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Abstract 

The rapid increase of total children ever born without a proportionate growth in the Nigerian 

economy has been a concern and making prediction with count data requires applying 

appropriate regression model.. As count data assumes discrete, non-negative values, a Poisson 

distribution is the ideal distribution to describe this data, but it is deficient due to equality of 

variance and mean. This deficiency results in under/over-dispersion and the estimation of the 

standard errors will be biased rendering the test statistics incorrect. This study aimed to model 

count data with the application of total children ever born using a Negative Binomial and 

Generalized Poisson regression The Nigeria Demographic and Health Survey 2013 data of 

women within the age of 15-49 years were used and three models applied to investigate the 

factors affecting the number of children ever born. A predictive count modelling was also 

carried out based on the performance evaluation metrics (root mean square error, mean absolute 

error, R-squared and mean square error). In the inferential modeling, Generalized Poisson 

Model was found to be superior with age of household head (𝑃 < .0001), age of respondent 

at the time of first birth (𝑃 < .0001), urban-rural status (𝑃 < .0001), and religion (𝑃 <

.0001) being significantly associated with total children ever born. In the predictive modeling, 

all the three models showed almost identical performance evaluation metrics but Poisson 

regression was chosen as the best because it is the simplest model. In conclusion, early 

marriage, religious belief and unawareness of women who dwell in rural areas should be 

checked to control total children ever born in Nigeria.  
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Chapter 1: Introduction 
 

1.1 Background of the study  

Count data is a type of statistical data in which the observations can take only non-negative 

integer values {0,1,2, … },  which arise from counting rather than ranking (Cameron and 

Trivedi, 2013). Examples of statistical analyses that involve count data are simple counts that 

include the number of thunderstorms that occurred in a one-year calendar, fatal vehicle 

accidents per day, customers arriving at the shopping mall per hour, with categorical data being 

the counts denote the number of items belonging to each category (Adhikari, 2010).  

 

Count data can be applied to different fields, including medicine, agriculture, life science, 

business, social, behavioural science, and demographic and health survey data. For example, 

in medicine, Du et al. (2011) opined that researches have shown that the effect and worth of 

health information technology (HIT) frequently used on outcome measures that are counts of 

things, such as hospital admissions, the number of laboratory tests per patient, adverse drug 

events (ADEs), and rates of cardiac arrest. This kind of data gives several analytic challenges, 

such as a large and perhaps disproportionate number of zero values, slightly high frequency of 

small integer values, and non-constant variance (where the variance of the residuals differs for 

different ranges of independent variables) (Zhou et al., 2014). In agriculture, count data was 

used to describe the implementation of agricultural and natural resource management 

technologies by small farmers in Central America (Ramirez and Shultz, 2000).  

Count data models are most appropriate for a certain type of adoption data. They are applied 

to investigate the impact of key socio-economic, biophysical, and institutional factors on the 

implementation of integrated pest management, agroforestry, and soil conservation 

technologies among small farmers. Factors affecting farmers’ quantity decisions related to 

farming precision technology can also be determined using count data models (Isgin et al., 

2008). Furthermore, (Ozmen and Famoye, 2007) in their work “count regression models with 

an application to zoological data containing structural zeros” the authors opined that count data 

models can be applied in life science to predict the number of C. caretta hatchlings dying from 

exposure to the sun. Applying count data models in business centres focuses on the 

consumption of a product. Tuzen and Erbas, (2018) compared count data models with the 

application of daily consumption of cigarette by young people in Turkey, and found Zero-
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inflated negative binomial (ZINB) and Negative binomial hurdle (NBH) to be preferable for 

analysis. The outcome variable in certain financial studies is a count that takes a non-negative 

integer value. Examples include the number of takeover bids received by a target firm, unpaid 

credit instalments (for scoring credit), accidents or accident claims (for insurance premia 

determination) and mortgage loans prepaid (mortgage-backed securities pricing). Cameron and 

Trivedi, (1996) applied Poisson and Negative Binomial Poisson and Negative Binomial 

Models for count data which had prominence on the underlying count process and links to dual 

data on durations. Likewise, modelling count data is a common task in economics and social 

sciences. According to Zeileis et al., (2008), Hurdle and Zero-inflated model are capable of 

handling over-dispersion and excess zeros (which are two problems that mostly occur in count 

data sets of economics and social sciences). 

Notwithstanding different models used in modelling count data, Poisson regression has been 

reported as the main methods for count data modelling, but violates equidispersion hypothesis 

and confines its use in several real-world applications due to under/over-dispersion (Osuji et 

al., 2016). This superfluous disparity could lead to inaccurate inferences in the standard errors, 

tests, confidence intervals and parameter estimates, over-dispersion frequently surfaces for 

several reasons as well as mechanisms that cause too much zero counts (Guikema and Goffelt, 

2008; Maxwell et al., 2018). Accordingly, in various areas, over-dispersed count data are 

common, which in turn has led to the development of a statistical methodology for modelling 

these over-dispersed data. Studies on dealing with under-dispersion and over-dispersion issues 

have been reported (AA and Naing, 2012).  Kim and Jun (2016) tried to overcome over-

dispersion by using Zero-inflated Poisson and Negative Binomial regression to analyze the 

death rate of patients infected with AIDs.  

Negative Binomial regression and Generalized Poisson regression were used to model count 

data involving the number of cervical cases to overcome the problem of overdispersion 

(Melliana et al., 2013). Muluneh et al. (2016) investigated the effects of demographic and 

socio-economic factors on the number of children ever born by married women of gage 15-

49rs in Ethiopia using the ‘quasi-likelihood’ in a generalized linear model to overcome the 

problem of over and under-dispersion. In some countries, especially where marriage is 

recognized as a major medium for procreation, data on children ever born are only available 

for ever married or currently married women. In Nigeria, the current average fertility rate per 

woman is 5.5 children compared with 5.7 children in 2003 and 2008. Residence and region are 
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major determinants of fertility variation. In urban areas, women have 4.7 children on average, 

compared with 6.2 children per woman in rural areas. The North-West Zone has the highest 

fertility rate with and average of 6.7 children per woman, while the South South Zone has the 

lowest fertility rate of 4.3 children on the average. Fertility also varies with mother’s 

educational level and economic status (Macro and Commission, 2014). In view of this, the 

appropriate model to describe the total number of children ever born in Nigeria is still a subject 

of study. 

1.2 Statement of problem 

The application of suitable regression model for the analysis of count data has been a subject 

of concern. Count models allow for regression-type analyses when the dependent variable of 

interest is a numerical count. These can be used to estimate the effect of a policy intervention 

either on the average rate or on the probability of no event, single event, or multiple events. 

Poisson regression has been widely used in recent years. Nevertheless, it is identified that count 

data in demographic survey often display over or under dispersion. The inappropriate 

imposition of the Poisson may result in underestimation of the standard error and exaggerate 

the significance of the regression parameter thus giving false inference about the regression 

parameter. The research question is will Negative Binomial and Generalized Poisson 

regression serve as a substitute for handling count data? 

1.3 Aim and Objectives 

This study is aimed to use Negative Binomial and Generalized Poisson regression model as an 

alternative for handling count data with the interest in the number of children ever born to 

respondents in Nigeria. 

The study therefore had the following objectives 

1. To explore the condition of total children ever born to respondents in Nigeria. 

2. To study the socio-economic and demographic factors affecting the total children ever 

born to respondents in Nigeria using Negative Binomial and Generalized Poisson 

regression. 
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1.4 Significance of the study 

Poisson distribution has been the most commonly used distribution for modelling count data, 

but it assumes equal variance with the mean which makes it less appropriate since count data 

usually show over or under dispersion. The developing and applying statistical models as a 

substitute for modelling over-dispersed data are important . Some work has been reported on 

the application of Poisson and Negative Binomial on over-dispersed count data, to the best of 

our knowledge there is little work on the use of Negative Binomial and Generalized Poisson 

regression as an alternative in handling count data. Generalized Poisson regression is a useful 

model for fitting both over-dispersed and under-dispersed count data because it allows for more 

variability and it is more flexible in analyzing independent variables. In this work Negative 

Binomial and Generalized Poisson regression are applied as an alternative for handling over-

dispersed and under-dispersed count data considering the number of children ever born in 

Nigeria. 
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Chapter 2: Data 

 

This study uses secondary data from the individual’s questionnaire of Nigeria Demographic 

and Health Survey 2013 which covers all the regions in the country. In the 2013 Nigeria 

Demographic and Health Survey demographic, socio-economic and health information 

were collected for both men and women. 
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Figure 2.1: Schematic representation of the conceptual framework 

Figure 2.1 displays the variables of interest with explanatory variables (called independent 

variables)  consisting of age at first marriage or cohabitation, sex of child, religion, age of 

respondent at first birth, child is twin or single birth, child is alive, currently pregnant, whether 

and when this child’s pregnancy is wanted, educational level, region, age of household head, 

ever had pregnancy terminated via abortion, miscarriage or stillbirth, woman’s occupation, 

fertility preference and urban-rural dwelling status . The explanatory variables are chosen based 

on previous research that they might have some effect on the total children ever born by women 

in Nigeria. Muluneh et al. (2016) studied the determinant factors of fertility among married 

women in Ethiopia and found that increased household economic status, residing in urban 

areas, younger age at first birth and not using contraceptive were significantly associated with 

high fertility.  

Total children ever 

born 

Age at first marriage 

Sex of child 
Dependent variable 

Independent variables Independent variables 

Religion 

Region 

Age of household 

head 

Urban-rural status 

Ever had pregnancy 

terminated via 

abortion, 

miscarriage or 

stillbirth 

Age of respondent 

at time of first 

birth 

Currently working 

Woman’s 

occupation 

Educational level 

Fertility Preference 

Whether and when 

this child’s 

pregnancy is 

wanted 

Child is twin or 

single birth 

Child is alive Pregnant 
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Similarly, Adhikari (2014) investigated the number of children ever born in Dayanagar VDC 

of Rupendehi district, Nepal, witih illiteracy and not using family planning were a major 

determinant of a high number of children ever born. Furthermore, Upadhyay and Bhandari 

(2017) studied factors related with children ever born and concluded that the roles of age at 

first marriage, occupation of husband and knowledge of contraceptive/family planning were 

statistically significant in varying children ever born by women of Somadi VDc of Palpa 

district of Nepal.  Alaba et al. (2017) recently studied spatial patterns and determinants of 

fertility levels among women of childbearing age in Nigeria and found that age at first birth, 

staying in rural place of residence, the number of daughters in a household, being gainfully 

employed, married and living with a partner, community and household effects contributed to 

high fertility patterns. As it can be observed from Figure 2.1, this study is based on many 

explanatory factors and this is one of its strength. 

Figure 2.2 displays the box and whisker of total children ever born with regards to urban-rural 

status, region, currently pregnant, religion, ever had pregnancy terminated via abortion, 

miscarriage or stillbirth, currently working, woman’s occupation, fertility preferences, whether 

and when this child’s pregnancy wanted, sex of child, child is alive, child is twin or single birth 

and educational level. The boxplots give a better understanding of the data by its distribution, 

outliers, mean, median and spread. For example, as shown in Figure 2.2, in urban-rural status, 

women in rural area have a higher spread of total children ever born than women in urban area. 

Also, for religion, the box and whisker plot indicates that women who belong to 

Muslim/Islamic religion have a higher number of children ever born than women who belong 

to Christian religion. North East has the highest number of children ever born while South West 

has the least total children ever born. The box and whisker plot for sex of child show that there 

is no much difference between the total number of male and female child born by the women. 
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Figure 2.2: Box and whisker plot for total children ever born by categorical explanatory variables 
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 The descriptive statistics of the age of household head, age at first marriage or cohabitation 

and age of respondent at time of first birth are shown in Table 2.1. The mean age of household 

head is approximately 41 years with standard deviation 12.03 and the mean age at first marriage 

or cohabitation is approximately 28 years with a standard deviation of 4.45. Meanwhile, the 

mean age of respondent at time of first birth is approximately 19 years with a standard deviation 

of 4.26, which means that the standard deviation is less spread out from the mean.  

Table 2.1: Summary statistics of continuous explanatory variables 
Variables Mean Standard 

Deviation 

N First 

Quartile 

Third 

Quartile 

Age of household head 41.4086 12.0343 31424 33 48 

Age at first marriage or 

cohabitation 

17.6189 4.4501 30878 14 20 

Age of respondent at time 

of first birth 

19.3642 4.2556 31482 16 22 

Pearson correlation coefficient, Spearman correlation coefficient and Kendall’s tau coefficient 

were used to measure the association between the dependent variable (total children ever born) 

and each of the continuous explanatory variables (age of household head, age at first marriage 

or cohabitation and age of respondent at time of first birth). The association between total 

children ever born and continuous explanatory variable is presented in Table 2.2. It shows that 

there is a significant association (p-value<.0001) between total children ever born and each of 

the predictors (age of household head, age at first marriage or cohabitation and age of 

respondent at time of first birth). The measure of association for all the coefficients for age of 

household is positive while age at first marriage or cohabitation and age of respondent at time 

of first birth are negative. This means that as the age of household head increases, the total 

children ever born increases but with a weak association, while the association of age at first 

marriage or cohabitation, and age of respondent at time of first birth, respectively, with total 

children ever born are in opposite direction with a weak relationship. 

Table 2.2: Measure of association between total children ever born and continuous explanatory 

variables.  
 Pearson Spearman Kendall P-Value 

Age of household head 

Age at first marriage or 

cohabitation 

Age of respondent at time 

of first birth 

0.31635 

-0.25668 

 

-0.26246 

0.38368 

-0.26524 

 

-0.26187 

0.29453 

-0.19423 

 

-0.19169 

<.0001 

<.0001 

 

<.0001 
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Chapter 3: Poisson regression model and application to total 

number of children ever born in Nigeria 

3.1 Poisson distribution 

Poisson distribution is known as a popular model for count data (Gschlößl and Czado, 2008). 

A major supposition in the Poisson model is the equality of the variance and the mean which 

is very limiting for over-dispersed data where the variance in the data is higher than the 

excepted one from the model. In other words, the observed variance is higher than the 

theoretical model (Gschlößl and Czado, 2008). The Poisson distribution in probability theory 

and statistics is a discrete probability distribution that states the probability of a given number 

of events occurring in a fixed interval of time or space. 

An event can occur 0,1,2,… times in an interval. The average number of events in an interval 

is designated 𝜇, which is the event rate, also called the rate parameter. The probability of 

observing 𝑦 events in an interval is given by the equation 

𝑃(𝑦 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) = 𝑒−𝜇
𝜇𝑦

𝑦!
                                                                                                              

This is the probability mass function (PMF) for a Poisson distribution. 

Where,  

• 𝜇 is the average number of events per interval 

• e is the number 2.71828… (Euler’s number) the base of the natural logarithms 

• y takes values 0,1,2, … 

• 𝑦! = 𝑦 × (𝑦 − 1) × (𝑦 − 2) × …× 2 × 1 is the factorial of y.                                 

From the probability mass function,  𝜇(the positive real number) is equal to the expected value 

of Y also to its variance (Grimmett and Welsh, 2014).  

𝜇 = Ε(𝑌) = 𝑉𝑎𝑟(𝑌). 

The mean, variance, skewness and kurtosis of the Poisson distribution are 

Mean, Ε(𝑌) = 𝜇                                                                                                             

Variance, 𝜎2 = 𝜇                                                                                                    

Skweness, 𝛼3 =
1

√𝜇
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Kurtosis, 𝛼4 = 3 +
1

𝜇
                                                                                                                

Characterization of location and variability of a data set is a major task in several statistical 

analyses. Other characterization of data includes skewness and kurtosis (Doty, 2017). 

Skewness can be defined as the measure of symmetric (that is lack of symmetric) while 

Kurtosis measures the heaviness of the tail or the lightness of the tail. In other words, heavy 

tails imply that the datasets have high kurtosis while light tails connote that the datasets have 

low kurtosis (Doty, 2017). 

Using the probability mass of Poisson distribution,  Ρ(𝑦 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) = 𝑒−𝜇
𝜇𝑦

𝑦!
 

Let 𝜇 = 1,2,3, … ,10 and 𝑦 = 0,1,2, … ,20 

taking 𝜇 = 1 for all values of 𝑦 = 0,1,2, … ,20, the graphical representation of the skewness 

and kurtosis of Poisson distribution is shown in Figure 1.1 

Figure 3.1: The Graphical plot of probability mass function (PMF) for Poisson distribution  
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Figure 3.1 shows several Poisson distributions that are portrayed concurrently. It can be 

observed that as the 𝜇 gets smaller, the degree of skewness increases while the kurtosis gets 

pointy. On the other hand, as 𝜇 gets larger, the degree of skewness decreases while the kurtosis 

gets less pointy, that is the values get more spread-out. 

To derive Poisson regression from Poisson distribution, the rate parameter 𝜇 depends on 

covariates. 

3.2 Poisson regression 

In a situation where numbers are counted by events in time intervals, discrete count data is 

bound to surfaces. There is a natural choice of model based on the Poisson distribution of 

probability,  such data being essentially non-negative integers. Poisson regression is a 

generalized linear model form of regression analysis, and is the reference line model for count 

data analysis (Long, 1997; Cameron and Trivedi, 1998; Winkelmann, 2008; Chatfield et al., 

2010). It presumes that the response variable has a Poisson distribution and deduces the 

logarithm of its expected value, which can be modelled by a linear combination of unknown 

parameters. A Poisson regression model is seldom known as a log-linear model, especially 

when used to model contingency tables. On the contrary, its function is inadequate in real life 

because of its restrictive assumptions. It shows which independent variables have a significant 

effect on the response variable, and is mostly used for rare events, as these tend to follow a 

Poisson distribution (Crawley, 2012).    

   

The Poisson regression model is 

Ε(𝑌𝑖|𝒙𝑖) = 𝑒𝑥𝑝(𝛽0 +∑𝛽𝑘𝒙𝑘𝑖

𝑘

𝑘=1

) 

where 𝛽0 is the regression coefficient for the intercept and 𝛽𝑘 is the regression coefficient for 

each of the explanatory variable.  

Note the restriction of the Poisson regression model is that the conditional variance is identical 

to the conditional mean. 

In this work, a Poisson regression from the family of a generalized linear model was applied to 

Nigeria Demographic and Health Survey 2013 data to study the demographic, socio-economic 

and geographic factors affecting total children ever born. The general Poisson regression model 
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includes log-linear, quasilinear and essentially nonlinear models. Frome (1983) noted that the 

IRLS algorithm corresponds to using the method of scoring to obtain maximum 

likelihood(ML) estimate when the events of interest follow Poisson distribution. 

The alternative approach is the generalized linear model (GLM):  

 

                  𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑘𝑥𝑖𝑘 = 𝒙𝑖
′𝛽, 𝑖 = 1,… , 𝑛                                                                                             

 

where  Ε(𝑦) = 𝜇.                                                          

Systematic component 𝑋 = (𝑋1, 𝑋2, …𝑋𝑘) is an explanatory variables and g(.) is the link 

function. The requirement for the GLM is that the distribution of Y should be a member of the 

exponential family 

𝑓(𝑦; 𝜃, 𝜙) = 𝐸𝑥𝑝 {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)} 

where 𝜃 is the natural parameter and 𝜙 is the scale parameter. 

Taking 𝑌1… 𝑌𝑛 independent and assume that 𝑌𝑖 has pdf 

𝑓(𝑦𝑖|𝜃𝑖, 𝜙) = 𝑒𝑥𝑝 [
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙
] × 𝑒𝑥𝑝𝑐(𝑦𝑖 , 𝜙) 

Assuming 𝐸(𝑌𝑖) = 𝜇𝑖 and there exist a known function 𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

where 𝑥𝑖
′ = [1 𝑥𝑖1 𝑥𝑖2…𝑥𝑖𝑝] and 𝛽 =

(

 
 
 

𝛽0
𝛽1
.
.
.
𝛽𝑝)

 
 
 

 

𝑙(𝛽) =∑
(𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖))

𝜙
⁄

𝑛

𝑖=1

+∑𝑐(𝑦𝑖, 𝜙)

𝑛

𝑖=1

 

using chain rule of differentiation, 

𝜕𝑙(𝛽)

𝜕𝛽
=
𝜕𝑙(𝛽)

𝜕𝜃𝑖
.
𝜕𝜃𝑖
𝜕𝛽

 

𝜕𝑙(𝛽)

𝜕𝜃𝑖
=∑

(𝑦𝑖 − 𝜇𝑖)

𝜙

𝑛

𝑖=1

 

then, 

𝜕𝑙(𝛽)

𝜕𝛽
=∑

(𝑦𝑖 − 𝜇𝑖)

𝜙

𝑛

𝑖=1

.
𝜕𝜃𝑖
𝜕𝛽
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But 𝑔(𝜇𝑖) = 𝑥𝑖
′𝛽 𝑎𝑛𝑑 𝜇𝑖 = 𝑏

′(𝜃𝑖) then 𝑔(𝑏′(𝜃𝑖)) = 𝑥𝑖
′𝛽 

also, 

𝜕𝑔

𝜕𝜇𝑖

𝜕𝜇𝑖
𝜕𝜃𝑖

𝜕𝜃𝑖
𝜕𝛽

= 𝑥𝑖 

therefore,  

𝜕𝜃𝑖
𝜕𝛽

=
𝑥𝑖

𝑔′(𝜇𝑖)𝑏′′(𝜃𝑖)
 

𝜕𝑙(𝛽)

𝜕𝛽
=∑

(𝑦𝑖 − 𝑏
′(𝜃𝑖))

𝜙

𝑛

𝑖=1

.
𝑥𝑖

𝑔′(𝜇𝑖)𝑏′′(𝜃𝑖)
 

𝜕𝑙(𝛽)

𝜕𝛽
=∑

(𝑦𝑖 − 𝑏
′(𝜃𝑖))𝑥𝑖

𝜙𝑔′(𝜇𝑖)𝑏′′(𝜃𝑖)

𝑛

𝑖=1

 

where 𝜙𝑏′′(𝜃𝑖) = 𝑣𝑎𝑟(𝑌𝑖) = 𝑉𝑖 

𝜕𝑙(𝛽)

𝜕𝛽
=∑

(𝑦𝑖 − 𝜇𝑖)𝑥𝑖
𝑔′(𝜇𝑖)𝑉𝑖

𝑛

𝑖=1

 

�̂� is found as the solution of 
𝜕𝑙(𝛽)

𝜕𝛽
= 0. But this set of equation needs to be found iteratively, so 

we need 
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
, the matrix of second derivatives of the loglikelihood. In fact, glm works with 

𝐸 (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
). To find this we use 

𝐸 (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
) = −𝐸 (

𝜕𝑙(𝛽)

𝜕𝛽
.
𝜕𝑙(𝛽)

𝜕𝛽′
) 

Taking the second derivative of 
𝜕𝑙(𝛽)

𝜕𝛽
= ∑

(𝑦𝑖−𝑏
′(𝜃𝑖))𝑥𝑖

𝑔′(𝑏′(𝜃𝑖))𝑉𝑖

𝑛
𝑖=1 ,  we have 

𝐸 (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
) = −𝐸 (∑

(𝑦𝑖 − 𝜇𝑖)
2

(𝑔′(𝜇𝑖)𝑉𝑖)2

𝑛

𝑖=1

𝑥𝑖𝑥𝑖
′) 

= −∑
𝑉𝑖

(𝑔′(𝜇𝑖))
2
𝑉𝑖
2
𝑥𝑖𝑥𝑖

′

𝑛

𝑖=1

 

= −∑𝑤𝑖

𝑛

𝑖=1

𝑥𝑖𝑥𝑖
′ 

where 𝑤𝑖 ≡
1
(𝑉𝑖(𝑔′(𝜇𝑖))

2
)⁄  

W is written as a diagonal matrix 
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(
𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑛

) 

and thus 

𝐸 (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
) = −𝑋′𝑊𝑋 

Hence, we can say that if �̂� is the solution of 
𝜕𝑙(𝛽)

𝜕𝛽
= 0, then �̂� is asymptotically normal, with 

mean 𝛽 and covariance matrix having as inverse  

−𝐸 (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
) = 𝑋′𝑊𝑋 

Hereafter in all the glm models, the estimate of 𝛽 has such a maximum likelihood property; 

that is 

�̂�~𝑁(𝛽, 𝑋′𝑊𝑋) 

Poisson distribution is shown to belong to the exponential family with probability mass 

function(pmf); 

𝑓(𝑦) = 𝑒−𝜇
𝜇𝑦

𝑦!
 

The logarithm of the probability distribution function of a Poisson random is 

𝑙𝑜𝑔𝑓(𝑦) = 𝑦𝑙𝑜𝑔𝜇 − 𝜇 − 𝑙𝑜𝑔(𝑦!) 

Which can be rewritten as; 

𝑓(𝑦) = 𝐸𝑥𝑝{𝑦𝑙𝑜𝑔𝜇 − 𝜇 − 𝑙𝑜𝑔(𝑦!)} 

Therefore, Poisson regression is an exponential family with: 

𝜃 = 𝑙𝑜𝑔𝜇 

𝜇 = 𝑒𝜃 

𝑏(𝜃) = 𝑒𝜃 = 𝜇 

𝑎(𝜙) = 𝜙 = 1 

𝑐(𝑦, 𝜙) = −𝑙𝑜𝑔(𝑦!) 

In GLM, the canonical link is 𝜃. Hence the natural link function is; 

𝜃 = 𝑙𝑜𝑔𝜇 

Therefore, the GLM for Poisson distribution is 

𝑙𝑜𝑔𝜇𝑖 = 𝑥𝑖
′𝛽 
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The method of maximum likelihood is used to estimate the regression coefficient (𝛽) and the 

logarithm of the likelihood function is given as; 

                                           𝑙𝑜𝑔𝑓𝑖(𝑦𝑖) = 𝑦𝑖(𝑥𝑖
′𝛽) − exp(𝑥𝑖

′𝛽) − 𝑙𝑜𝑔(𝑦!)                                                                                                                                                              

The likelihood equation may be obtained by differentiating about each regression coefficient 

and setting the product equal to zero. This gives an outcome in a set of nonlinear equations that 

accept no closed-form solution. As a result, an iterative algorithm must be used to obtain the 

set of regression coefficients that maximize the loglikelihood. 

Deviance which is twice the difference between the maximum achievable log-likelihood and 

the log-likelihood of the fitted model is a vital idea associated with a fitted GLM. It can be used 

in several ways, examples; to test the fit of the link function and linear predictor to the data, or 

to test the significance of a predictor variable in the model (Li, 1991).  Under normality, the 

deviance is known as the residual sum of squares in multiple regression. While in Poisson 

regression, the deviance is  

𝐷 = 2[ℓ(𝑦; 𝑦𝑖) − ℓ(𝑦 ; 𝜇𝑖)] 

To derive the deviance for Poisson GLM, let 𝑌1, … , 𝑌𝑛 be samples for the model of interest, 

then the loglikelihood is 

ℓ(𝑦; 𝑦𝑖) =∑𝑦𝑖𝑙𝑜𝑔𝑦𝑖

𝑛

𝑖=1

−∑𝑦𝑖

𝑛

𝑖=1

−∑𝑙𝑜𝑔𝑦𝑖!,

𝑛

𝑖=1

 

and the saturated model is 

ℓ(𝑦; 𝜇𝑖) =∑𝑦𝑖𝑙𝑜𝑔𝜇𝑖

𝑛

𝑖=1

−∑𝜇𝑖

𝑛

𝑖=1

−∑𝑙𝑜𝑔𝑦𝑖

𝑛

𝑖=1

! 

Since the deviance is twice the difference between the maximum achievable log-likelihood and 

the log-likelihood of the fitted model, then the deviance is  

𝐷 = [2∑ (𝑦𝑖 log(𝑦𝑖) − 𝑦𝑖 − 𝑙𝑜𝑔(𝑦𝑖!)) − 2∑ (𝑦𝑖𝑙𝑜𝑔(𝜇𝑖) − 𝜇𝑖 − 𝑙𝑜𝑔(𝑦𝑖!))
𝑛
𝑖=1

𝑛
𝑖=1 ] 

= 2∑(𝑦𝑖(𝑙𝑜𝑔(𝑦𝑖) − 𝑙𝑜𝑔(𝜇𝑖)) − (𝑦𝑖 − 𝜇𝑖))

𝑛

𝑖=1

 

Recall that 𝑙𝑜𝑔(𝑦𝑖) − 𝑙𝑜𝑔(𝜇𝑖) = 𝑙𝑜𝑔(
𝑦𝑖
𝜇𝑖⁄ ), so substituting back we have; 

= 2∑(𝑦𝑖𝑙𝑜𝑔(
𝑦𝑖
𝜇𝑖⁄ ) − (𝑦𝑖 − 𝜇𝑖))

𝑛

𝑖=1
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A complete residual analysis should be incorporated in any regression analysis, and involves 

plotting the residuals against the regressor variables (as to check the outliers and curvature) 

and the response variable. There are various types of residuals; 

• Raw residual defined as the difference between the actual response and the estimated 

value from the model. It is represented as 

𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 

• Pearson residual is used to correct unequal variance in the residuals by dividing the 

standard deviation. The formula is 

𝑝𝑖 =
𝑦𝑖 − �̂�𝑖

√∅̂�̂�𝑖
 

• Deviance residual is well known because the deviance statistics is the sum of squares 

of these residuals and it is shown as 

𝑑𝑖 = 𝑠𝑖𝑔𝑛(𝑦𝑖 − �̂�𝑖)√2{𝑦𝑖𝑙𝑛 (
𝑦𝑖
�̂�𝑖
) − (𝑦𝑖 − �̂�𝑖) 

• In residual diagnostic, Hat residual is used to compute the effect of each observation. 

The hat values, ℎ𝑖𝑖 , are the diagonal entries of the Hat matrix which is calculated using 

𝑯 = 𝑾
𝟏
𝟐⁄ 𝑿(𝑿′𝑾𝑿)−𝟏𝑿′𝑾

𝟏
𝟐⁄ , 

where 𝑊, is a diagonal matrix made up of �̂�𝑖. 

It is worthy of note to study the hat values in order to comprehend the observations that have 

large effect on the fitted regression coefficients. Those that are larger than 2𝑘 𝑛⁄  are large hat 

values and they are further used to standardize residuals. 

• Studentized Pearson residual is shown as 

𝑠𝑝𝑖 =
𝑝𝑖

√1 − ℎ𝑖𝑖
 

• Studentized Deviance residual is represented as 

𝑠𝑑𝑖 =
𝑑𝑖

√1 − ℎ𝑖𝑖
 

From the explanation of residual, dispersion parameters in terms of descriptive statistics 

describe the scattering of individual data around the mean.  

The variance of 𝑦𝑖 is 𝑉𝑎𝑟(𝑦𝑖|𝜇𝑖, 𝜙). This is the variance expected given a 𝜇𝑖 and dispersion 

parameter 𝜙. 
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Generally, using Pearson chi-squared statistic, 𝜒2 = ∑
(𝑌𝑖−�̂�𝑖)

2

𝑉(�̂�𝑖)
,𝑛

𝑖=1  

where 𝑉𝑎𝑟[𝑌𝑖] = 𝑉(𝜇𝑖)𝜙. The scaled Pearson chi-squared statistic is defined as 𝑋𝑠
2 =

𝑋2

𝜙
, if the 

model is specified correctly, 𝜒𝑠
2~𝜒𝑛−𝑝

2 . Asymptotically, where 𝑛 is the sample size and 𝑝 is the 

number of unknown regression coefficients (the 𝛽𝑗′𝑠) in the model. Then knowing the mean of 

a 𝜒𝑛−𝑝
2  random variable is 𝑛 − 𝑝, we can use the approximation 𝜒𝑠

2 ≈ 𝑛 − 𝑝 

and hence the estimator 

𝜙 =
𝑋2

𝑛 − 𝑝
, 

While in terms of deviance, since the limiting chi-square distribution of the scaled deviance  

𝐷∗ = 𝐷 𝜙⁄ has 𝑛 − 𝑝 degrees of freedom, equating 𝐷∗ to its mean and solving for 𝜙 gives  

𝜙 = 𝐷 (𝑛 − 𝑝)⁄  

Over/under dispersion can be handled formally by defining 𝑉𝑎𝑟(𝑦) = 𝜙𝜇. From the 

expression, it can be said that 𝑉𝑎𝑟(𝑦) is some multiple of the mean (𝜇) rather than being equal 

to 𝜇 and 𝜙 is known as dispersion parameter. If 𝜙 > 1 or 𝜙 < 1 then over or underdispersion 

exists respectively. 

3.3 Application of Poisson regression model to the total number of children ever born in 

Nigeria 

 An examination of the effect of urban-rural status, region, age of respondent at time of first 

birth, religion, age of household head, age at first marriage or cohabitation, child is alive, 

woman’s occupation, educational level, fertility preferences, ever had pregnancy terminated 

via abortion, miscarriage or stillbirth, whether and when this child’s pregnancy is wanted, sex 

of child and child is twin or single birth  on total children ever born by each respondent was 

performed using Poisson regression model analysis. It is necessary to examine the joint effects 

of some factors acting together over and above their main effects.  We evaluated all possible 

two-interactions among the explanatory variables by including the interactions one at a time to 

the main effects model. 

In the first round, all the possible interactions level of significance were recorded, and the 

highly significant ones were entered into the model with the main effect. The same procedure 

was used for the second-round two-way interaction term entry to the model with the main 

effects of the interaction selected in the previous round. The process continued until no more 
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significant interaction effect was left to be included. Fertility preferences interacted with three 

variables: age at first marriage or cohabitation, region and child is twin. Education interacted 

with whether and when this child’s pregnancy is wanted, and child is alive. While ever had 

pregnancy terminated via abortion, miscarriage or stillbirth interacted with woman’s 

occupation.  

It is very paramount to ascertain the validity of all the necessary assumption of a model before 

carrying out inference which is done after fitting the regression model.  Model diagnostics is a 

set of procedures available to evaluate the cogency of a model in any of several different ways.  

 

Figure 3.2: Model diagnostics plots 

From the model diagnostics shown in Figure 3.2, the index plot of the residual indicates that 

all the observations are properly accounted for by the model. The index plot of the diagonal 

elements of the hat matrix suggests that there are no extreme points in the design space that 

one needs to consider. Also, since the 𝐷𝑖 value is not close to 1, the index plot of Cook’s 

distance suggests that no influential observation possibly had an adverse effect on the model 

parameter estimates and consequently on the goodness of fit model. 

Table 3.1 contains statistics that summarize the fit of the model which are necessary for 

deciding on the appropriateness of the model compared to other models. It can be deduced 

from the deviance value in Table 3.1 that the data is not well fitted by the model since the ratio 

of deviance to the degree of freedom is less than 1, indicating under-dispersion. A scale option 

is specified (scale=dscale) to force the scaled deviance to be equal to one which makes our 

model to be optimally dispersed.  
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Table 3.1: Evaluation of over/under dispersion in Poisson regression 
Criterion Log Link DF Value Value/DF 

Deviance 30000 27673.058 0.92 

Scaled Deviance 30000 29985.000 1.00 

Pearson Chi-Square 30000 27127.112 0.90 

Scaled Pearson Chi-Square 30000 29393.442 0.98 

Full Log Likelihood  -62229.792  

AIC  124527.584  

AICc  124527.663  

BIC  124810.110  

 

Table 3.2 presents the final model parameters along with the risk ratio. From Table3.2, the risk 

ratio (RR) can be used to interpret the significance of the main effects that were not included 

in the interaction while the other main effect variables included in the interaction are carefully 

interpreted using graphical aid. For example, as region and fertility preferences variables have 

significant interaction, the effect of fertility preference on total children ever born will be 

determined by the resident region of a woman. The effect of region will differ according to 

fertility preferences, and to elaborate on the effect of each pair of factors on mean number of 

children ever born, the interaction plots were used. 
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Table 3.2: Parameter estimates for the Poisson regression model 

Predictors Categories Estimated  Standard 

error 

Chi-

square 

Risk ratio Pr > Chi-

square 

Urban-rural status (Reference=Urban) Rural  -0.0161 0.0065 6.12 0.984 0.0133 

Region (Reference=South West) North Central 

North East 

North West 

South East 

South South 

0.0190 

0.1471 

0.1595 

0.1987 

0.1162 

0.0166 

0.0179 

0.0170 

0.0182 

0.0178 

1.31 

67.64 

87.75 

119.47 

42.74 

1.019 

1.158 

1.173 

1.220 

1.123 

0.2528 

<.0001 

<.0001 

<.0001 

<.0001 

Religion (Reference= Muslim/Islam) Christian/Others -0.0124 0.0089 1.95 0.988 0.1629 

Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference=Yes) 

 

No 

 

-0.0533 

 

0.0126 

 

17.86 

 

0.948 

 

<.0001 

Woman’s occupation (Reference=Sales worker) Not currently working 

Professional worker/Others 

-0.1395 

-0.0365 

0.0201 

0.0175 

48.18 

4.37 

0.870 

0.964 

<.0001 

0.0367 

Fertility preferences (Reference=Undecided/Others) Have another -0.2716 0.0351 59.83 0.762 <.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted then) 

 

Wanted later /No more  

 

-0.0176 

 

0.0169 

 

1.09 

 

0.983 

 

0.2973  

Sex of child (Reference=Male) Female 0.0038 0.0053 0.53 1.004 0.4663 

Child is alive (Reference=Yes) No 0.1557 0.0224 48.38 1.168 <.0001 

Child is twin or single birth (Reference= Single birth) Multiple birth 0.0705 0.0205 11.85 1.073 0.0006 

Educational level (Reference=Secondary/Higher) No education  

Primary 

0.2531 

0.2022 

0.0094 

0.0093 

730.94 

471.81 

1.288 

1.224 

<.0001 

<.0001 

Age of household head  0.0146 0.0002 4480.29 1.015 <.0001 

Age at first marriage or cohabitation  0.0047 0.0014 10.44 1.005 0.0012 

Age of respondent at time of first birth  -0.0293 0.0011 736.22 0.971 <.0001 

Age at first marriage or cohabitation*Fertility preferences 

(Reference= Undecided/Others) 

 

Have another 

 

-0.0089 

 

0.0015 

 

33.14 

 

0.991 

 

<.0001 

Region (Reference= South West)*Fertility preferences 

(Reference=Undecided/Others) 

North Central*Have another 

North East*Have another 

North West*Have another 

South East*Have another 

South South*Have another 

-0.0177 

0.0732 

0.0632 

-0.0795 

-0.0482 

0.0223 

0.0220 

0.0207 

0.0244 

0.0248 

0.63 

11.05 

9.32 

10.63 

3.76 

0.982 

1.076 

1.065 

0.924 

0.953 

0.4286 

0.0009 

0.0023 

0.0011 

0.0526 
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Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference= Yes)*Woman’s occupation 

(Reference=Sales worker) 

 

 

No* Not currently working 

No* Professional worker 

 

 

-0.0517 

0.0006 

 

 

0.0212 

0.0187 

 

 

5.94 

0.00 

 

 

0.950 

1.001 

 

 

0.0148 

0.9737 

Fertility preferences (Reference=Undecided/Others)*Child is 

twin (Reference=Single birth) 

 

Have another*Multiple birth 

 

0.2199 

 

0.0263 

 

70.18 

 

1.246 

 

<.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted 

later)*Education(Reference=Secondary/Higher) 

 

 

Wanted later/No more*No education 

Wanted later/No more*Primary 

 

 

0.1127  

0.0475 

 

 

0.0254 

0.0242 

 

 

19.66 

3.87 

 

 

1.119 

1.049 

 

 

<.0001 

0.0493 

Child is alive (Reference=Yes)*Education 

(Reference=Secondary/Higher) 

 

No*No education 

No*Primary 

 

-0.1065 

-0.0563 

 

0.0249 

0.0298 

 

18.28 

3.57 

 

0.899 

0.945 

 

<.0001 

0.0587 
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Table 3.3 shows the risk ratios and the 95% confidence intervals of the six main effects that 

were not included in the interaction, and the risk ratios of each factor will therefore be 

interpreted. The mean total children ever born at a given category will only be equivalent to 

the mean total children ever born from a reference category if the confidence interval includes 

1, which is the condition for non-significant. 

 Table 3.3: The Poisson regression risk ratios extracted for main effects which were not 

involved in the interaction  
Factor Risk 

ratios 

95% C 

 Lower                Upper 

Age of household head (Reference>=68) 

                                                        42-67 

                                                         <=41 

 

1.242 

0.783 

 

0.1871                    0.2468 

-0.2744                  -0.2147 

Age of respondent at time of first birth (Reference=23-33) 

                                                                                  <=22 

                                                                                  >=34                                                              

 

1.292 

0.553 

 

0.2411                 0.2711 

-0.6967               -0.4873 

Urban-rural status (Reference=Urban) 

                                                  Rural 

 

1.068 

 

0.0543                   0.0777 

Religion (Reference=Muslim/Islam)                     

                                  Christian/Others                                          

 

0.876 

 

-0.1441                  -0.1206 

Sex of Child (Reference=Male) 

                                         Female 

 

1.004 

 

-0.0066                   0.0146 

Child is alive (Reference=Yes) 

                                           No 

 

1.312 

 

0.2460                     0.2974 
 

In Table 3.3, considering age of household head, the risk ratio of children ever born by a 

household head from age 42-67 is 1.242 times that by others from age 68 and above. While a 

household head from age 41 and below had the risk ratio 0.78 of children ever born compared 

to others within the age of 68 and above. Which means that a household head from age 42-67 

had 24.2% more children ever born than otherwise, a household head from age >=68 while a 

household head of age<=41 had 21.7% less children ever born than a household head of >=68. 

For age of respondent at time of first birth, a woman who had first birth on or before 22 years 

had 29.2% more children ever born than a woman who had her first birth at the age of 23 to 33 

years. On the other hand, a woman who had first birth from age 34 and onwards had 44.7% 

less than the expected number of children of the otherwise identical characteristic mother of 

age 23 years to 33 years. With regards to urban-rural status, a rural woman 6.8% more children 

ever born compared to an urban woman. For Religion, a Christian woman had 12.4% fewer 

children than a Muslim/Islam woman. On average, a woman who gives birth to female children 

had 0.4% more children than her contemporary who gave birth to male children. Using child 
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is alive variable, a woman whose child is not alive had 31.2% more children compared to her 

contemporary.  

Figure 3.3 indicates that the effect of fertility preferences on the predicted mean of children 

ever born differs with age at first marriage or cohabitation and region. With respect to whether 

a woman chooses to have another or undecided/others, the predicted mean of children ever 

born decreases consistently across all ages of a woman as her age at first marriage increases. 

Regarding region, the difference between the predicted mean of children ever born by a woman 

who is in the fertility group of have another and a woman in the group of undecided/others is 

significantly different in all regions (𝜌 < .0001). In all the regions, the predicted mean of 

children ever born from a woman who is undecided/others is more than a woman with the 

choice of have another. 

Figure 3.3: The mean number of children ever born by fertility preferences, age at first 

marriage or cohabitation and region  

The relationship between education, whether and when this pregnancy is wanted, and child is 

alive is shown in Figure 3.4. The difference between the predicted mean of children ever born 

by a woman who has any of the educational level (whether no education, primary or 

secondary/others) is significant in all levels of child is alive (𝜌 < .0001). In all levels of child 

is alive, the predicted mean of children ever born by a woman with no education is more than 

her contemporaries. 
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Figure 3.4: The mean number of children ever born by education, whether and when this 

child’s pregnancy is wanted, and child is alive  

Figure 3.5 presents the relationship between woman’s occupation and ever had pregnancy 

terminated via abortion, miscarriage or stillbirth. The effect of woman’s occupation on the 

mean of children ever born is significant for all group in ever had pregnancy terminated via 

abortion, miscarriage or stillbirth. The predicted mean of children ever born by a woman who 

has experienced abortion, miscarriage or stillbirth is more than a woman who has not. 
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Figure 3.5: The mean number of children ever born by woman’s occupation and ever had 

pregnancy terminated via abortion, miscarriage or stillbirth 

 

Figure 3.6 shows the relationship between child is twin and fertility preferences, and reveals 

that the effect of child is twin on the predicted mean of children ever born is significant for all 

groups of fertility preferences. It is noted that the predicted mean of children ever born by a 

woman who has had multiple births is more than a woman who has had a single birth.  
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Figure 3.6: The mean number of children ever born by child is twin and fertility preferences 

Conclusively, from the Poisson regression analysis, the estimated mean (�̅� = 4.33) and 

variance (𝑠𝑦
2 = 6.79) of the outcome show the presence of over-dispersion property of the 

data.  This is against the key feature of Poisson model which assumptively maintains that the 

mean and variance of the count data should be equal. To checkmate the over-dispersion, the 

Negative Binomial is used. 
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Chapter 4: Negative Binomial regression model and 

application to total number of children ever born in 

Nigeria 

4.1 Negative Binomial distribution 

For a sequence of independent and identically distributed Bernoulli trials, Negative Binomial 

distribution is the number of successes before the 𝑘𝑡ℎ failure (Agresti, 2002). 

Probability mass function of Negative Binomial distribution is given by: 

𝑓(𝑦) =
Γ(𝑦+

1

𝑘
)

Γ(𝑦+1)Γ(
1

𝑘
)

(𝑘𝜇)𝑦

(1+𝑘𝜇)𝑦+
1
𝑘⁄
 for y=0,1,2, …                                                                                            

where 1 𝑘⁄ = number of failures which is real and positive number 

           y = number of successes and 

           𝜇 =
1

𝑘
(1−𝑝)

𝑝
= mean  

The mean, variance, skewness and kurtosis of the Negative Binomial distribution are 

Mean, 𝐸(𝑦) = 𝜇 =
1

𝑘
(1−𝑝)

𝑝
, where 𝑝 is the probability of success                                                                                         

Variance, 𝑉𝑎𝑟(𝑦) = 𝜇 + 𝜇2𝑘                                                                             

Skweness, 𝛼3 =
2𝜇+

1

𝑘

(𝜇+
1

𝑘
)√(

1

𝑘
)(

𝜇

𝜇+
1
𝑘

)

                                                                                                        

Kurtosis, 𝛼4 = 3 +
1

𝜇+
1

𝑘

+ 5𝑘 +
1

1

𝑘
(
2
𝑘⁄ +𝜇

𝜇+1 𝑘⁄
)

                                                                                        

Since 𝜇 > 0 and 𝑘 > 0, the conditional variance is larger than the conditional mean. 

Recall that 𝜇 =
1

𝑘
(1−𝑝)

𝑝
, using the Negative Binomial expression,  

𝑓(𝑦) =
Γ(𝑦+

1

𝑘
)

Γ(𝑦+1)Γ(
1

𝑘
)

(𝑘𝜇)𝑦

(1+𝑘𝜇)𝑦+
1
𝑘⁄
, for 1 𝑘⁄ = 1,2,3, … ,10, 𝑦 = 0,1,2,… ,30 and 𝜌 = 0.50, the 

graphical representation of the probability mass function of Negative Binomial distribution is 

shown in Figure 4.1 
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Figure 4.1: The Graphical plot of probability mass function (PMF) for Negative Binomial 

distribution 

From Figure 1.2, as 1 𝑘⁄  gets smaller the skewness of the distribution increases while the 

kurtosis becomes more peaked. But as 1 𝑘⁄  gets larger, the skewness of the distribution gets 

smaller while the kurtosis gets flattened. It can be seen from Figures1.1 and 1.2 that there is sia 

milarity between Poisson distribution and Negative Binomial distribution, this is because as 𝜇 

and 1 𝑘⁄  increases, the skewness of their distribution become symmetric, but as 𝜇 and 1 𝑘⁄  

decreases, their respective distributions become positively skewed. 

The relationship between Negative Binomial and Poisson distribution is seen when a gamma 

prior is used for a Poisson distribution. In other words, 𝜇 is distributed as a gamma distribution 

with shape= 𝑟 and scale  𝛽 =
(1−𝑝)

𝑝
 ,when  𝜇 is itself a random variable (Cook, 2009). 

Theoretically, assuming 𝑌 has a Poisson distribution with mean 𝜆, and 𝜆 has a Gamma 

distribution, 𝐺(𝑘, 𝜇). According to (Agresti, 2002), the Gamma probability density function 

can be expressed as; 
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𝑓(𝜆; 𝑘, 𝜇) =
(𝑘 𝜇⁄ )

𝑘

Γ(𝑘)
𝑒𝑥𝑝(−𝑘𝜆 𝜇⁄ )𝜆

𝑘−1,     𝜆 ≥ 0 

The pdf of Poisson gamma mixture distribution is  

ℎ(𝑦|𝜇, 𝑘) = ∫𝑓(𝑦|𝜆)𝑔(𝜆|𝑘, 𝜇)𝑑𝜆 

= ∫ 𝑒−𝜆
𝜆𝑦

𝑦!
×
(𝑘 𝜇⁄ )

𝑘

Γ(𝑘)
𝑒𝑥𝑝(−𝑘𝜆 𝜇⁄ )𝜆

𝑘−1 𝑑𝜆 

=
(𝑘 𝜇⁄ )

𝑘

𝑦! Γ(𝑘)
∫ 𝜆𝑦+𝑘−1 𝑒𝑥𝑝 (−(1 +

𝑘

𝜇
)𝜆)𝑑𝜆 

Recalling that 𝑦! = Γ(𝑦 + 1), then after substituting the expression, we have 

=
(𝑘 𝜇⁄ )

𝑘

Γ(𝑦 + 1)Γ(𝑘)
∫ 𝜆𝑦+𝑘−1 𝑒𝑥𝑝 (−(1 +

𝑘

𝜇
)𝜆)𝑑𝜆 

Directly from (Cameron and Trivedi, 2013), we have 

ℎ(𝑦|𝜇, 𝑘) =
(𝑘 𝜇⁄ )

𝑘

Γ(𝑦 + 1)Γ(𝑘)
(1 +

𝑘

𝜇
)
−(𝑦+𝑘)

Γ(𝑦 + 𝑘), 

which can be rewritten as; 

=
Γ(𝑦 + 𝑘)

Γ(𝑦 + 1)Γ(𝑘)
(
𝑘

𝜇 + 𝑘
)
𝑘

(1 −
𝑘

𝜇 + 𝑘
)
𝑦

  for 𝑦 = 0,1,2, …, 

which is equivalent to 

𝑓(𝑦) =
Γ (𝑦 +

1
𝑘
)

Γ(𝑦 + 1)Γ (
1
𝑘
)

(𝑘𝜇)𝑦

(1 + 𝑘𝜇)𝑦+
1
𝑘⁄
 

a pmf of Negative Binomial distribution. 

4.2 Negative Binomial regression 

Currently, studies on biological data that varies slightly from Poisson distribution have brought 

Negative Binomial distribution to the limelight. Accident statistics and insect counts in which 

relatively complex factors are at work are examples of data that considers the Negative 



 
31 

Binomial description. Negative Binomial regression and Poisson regression are similar, but the 

only difference that exists between them is that the dependent (𝑌) variable is an observed count 

which follows the Negative Binomial distribution. Accordingly, 𝑦 possible values are 

nonnegative integers: 0,1,2,3, and so on (Dick et al., 2007). 

Negative Binomial regression as a generalization of Poisson regression loosens the restrictive 

assumption of Poisson regression that the variance is equal to the mean. Negative Binomial is 

a Poisson-gamma mixture distribution. This formulation is prevalent because it permits the 

modelling of Poisson heterogeneity using a gamma distribution. 

The Negative Binomial distribution is a discrete probability distribution of the number of 

successes in a sequence of independent and identically distributed Bernoulli trials before a 

specified (non-random) number of failures (which is denoted as 1 𝑘⁄ ) occurs. That is the 

probability distribution of the number of successes before the kth failure occurs is a Negative 

Binomial distribution. 

Pascal distribution and Polya distribution are unique cases of Negative Binomial distribution. 

On a general note, “Negative Binomial” or “Pascal” for the case of an integer-valued stopping-

time parameter r, and “Polya” for the real-valued cases are used by engineers, climatologists 

and others (Sakamoto et al., 1986). 

It can be explained that if there is a sequence of independent Bernoulli trials then each trial has 

two potential outcomes called “success” and “failure”. If a Bernoulli trial outcome sequence is 

observed until the predestined number of failures, 1 𝑘⁄ , has occurred then 𝑦 which is the random 

number of successes that is seen before the kth failure will have a Negative Binomial (or Pascal) 

distribution. 

• Negative Binomial: 

𝑓(𝑦) =
Γ(𝑦 + 1 𝑘⁄ )

Γ(𝑦 + 1)Γ(1 𝑘⁄ )

(𝑘𝜇)𝑦

(1 + 𝑘𝜇)𝑦+
1
𝑘⁄
      𝑓𝑜𝑟 𝑦 = 0,1,2, … 

Negative Binomial has an advantage over Poisson regression due to its ability to possess one 

extra parameter that helps to adjust the variance independently from the mean. 

To show that Negative Binomial regression is a member of the exponential family, we need to 

recall that 𝑌 as a stochastic variable is said to have a distribution belonging to the exponential 
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family if its probability density function(pdf), or probability mass function(pmf) of 𝑌 is discreet 

and can be written as  

𝑓(𝑦; 𝜃, 𝜙) = 𝐸𝑥𝑝 {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)} 

where 𝜃 – canonical parameter 

𝜙 – dispersion parameter 

The functions 𝑎(𝜃) and 𝑐(𝑦, 𝜙) are specified for each distribution (Bayarri and DeGroot, 

1987).  For known 𝑘, Negative Binomial distribution is shown to belong to the exponential 

family with probability mass function(pmf); 

𝑓(𝑦) =
Γ(𝑦 + 1 𝑘⁄ )

Γ(𝑦 + 1)Γ(1 𝑘⁄ )

(𝑘𝜇)𝑦

(1 + 𝑘𝜇)𝑦+
1
𝑘⁄
 

𝑙𝑜𝑔𝑓(𝑦) = 𝑦𝑙𝑜𝑔(𝑘𝜇) − (𝑦 + 1 𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝜇) + 𝑙𝑜𝑔
Γ(𝑦 + 1 𝑘⁄ )

Γ(𝑦 + 1)Γ(1 𝑘⁄ )
 

= 𝑒𝑥𝑝{𝑦𝑙𝑜𝑔(𝑘𝜇) − (𝑦 + 1 𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝜇) + 𝑙𝑜𝑔
Γ(𝑦 + 1 𝑘⁄ )

Γ(𝑦 + 1)Γ(1 𝑘⁄ )
} 

Since 𝜃 = 𝑙𝑜𝑔𝑘𝜇, we made 𝑘 the subject of the formula then substitutes the value in (1 + 𝑘𝜇)to 

obtain (1 + 𝑒𝜃). Then bringing everything together, this can be rewritten as; 

= 𝑒𝑥𝑝{𝑦𝑙𝑜𝑔(𝑘𝜇) − (𝑦 + 1 𝑘⁄ )𝑙𝑜𝑔(1 + 𝑒
𝜃) + 𝑙𝑜𝑔

Γ(𝑦 + 1 𝑘⁄ )

Γ(𝑦 + 1)Γ(1 𝑘⁄ )
} 

 

therefore, Negative Binomial is an exponential family expression with 

                                                                 𝜃 = 𝑙𝑜𝑔𝑘𝜇 

                                                         𝑏(𝜃) = −1 𝑘⁄ log(1 − 𝑒𝜃)                                                                 

𝑎(𝜙) = 1, 𝜙 = 1 

𝑐(𝑦, 𝜙) = 𝑙𝑜𝑔 (
Γ(𝑦 + 1 𝑘⁄ )

Γ(1 𝑘⁄ )Γ(𝑦 + 1)
) 
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The twice difference between the maximum achievable log-likelihood and the log-likelihood 

of the fitted model is the deviance.  

Under normality, the deviance is the residual sum of squares in Multiple regression while in 

Negative Binomial regression, deviance is the generalization of the sum of squares. By 

replacing 𝜇𝑖 with 𝑦𝑖, the maximum possible log likelihood is computed. Therefore, we have 

𝐷 = 2[ℓ(𝑦; 𝑦𝑖) − ℓ(𝑦; 𝜇𝑖)] 

To derive the deviance for Negative Binomial GLM, let the loglikelihood of model of interest 

be 

ℓ(𝑦; 𝑦𝑖) =∑𝑦𝑖𝑙𝑜𝑔(𝑘𝑦𝑖)

𝑛

𝑖=1

−∑(𝑦𝑖 +
1
𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝑦𝑖)

𝑛

𝑖=1

+∑
Γ(𝑦𝑖 +

1
𝑘⁄ )

Γ(1 𝑘⁄ )

𝑛

𝑖=1

 

and the saturated model as 

ℓ(𝑦; 𝜇𝑖) =∑𝑦𝑖𝑙𝑜𝑔(𝑘𝜇𝑖)

𝑛

𝑖=1

−∑(𝑦𝑖 +
1
𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝜇𝑖)

𝑛

𝑖=1

+∑
Γ(𝑦𝑖 +

1
𝑘⁄ )

Γ(1 𝑘⁄ )

𝑛

𝑖=1

 

 

𝐷 = 2∑𝑦𝑖𝑙𝑜𝑔(𝑘𝑦𝑖)

𝑛

𝑖=1

−∑(𝑦𝑖 +
1
𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝑦𝑖)

𝑛

𝑖=1

+∑
Γ(𝑦𝑖 +

1
𝑘⁄ )

Γ(1 𝑘⁄ )

𝑛

𝑖=1

− (2∑𝑦𝑖𝑙𝑜𝑔(𝑘𝜇𝑖)

𝑛

𝑖=1

−∑(𝑦𝑖 +
1
𝑘⁄ )𝑙𝑜𝑔(1 + 𝑘𝜇𝑖)

𝑛

𝑖=1

+∑
Γ(𝑦𝑖 +

1
𝑘⁄ )

Γ(1 𝑘⁄ )

𝑛

𝑖=1

) 

= 2∑(𝑦𝑖(𝑙𝑜𝑔(𝑘𝑦𝑖) − 𝑙𝑜𝑔(𝑘𝜇𝑖)) − (𝑦𝑖 +
1
𝑘⁄ )(𝑙𝑜𝑔(1 + 𝑘𝑦𝑖) − 𝑙𝑜𝑔(1 + 𝑘𝜇𝑖)))

𝑛

𝑖=1

 

= 2∑[𝑦𝑖𝑙𝑜𝑔
𝑦𝑖
𝜇𝑖
− (𝑦𝑖 +

1
𝑘⁄ )𝑙𝑜𝑔

1 + 𝑘𝑦𝑖
1 + 𝑘𝜇𝑖

]

𝑛

𝑖=1

 

It is worthy of note that a complete residual analysis should be incorporated in any regression 

analysis. It includes plotting the residuals against various other quantities such as the regressor 

variables which helps to examine outliers and curvature and the response variable. The 

following are types of residuals; 
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• Raw residual. In this case, because there is an expectation that the variances of the 

residuals will be unequal, interpretation of the raw residuals becomes difficult. The raw 

residual is expressed as; 

𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 

• Pearson residual obtained by dividing the standard deviation of y. It can be expressed 

as; 

𝑝𝑖 =
𝑦𝑖 − �̂�𝑖

√�̂�𝑖 + 𝑟�̂�𝑖
2

 

4.3 Application of Negative Binomial regression model to the total number of children 

ever born in Nigeria 

GLM using a Negative binomial distribution with its natural link function is fitted. Before some 

inferences were made and compared with Poisson regression, the model diagnostics were 

performed. Figure 4.2 displays the histogram of the predicted value from the model diagnostics 

performed. Like the diagnostic plot of Poisson regression, it is noted that the index plot for the 

residuals of this model accounts for all the observations and the index plot of the diagonal 

elements of hat matrix and proposes no exciting points in the design space that one needs to 

consider. In addition, no observation in the index plot of the cook’s distance could affect the 

estimated coefficients and the goodness of fit. 

 

 

Figure 4.2: Model diagnostics plots 
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Table 4.1 contains statistics that summarize the fit of the model which are necessary for 

deciding the appropriateness of the model compared to other models. It can be deduced from 

the deviance value that the data is not well fitted by the model, as the ratio of deviance to the 

degree of freedom is less than 1, indicating under-dispersion. A scale option is specified 

(scale=dscale) to force the scaled deviance to be equal to one which makes our model to be 

optimally dispersed. 

 

Table 4.1: Evaluation of over/under dispersion in Negative Binomial regression 
Criterion Log Link DF Value Value/DF 

Deviance 30000 27319.201 0.91 

Pearson Chi-Square 30000 26877.900 0.90 

Full Log-Likelihood  -61479.395  

AIC  123028.789  

AICc  123028.873  

BIC  123319.625  
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Table 4.2: Parameter estimates for the Negative Binomial regression model 
Predictors Categories Estimated  Standard 

error 

Chi-

square 

Risk ratio Pr > Chi-

square 

Urban-rural status (Reference=Urban) Rural  0.0032 0.0068 0.22 1.003 0.6370 

Region (Reference=South West) North Central 

North East 

North West 

South East 

South South 

0.0141 

0.1701 

0.1336 

0.1912 

0.1302 

0.0173 

0.0181 

0.0186 

0.0189 

0.0174 

0.66 

88.40 

51.58 

102.23 

56.16 

1.014 

1.185 

1.143 

1.211 

1.139 

0.4165 

<.0001 

<.0001 

<.0001 

<.0001 

Religion (Reference= Muslim/Islam) Christian/Others -0.0179 0.0092 3.81 0.982 0.0511 

Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference=Yes) 

 

No 

 

-0.0454 

 

0.0134 

 

11.56 

 

0.956 

 

0.0007 

Woman’s occupation (Reference=Sales worker) Not currently working 

Professional worker/Others 

-0.1460 

-0.0243 

0.0212 

0.0182 

47.27 

1.77 

0.864 

0.976 

<.0001 

0.1830 

Fertility preferences (Reference=Undecided/Others) Have another -0.2829 0.0368 59.17 0.754 <.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted then) 

 

Wanted later /No more  

 

-0.0215 

 

0.0170 

 

1.60 

 

0.979 

 

0.2058  

Sex of child (Reference=Male) Female 0.0103 0.0055 3.47 1.010 0.0624 

Child is alive (Reference=Yes) No 0.1536 0.0226 46.30 1.166 <.0001 

Child is twin or single birth (Reference= Single birth) Multiple birth 0.0775 0.0208 13.88 1.081 0.0002 

Educational level (Reference=Secondary/Higher) No education  

Primary 

0.2520 

0.1934 

0.0096 

0.0094 

687.39 

419.70 

1.287 

1.213 

<.0001 

<.0001 

Age of household head  0.0135 0.0002 3565.13 1.014 <.0001 

Age at first marriage or cohabitation  0.0035 0.0015 5.40 1.004 0.0202 

Age of respondent at time of first birth  -0.0287 0.0012 619.99 0.972 <.0001 

Age at first marriage or cohabitation*Fertility preferences 

(Reference= Undecided/Others) 

 

Have another 

 

-0.0091 

 

0.0016 

 

32.66 

 

0.991 

 

<.0001 

Region (Reference= South West)*Fertility preferences 

(Reference=Undecided/Others) 

North Central*Have another 

North East*Have another 

North West*Have another 

South East*Have another 

South South*Have another 

-0.0160 

0.0419 

0.0816 

-0.0626 

-0.0327 

0.0236 

0.0228 

0.0227 

0.0259 

0.0245 

0.46 

3.37 

12.92 

5.82 

1.79 

0.984 

1.043 

1.085 

0.939 

0.968 

0.4977 

0.0663 

0.0003 

0.0159 

0.1815 
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Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference= Yes)*Woman’s occupation  

(Reference=Sales worker) 

 

 

No* Not currently working 

No* Professional worker 

 

 

-0.0390  

-0.0191 

 

 

0.0224 

0.0194 

 

 

3.03 

0.97 

 

 

0.962 

0.981 

 

 

0.0818 

0.3253 

Fertility preferences (Reference=Undecided/Others)*Child is 

twin (Reference=Single birth) 

 

Have another*Multiple birth 

 

0.2190 

 

0.0270 

 

65.84 

 

1.245 

 

<.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted 

later)*Education(Reference=Secondary/Higher) 

 

 

Wanted later/No more*No education 

Wanted later/No more*Primary 

 

 

0.1065  

0.0571 

 

 

0.0255 

0.0244 

 

 

17.40 

5.50 

 

 

1.112 

1.059 

 

 

<.0001 

0.0190 

Child is alive (Reference=Yes)*Education 

(Reference=Secondary/Higher) 

 

No*No education 

No*Primary 

 

-0.1040 

-0.0524 

 

0.0253 

0.0300 

 

16.86 

3.05 

 

0.901 

0.949 

 

<.0001 

0.0807 
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Table 4.2 shows the Negative Binomial regression relative ratio of all the main effects of their 

interactions. It is also observed that rural, North Central, Christian, wanted later/no more, 

female, North Central and have another, South South and have another, no and professional 

worker, no and primary including no and not currently working variables are insignificant. To 

account for the main effects which were not involved in the interaction, the result in Table 4.3 

is displayed.   

Table 4.3: The Negative Binomial regression risk ratios extracted for main effects which were 

not involved in the interaction 
Factor Risk 

ratios 

95% C 

 Lower                Upper 

Age of household head (Reference>=68) 

                                                        42-67 

                                                         <=41 

 

1.257 

0.802 

 

0.1972                    0.2603 

-0.2518                  -0.1889 

Age of respondent at time of first birth (Reference>=34) 

                                                                                <=22                                                            

                                                                                23-33 

 

2.384 

1.845 

 

0.7615                 0.9760 

0.5048                 0.7204 

Urban-rural status (Reference=Urban) 

                                                  Rural 

 

1.076 

 

0.0599                   0.0859 

Religion (Reference=Muslim/Islam)                     

                                  Christian/Others                                          

 

0.886 

 

-0.1335                 -0.1085 

Sex of Child (Reference=Male) 

                                         Female 

 

1.009 

 

-0.0029                  0.0203 

Child is alive (Reference=Yes) 

                                           No 

 

1.130 

 

0.1033                   0.1415 

Table 4.3 indicates that in terms of age of household head, a household head from age 42-67 

has a risk ratio of 1.257 of children ever born compared to others from age 68 and above. While 

a household head from the age of 41 and below has a risk ratio of 0.802 of children ever born 

compared to those within the age of 68 and above. For age of respondent at time of first birth, 

a woman who had her first birth on or before 22 years has a risk ratio of 2.384 of children ever 

born than a woman who had her first birth at the age of 23 - 33 years. On the other hand, a 

woman who had her first birth from age 23-33years has a risk ratio of 1.845 compared to a 

woman whose first birth is at age 34 and above. Furthermore, in urban-rural status, the risk 

ratio of children ever born by a rural woman is 1.076 compared to an urban woman. With 

respect to religion, a Christian woman has a risk ratio of 0.886 of children ever born compared 

to a Muslim/Islamic woman. In sex of child, the risk ratio of female gender is 1.009 times the 

male gender, while the risk ratio of no is 1.130 times yes. 
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Figure 4.3 indicates that the effect of fertility preferences on the predicted mean of children 

ever born differs with age at first marriage or cohabitation and region. It shows that whether a 

woman chooses to have another or undecided/others, the predicted mean of children ever born 

decreases consistently across all ages of a woman as her age at first marriage increases. 

Regarding region, the difference between the predicted mean of children ever born by a woman 

who is in the fertility group of have another and a woman in the group of undecided/others is 

significant in all regions (𝜌 < .0001). In all the regions, the predicted mean of children ever 

born by a woman that chooses undecided/others is more than a woman that chooses have 

another. 

  

Figure 4.3: The mean number of children ever born by fertility preferences, age at first 

marriage or cohabitation and region  

The relationship between education, whether and when this pregnancy is wanted, and child is 

alive is shown in Figure 4.4. Regarding whether and when this child’s pregnancy is wanted, it 

is seen that unlike Poisson regression, the difference in the effect of education on the predicted 

mean of children ever born is significant for all levels with a woman who has no education 

giving more birth than her mates. Notably, the difference between the predicted mean of 

children ever born by a woman who falls under any of the educational level (whether no 

education, primary or secondary/others) is significant in all levels of child is alive (𝜌 < .0001). 

In all levels of child is alive, the predicted mean of children ever born by a woman with no 
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education is more than her contemporaries. Generally, it can be deduced that the more educated 

a woman becomes the less the number of children she will give birth to. 

Figure 4.4: The mean number of children ever born by education, whether and when this 

child’s pregnancy is wanted, and child is alive  

Figure 4.5 shows the relationship between woman’s occupation and ever had pregnancy 

terminated via abortion miscarriage or stillbirth. The effect of woman’s occupation on the mean 

of total children ever born is significant for all group in ever had pregnancy terminated via 

abortion, miscarriage or stillbirth. In fact, the predicted mean of children ever born from a 

woman who has had abortion, miscarriage or stillbirth is more than a woman who has not. 
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Figure 4.5: The mean 

number of children ever born by woman’s occupation and ever had pregnancy terminated via 

abortion, miscarriage or stillbirth 

 

The relationships between kidtwin and fertility preferences are shown in Figure 4.6. The 

relationships between kidtwin and fertility preferences in Figure 4.6 reveals that the effect of 

kidtwin on the predicted mean of children ever born is significant for all group of fertility 

preferences. It is noted that the predicted mean of children ever born by a woman who has 

multiple birth is more than a woman who had single birth. 
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Figure 4.6: The mean number of children ever born by kidtwin and fertility preferences 

In conclusion, notwithstanding the improvement on the result, the deviance of Negative 

Binomial is not up to 1. To overcome this shortcoming, Generalized Poisson regression is used 

as a strategy. 
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Chapter 5: Generalized Poisson regression model and 

application to total number of children ever born in 

Nigeria 

5.1 Generalized Poisson distribution 

Lagrange Poisson distribution is another name for Generalized Poisson distribution (Singh and 

Famoye, 1993). Simple Poisson distribution is known as a distinct example of Generalized 

Poisson distribution. In Generalized Poisson regression, Generalized Poisson distribution is 

used as an extension of Poisson regression that accounts for over-dispersion (Ntzoufras et al., 

2005). 

The probability mass function of the Generalized Poisson distribution is  

𝑝(𝑦;𝜔, 𝜃) =
𝜃(𝜃+𝜔𝑦)𝑦−1

𝑦!
𝑒−𝜃−𝜔𝑦                     𝑦 = 0,1,2, … ; 0 ≤ 𝜔 < 1; 𝜃 > 0                                               

Where 𝜔 is a number or parameter in the range (0, 1) that specifies the shape the first shape 

parameter and 𝜃 is the positive number or parameter that specifies the second shape parameter. 

The mean, variance, skewness and kurtosis of Generalized Poisson distribution is given by; 

Mean, 𝜇 =
𝜃

1−𝜔
                                                                                                                            

Variance, 𝜎2 =
𝜃

(1−𝜔)3
                                                                                                                 

Skewness, 𝛼3 =
(1+2𝜔)2

𝜃(1−𝜔)
                                                                                                              

Kurtosis, 𝛼4 = 3 +
(1+8𝜔+6𝜔2)

𝜃(1−𝜔)
                                                                                                   

It has been shown by (Consul and Jain, 1973) that the probability mass function of Generalized 

Poisson distribution is a probability distribution since it has the property ∑ 𝑃𝑛 = (𝜃,𝜔) =
∞
𝑛=0

1. This is achieved by using the identity ∑
(𝜃+𝜔𝑛)𝑛

𝑛!
𝑒−𝜃−𝜔𝑛 =

1

1−𝜔
, 𝑓𝑜𝑟 −𝜔0 < 𝜔 < 1

∞
𝑛=0  

found in (Jensen, 1902). Using the probability mass function expression, let 𝜔 =

0.0,0.002,… ,0.01, 𝜃 = 1.0,1.2, … ,2. The graphical representation of the skewness and kurtosis 

of Generalized Poisson distribution is shown in Figure 5.1 
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Figure 5.1: The Graphical plot of probability mass function (PMF) for Generalized Poisson 

distribution  

In Figure 5.1, it is observed that as 𝜃 and 𝜔 decreases, the degree of skewness gets smaller 

while the kurtosis gets flattened. On the other hand, as 𝜃 and 𝜔 increases, the degree of 

skewness gets larger while the kurtosis becomes more peaked. 

From the probability mass function expression, Generalized Poisson distribution tends to 

Poisson distribution when 𝜔 = 0 and tends to Negative Binomial distribution when 𝜔 → ∞. 

5.2 Generalized Poisson regression 

For fitting both over-dispersed and under-dispersed count data, Generalized Poisson regression 

is a very useful model, this is because it allows for more variability. To study the outcome 

variable, the Generalized Poisson regression is preferred over Poisson regression and Negative 

Binomial because of its under-dispersion property (variance<mean). With our interest in 

Nigerian total children ever born, Poisson regression model, Negative Binomial regression 
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model and Generalized Poisson regression model as types of regression based on Poisson 

distribution have been applied to model these type of count variables.  

Notwithstanding, the application of these models is centred on pure assumptions. For example, 

the Poisson regression model presumes equal mean and variance of the dependent variable 

which is not obtainable in real life because variance can be greater than mean (over-dispersion 

property) or lesser than mean (under-dispersion property). Should the estimates of the standard 

Poisson model remain consistent, biased standard errors and ineffective estimates of regression 

parameters are inevitable if there is a lack of knowledge of these properties. Negative Binomial 

regression model, which is often used to analyze an independent variable with over-dispersion, 

is more flexible than the standard Poisson regression model. However, Generalized Poisson 

regression can be used to analyze an independent variable with both over and under-dispersion, 

which is the reason it is said to be more flexible. 

The Generalized Poisson distribution is given by 

𝑝(𝑦;𝜔, 𝜃) =
𝜃(𝜃+𝜔𝑦)𝑦−1

𝑦!
𝑒−𝜃−𝜔𝑦                                                                                 

For 𝑦 = 0,1,2, … and 𝜃 > 0 and max (−1,−𝜃/4) ≤ 𝜔 ≤ 1. While the mean and variance of y 

are 𝜇 = 𝜃(1 − 𝜔)−1 and 𝜎2 = 𝜃(1 − 𝜔)−3 = 𝜇(1 − 𝜔)−2. 

Since the dispersion parameter 𝜔 from equation (6) influences the mean as well as the variance, 

the following parameterization by (Consul and Jain, 1973, Zamani and Ismail, 2012) is used 

𝜔 =
𝜑𝜇𝜌−1

1 + 𝜑𝜇𝜌−1
, 

which gives the following density  

𝑓(𝑦|𝜇, 𝜑, 𝜌) =
𝜇(𝜇+𝜑𝜇𝜌−1𝑦)

𝑦−1

(1+𝜑𝜇𝜌−1)𝑦𝑦!
𝑒𝑥𝑝 (−

𝜇+𝜇𝜑𝑝−1𝑦

1+𝜇𝜑𝜌−1
)                                                                   

For 𝑦 = 0,1,2, … we assume 𝜑 ≥ 0 

The link function of mean and variance of y are given as 

Ε(𝑦|. ) = 𝜇 and 𝑉𝑎𝑟(𝑦|. ) = 𝜇(1 + 𝜑𝜇𝜌−1)2                                                                         

and the mean is linked to a linear predictor by  

𝜇 = exp (𝜂) 
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5.3 Application of Generalized Poisson regression model to the total number of children 

ever born in Nigeria 

Table 5.2 presents the result of the independent variables on total children ever born by the 

women which shows that some of the main effect and some of the Two 2-way interactions are 

insignificant. The incidence rate ratio was used to interpret the main effects that were not 

included in the interaction. Alternatively, the main effect variables that participated in the 

interaction and are significant should be carefully explained. For example, the interaction 

between fertility preferences and child is twin shows that since relating have another as a 

category in fertility preferences and multiple birth as a category in child is twin are significant, 

the total children ever born will be influenced if a woman’s fertility preferences choice is have 

another or undecided/others. This will, however, vary according to child is twin or single birth 

with Table 5.1 displaying the fit statistics of the model  

Table 5.1: Fit Statistics 

-2Log Likelihood 148584.000 

AIC 148654.000 

AICc 148654.000 

BIC 148945.000 

5.31 Model diagnostics 

From the graphical representation of the data (Figure 5.2), it is observed from the residual that 

the model accurately accounts for all observations but for the cook’s distance, for which there 

is no methodologythat has yet beeb developed. 
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Figure 5.2: Model diagnostics plots 

Table 5.2 displays the parameter for the Generalized Poisson regression, with North West, no, 

professional worker/others, female, multiple birth, North Central and have another, South East 

and have another, no and not currently working, no and professional worker/others, wanted 

later/no more and primary are insignificant. 
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Table 5.2: Parameter estimates for the Generalized Poisson regression model 
Predictors Categories Estimated  Standard 

Error 

z Value Estimated 

IRR 

Pr > |z| 

Urban-rural status (Reference=Urban) Rural  0.0255 0.0056 4.53 1.023 <.0001 

Region (Reference=South West) North Central 

North East 

North West 

South East 

South South 

-0.0925 

0.0750 

0.0169 

0.1345 

0.2267 

0.0186 

0.0187 

0.0234 

0.0228 

0.0166 

-4.97 

4.02 

0.71 

5.88 

13.68 

0.912 

1.078 

1.017 

1.144 

1.254 

<.0001 

<.0001 

0.4807 

<.0001 

<.0001 

Religion (Reference= Muslim/Islam) Christian/Others -0.0888 0.0079 -11.19 0.915 <.0001 

Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference=Yes) 

 

No 

 

-0.0009 

 

0.0143 

 

-0.07 

 

0.999 

 

0.9475 

Woman’s occupation (Reference=Sales worker) Not currently working 

Professional worker/Others 

-0.0823 

-0.0059 

0.0206 

0.0182 

-4.00 

-0.32 

0.921 

0.994 

<.0001 

0.7485 

Fertility preferences (Reference=Undecided/Others) Have another -0.6407 0.0333 -19.27 0.579 <.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted then) 

 

Wanted later /No more  

 

-0.1152 

 

0.0169 

 

-6.82 

 

0.891 

 

<.0001  

Sex of child (Reference=Male) Female 0.0038 0.0025 1.54 1.004 0.1247 

Child is alive (Reference=Yes)  

No 

 

0.0989 

 

0.0224 

 

4.41 

 

1.104 

 

<.0001 

Child is twin or single birth (Reference= Single birth)  

Multiple birth 

 

-0.0319 

 

0.0236 

 

-1.35 

 

0.969 

 

0.1771 

Educational level (Reference=Secondary/Higher) No education  

Primary 

0.3255 

0.3443 

0.0084 

0.0070 

38.70 

49.15 

1.385 

1.411 

<.0001 

<.0001 

Age of household head  0.0096 0.0001 68.89 1.010 <.0001 

Age at first marriage or cohabitation  -0.0092 0.0013 -6.59 0.991 <.0001 

Age of respondent at time of first birth  -0.0195 0.0011 -17.02 0.981 <.0001 

Age at first marriage or cohabitation*Fertility preferences 

(Reference= Undecided/Others) 

 

Have another 

 

0.0115 

 

0.0013 

 

9.01 

 

1.012 

 

<.0001 

Region (Reference= South West)*Fertility preferences 

(Reference=Undecided/Others) 

North Central*Have another 

North East*Have another 

North West*Have another 

South East*Have another 

South South*Have another 

-0.0345 

0.1294 

0.1692 

-0.0499 

0.1889 

0.0254 

0.0233 

0.0280 

0.0306 

0.0221 

-1.36 

5.55 

6.04 

-1.63 

8.56 

1.005 

0.939 

0.889 

0.926 

1.148 

0.1735 

<.0001 

<.0001 

0.1029 

<.0001 



 
49 

Ever had pregnancy terminated via abortion, miscarriage or 

stillbirth (Reference= Yes)*Woman’s occupation  

(Reference=Sales worker) 

 

 

No* Not currently working 

No* Professional worker 

 

 

-0.0060 

0.0118 

 

 

0.0216 

0.0194 

 

 

-0.28  

0.61 

 

 

0.994 

1.012 

 

 

0.7795 

0.5427 

Fertility preferences (Reference=Undecided/Others)*Child is 

twin (Reference=Single birth) 

 

Have another*Multiple birth 

 

0.1967 

 

0.0305 

 

6.45 

 

1.217 

 

<.0001 

Whether and when this child’s pregnancy is wanted 

(Reference=Wanted 

later)*Education(Reference=Secondary/Higher) 

 

 

Wanted later/No more*No Education 

Wanted later/No more*Primary 

 

 

0.1807  

-0.0218 

 

 

0.0232 

0.0201 

 

 

7.78 

-1.08 

 

 

1.198 

0.978 

 

 

<.0001 

0.2795 

Child is alive (Reference=Yes)*Education 

(Reference=Secondary/Higher) 

 

No*No Education 

No*Primary 

 

-0.0833 

0.1051 

 

0.0246 

0.0247 

 

-3.38 

4.26 

 

0.909 

1.037 

 

0.0007 

<.0001 
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To check for the effect of the main effects which were not involved in the interaction, further 

examination was done, as displayed in Table 5.3. The results of Generalized Poisson regression 

analysis show that, variables such as: religion, child is alive, sex of child, age of respondent at 

time of first birth, age of household head and urban-rural status are statistically associated with 

total children ever born in Nigeria. There is a strong relationship between urban-rural status 

and the mean of children ever born. The risk ratio of children ever born by mothers who reside 

in rural area is 1.023 times those who reside in urban area. The risk ratio of children ever by 

mothers who are Christian/Others is 0.981 times the risk ratio of children ever born by 

Muslim/Islam mothers.  For child is alive, a woman whose child is not alive had 1.104 risk 

ratio compared to children ever born by a woman whose child is alive. For sex of child, women 

who gave birth to female children had risk ratio of 1.004 compared to those who gave birth to 

male children. Age of respondent at time of first birth is also positively related to total children 

ever born. 

Table 5.3: The Generalized Poisson regression risk ratios extracted for main effects which 

were not involved in the interaction 
Factors Risk ratios Z-Value 

Age of household head 1.010 68.89 

Age of respondent at time of first birth 0.981 -17.02 

Urban-rural status (Reference=Urban) 

                                                  Rural 

 

1.023 

 

4.53 

Religion (Reference=Muslim/Islam)                     

                                  Christian/Others                                          

 

0.915 

 

-11.19 

Sex of child (Reference=Male) 

                                        Female 

 

1.004 

 

0.1247 

Child is alive (Reference=Yes) 

                                           No 

 

1.104 

 

4.41 

 

Figure 5.3 reveals that the effect of fertility preferences on the predicted mean of total children 

ever born differs with age at first marriage or cohabitation and region, with whether a woman 

choses to have another or undecided/others, the predicted mean of children ever born decreases 

as the age of a woman at first marriage increases. It can therefore be concluded that unlike 

Poisson regression and Negative Binomial, the difference in the effect of fertility preferences 

on the predicted mean of children ever born is significant for all ages of a woman at time of 

first marriage showing that a woman in the group of undecided/others give birth to more 

children. Regarding region, the difference between the predicted mean of children ever born 

by a woman who is in the group of have another in fertility and a woman in the group of 

undecided/others is significantly different in all regions (𝜌 < .0001). In all the regions, the 
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predicted mean of children ever born by a woman that is undecided/others is more than those 

of have another woman. This is consistent with the report of NDHS 2013. 

Figure 5.3: The mean number of children ever born by fertility preferences, age at first 

marriage or cohabitation and region  

The relationships between education, whether and when this pregnancy is wanted, and child is 

alive are shown in Figure 5.4. Regarding whether and when this child’s pregnancy is wanted, 

the difference in the effect of education on the predicted mean of children ever born is 

significant for all levels, with a woman who has no education giving more birth than her 

compatriates. The difference between the predicted mean of children ever born by a woman 

who has any of the educational level (whether no education, primary or secondary/others) is 

significant in all levels of child is alive (𝜌 < .0001). In all levels of child is alive, the predicted 

mean of children ever born by a woman with no education is higher compared to her 

contemporaries. 
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Figure 5.4: The mean number of children ever born by education, whether and when this 

child’s pregnancy is wanted, and child is alive 

Figure 5.5 presents the relationship between woman’s occupation and ever had pregnancy 

terminated via abortion, miscarriage or stillbirth. The effect of woman’s occupation on the 

mean of children ever born is significant for all group in ever had pregnancy terminated via 

abortion, miscarriage or stillbirth. The predicted mean of children ever born from a woman 

who has had abortion, miscarriage or stillbirth is more than one who has not. 
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Figure 5.5: The mean number of children ever born by woman’s occupation and ever had 

pregnancy terminated via abortion, miscarriage or stillbirth 

Figure 5.6 presents the relationships between kidtwin and fertility preferences and shows that 

the effect of kidtwin on the predicted mean of children ever born is significant for all group of 

fertility preferences. It is noted that the predicted mean of children ever born from a woman 

who has multiple birth is more than one who had single birth. 
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Figure 5.6: The mean number of children ever born by kidtwin and fertility preferences 

The Generalized Poisson regression can account for under-dispersion displayed by the 

deviance of the Negative Binomial regression. The result indicate that this model 

accommodates both over-dispersion and underdispersion in count data which is in line with the 

findings of Islam et al. (2013). 
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Chapter 6: Predictive count modelling 

One major objective in statistical analysis is to make predictions and to provide appropriate 

measures of uncertainty related to them. Therefore, estimates are expected to be probabilistic 

in nature, taking the form of probability over future quantities and events (Dawid, 1984).  In 

view of this, predictive modelling is known as the process of creating, testing and validating a 

model to best predict the probability of an outcome (Liu et al., 2008). It can also be said to be 

a procedure for using known results to create, process and validate a model that can be used to 

predict future outcomes. Depending on the defined boundaries, predictive modelling which is 

synonymous with the field of machine learning is more commonly referred to in academic or 

research and development contexts (Finlay, 2014). When predictive modelling is deployed 

commercially it is often referred to as predictive analytics.  

Predictive analytics as a data mining technique uses its tool in an effort to give answers to the 

question “what might possibly happen in the future?” In trying to determine the probability of 

a set of data belonging to another set of data, models can use one or more classifier. The 

available models on the modelling portfolio of predictive analytics software help to derive new 

information about the data and to develop predictive models (Archak et al., 2011). In general, 

the essence of this model is to test, validate and evaluate the model using the detection theory 

to guess the probability of an outcome in a given set of input data (Liu et al., 2008). This is 

done to be able to predict the future, and to enhance and enable rapid decision making at the 

level of the individual patient, client and customer. 

In this chapter, we evaluated the predictive distribution for count data as they occur in a wide 

range of demographic application. Our focus was on using predictive count modelling to 

display the ability to correctly predict models that best describe the factors that affect children 

ever born. This approach was implemented to precisely identify the best model for predicting 

any data by comparing the performance of each model used. This chapter  presents the method 

and techniques for analyzing the data are explained and  the comparison results of the Poisson 

regression, Negative Binomial regression and Generalized Poisson regression followed by the 

conclusion. 
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6.1 Analysis of the data 

One major issue in fitting a model is how well it performs when applied to new data. To solve 

this problem, to the data needs to be partitioned data into training, which is used to create the 

model validation, which is used to evaluate the model performance, and test which is used to 

access how well the algorithm was trained using the training dataset. Partitioning is performed 

randomly to protect against a biased partition according to the proportion specified by the user. 

In this case, using SAS version 9.4, a comparison of 60% training and 40% validation, 70% 

training and 30% validation, 80% training and 20% validation also 90% training and 10% 

validation was performed respectively to examine the three models behaviours (Poisson 

regression, Negative Binomial regression and Generalized Poisson regression). In addition, to 

examine the stability of the training parameters under each partition. Firstly, the model is fit on 

a training dataset, that is a set of examples used to fit the parameters of the model. Using a 

supervised learning method specifically, the model is trained on the training dataset. The 

training dataset usually consists of pairs of input vector (or scalar) and the corresponding output 

scalar (or vector) which is normally denoted as the target (or label). The training dataset is now 

run with the current model to produce a result that is compared with the target for each input 

vector in the training dataset. Regarding the result of the comparison and specific learning 

algorithm being used, the parameters of the models are adjusted, while variable selection and 

parameter estimation can be included in the model fitting (Brownlee, 2017).  

Sequentially, in the validation dataset, the fitted model is used to predict the responses for the 

observations. While tuning the model’s hyperparameters, the validation dataset provides an 

unbiased evaluation of a model fit on the training dataset (James et al., 2013). 

It is important to note that the underlying assumption, when presenting the root mean square 

error (RMSE), is that the errors are unbiased and follow a normal distribution. Therefore, using 

an RMSE helps to provide a complete picture of the error distribution (Chai and Draxler, 2014). 

Nevertheless, the mean absolute error (MAE) is also one of the metrics for assessing and 

summarizing the quality of a machine learning model, while mean squared error assesses the 

quality of a predictor or an estimator (Wackerly and Scheaffer, 2008), and the coefficient of 

determination (R2) measures the closeness of the data to the fitted regression line. 
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In this work, mean absolute error (MAE), Mean squared error (MSE), root mean square error 

(RMSE) and coefficient of determination (R2) are the performance evaluation metrics used. 

The formulas are presented below,  

Root Mean Square Error (RMSE) is given as: 

𝑅𝑆𝑀𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)

2𝑁
𝑖=1

𝑁
                                                                                               

Mean Absolute Error (MAE) is given as: 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑎𝑐𝑡𝑢𝑎𝑙𝑖|
𝑛
𝑖=1

𝑁
=
∑ |𝑒𝑖|
𝑛
𝑖=1

𝑁
                                                                                   

Mean squared error (MSE) is given as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

2𝑛
𝑖=1                                                                                                              

Where N is the total number of observations. 

Coefficient of determination (R2): 

𝑅2 = 𝑐𝑜𝑟(𝑎𝑐𝑡𝑢𝑎𝑙1, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑1)
2                                                                                                                       

Tables 6.1-6.4 contain the summarized results of the comparison of Poisson regression, 

Negative Binomial regression and Generalized Poisson regression using 60%:40%, 70%:30%, 

80%:20% and 90%:10% respectively. 

Table 6.1: Summary of Poisson, Negative Binomial and Generalized Poisson regression 

results for 60%:40% 

 MAE MSE RMSE R2 

Poisson                         Training 

                                      Validation 

1.613814 

1.600686 

4.313774 

4.262919 

2.076963 

2.064684 

0.3624504 

0.3604352 

Negative Binomial        Training 

                                       Validation 

1.613813 

1.600686 

4.313784 

4.26293 

2.076965 

2.064686 

0.3624491 

0.3604339 

Generalized Poisson      Training 

                                       Validation 

1.613700 

1.600644 

4.315765 

4.264933 

2.077442 

2.065171 

0.3622371 

0.3602402 
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Table 6.2: Summary of Poisson, Negative Binomial and Generalized Poisson regression 

results for 70%:30% 

 MAE MSE RMSE R2 

Poisson                         Training 

                                      Validation 

1.605426 

1.616214 

4.273806 

4.344664 

2.067319 

2.084386 

0.3588404 

0.366524 

Negative Binomial        Training 

                                       Validation 

1.605426 

1.616214 

4.273815 

4.344675 

2.067321 

2.084388 

0.3588393 

0.3665226 

Generalized Poisson      Training 

                                       Validation 

1.605347 

1.616177 

4.276152 

4.347424 

2.067886 

2.085048 

0.3585859 

0.3661882 

 

Table 6.3: Summary of Poisson, Negative Binomial and Generalized Poisson regression 

results for 80%:20% 

 MAE MSE RMSE R2 

Poisson                         Training 

                                      Validation 

1.611256 

1.594595 

4.305445 

4.218068 

2.074957 

2.053794 

0.3598963 

0.3722824 

Negative Binomial        Training 

                                       Validation 

1.611255 

1.594595 

4.305455 

4.218074 

2.074959 

2.053795 

0.359895 

0.3722818 

Generalized Poisson      Training 

                                       Validation 

1.611217 

1.594352 

4.307683 

4.218566 

2.075496 

2.053915 

0.3596542 

0.3722467 

 

Table 6.4: Summary of Poisson, Negative Binomial and Generalized Poisson regression 

results for 90%:10% 

 MAE MSE RMSE R2 

Poisson                         Training 

                                      Validation 

1.609629 

1.603307 

4.299476 

4.213045 

2.975103 

2.999453 

0.3615511 

0.3655643 

Negative Binomial        Training 

                                       Validation 

1.609629 

1.603307 

4.299486 

4.213054 

2.975114 

2.999464 

0.3615499 

0.3655631 

Generalized Poisson      Training 

                                       Validation 

1.609559 

1.603503 

4.301766 

4.216727 

2.977169 

3.001452 

0.3613071 

0.3650468 

Based on the results of mean absolute error and root mean square error for Poisson, Negative 

Binomial and Generalized Poisson regression model, the performance evaluation for the 

training sample is higher than the validating sample, although with a slight difference (Aertsen 

et al., 2010; Onoro-Rubio and López-Sastre, 2016). The results as presented in Tables 6.1-6.4, 

and identified Poisson as the best predictive model as it gave the best performance for 

validating samples. 

In conclusion, comparing the root mean square error, mean squared error, R-squared and mean 

absolute error for training and validating sample of each model, showed that all the three 

models had almost identical performance evaluation metrics (Ghanbari, 2019). The Poisson 

regression was chosen as the best because it is the simplest model, this being important because 
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it balances the goodness of fit with simplicity and predicts the probability of the outcome.  

Complex models adapt their shape to fit the data but the additional parameter may not represent 

anything useful.  
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Chapter 7: Conclusion 

Count data, known as a type of data that takes non-negative integers has a wide application in 

real life. The most common models for count data are Generalized Poisson regression, Poisson 

regression, and Negative Binomial regression. Count data models have been applied in most 

of the real-life happenings, it was applied in this study to identify the factors affecting total 

children ever born, which poses a concern to every society. This can be explained from the 

point that fertility is among the major determining factor of population growth and patterns.  

Firstly, descriptive statistics were carried out to summarize the dataset in a useful and 

informative manner (Shmueli, 2010; Upadhyay, 2017). A comparison of three statistical 

methodologies on total children ever born revealed that, for Poisson regression, urban-rural 

status and age of household head had a significant effect on total children ever born. For urban-

rural status, rural women had more children ever born than urban women. In terms of age of 

household head, a household head from age 42-67 had more children ever born than those at 

the age of 68years and above while a household head from age 41years and below had fewer 

children ever born than those of 68years and above.  

From the interaction result, it is found that age at first marriage or cohabitation had a significant 

effect on total children ever with no more. Regardless of the age at first marriage or 

cohabitation, women whose fertility preferences choice is to have another birth are more 

powerful in the decision of how many children they will give birth to. Furthermore, in region, 

women from South South who desired to have another birth had more influence in child bearing 

decision making. In ever had pregnancy terminated via abortion, miscarriage or stillbirth, 

women in the group of have not and who are professional worker/others in terms of woman’s 

occupation had upper hand in decision making. Consequently, for fertility preferences, women 

who are undecided/others and have single birth had more power in decision of child bearing. 

While in whether and when this pregnancy is wanted, women who wanted pregnancy then and 

have secondary/high educational level are most influential in child bearing decision making. 

With respect to child is alive, women with secondary/high educational level whose children 

are alive had more influence in decision making in the family.  

Negative binomial was introduced to check for over-dispersion or under-dispersion, and it was 

found to be under-dispersed from the deviance result after fitting the data from Poisson 

regression.  



 
61 

Generalized Poisson regression seemed to be an appropriate model to detect factors affecting 

children ever born. Age of household head, age of respondent at the time of first birth, urban-

rural status, and religion are significantly associated with total children ever born. Early 

marriage, religious belief and unawareness of women who dwell in rural areas should be 

checked to control total children ever born in Nigeria. This result follows the conclusion from 

Ozmen and Famoye, (2007) and Islam et al. (2013).  

In the interaction of region with fertility preferences, women from South East who desire to 

have another birth, have more power in family decision making. However, for age at first 

marriage and fertility preferences (where women irrespective of their age who are 

undecided/others) have the highest decision-making power. Women who have not terminated 

pregnancy via abortion, miscarriage or stillbirth and are not currently working, have a better 

say in child bearing decision making. Regarding fertility preferences and child is twin, women 

who are undecided/others with single birth have dominant power for decision. For whether and 

when this pregnancy is wanted and education, women who wanted no more with primary 

education had more say in child bearing decision making. Finally, in child is alive and 

education, women in the group of no and have secondary/high educational level had more 

dominant power in family planning.  

In the predictive modeling, all the three models showed almost identical performance 

evaluation metrics while the Poisson regression was chosen as the best as it is the simplest 

model. This is because the root mean square error, mean squared error and the mean absolute 

error of the three models showed almost identical performance metrics. From the results 

obtained, in the inferential modeling, the Generalized Poisson Model was found to be superior, 

while in the predictive modeling, all three models showed almost identical performance 

evaluation metrics, with the Poisson regression being choosen as the best due to it being the 

simplest model. These results provide important information on how the age of household head, 

age at first marriage or cohabitation, ever had pregnancy terminated via abortion, miscarriage 

or stillbirth, age of respondent at first birth, urban-rural status, region, religion woman’s 

occupation, fertility preferences, whether and when this child’s pregnancy is wanted, child is 

alive, child is twin and education are associated with total children ever born. Age of household 

head, age at first marriage or cohabitation, urban-rural status, region, religion, woman’s 

occupation, fertility preferences, whether and when this child’s pregnancy is wanted, child is 

alive, child is twin, and education were found to be the most important variables for predicting 
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factors affecting total children ever born. In addition, uneducated women who are rural 

dwellers give birth more than their counterparts due to unawareness and lack of exposure to 

family planning programs. To authenticate the findings, larger study is needed to confirm these 

findings. Based on objective 2 of this study, Generalized Poisson regression served as 

alternative for handling count data associated with socio-economic and demographic factors 

affecting the total children ever born to respondents in Nigeria and, we believe that the findings 

to a large extent may be used to satisfy the fulfilment of the aim of the study.  

There were some limitations to the research, specifically that secondary data were analyzed. 

Missing values, inaccurate information from the respondents and some important variables 

could not be investigated further. For example, currently pregnant, husband/partner lives in 

woman’s household, ever been married and sex of household head were removed due to 

recording and coding error. 

Future studies need to focus on more explanatory variables that might be available from other 

sources. It will be useful in future research to investigate the motive and reason for child 

bearing, and to establish the present trend, as the increase in total children ever born could have 

an adverse effect on the Nigerian economy and security.  
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