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Abstract 
 

Solar radiation is a primary driving force behind a number of solar energy applications such as 

photovoltaic systems for electricity generation amongst others. Hence, the accurate modelling 

and prediction of the solar flux incident at a particular location, is essential for the design and 

performance prediction of solar energy conversion systems. In this regard, literature shows that 

time series models such as the Box-Jenkins Seasonal/Non-seasonal Autoregressive Integrated 

Moving Average (S/ARIMA) stochastic models have considerable efficacy to describe, monitor 

and forecast solar radiation data series at various sites on the earth‟s surface (see e.g. Reikard, 

2009). This success is attributable to their ability to capture the stochastic component of the 

irradiance series due to the effects of the ever-changing atmospheric conditions. On the other 

hand at the top of the atmosphere, there are no such conditions and deterministic models which 

have been used successfully to model extra-terrestrial solar radiation. One such modelling 

procedure is the use of a sinusoidal predictor at determined harmonic (Fourier) frequencies to 

capture the inherent periodicities (seasonalities) due to the diurnal cycle. We combine this 

deterministic model component and SARIMA models to construct harmonically coupled 

SARIMA (HCSARIMA) models to model the resulting mixture of stochastic and deterministic 

components of solar radiation recorded at the earth‟s surface. A comparative study of these two 

classes of models is undertaken for the horizontal global solar irradiance incident on the solar 

panels at UKZN Howard College (UKZN HC), located at 29.9º South, 30.98º East with 

elevation, 151.3m. The results indicated that both SARIMA and HCSARIMA models are good 

in describing the underlying data generating processes for all data series with respect to different 

diagnostics. In terms of the predictive ability, the HCSARIMA models generally had a 

competitive edge over the SARIMA models in most cases. Also, a tentative study of long range 

dependence (long memory) shows this phenomenon to be inherent in high frequency data series. 

Therefore autoregressive fractionally integrated moving average (ARFIMA) models are 

recommended for further studies on high frequency irradiance. 
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Chapter 1 

Introduction 

Preliminaries 

In this preliminary chapter, a short motivation of the study as well as little background on solar 

energy studies is given. A detailed explanation of the aims and objectives of the study is also 

provided, as well as a brief introduction to some of the important concepts in the solar energy 

studies.  

 

1.1 Motivation 

The increasing consumption of solar power as a source of electricity creates a greater need in 

assessing and predicting solar resource over various time horizons, depending on the 

requirements. Among many services, short-term energy forecast information is essentially 

required for operational planning, switching sources, programming back-up, short-term power 

purchases, planning for reserve usage and peak load matching. The growing number of solar 

systems installations worldwide is an indication that the accurate assessment of solar resource is 

essential to facilitate the design of solar electric grids. Therefore, solar irradiance quantification 

studies are of great significance for the optimal operation and power prediction of grid connected 

photovoltaic (PV) plants. However, this presents a challenge which is very complex to handle 

due to the random and nonlinear characteristics of solar irradiance under changeable weather 

conditions. Such uncertainties associated with the variations of solar flux incident on the solar 

panels leave much to be desired. Thus, the uncertainty quantification of the stochastic (random) 

variations of solar irradiance might be one essential step, as an efficient use of solar resource 

requires reliable information related to its availability.  

 

Short term solar irradiance forecasting (up to a few minutes or hours or days) has significant aids 

in solar energy system sizing and optimization and is therefore critical for solar system 

developers. Accurate forecast information improves the efficiency of the solar systems outputs. 

The importance of solar resource forecasting can be witnessed in energy storage management of 

stand-alone photo-voltaic (PV) or wind energy systems, control systems in buildings, control of 
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solar thermal power plants and the management of electricity grids with high penetration rates 

from renewable sources. Both physical and statistical models have been used to assess solar 

radiation at the earth‟s surface (see e.g. Badescu et al., 2008). However, the need for reliable 

predictive methods for solar systems power output arises, for instance, in operational planning 

procedures related to future energy availability, demand etc. The findings of research studies in 

the field of solar energy could be useful in solar systems development and power management.  

 

The general class of models have been adapted or coupled with other model forms to deal with 

some data phenomena deviating from the classical assumptions (“norms”). For example, the time 

series data with deterministic seasonal patterns and autocorrelated errors can be modelled by a 

deterministic regressor and the residuals by a S/ARIMA model. In the case of long range 

dependence inherent in the series, the Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) models have been with effect (see e.g. Granger and Joyeux, 1980). Therefore, in this 

thesis we make use of S/ARIMA related models. 

 

1.2 Background Studies 

Some attempts have been made previously to quantify the uncertainties associated with the 

variations of solar irradiance incident on the ground. The earliest studies in the field of solar 

energy were conducted by Liu and Jordan (1960). These researchers established the relationship 

between daily diffuse and global irradiance components on clear days on a horizontal surface, 

with the measurements from 98 sites in the US and Canada. In an attempt to assess global solar 

irradiance, various classes of models such as regressions in logs, seasonal autoregressive 

integrated moving average (S/ARIMA), transfer functions, neural networks (see e.g. Alam et al., 

2006; Tymvios et al., 2005), and hybrid models have been employed amongst others. Some 

research studies have been carried out examining global solar irradiance at various resolutions 

ranging from about 5 minutes to as long as a day (see e.g. Craggs et al., 1999); Reikard, 2009).  

The success of S/ARIMA is attributable mainly to its ability to capture the cycles more 

effectively than other methods. For example, this was evident in the findings of the study by 

Craggs et al., (1999) to test the efficacy of S/ARIMA models in evaluating the 60-minutely and 

10-minutely averaged global horizontal irradiance relating to 13 and 15 day periods in two 

winters and two summers. In the aforementioned study, the S/ARIMA models were used for 
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short-term prediction of irradiance at the northerly location in the city centre of Newcastle upon 

Tyne, UK at latitude 54859'N, longitude 1837'W and altitude 44m. In this study, a univariate 

stochastic modelling using S/ARIMA models was carried out for horizontal and south facing 

vertical solar irradiance. The results showed that these models provide a good fit for the 10-

minutely averaged horizontal and vertical irradiance. However, the use of the 60-minutely 

averaged data in these models gave a substantial reduction in the fit. In another study by Reikard 

(2009), in an attempt to estimate the global horizontal solar irradiance, the data series were 

examined at resolutions ranging from about 5 min to 60 min. The results of this study indicated 

that neural networks or hybrid models in a few cases can improve at very high resolutions on the 

order of 5 min while the success of the S/ARIMA models was attributable mainly to its ability to 

capture the diurnal cycle more effectively than other methods. For variance stabilizing purposes, 

the models were fitted to the log transform of the original series. Overall, both studies indicated 

that the best results were achieved from S/ARIMA in logs.  

 

Furthermore, one of the recent studies has been based on measurements of global solar radiation 

from the National University of Colombia in Bogota (74º 4' West, 4º 35' North, 2580 m altitude) 

for the period from 2003 to 2009 (see Perdomo et al., 2010). In this study, a time series statistical 

modelling has been performed in an attempt to predict the accumulated mean daily global solar 

radiation at the solar station of National University of Colombia in Bogota. The stationarized 

version of the data series was examined and the ARIMA (1,0,0) was employed as a best fit, with 

the error term distributed as a standard normal variable (i.e. white noise). Also deterministic 

models have been used to model and predict solar irradiance. One such approach is the 

application of sinusoidal prediction techniques (see e.g. Huang et al., 2011). In this thesis, we 

couple these predictors with S/ARIMA models to form harmonically coupled S/ARIMA 

(HCSARIMA) models.  

 

1.3 Aims and Objectives     
 

The aim of this study is detailed as follows: 

The electrical output from a photovoltaic (PV) panel in the horizontal plane on the earth‟s 

surface is influenced by the variable daily meteorological conditions and hence uncertainties due 

to random variations of solar resource. Therefore, reliable forecasts are critical to solar system 
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developers because of the future uncertainties about the performance of a system. In particular, 

the aim is to clarify the exact nature of solar irradiance falling on the radiometric ground station 

of UKZN HC so that the forecasting may be performed by a specified stochastic model.  

 

Another challenge faced is the estimation of missing values in the measured solar data caused by 

various phenomena such as equipment malfunction and interruptive maintenance among others. 

This is inherent in many datasets containing gaps e.g., data recorded at UKZN HC Solar 

Meteorological Station, which we make use of in this study. Apart from that, measuring 

instrumentation can be anticipated to fail from time to time and therefore be faulty to give 

infeasible values (with high error margin) or no values at all. For this reason, estimation models 

for solar radiation are required for efficiently monitoring solar system. In this thesis we study 

global horizontal irradiance (GHI) although its components, namely, direct normal irradiance 

(DNI) and diffuse horizontal irradiance (DHI) are also recorded.  

 

To our knowledge, the aforementioned classes of models, namely; SARIMA, HCSARIMA and 

ARFIMA have never been used to assess solar resource incident at the solar station (UKZN HC) 

under investigation, nor have any studies of this nature been carried out at this station. This is 

therefore one of the contributions of this study. The second contribution of the study is to be able 

to predict the irradiance pattern for the site with some degree of accuracy. The designer of solar 

energy collection systems may be interested in knowing how much solar energy he anticipates to 

fall on a collector over a certain period of time such as a day or two. If storage is included in a 

system design, the designer also needs to know the variation of solar irradiance over time for 

system design and optimization purposes, in which case the predictive models can be searched 

and formulated to assist the designer achieve that. Hence this will enable us to tell the designer 

the next irradiance pattern to expect within a couple of periods at UKZN HC. A situation of this 

kind has prompted the development of efficient models to provide reliable irradiance predictions 

in an attempt to estimate the missing values for solar stations where the equipment malfunction 

is experienced from time to time. Therefore, this could be the primary interest, i.e. the 

interpolation of missing values prior to data modelling.  
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Finally, we concentrate on searching for the models which best explain the underlying data 

generating processes for irradiance time series data obtained from the station of UKZN HC. This 

is also intended to improve on some previously used methods for estimating irradiance time 

series data with certain disadvantages (see e.g. Wang et al., 2012). This researcher made use of 

extra-terrestrial irradiance model to estimate global solar irradiance at the ground level. Such 

approach has clear disadvantage in that it only takes into consideration geographic quantities 

thereby providing estimates with a high margin of error even on clear sky days, overestimating 

and/or underestimating. Apparently, such models represent no underlying stochastic process of 

the series because it is not developed from the sample. Using different datasets, we show that 

there are better methods of modelling solar irradiance patterns on the ground. Time series models 

are capable of capturing the stochastic (random) component infused in an irradiance time series 

data of all types of weather, providing better estimation. We also assess whether employing 

Harmonically Coupled SARIMA (HCSARIMA) models yields better results. At a tentative level, 

we carry out a study of long range dependence in the irradiance series and point out areas of 

further research. 

 

Therefore the main objectives of this study are summarized as follows: 

 Generally searching for the most accurate underlying data generating processes that could 

be used for the generation of series values with a higher degree of accuracy and to replace 

some of the previously used less effective methods.  

 Modelling solar irradiance using advanced time series analysis techniques e.g. Box-

Jenkins SARIMA. 

 Combining sinusoidal component inherent in the series and SARIMA models to form a 

new class of models namely Harmonically Coupled Seasonal Autoregressive Integrated 

Moving Average (HCSARIMA) processes, which are also used to model the same solar 

irradiance datasets. 

 Comparing the performance of SARIMA and HCSARIMA models in terms of their 

competencies to forecast for solar irradiance series, on the basis of forecast error 

(accuracy) measures. 

 Preliminarily showcasing the ability of the ARFIMA process to model the high frequency 

time series data. 
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1.4 Fundamental Concepts and KZN Solar Distribution 

For the purpose of solar power supply, the most significant measures are the intensity and energy 

delivered, hence one measure at a point in time and the other over a period of time. The rate at 

which the solar energy reaches a unit area at the earth‟s surface is called the "solar irradiance" 

or "insolation". It is the intensity of solar radiation hitting a surface, which is the sum of the 

contributions of all the wavelengths within the spectrum. The units of measurement for 

irradiance are watts per square meter ( /  ). In simpler terms, solar irradiance can be defined 

as an instantaneous measure of rate and is variable over time. The maximum solar irradiance 

value is used in system design to determine the peak rate of energy input into the system. The 

solar irradiation or radiation is simply the integration or summation of solar irradiance over a 

time period. For instance, let us consider the irradiance incident on a unit area over a finite time 

interval           then the respective energy realized on this unit area can be defined for 

irradiation as follows: 

 

                                                                   
  

                                          (1.1) 

                                                                                                                           

           

where      is the solar irradiance value at time instant  . The common measurement units of 

irradiation   are       (Joule per square meter) or      (Watt-hours per square meter). The 

momentary total irradiance incident on a solar collector is generally referred to as power, 

measured in watts         , i.e. the rate at which the work is done (see e.g. Watt, 1978). 

 

The radiation intensity on the surface of the sun is approximately              and the 

intensity of the radiation leaving the sun is relatively constant. It is the amount of energy 

received at the top of the earth‟s atmosphere, measured at an average distance between the earth 

and sun on a surface oriented perpendicular to the sun. As it travels to the earth‟s surface, the 

radiation spreads out as the distance squared bringing about the reduction of the radiant energy 

falling on     of surface area to a constant     called the solar constant (see e.g. Froehlich and 

Brusa, 1981; Iqbal, 1983), with the generally accepted value of         . A solar map of 

KwaZulu-Natal Global Horizontal Irradiation given below in Figure1.1, shows that Durban 

possesses a considerable solar resource of approximately 1637      , annually. It is notable 
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that we experience a higher concentration of solar flux as we move farther away from the coastal 

regions. 

 

Figure 1.1: A solar map of KwaZulu-Natal Global Horizontal Irradiation. Source: 

www.kzngreengrowth.com.  

 

 

1.5 Thesis structure 

In this section an outline of the remaining chapters is given to summarize each chapter‟s content. 

 

Chapter 2 introduces the background research studies in the field of solar energy. From this 

chapter, we gain an understanding of how the incoming energy from the sun is influenced by 

meteorological factors as it traverses the atmosphere to the ground. The physical models have 

been developed in an effort to estimate solar radiation received on the ground. In this chapter we 

also give some scientific time series models that can be used in addressing the challenges arising 

in design and sizing of solar power systems as well as power management of such systems. In 

Chapter 3 we discuss in detail the two main approaches to analysing time series data, namely, 

time domain and frequency domain techniques. The first approach (time domain) generally 
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makes use of the general Box-Jenkins techniques in building a model. The latter approach 

(frequency domain) is appropriate when fluctuations of sinusoidal nature are inherent in the 

series. Spectral analysis of the series is then carried out to search for periodicities within the data. 

Chapter 4 gives a detailed discussion of the long memory (long range dependence) property 

inherent in high frequency time series data. This is characterized by autocorrelations that decay 

very slowly or fail to decay at an earlier lags. For this reason, a special class of models viz., 

Autoregressive Fractionally Integrated Moving Average (ARFIMA) models, has been proposed 

in an effort to deal with the long memory dependence. The ARFIMA process allows non-integer 

(fractional) values of the differencing parameter. In Chapter 5, various forecasting methods are 

discussed with respect to their application according to specific behaviours by time series data. 

Such forecasting techniques are moving average and simple exponential smoothing methods, 

double exponential smoothing, triple exponential smoothing, multiplicative and additive seasonal 

models. In Chapter 6, we discuss data availability, measurement techniques, the missing data 

problem and data modelling. Finally, in Chapter 7 we give a detailed conclusion on the research 

findings and also point out some areas for further research.   

  

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Parameter
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Chapter 2 

Review of Literature on Solar Irradiance 

2.1 Solar Irradiance Components  

As solar irradiance traverses the atmosphere in the form of electromagnetic waves or sun's rays, 

some of it can be reflected, absorbed, scattered and transmitted by an intervening medium such 

as air molecules or clouds. This occurs in varying amounts depending on the wavelength. As a 

consequence, the solar input into the earth‟s surface is reduced and falls on a solar panel in 

various forms. The complex interactions of solar irradiance with the earth's atmosphere result in 

the fundamental broadband components, namely, beam or direct irradiance, denoted by   , and 

diffuse or scattered irradiance, denoted by   , on which information is needed for solar energy 

conversion technologies. These sources add up to the total which is referred to as global or total 

solar irradiance, denoted by   . However, at the stage of data modelling, we denote the 

irradiance time series by   . 

 

On the surface of the earth, we perceive the beam or direct solar irradiance that comes directly 

from the sun and the diffuse or scattered solar irradiance that appears to come from various 

directions over the entire sky due to atmospheric scattering. Thus, the term "global" is associated 

with the fact that the solar irradiance on a horizontal surface is received from the entire 2  solid 

angle of the sky dome. Direct irradiance can also be reflected by the surrounding environment on 

to a solar device or panel. This is called ground-reflected solar irradiance (see Figure 2.1).  
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Figure 2.1: Radiation scattering and reduction, three types of radiation: direct, diffuse and 

ground reflected. Source: http:// www.newport.com/Introduction-to-Solar-Radiation.  

 

It is also observable that some portion of energy is backscattered by the atmosphere and some 

reflected by the cloud cover before reaching the ground. Meanwhile, this allows us to conclude 

that the difference observed between global irradiance on a detector at ground level and its 

corresponding value outside the atmosphere is what has been absorbed, backscattered or 

reflected away. In the following section, a bit of basic physical modelling behind solar radiation 

is given. 

 

2.2 Extra-terrestrial Solar Irradiance and Cosine Effect 

The extra-terrestrial solar irradiance is an instructional concept often used in solar irradiance 

deterministic models. This is not affected by the atmospheric or weather conditions. Rather, it is 

determined by the earth‟s rotation and revolution. That is, outside the atmosphere, this intensity 

varies only due to the earth‟s orbit being slightly elliptical. It changes with the day of the year 

and the maximum irradiance occurs at the perihelion i.e. the earth closest to the sun (sometime in 

January) and the minimum at the aphelion (sometime in July). This variation is expressed in 

terms of the eccentricity correction factor    as follows: 

 

                                                           (       (
    

   
)*                                      (2.1) 
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where          is the day number, starting from the 1
st
 of January (see e.g. Badescu, 2008; 

Iqbal, 1983). 

 

From Equation (2.1), the extra-terrestrial irradiance at a normal incidence is given by 

 

                                                                                                                                           (2.2) 

 

The Lambert’ Law (Cosine Effect): Since the sunlight is smoothly distributed over whole areas, 

a mere figure for intensity is never sufficient without knowledge of the orientation of the surface 

in question. Typically, the orientation of a surface is described by the zenith angle,    the angle 

between the sunbeam and the normal of the area. If    is the extra-terrestrial solar irradiance (i.e. 

the irradiance initially available at the top of the atmosphere) falling on a horizontal surface, the 

intensity on an area where the sun is observed under the zenith angle   , is given by 

 

                                                                     (2.3) 

 

This means that if the surface is perpendicular to the sunbeam (normal to a central ray), i.e. 

      the solar irradiance falling on it will be   , the maximum possible solar irradiance. On 

the other hand, if the surface area is not perpendicular to the sunbeam, it is notable that a larger 

area may be required to catch the same flow as the cross section of the sunbeam. Equation (2.3) 

is generally referred to as Lambert‟s Law (see e.g. Baldocchi, 2012), named after Johann 

Heinrich Lambert, from his Photometria (1760). The cosine effect and/or Lambert‟s Law is 

diagrammatically described in Figure 2.2.  
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Figure 2.2: The cosine effect as it relates to the concept of extra-terrestrial irradiance on a 

horizontal surface. Source: http://www.powerfromthesun.net/chapter2/Chapter2.htm. 

 

The effect of geographical quantities: For a particular location, on a particular day in a year, 

the extra-terrestrial irradiance    can be deterministically estimated as a function of basic 

geographic and astronomic quantities such as latitude    , declination ( ) and hour angle ( ) 

among others, (see e.g. Radosavljevic and Dordevic, 2001). The cosine of the solar zenith angle 

(  ) can be expressed in terms of the aforementioned quantities as follows, 

 

                              .                                           (2.4) 

 

Therefore, by substituting Equation (2.4) into Equation (2.3), the intensity of extra-terrestrial 

radiation on horizontal surface for particular day in a year can better be estimated by the 

following formula: 

 

                 *          (       (
    

   
)*+                        .          (2.5) 

 

Various aerosol factors such as clouds thickness and water vapour among others bring about 

reduction of solar energy as it traverses to the surface in the form of electromagnetic waves, the 

energy received on the ground in a less amounts than expected extra-terrestrial value. Therefore, 

the difference between extra-terrestrial irradiance and surface irradiance is a reflection of such 

factors. The study conducted by Wang et al., (2012) made application of Equation (2.5) in an 

http://www.powerfromthesun.net/chapter2/Chapter2.htm
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attempt to estimate the horizontal solar irradiance time series values. The clear shortcoming of 

Equation (2.5) is neglecting the account of random (stochastic) component. It also follows, from 

Equation (2.3), the relationship between the three solar irradiance components on a horizontal 

surface is given by the following equation: 

 

          +   .                                                          (2.6)            

 

 

Equation (2.6) is fundamental to the calibration of solar instrumentation and implies that the 

vertical component of the direct beam is equal to the difference between the total and diffuse sky 

radiation. For tilted surfaces, Equation (2.6) can be adjusted to take the following form: 

 

                 ,                                            (2.7) 

 

 

where    is the incidence angle with respect to the normal of the tilted surface, and    is a 

conversion factor that accounts for the reduction of the sky view factor and anisotropic 

scattering, and   is radiation reflected from the ground that is intercepted by the tilted surface 

(Iqbal, 1983).  

 

2.3 Clearness Indices: Effects of Atmosphere 

The clearness index, denoted by   , generally refers to the ratio of the actual irradiance value on 

the ground to the extra-terrestrial beam value at the top of the atmosphere. The ratio of total 

irradiance on a horizontal surface, to the extra-terrestrial on a horizontal surface      is called 

clearness index for global total hemispherical, denoted by   , i.e. the portion of extra-terrestrial 

irradiance reaching the earth‟s surface (see e.g. Badescu, 2008): 

 

   
  

    
 

  

       
.                                                         (2.8) 

 

The parameter    is commonly used as an indicator of the relative clearness of the atmosphere 

and can be calculated for each daylight unit period. In general, when the atmosphere is clear,      
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a smaller fraction of the irradiance is scattered. Basically, a low clearness index implies, for 

instance, a small portion of radiation reaching the surface, which reflects an overcast weather 

situation and hence a high diffuse fraction. On the other hand, a high clearness index indicates a 

clear sky weather pattern, with small diffuse radiation and hence a low diffuse fraction. The 

intermediate values of clearness index indicate a partly-cloudy sky conditions. 

 

Similarly, the other two indices relating to direct beam and diffuse irradiance components  

(i.e. degree of cloudiness according to direct and diffuse components), are respectively given by:  

 

            ⁄           ⁄                                        (2.9) 

 

Moreover, at the short term, the behaviour of solar radiation is mainly ruled by the parameters 

such as frequency of the clouds and water vapour among others. Thus, the actual solar irradiance 

can be considered as the sum of two components: deterministic and stochastic. Therefore, this 

means that in order to isolate the stochastic component, it is necessary to normalize the 

irradiance value to extra-terrestrial beam value, thus accounting for the transparency of the 

atmosphere. That is, the ratio of the actual irradiance on the ground to that initially available at 

the top of the atmosphere can be calculated and presented as the degree of cloudiness indicator in 

the short term. This rational quantity is referred to as instantaneous clearness index and is 

required to focus on the analysis of fluctuations in solar irradiance. These indices can also be 

defined for the irradiation by integrating the instantaneous irradiance values over a given time 

interval.  

 

2.4 Classification of weather (days) 

There are two essential, generally accepted, methods (called data filters) for classifying days on 

the basis of the magnitude of a related parameter. These parameters are clearness index and 

degree of cloudiness. According to Badescu (2008), Barbaro et al. (1981), the clearness on a 

particular day may be judged in terms of the degree of cloudiness, both in octas and tenths as 
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shown in Table 2.1. On the other hand, Iqbal (1983) proposed that the magnitude of the daily 

clearness can be measured by the so called clearness index    (the ratio of the solar global to the 

extra-terrestrial solar irradiation) to indicate the degree of cloudiness (see Table 2.2). The two 

methods are reported in the tables below. 

 

Table 2.1: Classification according to cloud cover. 

 

 

 
 

Table 2.2: Classification according to clearness index. 

 

Day type Kt 

Clear 0.7 ≤ Kt < 0.9 

Partially Cloudy 0.3 ≤ Kt < 0.7 

Cloudy 0.0 ≤ Kt < 0.3 

 

2.5 Photovoltaic (PV) System Design and Optimization 

The variability of solar resource over time has a considerable impact on the solar system design. 

A PV array‟s performance is dependent on the weather, specifically on the daily levels of 

available solar irradiation. A series of statistical algorithms utilizing available data on solar 

irradiance levels at a given site are critical to the design process. Such algorithms are useful for 

managing the energy storage and demand by the load, which is powered by a PV array and a 

battery bank. The result is a statistical prediction of the PV system‟s performance.  

 

The three main blocks in energy harvesting and management are the harvesting source, the load 

and the harvesting system. Harvesting Source refers to any available harvesting technology, such 

as a solar cell and a wind turbine, amongst others, which extracts energy from the environment. 

The load refers to the energy consuming activity being supported. Harvesting system refers to 

Day type Octas Tenths 

Clear 0 – 2 0 - 3 

Partially cloudy 3 – 5 4 - 7 

Cloudy 6 – 8 8 - 10 
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the system designed specifically to support a variable load from a variable energy-harvesting 

source when the there is a mismatch between the power supply levels and the consumption levels 

of the load. Kansal et al. (2007) presented the diagram in Figure 2.3 illustrating energy 

harvesting from the environment. 

 

 

Figure 2.3: Energy harvesting from the environment with the load showing different power 

levels.  

 

Energy-neutral operation and maximum performance  

In energy harvesting and power-management, design considerations such as energy-neutral 

operation and maximum performance are critical to energy system sizing and optimization  

(see e.g. Kansal et al., 2006). Such considerations depend on the system‟s total harvested energy. 

Optimal energy usage and battery sizing are also challenging issues in the process. The three 

main components in energy harvesting process are the harvesting source (e.g. solar cell), load 

and harvesting system. The whole idea is to ensure a consistent and sufficient power supply from 

the energy conversion system to constantly meet the energy demands of the consumption system. 

We elaborate on these concepts below. 

 

Energy-neutral operation: For efficient operation the system must obviously operate such that 

the energy demanded by the load is continuously met or exceeded by the energy harvested. If 
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      is the power output from the energy source and       the consumption by the load at time 

instant    then the fundamental requirement for energy-neutral operation is:  

 

           ,                                                             (2.10) 

 

The inequality in Equation (2.10) is based on the assumption of the harvesting system with no 

energy storage facility, i.e. the system in which the energy is directly used by the load. 

Therefore, this means that the excess energy is leaked or wasted. Otherwise, we have a system 

with ideal energy buffer. For such a system, there is no energy leakage, no charging inefficiency 

and no capacity limit. Therefore, the following inequality should be satisfied: 

 

                 
 

 

 

 
                                            (2.11) 

 

where    is the initial energy stored in the ideal energy buffer. Again we have another case of 

harvesting system with non-ideal energy buffer (e.g. battery). In this system there is leakage, 

charging inefficiency as well as storage limits. To describe such a system, we define a rectifier 

function as follows: 

 

      ,
     
     

 

 

For this particular system, a necessary and sufficient condition without the energy buffer limit is 

mathematically described as follows: 

 

                  
                  

   
 

 

 

 
            

 

 
               (2.12) 

 

An additional constraint imposing a sufficient condition for the energy buffer limit constraint is: 

 

                  
                  

   
 

 

 

 
            

 

 
  .            (2.13) 
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Maximum performance: The system must also be ensuring the maximum performance level 

that can be supported in a given harvesting environment. This may depend, for example, on the 

efficiency of the system hardware components, whose time to failure may be explained by an 

exponential random variable with mean    

 

PV-system Battery Sizing 

Let us suppose that a photo-voltaic system is to be installed at a particular site. To describe the 

operation of the system, the long-term energy balance is generally considered between the 

energy generated by the Photovoltaic (PV) array, the energy consumed by the load, and the 

energy stored in a battery. Let us consider a time interval of    days in which a system is 

required to meet the energy user demand and suppose that we experience a constant daily solar 

irradiation        in each day (i.e. there are no day-to-day variation of solar irradiation) incident 

on the plane of the array. If the energy demanded or consumed by the load in one day is  , then 

according to Arun et al. (2006), the energy required to power the load would be supplied by an 

array of size: 

 

   
 

    
                                                           (2.14) 

 

The array size is usually expressed as a dimensionless multiple of the parameter    (see e.g. 

Egido and Lorenzo, 1992).    is referred to as the solar-to-load ratio, of the array size, given by 

Equation (2.14), required to consistently supply the load during the average irradiation (see e.g.  

Klein and Beckman, 1987): 

 

     
 

    
.                                                     (2.15)                                                                                  

 

If we assume the situation when the daily solar irradiation is equal to   , below the average 

value of     . During this climatic cycle, the energy storage device (battery) has to cover the 

daily mismatch between the energy supply and demand. Therefore, to maintain a continuous 

electricity supply to the load, the required battery size  , in energy units, must satisfy: 
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            .                                                     (2.16) 

 

If the battery size   is replaced by the days of storage      ⁄   the condition given by 

inequality (2.16) for continuity of supply can be written as 

 

 

  
   

 

    
    .                                                     (2.17) 

                                                                                                                                  

It is interesting to note that the inequality in Equation (2.17) is a family of straight lines with 

input variable    and output variable   . This represents a principal starting point for the 

construction of the sizing curve, based for the moment, on a single climatic cycle. The slope and 

the intercept of Equation (2.17) are respectively given by              ⁄  and   ⁄ . 

 

Now, the points (           (i.e. a shaded region) on a Cartesian plane, represent all system 

configurations that comply with the inequality in Equation (2.17). This method can be extended 

to describe real life situations with the accurate analysis and simulation of time series data. 

 

System Sizing by Net Power Flow and Energy Balance 

If    is the energy storage capacity of the system,   the input power from any source (e.g. 

photovoltaic panel),   the demand or consumption power,    the charging efficiency and    the 

discharging efficiency at any time point  . Then according to Arun et al. (2006), the storage rate 

at any time instant   is given by: 

   

  
       ,                                                          (2.18)            

 

where   

 

 

  {
                  

   ⁄             
    

 

 

It should be noted that      is not the probability measure in these system sizing matters. Then 

the conservation energy    at any instant   would be given by: 
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         (         )                             
                               (2.19) 

 

At the instants when            the energy surplus would be used for charging the battery. But 

if at any time instant    we have          , then the battery makes up the energy gap. It is 

assumed that    and    are constant and that the variation in the battery energy with time takes 

place without any self-discharge losses. Given the expected load time series      for the site, 

values of    and    as well as the resource data time series      in the form of global solar 

insolation at the specified times            it is possible to determine the minimum capacity 

of the power generator     and related battery bank     rating for meeting the demands of the 

specified load. 

 

For obtaining the minimum generator requirement, a numerical search is performed to obtain that 

constant minimum value of   satisfying the following conditions: 

 

         

         .                                                               (2.20) 

 

The latter condition is called the repeatability condition and maintains that there is no net energy 

drawn from the battery for the time period considered. It is assumed that the load is recurring in 

the same pattern after time    Therefore the required battery bank capacity     would be 

obtained as: 

  

  
          

   
 ,                                                              (2.21) 

 

where     is the allowable depth of discharge of the battery, suitably assumed. This provides 

the value of the minimum possible generator capacity (    ) and the corresponding sizing of the 

battery bank    . It is of interest from a design perspective to identify the various feasible 

combinations for the generator and the storage which forms the design space for the system. 
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Sizing curve and design space for a cumulative energy balance 

Time-series modelling includes the area of stochastic prediction and the optimal prediction of a 

signal sample (in a minimum mean-square sense), given a finite number of past samples. All 

these models are based on simplifying statistical assumptions, about the measured data.  

 

As an example, Figure 2.4 illustrates: 

(a) Daily solar radiation variation incident at a particular station during the period of 1989–1990, 

showing the dominant climatic cycle extending from 1st December 1989 to 7th January 1990.  

(b) Cumulative energy balance (energy taken out of the battery or consumed) for a system design 

based on the average daily radiation in December. The average daily irradiation    (shown by 

the dash-dot line) is the long mean value for December. Assuming the availability of a reliable 

model-simulated time series by which the system design may be supported sizing would then be 

a simpler matter. It should be noted that such sizing method considers a harvesting system with 

no energy consumer operating concurrently with the harvesting process. The same sizing 

scenario may be applied for short term battery sizing (see Markvart et al., 2006). 

 

 

Figure 2.4: Time series curve illustrating PV-battery system sizing. Source: 

http://www.elsivier.com/locate/solener. 

http://www.sciencedirect.com/science/article/pii/S0038092X05003087
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2.6 Statistical Models for Irradiance and Some with Physical 

Quantities 

The amount of solar energy that reaches the earth in one hour is sufficient to supply the world‟s 

energy needs for one year and harvesting this energy efficiently is a huge challenge (Srivastava 

and Pandey, 2013). For such reason, it is therefore essential that some reliable mathematical 

models be developed to estimate the solar radiation for places where measurements are not 

carried out and for places where measurement records are not available.  

 

The two common approaches that are used to study the behaviour of solar radiation on the 

earth‟s surface are Physical Modelling and Statistical Modelling. Physical Modelling studies the 

physical processes occurring in the atmosphere and influencing solar radiation. Finally, the 

radiation on the surface depends on the absorption and scattering processes in the atmosphere. 

This approach is exclusively based on physical considerations and dictates models that account 

for the estimated solar radiation at ground level in terms of a certain number of physical 

parameters such as water vapour content, dust, aerosols, clouds and cloud types, etc. The review 

of literature on the estimation of solar irradiance also shows that various empirical models for 

different geographical and meteorological conditions have been developed for estimating the 

monthly average daily global solar radiation on a horizontal surface (see e.g. Ulgen and 

Hepbasli, 2004). In their study, Ulgen and Hepbasli (2004) compared some existing models used 

for estimating the monthly average daily global solar radiation on a horizontal surface for some 

three big cities in Turkey. The outcome of this study reveal that empirical correlations are a 

reasonably good estimation for global radiation and through comparing the previously reported 

results and some two newly proposed models‟ results, it was found that the present models make 

better predictions than other previous models on the basis of various statistical measures such as 

MBE and RSME amongst others. These are a first order regression model and a third order 

polynomial model.  

 

Statistical Solar Modelling is another important tool used to reach immediate goals in solar 

energy conversion. This methodology is very wide. However, the focus of this study has largely 

been on assessing solar irradiance time series data and the application of sophisticated time series 
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data modelling techniques. Meteorological variables such as daylight length (sunshine duration), 

air temperature and relative humidity have been used as key factors in correlation models used 

for estimating the monthly daily global solar irradiation. A correlation making use of irradiance 

components and clearness index has also been established in an effort to estimate diffuse 

irradiance. In the next subsections, we briefly elaborate on such models of which some of them 

also incorporate some geographical quantities in the predictors‟ vector of the model. The first of 

these models (Angstrom equation), from which other models were derived through various 

modifications, is linear in nature. At the end of the section we also elaborate on various 

irradiance time series models that have been considered by other researchers in their attempts to 

model the stochastic variations of irradiance time series data. 

 

Linear Models 
 

Angstrom-type equation (estimation through sunshine duration) 

The first ever correlation model relating solar radiation and sunshine duration was proposed by 

Angstrom (1924) and further modified by Prescott (1940), (see e.g. Tymvios et al., 2005). In this 

model, a ratio of the average day hourly global irradiation ( ), to the corresponding value on a 

completely clear day (  ), and the ratio of the average daily sunshine duration ( ) to the 

maximum possible sunshine duration,     are related through the linear Equation (2.22), (see e.g. 

Almorox et al., 2004; Srivastava and Pandey, 2013). 

 

 

  
    (

 

  
),                                                           (2.22) 

 

The constants   and   are determined regression parameters that can be estimated for different 

locations using simple linear regression. This linear relationship is also known as the Angstrom–

Prescott Equation, named after the proposal by Prescott (1940) that the average global irradiation 

on a clear day should be replaced with the extra-terrestrial intensity values to put the equation in 

a more convenient for the clear sky global irradiance might not be determined exactly. From 

Equation (2.22), a unique model for each month is then estimated from the measurements 

obtained for that particular month (see e.g. Ulgen and Hepbasli, 2004).  
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Estimation through air temperature and relative humidity 

In this model, the regressor comprises the ratio of the measured day temperature ( ) to the 

maximum possible temperature (  ), i.e. the hottest air temperature reported on earth, to predict 

the ratio of average day hourly global solar radiation to its corresponding value on a completely 

clear day. 
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)                                                (2.23) 

 

Similarly, a correlation model comprising the ratio of the measured relative humidity ( ) to the 

maximum possible relative humidity (  ) is given by: 
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).                                              (2.24) 

 

Estimation of diffuse fraction through the clearness index 

For the stations where only measurements of the global irradiance      may be available, a 

correlation model for estimating the diffuse fraction      when it is not known has been 

suggested. This model correlates the diffuse fraction with the clearness index and is developed 

from the measured values of both total and diffuse irradiance on a horizontal surface over a 

certain period of time. The ratios          ⁄  (ratio of global irradiance to extra-terrestrial 

horizontal irradiance) and        ⁄  (ratio of diffuse irradiance to global irradiance) obtained 

for each daylight unit period are related through the following equation,  

 

                                                          (2.25) 

 

For easy modelling purposes, Equation (2.25) may be justified for a binary random variable 

defined on      , to take the following form, 

 

   
 

          
.                                               (2.26) 
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This is called a logistic function, used for estimating proportions. There are various methods for 

performing the fit. One common method is to transform Equation (2.26) into a linear equation in 

   and   , as follows: 

 

  (
      

    
*                                                                     (2.27)      

                                                                                              

The model parameters    and    are then estimated by using an iterative procedure such as the 

Newton Raphson algorithm. Many linear relationships exist indeed between solar variables and 

meteorological factors and also among irradiance components themselves, e.g. global solar 

irradiance and diffuse fraction. The strength of correlation between these variables will of course 

depend on the sky conditions, e.g. on overcast days,    and    are almost equal.    

 

Polynomial Models 

 
According to Ulgen and Hepbasli (2004), Angstrom–type equation has been further revised and 

modified by Samuel (1991) and Zabara (1986) to higher degree polynomial functions, e.g. 

quadratic and third degree functions. The proposed polynomial regression models are given by 
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According to Zabara (1986), the parameters of the modified Angstrom model,   and    can be 

correlated with the maximum possible sunshine duration (  ) and daylight length ( ) as a third 

order function as follows, 
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Angular models and other models 

 
Also, from the Angstrom-type equation, another class of models called angular models has been 

developed. One such model, proposed by Gopinathan (1988), makes use of the cosine of the 

latitude ( ), elevation ( ) and percentage of possible sunshine for any location around the world 

to estimate the parameters   and   as follows, 

 

              cos              (
 

  
)                                                              

             cos               (
 

  
).                            (2.30) 

 

According to Glover and McCulloch (1958), a good estimation may be achieved through 

Equation (2.31) at latitudes of        . 
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)       .                                   (2.31) 

 

A similar model incorporating latitude ( ) was formulated by Raja and Twidell (1990) as 

follows: 
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).                                                (2.32) 

 

Among other models we have one incorporating the logarithmic term, proposed by Newland 

(1988) and given by: 
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).                                      (2.33) 

 

In addition to (   ⁄ ), only the altitude of the site ( ) was taken into account with the values of   

and   adjusting, (Gopinathan, 1988) to: 

 

                    (
 

  
)   and                       (

 

  
).         (2.34) 
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According to Dogniaux and Lemoine (1983), the regression coefficients   and   can be given as 

linear functions of the latitude ( ) in average and on the monthly basis, as follows: 

 

                    and                   .                         (2.35)                                                

 

2.7 Forecasting Models for Irradiance on Various Time 

Scales 

Literature reveals that model (2.2) has been used by some researchers in the attempt to model 

and forecast the irradiance time series values (see e.g. Wang et al., 2012). In this study, the 

surface irradiance measurements for four consecutive days on hourly scales (from 9
th

 to 12
th

 of 

March 2010) were examined to assess the difference between the surface measured values (  ) 

and their extra-terrestrial counterparts (  ), i.e.           referred to as the solar irradiance 

difference. Apparently, as revealed by figures, a major drawback of such a model is that it only 

takes into consideration geographic quantities, ignoring the account of the influences by the 

random and nonlinear characteristics of solar irradiance under changeable weather conditions. As 

a consequence, the solar irradiance series values have been overestimated and/or underestimated 

(see e.g. Wang et al., 2012, Figure 1).  

 

The results showed that the solar irradiance difference is less variable on clear sky (sunny) days 

(e.g. 11
th

 and 12
th

 of March 2010), larger and has more inflections on cloudy or overcast days 

(e.g. 9
th

 and 10
th

 of March 2010). This variation is apparently related to the weather conditions 

unfavourable for the maximum amount of energy to be received on the surface. The analysis of 

the variation related to different weather conditions can be useful for extracting more 

information from the measured values of surface solar irradiance and their extra-terrestrial 

counterparts, by finding and selecting suitable climatic parameters such as ambient temperature 

and relative humidity amongst others. Such parameters can be reflective of these correlative 

variation characteristics, i.e. they can reflect the changes of irradiance and be considered as the 

input of other time series forecasting models such as an Artificial Neural Network (ANN) model.  
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Artificial neural networks (ANNs) methodology 

Artificial neural networks are a class of distinct mathematical models originally motivated by the 

information processing in biological neural networks, and have found applications in forecasting 

tasks and modelling nonlinear functions, e.g. solar radiation forecasting (see e.g. Khatib et al., 

2012; Wang et al., 2012 and Paoli et al., 2009).  ANN‟s learn from sample data by constructing 

an input-output map without explicit analytical expression of the model equation, thus modelling 

complex relationships between inputs and outputs. They can be used to model any actual system 

by changing its connection weights based on external or internal information that flows through 

the network during its learning from existing sample data. 

 

In another study by Martin et al. (2010), Neural Networks (NN) method has been used in an 

attempt to forecast half daily values of solar irradiance for the next three days at different solar 

power stations. Two further methods namely, Autoregressive (AR) model and Adaptative-

network-based fuzzy inference system (ANFIS) models were used in comparison with NN 

method. According to these authors, ANFIS models are a class of neural networks which are 

functionally equivalent to fuzzy logic inference systems. Due to non-stationary behaviour of half 

daily global solar irradiance time series, it was necessary to transform data to two new variables 

namely, clearness index (the ratio between ground measured global solar irradiance and 

extraterrestrial solar irradiance) and lost component (the difference between extraterrestrial solar 

irradiance and ground measured global solar irradiance).The accuracy of the three models to 

forecast half daily values of solar irradiance was measured on the basis of root mean square error 

(RMSE). Neural network and ANFIS models with lost component as input were found to be the 

better approaches except at one station where clearness index time series is easier to simulate by 

models. The results also showed that the clearness index time series obtains better results in 

models of lower order compared to lost component. AR models from time series shows higher 

uncertainty than nonlinear models. The clear disadvantage of AR models given by these 

researchers is the common big size of the input vectors of parameters, deteriorating parsimony, 

e.g. AR    models of order up to     . 

 

Forecasting factors of the ANN model are selected from the two categories of historical data: 

solar irradiance itself and the meteorological parameters related to solar irradiance. According 
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to Wang et al. (2012), the model input vector of historical irradiance data,                  

can be shown as follows, 

 

                    .                                             (2.36) 

 

This study revealed that the information about meteorological factors reflected by the difference 

between the surface irradiance and extra-terrestrial irradiance is useful for the development of 

the ANN model. Such factors can be used as predictors in the model and if incorporated in 

appropriate forms, they can make forecasting even more precise. Some research studies revealed 

that the derivative index is useful for describing the variation tendency of the difference     

Because    is closely related to weather variations, so are the derivatives of   . Further studies 

showed that the three derivatives        ⁄          ⁄         ⁄ ) are all positively correlated 

with the intensity variations of surface irradiance (  ). The third order derivative (       ⁄ ), 

being greater than the 1
st
 and 2

nd
 order is appropriate for describing rapid and violent fluctuations 

of the weather. In order to get a more significant, clear and simple description for different 

weather conditions of one day, the maximum value of        ⁄ , denoted by       , is 

recommended as an appropriate index for changeable weather characteristics. 

 

Another key factor is the shape difference between    and   , which is also closely related to 

changeable weather conditions. Hence, clear comparisons of the shape difference between    and 

  , can be made using the normalized irradiance values,       and          [0,1], in Equation 

(2.37), i.e. the values of each series (of length  ) are divided by their maximum to eliminate the 

impact of different amplitudes of the actual irradiance values. 

 

      
    

            {    }
              

    

            {    }
  .                           (2.37) 

 

The normalized discrete difference (   ) of solar irradiance is defined in Equation (2.38) as a 

specific index for describing the difference between    and   . This method gave better results 

since the differences were significantly reduced (see Wang et al., 2012, Figure 3). The     
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values computed are referred to as the NDD index. The NDD index can be useful for measuring 

different weather conditions.  

 

    √
 

 
∑                

     .                                             (2.38) 

 

In addition to previously discussed predictors, other variables such as day number of the year 

N   [1,365], average surface irradiance   ̅ and the average day ambient temperature  ̅ may also 

be included in the input vector. Therefore, the final input vector of the new ANN forecasting 

model may be composed of five components as shown below: 

 

     [  ̅              ̅  ]                                             (2.39) 

 

The ANN model consists of an interconnected group of neurons, referred to as the endogenous 

entries and output variables in the processing stages of computation. The three processing stages 

called layers are input layer, hidden layer and output layer. Usually there are more than one 

hidden layer each with a certain number of neurons, e.g. there are two hidden layers in the ANN 

model of the above mentioned source with   and   number of neurons in hidden layer1 and 

hidden layer 2 respectively. The input layer of ANN consists of the input vector     , given by 

Equation (2.39). The output vector consists of the forecasted values for the next couple of 

periods. The output of the network    can be represented by  

 

   ∑          
 
                                                      (2.40) 

 

where     is the incoming signal from the  th neuron (at the input layer),     is the weight on the 

connection directed from neuron   to neuron   (at the hidden layer) and    is the bias of neuron    

After each    is calculated, an activation function is applied to modify it. The activation function 

is typically a bounded monotonic function such as the standard logistic sigmoidal function 

defined by                ⁄   According to Jiang (2008), the number of neurons of the 

hidden layer can be expressed as               where    is the number of neurons of the 
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hidden layer,   is the number of neurons of the input layer,   is the number of neurons of the 

output layer and   is a constant from 1 to 10 (Jiao, 1990). 

 

The output vector consisted of 24 hours ahead forecasts which represent the surface irradiance of 

the 24 hours of the next day (season). Two different series for cloudy days and sunny days 

separately were modelled. For comparison purposes, the conventional model called ANN-Hybrid 

Discrete Continuum (ANN-HDS) was developed on the same dimensions and time horizons. The 

error statistical indicators such as MAPE, RMSE and MABE were used in measuring the 

forecast accuracy. The irradiance was forecast on a time scale of 24–72 hours ahead, which is 

considered short term forecasting. The results show the ANN models give reasonably good 

forecasts with the suggested input vector of statistical parameters. 

 

ANN with time series pre-processing on a daily time scale 

Nonlinear variability in the data is usually dealt with by the application of neural networks. 

Another application of neural networks has been made by Paoli et al. (2009) in the prediction of 

daily global solar radiation on a horizontal surface. In this study, a methodology making use of 

ad-hoc time series pre-processing and a Multi-Layer Perceptron has been developed for 

predicting daily global solar radiation on a daily horizon. The global solar radiation time series 

data collected on a daily basis from the solar meteorological station of Ajaccio France, located at 

41°55'N, 8°44'E, from Jan 1971 to Dec 1989 was examined in this study. To quantify the annual 

periodicity, the original series ( ) was divided by daily extra-terrestrial radiation (  ) to form a 

new series    (called index clarity) defined as follows:  

 

   
 

  
 .                                                           (2.41) 

 

Despite this pre-treatment, Fisher‟s test indicated that the seasonality was not optimal. In their 

case, they found that it led to a new seasonality which is difficult to model. The optimal 

seasonality was then achieved by using a ratio to moving average after a ratio to trend method 

(using   ) to correct rigid seasonalities. The latter can be applied when there is no analytical 

expression of the trend. In the case of flexible seasonality, i.e. random in amplitude or period, the 

filtering techniques by successive moving averages are recommended, i.e.: 
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 .                                                     (2.42) 

 

In this case,          days suggests that      . Therefore, to complete the process, 365 

seasonal factors (  ) were used. These are indeed the coefficients that get rid of the rigid 

seasonality by moving average ratio given by Equation (2.42). The transition coefficients 

(    , number of years of history) and the average coefficients of the regular 365 days are 

given as        ⁄  ∑     
 
    and    ̅        ⁄ ∑   

   
    respectively. Then the final seasonal 

factors are given by                                                                                     

  
  

  

 ̅ 
                                                              (2.43)                                                                                                                                                                            

 

Hence, it follows a new series, seasonally adjusted, that represents only the stochastic component 

of global radiation: 

  
     

  

  
  .                                                       (2.44) 

 

This particular method provided better results than the other methods, including an ARIMA 

model, on the basis of RMSE measure. 

 

Lucheroni model 

According to Huang et al. (2011), this is one of the key approaches to modelling global solar 

radiation on short time basis (e.g. hourly), with its origin in biophysics (Lucheroni, 2007). This 

model is given in the discretized version of the model for the deseasonalized solar radiation time 

series   , as follows: 

 

                

                        
      

              
  

 
                                    (2.45) 

 

where    is the derivative of        and    are noise terms at time   and    is the time step. The 

aim of the model (2.45) is to exploit the fact that the current value of    is useful to predict the 

future value,     . The parameters  ,  ,  ,   and   can be estimated using the method of ordinary 



33 

 

least squares. This model was used to fit the same data from Mildura, together with an AR(2) 

model. The results indicated that this model actually described effectively the pattern of the 

deseasonalized data, with its ability to capture the magnitude of peaks and troughs almost 

perfectly. However, a disadvantage of this model is its inability to perform well when residuals 

are decreasing.  

 

Coupled Autoregressive and Dynamical System (CARDS) model 

From a similar study conducted by Huang et al. (2011), it was concluded that the Lucheroni 

model performed poorly in comparison with the AR(2) model, with a high margin of forecast 

error. To improve on this, the Combined Autoregressive Dynamical System (CARDS) 

forecasting method on a short time scale was then introduced. This model is composed of a 

mixture of both the AR(2) and the Lucheroni model, combined to develop a method with a better 

forecasting profile. This new combination model is defined by: 

 

        
 ,                                                               (2.46) 

 

where    is the prediction obtained from the model at time  ,   
          and   , a notion of 

a “fixed component”, intended to replace   . However, not all predictions from the combination 

model are replaced by the fixed component values but only under certain conditions that some 

predictions may be replaced. The applicability of the model given by Equation (2.46) has been 

demonstrated for one-step-ahead forecasting on hourly and sub-hourly time scales. The results 

showed that the CARDS model follows the variation in the observed data series better and hence 

improves forecasting. 

 

Forecasting solar irradiance with ARIMA models 

An Autoregressive Integrated Moving Average (ARIMA) model, discussed in the following 

chapters, has also been used by to model and forecast solar irradiance on an hourly scale (see e.g. 

Dazhi et al., 2012). In this study, three forecasting methods taking into account the effect of 

cloud cover were proposed using three types of solar radiation data as input parameters, namely, 

global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), direct normal irradiance 

(DNI). The first method directly uses GHI to forecast next hour GHI through additive seasonal 
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decomposition followed by an Auto-Regressive Integrated Moving Average (ARIMA) model. 

The second method forecasts DHI and DNI separately using an additive seasonal decomposition 

followed by an ARIMA model. The two forecasts are then combined to predict GHI using an 

atmospheric model. The third method considers cloud cover effects. An ARIMA model was used 

to predict cloud transients. GHI at different zenith angles and under different cloud cover 

conditions was constructed using nonlinear regression.  

 

The three methods were tested using data from two different weather stations and it was found 

that the forecasts using cloud cover information can improve the forecast accuracy. However, it 

is believed that cloud cover can increase the forecast accuracy only if the data set is sufficiently 

accurate to represent the actual situation, i.e. if the hourly solar irradiance values do not deviate 

significantly from actual values for partly cloudy skies conditions. Under partly cloudy skies 

conditions, it is recommended that the sampling frequency of cloud cover is increased for better 

reflection of the true values for partly cloudy skies conditions. Furthermore, ARIMA modelling 

was used as it is believed that this approach can deal with both stationary and non-stationary time 

series, and can also be used with integrated and moving average process orders. In our study we 

also use ARIMA as one of the approaches, however taking into account the seasonality inherent 

in the data as the author also acknowledges the presence of seasonality by the plots. That is, in 

our study we make use of SARIMA accounting for the seasonal behaviour. As it is also the case 

with our study, these researchers made use of the Akaike information criterion (AIC) search 

algorithm to search for the optimal model which fits the specific time series. The criteria used to 

evaluate the forecast accuracy are the mean bias error (MBE) and root mean squared error 

(RMSE), defined in one of the succeeding chapters. 

 

Fourier series model for an hourly global solar irradiance 

The same study by Huang et al. (2011) reveals that a time series with seasonality    can be 

described by a Fourier series model in the context of spectral (harmonic) analysis. This method 

has been used for modelling hourly values of global irradiance for three consecutive days in 

Mildura. A descriptive model of this kind for the series was given by: 
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                                                                                                                                                (2.47) 

where   is the time in hours,    is the mean of the data,    and    are coefficients of the yearly 

cycle,    and    of twice yearly and    and    coefficients of daily cycle and its harmonics (  = 

2, 3 and   = 1) and associated beat frequencies (   ).  The latter modulate the amplitude to fit 

the time of year (i.e. the beating of the yearly and daily cycles). 

 

In this study, the frequencies of yearly, twice yearly, daily and twice daily cycles, were 

determined and coefficients of determination for each Fourier series components were computed. 

The yearly cycle explained a small percentage of the variance of the series, while the daily and 

twice daily cycles explained over 70%. This is an indication of a very strong daily cycle and a 

less prominent yearly cycle. From the outcome of this study, it has been found that the Fourier 

series alone is not enough to model global solar radiation, due to the underestimation of 

irradiance for some days and overestimation for others. Therefore, as part of this study, we 

undertake to show that the application of HCSARIMA models indeed yields better results with 

the irradiance data for UKZN HC Solar Station. 

 

Chapter Summary 

In chapter 2, an overview of some previous relevant research studies in the field of solar energy 

has been given, i.e. this chapter highlights a picture of the existing knowledge and previously 

attempted models for solar radiation. From this chapter, we have gained insight into how the 

incoming energy from the sun is influenced by meteorological quantities, e.g. clouds, and 

geographical quantities, e.g. surface zenith angle, as it traverses to a collection system on the 

ground. The solar energy from the sun is mostly influenced by air particles as it passes through 

the atmospheric layer to the surface. Just before reaching the surface, it also interacts with the 
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cloud cover. These phenomena are causing reduction of the solar energy falling on the ground. 

Consequently, the energy incident on a solar measurement system typically comes in three forms 

viz., direct irradiance, diffuse irradiance and global irradiance. The original (unaffected) 

irradiance coming directly from the sun is known as extra-terrestrial solar irradiance, this before 

it passes through the atmospheric layer and undergoes reduction. The physical models have been 

developed in an effort to estimate solar radiation received on the ground. One such model is 

given by Equation (2.2). This model was built from geographical quantities relating to surface 

orientation where the solar collector is located. Further, we have gained an idea of measuring the 

sky conditions, using the clearness index, a quantity given as a ratio of the amount of energy 

received on the ground to the actual (original) energy amount from the sun. Such models could 

be useful for monitoring solar energy conversion systems. Also given in Chapter 2 are some 

scientific time series models that can be used in addressing the challenges arising in design and 

sizing of solar power systems as well as power management of such systems. The rest of the 

chapter gives us an overview of some attempts that have been made to estimate the solar flux on 

the ground. The first attempts by Liu and Jordan (1960), gave a statistical linear model 

correlating diffuse fraction with the clearness index. Some other related models have been 

reviewed. The attempts to forecast irradiance time series data have also been discussed. 

Examples are the application of the Artificial Neural Networks (ANN) model, the Lucheroni 

model, the Coupled Autoregressive and Dynamical System (CARDS) and the Fourier series 

model amongst others. The literature also reveals forecasting solar irradiance with 

meteorological parameters such as cloud cover index. However, some of these models as 

discussed did not perform well enough with the experimental data and therefore there is a room 

for further research studies. 
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Chapter 3 

Methods of Time Series Analysis 

 

The methods to be presented in this chapter are designed for the purpose of analysing time series   

observations taken at regular intervals in time. The time domain and frequency domain methods 

in time series analysis, will be introduced. These methods have a wide range of applications and 

we can mention astronomy and signal processing (see e.g. Pollock et al., 1999) amongst many 

others. Both methods apply to what are described as stationary or non-evolutionary time series. 

Such series manifest statistical properties which are invariant throughout time, so that the 

behaviour through one epoch is the same as it would be during any other. 

 

3.1 Time domain analysis 

In time domain analysis, we define a univariate time series as a set of random variables indexed 

by time, denoted by         
 . An observed time series        

 can be regarded as a partial 

realization (of sample size  ) of a set of random variables         
 . Such a set of random 

variables is also called a stochastic process denoted by        
 . Unless otherwise stated the 

process is often assumed to be real valued, with the values evolving in time according to some 

probabilistic laws.  

 

3.1.1 Stationarity 

A time series process is said to be weakly stationary if it has time invariant first and second 

moments, i.e. if the mean and the variance are constant and finite, whereas for a non-stationary 

process the mean and variance are time variant. A definition of strict stationary is given as 

follows, 

 

A process    is said to be strictly stationary of order   if for any  -tuple (          ), where 

   , the following holds, 

 

               (         )        
         

  (     
        

) ,                              (3.1)                   
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i.e. if the joint distribution functions of {             } and {     
      

        
} are the same. 

 

For a real-valued process the mean function is defined as          and the variance function 

  
          

 . 

 

A natural estimator of the process mean is the sample mean obtained from a single realization of 

the process,        
 , and given by the following formula:  
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     implies that   ̅ is an unbiased estimator of the mean. 

 

The variance of  ̅ is defined as follows,  
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If       ∑ (  
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)   

              then            ̅    and  ̅ is a consistent estimator 

of the mean    i.e.       
 

 
∑   

 
       in mean square. For this to hold,            is a 

sufficient condition. 

 

Covariance stationary time series 

Let                         denote a sequence of random variables indexed by time  , i.e. 

     is a time series process. Then      is said to be covariance stationary if 

 

                                            and 

  

                                                                          (3.4) 
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For such process,                 and                  are referred to as the 

autocovariance and autocorrelation functions, respectively. 

 

For brevity, a covariance stationary time series can be simply called a stationary time series.       

The parameter    is called the     order or lag   autocovariance of      and a plot of    

against   is called the autocovariance function.  

  

3.1.2 Autocovariance and Autocorrelation Functions 

The covariance function between    and    (called autocovariance) is defined by:  

            (       )(       )                                       (3.5) 

 

and the correlation between    and     (called autocorrelation) as  

 

           
          

       
                                                                  (3.6) 

 

Letting      and       , the covariance between the series values    and      that are   

time periods apart can also be expressed as: 

 

                   ,  

 

and correlation as        ⁄ . 

 

The sample autocovariance at lag   is given by: 

 

 ̂  
 

 
∑      ̅        ̅     

   ,                                              (3.7) 

 

and the sample autocorrelation function (SACF) by: 
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 ̂  
 ̂ 

 ̂ 
 

∑      ̅        ̅    
   

∑      ̅   
   

                                                      (3.8) 

 

The standard error of the autocorrelation at lag   is based on the squared autocorrelations from 

all previous lags, defined as follows: 

 

    ̂   √
   ∑  ̂ 

    
   

 
                                                                (3.9) 

 

where   is the length of a series as a whole The quantity  ̂ 
  is set to 0 at lag    , as there are 

no previous correlations. The standard error for a partial autocorrelation is the same at all lags 

and is simply given by: 

 

    ̂   
 

√ 
                                                                             (3.10) 

 

The two functions are measures of the strength of association between the current and past series 

values. A plot of     against   is called autocorrelation function (ACF) and gives correlation 

between the series values at different values of  . The hypothesis testing 

 

                    

                                                                                                                             

 

is used to test for the significance of the lag   autocorrelation. By inspection of relevant plots, if 

 ̂      ̂    value (represented by spike) is outside the    Standard Error lines, the null 

hypothesis      statement is rejected in favour of   .  

 

Properties of autocovariance and autocorrelation functions: 

i.       

ii. |  |    and |  |     

iii.                                                                                                                   (3.11) 
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Ergodic time series: A stationary time series      is said to be ergodic if the sample moments 

(i.e. sample mean and sample variance) converge in probability to the population moments, i.e. if  

 

                                                     ̅
 
     ̂ 

 
         ̂ 

 
                                                  (3.12) 

 

Partial autocorrelation function: Partial autocorrelation function (PACF) is a complementary 

tool which describes the partial correlation between    and      after adjusting for 

             , i.e. PACF at lag  , just as ACF, gives correlation between the series values that 

are   intervals apart, but accounting for the values in between. Therefore, PACF indicates which 

past series values are most useful in predicting future values. It is a useful tool to help identify 

      models and is based on estimating the sequence of AR. 

 

The partial autocorrelation of     order is defined as follows, 

 

                |                          |                                (3.13) 

 

where    |   is the best linear projection of  on  , i.e.    |   ∑  ∑  
    with ∑   

       the covariance matrix of regressors and ∑            is the matrix of covariances 

between   and  . 

 

An equivalent definition of the above is the solution to     of the following system of equations: 

 

                                                                                                  (3.14)                                            

 

where     (

   

   
 

    

    

   
          

) 

 

                
  and               
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These are called the Yule-Walker equations. The last coefficient,      is the partial 

autocorrelation of order  .  

 

Defining   
  (

   

   
 

  

  

   
           

)  and using the Cramer-Rule, a general solution is given 

by:  

    
|  

 |

|   |
                                                         (3.15) 

  

From the definition of PACF, it immediately follows that there is no difference between PACF 

and ACF of order one, i.e.       . 

 

3.1.3 Data Transformations 
 

Trend and seasonality 

A transformation is applied to time series data either to remove trend and cycles (seasonality) or 

to stabilize the variance. The presence of trend in the time series leads to non-stationarity. 

Therefore, before attempting to use the Box-Jenkins ARIMA models, it is often worth 

transforming the data. In removing trend from the series    the     differencing operator is often 

applied to create a new stationary series   , with time invariant first and second moments. For 

example, the first differencing applied to a series with a linear trend eliminates the trend yielding 

the transformed series 

 

                                                              (3.16) 

 

where   is the regular differencing operator and   is the backward shift operator, i.e.         . 

 

If the seasonality of length   exists in a series, a     differencing will remove it, to result in the 

following 

 

         
      

                                                 (3.17) 
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where   is the seasonal differencing operator. 

 

To extract trend and /or cycles in a time series, symmetric moving average (MA) smoothing is 

generally employed. It makes use of a simple linear filter to eliminate the effects of periodic 

variation A new series   is produced whose     value is the average of    and the   values of   

before and after time  , then the output series will be smoother than   since the consecutive 

values of   will have many values of   in common in their averages. This is explained by the 

following formula: 

 

       
 

    
∑     

 
    .                                         (3.18)                                                     

 

The symmetric MA smoother is a special case of the general idea of using linear smoothers, 

where new values are weighted averages of old values centred at the time point of interest. An 

obvious extension would be to use different weights. The weights would be greater for  ‟s near 

the time point   and smaller farther away from  . 

 

If it is suspected that there is a linear trend and a sinusoidal cycle (seasonality) of length   in the 

data, a regression model (equation) with response    on linear and/or sinusoidal functions of   

would be used to describe the series and/or to remove trend and sinusoidal cycles. 

 

                    ⁄             ⁄      ,                                (3.19)     

 

where    is indicates the strength of a linear trend. The strength of the sinusoid can be measured 

by the following quantity 

 

                 √ ̂ 
   ̂ 

   .                                               (3.20) 

 

Changing variance 

Diagnostic procedures such as the inspection of plots of residuals may suggest that even the best-

fitting standard linear time series model is failing to provide an adequate fit to the data. A 
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common reason for this is the non-constant variability which increases with level and may not be 

clearly visible in some plots. The non-stationarity of this nature is usually handled by 

transforming the response variable using transformation techniques such as Power and/or Box-

Cox family of transformations (see e.g. Tukey, 1957; Box and Cox, 1964). In some cases we 

may also have the variability changing independently of the level. This problem may be handled 

by making use of the models which allow for non-stationary variance, e.g. Autoregressive 

Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) Models, not covered in this thesis. These models have been applied 

to a wide range of time series analyses, especially in modelling financial time series data 

(volatility of stock prices) where they are believed to be more successful in handling 

heteroscedasticity in the series (see e.g. Engle, 2001). In this thesis Power (Box-Cox) 

transformations are used. 

 

Power Transformations 

 

Suppose the variance of a non-stationary    process changes with its level according to the 

following expression:  

 

                                                                   (3.21) 

 

 

where     is a constant and    some function. 

 

 

Let       be some function which has a constant variance, and       and        respectively be 

the value and derivative of       evaluated at   . Using a first order Tailor series expansion 

about   , we have: 

 

                                                                     (3.22) 

 

Thus, we have   

                   
                  

      .                          (3.23) 

 

Then,       must be such that  
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√     
            

 

√     
                                   (3.24) 

 

Again if we suppose that the standard deviation is proportional to the level, i.e. V           
 , 

then  

 

       
 

√     
                                                           (3.25) 

 

in which case a logarithmic transformation will give a constant variance.  

 

A logarithmic transformation method is commonly employed to obtain a more homogeneous 

variance of a univariate time series (see e.g. Graggs et al., 1999). In this way, the implications for 

forecasting may be quite good if the log transformed series is well described by a fitted model 

and the optimal forecasts for the original variable obtained. We may easily reverse the log 

transformation by applying the exponential function to the forecasts and thereby obtain forecast 

values of the original variable which is generally more efficient under ideal conditions. 

 

If the variance of the series is proportional to the level, i.e. V          , then the function 

      takes the following form: 

 

       
 

√     
         

   .                                            (3.26) 

 

Hence, a square root transformation √   will give a constant variance in this particular case. 

Power transformation is a simple but often effective way to stabilize the variance of the series 

across time. 

 

A reciprocal transformation may also be needed when the standard deviation is proportional to 

the square of the level, i.e. if V           
  so that 

 

        
 

√  
 
     

 

  
.                                                     (3.27) 
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In general the variance can be stabilized by using the power transformation 

 

 

V       
   

 
  

   

 
.                                                   (3.28) 

 

 

The minimum value of the following preliminary sums of squares for various values of  , can be 

used to suggest the appropriate transformation: 

 

     ∑    
   

  ̂  
  

   ,                                            (3.29) 

 

where  ̂  is the sample mean of the transformed series. 

 

This family of power transformations was introduced by Tukey (1957). The transformed values 

are a monotonic function of the observations over some admissible range. Such transformations 

may also be indexed as: 

 

  
   

 {
  

                   
                      

                                (3.30)                                                 

 

Box-Cox Family of Transformations  

The family of transformation (3.30) was modified by Box and Cox (1964) to take account of the 

discontinuity at    , such that 

 

  
   

 {
   

     ⁄          
                             

                            (3.31)                                       

 

For unknown  , we have the following 

 

        
   

   
   

     
   

       ,                                    (3.32) 

 

where   is a matrix of known constants,   is a vector of unknown parameters associated with the 

transformed values and           
     is a vector of random errors. Since the transformation 
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(3.29) is valid only for     , modifications have had to be made for negative observations. 

Box and Cox (1964) proposed the shifted power transformation of the following form, 

 

  
   

 {
        

       ⁄              
                                     

                             (3.33) 

 

where    is the transformation parameter and    is chosen such that       . The quantity    is 

typically chosen to be zero. Increasing    has the effect of weakening the transformation.  

For     , the    in the denominator of the transformation assures that   
   

 is an increasing 

function of    so that a plot   
   

 of  has the same direction of trend as   . 

 

Now, since        
            

  
           , the transformation is a continuous function in 

  . 

 

Other versions of the transformation have been suggested by different researchers following the 

Box-Cox transformation (see e.g. Yeo and Johnson, 2000). 

 

3.1.4 Box-Jenkins Methodology 

Short memory models were first introduced by Box and Jenkins (1976) and until now have 

become the most popular models for forecasting univariate time series data. These models have 

originated from the Autoregressive model (AR), the Moving Average model (MA) and the 

combination of AR and MA.  

 

Autoregressive (AR) Process: 
 

The model 

 

 

      + ∑   
 
       +                                             (3.34) 
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is called the non-seasonal autoregressive model of order  , written as AR(  , where    is the 

random shock or error assumed to be distributed as            
  . The quantities            

are unknown model parameters and must be estimated from sample data.   

 

Moving Average (MA) Process: 

 

The model  

 

          ∑   
 
                                                  (3.35) 

                                                                                                                                                  

 

is called the non-seasonal moving average model of order q, written as MA(q). The quantities 

           are model parameters that must be estimated from sample data. The random shock 

or error    is again assumed to be distributed as            
    

 

Autoregressive Integrated Moving Average (ARIMA) Process: 

The Autoregressive Integrated Moving Average process, denoted by ARIMA       , is given 

as: 

                         or                                         (3.36)                                                                                                           

 

where  

 

               
           

 

               
        

   

 

  is the order of differencing  

          is the differencing operator  

  is a constant 

   is the error term, assumed to be white noise and normally distributed, i.e.            
  . 

 

Differencing will results in a stationary process                     The ARMA       

process is generally represented in a lag operator notation as follows: 

 

           ,                                                          (3.37) 
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with the Wold polynomial      ∑   
 
      

    

    
        , called cumulative impulse 

response with weights,   . 

 

A stationary and ergodic ARMA      process has a mean equal to: 

 

 

  
 

         
 .                                               (3.38) 

 

The autocovariances (     autocorrelations (    and impulse response weights (    of the 

ARMA       process satisfy the following recursive relationships, 

 

                          

                          

                                                                                                         (3.39)                     

for                                                                                                                         

 

When the seasonal components are included in the model, the model is called Seasonal 

Autoregressive Integrated Moving Average (SARIMA), written as                      . 

The SARIMA model reduces to a pure              if there is no seasonal effect. The 

generalized form of the                       model is given by: 

 

                                            or 

             
                                                                       (3.40) 

                          

          
 

where 

 

   is the ordinary differencing operator  

   is the seasonal order of differencing 

  
  is the lag   seasonal differencing operator, i.e.   

             

              
       

              

              
       

              

   is the error, assumed to be white noise and normally distributed, i.e.            
  . 
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It is notable that the SARIMA model given by Equation (3.40) assumes that there is a significant 

parameter(s) as a result of the multiplication between non-seasonal and seasonal parameters. 

Such a model is called a multiplicative SARIMA model. The SARIMA model may also be   

additive. A Seasonal Autoregressive Integrated Moving Average (SARIMA) model is said to be 

additive if the non-seasonal and seasonal factors work additively, i.e. if [            ] and/or 

               give better results than the multiplicative cases. 

 

Model Identification 

 

ARIMA model identification: 

The values for p and q in ARIMA  , ,   are identified based on the behaviour of SACF and 

SPACF. The SACF of an AR    process must dampen out and its SPACF cut off after lag   

while the SACF of an MA    process must be willing to cut off after lag   and the SPACF 

dampen out. If neither the SACF nor the SPACF cuts off, then some ARMA       model will be 

identified. The values       are usually taken for a start. 

 

ARIMA model identification: 

i. The number of AR and MA parameters,   and   respectively, in this model is determined 

as explained for an ARMA process.  

ii. The number of seasonal AR and MA parameters (  and  ) are determined by inspecting 

the sample ACF and PACF at multiples of   (i.e.           , the seasonal lags, as 

follows: 

 If the sample ACF is non-zero at lags           and cuts off after lag    and 

the sample PACF damps out, then   seasonal parameters are included. 

 If the sample ACF damps out and the sample PACF is non-zero at lags 

          and cuts off after lag   , then   seasonal parameters must be 

included. 

 If both the sample ACF and PACF cut off (after lag    and    respectively), the 

parameters   and   must be chosen according to which of the functions cuts off 

more abruptly. If the sample ACF cuts off more abruptly, then   seasonal 

parameters are included. If the sample PACF cuts off more abruptly, then   

seasonal parameters are included. 
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 If both the sample ACF and PACF damp out, we start with a model with one AR 

and one MA seasonal parameter and then increase the number of seasonal 

parameters if necessary. 

 

Model Selection 

Different models could be tentatively chosen that seem to provide statistically adequate 

representation of the data. The selection of the parsimonious (best) model is carried out using the 

Information Criteria, also more generally known as the Penalty Function Criteria. The Box-

Jenkins method is characterized as being subjectively inclined or biased with an identification 

procedure that mainly relies on visual measures such as on the inspection of the autocorrelation 

plots of the data. Two penalty functions were implemented: Akaike’s Information Criterion 

     and the Schwarz’s Bayesian Criterion      , (Akaike, 1983; Schwarz, 1978).  

 

Suppose a model with   parameters is fitted to a time series. The quality of the model fitting, 

with respect to parsimony, can be assessed by calculating a penalized likelihood criterion 

 

                                                                    (3.41) 

 

The logarithm of the likelihood function     derived from the assumption that            
   is 

given by: 

 

        
    

 

 
      

  
    

   
  ,                                           (3.42) 

 

where      ∑   
   |         

    and   is a vector of model parameters. 

  

Using  ̂ 
  

   ̂ 

 
   ̂ 

     ̂  and replacing    and   
  with  ̂ and  ̂ 

  respectively in the above 

equation give the following: 

 

   ( ̂   ̂ 
 )   

 

 
         ̂ 

   
  ̂ 

 

  ̂ 
   

 

 
   ̂ 

  
 

 
                     (3.43) 
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Since the second term in the above equation is a constant, it is the same for all AIC values for the 

candidate models and therefore can be discarded allowing the AIC criterion to be given by 

 

           ̂ 
    .                                              (3.44) 

 

Now the task would be to find a value of        that minimizes       . 

 

A disadvantage of using AIC criterion is the possible overestimation of the order of 

autoregression. For this reason, a Bayesian extension to this criterion, called the Bayesian 

Information criterion (BIC), was developed. This criterion is defined by: 

 

           ̂ 
         (  

 

 
)          *(

 ̂ 
 

 ̂ 
   )  ⁄ +,      (3.45) 

 

where  ̂ 
  is the sample series variance. 

 

The Schwarz’s Bayesian criterion        similar to Akaike‟s Bayesian Information criterion 

      is defined by  

 

           ̂ 
      .                                           (3.46) 

 

Model Estimation  

The model estimation can be carried out by using the Maximum Likelihood (ML) method to 

estimate the parameters. The ML function has the following general form 

 

     ∑     |         
 
                                          (3.47) 

 

The log-likelihood is taken to simplify derivatives when finding extreme value(s): 

 

       ∏       |        
 
                                              (3.48) 
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Then, for a single parameter model, we will find the value of the parameter which maximizes the 

log-likelihood function, i.e. the value of   such that: 

 

       

  
                                                           (3.49) 

 

For multiple     parameters, we find the values that satisfy all partial derivatives set to zero, i.e. 

the values of            such that: 

 

       

   
     

      

   
                                                 (3.50) 

 

Diagnostic Checking 

Once a significant model has been obtained, the model is next tested for adequacy. A 

recommended way to check model adequacy is by examining the model residuals obtained. 

Commonly, if a fitted model is correct, the observed residuals   ̂ should behave in much the 

same way as a white noise process, i.e. the following must be satisfied: 

 

 The residuals should be independent and identically distributed normal random variables 

with mean 0 and finite variance   
 , i.e.            

    

 A plot of the standardized residuals  ̂     ̂    ̅  ̅ ⁄  versus   should show a random     

scatter (no particular pattern) about the line  ̂    and the related normal probability 

plot should not violate the normality assumption. The independence assumption can be 

checked by analysing the sample ACF and PACF.  

According to Ljung and Box (1978), in order to determine whether the first   sample 

autocorrelations indicate the adequacy of the model, the following hypothesis testing is used, 

 

                  

 

The test statistics used are called the Box-Pierce statistic and the Ljung-Box statistic given 

respectively by 
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    ∑   
  

     ̂                                            (3.51) 

 

and 

 

           ∑           
  

     ̂                       (3.52) 

 

 

In the second of the above equations,        and   is the number of observations in the 

series,   is the degree of non-seasonal differencing and   
   ̂  is the sample autocorrelation of the 

residual at lag . However, it has been theoretically proved that    is the better of the two 

statistics and hence    is recommended for testing model adequacy. Therefore, the hypothesis 

   can be rejected for the adequacy of the model if the following holds: 

 

       
      ,                                           (3.53) 

 

 

where   is the number of model parameters and    has an approximate Chi-Square distribution. 

Alternatively,    can be rejected if the corresponding  -value is less than  , a pre-set 

significance level.  

 

In spite of this, the goodness of fit can also be checked by simply examining the sample residual 

autocorrelation (SRA) and partial autocorrelation (SRPA) plots. If most of the sample 

autocorrelation coefficients of the residuals are within the limit      √ ⁄ , where   is the 

number of observations upon which the model is built, we can conclude that the model is 

adequate. In other words, if there are no spikes in the SRAC and SRPAF plots, which is an 

indication of a white noise distribution for residuals, then a model is a good fit to the data. 

 

3.2 Frequency Domain Analysis 

The frequency domain analysis is an alternative time series analysis approach which describes 

the fluctuations of time series in terms of the sinusoidal behaviour at various frequencies. This 

dimension of time series is concerned mostly with estimation and inference concerning the 

spectral density function and hence periodicities present in the data. As in the time domain 

approach, the frequency domain analysis requires that the series is stationary. While in the time 
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domain analysis, functions such as autocorrelations and partial autocorrelations are used to study 

the evolution of a time series through parametric models, the spectral function is used in 

frequency domain analysis and its estimator, the periodogram, is the fundamental tool for 

studying periodicities in the data (see e.g. Schuter, 1987). If it is suspected that a time series 

contains a periodic sinusoidal component with a known wavelength, then the natural model is: 

 

     cos         ,                                             (3.54)                                                                                                                  

 

where   (measured in radians, i.e.   radians       ) is the frequency of the sinusoidal variation, 

  is the amplitude of the variation,   is the phase and      denotes a white noise process. The 

angular frequency   is termed the „frequency‟ mainly for easier handling of mathematical 

formulae.  

 

The number of cycles per unit time, referred to as frequency and denoted by  , is given by 

       and is mainly used to interpret the results of a data process. The period (wavelength) 

is given by     or    . For example, if a sinusoidal function has angular frequency      , 

then       and the wavelength is 6. 

 

A periodic function      is said to have a period   if for all  ,            , where    . 

The smallest value of   is called the period of     . For example,           has a period 2 . 

The following theorem on the characterization of the autocovariance function is of particular 

importance. 

 

Theorem 3.1 (Herglotz’s theorem): A real valued sequence                    is an 

autocovariance of some stationary time series      if and only if there exist a non-decreasing, 

right continuous, non-negative and bounded function      on           with               

                , such that 

 

           
 

  
                                                     (3.55) 

      is called the spectral distribution function of     . 
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If the function      is differentiable such that           , then the function      is called the 

spectral density function. 

 

Spectral Density Function and Periodogram 

 
Restricting negative frequencies, i.e.        for    , the autocovariance function,     , is 

given by  

 

                                   
 

 

 

 
                            (3.56) 

                                                                                                                                         

where         
         

 

 
     . 

 

The inverse relationship of Equation (3.56) is given by 

 

     
 

 
∑          

     
 

 
      ∑              

            (3.57) 

 

i.e. the Fourier transform of the auto-covariance function.  

 

Spectrum Estimation 

The estimation of the spectrum of the series is rooted in Fourier analysis and making use of the 

Fast Fourier Transform (FFT), from which its estimator (periodogram) has been developed.  

The Fourier series of a function    is given by  

 

   
 

 
   ∑           ∑            

   
 
                                    (3.58) 

 

where  

   
 

 
∑   
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∑   

  

   

   (
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∑   

  

   

   (
   

  
*            

 

If                is a partial realization of a time series     , then the Fast Fourier Transform 

(FFT) of        
    is defined by 

 

 ̃      ∑    
        

                                                  (3.59) 

 

 where    
   

 
,            , are the Fourier (Harmonic) frequencies. 

 

The inverse FFT is defined by 

 

   
 

 
 ∑  ̃     

        
   ,                      (3.60) 

 

Then the periodogram of               , denoted by           
    , is given as 

 

      
 

   
|∑    

        
   |

 
 

 

   
| ̃    |

 
                                     (3.61)                                                      

 

The periodogram (estimator of the spectral density function) is graphically displayed by a plot of 

      against    or  . The following are the properties of the periodogram, viz. 

 

 It is asymptotically unbiased, i.e.                     

 It is an inconsistent estimator of the spectrum, i.e.                  .      
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3.3 Time Series Harmonically Coupled SARIMA Model  

The frequency domain methods of spectral analysis discussed in Chapter 3 are based on an 

extension of the methods of Fourier analysis (Harmonic analysis) which originate in the idea 

that, over a finite interval, any analytic function can be approximated, to whatever degree of 

accuracy is desired, by taking a weighted sum of sine and cosine functions of harmonically 

increasing frequencies    
   

 
. Therefore, a time series model of sine and cosine functions can 

be used to approximate a time series data with periodic sinusoidal behaviour.  

 

The sinusoidal models are rooted in Fourier's theorem, which states that any periodic function 

can be modelled as a sum of sinusoids at various amplitudes and harmonic (Fourier) frequencies. 

Cycles of a regular nature are often encountered in the movements of scientific objects, where 

their projections could be described as simple harmonic motion with parameters   (amplitude),   

(frequency) and   (phase displacement) as observed in model given by Equation (3.54). 

According to Pollock et al., (1999), astronomers were the first to apply methods of Fourier 

analysis to time series, and their endeavour was to detect hidden periodicities within 

astronomical data. Typical attempts in their study were to uncover periodicities within the 

activities recorded by Wolfer sunspot index and in the indices of luminosity of variable stars. 

However, in this thesis our aim has been to apply the same method to uncover the periodicities 

within solar irradiance time series data. In practice, the sinusoidal model describing the function 

   is not usually in a simplified form as in Equation (3.54). The generalized form (given as a sum 

of sinusoidal components) is written as follows: 

 

   ∑   
 
    cos(      )    .                                             (3.62) 

 

The frequency is a measure in radians per unit period. The quantity    ⁄  measures the period of 

the cycle. The phase displacement, also measured in radians, indicates the extent to which the 

cosine function has been displaced by a shift along the time axis. Thus, instead of the peak of the 

function occurring at time    , as it would with an ordinary cosine function, it now occurs at  

time     ⁄ . Therefore, an underlying cyclical component from a data sequence at time   can 

be described by a model of the form: 
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                                                                             (3.63)                                     

 

If we have      number of observations per day or any other cyclical variation, then Equation 

(3.62) can be generalized for seasonal fluctuations (of a more complicated nature) comprising the 

full set of harmonically related frequencies to take the form: 

 

   ∑ {      (   )        (   )}
 
                                               (3.64) 

 

with the harmonic scale        ⁄             ⁄  in the interval        and    is a residual 

element or white noise in the underlying process. The angular velocity        ⁄  relates to a 

pair of trigonometrical components which accomplish   cycles in the   periods spanned by the 

data. The highest harmonic frequency      corresponds to the so-called Nyquist frequency. 

The presence of regular harmonic components in a data series can be detected by estimating the 

periodogram. If in a periodogram analysis a particular intensity  (  ) is the largest one, we can 

test the hypothesis whether the parameters   and   are indeed zero at this frequency, i.e. 

 

  :       (     
  is white noise) 

  :     and/or      (     
  contains a periodic component)                     

 

The above pair of hypotheses makes use of the Fisher's Kappa statistic (see e.g. Davis, 1941). 

The distribution of this statistic was derived by Fisher as a ratio of the largest periodogram 

ordinate divided by the mean of all 2 degrees of freedom ordinates. The test decision is made 

using the critical values for the Fisher's Kappa statistic (see e.g. Fuller, 1976). While Fisher's 

Kappa statistic tests the significance of the single largest periodogram ordinate, the Bartlett's 

Kolmogorov-Smirnov statistic generally tests for multiplicities of periodicities (Bartlett, 1963).  

Hence, it detects some more general departures from white noise. The usual F-test can also be 

used to test the significance of any periodogram ordinate of interest, e.g. the second largest 

ordinate,   (  ). A practical example of this can be found in Chapter 6, section 6.6. It can also be 

shown that                
 ⁄   for     ⁄  implying that            

 ⁄  for a white noise 
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process with         ⁄  although this result generalizes to spectra that are non-constant. 

Under the null hypothesis  

 

   (  )   
     

 ⁄  for all       *
 

 
+ independently of    

        

  
      

   where            

    ∑      
   ⁄  
     Consequently the test statistic  

 

  
     

          
 (

   

 
) (

     

        
)       .                             (3.65) 

 

The deterministic component and SARIMA model components are combined to construct 

harmonically coupled SARIMA (HCSARIMA) models to model and forecast the resulting 

mixture of stochastic and deterministic components of solar radiation recorded at the earth‟s 

surface. The sinusoidal function is evaluated at determined harmonic frequencies (  ) and hence 

the name “Harmonically Coupled SARIMA Models” or simply “HCSARIMA”. Thus, the 

generalized form of HCSARIMA can be specified as  

 

        (   )       (   )+                           .             (3.66) 

 

We therefore compare the two classes of models viz., SARIMA versus HCSARIMA in 

modelling and forecasting the horizontal solar irradiance data series under examination in this 

study. This approach is applied to the irradiance time series data recorded at UKZN Howard 

College Radiometric Station and the fitted models are then used to forecast the irradiance in the 

short term. To our knowledge, this approach also has never been used to model solar irradiance 

time series data from this particular station nor data from any station in KwaZulu-Natal, South 

Africa. The results of the application of these two classes of models are presented in Chapter 6. 

The HCSARIMA model equation is generally a composition of irradiance variable, sinusoidal 

variables, significant trend (T) parameters, Box-Jenkins S/ARIMA parameters as well as 

sinusoidal parameters.  
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Chapter Summary 

Chapter 3 gives a detailed discussion of two main approaches to analysing time series data. 

These are time domain and frequency domain techniques. The first approach (time domain) 

makes use of the general Box-Jenkins techniques in building a model. The models developed by 

this approach are generally referred to as short memory processes. The stationarity of the series 

is achieved by integer differencing such as regular and seasonal first-order differencing as well 

as variance stabilising techniques such as Box-Cox family of transformations. The model 

development process involves the following stages and associated methods: Model identification 

by visual inspection of ACF and PACF plots, model estimation by maximum likelihood method, 

model diagnostic (residual) analysis by Box-Pierce (Ljung-Box) tests. The latter approach 

(frequency domain) is appropriate when fluctuations of sinusoidal nature are inherent in the 

series. Spectral (periodogram) analysis of the series is then carried out to search for periodicities 

within the data. The techniques of this dimension of time series analysis are used to develop 

models of sine and cosine functions for time series with sinusoidal behaviour. In concluding the 

chapter, we have suggested a generic model developed from combining the sinusoidal model 

component and the SARIMA model to construct harmonically coupled SARIMA (HCSARIMA) 

models. This is useful for describing a mixture of stochastic and deterministic components in the 

solar irradiance time series data recorded at the earth‟s surface. 
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Chapter 4 

Long Memory Processes 

In the last couple of decades, long-memory processes have evolved into a vital and important 

part of time series analysis. The autoregressive fractionally integrated moving average 

(ARFIMA) process is a class of long-memory time series models that generalizes ARIMA 

models by allowing non-integer (fractional) values of the differencing parameter and are useful 

in modelling time series with long memory property (see e.g. Granger and Joyeux, 1980; 

Hosking, 1981). In this chapter, we present the techniques useful for the successful handling of 

long-range dependent data series (see e.g. Javier et al., 2012). 

 

Long-range dependency (LRD) is a phenomenon that may arise in the analysis of spatial or time 

series data. It relates to the rate of decay of statistical dependence, with the implication that this 

decays more slowly than an exponential decay, typically a power-like decay. That is, in a long 

memory process, the autocorrelation of a variable decays very slowly. In other words, the 

autocorrelation function of a long memory process typically decays at a hyperbolic rate (Haslett 

and Raftery, 1989), i.e. such processes have autocovariances that are not absolutely summable 

(Hurst, 1951). 

 

4.1 Short Memory and Long Memory Properties 

One common way of characterizing either a short-range or long-range dependent process is in 

terms of their autocovariance functions. In short-range dependent processes, the coupling 

between values at different times decreases rapidly as the time difference increases. Either the 

autocovariance diminishes to zero after a certain time-lag, or it eventually decays in an 

exponential sense. In long-range processes there is much stronger coupling and the decay of the 

autocovariance is power-like and so decays slower than exponentially. 

 

A second way of characterizing short-range and long-range dependence is in terms of the 

properties of sums of consecutive values and, in particular, how the properties change as the 

number of terms in the summation increases. In long-range dependent processes the variance and 

http://en.wikipedia.org/wiki/ARIMA
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Spatial_analysis
http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Statistical_dependence
http://en.wikipedia.org/wiki/Exponential_decay
http://en.wikipedia.org/wiki/Autocovariance
http://en.wikipedia.org/wiki/Exponential_decay
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range of the run-sums are larger and increase more rapidly, compared to properties of the 

marginal distribution, than for short-range dependent processes. One way of examining this 

behaviour is making use of the rescaled range.  

 

A long memory property is mathematically described according to the following statement:       

A stationary time series      with auto-covariance function        is said to have long memory if  

∑ |    | 
       i.e. the sequence of partial sums ∑ |    | 

    diverges or is not summable.  

 

Therefore, the difference between short range dependence and long range dependence is "all 

short-range dependent processes are characterized by an autocorrelation function which decays 

exponentially fast whereas processes with long-range dependence will exhibit a much slower 

decay of the correlations, i.e. the autocorrelation functions typically obey some power law. 

 

The main objective of ARFIMA model is to explicitly account for persistence by incorporating 

the long-term correlations in the data. The general ARFIMA        process is   defined by 

 

                           ( 
 

 
 
 

 
)           (4.1) 

                                                                         

where      and      are respectively the autoregressive and moving-average operators, with no 

common roots and              is a white noise process. Then we can, of course, define           

              so that      is an ARMA      process.  

 

For     
 

 
 
 

 
 ,         then becomes the fractional differencing operator and can be 

expressed as a binomial expansion as follows: 

 

        ∑    
  

   ,                                                 (4.2) 

where 

 

   
      

          
 and   is the usual gamma function. 

http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Rescaled_range
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Correlations
http://en.wikipedia.org/wiki/Power_law
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For large values of  ,     
    

    
    

 

Before the estimation of the long memory parameter  , we describe the time series in the 

frequency domain. 

 

The auto-covariance function of a general               process in (4.1) is given by 

 

     
 

  
               

  

 
                                                    (4.3) 

 

where       is the spectral density function of the process. 

 

4.2 Spectral Density of Long Memory Process 

The process defined by Equation (4.1) is stationary and invertible. Any stationary process is the 

sum of a regular process and a singular process (Wold, 1938). These two processes are 

orthogonal and the decomposition is unique. Thus, a stationary purely nondeterministic process 

may be expressed as MA ( ): 

 

          ∑       
 
   .                                                      (4.4) 

 

Again the spectral measure of the purely nondeterministic process (4.2) is absolutely a 

continuous function with respect to         , where the spectral density of the process (4.1) 

may be expressed as 

 

       
  

  
| (    )|

 
                                                                                                                                                                                       

              
  

  
|      |

   |        |
 

| (    )|
     [using                     ⁄ ]  

              
  

  
*    (
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   |        |
 

| (    )|
  

              *    (
 

 
)+

   

     ,                                                                        (4.5) 
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where          and        
  

  

|        |
 

| (    )|
   is the spectral density of the process     . 

 

For a special case of the ARFIMA process, with            , the spectral density function 

is given by (Hosking, 1981): 

 

      
  

  
*    (

 

 
)+

   

                                                           (4.6) 

 

Theorem 4.1: Let    be a stationary time series with spectrum       and    ∑         with 

∑  
     Then the spectrum of    is given by 

 

      |∑   
    |

 
     . 

 

Now let us consider the process      with a spectral density function      . Since           

  =         is a fractionally differenced series, it is stationary. 

 

The process      is given by  

              

     ∑    
     

 
    

     ∑
      

          
      

 
    

     ∑       
 
   .                                                           (4.7) 

 

Since                   
    

    
 and   ( 

 

 
 
 

 
)  then ∑  

     Thus, from Theorem 4.1, it 

follows that the spectrum of        may also be written as follows:  

 

      [   
    ]

 
     .                                               (4.8) 
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4.3 Estimation of Long Memory Parameter 

Estimating   using the Hurst parameter: Evidence for long memory process was first 

proposed by Hurst (1951) while testing the behaviour of water levels of the Nile River. Although 

Granger and Joyeux (1980) and Hosking (1981) further popularized his work, but it is Geweke 

and Porter-Hudak (1983) semi-parametric procedure based on properties in the frequency 

domain analysis that gave a far better estimate of the long memory parameter. Since then various 

researchers have improved upon this procedure, (see e.g. Reisen et al., 1993; Chen et al., 1994). 

A simple procedure for estimating the long range parameter   is using the Hurst parameter  . 

The Hurst parameter         is a measure of the extent of long-range dependence in a time 

series. A value of 0.5 indicates the absence of long-range dependence. The closer H is to 1, the 

greater the degree of persistence or long-range dependence. Hence, the long memory parameter 

  is related to the Hurst parameter         , by         (Beran et al., 1994).  

 

The Periodogram Estimator: The periodogram estimator, denoted by  ̂ , was proposed by 

Geweke and Porter-Hudak‟s (1983), who used the periodogram function      as an estimate of 

the spectral density function in Equation (4.5) In this procedure the sample periodogram is used 

to estimate the spectrum at those frequencies near    . A straight line regression is fitted on 

the logarithm of the periodogram against a deterministic regressor. The number of observations 

to be included in a regression procedure is generally determined by        ,      , 

where   is the sample size. A detailed theoretical background of Geweke and Porter-Hudak‟s 

regression procedure is given as follows: 

 

Let us recall Equation (4.5), i.e. the spectral density function of the long memory process. Taking 

      on both sides of Equation (4.5) results in the following: 

 

                     *    (     (
 

 
))+ .   

                                                          

Then adding     (  )  on both sides of the above equation, and adding and subtracting           

on the left hand side and rearranging results in the following: 

 

http://en.wikipedia.org/wiki/Hurst_parameter
http://en.wikipedia.org/wiki/Hurst_parameter
http://en.wikipedia.org/wiki/Hurst_parameter
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    (  )              *          (
 

 
) +    [

 (  )

  (  )
]    [

  (  )

     
]   

This is simply a linear regression of the form: 

 

           , 

where 

 

     [ (  )] is the dependent variable 

              is the intercept 

    the slope coefficient 

       *     (
 

 
)+ is a deterministic regressor 

     [
 (  )

  (  )
] is the disturbance or error term. 

The term   [
  (  )

     
] becomes negligible when the frequency ordinates    are close to zero. The 

least squares estimator of   is given by  

 

 ̂   ̂  
∑    

    
     ̅   

∑      ̅  
    
   

 ,                                         (4.9) 

 

where      √   is the number of observations (periodogram ordinates) to be included in the 

regression procedure. 

It has been shown that  ̂     (  
 

 ∑      ̅  
    
   

)               ̂        

Hence, 
 ̂   

√     ̂  
         . 

 

The Smoothed Periodogram Estimator: The disadvantage of Geweke and Porter-Hudak‟s 

regression procedure is making use of the periodogram that is an inconsistent estimator of the 

spectrum. For this reason, researchers like Reisen et al. (1993) and Chen et al. (1994) conducted 

a study in an attempt to achieve consistency with some degree of success by smoothing 

(averaging or applying lag windows), hence the name smoothed periodogram. They applied the 
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lag windows technique to smooth the periodogram. This estimator is simply obtained by 

replacing the spectral density function (4.5) by the smoothed periodogram function with the 

Parzen lag window with truncation point     ,      , and      is selected in the similar 

way explained previously. 

 

Properties of Long Memory Process: The sign of the long memory parameter for a series with 

long range dependence can simply be predicted by inspection of the spectrum based on the 

following properties in the frequency domain analysis (see e.g. Geweke and Porter-Hudak, 

1983): 

 

 For values of     , the ACF of ARFIMA time series decays very slowly and its spectrum 

typically diverges to infinity at frequency    , i.e.              . 

 For values of    , the spectrum of the series at     is equal to zero, i.e.        . 

 The spectrum of the differenced series vanishes at    . This is an indication of over-

differencing. 

 

Typical Model Building Procedure 

For the use of the regression techniques the following simply steps may be followed to identify 

and estimate an ARFIMA        model for a set of time series data. If      is a time series 

defined by an                model given in Equation (4.1), then             is an 

ARMA      process and    
    

    
   is an ARFIMA        process. A general procedure for 

estimating the model parameters is detailed as follows: 

1. Estimate   in the ARFIMA        model and denote the estimate by  ̂. 

2. With the estimate  ̂,  ̂        ̂   is computed. 

3. The use of general Box-Jenkins modelling procedure for the tentative model 

identification and estimation of parameters   and   in the process       ̂        . 

4. Computing   ̂  
 ̂   

 ̂   
  . 

5. Estimating   in the ARFIMA        model       ̂  ̂    . The value of  ̂ obtained in 

this step is now the new estimate of  ̂. 

6. Repeating steps 2 to 5, until the estimates of the parameters  ,   and   converge. 
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4.4 Seasonal Fractionally Integrated Processes (SARFIMA) 

The autoregressive fractionally integrated moving average process, denoted by 

                      , is an extension of the               model (4.1) applied to a 

series with seasonality of length   (see e.g. Brietzke et al., 2005 ). 

 

For all       the seasonal differencing operator,          where     is the seasonality, is 

defined by the binomial expansion as follows, 

 

        ∑ ( 
 
)                

      

  
                               (4.10)    

 

where 

 

( 
 
)  

      

              
      

 

where       is the gamma function. 

 

In a particular case of the                        process, where          , the 

process is called seasonal fractionally integrated ARIMA model with period  , denoted by 

                  and this process is expressed as follows, 

 

  
                .                                                                                                 

 

Theorem 4.2 Let         be the                 process with mean zero and     as the 

seasonal period. Then, 

(i) For    
 

 
 ,         is an invertible process with infinite autoregressive representation: 

 

∏       ∑                  
 

where 

 

   
               

  
 

        

         
 

      

     
                                                                       

 

When    ,     
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(ii) For D < 
 

 
           is a stationary process with an infinite moving average representation 

 

           ∑               
 

where 

   
              

  
 

        

        
 

      

          
                                                                    

 

When    ,    
     

     
   

 

(iii) Assuming that   ( 
 

 
 
 

 
), the process         has spectral density function given by  
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)+

   

            .                                                                             

 

At the seasonal frequencies, for            ⁄    where       means the integer part of  , it 

behaves as 

 

  (
   

 
  )   (

   

 
)         as    . 

 

(iv) The process         has autocovariance and autocorrelation functions of order  ,    , 

given respectively by 

 

          {
            

                
  

              

                                               
                                                  

and 

 

         {
            

            
             

                            
                                                               

 

As    ,        
      

    
     . 

 

(v) The process         has partial autocorrelation function given by 
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              {
 ( 

 
)

                

             
               

                                        
                               

 

for any          and        . 

 

From the above expression, when    , the partial autocorrelation function of order   is 

given by 

 

          
 

   
        ,      .                                                                          

 

 

Chapter Summary 

In Chapter 4, a detailed discussion of the long memory (long range dependence) property 

inherent in high frequency time series data is given. This is characterized by autocorrelations that 

decay very slowly or fail to decay at earlier lags, making it difficult to identify the suitable model 

from the general S/ARIMA class. The integer differencing, if used, has a drawback that it may 

often lead to over-differencing. For this reason, a special class of models viz., Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) models, has been proposed in an effort to 

address this situation. The ARFIMA process allows non-integer (fractional) values of the 

differencing parameter               called long memory parameter. The simplest method of 

estimating the long memory parameter   is making use of the Hurst parameter        . The 

Hurst parameter is a measure of the extent of long-range dependence in a time series. A value of 

0.5 indicates the absence of long-range dependence. The closer H is to 1, the greater the degree 

of persistence or long-range dependence. Hence the long memory parameter   is related to the 

Hurst parameter   through the equation         (Beran et al., 1994). A more sophisticated 

technique is making use of the estimate of the spectral density function, the periodogram       

This procedure makes use of the sample periodogram to estimate the spectrum at those 

frequencies near zero, i.e.       A straight line regression is fitted on the logarithm of the 

periodogram against a deterministic regressor. The number of observations to be included in a 

regression procedure is generally determined by        ,      , where   is the sample 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Hurst_parameter


72 

 

size. The properties of time series data with long memory property are: if      the ACF of the 

time series will decay very slowly and the spectrum typically diverge to infinity at    . For 

     the spectrum of the series at     is equal to zero, i.e.        . A disadvantage of 

using a general integer differencing is over-differencing. Over-differencing is characterized by a 

spectrum which vanishes at    . Just as in the short memory class we have the SARIMA 

model which accounts for seasonality, we also have SARFIMA process which accounts for 

seasonality in the long memory class. 
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Chapter 5 

Forecasting 

In time series data analysis, prediction specifically refers to the interpolation of the in-sample 

series values using the fitted model estimated from the sample data whereas forecasting involves 

making projections about the unknown future behaviour of the time series values on the basis of 

the observed historical performance. This is carried out by generating forecasts for the future 

values of the series through extrapolating trends and patterns in the past values or by 

extrapolating the past effect of other variables on the series. In the scientific field, the underlying 

data generating the system‟s features are effectively handled by the sophisticated time series 

modelling techniques and tools, used interactively to develop forecasting models customized to 

predict the time series with a high degree of accuracy. The principal purpose in modelling time 

series data is to build a model which best explains the underlying data generating process and 

allows the extrapolation into the future values of the time series variable under investigation. In 

this study, the focus is largely on analysing and generating short term forecasts for various solar 

irradiance time series data using the HCSARIMA model developed in Chapter 3. A comparative 

analysis is done with SARIMA models. As such, we make use of the various statistical 

techniques to help us choose between the candidate models.  

 

Suppose that we have an observed time series            up to time   and the  -step ahead 

future values                    are to be forecasted with a particular forecasting method. Even 

if the time series actually follows some assumed model, the future value of the noise is unknown. 

Therefore, with a correct forecasting method or model the forecast for each of the future values 

                  is expressed as follows:  

  

 ̂           |                                                                 (5.1) 

 

The forecast value of      can also be expressed as a function of the model sample parameter 

estimates, obtained using the sample time series data for times up to  , as follows: 
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 ̂              ( ̂    )                                                  (5.2) 

 

where  ̂ is the vector of the estimated model parameters.  

 

In sections to follow, we discuss various time series smoothing and forecasting methods that are 

commonly used. 

 

5.1 Exponential Smoothing 

Exponential smoothing was first proposed by Brown (1956) and then expanded by Holt (1957). 

This is another common forecasting scheme to produce a smoothed time series. Exponential 

smoothing assigns exponentially decreasing weights to the older observations. In other words, 

recent observations are given relatively more weight in forecasting than the older observations, 

whereas in the case of moving averages, the weights assigned to the observations are the same. 

In exponential smoothing, however, there are one or more smoothing parameters to be 

determined (or estimated) and these choices determine the weights assigned to the observations. 

 

Simple Exponential Smoothing (SES) is the most widely used method of all forecasting 

techniques. It is used for short-range forecasting, usually just one period into the future. This 

method also requires that the time series data pattern is approximately horizontal (i.e. there is no 

neither cyclic variation nor pronounced trend in the historical data). That is, the method is based 

on the assumption that the data fluctuates around a reasonably stable mean and is described by 

the model given in Equation (   ).  

 

If      represents the raw time series data and      the output of the exponential smoothing 

algorithm, then the simplest form of the exponential filter with a smoothing factor         

which creates the series     , is given by the following formulae: 

 

       

                                                         (5.3) 

 

http://en.wikipedia.org/w/index.php?title=Robert_Goodell_Brown&action=edit&redlink=1
http://en.wikipedia.org/wiki/Charles_C._Holt
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where       is the initialization of the output series. The initial value of    plays an important 

role in computing all the subsequent values. Setting it to    is one general method of 

initialization. According to Kalekar et al. (2004), another possibility would be to average the first 

four or five observations. The simple exponential smoothing formula is the adaptive forecast-

updating form of the exponential smoother. This implies that 

 

    ∑          
                                                           (5.4) 

 

 

In effect, each smoothed value is the weighted average of the previous observations, where the 

weights decrease exponentially depending on the value of the smoothing parameter . The choice 

of the smoothing constant   determines how quickly the smoothed series or forecast will adjust 

to changes in the mean of the unfiltered series. For small values of  , the response will be slow 

because more weight is placed on the previous estimate of the mean of the unfiltered series, 

whereas larger values of   will put more emphasis on the most recently observed value of the 

unfiltered series. It is also noted that if      then the previous observations are ignored entirely 

and if    , then the current observation is ignored entirely, and the smoothed value consists 

entirely of the previous smoothed value (which in turn is computed from the smoothed 

observation before it, and so on; thus all smoothed values will be equal to the initial smoothed 

value   ). The in-between values of   will produce intermediate results. As an example to 

demonstrate the applicability of the simple exponential smoothing method, let us consider the 

sample series of 3
rd

 of Feb 2010 where there are missing readings at the time points 10:11AM, 

10:12AM and 10:15AM. Employing SES with a smoothing factor of      , we can initialize 

the output vector at 10:09AM with   =1091.644. Then the predicted value for 10:11AM is 

1075.233 and 1005.152 for 10:15AM.  

 

Other exponential smoothing methods which are not part of this thesis include double 

exponential smoothing for a series with trend, triple exponential smoothing for a series 

exhibiting both trend and seasonality, multiplicative seasonal model for a time series exhibiting 

multiplicative seasonality, additive model for a time series with the gradually increasing trend 

and a more or less constant seasonality. 
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5.2 Prediction Accuracy Analysis 

5.2.1 Model predicted versus actual values 

 
Accuracy Measures: The common indicators of the prediction error are Mean Bias Error 

(   ), Mean Percentage Error     ), Mean Absolute Percentage Error      ) and Root 

Mean Square Error (     . The Mean Biased Error (MBE) provides information on the long-

term performance, over or under estimation of the model in the long run. The Mean Percentage 

Error (MPE) indicates the average ratio of deviations to the actual values and the Mean Absolute 

Percentage Error (MAPE) simply takes the absolute value of the MPE. The Root Mean Square 

Error (RMSE) is one of the most commonly used indicators. However, a clear disadvantage of 

RMSE is that, it may read a high value even if only a single measurement has high deviation 

from its model generated counterpart. For   error observations used to compute the mean, these 

indicators are defined as follows: 

 

    
 

 
∑ ( ̂    )

 
     

    
 

 
∑ (

 ̂    
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∑ |

 ̂    
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     √
 

 
∑ ( ̂    )

  
    .                                       (5.5) 

 

Coefficient of Determination: In statistics, the coefficient of determination, denoted by 

         and pronounced R-squared, indicates how well data points fit a line or curve. It is a 

statistical indicator in the context of statistical models whose main purpose is to provide a 

measure of how well the observed outcomes are replicated by the model as the proportion of the 

total variation of outcomes are explained by the model. For example, an R-squared value of 0.75 

would mean that the fitted model accounts for only 75% of the variability in the data.  In general 

terms,    can also be defined as a statistical measure for the goodness-of-fit. The value of    is 

computed by 

 

http://en.wikipedia.org/wiki/Statistical_model
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 ,                                                  (5.6) 

 

where     and     are respectively the error sum of squares and the total corrected sum of 

squares. The error sum of squares     ∑      ̂  
 

  measures the deviations of observations 

from their predicted values  ̂   The total corrected sum of squares     ∑      ̅  
  measures 

the deviations of the observations from their mean   ̅ In general the higher the value of     the 

more useful the model is.  In this thesis, R-squared value is used to indicate how well the actual 

(in-sample) time series values (  ) are explained by the model interpolated values ( ̂ ). 

 

5.2.2 Forecast Error Distribution 

  
In Section 5.2.1 we have only been concerned with making estimates for future values of the 

time series variable. In this section, we present methods for measuring the forecast error 

accuracy and estimating a confidence interval around a forecast. One obvious desirable 

characteristic of the forecast  ̂     is that it is unbiased. For an estimate to be unbiased, it must 

satisfy the following: 

   ̂                                                                     (5.7) 

 

i.e. the expected value of the forecast must be equal to expected value of the time series. 

The assessment of prediction errors is always at the centre of the forecasting method evaluation 

and a good forecasting method is obviously the one which minimizes the distances between the 

predicted (forecasted) values and the actual values of the series. The error in forecasting      is 

mathematically expressed as: 

         ̂                                                             (5.8) 

 

i.e. the difference between the estimated value and the actual value. The error    is randomly 

distributed and its probability distribution is investigated by computing its mean and variance. 

On the basis of the assumption that the fitted model is correct, Equation (5.8) can be rewritten as 

 

               ̂                                               (5.9) 
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where    is white noise by assumption. Thus, an unbiased forecast implies that        . If the 

noise terms are uncorrelated, i.e.            , the variance of the error must be given by: 

 

                     ̂                  
       

                        (5.10)   

                                                                                                                   

Therefore, the variance of the error in estimating the future value     , is the sum of two 

different variances, i.e. the one that is due to the estimation of the mean,   
    , and the other is 

the variance of the noise,   
 . Due to the inherent inaccuracy of the statistical methods used to 

estimate the model parameters and the possibility that the model is not exactly correct, the 

variance in the estimate of the means is an increasing function of  .  

 

Given   sample forecast errors,        
    the sample standard deviation of the error is given by: 

 

   √
∑      ̅   

   

   
                                                          (5.11) 

 

where  ̅ is the sample average error and   is the number of parameters in the model. The value of 

  
  for a given value of   is an estimate of the error variance   

 . This includes the combined 

effects of errors in the model and the noise. If it is assumed that the random noise comes from a 

normal distribution, a 95% confidence interval estimate of the forecast can be approximated by: 

 

 ̂                                                                          (5.12) 

 

or using Student‟s t-distribution with     degrees of freedom, by 

 

 ̂                                                                        (5.13)                                                                                                                     
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5.3 Forecasting Solar Flux 

Photovoltaic power production is increasing nowadays and the power output depends on the 

incoming radiation and on the solar panel characteristics e.g. storage system. Therefore, accurate 

and reliable forecast information is essential for an efficient use, the management of the 

electricity grid and for solar energy trading. The two main challenges to high penetration rates of 

PV systems are variability and uncertainty, i.e. the fact that PV output exhibits variability at all 

timescales (from seconds to years) and the fact that this variability itself may be difficult to 

predict. Thus, both issues are addressed with trends analysis and forecasting. Solar forecasting 

can be done on three main horizons namely; now-casting (forecasting 3 to 4 hours ahead), short-

term forecasting (up to 7 days ahead) and long-term forecasting (months, years… ahead).  

 

Now-casting: generally referred to as intra-day forecasting, is usually related to a very high 

temporal resolution (i.e. a forecast every 10 or 15 minutes). 

Short-term forecasting for PV output: provides forecasts up to 7 days ahead. This kind of 

forecast is also valuable for grid operators in order to make decisions related to future power 

supply or demand, as well as, for electric market operators. In this thesis we present the results of 

short-term forecasting up to two days ahead for global horizontal irradiance        on hourly 

and ten minute scales (see e.g. GeoModel Solar), with the proposed models whose outputs were 

post-processed with statistical approaches based on measured data. A day ahead forecasting of 

solar radiation on hourly scale has also been performed (see e.g. Kobayashi et al., 2013).  

Long-term forecasting for PV output: usually refers to forecasting of the annual or monthly 

available solar resource. This is useful for energy producers and to negotiate contracts with 

financial entities or utilities that distribute the generated energy. In general, such forecasting is 

usually done at a lower scale than any of the other two approaches.  
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Chapter Summary 

In Chapter 5, forecasting methods have been discussed with respect to their application 

according to specific behaviours by time series data. Such forecasting techniques are moving 

average and simple exponential smoothing methods for a series with no trend, double 

exponential smoothing for a series with trend, triple exponential smoothing for a series 

exhibiting both trend and seasonality, multiplicative seasonal model for a time series exhibiting 

multiplicative seasonality, additive model for a time series with the gradually increasing trend 

and a more or less constant seasonality. A good forecasting method or model is the one that gives 

a minimal possible forecast error. Such a method is always preferred for generating forecast 

values of variable. The prediction error is commonly measured by the following statistical 

indicators; MBE, MPE, MAPE and RMSE. The forecast errors and their confidence intervals 

have been discussed. We have also looked at some methods that have been used to estimate the 

missing values in the time series data (see e.g. Huo et al., 2010). In concluding the chapter, we 

have presented an overview of forecasting solar irradiance, namely now-casting (up to a few 

hours ahead or intra-day), short-term forecasting (up to 7 days ahead) and long-term forecasting 

(months and years ahead). In the following chapter, we present all experimental time series data 

under investigation, together with the results obtained using statistical packages, R and SAS 

programs. 
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Chapter 6 

Data and Analysis Results 

6.1 Solar Measurements and Meteorological Conditions 

Solar irradiance measurements for UKZN HC solar radiometric station (located at 29.9º South, 

30.98º East with elevation, 151.3m) were obtained from the Greater Durban Radiometric 

Network (GRADRAD) database, accessible at http://www.gradrad.ukzn.ac.za.The recording 

started as from 1 Feb 2010. This is a local radiometric database which includes other two 

broadband ground stations in KwaZulu-Natal, South Africa. One is located at UKZN Westville 

Campus and the other at Mangosuthu University of Technology. The three stations are within a 

20 km radius of each other and lie on the east coast of South Africa. The solar resource at the 

latter mentioned station has also been assessed by other authors (see e.g. Zawilska and Brooks, 

2012).  

 

The sampling scheme employed at these stations allows the collection of high quality global, 

direct and diffuse irradiance measurements with the aid of thermopile instruments and a common 

software format to facilitate comparison of data. Instantaneous readings were made every six-

second intervals and then averaged over a one-minute period. At UKZN HC solar meteorological 

station, global irradiance readings which we consider in this study were made with a precision 

spectral pyranometer (PSP). Diffuse irradiance measurements were also made with PSP and 

direct irradiance with normal incident pyrheliometer (NIP).                                   

 

For the data used in the study by Craggs et al. (1999), instantaneous global irradiance readings 

were made every minute also with pyranometer and then averaged over a ten-minute period, 

recorded by the datalogger. These measurements were made from the station located in the city 

centre of Newcastle upon Tyne, 14 km from the east coast of the UK at latitude 54859' N, 

longitude 1837' W and 44 m above sea level. This station has a cool temperate climate with an 

ambient temperature usually between     and    . The Durban temperatures range from 16-

25ºC in winter (June to August) and 23-33ºC during the summer months (November to March) 
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and so is the ambient temperature for the solar station of UKZN HC. Figure 6.1 shows a solar 

high-quality ground station within UKZN HC area recording solar data at 1-minute intervals.  

 

 

Figure 6.1: A photo of Eppley Bench solar measurement equipment at UKZN HC high-quality 

ground station. Location: 29.9º South, 30.98º East, Elevation: 151.3m. Source: Own photograph. 

 
Shown in the photo above, is a solar tracker, PSP, with a solid shadow band for DHI only and 

perforated shadow band for GHI and DHI and solar tracker, NIP (green in colour), for DNI only.  

In a similar study conducted by Craggs et al. (1999), global solar irradiance on the horizontal and 

vertical orientations for periods in two winters and two summers was examined. However, in our 

own study we examine global solar irradiance only on the horizontal orientation as there is no 

data on the vertical orientation available. At UKZN HC station, we also sampled series for the 

months of February and July only because at this station, February is one of the months in which 

we experience a summer season and July is one in which we experience winter. The degree of 

cloudiness at this site during these two months in 2010 and 2011 was also measured in terms of 

the clearness index,   . The classification using information in Table 2.2 was carried out and 

percentages of days in each category calculated, as shown in Table 6.1 below: 
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Table 6.1: Number of sample days, percentage of days with indicated sky conditions in terms of 

the median (50th percentile) clearness index, for the modelled 10-minutely and 60-minutely data 

sets.   

 

Month No. of 

sample days 

% 

Clear 

% Partially 

cloudy 

% 

Cloudy 

% Missing 

Data (10 min) 

% Missing 

Data (60 min) 

Feb 2010 12 17 75 8 1.36 2.32 

Feb 2011 13 23 77 0 5.79 5.79 

Jul 2010 13 0 69 31 0.78 2.44 

Jul 2011 7 0 57 43 1.45 9.66 

 

From Table 6.1, there is enough information to conclude that all the periods for which the 

modelled series were sampled, were dominated by partially cloudy sky conditions. 

 

6.2 Data Quality 

6.2.1 Missing Values 

Solar irradiance measurements for UKZN HC solar radiometric station were examined over a 

period of 7 to 13 days for the months of February and July in the years of 2010 and 2011. These 

measurements were recorded on minutely time horizons and the averages of 10 minutely and 60 

minutely time scales had to be obtained for modelling purposes. But the missing value problem, 

mainly caused by equipment failure or cleaning or equipment being offline has been encountered 

on a few time points. To address this problem, literature methods such as Average Nearest 

Observation (ANO) among others have been used for interpolating or extrapolating the missing 

series values within or outside a range of available data points (Gupta and Srinivasan, 2011). The 

ANO is the simplest method used for replacing all missing values for a given series with the 

mean, median, or other location statistics (e.g. percentiles) determined from the non-missing 

values (DeLurgio, 1998). The rest of the section presents the demonstration of the efficacy of the 

ANO method in estimating the missing series values and the introduction of two-directional 

exponential smoothing method (TES) for similar purpose and future applications. 
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Average nearest observation (ANO): The ANO method will replace missing values with the 

average of nearest previous and following observations. As an example, let us consider a series 

of 20 observations, from 10:10AM to 10:19AM, with missing data gaps. This series is 

represented as [1036.908,                    1022.532, 964.598,           1042.981, 

1044.061, 1026.582, 843.026]. This is one series for which the 10-value average had to be 

computed for modelling purposes. For such series, the following steps in replacing the missing 

values were made:  

 

[1036.908,          = (1036.908+1022.532)/2=1029.720,         , 1022.532, 964.598, 

        , 1042.981, 1044.061, 1026.582, 843.026]  

= [1036.908, 1029.720,          = (1029.720+1022.532)/2=1026.126, 1022.532, 964.598, 

          1042.981, 1044.061, 1026.582, 843.026] 

= [1036.908, 1029.72, 1026.126, 1022.532, 964.598,          = 

(964.598+1042.981)/2=1003.790, 1042.981, 1044.061, 1026.582, 843.026] 

= [1036.908, 1029.720, 1026.126, 1022.532, 964.598, 1003.790, 1042.981, 1044.061, 1026.582,        

843.026]. 

 

It is observed that         = 1036.908 1/4+1022.532 3/4, i.e.          is estimated by a 

weighted average of the nearest observations with higher weight given to the closer observation. 

It is instructive to note that this method will generate different replacement values if the time 

series occurs in the opposite order. For example, the reversed time series [843.026, 1026.582, 

1044.061, 1042.981           964.598, 1022.532,                     1036.908] becomes: 

[843.026, 1026.582, 1044.061, 1042.981, 1003.790, 964.598, 1022.532, 1029.720, 1033.314, 

1036.908]. 

 

ANO method efficacy: The applicability of this method has been evaluated using the sample 

series of 70 minutely values from 09:00AM to 10:09AM, on this day of Feb 3, 2010 with median 

clearness index    0.47. The gaps of various lengths of average 1.78 minutes have been 

created to generate a data series with missing values for the purpose of evaluating the method. 

The plots and results are shown below: 
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Figure 6.2: A test raw data series of global solar irradiance with data gaps (missing values) 

created for method testing purposes. 

 

 

Table 6.2: Error evaluation in the estimation of the missing values by ANO method. 

 

MBE MPE MAPE RMSE R-square  

-8.29865 -2.03262 7.015105 26.65795 0.747023 

 

From Table 6.2, it is apparent that the ANO method does give reasonably good results. Such 

statistics obviously improve with the decrease in the variability of the series values. Another 

good feature of this method is its ability to fill in all the values. The ANO method also serves as 

basis for advanced TES method discussed in the following section.  

 

Average Nearest Observation (ANO) and Two-Directional Exponential Smoothing (TES) 

The Average Nearest Observation (ANO) and Two-Directional Exponential Smoothing (TES) 

methods have been developed to replace routinely missing values in time series data (see e.g. 

Huo et al., 2010). Here, we give a detailed procedure of how the two methods work in 

association with each other. 

 

The ANO method estimates the missing data point with the average of the nearest previous and 

the following observations. However, according to Huo et al. (2010), this method performs 

poorly for time series data with weak autocorrelation and/or strong daily seasonality. Where this 

is the case, manually entering more reasonable estimates before using the algorithm is strongly 
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recommended. These estimates are the averages of the forward and backward exponential 

smoothing (ES). The procedure for obtaining the TES estimates is discussed in the next 

paragraph. 

 

The TES method depends on a suitable exponential smoothing method and was developed by 

using Holt‟s linear trend algorithm method. The TES method estimates missing data points based 

on the autocorrelations of the time series to account for the fact that the missing values occur at 

non-random times. The TES method has been designed to represent both forward and backward 

autocorrelations in the time series. This method uses the averaged forward and backward ES 

estimates for predicting the missing data points and therefore can reduce the variability caused 

by different directions. The first step in the TES method is to generate the full set of data using 

the ANO method.  Once the data set is generated using the ANO method, the missing values are 

predicted using a suitable exponential smoothing, Holt‟s linear trend method, in the forward and 

reverse direction. Therefore, the final replacement values for the missing data points are the 

averages of the forward and backward TES estimates, i.e. the TES method is a combination time 

series and is represented for missing values as: 

 

     =                            ⁄                                             (6.1) 

 

if the value is missing. Otherwise      = original value. 

 

6.2.2 Data Comparative Methods 

Before release for utility purposes, it is an essential step to perform data quality checks so as to 

assure that the data are within reasonable bounds. This generally requires reliable   estimation 

algorithms for relatively accurate data generation. However, there can still be tolerances on 

measured data to account for possible equipment bias errors and additional sources of 

uncertainty in the models and algorithms themselves, according to Badescu (2008) and 

Gueymard et al. (2002). Below are three approaches to quality assessment of solar radiation data 

namely: comparison with physical limits, comparison with closure and model comparison. 
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Quality Assessment Based Upon Physical Limits: This compares measured data with estimated or 

defined limits to address questions such as for instance: Is the radiation component within the 

range of zero to the maximum possible expected value? Is the direct normal irradiance greater 

than zero and less than the extra-terrestrial value   , i.e.          Is the global horizontal 

irradiance    not greater than the vertical component of the extra-terrestrial beam? Is the diffuse 

irradiance more than the expected Rayleigh diffuse sky? While the possibility of one or more 

components can be allowed to pass such tests even when bad, however, for the most part, the 

physical limits tests cannot provide the level of accuracy required to assure the smooth operation 

of the measurement equipment, unless used with intensive human interaction. 

 

Quality Assessment Based Upon Physical Closure: This approach makes use of the theoretical 

relation between the three solar components, given in Equation (2.6). This approach can be 

implemented directly, or more simply using irradiance values normalized to extra-terrestrial 

beam      values, known as clearness indices, discussed in the previous section. Equation (2.6) 

then takes the following form: 

 

         .                                                              (6.2)                                                            

  

The relationship between    and    at a particular site is analysed with the aid of boundaries 

defined by double-exponential Gompertz functions (Trouve et al., 2005). This is the family of 

curves, called Gompertz curves, defined by         
, where the choices of  ,  ,   and   

result in proper “S” shaped boundaries around the data (Parton and Innes, 1972). Given the 

scatter plot of    versus   , acceptable values then fall within the analytic boundary curves. An 

important point to keep in mind regarding whichever approach is used, is that with the known 

uncertainties in measured data, a tolerance or acceptable deviation from perfect closure is 

needed. Typically, with measurement data uncertainties of 3% to 5% in total global and direct 

beam data, tolerances of     in the balance, are generally allowed. This means tolerances of 

about 0.02 to 0.03 in the clearness-index approach.  
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Quality Assessment Based Upon Comparison with Fitted Models: This approach compares the 

fitted data models with clear-sky measured data to measure the magnitudes of deviations 

between model predicted data and actual data. The error indicators discussed in Section 5.3, are 

generally used for judgments in this respect. 

 

6.3 Data analysis and plots for 60-minutely and 10-minutely 

averaged horizontal global irradiance 

In this section, we present some of the essential details of all 60-minutely and 10-minutely 

averaged global (horizontal) irradiance data series, from UKZN Howard College Solar Station, 

relating to 7 to 13 day period in the years of 2010 and 2011. In this study, the irradiance series 

were examined for sample periods in two winters and two summers. Some technical details of all 

data series under investigation are also presented in Table 6.4. In facilitating equivalent 

modelling, the same cut-off times were applied to each day within the same observation period.  

 

Table 6.3: Season, year and duration in days for the sampled series. 

 

 Season Start date End date Duration 

Summer 2010 01 Feb 2010 12 Feb 2010 12 days 

Winter 2010 01 Jul 2010 13 Jul 2010 13 days 

Summer 2011 01 Feb 2011 13 Feb 2011 13 days 

Winter 2011 03 Jul 2011 09 Jul 2011 7 days 

 

Table 6.4: Details for time series data lengths and daily cyclical lengths. 

    10 min 60 min 

Season 
 

Series 

Length Cycle length 

Series 

Length Cycle Length 

Summer Feb 2010 1080 90 192 

182 

156 

84 

16 

 

Feb 2011 1092 84 14 

Winter Jul 2010 884 68 12 

 

Jul 2011 462 66 12 
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Presented in Figures 6.3 to 6.8 are the plots of all 60-minutely and 10-minutely averaged 

daylight global (horizontal) solar irradiance data series incident on the solar panels at UKZN HC 

radiometric station during the summer and winter seasons of 2010 and 2011. We observe that on 

some days, the lower levels of solar energy are experienced at this station, mainly because of 

overcast sky conditions.  

 

 

Figure 6.3: The plot of the 60-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Feb 2010 to 12 Feb 2010. 

 

 

 

Figure 6.4: The plot of the 60-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Feb 2011 to 13 Feb 2011. 
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Figure 6.5: The plot of the 60-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Jul 2010 to 13 Jul 2010. 

 

 

Figure 6.6: The plot of the 60-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 3 Jul 2011 to 9 Jul 2011. 
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Figure 6.7: The plot of the10-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Feb 2010 to 12 Feb 2010. 

 

 

 

Figure 6.8: The plot of the 10-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Feb 2011 to 13 Feb 2011. 
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Figure 6.9: The plot of the 10-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 1 Jul 2010 to 13 Jul 2010. 

 

 

 

Figure 6.10: The plot of the 10-minutely averaged daylight global (horizontal) solar irradiance 

series over the period from 3 Jul 2011 to 9 Jul 2011. 
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6.4 SARIMA Models: Estimation and Forecasting 

In this section, we fit the SARIMA models using the Box-Jenkins methodology, present 

SARIMA models fitted to each of the irradiance series as well as their prediction plots using 

SAS.  It should be noted that a dotted or solid line on the graph indicates the start of multi-step 

forecasting. The in-sample diagnostics (e.g. AIC, BIC, R-squared and parsimony) and the hold-

out sample prediction errors (e.g. MBE, MPE, MAPE and RMSE) are also provided for each of 

the models. Model estimation and residual analysis results are given in Appendix A and 

Appendix B respectively. 

 

Clearly, all data series plots in Figures 6.3 to 6.10 exhibit seasonal variations. Therefore, 

Seasonal Autoregressive Integrated Moving Average (SARIMA) Models were deemed 

applicable for data series of this nature. We denote the irradiance variable by    throughout. A 

seasonal differencing operator         was applied where necessary to transform the original 

series to a deseasonalized series   
   . In the presence of the time-varying variability, the 

response variable was transformed by the Logarithmic transformation method. The best models 

were searched for by programming various candidate specifications in PROC ARIMA of the 

SAS Software, until the best were reached on the basis of methodologies discussed in Chapter 3.  

 

The SARIMA model fitted to the 60-minutely Feb 2010 global horizontal irradiance series is 

given by  

 

              
                             

     .               (6.3) 

 

 

Parameter estimates of the SARIMA model given in Equation (6.3) can be found in Appendix A, 

Table A.1. All models were obtained via maximum likelihood (ML) as ML gives asymptotically 

normal estimates. The p-values in column 5 of Table A.1 are all less than a preset significance 

level, 0.05, which is an indication that all the model parameters are significant at a 5% level of 

significance. Results were obtained for all other fitted models and similar conclusions were made 

on the basis of the p-values for the parameters.  
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The residual analysis (Ljung-Box test) results of model in Equation (6.3) can be found in 

Appendix B, Table B.1. The output shows the p-values, in column 4, which are all greater than a 

preset significance level, 0.05. This indicates that the autocorrelation values are insignificant at a 

5% level of significance and hence the residuals are uncorrelated up to higher lags (e.g. up to 48) 

and the white noise assumption is satisfied.  The residual analysis was done for all other fitted 

SARIMA models in this section and similar conclusions can be made based on the p-values. 

Normality plots were done for residuals for all fitted SARIMA models and the normality 

assumption was not violated. The forecast plot for SARIMA model in Equation (6.3) is given in 

Figure 6.11 below. 

 

 

Figure 6.11: The plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2010 to 12 Feb 2010, plus two days ahead 

forecasting by model in Equation (6.3).  

 

The SARIMA model fitted to the 60-minutely Feb 2011 global horizontal irradiance series is 

given by  

 

      
      

       
                             

      
     .   (6.4) 
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Parameter estimates of the SARIMA model given in Equation (6.4) can be found in Appendix A, 

Table A.2, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.2. The 

forecast plot for this model is given in Figure 6.12 below. 

 

 

 

Figure 6.12: The plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2011 to 13 Feb 2011, plus two days ahead 

forecasting by model in Equation (6.4). 

 

 

The SARIMA model fitted to the 60-minutely Jul 2010 global horizontal irradiance series is 

given by  

          
                         

     .                                    (6.5) 

 

Parameter estimates of the SARIMA model given in Equation (6.5) can be found in Appendix A, 

Table A.3, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.3. The 

forecast plot for this model is given in Figure 6.13 below. 
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Figure 6.13: The plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 July 2010 to 13 Jul 2010, plus two days ahead 

forecasting by model in Equation (6.5). 

 

The SARIMA model D, fitted to the 60-minutely Jul 2011 global horizontal irradiance series is 

given by  

 

 

          
      

       
       

       
                       

    .     

 

                                                                                                                                                  (6.6)                                      

 

Parameter estimates of the SARIMA model given in Equation (6.6) can be found in Appendix A, 

Table A.4, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.4. The 

forecast plot for this model is given in Figure 6.14 below. 
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Figure 6.14: The plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 July 2011 to 7 July 2011, plus two days ahead 

forecasting by model in Equation (6.6). 

 

 

The SARIMA model fitted to the 10-minutely Feb 2010 global horizontal irradiance series is 

given by 

 

           
                             

      
       

          
     . 

                                                                                                                                                    (6.7) 

 

Parameter estimates of the SARIMA model given in Equation (6.7) can be found in Appendix A, 

Table A.5, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.5. The 

forecast plot for this model is given in Figure 6.15 below. 
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Figure 6.15: The plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2010 to 12 Feb 2010, plus two days ahead 

forecasting by model in Equation (6.7). 

 

The SARIMA model fitted to the 10-minutely Feb 2011 global horizontal irradiance series is 

given by 

 

          
     

     
      

       
        

        
                  

      
     

    .                                                                                                                   (6.8) 

 

Parameter estimates of the SARIMA model given in Equation (6.8) can be found in Appendix A, 

Table A.6, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.6. The 

forecast plot for this model is given in Figure 6.16 below. 
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Figure 6.16: The plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2011 to 13 Feb 2011, plus two days ahead 

forecasting by model in Equation (6.8). 

 

The SARIMA model fitted to the 10-minutely Jul 2010 global horizontal irradiance series is 

given by 

          
         

                        
                       (6.9) 

 

Parameter estimates of the SARIMA model given in Equation (6.9) can be found in Appendix A, 

Table A.7, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.7. The 

forecast plot for this model is given in Figure 6.17 below. 

 

 

 



100 

 

 
 

Figure 6.17: The plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 1 Jul 2010 to 13 Jul 2010, plus two days ahead 

forecasting by model in Equation (6.9).  

 

The SARIMA model fitted to the 10-minutely Jul 2011 global horizontal irradiance series is 

given by  

 

          
      

       
       

          
        

                .                                 

                                                                                                                                                 (6.10) 

 

Parameter estimates of the SARIMA model given in Equation (6.10) can be found in Appendix 

A, Table A.8, and the residual analysis (Ljung-Box test) results in Appendix B, Table B.8. The 

forecast plot for this model is given in Figure 6.18 below. 
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Figure 6.18: Plot of the actual versus predicted values for the 10-minutely averaged daylight 

global solar irradiance series from 4 Jul 2011 to 11 Jul 2011, plus two days ahead forecasting by 

model in Equation (6.10). 

 

In Tables 6.5 to 6.8, are the in-sample diagnostics and out-of-sample prediction errors for each of 

the SARIMA models fitted. These statistical values indicate the goodness of fit in terms of the 

parsimony (AIC and BIC), determined by the number of parameters in the model, as well as the 

coefficient of determination. It is commonly known that the smaller the magnitudes of each of 

these indicators the better the fit. Table 6.6 and 6.8 clearly show that the SARIMA models fitted 

to both 10-minutely and 60-minutetly data provide better forecasts in summer than winter for the 

year 2010. It is hard to conclude the same for the year 2011 as the pattern becomes unclear. 
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Table 6.5: AIC, SBC, R-squared and parsimony for the SARIMA models fitted to the 60-

minutely averaged global (horizontal) irradiance series. 

 

 

 

In-sample Model Section Diagnostics 

Model Season AIC SBC R-squared Parsimony 

Eq. (6.3) 

Su
m

m
er

 

Feb 2010 195.738 208.420 0.959 4 

Eq. (6.4) Feb 2011 1973.942 1992.686 0.946 6 

Eq. (6.5) 

W
in

te
r Jul 2010 1490.317 1499.226 0.957 3 

Eq. (6.6) Jul 2011 841.435 857.372 0.840 7 

 

Table 6.6: Forecast accuracy measures for the SARIMA models fitted on each of the 60-

minutely averaged daylight global (horizontal) solar irradiance series. 

 

 

 

Model forecast accuracy measure 

Model Season MBE MPE MAPE RMSE 

Eq. (6.3) 

Su
m

m
er

 

Feb 2010 185.460 101.753 109.055 286.207 

Eq. (6.4) Feb 2011 39.757 10.866 50.641 143.673 

Eq. (6.5) 

W
in

te
r Jul 2010 -55.230 -37.414 37.414 64.722 

Eq. (6.6) Jul 2011 -31.802 -26.321 63.111 45.935 

 

Table 6.7: In-sample diagnostics for the SARIMA models fitted on each of the 10-minutely 

averaged daylight global (horizontal) solar irradiance series. 

 

 
 

 

In-sample Model Section Diagnostics 

Model Season AIC SBC R-square Parsimony 

Eq. (6.7) 

Su
m

m
er

 

Feb 2010 -162.283 -123.101 0.986 8 

Eq. (6.8) Feb 2011 11613.350 11662.500 0.958 10 

Eq. (6.9) 

W
in

te
r Jul 2010 400.857 419.660 0.966 4 

Eq. (6.10) Jul 2011 4381.669 4409.486 0.911 7 
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Table 6.8: Prediction errors for the SARIMA models fitted on each of the 10-minutely averaged 

global (horizontal) irradiance series. 

 

 

 

Model forecast accuracy measure 

Model Season MBE MPE MAPE RMSE 

Eq. (6.7) 

Su
m

m
er

 

Feb 2010 165.947 130.779 138.932 267.011 

Eq. (6.8) Feb 2011 38.075 25.119 44.692 155.747 

Eq. (6.9) 

W
in

te
r Jul 2010 19.743 18.694 30.123 84.540 

Eq. (6.10) Jul 2011 -94.178 -28.119 38.167 122.249 

 

 

 

6.5 Spectral Analysis 

In this section we present the spectral analysis results for the test for the existence of periodicities 

in the data using frequency domain techniques discussed in Chapter 3. We also make use of the 

F-test with the test statistic given in Equation (3.64) to test for the statistical significance of the 

largest periodogram ordinates at the 5% level of significance (see Table 6.9). In Figures 6.3 to 

6.8, the periodogram plots for all of the irradiance series are presented. The analysis results show 

that there are periodicities in all of eight data series under investigation. The single strongest 

spikes corresponding to largest periods testifies to the apparent day cycles (seasonalities) in all 

data series under study. The Bartlett's Kolmogorov-Smirnov Statistic for each series, uniform 

(0,1), shows that generally the series is not white noise. In the next section we present the  results 

of HCSARIMA models for eight data series. 
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Table 6.9: Periodogram analysis for all data sets and F-test for the significance of the largest 

ordinates. 

Series Obs                                    Period                Max                     F-statistic      F-critical 

60-min Feb 
2011 

14                  0.449                14.00                  263.305                    258.825           3.046 

60-min Jul 
2011 

8                    0.524                12.000               2027789.760             98.822            3.109 

10-min Feb 
2011 

14                 0.075                 84.000               126158728.780        4656.780        3.004 

10-min Jul 
2011 

8                   0.095                 66.000               10444739.500           403.575          3.015 

  

60-min Feb 
2010 

13                 0.393                 16.000                585.612                     311.408          3.044 

60-min Jul 
2010 

14                 0.524                 12.000                324.676                     183.773          3.055 

10-min Feb 
2010 

13                 0.070                 90.000               2675.835                   1265.337         3.004 

10-min Jul 
2010 

14                 0.092                 68.000               1493.828                    785.041          3.006 

 

 

 

Figure 6.19: Periodogram plot of the log transformed 60-minutely averaged irradiance series for 

the period of the 1
st
 to the 12

th
 for Feb 2010.  
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Figure 6.19 shows the largest ordinate at period 16, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 72.883, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant. 

  

 

Figure 6.20: Periodogram plot for the log transformed 60-minutely averaged irradiance series 

for the period of the 1
st
 to the 13

th
 for Feb 2011.  

 

Figure 6.20 shows the largest ordinate at period 14, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 66.875, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  
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Figure 6.21: Periodogram plot for the log transformed 60-minutely averaged irradiance series 

for the period of the 1
st
 to the 13

th
 for Jul 2010. 

 

Figure 6.21 shows the largest ordinate at period 12, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 54.368, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  
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Figure 6.22: Periodogram plot for the 60-minutely averaged irradiance series for the period of 

the 3
rd

 to the 9
th

 for Jul 2011. 

 

Figure 6.22 shows the largest ordinate at period 12, corresponding to the harmonic     ⁄ . The 

Fisher‟s Kappa statistic is equal to 29.082, which is significant at the 1% level of significance 

indicating that the largest ordinate is highly significant.  
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Figure 6.23: Periodogram plot for the log transformed10-minutely averaged irradiance series for 

the period of the 1
st
 to the 12

th
 for Feb 2010. 

 

Figure 6.23 shows the largest ordinate at period 90, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 378.092, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  

 

 

Figure 6.24: Periodogram plot of the 10-minutely averaged irradiance series for the period of the 

1
st
 to the 13

th
 for Feb 2011. 
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Figure 6.24 shows the largest ordinate at period 84, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 487.970, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  

 

 

Figure 6.25: Periodogram plot for the log transformed 10-minutely averaged irradiance series 

for the period of the 1
st
 to the 13

th
 for Jul 2010. 

 

Figure 6.25 shows the largest ordinate at period 68, corresponding to the harmonic frequency 

    ⁄ .The Fisher‟s Kappa statistic is equal to 282.490, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  
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Figure 6.26: Periodogram plot of the 10-minutely averaged irradiance series for the period of the 

3
rd

 to the 9
th

 for Jul 2011. 

 

Figure 6.26 shows the largest ordinate at period 66, corresponding to the harmonic frequency 

    ⁄ . The Fisher‟s Kappa statistic is equal to 146.621, which is significant at the 1% level of 

significance indicating that the largest ordinate is highly significant.  
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6.6 HCSARIMA Models: Estimation and Residual Analysis 

In this section, we present all the HCSARIMA models fitted to the irradiance series, given in 

Figures 6.3 to 6.10, using SAS program, as well as their prediction and forecast plots. The in-

sample diagnostics (e.g. AIC, BIC, R-squared and parsimony) and the hold-out sample 

prediction errors (e.g. MBE, MPE, MAPE and RMSE) are also provided for each of these 

models. Model estimation and residual analysis results are also presented in Appendix A and 

Appendix B respectively. As in SARIMA modelling, similar analysis was carried out for the 

HCSARIMA class of models. Using the same methods (i.e. ML for parameter estimation and 

Ljung-Box test for residuals), the same conclusions, based on the SAS outputs, were made for all 

the models of this class given in this section. 

 

 
The HCSARIMA model fitted to the 60-minutely Feb 2010 global horizontal irradiance series is 

given by 

 

            (
  

  
)       (

  

  
)            

      
                 (6.11) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.11) can be found in 

Appendix A, Table A.9, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.9. The forecast plot for this model is given in Figure 6.27 below. 

 



112 

 

 

Figure 6.27: Plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 1 Feb 2010 to 12 Feb 2010, plus two days ahead 

forecasting by model in Equation (6.11). 

 

 

The HCSARIMA model fitted to the 60-minutely Feb 2011 global horizontal irradiance series is 

given by 

 

          (
  

  
)        (

  

  
)       (

  

  
)             

            (6.12) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.12) can be found in 

Appendix A, Table A.10, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.10. The forecast plot for this model is given in Figure 6.28 below. 
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Figure 6.28: Plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2011 to 13 Feb 2011, plus two days ahead 

forecasting by model given in Equation (6.12). 

 

 

The HCSARIMA model fitted to the 60-minutely Jul 2010 global horizontal irradiance series is 

given by 

         (
  

  
)       (

  

  
)                                        (6.13) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.13) can be found in 

Appendix A, Table A.10, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.10. The forecast plot for this model is given in Figure 6.29 below. 
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Figure 6.29: Plot of the actual versus predicted values for the 60-minutely averaged global 

(horizontal) solar irradiance series from 1 Jul 2010 to 13 Jul 2010, plus two days ahead 

forecasting by model in Equation (6.13). 

 

 

The HCSARIMA model fitted to the 60-minutely Jul 2011 global horizontal irradiance series is 

given by  

         (
  

  
)       (

  

  
)             

                          (6.14) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.14) can be found in 

Appendix A, Table A.11, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.11. The forecast plot for this model is given in Figure 6.30 below. 
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Figure 6.30: Plot of the actual versus predicted values for the 60-minutely averaged daylight 

global (horizontal) solar irradiance series from 3 Jul 2011 to 9 Jul 2011, plus two days ahead 

forecasting by model in Equation (6.14). 

 

The HCSARIMA model E1, fitted to the 10-minutely Feb 2010 irradiance series is given by 

 

                 (
  

  
)        (

  

  
)       (

  

  
)        (

  

  
)            

  

    
       

       
       

       
       

       
           

      
   

    
                                                                                                                                  (6.15) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.15) can be found in 

Appendix A, Table A.13, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.13. The forecast plot for this model is given in Figure 6.31 below. 
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Figure 6.31: Plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2010 to 12 Feb 2010, plus two days ahead 

forecasting by model in Equation (6.15). 

 

 

 

The HCSARIMA model fitted to the 10-minutely Feb 2011 global horizontal irradiance series is 

given by 

 

          (
  

  
)        (

  

  
)            

     
     

     
                                           

(6.16) 

 

Parameter estimates of the HCSARIMA model given by Equation (6.16) can be found in 

Appendix A, Table A.14, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.14. The forecast plot for this model is given in Figure 6.32 below. 
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Figure 6.32: Plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Feb 2011 to 13 Feb 2011, plus two days ahead 

forecasting by model in Equation (6.16). 

 

 

The HCSARIMA model fitted to the 10-minutely Jul 2010 global horizontal irradiance series is 

given by 

 

                (
  

  
)        (

  

  
)            

      
       

      

    
                                                                                                                      (6.17) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.17) can be found in 

Appendix A, Table A.15, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.15. The forecast plot for this model is given in Figure 6.33 below. 
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Figure 6.33:  Plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 2 Jul 2010 to 13 Jul 2010, plus two days ahead 

forecasting by model in Equation (6.17). 

 

 

 

The HCSARIMA model fitted to the 10-minutely Jul 2011 global horizontal irradiance series is 

given by 

 

         (
  

  
)             

     
      

          
       

                          

                                                                                                                                                  (6.18) 

 

Parameter estimates of the HCSARIMA model given in Equation (6.8) can be found in 

Appendix A, Table A.16, and the residual analysis (Ljung-Box test) results in Appendix B, Table 

B.16. The forecast plot for this model is given in Figure 6.34 below. 
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Figure 6.34: Plot of the actual versus predicted values for the 10-minutely averaged daylight 

global (horizontal) solar irradiance series from 3 Jul 2011 to 9 Jul 2011, plus two days ahead 

forecasting by model in Equation (6.18). 

 

 

Similarly, as in the SARIMA models analysis, we give in Tables 6.9 to 6.12, the in-sample 

diagnostics and out-of-sample prediction errors for each of the HCSARIMA models fitted.          

The smaller the magnitude of each of these indicators, the better the fit. 

 

Table 6.10: In-sample diagnostics for the HCSARIMA models fitted on each of the 10-minutely 

averaged global (horizontal) solar irradiance series.  

 

 

 

In-sample Model Section Diagnostics 

Model Season AIC SBC R-square Parsimony 

Eq. (6.11) 

Su
m

m
er

 Feb 2010 -325.500 -235.775 0.986 18 

Eq. (6.12) Feb 2011 12195.330 12235.290 0.968 8 

Eq. (6.13) 

W
in

te
r 

Jul 2010 252.399 290.647 0.970 8 

Eq. (6.14) Jul 2011 4955.966 4989.050 0.968 8 
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Table 6.11: Prediction errors for the HCSARIMA models fitted on each of the 10-minutely 

averaged global (horizontal) solar irradiance series. 

  

 

 

Model forecast accuracy measure 

Model Season MBE MPE MAPE RMSE 

Eq. (6.11) 
Su

m
m

er
 

Feb 2010 74.653 58.306 82.350 207.495 

Eq. (6.12) Feb 2011 17.134 47.301 64.775 146.817 

Eq. (6.13) 

W
in

te
r Jul 2010 -53.844 -13.814 22.675 76.288 

Eq. (6.14) Jul 2011 -92.547 5.526 59.335 109.234 

 

 

 

Table 6.12: In-sample diagnostics for the HCSARIMA models fitted on each of the 60-minutely 

averaged global (horizontal) solar irradiance series. 

 

 

 

 

In-sample Model Section Diagnostics 

Model Season AIC SBC R-square Parsimony 

Eq. (6.15) 

Su
m

m
er

 

Feb 2010 2317.351 2340.154 0.931 7 

Eq. (6.16) Feb 2011 2072.112 2091.336 0.961 6 

Eq. (6.17) 

W
in

te
r Jul 2010 1598.668 1613.917 0.961 5 

Eq. (6.18) Jul 2011 946.258 958.413 0.883 5 
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Table 6.13: Prediction errors for the HCSARIMA models fitted on each of the 60-minutely 

averaged global (horizontal) irradiance series. 

 

 

 

Model forecast accuracy measure 

Model Season MBE MPE MAPE RMSE 

Eq. (6.15) 
Su

m
m

er
 

Feb 2010 185.279 457.390 457.390 239.489 

Eq. (6.16) Feb 2011 30.060 15.069 33.640 121.568 

Eq. (6.17) 

W
in

te
r Jul 2010 -39.409 -5.273 20.159 60.397 

Eq. (6.18) Jul 2011 -89.076 -66.620 66.620 104.235 

 

Results summary: Models and Comparisons 

For ease of comparison, we present in Tables 6.14 to 6.17 below all the models for each of the 

years, their in-sample diagnostics used and forecast error or accuracy measures. As discussed in 

Chapter 4 the principle of parsimony selects the model with the least number of parameters. 

Clearly, the HCSARIMA models have the relatively larger AIC and SBC (BIC) values, which 

are due to the addition of sinusoidal predictors, compared to their respective SARIMA 

counterparts (see Table 6.14 and 6.16). It is also notable that the SARIMA models have wider 

confidence intervals for predictions indicating the higher margin of forecast error involved with 

this class. 

 

Table 6.14: In-sample diagnostics for the models fitted to 2010 irradiance data. 

 

  In-sample Model Section Diagnostics   

Scale Date Model AIC SBC R-square Parameters 

6
0

-m
in

u
te

ly
 Feb-10 SARIMA  195.738 208.420 0.959 4 

HCSARIMA  2317.351 2340.154 0.931 7 

Jul-10 SARIMA  1490.317 1499.226 0.957 3 

HCSARIMA  1598.668 1613.917 0.961 5 

1
0

-m
in

u
te

ly
 Feb-10 SARIMA  -162.283 -123.101 0.986 8 

HCSARIMA  -325.500 -235.775 0.986 18 

Jul-10 SARIMA  400.857 419.660 0.966 4 

HCSARIMA  252.399 290.647 0.970 8 
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Table 6.15: Out-of-sample prediction errors compared for all the models fitted to 2010 

irradiance data. 

 

  Forecast Accuracy measures  

Scale Date Model         MBE       MPE      MAPE         RMSE 

6
0

-m
in

u
te

ly
 Feb-10 SARIMA 185.460 101.753 109.055 286.207 

HCSARIMA 185.279 457.390 457.390 239.489 

Jul-10 SARIMA -55.230 -37.414 37.414 64.722 

HCSARIMA -39.409 -5.273 20.159 60.397 

1
0

-m
in

u
te

ly
 Feb-10 SARIMA 165.947 130.779 138.932 267.011 

HCSARIMA 74.653 58.306 82.350 207.495 

Jul-10 SARIMA 19.743 18.694 30.123 84.540 

HCSARIMA -53.844 -13.814 22.675 76.288 

 

 

Table 6.16: In-sample diagnostics compared for all models fitted to 2011 irradiance data. 

 

  In-sample Model Section Diagnostics   

Scale Date Model AIC SBC R-square Parameters 

6
0
-m

in
u

te
ly

 Feb-11 SARIMA  1973.942 1992.686 0.946 6 

HCSARIMA  2072.112 2091.336 0.961 6 

Jul-11 SARIMA  841.435 857.372 0.840 7 

HCSARIMA  946.258 958.413 0.883 5 

1
0

-m
in

u
te

ly
 Feb-11 SARIMA  11613.350 11662.500 0.958 10 

HCSARIMA  12195.330 12235.290 0.968 8 

Jul-11 SARIMA  4381.669 4409.486 0.911 7 

HCSARIMA   4955.966  4989.050      0.928 8 
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Table 6.17: Out-of-sample prediction errors compared for all models fitted to 2011 irradiance 

data. 

 

                           Forecast accuracy measures   

Scale Date Model MBE   MPE   MAPE   RMSE 

6
0
-m

in
u

te
ly

 Feb-11 SARIMA  39.757 10.866    50.641 143.673 

HCSARIMA  30.060 15.069 33.640 121.568 

Jul-11 SARIMA  -31.802 -26.321    63.111   45.935 

HCSARIMA  -89.076 -66.620 66.620 104.235 

1
0
-m

in
u

te
ly

 Feb-11 SARIMA  38.075 25.119    44.692 155.747 

HCSARIMA  17.134 47.301 64.775 146.817 

Jul-11 SARIMA  -94.178 -28.119    38.167 122.249 

HCSARIMA  -92.547   5.526    59.335 109.234 

 

 

 

6.7 Long Memory (ARFIMA) Model: High frequency time series 

data 

Box-Jenkins short memory models have been used extensively to model low frequency solar 

radiation series with some degree of success. However, long memory time series models known 

as autoregressive fractionally integrated moving average (ARFIMA) models have not been to the 

same extent. In this section, the efficacy of ARFIMA model to represent the underlying data 

generating process of the high frequency time series data is demonstrated. For testing purposes, a 

time series data was obtained from UKZN HC Solar Station and 20-minutely averaged values 

were used.  

 

From Figure 6.36 it is evident that the long memory phenomenon is inherent in this series with 

the ACF plot dampening down very slowly. 
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Figure 6.35: Time series plot of the 20-minutely averaged global (horizontal) solar irradiance 

series relating to 28 days for Feb 2010. 

 

This ACF plot exhibits the sine-cosine waves and decays with the lag at a very low rate. The 

partial autocorrelation (PACF) plot dampens out. This confirms the property of a series with long 

range dependence (i.e. autocorrelations dying down very slowly amongst others). The long range 

dependence property can be captured by the long memory model. As such, the ARFIMA 

(1,0.40,1) model, with the long memory parameter      , was fitted and estimated. The plot of 

the actual versus predicted values shown in Figure 6.37 indicates that the fitted model explains 

the underlying data generating process well. The spectrum plot of this series, with       , is 

given in Figure 6.38. It is noted that the magnitude of the spectrum increases with the decrease in 

frequency and shows to diverge at frequencies near zero. Therefore, Figure 6.36 and Figure 6.38 

both confirm the ARFIMA model with         , based on the property “For     the 

ACF of ARFIMA time series decays very slowly and its spectrum typically diverges to infinity 

at frequency    , i.e.              ”, in Chapter 4.  
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Figure 6.36:  ACF plot of the 20-minutely averaged global (horizontal) solar irradiance series 

for Feb 2010, exhibiting the long range dependence property. 

 

 

Figure 6.37: Plot of actual versus predicted values by ARFIMA (1,0.40,1) model. 
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Figure 6.38: Spectrum of the 20-minutely averaged global (horizontal) solar irradiance series 

relating to 28 days for Feb 2010.  

 

The                   process is expressed as                           or              

                 where                             and   are autoregressive 

and moving average parameters, respectively. The results of the model parameter estimation are 

presented in Table 6.18 below. 

   

Table 6.18: Parameter estimation for                   model.   

 

Parameter Estimate Std. Error t value Pr(>|t|) 

d 0.40256 0.00000 Inf <2e-16 *** 

ar1 0.91541 0.00000 Inf <2e-16 *** 

ma1 0.30516 0.01197 25.48 <2e-16 *** 
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Chapter 7 

Conclusions and Future Studies 

From the results of this research study, it is concluded that the Seasonal Autoregressive 

Integrated Moving Average (SARIMA) and Harmonically Coupled SARIMA (HCSARIMA) 

classes of models both describe the underlying data generating processes of all the 10-minutely 

and 60-minutely averaged global horizontal irradiance time series data from UKZN HC 

radiometric station, with respect to various diagnostics and model predictive ability. While the 

two aforementioned classes of models both provided good fits for solar irradiance data series in 

this study, each has some distinct advantage with respect to diagnostic and prediction error 

analysis results (see Table 6.14 to 6.17). For example, the advantage of the HCSARIMA class of 

models over the SARIMA class was evident in the 2010 data with respect to forecasting 

accuracy (see Table 6.15).  

 

Furthermore, the wider confidence intervals for predictions by the SARIMA class are also an 

indication of the higher margin of forecast error for these models. However, the clear 

disadvantage of the HCSARIMA class is the relatively larger AIC and SBC (BIC) values, which 

are due to the addition of sinusoidal predictors, compared to their respective SARIMA 

counterparts (see Table 6.14 and 6.16). To circumvent this problem we used a smaller number of 

sinusoidal predictors to model the major seasonalities. However, if the purpose of the models is 

only forecasting then there may be no need to restrict the number of deterministic (sinusoidal 

predictors) as this gives HCSARIMA models a competitive edge over SARIMA models in the 

prediction aspect. For 2010 data, the SARIMA models are the better class with respect to 

parsimony (see Table 6.15), whereas the HCSARIMA class is the best for 2011 data in the same 

respect.  

 

Moreover, adding a trend component gives HCSARIMA models the competitive edge of being 

able to handle some aspects of second order non-stationarity, viz., presence of seasonality and 

trend. The search for periodicities using frequency domain techniques gives an insight into the 

data series that would not be detected using only time domain techniques used in the Box-

Jenkins SARIMA model building methodology.  
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The efficacy of the autoregressive fractionally integrated moving average (ARFIMA) process to 

model a high frequency time series data with the long memory property was examined.  From 

the outcome of analysis, it is tentatively concluded that the ARFIMA model is capable of 

capturing the long range dependence inherent in the high frequency data. Therefore, such 

processes are also our interest for further studies on high frequency irradiance time series data. 

Future work will attempt to even further improve forecast accuracy by incorporating more input 

parameters such as cloud cover index (see e.g. Dazhi et al., 2012) and clearness index (see e.g. 

Martin et al., 2010). The testing of other forecasting methods presented by literature e.g. 

Artificial Neural Networks (ANN) model, the Lucheroni model and the CARDS model may also 

form part of future work. The use of Singular Spectrum Analysis (SSA) and Multi-channel 

Singular Spectrum Analysis (MCSSA) is also recommended for further studies. 

 

The models developed in this study are capable of explaining the stochastic variations of 

irradiance on the ground with a higher degree of accuracy than some other previously used 

methods, e.g. the model given in Equation (2.2). Thus, these findings are useful for generating 

and forecasting values of the global solar irradiance data at UKZN Howard College solar 

recording station with a high degree of success. The models developed in this study may help the 

solar system designers in setting realistic energy policies and programmes based on sound 

scientific principles. 
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Appendix A: Model Estimation in SAS 

Parameter estimation for SARIMA models fitted to irradiance data 
 

Table A.1: Parameter estimation for the SARIMA model given in Equation (6.3), fitted to       

60-minutely Feb 2010 irradiance series. 

Maximum Likelihood Estimation 

Parameter Estimate Standard 

Error 

t Value Approx 

Pr > |t| 

Lag 

MA1,1 -0.215 0.099 -2.160 0.0304 1 

MA1,2 0.438 0.088 4.970 <.0001 32 

AR1,1 0.487 0.095 5.130 <.0001 1 

AR2,1 -0.492 0.082 -5.970 <.0001 16 

 

 

Table A.2: Parameter estimation for the SARIMA model given in Equation (6.4), fitted to       

60-minutely Feb 2011 irradiance series. 

Maximum Likelihood Estimation 

Parameter Estimate Standard 

Error 

t Value Approx 

Pr > |t| 

Lag 

MA1,1 -0.590 0.073 -8.110 <.0001 1 

MA1,2 -0.447 0.083 -5.420 <.0001 2 

MA1,3 0.491 0.100 4.910 <.0001 28 

AR1,1 0.182 0.057 3.180 0.0015 3 

AR1,2 0.121 0.052 2.330 0.0198 12 

AR1,3 -0.716 0.065 -11.000 <.0001 14 

 
 

Table A.3: Parameter estimation for the SARIMA model given in Equation (6.5), fitted to       

60-minutely Jul 2010 irradiance series. 

 

Maximum Likelihood Estimation 

Parameter Estimate Standard 

Error 

t Value Approx 

Pr > |t| 

Lag 

MA1,1 0.760 0.074 10.320 <.0001 12 

AR1,1 1.328 0.071 18.820 <.0001 1 

AR1,2 -0.474 0.072 -6.620 <.0001 2 
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Table A.4: Parameter estimation for the SARIMA model given in Equation (6.6), fitted to       

60-minutely Jul 2011 irradiance series. 

 

Maximum Likelihood Estimation 

Parameter Estimate 
Standard 

Error 
t Value 

Approx 

Pr > |t| 
Lag 

MA1,1 -0.256 0.130 -1.970 0.0493 1 
MA1,2 -0.350 0.111 -3.160 0.0016 2 
AR1,1 0.199 0.078 2.550 0.0109 1 
AR1,2 -0.628 0.092 -6.850 <.0001 12 
AR1,3 0.132 0.058 2.270 0.0234 15 
AR1,4 -0.609 0.094 -6.470 <.0001 24 

AR1,5 -0.593 0.083 -7.190 <.0001 36 

 

 

Table A.5: Parameter estimation for the SARIMA model given in Equation (6.7), fitted to       

10-minutely Feb 2010 irradiance series. 

Maximum Likelihood Estimation 

Parameter Estimate 
Standard 

Error 
t Value 

Approx  

Pr > |t| 
Lag 

MA1,1 -0.224 0.031 -7.150 <.0001 1 

MA1,2 0.091 0.031 2.940 0.0032 3 

MA1,3 -0.074 0.030 -2.480 0.0132 10 

MA1,4 0.074 0.030 2.480 0.0133 13 

MA2,1 0.855 0.039 21.940 <.0001 90 

AR1,1 0.913 0.014 62.990 <.0001 1 

AR1,2 -0.070 0.031 -2.250 0.0245 17 

AR1,3 0.080 0.031 2.600 0.0092 18 
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Table A.6: Parameter estimation for the SARIMA model given in Equation (6.8), fitted to       

10-minutely Feb 2011 irradiance series. 

 

Maximum Likelihood Estimation 

Parameter Estimate 
Standard 

Error 
t Value 

Approx 

Pr>|t| 
Lag 

MA1,1 -0.422 0.135 -3.130 0.0018 2 

MA1,2 0.132 0.046 2.890 0.0038 4 

AR1,1 0.876 0.027 32.280 <.0001 1 

AR1,2 -0.597 0.135 -4.410 <.0001 2 

AR1,3 0.504 0.118 4.270 <.0001 3 

AR1,4 0.094 0.028 3.320 0.0009 6 

AR1,5 -0.138 0.028 -4.910 <.0001 10 

AR1,6 0.097 0.027 3.600 0.0003 11 

AR2,1 -0.677 0.030 -22.370 <.0001 84 

AR2,2 -0.309 0.030 -10.230 <.0001 168 

 

Table A.7: Parameter estimation for the SARIMA model given in Equation (6.9), fitted to       

10-minutely Jul 2010 irradiance series. 

 

Maximum Likelihood Estimation 

Parameter Estimate 
Standard 

Error 
t- Value 

Approx 

Pr > |t| 
Lag 

MA1,1 0.212 0.039 5.48 <.0001 2 

AR1,1 0.751 0.035 21.21 <.0001 1 

AR1,2 0.187 0.037 5.05 <.0001 2 

AR2,1 -0.508 0.031 -16.34 <.0001 68 

 

 

Table A.8: Parameter estimation for the SARIMA model given in Equation (6.10), fitted to     

10-minutely Jul 2011 irradiance series. 

Maximum Likelihood Estimation 

Parameter Estimate 
Standard 

Error 
t Value 

Approx  

Pr > |t| 
Lag 

AR1,1 0.863 0.026 32.93 <.0001 1 

AR1,2 0.112 0.034 3.33 0.0009 7 

AR1,3 -0.121 0.050 -2.42 0.0155 11 

AR1,4 0.198 0.054 3.65 0.0003 12 

AR1,5 -0.124 0.037 -3.31 0.0009 14 

AR2,1 -0.781 0.054 -14.35 <.0001 66 

AR2,2 -0.323 0.071 -4.52 <.0001 132 
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Parameter estimation for HCSARIMA models fitted to irradiance 

data 
 

Table A.9: Parameter estimation for the HCSARIMA model given in Equation (6.11), fitted to 

60-minutely Feb 2010 irradiance series, where T is the trend, COSTWO               and 

SINTWO          ⁄      

  Maximum Likelihood Estimation   

  
Standard 

 
Approx 

   
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 331.530 43.888 7.550 <.0001 0 global 0 

AR1,1 0.795 0.072 11.120 <.0001 1 global 0 

AR1,2 -0.214 0.072 -2.990 0.0028 2 global 0 

AR2,1 0.294 0.072 4.060 <.0001 16 global 0 

NUM1 0.932 0.388 2.410 0.0161 0 T 0 

NUM2 -115.301 30.928 -3.730 0.0002 0 SINTWO 0 

NUM3 -466.789 30.658 -15.230 <.0001 0 COSTWO 0 

 

 

Table A.10: Parameter estimation for the HCSARIMA model given in Equation (6.12), fitted to 

60-minutely Feb 2011 irradiance series, where                             

              and COSTHREE              . 

  Maximum Likelihood Estimation   

  Standard  Approx    

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 505.464 12.560 40.240 <.0001 0 global 0 

AR1,1 0.668 0.055 12.130 <.0001 1 global 0 

AR2,1 -0.296 0.079 -3.750 0.0002 56 global 0 

NUM1 -151.068 12.156 -12.430 <.0001 0 SINTWO 0 

NUM2 -456.142 12.008 -37.990 <.0001 0 COSTWO 0 

NUM3 -31.363 7.617 -4.120 <.0001 0 COSTHREE 0 
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Table A.11: Parameter estimation for the HCSARIMA model given in Equation (6.13), fitted to 

60-minutely Jul 2010 irradiance series, where COSTWO                and SINTWO 

             . 

  Maximum Likelihood Estimation   

  Standard  Approx    

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 243.718 22.407 10.880 <.0001 0 global 0 

MA1,1 -0.479 0.077 -6.190 <.0001 1 global 0 

AR1,1 0.797 0.052 15.230 <.0001 1 global 0 

NUM1 -68.833 12.738 -5.400 <.0001 0 SINTWO 0 

NUM2 -236.917 12.626 -18.760 <.0001 0 COSTWO 0 

 

 

Table A.12: Parameter estimation for the HCSARIMA model given in Equation (6.14), fitted to 

60-minutely Jul 2011 irradiance series, where COSTWO               and SINTWO 

               

  Maximum Likelihood Estimation   

  Standard  Approx    

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 214.435 34.672 6.180 <.0001 0 global 0 

AR1,1 0.745 0.073 10.180 <.0001 1 global 0 

AR2,1 0.277 0.118 2.340 0.0193 15 global 0 

NUM1 -62.940 18.870 -3.340 0.0009 0 SINTWO 0 

NUM2 -210.121 18.567 -11.320 <.0001 0 COSTWO 0 
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Table A.13: Parameter estimation for the HCSARIMA model given in Equation (6.15), fitted to 

10-minutely Feb 2010 irradiance series, where                               

                                     and                         

  
Standard 

 
Approx 

   Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

        MU 5.180 0.139 37.240 <.0001 0 globallog 0 
MA1,1 -0.983 0.089 -11.000 <.0001 1 globallog 0 
MA1,2 -0.295 0.034 -8.780 <.0001 2 globallog 0 

MA2,1 -0.154 0.031 -4.940 <.0001 88 globallog 0 
MA2,2 -0.120 0.031 -3.850 0.0001 89 globallog 0 
AR1,1 0.215 0.090 2.390 0.0168 1 globallog 0 
AR1,2 0.607 0.083 7.270 <.0001 2 globallog 0 

AR1,3 -0.103 0.021 -4.950 <.0001 11 globallog 0 
AR1,4 0.087 0.021 4.110 <.0001 21 globallog 0 
AR2,1 0.070 0.030 2.300 0.0216 55 globallog 0 
AR2,2 -0.076 0.030 -2.510 0.0122 81 globallog 0 
AR2,3 0.163 0.030 5.370 <.0001 90 globallog 0 
AR2,4 0.137 0.030 4.510 <.0001 92 globallog 0 

AR2,5 0.087 0.030 2.890 0.0039 93 globallog 0 
NUM1 -0.554 0.121 -4.590 <.0001 0 SINTWO 0 
NUM2 -2.186 0.120 -18.30 <.0001 0 COSTWO 0 
NUM3 -0.524 0.114 -4.590 <.0001 0 SINTHREE 0 
NUM4 -0.829 0.113 -7.310 <.0001 0 COSTHREE 0 

 

Table A.14: Parameter estimation for the HCSARIMA model given in Equation (6.16), fitted to 

10-minutely Feb 2011 irradiance series, where COSTWO               and SINTWO 

               

  
Maximum Likelihood Estimation 

   

  
Standard 

 
Approx 

   Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 498.676 14.426 34.570 <.0001 0 global 0 
AR1,1 0.858 0.030 28.410 <.0001 1 global 0 
AR1,2 -0.145 0.039 -3.680 0.0002 2 global 0 
AR1,3 0.076 0.032 2.390 0.0167 3 global 0 
AR1,4 0.145 0.031 4.620 <.0001 6 global 0 
AR1,5 -0.067 0.030 -2.230 0.026 7 global 0 

NUM1 -48.184 16.437 -2.930 0.0034 0 SINTWO 0 
NUM2 -478.809 16.261 -29.440 <.0001 0 COSTWO 0 
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Table A.15: Parameter estimation for the HCSARIMA model given in Equation (6.17), fitted to 

10-minutely Jul 2010 irradiance series, where COSTWO               and COSTHREE 

               

  Maximum Likelihood Estimation   

  Standard  Approx    

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 4.836 0.286 16.920 <.0001 0 globallog 0 

MA1,1 0.968 0.008 123.910 <.0001 68 globallog 0 

AR1,1 0.806 0.025 32.170 <.0001 1 globallog 0 

AR1,2 0.057 0.025 2.260 0.0236 3 globallog 0 

AR1,3 0.060 0.017 3.470 0.0005 17 globallog 0 

AR2,1 0.999 0.000 3761.170 <.0001 68 globallog 0 

SCALE1 -1.844 0.151 -12.210 <.0001 0 COSTWO 0 

SCALE2 -0.957 0.110 -8.660 <.0001 0 COSTHREE 0 

 

 

Table A.16: Parameter estimation for the HCSARIMA model given in Equation (6.18), fitted to 

10-minutely Jul 2011 irradiance series, where COSTWO                

  Maximum Likelihood Estimation   

  Standard  Approx    

Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 

MU 228.483 25.364 9.010 <.0001 0 global 0 

MA1,1 -0.135 0.055 -2.460 0.014 10 global 0 

MA1,2 0.150 0.052 2.900 0.0037 54 global 0 

AR1,1 0.831 0.028 29.970 <.0001 1 global 0 

AR1,2 0.130 0.038 3.430 0.0006 7 global 0 

AR1,3 -0.143 0.045 -3.160 0.0016 9 global 0 

AR1,4 0.091 0.036 2.530 0.0114 12 global 0 

NUM1 -211.674 18.988 -11.150 <.0001 0 COSTWO 0 
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Appendix B: Model Residual Analysis in SAS 

 

Residual analysis for SARIMA models fitted to irradiance data 
 
Table B.1: Residual analysis for the SARIMA model given in Equation (6.3). 

 

Autocorrelation Check of Residuals 

To 

Lag 

Chi-

Square 

DF Pr > 

ChiSq 
Autocorrelations 

6 4.270 2 0.118 0.009 -0.006 -0.078 0.111 0.028 0.064 

12 11.820 8 0.159 0.028 -0.055 0.169 0.039 -0.038 -0.070 

18 20.150 14 0.126 0.080 0.089 0.121 0.013 -0.116 -0.017 

24 26.820 20 0.140 0.151 -0.031 -0.047 0.001 -0.005 0.084 

30 31.500 26 0.210 0.066 -0.054 -0.070 0.088 0.007 0.049 
36 35.050 32 0.326 0.028 0.061 -0.017 0.030 0.080 -0.062 
42 35.260 38 0.597 -0.004 -0.008 -0.013 0.000 0.025 0.006 
48 38.970 44 0.687 -0.003 0.084 -0.000 0.002 0.089 0.019 

 

 

Table B.2: Residual analysis for the SARIMA model given in Equation (6.4). 

Autocorrelation Check of Residuals 

To 

Lag 

Chi-

Square 

DF Pr > 

ChiSq 
Autocorrelations 

6 . 0 . 0.112 -0.026 0.032 0.043 -0.124 -0.097 

12 8.280 6 0.218 0.003 -0.012 0.018 -0.014 0.075 -0.011 

18 12.620 12 0.397 -0.074 -0.053 -0.016 0.072 0.086 0.045 

24 18.990 18 0.393 -0.008 -0.084 -0.048 0.055 0.090 -0.109 

30 29.440 24 0.204 -0.080 0.007 -0.080 -0.120 -0.155 0.012 

36 34.590 30 0.258 -0.063 0.056 0.067 0.035 0.086 0.064 

42 39.000 36 0.336 -0.017 -0.054 0.005 -0.064 0.062 -0.093 

48 42.470 42 0.451 -0.006 -0.030 0.036 -0.088 -0.001 0.069 
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Table B.3: Residual analysis for the SARIMA model given in Equation (6.5). 

 

Autocorrelation Check of Residuals 

To Lag 
Chi-

Square 
DF 

Pr > 

ChiSq 
Autocorrelations 

6 3.770 3 0.287 0.014 -0.063 0.130 -0.058 -0.010 -0.029 

12 14.070 9 0.120 -0.048 -0.047 0.190 -0.077 -0.008 0.138 

18 16.180 15 0.370 -0.093 -0.046 -0.004 -0.037 -0.010 0.030 

24 18.090 21 0.643 -0.008 -0.065 0.031 0.019 -0.040 -0.062 

30 19.900 27 0.835 0.046 -0.012 0.029 -0.040 -0.060 0.042 

36 23.410 33 0.891 0.008 -0.009 0.066 -0.055 -0.047 0.092 

42 25.010 39 0.960 -0.039 -0.070 0.015 -0.026 -0.022 0.015 

48 30.440 45 0.952 0.037 0.023 -0.046 -0.127 0.017 0.070 

 

Table B.4: Residual analysis for the SARIMA model given in Equation (6.6). 

 

Autocorrelation Check of Residuals 

To Lag 
Chi-

Square 
DF 

Pr > 

ChiSq 
Autocorrelations 

6 . 0 . 0.032 0.000 0.109 -0.02 0.146 0.060 

12 8.170 5 0.147 -0.156 0.122 0.049 -0.014 -0.013 -0.138 

18 12.320 11 0.340 0.121 0.094 0.044 0.011 -0.057 -0.124 

24 18.570 17 0.354 0.145 -0.135 -0.105 0.05 -0.068 -0.055 

30 25.970 23 0.302 0.062 -0.178 0.047 0.072 -0.122 0.065 

36 27.150 29 0.563 -0.043 -0.006 0.068 0.000 -0.004 0.045 

42 32.230 35 0.603 -0.013 0.106 -0.063 0.038 0.117 -0.019 

48 41.960 41 0.429 -0.018 0.145 -0.030 0.033 -0.036 -0.150 

 

Table B.5: Residual analysis for the SARIMA model given in Equation (6.7). 

Autocorrelation Check of Residuals 

To Lag 
Chi-

Square 
DF 

Pr > 

ChiSq 
Autocorrelations 

6 . 0 . 0.002 0.017 0.005 0.012 -0.047 0.045 

12 6.160 4 0.187 -0.009 -0.013 0.006 -0.012 -0.029 0.013 

18 8.630 10 0.568 -0.003 -0.026 0.031 -0.025 -0.001 -0.014 

24 15.800 16 0.467 -0.031 0.024 0.013 -0.010 0.072 0.007 

30 26.030 22 0.251 -0.019 0.003 -0.075 -0.032 -0.003 0.054 

36 34.850 28 0.174 -0.057 0.000 -0.021 0.026 0.014 0.063 

42 40.460 34 0.207 -0.025 0.030 0.024 -0.020 0.051 -0.016 

48 53.320 40 0.077 -0.084 -0.004 -0.013 -0.034 0.053 0.036 
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Table B.6: Residual analysis for the SARIMA model given in Equation (6.8). 

   Autocorrelation Check of Residuals    

To Chi-  Pr>       

Lag Square DF ChiSq --------------------Autocorrelations------------  

6 . 0 . 0.018 0.001 0.002 0.000 -0.040 -0.010 

12 3.040 2 0.219 0.009 -0.013 0.022 0.005 0.004 0.014 

18 9.730 8 0.285 -0.015 0.036 -0.033 0.016 -0.060 -0.008 

24 11.470 14 0.649 0.021 0.016 0.027 0.016 0.002 -0.002 

30 15.830 20 0.727 0.015 -0.025 0.043 0.003 0.012 -0.037 

36 23.660 26 0.595 -0.042 -0.034 -0.029 0.012 -0.034 0.049 

42 25.680 32 0.778 -0.012 -0.035 -0.010 0.007 -0.017 -0.010 

48 29.910 38 0.823 -0.007 0.044 0.037 -0.001 0.025 -0.005 

 

 

Table B.7: Residual analysis for the SARIMA model given in Equation (6.9). 

Autocorrelation Check of Residuals 

To Lag 
Chi-

Square 
DF 

Pr > 

ChiSq 
Autocorrelations 

6 5.710 2 0.058 0.005 0.007 -0.056 -0.013 -0.031 -0.051 

12 8.390 8 0.396 0.002 0.026 0.035 0.004 0.028 0.022 

18 9.730 14 0.781 -0.003 -0.005 0.002 0.012 0.036 -0.010 

24 12.490 20 0.898 -0.042 0.026 -0.009 -0.013 0.020 -0.017 

30 15.600 26 0.945 -0.015 0.002 0.050 0.010 0.029 0.003 

36 20.210 32 0.948 0.063 -0.013 0.004 0.013 0.027 0.019 

42 20.650 38 0.990 -0.007 0.005 -0.019 0.006 0.000 -0.006 

48 23.390 44 0.995 0.030 0.020 0.018 -0.036 0.013 -0.009 

 

Table B.8: Residual analysis for the SARIMA model given in Equation (6.10). 

Autocorrelation Check of Residuals 

To 

Lag 

Chi-

Square 

DF Pr > 

ChiSq 
Autocorrelations 

6 . 0 . -0.035 -0.003 0.063 -0.022 0.057 -0.015 

12 9.480 5 0.091 0.025 0.027 -0.102 0.051 0.004 0.003 

18 11.150 11 0.431 -0.021 -0.034 0.033 0.008 -0.019 -0.032 

24 13.860 17 0.677 0.038 0.005 0.018 -0.043 -0.044 -0.030 

30 20.330 23 0.622 0.058 0.069 0.057 0.021 0.021 -0.054 

36 21.190 29 0.852 -0.014 0.008 0.009 0.035 0.009 -0.019 

42 24.040 35 0.919 0.016 -0.045 -0.046 0.022 -0.040 0.001 

48 28.130 41 0.937 0.011 -0.059 0.025 0.023 -0.059 0.030 
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Residual analysis for HCSARIMA models fitted to irradiance data 
 

Table B.9: Residual analysis for the HCSARIMA model given in Equation (6.11). 

  Autocorrelation Check of Residuals     

To Chi-  Pr>       

Lag Square DF ChiSq --------------------Autocorrelations--------------------  

6 4.520 3 0.211 0.027 -0.069 0.019 0.095 0.077 0.047 

12 6.210 9 0.718 -0.033 -0.026 0.057 -0.009 -0.054 -0.018 

18 9.310 15 0.861 -0.020 0.109 0.021 -0.006 -0.013 0.042 

24 11.550 21 0.951 -0.026 -0.092 -0.035 0.001 0.007 -0.007 

30 16.690 27 0.939 -0.033 -0.040 -0.017 -0.008 0.118 -0.074 

36 23.590 33 0.886 -0.022 -0.027 0.082 -0.140 0.020 0.037 

42 28.100 39 0.902 0.028 -0.127 0.002 0.023 -0.019 -0.028 

48 34.020 45 0.884 0.060 0.051 0.099 0.070 0.047 -0.009 

 

 

Table B.10: Residual analysis for the HCSARIMA model given in Equation (6.12). 

  Autocorrelation Check of Residuals     

To Chi-  Pr >       

Lag Square DF ChiSq --------------------Autocorrelations----------------  

6 5.070 4 0.280 0.032 0.024 -0.014 -0.001 -0.090 -0.130 

12 11.020 10 0.356 -0.020 -0.017 0.045 -0.044 0.115 0.111 

18 18.980 16 0.270 -0.152 -0.041 -0.108 -0.009 -0.057 -0.003 

24 23.520 22 0.373 -0.004 -0.078 -0.022 -0.006 0.099 -0.072 

30 30.240 28 0.352 -0.048 -0.093 -0.099 -0.044 -0.002 0.091 

36 38.970 34 0.256 -0.072 0.060 0.136 -0.006 0.081 0.070 

42 44.350 40 0.294 -0.061 -0.057 0.044 -0.057 0.061 -0.083 

48 48.730 46 0.364 -0.001 -0.048 0.053 -0.071 0.085 0.021 
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Table B.11: Residual analysis for the HCSARIMA model given in Equation (6.13). 

  Autocorrelation Check of Residuals     

To Chi-  Pr>       

Lag Square DF ChiSq --------------------Autocorrelations--------------------  

6 4.060 4 0.398 0.013 0.073 0.077 -0.083 -0.029 -0.077 

12 10.670 10 0.384 -0.012 -0.065 0.108 -0.079 -0.086 0.097 

18 17.540 16 0.351 -0.174 -0.066 -0.042 -0.005 0.019 0.053 

24 19.320 22 0.625 0.029 -0.024 0.005 -0.030 -0.081 -0.027 

30 21.130 28 0.820 -0.059 -0.052 0.023 -0.024 -0.012 0.046 

36 23.880 34 0.902 0.043 0.031 -0.002 -0.018 -0.065 0.079 

42 27.560 40 0.932 -0.110 -0.066 0.008 -0.008 0.020 0.025 

48 31.550 46 0.948 0.045 0.023 -0.083 -0.088 -0.016 0.024 

 

 

Table B.12: Residual analysis for the HCSARIMA model given in Equation (6.14). 

  Autocorrelation Check of Residuals     

To Chi-  Pr >       

Lag Square DF ChiSq --------------------Autocorrelations----------------
---- 

 

6 4.430 4 0.351 -0.055 0.094 -0.011 -0.056 0.181 -0.032 

12 7.290 10 0.698 -0.035 -0.036 0.045 -0.103 -0.058 -0.102 

18 11.970 16 0.746 0.010 0.067 0.026 0.137 0.038 -0.134 

24 23.920 22 0.351 0.101 -0.183 -0.018 -0.071 -0.176 -0.152 

30 29.080 28 0.409 -0.031 -0.132 -0.056 -0.011 -0.129 0.047 

36 32.420 34 0.545 -0.042 0.074 0.081 0.038 0.019 -0.088 

42 36.860 40 0.613 -0.098 0.087 -0.084 0.037 0.031 -0.035 

48 41.680 46 0.654 0.045 0.106 -0.016 0.011 0.040 0.101 
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Table B.13: Residual analysis for the HCSARIMA model given in Equation (6.15). 

 

  Autocorrelation Check of Residuals     

To Chi-  Pr >       

Lag Square DF ChiSq --------------------Autocorrelations----------------  

6 . 0 . 0.000 0.005 0.000 -0.016 -0.022 -0.001 

12 . 0 . 0.000 0.016 0.003 0.013 0.023 0.025 

18 10.530 5 0.062 -0.034 -0.041 0.029 -0.027 -0.049 0.022 

24 15.110 11 0.177 0.007 0.051 -0.012 -0.001 0.037 -0.004 

30 24.120 17 0.116 -0.008 0.043 -0.048 -0.017 0.027 0.053 

36 35.830 23 0.043 -0.076 -0.010 -0.007 0.048 0.016 0.045 

42 39.460 29 0.093 -0.017 0.014 -0.006 -0.028 0.036 -0.024 

48 51.660 35 0.035 -0.067 -0.002 -0.007 -0.047 0.056 0.030 

 

 

 

Table B.14: Residual analysis for the HCSARIMA model given in Equation (6.16). 

  Autocorrelation Checks of Residuals     

To Chi-  Pr >       

Lag Square DF ChiSq --------------------Autocorrelations----------------
---- 

 

6 0.540 1 0.463 -0.001 0.001 0.020 -0.005 -0.004 -0.008 

12 11.620 7 0.114 0.038 -0.019 0.014 -0.075 0.010 0.049 

18 21.250 13 0.068 -0.008 0.019 -0.025 0.043 -0.075 -0.012 

24 22.480 19 0.261 0.012 0.016 0.016 -0.005 -0.007 -0.019 

30 26.010 25 0.407 -0.004 -0.012 0.036 0.014 0.006 -0.038 

36 30.620 31 0.486 -0.026 -0.021 -0.029 0.009 -0.023 0.039 

42 32.740 37 0.669 -0.006 -0.038 0.000 0.007 0.013 0.013 

48 36.680 43 0.741 -0.003 0.035 0.022 0.011 0.037 -0.015 
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Table B.15: Residual analysis for the HCSARIMA model given in Equation (6.17). 
 

  Autocorrelations of Residuals     

To 
Lag 

Chi- 
Square DF 

Pr > 
ChiSq 

      
--------------------Autocorrelations----------------

----  

6 3.460 1 0.063 -0.006 0.014 0.014 0.019 0.001 -0.056 

12 5.990 7 0.541 -0.028 -0.016 -0.003 -0.031 0.029 0.007 

18 11.180 13 0.596 0.005 0.023 0.032 0.046 0.027 -0.036 

24 14.840 19 0.733 -0.038 0.045 -0.007 -0.014 0.018 -0.002 

30 15.750 25 0.922 -0.003 -0.004 0.024 0.009 0.016 0.009 

36 18.070 31 0.969 0.037 -0.019 -0.022 -0.017 -0.007 -0.002 

42 20.210 37 0.989 -0.015 -0.022 -0.036 0.015 0.003 -0.010 

48 23.440 43 0.993 0.028 0.027 0.036 0.004 0.021 0.012 

 

 

Table B.16: Residual analysis for the HCSARIMA model given in Equation (6.18). 

  Autocorrelation Check of 
Residuals 

    

To Chi-  Pr >       

Lag Square DF ChiSq --------------------Autocorrelations----------------
---- 

 

6 . 0 . -0.030 -0.031 0.104 -0.029 0.038 -0.004 

12 10.080 6 0.121 -0.001 0.028 0.034 0.014 -0.027 0.060 

18 15.110 12 0.235 0.046 -0.069 -0.026 -0.005 -0.009 -0.053 

24 17.840 18 0.466 0.017 0.005 0.019 -0.039 -0.033 -0.048 

30 24.970 24 0.408 0.052 0.063 -0.003 0.032 0.031 -0.076 

36 28.000 30 0.570 -0.015 0.018 0.004 0.052 -0.017 -0.050 

42 32.630 36 0.630 0.036 -0.023 -0.065 0.014 -0.054 0.006 

48 37.400 42 0.673 0.020 -0.058 0.014 0.042 -0.059 -0.002 
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Appendix C: Sample SAS and R Programs for 

HCSARIMA and ARFIMA models 

global = original variable 

globallog = log-transformation of the original variable      

 
Typical SAS Program for the HCSARIMA model given in Equation 6.15 

fitted to sixty-minutely averaged time series data for July 2011 
 

title "60-minute averaged global solar irradiance for Jul 2011";  

data solar; 

input datetime : datetime15. global @@; 

format datetime datetime12.; 

   hour = hour( datetime ); 

   date = datepart( datetime ); 

   year = year( date ); 

   month = month( date ); 

   day = day( date ); 

globallog = log(global); 

T  = _n_; 

PI=ARCOS(-1); 

TWO=(PI*T)/6; 

SINTWO=SIN(TWO); 

COSTWO=COS(TWO); 

label global = 'global; 

        globallog = 'log transformed global' 

         T  = 'Time, 60 minutely'; 

datalines; 

3Jul2011:06:00 4.740425167 

3Jul2011:07:00 68.77166 

3Jul2011:08:00 230.7256 

. . 

. . 

. . 

. . 

. . 

9Jul2011:15:00 153.9708 

9Jul2011:16:00 65.08139 

9Jul2011:17:00 5.071646 

 

; 

proc sgplot data=solar; 

scatter x=T y=global; 
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series x=T y=global; 

run; 

 

title "60-minute averaged log transformed global solar irradiance for July 2011";  

proc sgplot data=solar; 

scatter x=T y=globallog; 

series x=T y=globallog; 

run; 

 

title "60-minute global solar irradiance for July 2011"; 

proc spectra data=solar out=b p s adjmean whitetest;  

      var global;  

      weights 1 1 1 1 1;  

   run;  

     

   proc print data=b;  

   run; 

 

 

proc sgplot data=b; 

label p_01 = 'Periodogram of global irradiance'; 

scatter x=period y=p_01; 

series x=period y=p_01; 

run; 

 

title "60-minute averaged log transformed global solar irradiance for July 2011"; 

proc spectra data=solar out=b p s adjmean whitetest;  

      var globallog;  

      weights 1 1 1 1 1;  

   run;  

     

   proc print data=b;  

   run; 

 

 

proc sgplot data=b; 

label p_01 = 'Periodogram of log transformed global irradiance'; 

scatter x=period y=p_01; 

series x=period y=p_01; 

run; 

 

 

proc arima data=solar plots=all;  

identify var=global crosscorr=(T SINTWO COSTWO) nlag=124 esacf stationarity=(adf=(0 1 2 3 

4 5));  

run; 
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estimate input=(T SINTWO COSTWO ) ml; run; 

 

 

/*FINAL*/ 

estimate input=(SINTWO COSTWO ) p=(1)(15) ml;  

forecast id=datetime interval=minute60 lead=24  printall out=w; 

/*forecast lead=36 out=predict printall out=e;*/ 

run; 

 

title "ARIMA forecasts of the log of global irradiance"; 

data z; 

      set w; 

       global = global; 

      Dl95 = l95; 

      Du95 = u95; 

     HCSARIMA = forecast; 

 

   run; 

 

title "Forecasts of global irradiance"; 

   proc sgplot data=z; 

where datetime >= '02Jul2011:04:00'dt; 

      band Upper=Du95 Lower=Dl95 x=datetime / transparency=.75 legendlabel="HCSARIMA 

95% Confidence Limits" fillattrs=(color=red); 

      /*/ LegendLabel="95% Confidence Limits";*/    

   scatter x=datetime y=global; 

   series x=datetime y=HCSARIMA / markers 

  markerattrs=(color=red) lineattrs=(color=red) LegendLabel="Forecast for global"; 

/*/ LegendLabel="Forecast for global" ;*/ 

refline '9Jul2011:19:00'dt / axis=x; 

run; 

 

 

proc arima data=solar plots=all;  

identify var=global crosscorr=(T SINTWO COSTWO) nlag=124 esacf stationarity=(adf=(0 1 2 3 

4 5));  

run; 

 

estimate input=(T SINTWO COSTWO ) ml; run; 

 

 

/*FINAL*/ 

estimate input=(SINTWO COSTWO ) p=(1)(15) ml; 

forecast id=datetime interval=minute60 lead=24  printall out=w; 

run; 

title "ARIMA forecasts of the log of global irradiance"; 
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data z; 

      set w; 

       global = global; 

      Dl95 = l95; 

      Du95 = u95; 

     HCSARIMA =  forecast ; 

 

   run; 

data exe; 

   merge solar (drop=globallog  SINTWO COSTWO) 

                  z; 

run; 

 

proc print data=exe; 

   /*title 'Acting Class Exercise Schedule';*/ 

run; 

 

title "Series from 3 to 9 July, 2011 plus 2 days ahead forecasts"; 

   proc sgplot data=exe; 

where T >= 13; 

      band Upper=Du95 Lower=Dl95 x=T / transparency=.75 legendlabel="HCSARIMA 95% 

Confidence Limits" fillattrs=(); 

      /*/ LegendLabel="95% Confidence Limits";*/    

   scatter x=T y=global; 

   series x=T y=HCSARIMA / markers 

  markerattrs=() lineattrs=() LegendLabel="Forecast for global"; 

/*/ LegendLabel="Forecast for global" ;*/ 

 refline 84 / axis=x; 

run; 

 

data exer; 

   merge solar (drop=global globallog) 

                 f z; 

run; 

 

proc print data=exer; 

   /*title 'Acting Class Exercise Schedule';*/ 

run; 
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Typical R Program for the ARFIMA model fitted to twenty-minutely 

averaged time series data 
 

 library(arfima) 

library(forecast) 

 

y.20=scan("I:\\Feb20min.txt") 

 

fit.20 = armaFit( ~ arfima(1, 1) , data = y.20) 

 fit.20 

summary(fit.20) 

 

 

fit.21=arfima(y.20,max.p=1,max.q=1) 

fit.21 

plot(forecast(fit.21,h=30)) 

 

plot(fit.21$fitted) 

 plot(forecast(fit.21,h=150)) 

 

 

plot(1:length(y.20),y.20,type = "l", ylim=c(0,1240),xaxt="n", xlab="Time", ylab="Solar 

Irradiance" ) 

title("20 minutely average Solar Irradiance") 

 

axis(side=1,at=c(,,,,,)) 

 

lines(1:length(y.20), fit.21$fitted, col=2,lty = 2) 

 

leg <- c("actual series","fitted") 

     legend(length(y.20)-500, 1239, legend=leg, lty=1, col=1:2) 

 

 

spectrum(y.20, spans = NULL) 

spectrum(y.20, spans = c(3,5)) 

 

 

#DAILY 

y.d=scan("i:\\daily10.txt") 

fit.d=arima(y.d,order = c(0, 1, 2)) 

 summary(fit.d) 

 

yd.fitted=y.d-fit.d$resid 

 

plot(1:length(y.d),y.d,type = "l", ylim=c(0,740),xaxt="n", xlab="Time", ylab="Solar Irradiance") 

title("Daily average Solar Irradiance") 
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axis(side=1,at=c(55,110,165,220,275,330)) 

 

lines(1:length(y.d), yd.fitted, col=2,lty = 2) 

 

leg <- c("actual series","fitted") 

     legend(length(y.d)-220, 739, legend=leg, lty=1, col=1:2) 
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