line inspection and voltage measurements on a D DT 1740B structure.

Figure 4 -7: Early stages of tracking were observed between insulator base and wood surface.

4.4.3 Removal and inspection of steel cross arm structures

The steel cross arm structure in Figure 4 - 1 was retrieved from site and taken to Empangeni TSC

for further inspections. The steel cross arm was disassembled from the wood pole structure and the

wood was subsequently cross - sectionalized. The following observations were made in August

2007:

Silicone long rod type insulators of specific creepage 31 mm/kV were used on the steel cross

arm.

The threaded rods securing the steel cross arm and bracing straps to the wood pole were loose.

This was due to the pole shrinking during the last five years.

Heavy pollution was observed on all three silicone long rod insulators.

The steel cross arm was still in very good condition.

70



The bottom side of the steel cross ann was pressed tightly against the wood pole. There was

little or no visible pollution on the pole at the bottom side of the steel cross ann. There was no

evidence of surface tracking / sparking from the bottom side of the steel cross ann to the wood

surface.

The top side of the steel cross ann had a small air gap of approximately 3mm from the wood

pole. There was evidence of pollution in this vicinity. There was also evidence of very slight

tracking / sparking from the corner edge of the top side of the steel cross arm onto the wood

surface.

The threaded rod mounting the steel cross ann had no signs of burn marks / blackening effect.

It was clean compared to a threaded rod / spindle that mounted a porcelain insulator where

surface tracking / sparking was observed. This is illustrated in Figure 4 - 9 below.

Upon sectionalizing the wood, there was no sign of burnt cavities / internal sparking inside of

the wood.

Also, there were no signs of surface tracking / sparking at the bracing straps and wood

interface.

Figure 4 - 8: Illustration of tracking / sparking from steel cross arm to wood surface.

Threaded rod that mounted
a steel cross arm.

Threaded rod that mounted
a wood cross arm.

Figure 4 - 9: Comparison of threaded rods from different installations.
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Another steel cross arm structure was also retrieved from site and inspected on the same day. The

findings were similar to the first except that no tracking / sparking was observed between the

wood and steel interfaces.

4.5 Findings beyond Esikhaweni NIB 17

Esikhaweni network breaker 17 feeds a line that was refurbished in 2005. Upon completion, the

researcher had audited the project in October 2005. The bonding on most structures was found to be

compliant to standards. However, during this same period in 2006 Eskom field personnel had

attended to a breakdown beyond this feeder. They had found the following:

A wood pole that was bonded to the latest standards had severely burned and subsequently

broke off. The structure was a combination ofD DT l740B (suspension) and a D DT 1747 (in

line strain)

Post top ceramic insulators of specific creepage 3lmm/kV were installed on the l740B

structure.

There was no evidence of burning at or near the ceramic insulators.

The burning was occurring at the bottom end of the one bracing strap of the D DT 1747

structure.

22kV silicone long rod type insulators with specific creepage 3lmm/kV were installed

adjacent to this bracing strap.

Upon removing the threaded rod mounting the bracing strap, fire damage was observed inside

the hole of the threaded rod.

The burning had started from the inside of the pole.

The above findings are illustrated below.

Figure 4 - 10: A burning bonded wood pole with smoke exiting a threaded rod hole.
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Figure 4 - 11: Flames exiting the threaded rod hole and at other crevices along the pole. Silicone
link cut outs were closest to the affected area.

One can see the fire inside of the same threaded rod hole above when the rod was removed.

4.6 Analysis offindings

4.6.1 Performance of the silicone insulators

Although heavy dust pollution was observed on the long rod type silicone insulators at Nseleni, no

leakage current activity was observed at or near the ends of these insulators. The same was

observed at the Mhlatuze test site. This verified the results of the laboratory studies pointed out in

section 3.3.4. The silicone had proved its excellent abilities in maintaining a high resistance path

and thus reducing the leakage currents.

4.6.2 Voltage gradients and electric fields

The voltages measured at various points along the cross arm verified the laboratory measurements

highlighted in section 3.3.5. Voltage gradients exist on the surface of wood cross arms of energized

structures. With respect to the properly bonded D DT l740B structure where burning was observed

and from Table 4 - 3, the voltage measured between the bonding wire and bottom end of the

porcelain insulator surface was 300V. Note that the bonding wire was electrically connected to the

oval shaped washer which is part of the insulator spindle. Hence this 300V existed between the

bottom end of the insulator surface and oval shaped spindle washer.
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The washer has a sharp edge all around This sharp edge leads non - uniform electric fields around

the washer edge. With the washer energized at 300V, corona may occur around this edge. That is,

self sustained electric discharges where the field ionizations are localized only over the non 

uniform field. These discharges lead to sparking onto the wood surface and eventual burning of the

external wood surface. Figure 4 - 13 bears testimony to this phenomenon. The sectionalized cross

arm in the figure is from the same properly bonded D DT 1740B structure discussed in 4.4.2. The

thickness of the washer is 5mm. Hence the distance from the base of the insulator to the wood

surface is 5mm. Thus the electric field that exists in this vicinity is calculated to be: E = VID

= 3OOV/5mm

Oval shaped
washer ~

Wood Cl'08I ann - V=300V

8··,-·_·_·_·_-_·_·· 4-----'

Bonding wire

Figure 4 -12: Diagram illustrating the electric field E from the oval shaped washer edge and
insulator base.

Note the tracking and the
curved nature of the burning
on the wood surface.

Observe the blackening
of the spindle below the
oval shaped washer.

Figure 4 - 13: Sectionalized cross arm with spindle and insulator base showing direction of electric
fields from spindle washer and tracking on the wood surface.
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Due to dry band arcing and the dissimilar impedances of the three branches the potential of the
bonding wire may be raised to such a voltage as to cause sparking.

4.6.3 External burning caused by sparking on a properly bonded wood cross arm

Oval shaped
washer -----+,

Wood cross um B

Pollution deposits from
insulator surface washing
onto wood surface.

Figure 4 - 14: Diagram illustrating pollution deposits from insulator washed onto wood surface.

The above diagram further illustrates the burning mechanism as pointed out in Figure 4 - 13.

Further to the explanation given in 4.6.2, pollution stains were observed at the base of the porcelain

insulators. The pollution appeared to be washing away onto the wood surface and thus

accumulating onto it. It is important to note that the edge (point A) of the base of these porcelain

insulators is not as smooth as the insulator sheds. These rough edges lead to non - uniform electric

fields. As pointed out in 4.6.3 above high electric fields exist between points A and B respectively.

This resulted in sustained sparking between points A and B, thus causing the burning of the wood

surface.

As can be seen in Figure 4 - 13, the burning is most severe directly beneath the base of the

insulator. The pollution layers directly below the base were shielded from sunlight and kept dry.

With the onset of light drizzle or heavy fog, this pollution layer becomes conductive and produces

deep charred tracks which radiate in irregular patterns from the metal - wood connections. These

tracks were observed on the surface of the wood. As pointed out previously, this needs to be further

investigated. However, this demonstrates that effectively bonded wood pole structures with

porcelain insulators can still bum.
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Note that the burning does not start from the underneath of the cross arm where washers also with

sharp edges are attached to the spindles. This is so because the pollution deposits on the underneath

of the cross arm are far less concentrated and this section is most often kept dry. Pollution and light

wetting were shown to be the biggest contributors to pole top fires.

4.6.4 Internal burning of the wood cross arm

A further finding on the D DT 1740B suspension structure was that the insulator spindles were

loose. During its four years of service the cross arm had experienced some shrinkage resulting in

the tightness of the spindles against the inside of the cross arm becoming weaker. The very fact that

one was able to rotate the porcelain insulators by hand confmned that the tightness was very weak.

The author suspected that in this case, the wood cross arm was burning from within, that is between

the insulator spindle and wood. Note that this arrangement would allow small amounts of air to

flow between the spindle and wood.

The said cross arm was removed from site and sectionalized to ascertain any activity between the

spindles and wood. Various cavities were observed on the spindle hole inside the wood. These are

illustrated in Figure 4 - 15 below. Considering that the cross arm and spindle arrangement has a

similar geometry as a cable, the author uses the co-axial geometry theory for cables in calculating

the maximum electric field experienced at the threads of the spindle. Note that the cross arm spindle

can be likened to the core of the cable. Calculations which appear in Appendix L reveal a high

electric field strength of l4.43Vmm- t
• It is this high electric field that causes the air gap to

breakdown resulting in sparking inside. Fire results if the sparking activity is sufficiently intense to

bring the wood to its ignition temperature and if a sufficient air supply is available.

Figure 4 - 15: lllustration of cavities inside the wood cross arm.
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The blackening of the spindles is indicative of the heat generated inside the cross arm. This intense

heat would have been created by the sparking between the spindle thread edges and wood.

Figures 2 - 16 to 2 - 20 and Figure 4 - 13 also bear testimony to this. It is standard arrangement to

have a 500mm BIL gap on the above suspension structure down wire. However it was observed that

structures without a BIL gap had experienced no burning. This is so because the bonding wire and

spindles are connected to the earth via the BIL down wire and are at zero potential.

4.6.5 Performance of steel cross arms

As per Table 4 - 2, voltage gradients do not exist along the steel cross arm. However a potential of

1.1kV was measured between the steel cross arm and wood pole. The steel cross arm has a sharp

corner along its side. As explained in section 4.6.2 electric fields exist between the steel and wood

surface. This electric field combined with pollution deposits led to the relatively lower level of

sparking from the steel to the wood surface.

The wood pole cross arms that displayed severe tracking / sparking were installed at the same time

as the steel cross arms. However, the structures with steel cross arms had very slight sparking and

can be managed / minimized by the application of fire retardant paint at the steel/wood interface.

The fire retardant paint applied on the wood pole must cover the full surface area of the steel cross

arm that makes contact with the wood. This paint will inhibit the sparking from burning the wood

surface.

4.6.6 Loose Link Brackets

The loose link brackets is an important finding in that they have a direct impact on the internal

burning of the cross arm. The link brackets are mounted onto the cross arm via threaded rods. As

pointed out in section 4.1.2, the installation is four years old. During this period the cross arm had

experienced some shrinkage resulting in the tightness of the threaded rod against the inside of the

cross arm becoming weaker. The very fact that one was able to rotate the brackets with just a link

stick confirmed that the tightness was very weak. This arrangement is similar to that in section 4.6.4

above and hence the same analysis holds.
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4.6.7 The Esikhaweni structure

As pointed out in section 4.5, the structure was bonded to standard and the burning had occurred at

the bottom end of one of the bracing straps of the D DT 1747 structure. Figures 4 - 10 and 4 - 11

refer. This was indeed a rare find and this time field personnel could not explain the phenomenon.

The structure was approximately a year old. The burning can only be attributed to neutral shift

which is explained in Annexure B.

4.6.8 Conclusion on the analysis of effective bonding

Proper bonding has been effectively implemented in an area prone to pole top fires. However,

within four years of service, it was found that effectively bonded wood cross arms with porcelain

insulators still burn.

The mechanisms of burning can be summarized as follows:

Internal burning due to high electric fields between the spindle thread and wood causing

sparking.

External burning due to high electric fields between the spindle washer edge and wood surface

causing sparking.

These high electric fields are essentially due to the leakage currents that are present on the

bonding wire, spindles and washers mounted at the base of the porcelain insulators. These

leakage currents do not flow to ground because of the 500mm BIL gap present in the BIL

down wire and hence raises the potential of these line hardware. It is this potential difference

that creates the high electric fields and subsequently causes sparking.

Burning due to the phenomenon of a neutral shift which cannot be avoided in highly polluted

areas.

Hence, effectively bonded wood structures with porcelain insulators of specific creepage

3lmmkY-1 will not eliminate cross arm burning. The design of the oval shaped spindle washer and

porcelain insulator base edge needs to be evaluated and further investigations carried out. The

performance of porcelain insulators were not investigated with steel cross arms. This needs to be

investigated. Silicone insulators have proved their excellent abilities in maintaining a high

resistance path and thus reduced leakage currents. Thus post top silicone insulators should be

considered in place of post top porcelain insulators. The shrinkage of cross arms resulting in loose

threaded rods and insulator spindles has also played a role in the burning mechanism. To prevent

burning due to this mechanism, one would have to regularly tighten nuts and spindles on structures.
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However, this is not practical and hence not a solution. The steel cross arms piloted have

outperformed the effectively bonded cross arms.
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

S.l Conclusions

5.1.1 Power lines across the world carry a potentially lethal product and if not managed carefully

can have serious legal, financial, safety, publicity and environmental risks. 22kV wood pole

structures that support this product in KwaZulu - Natal have been shown to be vulnerable

to the phenomenon of pole top fires. This has resulted in serious damage to the wooden

infrastructure. The risks pointed out above consequently became a reality and Eskom

Distribution came under constant pressure to find solutions to mitigate pole top fires. This

research has provided an understanding of pole top fires and assessed the practicable

preventative measures.

5.1.2 The researcher has revealed accurate statistics of the phenomenon on only 22kV overhead

power lines in KwaZulu - Natal. The subtropical north coastal area of K.ZN which

experiences higher relative humidities and temperatures and greater pollution have been

shown to be affected the most. The majority of incidents has occurred over the winter and

spring seasons. These seasons apparently have a direct influence on the burning

mechanism. Veld fires, sugar cane burning, industrial pollution, dust and marine pollution,

high temperature and high relative humidities combined with a set of weather patterns

unique to K.ZN are the driving forces that contribute to the burning mechanism.

5.1.3 In analyzing the various types of burning that had occurred over the last decade, the

researcher highlighted the poor implementation of bonding and speculated that many

effectively bonded cross arms started burning from the inside and that this was possibly due

to a neutral shift. The literature review also points out voltage gradients that exist along a

wooden cross arm. These voltage gradients maintain high electric fields between rough

metal brackets and the wood surface resulting in sustained sparking onto the wood surface

causing burning. Samples of such cross arms were found by the researcher. The researcher

also pointed out that many of the fifes were experienced on poorly bonded or un - bonded

structures with mainly ceramic type insulators of varying specific creepage per structure.

5.1.4 Many investigations in the 1990's revealed the effects of leakage current activity and the

influence of insulator specific creepage on leakage current. These investigations highlighted
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the need for higher insulator specific creepage levels for coastal and heavily polluted areas.

They also concluded that higher creepage insulators be used in conjunction with bonding.

Eskom Distribution in KwaZulu - Natal heeded this advice and only insulators of specific

creepage 31 mm/kV were used since 2001. This however did not eliminate the burning as

was pointed out in chapter 4 section 4.6.3. Further investigations in Kenya showed that the

use of steel cross arms almost completely eliminated the burning problem. Laboratory

studies have shown that one of the main requirements of the mechanisms of burning is

moisture which can be in the form of mist, light drizzle or high humidity. This explained

why burning of cross arms in the field occur on the onset of light drizzles and during times

of heavy mist and high humidity levels.

5.1.5 The principle of bonding was illustrated and initially thought to be the most practical

method to implement. Bonding was also thought to have the effect of reducing the chances

of burning by diverting leakage currents away from the cross arm surface. However,

investigations by the researcher highlighted the poor implementation of the bonding

principle prior to the year 2000. This was critically examined in chapter two. Although

there were reports of burning bonded cross arms, Eskom field staff did not produce

evidence of an effectively bonded burnt cross arm. Hence the reports of fires were

dismissed as a result of poor bonding. There has always been strong belief in Eskom

Distribution that properly bonded cross arms don't burn. Subsequent to the year 2000, the

researcher was actively involved in implementing and monitoring the latest bonding design

standards.

With the above in mind the researcher critically ana1yzed effective bonding in KwaZulu - Natal.

This required proper implementation and close monitoring of various sites. Steel cross arms were

also piloted in these sites to bench mark the performance with effectively bonded wood cross arms.

The analysis was an eye opener as the researcher found that effectively bonded wood cross arms

with porcelain insulators still burn. This was attributed to a neutral shift and the existence of high

electric fields between the spindles and wood surfaces. Effectively bonded wood structures with

porcelain insulators of specific creepage 31mmk\,1 does not eliminate cross arm burning. The

method of bonding does not prevent pole top fires on wood cross arms with porcelain insulators.
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5.2 Recommendations

5.2.1 The literature review has also demonstrated the excellent capabilities of silicone in reducing

leakage currents. Investigations that were conducted on leakage currents had mostly

included the use of existing ceramic type insulators which have been used in the field. It

will be of great advantage in making a comparison between the EP965 insulator and a

polymeric insulator. Hence it is recommended that further investigations be done with these

insulators in the northern Kwazulu - Natal area. This would provide new technical

evidence as to a possible alternative to bonding.

5.2.2 A number of alternative solutions to prevent cross arms from burning were also

investigated in the 1990's. Although the results of investigations proved to be successful in

preventing pole top fires, not all are practical to implement. The methods that were

proposed need to be applied easily with long lasting capabilities and that application is not

practical. The method of guarding is promising as it was seen to prevent burning. It was

also considered an alternative to bonding in areas where high lightning activity is present.

However, as pointed out in the literature review, it is recommended that the activity

between the insulator spindle and inside of the wood cross arm be further investigated

together with the method of guarding. Investigations are to include infrared scanning or the

use of some newer technology to assess the heat of the insulator spindles or threaded rods.

5.2.3 The combined phenomena ofneutral shift and the effect of electric fields on a wooden cross

arm have not been investigated and need further investigation. The insulator oval shaped

spindle washer and porcelain insulator base edge resulted in high electric fields forming

around them. It is recommended that the components which enhance the electric fields be

re-designed. Their design needs to be evaluated and further investigations carried out.

5.2.4 Silicone insulators have proved their excellent capabilities in maintaining a high resistance,

hydrophobic path and thus reduced leakage currents below the lmA range. Thus post top

silicone insulators should be considered in place of post top porcelain insulators. An

important finding is that burning does not occur on wood cross arms with silicone rubber

insulators.
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5.2.5 The shrinkage of wood cross arms resulting in loose threaded rods and insulator spindles

has also played a role in the burning mechanism. This also requires further investigation.

5.2.6 The steel cross arms with silicone insulators that were piloted at Nseleni have outperformed

the effectively bonded wood cross arms. Very slight sparking was observed between the

steel and wood interfaces. Hence a recommendation that Eskom can consider is that steel

cross arms be used in place of wood cross arms. An Eskom design using steel cross arms

already exist and implementation thereof should be relatively easy. However, the steel cross

arm need to be re-designed with rounded corners so as to reduce non-uniform fields that

cause electric fields. Practically, retrofitting of steel cross arms are not necessary; however

when cross arms do bum, Eskom can consider replacing them with steel cross arm

equivalents during maintenance. Also, investigations need to be done with the combination

of steel cross arms and porcelain insulators. This has not been done before.

5.2.7 Having recommended the above, there is a low risk of leakage current activity or high

electric fields at the steel cross arm and wood interface. The steel cross arm is usually

installed onto the pole via a threaded rod. It has been shown that high electric fields inside

the wood between the threaded rod and wood result in sparking which causes the wood to

eventually bum. It is recommended that fire retardant paint be applied inside of the

threaded rod hole on the pole and left to dry before installing the cross arm. The same

applies at the bottom end of the bracing strap that supports the steel cross arm. The fire

retardant paint should also be applied at the steel/wood interfaces. This paint should be

applied around the wood pole and must cover the full surface area of the steel cross arm and

steel bracing strap that makes contact with the wood. The paint will inhibit the sparking

from burning the wood surface.

5.2.8 To further reduce the risk of burning activity inside of the pole at the above points, a

recommendation is that the steel cross arm and bracing straps be installed via U - bolts. A

specially designed U - bolt will be required at the bottom end of the bracing straps. These

need to be evaluated and designed accordingly.

5.2.9 Considering that wood poles undergo shrinkage, it is recommended that structures with

steel cross arms and fire retardant paint applied be re-visited at least five years after first
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installation and every ten years thereafter. The idea is to re-tighten all loose threaded rods

and maintain the effectiveness of the ftre retardant paint.

5.2.10 Porcelain insulators were not piloted with the steel cross arms. Further investigations need

to be conducted to ascertain the performance of steel cross arms with porcelain insulators of

speciftc creepage 3lm.mlkV.
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APPENDIX A 1

DURBAN

lJJ ENGINEERING INSTRUCTION

IISKDII

DISTRIBUTOR

DATE: 10 March 1993 I REF. RLC/lO I ENQ. R T Green

BONDING OF MEDIUM VOLTAGE STRUCTURES

Recent problems in various areas in the Distributor have highlighted the fact that all Medium Voltage lines
should have their hardware bonded. This applies to an new line construction, and all lines that undergo
rehabilitation.

The details of the bonding are as follows:

1. Bond the hardware of the three phases together. On structures with crossarrns this will be on the crossarrn,
and on vertical structures this will be on the pole. In accordance with the new Reticulation Technology
Guide, use galvanized steel stay wire (3/3,35) and earth wire retaining clamps.

2. If capless post insulators have been used, the leakage path between the edge of the base of the insulator and
the spindle will be along the crossarrn, leading to probable heating. To avoid this, it will be necessary to
insert a slotted (16mm) galvanized steel disc (about 2 mm x 110 mm diameter) between the base of the
insulator and the crossarrn to provide an alternative leakage path. The disc must be inserted with the slot
perpendicular to the centre line of the crossarrn.

3. To achieve a BIL of300 kV on all structures on the line, structures must be modified in the following way:

Non-stayed structures: Run a bonding wire up the pole, terminating 500 mm below the bonding of the three
phases.

Stayed structures As above, but also introduce 260 kV BIL stay insulators in place of the guy strain
insulators currently used.

For a graphic description, see attached drawing no. D-EN-900904. Please note that every structure in
the entire line must be insulated to a 300 kV level for the concept to be most effective. This philosophy
is contained in the Reticulation Technology Guide.

Should you require any further information, please contact:
Power System Technology Manager
26 Valley View Road, New Germany
Tel. (031) 710-5367
Fax. (031) 701-5995
Profs A71816 or FERGUSOA

R D MACFARLANE
ENGINEERING MANAGER - DURBAN DISTRIBUTOR

RTG/rt
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APPENDIX B: Explanation of Neutral Shift

Consider a properly bonded wood cross ann. Figure B-1 below refers.
Resistances of the wood cross ann are not taken into consideration as bonding wire is present.
However, varying amounts of pollution across each phase insulator contribute to the variable
resistance across each insulator. Thus the impedances are non-linear and the leakage currents

contain harmonics.
Hence there exist resistances RR, Rw and Ra or Admittances YR, Yw and YB respectively. RN is
the high resistance (or YN - admittance) of the 500mm wood gap. These are indicated in the

figure below.

Yw

Bonding wire

YN

(RN)

] 5()()mm wood gap

Figure B-1: Diagram of a bonded cross ann

R Re R

Source Cross ann

w8we

YN................................................JVv- .
Eo N

Figure B-2: Electrical model of the bonded cross ann above.

Assume that all the insuI~tors are of the same type and with the same insulator specific
creepage level. Ifthe pollutIon layer on all these insulators is exactly the same, then:
YR= Yw = YBand YNis negligible.



Then, the voltage between the supply earth and the cross arm earth VSNis given by:

VSN= ERYR + EwYw + EBYB
YR+YW+YB+YN

=Q
Note that if the admittances are equal and the supply voltages balanced, VSN will always be
zero.

This is the ideal situation to have. However, the pollution layer is not always the same on all
three insulators and hence YR:f. Yw :f. YBand as such VSN cannot equate to zero. In practice a
small neutral voltage will usually exist. This applies only when the pollution is conductive, that
is in wet conditions only.
This unbalanced resistive load (pollution layer) causes the potential VSN to rise with respect to
the local pole earth. Note that the pole itself has a finite resistance to true earth and hence
forms the earth of the supply system. In extreme pollution conditions, this may cause the
bonding wire to reach a potential of several kV for short periods.
This potential difference creates a high electric field to exist between the bonding wire and
wood surface or between the inside of the insulator spindle and inside of the wood cross arm. It
is this high electric field that causes sparking between these surfaces and consequently burning
to start from inside of the cross arm.
Since VSN:f. 0, this implies that the phase voltages will not be equal, that is:
ERN:f. EWN:f. EBN
Hence the neutral has shifted (Neutral Shift). This is demonstrated in the Figure B-3 below.
This phenomenon cannot be avoided in highly polluted areas.

R

New neutral point

v,J-------------..;;:aB

Figure B-3: Phasor diagram illustrating the Neutral Shift.



APPENDIX C: Detailed wood pole leakage current recordings for August 1995.

Maximum
Month Date Activity period Current (mA)

AU2ust 06-Aug-95 OOhlO - OlhOO 0.4
OlhOO - 01h45 1.5
01h45 - 02hOO 4
03hOO - 05hOO 2.5
05h30 - 06hOO 2.8
06h05 - 06h07 0.8
06h30 - 07hOO 1.2
08hOO - 09h02 1.8
10h05 - IlhOO 3.2

10-Aug-95 17hOO - 19h04 2.5
19h45 - 20hOO 1.8
20h37 - 20h50 1.5

ll-Aug-95 01h54 - 06h45 0.8
14-Aug-95 16h45 - 24h30 0.8
15-Aug-95 OOhO 1 - 07hOO 2.6

19hOO - 24hOO 0.2
16-Aug-95 04h30 - 05h23 3.6

06h37 - 07h15 3.9
08hOO - 08h19 0.7
09h53 - 09h58 1

18-Aug-95 OOhO 1 - 09hOO 0.3
18hOO - 24hOO 0.4

19-Aug-95 OOhO 1 - 09hOO 0.3
18hOO - 24hOO 0.6

20-Aug-95 OOhO 1 - 10hOO 0.8
21-Aug-95 OOhO 1 - 09hOO 0.5
22-Aug-95 Long periods 0.2
23-Aug-95 Long periods 0.2
24-Aug-95 Long periods 0.2
25-Aug-95 Long periods 0.2
26-Aug-95 Long periods 0.2
27-Aug-95 Long periods 0.2
28-Aug-95 Long periods 0.2
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APPENDIX I: Specification for Insulator EP303

EP303 ASSEMBLED.
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APPENDIX K: Specification for Insulator EP965



APPENDIX L: Calculation of Electric Field inside the cross arm.

Cable core

Cable insulation

Figure L - 1: Co-axial geometry of a cable

From basic High Voltage Engineering theory, it can be shown that the highest electric field E
occurs at the maximum value of RI, where RI = outer radius of the cable core. R.2 = radius of cable.
That is:

Emax = _-,-V__
RI1o(R2lR.I)

Similarly, in the case of the cross arm RI = radius of spindle and R2 =radius of the cross arm. Once
again the highest electric field E will occur at the threads of the spindle. Eskom Distribution uses
M20 spindles 1 threaded rods to mount medium voltage (22kV) insulators. Hence RI = 10mm.
Also, 160mm pole top diameter cross arms are predominantly used on most structures. Hence R2 =
80mm. As per 4.6.3 the voltage measured between the spindle and bottom end of the porcelain
insulator surface was 300V. Hence applied voltage V = 300V. Therefore:

Emax = 300
1010(80/10)

= 14.43Vmm-·

This is an astonishingly high figure which could easily lead to sparking resulting in the cavities
found between the spindle 1threaded rod and the wood.

Figure L - 2: Cross section of the wood cross arm with spindle

Thread edge
ofspindle



1- Books

1.

2.

3.

REFERENCES

Bradwell, A., 1983. Electrical Insulation, London: Peter Peregrinus Ltd.
Darveniza, M., 1980. Electrical Properties of Wood and Line Design, University of
Queensland Press.

Diab, R.D., 1991. Power Line Insulator Pollution and Power Dips in Natal, South Africa:
University of Natal.

2 - Journals

1. Be1aschi, P.L., 1947. Lightning and 60 Cycle Power Tests on Wood - Pole Lines Insulation.
AIEE Trans. Vol. 66.

2. Britten, A.C., 1996. Burning of cross - arms on the Mombassa - Malindi 33kV line. Eskom
report no. TRR/E/95/EL160.

3. Crowdy, P., 1999. Insulation Co - Ordination and Bonding for M.V. Lines, 99TB-005.
4. Ellis, D., 2005. Insulation Co - Ordination and Bonding on MV Lines, Eskom Engineers

Forum.

5. Eriksson, AI., 1986. The incidence of lightning strikes to power lines, IEEEIES Winter
Meeting, New Yorlc.

6. Hartmann, K., 1994. Wood Pole Burning on Zulu - Land 22kV Lines, Eskom TRI Report
TRR/S93/010.

7. International Electro - technical Commission, 1979. The measurement of site pollution severity
and its application to insulator dimensioning for A.C systems, Report by Working Group 04 of
Study Committee No. 33. Electra 64, pp. 101 - 116.

8. Loxton, A.E., Britten, AC., and Ferguson, lA, 1996. Recent Experience in Eskom with Pole
Top Fires on 22kV Lines. IEEE Africon and Stellenbosch University.

9. Loxton, A.E., 1998. Investigation into the prevention of fires on 22kV wood pole lines. Eskom
Report no. TRR/P98/510.

10. Loxton, A.E., 1997. Investigation into Ignition Mechanism On 22kV Wood pole Lines. Eskom
Research Proposal TRR/P97/374.

11. Loxton, A.E., 1995. Burning of Un-bonded Cross arms on 22kV Wood pole Structures. Eskom
Report TRR/P95/244.

12. Loxton, AE., 1997. 22kV Wood Pole Fire Investigations in Kwazulu - Natal: Influence of
Insulator Specific Creepage on Leakage Current Activity. Eskom Report TRR/P96/334.



13. Loxton, A.E., 1997. 22kV Wood Pole Fire Investigation in KwaZulu - Natal: Influence of

Insulation Specific Creepage on Leakage Current Activity. Eskom Report TRRJP97/414.

14. Naidoo, P., 1989. Report on quality of supply: Managing the effects of cane-fires and

pollution. Eskom Internal Report.

15. Preston, R.A., Diab, R.D., and Tyson P.D., 1997. Towards an inversion climatology of

Southern Africa: Part 2, Non - surface inversions in the lower atmosphere. South African

Geography. Vol. 58, pp. 151 - 163.

16. Stanford, G., 2004. Insulation Co-ordination and Bonding for M.V. Lines. 03TB-34.

17. Van Wyk L., Holtzbausen J.P., Vosloo W.L., 1996. Surface Conductivity as an Indication of

The Surface Condition OfNon-Ceramic Insulators. African and Stellenbosch University.

18. Wallace, J.M., and Hobbs, P.V., 1997. Atmospheric Science: An Introductory Survey.

Academic Press, New York.

3 - Electronic References

1. Persadh, A.K., 2003. Eskom Distribution, Eastern Region Picture Database. (Unpublished)

4 - Websites

1. Eskom Distribution Standards (2007) ConIine]. Available from World Wide Web:

http://e kom.intranetlte cod/.pdf[accessed 27 March 2007].

2. Eskom Distribution Bulletin (2003) ConIine]. Available from World Wide Web:

bttp://intranet.e kom.co.zalte codIBULLETINI2003/03TB-034.pdf[accessed 19 April 2006].

5 - Personal

1. Britten, A.C., Pr Eng, Eskom ERID, 2006.

2. Booyens, K, Cullinan Industrial Porcelain, 2006.

3. Bouwer, K, Eskom, Eastern Region Distribution Plant and Network Performance

Statistics, September 2006.

4. Crossley, G., Eskom Eastern Region Distribution Plant and Network Performance

Statistics, August 1993.

5. Cele, L., Lebone Consulting Engineers, 2006.

6. Dr Henri G., Eskom IARC, 2004.

7. Dr Wallace V., Performance Statistics, University of the Western Cape, 2006.

8. Mathews M., and Neethling J., Empangeni Field Services, 2006.



9. Moodley R,. Eskom, Distribution, Plant, 2006.

10. Narsai V., Risk Manager, Eskom Distribution, 2005.

11. Persadh A.K., Technology and Quality, Eskom Distribution, 2003.

12. Walker, B., Eskom, Eastern Region Distribution Network Planning, 2006.


	Persadh_Ajith_Koowarlall_2007.front.p001
	Persadh_Ajith_Koowarlall_2007.front.p002
	Persadh_Ajith_Koowarlall_2007.front.p003
	Persadh_Ajith_Koowarlall_2007.front.p004
	Persadh_Ajith_Koowarlall_2007.front.p005
	Persadh_Ajith_Koowarlall_2007.front.p006
	Persadh_Ajith_Koowarlall_2007.front.p007
	Persadh_Ajith_Koowarlall_2007.front.p008
	Persadh_Ajith_Koowarlall_2007.front.p009
	Persadh_Ajith_Koowarlall_2007.front.p010
	Persadh_Ajith_Koowarlall_2007.front.p011
	Persadh_Ajith_Koowarlall_2007.front.p012
	Persadh_Ajith_Koowarlall_2007.front.p013
	Persadh_Ajith_Koowarlall_2007.p001
	Persadh_Ajith_Koowarlall_2007.p002
	Persadh_Ajith_Koowarlall_2007.p003
	Persadh_Ajith_Koowarlall_2007.p004
	Persadh_Ajith_Koowarlall_2007.p005
	Persadh_Ajith_Koowarlall_2007.p006
	Persadh_Ajith_Koowarlall_2007.p007
	Persadh_Ajith_Koowarlall_2007.p008
	Persadh_Ajith_Koowarlall_2007.p009
	Persadh_Ajith_Koowarlall_2007.p010
	Persadh_Ajith_Koowarlall_2007.p011
	Persadh_Ajith_Koowarlall_2007.p012
	Persadh_Ajith_Koowarlall_2007.p013
	Persadh_Ajith_Koowarlall_2007.p014
	Persadh_Ajith_Koowarlall_2007.p015
	Persadh_Ajith_Koowarlall_2007.p016
	Persadh_Ajith_Koowarlall_2007.p017
	Persadh_Ajith_Koowarlall_2007.p018
	Persadh_Ajith_Koowarlall_2007.p019
	Persadh_Ajith_Koowarlall_2007.p020
	Persadh_Ajith_Koowarlall_2007.p021
	Persadh_Ajith_Koowarlall_2007.p022
	Persadh_Ajith_Koowarlall_2007.p023
	Persadh_Ajith_Koowarlall_2007.p024
	Persadh_Ajith_Koowarlall_2007.p025
	Persadh_Ajith_Koowarlall_2007.p026
	Persadh_Ajith_Koowarlall_2007.p027
	Persadh_Ajith_Koowarlall_2007.p028
	Persadh_Ajith_Koowarlall_2007.p029
	Persadh_Ajith_Koowarlall_2007.p030
	Persadh_Ajith_Koowarlall_2007.p031
	Persadh_Ajith_Koowarlall_2007.p032
	Persadh_Ajith_Koowarlall_2007.p033
	Persadh_Ajith_Koowarlall_2007.p034
	Persadh_Ajith_Koowarlall_2007.p035
	Persadh_Ajith_Koowarlall_2007.p036
	Persadh_Ajith_Koowarlall_2007.p037
	Persadh_Ajith_Koowarlall_2007.p038
	Persadh_Ajith_Koowarlall_2007.p039
	Persadh_Ajith_Koowarlall_2007.p040
	Persadh_Ajith_Koowarlall_2007.p041
	Persadh_Ajith_Koowarlall_2007.p042
	Persadh_Ajith_Koowarlall_2007.p043
	Persadh_Ajith_Koowarlall_2007.p044
	Persadh_Ajith_Koowarlall_2007.p045
	Persadh_Ajith_Koowarlall_2007.p046
	Persadh_Ajith_Koowarlall_2007.p047
	Persadh_Ajith_Koowarlall_2007.p048
	Persadh_Ajith_Koowarlall_2007.p049
	Persadh_Ajith_Koowarlall_2007.p050
	Persadh_Ajith_Koowarlall_2007.p051
	Persadh_Ajith_Koowarlall_2007.p052
	Persadh_Ajith_Koowarlall_2007.p053
	Persadh_Ajith_Koowarlall_2007.p054
	Persadh_Ajith_Koowarlall_2007.p055
	Persadh_Ajith_Koowarlall_2007.p056
	Persadh_Ajith_Koowarlall_2007.p057
	Persadh_Ajith_Koowarlall_2007.p058
	Persadh_Ajith_Koowarlall_2007.p059
	Persadh_Ajith_Koowarlall_2007.p060
	Persadh_Ajith_Koowarlall_2007.p061
	Persadh_Ajith_Koowarlall_2007.p062
	Persadh_Ajith_Koowarlall_2007.p063
	Persadh_Ajith_Koowarlall_2007.p064
	Persadh_Ajith_Koowarlall_2007.p065
	Persadh_Ajith_Koowarlall_2007.p066
	Persadh_Ajith_Koowarlall_2007.p067
	Persadh_Ajith_Koowarlall_2007.p068
	Persadh_Ajith_Koowarlall_2007.p069
	Persadh_Ajith_Koowarlall_2007.p070
	Persadh_Ajith_Koowarlall_2007.p071
	Persadh_Ajith_Koowarlall_2007.p072
	Persadh_Ajith_Koowarlall_2007.p073
	Persadh_Ajith_Koowarlall_2007.p074
	Persadh_Ajith_Koowarlall_2007.p075
	Persadh_Ajith_Koowarlall_2007.p076
	Persadh_Ajith_Koowarlall_2007.p077
	Persadh_Ajith_Koowarlall_2007.p078
	Persadh_Ajith_Koowarlall_2007.p079
	Persadh_Ajith_Koowarlall_2007.p080
	Persadh_Ajith_Koowarlall_2007.p081
	Persadh_Ajith_Koowarlall_2007.p082
	Persadh_Ajith_Koowarlall_2007.p083
	Persadh_Ajith_Koowarlall_2007.p084
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p001
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p002
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p003
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p004
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p005
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p006
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p007
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p008
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p009
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p010
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p011
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p012
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p013
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p014
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p015
	Persadh_Ajith_Koowarlall_2007.p085_Appendices.p016
	Persadh_Ajith_Koowarlall_2007.p085_Ref.p001
	Persadh_Ajith_Koowarlall_2007.p085_Ref.p002
	Persadh_Ajith_Koowarlall_2007.p085_Ref.p003

