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ABSTRACT

An attempt to obtain chiral induction across the carbamate linkage (-NCOO-), using chiral

amines and the benzyl carbamate, was embarked upon. Initial studies centred around the

benzyl carbamate protected form of a,a-diphenylpyrrolidinemethanol. The inability to

protect the alcohol in this compound led to further investigations into differently structured

molecules, these being 2-(1-phenylcyc1opentyl)-4,4,6-trimethyltetrahydro-l ,3-oxazine and

N-biphenyl benzyl carbamate. Chiral induction was not achieved, but the investigations

therein led to two new fields of study.

A trans-carbamation type cyc1isation reaction was found to occur in the a,a-diphenyl-(2­

pyrrolidine-N-benzyl carbamate)methanol compound yielding the bicyclic 2-oxazolidone,

3-oxa-l-aza-4,4-diphenylbicyclo[3.3.0]octan-2-one, with nitrogen at the bridgehead

position. Sodium hydride was the base used to facilitate this reaction. Further studies into

this reaction and this class of compounds were inconclusive.

The second field of study was the initial investigation into novel N-monosubstituted

carbamate rearrangement reactions to yield a substituted alcohol, of the benzyl alcohol

type. The rearrangement occurs when the carbamate is treated with butyllithium at O°C

and the reaction allowed to warm to room temperature. The rearrangement was shown to

occur when the substituent on the nitrogen is aromatic in nature, this group being able to

contain a hetero-atom and be substituted. A positive result was also obtained when the 0­

carbamate moiety was the benzyl or cinnamyl group and to a much lesser degree the allyl

group. The products obtained from the rearrangement of the benzyl carbamates were u­

aryl-a-phenylmethanols (substituted benzyl alcohols / benzhydrols), with the analogous

product, l-aryl-3-phenylprop-2-en-l-ol, being obtained from the cinnamyl alcohol. A

benzylic substituted benzyl carbamate rearranged to give the tertiary alcohol. It was found

that the rearrangement occurred to the position on the aryl substituent to which the nitrogen

had been attached. From the results obtained no conclusive mechanistic details could be

determined, but it was proposed that the reaction intermediate contained a five-membered

cyclic structure. It is assumed that the rearrangement occurs with concomitant loss of

cyanic acid (HNCO).



1. INTRODUCTION

1.1 CARBAMATES

Compounds belonging to the class oforganic molecules known as carbamates all contain,

as a major feature, the carbamate bond or linkage, depicted below.

o
'" 11N-C-O-
,/'

The class name of carbamates is derived from the name of the simplest parent compound,

carbamic acid (H2NCOOH). Carbamic acid itself has never been isolated1
• It is only

known as a reaction intermediate,· as it is unstable, particularly in acidic media where it

decomposes to give ammonia and carbon dioxide2
• However, carbamic acid is a useful

compound on which the carbamate naming system has been based. Esters of the acid, i. e.

substituents on the oxygen, or alcohol derived moieties, are referred to as alkyl or aryl

carbamates, and occasionally as O-alkyl or O-aryl moieties. Substituents on the nitrogen

are designated using the N-prefix1
, 2. Thus PhNHCOOEt is named ethyl N-phenyl­

carbamate1
• Recently it seems to be becoming popular and acceptable to name carbamate

substituents the other way around, for example the previous compound's name becomes N­

phenyl ethyl carbamate.

Historically carbamates were called urethanes or urethans, names derived from the class of

polymers called polyurethanes which contain the carbamate linkage. Ethyl carbamate

(H2NCOOEt) is traditionally known as urethan and methyl carbamate (H2NCOOMe), to a

lesser degree, as urethylan1
•

Carbamates have been known for a long time, becoming known at about the same time that

modem organic chemistry was begun. One of the first reported syntheses is of ethyl

carbamate by Wohler in ca.18401
• Interest in carbamates through the years has been

extensive and varied.
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1.1.2 PROPERTIES

Physical properties: Methyl carbamate is a white solid with melting point of 54°C and

boiling point of 177°C (760 mmHg). Ethyl carbamate is also a white solid with melting

point of 48°C and boiling point of 185°C (760 mmHg). It sublimes and is hydrophilic.

Ethyl carbamate is soluble in lower alcohols, ketones, ethers, esters, chlorinated

hydrocarbons and water, partially soluble in aromatic hydrocarbons and insoluble in

aliphatic hydrocarbons. Carbamates of higher alcohols are crystalline solids which have

melting point ranges always higher than the corresponding acetate1
• More complex, that is

substituted, carbamates may be liquids or crystalline solids and tend to absorb moisture3
•

Spectral properties: In Infrared absorption spectra the major peaks occur in the carbonyl

regIOn. The ester characteristics of the carbamate linkage dominate the amide

characteristics of the bond. Carbonyl absorption for N-unsubstituted carbamates occurs in

the 1725 cm-1 region and for N-monosubstituted carbamates in the 1714 cm-1 region.

Many carbamates, like esters, have what appears to be a -C-O-C- stretching band in· the

1050 - 1000 cm-1 region. In mono- and unsubstituted carbamates the amide band is found

in the 1620 cm-1 region. The N-H stretch absorption band is, like open chain amides,

found in the 3300 - 3250 cm-1 region1.

Chemical properties: Carbamates exhibit characteristic properties of both esters and

amides. Some of their reactions resemble reactions involving esters, amides, enols and
• 1Isocyanates .

1.1.3 lI..SE.S.

The uses of carbamates are extensive and range from agricultural applications through

medical, biological and industrial applications to their synthetic utility in chemistry.

Ethyl carbamate has historically been used extensively in the medical field. It inhibits

mitosis, and thus cell growth, and has therefore been used against leukemia1
• Ethyl

-:

carbamate also acts as a nervous system depressant and has thus been used as an antidote
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against central nervous system stimulant poisons such as strychnine. It and other simple

carbamates have been used as antiseptics, local anaestheticsl and anticonvulsants4
,5. Ethyl

carbamate inhibits the enzyme acetylcholinesterase only slightly; however other carbamate

compounds are far more active in this regard6
• Acetyl choline is one of the main

messengers in nerve synapses and is acted upon by the enzyme acetylcholinesterase. If the

enzyme is inhibited it allows for an increase in concentration of acetylcholine in the nerve

synapse, this situation becoming fatal to the organism if these concentrations become too

high. The carbamate compound physostigmine (1), and its HP290 analogue which has an

altered carbamate moiety, are showing excellent results in tests against Alzheimer's

disease. Sufferers have too low a concentration of acetylcholine in the brain nerve

synapses and thus suffer from memory loss. Carefully administered doses of enzyme

inhibitor therefore allows for these levels to be kept at a suitable concentration.

Acetylcholinesterase is also the target of many nerve gases and the compound

pyridostigmine (2) has therefore been used by the military as it has the ability to bind

reversibly to the enzyme, therefore preventing poisoning initially by the gas or later by

enzyme inhibition. Carbamates have also been used as prodrugs for amino-functional

drugs (P-blockers) to improve drug delivery to man by increasing the drug's permeation

through membranes7
.

(1) (2)

Industrially carbamates have extensive use as they form a large class of polymers, namely

the polyurethanes. Other applications of carbamates include the use of substituted alkyl

carbamates as plasticisers for natural and synthetic rubbers8 and the use of ethyl or propyl

carbamate as a plasticiser for melamine-isocyanate resins and laminates9• Carbamates have

also been used in hair setting agent preparationslO and as crease-resistant finishes for

cottons ll
.
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By far one of the largest uses of carbamates, other than their use as polyurethanes, is in the

d . I "d 12· "d 13agricultural sphere where they are use extensIve y as pestlcI es , msectlcI es ,

herbicides and fungicides 14
• Here their mode of action is believed to be the deadly build­

up of acetylcholine in the organism, by inhibition of the enzyme. Carbamates form a more

desirable class of pesticides as they do not remain active in the soil for extended periods of

time, unlike such compounds as DDT.

The synthetic utility of carbamates will be discussed in 1.1.5.6.

1.1.4 FORMATION REACTIONS OF CARBAMATES

Although in the history of carbamate preparations the number of methods are numerous,

only a few classes have developed to a level ofsignificance.

1.1.4.1 REACTION OF ALCOHOLS WITH UREA l

The preparation of carbamates by the reaction of alcohols with urea (Eqn 1) is of more

industrial than laboratory importance. Methyl and ethyl carbamate are commercially

prepared by this method. For the preparation of ethyl carbamate ethanol and urea have to

be heated under pressure to approximately 150°C for a number of hours. Due to these

conditions, the high temperatures being necessary for the optimum dissociation of urea into

its reactive intermediates, cyanic acid and ammonia, this method is limited to the

preparation of carbamates from higher boiling alcohols. Metal salts, for example zinc and

cobalt chlorides, lead acetate and metal salts of weak organic acids, are known to have a

catalytic effect on the reaction, reducing reaction time and improving yields.

Unfortunately this reaction is unsuitable for reactions involving tertiary alcohols, phenols

or urea reactive groups. N-substituted ureas can be used, giving the alkyl carbamate or N­

alkyl alkyl carbamate, or mixtures of these (Eqn 2).
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(Eqn 1)

R'NHCONH2 + ROH • R'NHCOOR + NH3 (Eqn 2)

----. H2NCOOR + R'NH2

1.1.4.2 REACTION OF AMINES AND CHLOROFORMATES

The reaction of chlorofonnates with amines is a general reaction for the laboratory

preparation of carbamatesl (Eqn 4). Most alcohols in the presence of base will react with

phosgene (COCI2) to give the corresponding chlorofonnate, which may then be used in the

reaction (Eqn 3). Unfortunately phosgene is an exceptionally dangerous reagent, being

toxic and difficult to handle as it is a gas, which makes this preparation method

undesirable. However phosgene equivalents, such as triphosgenel5
,16 (CI3COCOOCCI3)

and tricWoromethyl chlorofonnate l7 (CI3COOCI), which are safer have been developed,

along with improved preparation methods for these reagents.

ROH + COC~ • ROCOCI + HCI (Eqn 3)

ROCOCI + NHR'R" • ROCONR'R" + HCI (R',R" can = H) (Eqn 4)

1.1.4.3 TRANSESTERIFICAnON METHODS

When carbamates, particularly methyl and ethyl carbamate, are heated together with higher

boiling alcohols exchange of the alcohol portions occurs to give a more complex carbamate

(Eqn 5). The reaction occurs with N-substituted and unsubstituted systems and with

primary and secondary alcohols, but is unsuitable for exchange with tertiary alcohols or

phenols. The reaction is catalysed by aluminium isopropoxide, as well as a number of

other organometallic compounds being reported I.

ROCONR'R" + R"'OH --.. R"'OCONR'R" + ROH (Eqn 5)
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1.1.4.4 REACTION OF CARBAMOYL CHLORIDES WITH ALCOHOLS

N-monosubstituted carbamoyl halides are unstable, decomposing to the isocyanate and

hydrogen halide, and therefore this preparation method may only be used for the

preparation of N,N-disubstituted carbamates, from the correspondingly more stable N,N­

disubstituted carbamoyl halides (usually chloride). The N,N-disubstituted carbamoyl

chlorides are invariably prepared by the reaction of secondary amines with phosgene 2, or

phosgene equivalents (Egn 6). Reaction of the carbamoyl chloride with the desired

alcohol, usually in the presence of base such as pyridine18 or NEt3, yields the desired

carbamate1, 2 (Egn 7).

R'2NH + COC~

R'2NCOCI + ROH

--... R'2NCOCI. + HCI (Eqn 6)

--... R'2NCOOR + HCI (Eqn 7)

1.1.4.5 REACTION OF ISOCYANATES WITH ALCOHOLS

The wide availability of isocyanates makes the reaction of isocyanates with alcohols an

excellent general method for the preparation of N-substituted carbamates1 (Egn 8). The

reaction is rapid and quantitative for alcohols, but is slower for phenols, usually being

catalysed by tertiary amines2
• The versatility of products available from this preparative

route is further increased by trapping with the alcohol the isocyanate intermediates in the

Curtius, Lossen, Hofmann and other rearrangement reactions2
•

R-N=C=O + R'OH

o
11

--... R-N-C-OR'
H

(Eqn 8)
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1.1.4.6 AMINOLYSIS OF CARBONATE ESTERS

Carbamates may also be prepared by the aminolysis of carbonate esters (dialkyl

carbonatesl (Eqn 9). This reaction is most successful when the two alkyl portions are

identical, or if there is a large difference in leaving abilities between the two groups. This

method cannot be used for the preparation of carbamates with good leaving groups, i. e.

phenyl· carbamate, as the carbamate fonned is more reactive that the starting material

carbonate.

o
11

R'O-C-OR" + RNH2 • RNHCOOR' (or R'1 + (R' or) R"OH (Eqn 9)

The reaction between primary and secondary. amines and dialkylcarbonates needs to be

catalysed to achieve satisfactory conversion rates. Some examples of catalysts are strong

bases, such as alkali metal alkoxides, and Zn, Co, Sn, AI and Ti compounds for the

carboxylation of aromatic amines and Lewis acids, such as AICI], SnCI2, ZnCl2 and FeCI],

for the effective conversion of n-propylamine and diethylcarbonate to N-propyl ethyl

b 19car amate .

Recently the use of carbon dioxide has been reportedl9
• Initially alkylammonium N-alkyl

carbamates (3) are fonned by saturating amine solutions with CO2 and then these are

reacted with dimethylcarbonate (DMC) (4) to yield the N-alkyl methyl carbamates (5)

(Eqn 10).

+-RNH3 02CNHR + OC(OMeh
(3) (4)

--.-. RNHCOOMe + CO2 + RNH2 + MeOH (Eqn 10)
(5)
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The preparation of functionalised and complex carbamates has recently been reported using

di(2-pyridyl)carbonate (6) to promote the alkoxycarbonylation of amines
2o

. Di(2­

pyridyl)carbonate (6) may be reacted with a variety of alcohols, including hindered

secondary and tertiary alcohols and protected glycols, to give the mixed carbonate (7).

This is then reacted with the amine, even complex amines and those containing functional

groups, to efficiently obtain the carbamate (8), by replacement of the second pyridyl

moiety by the amine. An example of this reaction is shown below (Scheme 1).

(6)

+
Et3N,CHP2~

RT.,l2h

o
..... II~OMe"O~N

H

Ox
Scheme 1

1.1.4.7 MISCELLANEOUS METHODS

(8)

A variety of other methods have been used for the preparation of carbamates. Some of

historical interest are the following reactions: a mixture of amine, alcohol and urea, when

heated, gives both N-alkyl carbamates and unsubstituted carbamates l
; phenyl cyanate when

hydrolysed by acid yields phenyl carbamate l
; aminoethyl carbamates have been formed by

the reaction of urea and ethylene oxide1
; heating an alcohol with urea nitrate, in the
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presence of zinc chloride, yields the corresponding carbamate1
; and the reaction of cyanic

acid (usually obtained from the thermal decomposition of cyanuric acid) with alcohols also
1 2produces carbamates; however allophanates (ROCONHCONH2) may also be formed' .

Recently a number of reports have appeared in the literature for the preparation of
I

carbamates directly from carbon dioxide, amines and alkyl groups. Butcher21 reports the

formation of a wide variety of carbamates from primary, secondary and aromatic amines,

various electrophiles (RX) and CO2 in the presence of inorganic bases. Caesium carbonate

is the most effective of these bases allowing for the highest percentage production of

carbamate over tertiary amine, the other product of the reaction. The reaction is solvent

dependent. Yoshida and co-workers22 also report the formation of carbamates from carbon

dioxide, aliphatic amines and alkyl halides. They found that the highest yields were

obtained with secondary alkyl bromides and that the addition of DMF to the reaction

mixture promoted product formation. It is their belief that this reaction proceeds by a SN2

displacement type reaction mechanism where the halide is displaced from the alkyl halide

by the carbamate anion product of the reaction of the CO2 with the amine. Dixneuf and co­

workers23,24 have produced vinyl carbamates from the reaction of secondary amines and

terminal alkynes with carbon dioxide, under pressure, using mono- or trinuclear Ru

complexes as catalysts.

The autoxidation of a-sulfenyl-a-aminonitriles to carbamates has been achieved by

reaction of the sulfenyl aminonitrile with metal alkoxides under an oxygen atmosphere25 .

A new range of carbamate compounds, N-(methylene-4-oxocoumarinyl) carbamates26,

have been found to be the products of the reaction of 4-hydroxycoumarin with simpler

carbamates, such as ethyl, butyl and benzyl carbamate, in refluxing 2-propanol in the

presence of ethyl orthoformate (CH(OEt)3).
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1.1.5 REACTIONS OF CARBAMATES

1.1.5.1 THERMAL DECOMPOSITION

The thermal stability of carbamates depends to a large extent on the degree of N­

substitution l
. N,N-disubstituted carbamates are relatively resistant to thermal

decomposition, this rarely occurring cleanly when it does occur. N-monosubstituted

carbamates undergo decomposition at elevated temperatures giving largely isocyanates and

alcohols and to a lesser extent ureas, CO2, olefins and carbodiimides. On heating they may

undergo three general reactions2
: (a) elimination of an alcohol and formation of an

isocyanate, (b) fragmentation to form an amine, CO2 and an alkene and (c) loss of CO2,

Decomposition temperatures vary and may be as high as 200°C. Aryl carbamates

decompose at approximately 150°C, via path (a) above; however t-butyl carbamates

decompose even at approximately 50°C. Unsubstituted carbamates decompose quite

readily above 130°C to cyanic acid derivatives, cyanuric acid, alcohols and allophanates.

Metal salts in even trace quantities accelerates this decompositionI.

1.1.5.2 HYDROLYSIS1

Base hydrolysis: All carbamates derived from aliphatic alcohols undergo alkaline

hydrolysis by the mechanism depicted in Equation 11 to give an amine, CO2 carbonate

and water. Carbamates derived from aromatic alcohols decompose by a different

mechanism, depicted in Equation 12, and are hydrolysed more rapidly. The driving force

in this mechanism is the ease of departure of the phenoxide ion. N,N-disubstituted

carbamates are unable to form the isocyanate intermediate and thus decompose very slowly

by the first mechanism (Eqn 11).
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--•• R'R"NC008 + ROH

1l ~O
"'~I--- [R'R''NCOOH] + OH8

o
11
C

ArO""'" 'NHR
-Q~ ...

[
0

8
]H20 + I

ArO-C NR

Equation 12

--•• R-N=C=O + Ar08

lH20

[RNHCOOH]

Acid hydrolysis: 'Carbamates are generally quite stable to acids under most conditions.

However, carbamates in glacial acetic acid when treated with HCI or HBr yield CO2,

ammonium halide and alkyl halide. It is believed that the nitrogen is first protonated then

the alkoxy group attacked by the halide ion. When heated with 30-60% oleum

unsubstituted or monosubstituted carbamates become sulfonated on the nitrogen prior to

cleavage, giving sulfamic acids as products.

1.1.5.3 REACTIONS AT THE AMIDO GROUP

Carbamates, that is the N-monosubstituted or unsubstituted carbamates, are themselves

. potential nucleophiles, although poor ones in comparison with amides. They milY be

acylated at the nitrogen by a number of compounds including esters, acid halides,

anhydrides and ketenes, generally being more readily acetylated than ordinary acid amides.

Diacid chlorides, such as oxalyl chloride may even react with two equivalents of carbamate

to yield a biscarbamate1
• When treated with sodium or with strong base N-
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monosubstituted or unsubstituted carbamates can be converted to the formal carbamate

anion (9) and can therefore act as better nuc1eophiles in reactions with e1ectrophiles, such

as alkyl or acyl halides, to give the corresponding N-alkyl or N-acyl derivatives (Eqn 13).

These reactions will only be successful if the carbamate anion is stable, a factor determined

by the carbamate ester group. If this group is a poor leaving group the anionic carbamate

will not be able to undergo rapid elimination of this -OR group to yield the isocyanate
2

•

R'NHCOOR base ..

COOR
/

R'/COC R'N'COR"G
R'NCOOR

(9) """
R"'C~R'R"'NCOOR

(Eqn 13)

1.1.5.4 REACTIONS AT THE ESTER GROUP

The reaction of carbamates with nucleophiles is one of the most characteristic reactions of

the class. Dispiacement of the aryloxy or alkoxy group by amines yields ureas, and by

alcohols leads to transesterification products. The reactivity of alkyl carbamates bears a

closer resemblance to that of amides than that of esters and forcing conditions are needed

in the reactions of these compounds. In aryl carbamates the aryloxy group is a good

leaving group and the loss of this group is the rate determining step in the base catalysed

reaction of unsubstituted or monosubstituted carbamates, giving an isocyanate as an

intermediate which is readily trapped by nucleophiles to give the substitution product2

(Scheme 2).

o
11

RNH-C-OR' ..... -
o

G 11
RN-C-OR' R'=aryl •- - RN=C=O

o
XG 11

I...---~~-""""" RNH-C-X "'~E---_~H~X~__

Scheme 2
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When carbamates and amines are reacted together at elevated temperatures substituted

ureas are normally the products obtained l
. Heating ethyl carbamate with ammonia in a

sealed system yields urea and ethanol and N,N-dialkylureas can be formed by heating the

N-alkylcarbamate and the corresponding amine at 230°C (Eqn 14) or by heating, at 150°C,

ethyl carbamate and the amine (Eqn 15 & 16). Few examples exist of the formation of

monosubstituted ureas from aminesand carbamates. However, reaction of primary or

secondaryalkylamines with an alkyl carbamate, with removal by fractional distillation of

the alcohol formed, yields N-alkylureas in excellent yields (Eqn 17). It has been shown

that the reaction of an alkylamine with a N-unsubstituted carbamate in the presence of the

hydrochloride salt leads to amine interchange yielding the N-substituted carbamate (Eqn

18). Cleavage of the ester bond of the carbamate is achieved by chemical reduction, e.g.

LiAIH4 reduces carbamates to the corresponding N-methylamines (Eqn 19)1.

Transesterification reactions have already been discussed in 1.1.4.3.

RNHCOOEt + RNH2

H2NCOOEt + RNH2

H2NCONHR + RNH2

--.. RNHCONHR + EtOH

--.. H2NCONHR + EtOH

--.. RNHCONHR + NH3

(Eqn 14)

(Eqn 15)

(Eqn 16)

NHR'R" + R'''NHCOOR --•• R'R''NCONHR'" + ROH R'=H,aIkyI (Eqn 17)

H2NCOOEt + RNH2

RNHCOOR'

RNH3CI. RNHCOOEt + NH4C1

[H]. RNHCH3 + R'OH

(Eqn 18)

(Eqn 19)

1.1.5.5 MISCELLANEOUS REACTIONS

N-unsubstituted carbamates react with carbonyl compounds, but the reaction is very slow

except with the most reactive aldehydes2. Methylenebiscarbamates [R'R"C(NHCOOR)2l

are formed in the reaction of aldehydes with two moles of carbamate in the presence of

trace amounts of mineral acid I. Carbocations react with carbamates and allow for

alkylation at either the nitrogen, for active alkyl halides, or the carbonyl oxygen, more

precisely the hydroxyl group of the enolic form of the carbamate, with less active alkyl
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halides. This latter reaction is followed by loss of an alkyl halide, resulting in the exchange

of the alkoxy groupl. The carbamate linkage is also able to act as an internal nucleophile

towards acyl or alkyl centres if present. In neutral solution reaction at the oxygen is the

norm, while the anion reacts at the nitrogen, thus making the carbamate an ambident

nucleophile. This aforementioned reaction yields cyclic products, some of which may be

hydrolysed to yield the amine, thus removing the carbamate protecting group2.

1.1.5.6 CARBAMATES AS SYNTHETIC INTERMEDIATES

One of the major synthetic uses of carbamates is in the protection of amine functionalities,

usually in biologically related compounds and for peptide synthesis. Tert-butyl (BOC),

butyl and benzyl carbamates are the most commonly applied, most likely due to their easy

removal at later stages, their lack of involvement in subsequent reactions, that they do not

undergo many side reactions and that they prevent racemisation of intermediates. Ethyl

and methyl carbamate are also used.

The carbamate linkage is able to activate the position alpha to the ester portion of the bond

to proton abstraction and metalation. This feature has been employed extensively by

Hoppe and co-workers and is described in detail later in 1.2.2. N,N-dialkyl carbamates of

benzyl alcohol (10) allow for the functionalisation of the benzylic position in the otherwise

fairly unreactive benzyl alcohol, the alcohol usually being the only functionality available

for functionalisation. Hoppe and Bronneke27 showed that N,N-dialkyl benzyl carbamates

(10) are deprotonated at the benzylic position by BuLi and TMEDA to yield the stable

lithio derivative (11) which can be reacted with a number of electrophiles to yield the more

complex carbamate (12), and ultimately the substituted benzyl alcohol on removal of the

carbamate (Scheme 3). These anions (11) are stable and do not undergo the Wittig

rearrangement, unlike the alkyl benzyl ethers used in· the past. Zhang and Gawle/8 have

however contradicted Hoppe and claim that these lithiated anion species (11) may undergo

[1,2]-rearrangement of the amide portion of the carbamate to the benzylic position.
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o

PhCH20H --+- Ph~O)lN/R
'R

(10)

Scheme 3

Carbamates have been' used very successfully in Directed ortho Metalation (DoM)

reactions (Eqn A of Scheme) where the carbonyl group of the carbamate allows for co­

ordination of the metal base in a position which allows for ortho abstraction of the

proton29
• This reaction is analogous to ~-activation or metalation by the carbamate. In

many instances the DoM reaction involves migration of the amide portion of the

carbamate, after metalation, to the ortho position, yielding the o-substituted phenol (13)

(Eqn B of Scheme). This rearrangement occurs when no electrophile is added and the

reaction is allowed to warm from -78°C to room temperature (R.T.). This reaction

amounts to an anionic equivalent of the ortho-Fries rearrangement. In some instances the

carbamate derivative of benzyl alcohol also undergoes migration of the amide portion to

yield the o-substituted benzyl alcohoes.

E<t>.. r(YDEMG
_~ (EqnA)

DMG =directing metallation group

(Eqn B)

Scheme 4

In addition to the above main synthetic uses of carbamates they, or the carbamate linkage,

have also played a large role in other fields, some examples of which follow.

• The N-alkyl carbamate form of a-allylic alcohols has been used to yield, by palladium

catalysed arylation, the N-alkyl O-cinnamyl carbamates3o
• Without the carbamate



16

present the analogous reaction (Heck type arylation) would yield the arylated alkyl

carbonyl compound.

• N-acylhydroxylamine-O-carbamates have been shown to rearrange by a [3,3]

sigmatropic shift under basic conditions to yield a-amino acid amide derivatives
31

•

• The carbamate protected N-cyclic-ene carbamates have been used to activate these

systems to [2+2] cycloaddition reactions with ketenes. This reaction has been used in

the synthesis of the important Geissman-Waiss Lactone
32

•

• Activated N-methylcarbamates have been used in the preparation of anti-cancer

17compounds.

• N,N-dimethyl carbamates of allylic alcohols undergo high-yield equilibration of the

allylic system, by rearrangement of the carbamate under conditions of mercuric

trifluoroacetate catalysis33
•

• Another example is their use in the Pitkle chromatographic resolution of alcohols,

hydroxy esters and thiols34
•

1.2 STEREOSELECTIVITY IN CARBAMATES

Stereoselectivity in carbamates falls into two categories, that of induced chirality in the

substituents on the carbamate linkage and that of regioselectivity around alkenyl systems,

with associated diastereoselective addition within these systems.

1.2.1 INDUCED CHlRALITY IN CARBAMATES

Obviously chirality in carbamates can be achieved by using chiral reagents in the

preparation of the carbamate, so long as the chirality is maintained throughout the

preparation method, which in almost all methods would be the case.
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The introduction of chirality to a compound that already contains the carbamate bond has

not been very successful at all and only a handful of examples are reported. No examples

of strict chiral induction were found in the literature.

Pozo and Gotor35 have successfully achieved the synthesis of chiral carbamates using an

enzymatic alkoxycarbonylation reaction. They reacted a number of racemic primary

amines with vinyl carbonates (n-octylvinyl carbonate and n-butyl vinyl carbonate),

prepared by the reaction of the alkyl alcohol and vinyl chloroformate, in the presence of the

enzyme CAL (Candida antartica lipase SP 435A immobilised on acurrell) in various

solvents (Scheme 5). These long chain alkyl carbonates were chosen due to their previous

success in other reactions with CAL. The reactions were successful with the lipase being

enantioselective towards the R enantiomer, as expected from previous studies. These

authors also showed that solvent and substrates do affect the overall enantiospecific

success of the reaction.

R= n-octyl, n-butyl

Scheme 5

Kerrick and Beak36 have successfully achieved asymmetric deprotonations to give

enantioselective synthesis in a N-pyrrolidine t-butyl carbamate system (14). They achieved

enantioselective deprotonation of the 2-pyrrolidine position using s-butyllithium and (-)­

sparteine (15). Reaction with electrophiles gives the sUbstituted product (16) with

excellent enantiomeric excesses being obtained (88 - 96%), the products having the (R)­

configuration, which in the case ofproline is the unnatural form.



sec-BuLi/ sparteine (1~
Et20, -78°C, 4-6hQ

I
Boc

(14)

Q····'Li
t-BUO~c!

Q''''EI
Boc

(16)
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Boc = tert-butoxycarbonyl
Scheme 6

(-)-sparteine (15)

Brown37 et al. obtained approximately 60% diastereomeric excesses (d.e.) for the reaction

of alkyllbenzyl N-alkyl-N-[(aryllalkyl(methoxy)methyl)methyl]carbamates (17) with

trialkylsilyl enol ethers (18) in the presence of catalytic amounts of trialkylsilyl triflates to

yield the corresponding p-ketocarbamates (19) (Scheme 7).

MeOyR' ()OSiR
3

NOR'" + TMS OTf (lOmol%) ~
R"/' Y MeCN -40°C

o
(17) (18)

Scheme 7

OR"
/

N
'C_OR'"

R' //o
(19)

Barner and Mani38 attempted to induce chirality across the carbamate linkage using the N­

t-butyl benzyl carbamate system. They hoped that the configuration of the compound,

aided by the t-butyl structure, would allow for the enantiospecific abstraction of one of the

benzylic protons. Their work was unsuccessful with only racemic products being obtained

and they do not report any further successful results. They did however show that this

system, once cleavage of the carbamate using DIBAL has been achieved, is a route for the

high yielding general synthesis of alkylated benzylic systems.
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1.2~2 REGIO - AND DIASTEREOSELECTIVITY IN CARBAMATES - The work of

Hoppe and co-workers

The diastereoselective and regioselective studies of Hoppe and co-workers on the whole

centre around l-alkoxy-2-propenyl systems (20). These systems are of interest as they

form the starting materials for the production of homoenolate equivalents which are highly

desirable for syntheses, as they are synthetic equivalents for the unknown aldehyde or

ketone homoenolates (21)18,39. Traditionally the carbonyl has been protected as the ether,

with alkyl, aryl or trialkylsilyl groups, and the anion formed after reaction with base

generally reacts regioselectively at the y-position for the addition of alkyl groups to form

the enol ether, but undesirably at the a-position for the addition of carbonyl compounds.

Due to the lack of acidity in the system it can be at most monosubstituted to still allow for

deprotonation. Unfortunately these systems are also prone to side reactions taking place,

such as the Wittig rearrangemene9. When the carbonyl is protected as the N,N-dialkyl

carbamate the acidity of the system is increased to such an extent that, even on reaction

with carbonyl compounds, the y-adduct (23) is preferentially formed, with only trace

amounts of the a-adduct (24) being obtained18,39. This regioselectivity is enhanced as the

size of the N-alkyl substituent on the carbamate is increased, N,N-di-iso-propyl carbamate

giving better results than N,N-diethyl carbamate which gives greatly improved results over

N,N-dimethyl carbamate18. Generally the Z-configuration in the enol ether product

predominates over the other isomers18,39. The products are formed by the reaction of the

N,N-dialkyl carbamates (20), prepared from the aIcohols and carbamoyl chlorides, with

organometallic bases, such as LDA18 or n-BuLi complexed with TMEDA (N,N,N',N'­

tetramethylethylenediamine)39 to give the anion (22). This is then reacted with an

electrophile (carbonyl) to give the y-adduct (23). Should further terminal protons be

available for abstraction the reaction may be repeated to give a disubstituted product18,

with another electrophile (EX). The reaction using the carbamate protecting group, unlike

those traditionally used, is even successful in poly-substituted systems40
• It is believed that

due to the greatly increased acidity of the a-position the counter cation preferentially

chelates to this position, aided by complexation to the carbonyl, thus allowing for the
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preferential y-addition. The aruon intermediate (22) IS very stable at the reaction

temperature of -70°C.

(21) (20)

base.

R2

R3, .i.. Na'"RIrr'-e'T
R4 OR'

(22)

lR"COR",

R'=CONR2

R" =H, alkyl

nR
R2

4R RI

R" OR'
HO R'"

(23)

Scheme 8

+

R2 'R R"'

R3... .l. XOH

Y~RI
R4 OR'

(24)

The carbonyl group can also be "electronically protected" and not only sterically by the use

of N-monoalkyl carbamates. Deprotonation at the nitrogen with n-BuLi and TMEDA

yields the lithium salt, thus reducing this regions electrophilicity. Double deprotonation of

these allyl N-substituted carbamate systems with BuLi and TMEDA yields a dilithiated

ester anion, and subsequent reaction with an electrophile also yields predominantly the Z­

configured y-adducts4o
•

Diastereoselective homoaldol reactions have been achieved by similar methods to those

above, but also utilising transmetalation procedures. If the starting materials are (E)-2­

butenyl N,N-dialkyl carbamates (25) then transmetalation of the a-lithium compound (26)

with bis-iso-butylaluminium chloride to yield the aluminium derivative (27) and

subsequent reaction with aldehydes yields predominantly the E- (28) or Z-threo/anti­

configured (29) products of the four possible diastereomers41 (Scheme 9). If the

transmetalation reaction is carried out using chlorotris(diethylamino)titanium to yield the
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crotyltitanium derivative then subsequent reaction with an aldehyde yields almost

exclusively the Z-configured (threo)-8-hydroxyenol carbamate42 (29). In addition to this

diastereoselectivity further regioselectivity in this reaction can be attained by using an a­

substituted starting material, thus giving the y-adduct free of other isomers. When the (Z)­

2-butenyl carbamates are used as starting materials43 then, using the same aluminium

exchange and carbonyl addition reaction above, the E-erythrolsyn-products (30),

predominate. Lithium exchange with methanesulfonate also increases theregioselectivity.

H3C~M

OCb

E-

(25) M=H

(26) M=Li

(27) M = AI(iBuh

Cb=CONR2

R'CHO •
9H

R,~OCb

CH3

E-threo (28)

OH

R,~OCb
CH3

E-erythro (30)

Scheme 9

?H
RI~

CH3 OCb

Z-threo (29)

OH

R'~
CH3 OCb

Z-erythro (31)

Using the identical titanium reaction to that above, but with a varied starting material some

interesting results relating to chirality were found44
• When the starting materials were a­

chiral a-substituted (for larger groups, e.g. i-butyl) 2-alkenyl carbamates abstraction of the .

a-proton by Li-TMEDA occurs with retention of configuration and if this intermediate is

reacted with the carbonyl compound the expected (Z)-products predominate. However, if

transmetalation with Ti (as above) is carried out with subsequent addition of the carbonyl

compound only one product, the (Z)-(+)-anti-diastereomer, is obtained. Thus inversion of

configuration had occurred and there had been 1,3-chirality transfer, the configuration at

Cl determining the configuration at C3 and not the position of the aldehyde in the

transition complex. The metalated intermediates in these reactions are stable to

racemisation. The reaction of the a-lithiated intermediates, derived from (E)- or (Z)-
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configured starting materials similar to those just described, with chlorotrimethylstannane

yields predominantly the y-stannylated (Z)-configured products, also with 1,3-chirality

transfer, with respect to the chiral configuration of the lithium complex chelation4s.

The above reactions utilise a-chiral starting materials with retention of configuration on

metalation. However, prochiral starting materials can be used and enantiotopic

deprotonation achieved using second-order asymmetric induction with s-BuLi complexed

with an enantiomerically pure diamine, (-)-sparteine (15)46,47,48. Proton abstraction occurs

but only one enantiomer of the complex rapidly crystallises out of solution, giving the pure

(R)-configured product. Direct reaction of this solid with tetra(iso-propoxy)titanium

results in the complex going into solution. Subsequent reaction of the Ti-complex with

carbonyl compounds yields diastereomerically pure products with high enantiomeric

excess (e.e.). Derivatives of a-prochiral alcohols where the rest of the molecule does not

contain a stabilising factor, such as aryl or alkenyl systems, are also enantiospecifically

deprotonated by sec-BuLi and (-)-sparteine (15)49. However, in this case the alcohol must

be protected as a sterically demanding carbamate (32). Treatment of this compound with

the Li-diamine complex yields the (S)-configured product and consequent substitution with

electrophiles is believed to occur with retention of configuration. Removal of the

spirocycIic oxazolidine carbamate (32) yields the substituted alcohols with high e.e. This

same reaction is also successful in the case of diols, or their carbamate derivatives, with the

si-face also being enantiotopically deprotonatedSo,sl.

no
~-g, I~H
0, I o~

'-----t--... R

(32)
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The chiral products of many of the above reactions themselves become intermediates in the

formation of a number of further products, for example chiral substituted lactones43, furans
39 41 52 • 18 I 41 42(lactols and lactol ethers ' ), 3-buten-4-ohdes and aceta s ' .

Similar results to the alkene systems have been obtained for alkyne systems. a-Lithiation

results on the treatment of the N,N-dialkyl carbamate derivative of 2-butynol (33) with

BuLi53
,54. Reaction of this complex (34) with carbonyl compounds leads to their·

regioselective addition to mainly the y-position to yield (4-hydroxy-3-methyl-l,2­

alkadienyl) carbamates (35), with some of the a-adduct also being obtained (36) (Scheme

10). Li-Ti exchange before addition of the carbonyl compounds leads to exclusively the y­

adduct, in high diastereomeric yield. After protection of the 4-hydroxy group the

compounds (35) can undergo a further a-proton abstraction (R"'= H) and lithiation (with

LDA) to allow for substitution with (mostly) retention of configuration. If the 4-oxy group

is a good leaving group then l,4-elimination in a syn-stereospecific manner occurs, before

substitution is achieved, to yield the very reactive 3-alken-l-ynyl carbamate55. Protection

of the 4-hydroxy group in (35) with a ketene N,O-acetal leads to an allene Claisen

rearrangement with 1,4-chirality transfer56
•

o
H3C-C==C-C~R'" 11 . B U..... n- u ..

O--C'NR2

(33)

H C R'"3 ••.. /

R' C=C=C
...........C~ 'O--CONR2

/ --OH
R"

(35)

+

R', R''' = H, alkyl

Scheme 10

RIO'R'

H3C-C:=C-{+OH

R2NCOO R"

(36)



24

1.3 CHIRAL AMINES FOR CHIRAL INDUCTION

As this section ultimately did not form an integral part of my Master's research it will only

be touched on briefly and generally.

Acquiring optically active, or chiral, molecules may be done in three ways, these being the

optical resolution of racemic mixtures, the transformation of "chiral pool" materials and

the synthesis of a chiral centre where one previously did not exist (asymmetric synthesisi7
•

There are a number of ways of creating a chiral centre in a molecule, including reaction of

a prochiral centre such as a carbonyl or alkene and substitution reactions, i.e. abstraction of·

a functionality, including H, with subsequent addition of another group at this point. These

methods may also be achieved in two ways, one by using a chiral reagent and the other by

allowing a chiral centre slightly removed from the reaction point to influence the reaction

and the chirality at the centre in question. In fact in some cases a chiral, or asymmetric,

reagent does not have to be used to create chirality at a centre but rather a dissymmetric

molecule lacking a chiral centre, i.e. one that lacks mirror or inversion symmetry58. Chiral,

or dissymmetrical, reagents can themselves be divided into two classes, namely chiral

ligands or auxiliaries and "free" reagents. Some reagents in these classes may also fall into

the category of chiral catalysts.

On the whole chiral amines have been used as ligands, with metals such as B, Li and Zn, to

achieve chiral induction. These ligands may be monodentate, bidentate or even

polydentate. Often in the case of amines the functional groups for co-ordination are not

only amine derivatives but also alcohol, and even phosphine, derivatives. Some examples

of these classes, derived from recent literature, follow.

• Chiral amino alcohols have been extensively used, co-ordinated to boron, to form

oxazaborolidines, for the asymmetric reduction of a number of ketone related functions.

(S)-a,a-diphenyl-(indolin-2-yl)methailoI59 and (lR,3R,5R)-3-(diphenylhydroxymethyl)­

2-azabicyclo[3.3.0]octane60 have both been successfully employed for the

enantioselective reduction of ketones, generally containing some aromatic group. Itsuno

et al.
61

have used a range of a,a-diphenyl-p-amino alcohols, prepared from naturally
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occurring amino acids, in conjunction with borane to achieve excellent results in the

asymmetric reduction of ketones, ketones containing functional groups and ketone

oxime ethers. In another paper62 they detail this last reaction of reduction of ketoxime

O-alkyl ethers to optically active primary amines, using a combination of sodium

borohydride (NaBH4), Lewis acids and the chiral amino alcohols. Chiral hydride

reagents, including amino alcohols and oxazaborolidones, have been employed in the

asymmetric reduction of N-substituted ketimines to give the corresponding secondary
• 63ammes

• Amino alcohols used in catalytic or stoichiometric amounts in conjunction with

dialkylzinc reagents have allowed for the enantioselective alkylation of carbon-nitrogen

double bonds, in N-diphenylphosphinoylimines. From these alkylated products chiral

amines can be readily obtained64
• The enantioselective addition of diethylzinc to

benzaldehyde has been achieved using catalytic amounts of ~-(s or t)-amino alcohols65
•

The ~-t-amino alcohols were found to give the best results. This paper proposes the

formation of a dinuclear zinc complex as the intermediate in the chiral addition to the

aldehyde.

• A chiral p-amino ether has been used to mediate the enantioselective alkylation of

aldimines with organolithium reagents66
.

• The enantioselective deprotonation of cyclohexene oxide, to (S)-2-cyclohexen-I-ol, has

been achieved with varying degrees of success using a range ofbi- and tri-dentate chiral

lithium amines, derived from di- or triamine ligands67
•

• A number of monodentate amino auxiliaries, with C2 axes of symmetry, co-ordinated to

lithium have been reported58
• Some examples are 2,5-dialkylpyrrolidines and N,N-di-l­

phenylethylamine which have generally been used in addition reactions to vinyl

systems. The same reVIew reports the extensive use of trans-2,5­

bis(methoxymethylene)pyrrolidine for addition/substitution reactions, when this

compound is added to the molecule on which substitution is to be achieved in the form

of an amide linkage. Organolithium reagents are used in the abstraction step and it is

believed that one ofthe oxygens in the auxiliary is effective as a ligand.

• A chiral phosphonamide ylide based on a cyclohexyl diamine has been employed for

olefination, with good stereochemical control at remote centres58
•
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However, chiral amines have also been used for induction as single reagents, that is not as

ligands. Some examples follow.

• Fuji et al. report the use of the hydrocWorides of chiral piperazine derivatives for

asymmetric protonation of l-acetoxy-2-benzylcyclohexene and similarly structured

68compounds.

• (S)-(-)-1-Amino-2-methoxymethylpyrrolidine (SAMP) and (R)-(+)-1-amino-2-

methoxymethylpyrrolidine (RAMP) are well known chiral auxiliaries that form

hydrazones when reacted with carbonyls69. When these adducts are reacted with bases,

such as LDA, with subsequent addition of groups, usually alkyl, to the a position this

addition occurs stereoselectively. Using organocerium reagents additions to SAMP­

hydra'zones has been achieved to give, ultimately, chiral amines7o
•

• The chirality inherent in the (-)-2-cyano-6-phenyloxazolopiperidene molecule can be

used for the selective functionalisation of either the a-amino nitrile or the a-amino ether

positions and subsequently the formation of a number of chiral compounds derived from
•• 71 72 73 74thIS chiral precursor ' , , '.

The number of instances where chiral centres in an amine based molecule have been used

to induce chirality at another centre are numerous, particularly in natural product synthesis,

and will not be dealt with here.
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1.4 OXAZOLIDONES (CYCLIC CARBAMATES)

1.4.1 GENERAL

Cyclic carbamates belong to the class of heterocyclic compounds generally known as

oxazolidones. They are in fact 2-oxazolidones. The numbering system in oxazolidones is
. 75

shown below (37).

R4 R3
I I

R5-C5-C4-R2

11 J3
o 'C2' .........RI

11
o

(37)

If the carbamate linkage falls within a bicyclic structure the system is named according to

IUPAC multicyclic systems, with the hetero-atoms being numbered as if they were

carbons. If all bridges are equal then the hetero-atom bridge takes preference. When the

nitrogen falls at the bridgehead position it is numbered as one (1) with the bicyclic rings

being numbered next and the hetero-atoms being assigned numbers in this system76
, for

example (38) is named 8-oxa-I-azabicyclo[4.3.0]nonan-9-one.

o
II

~'o
(38)

The parent compound in this class (R=H in (37» is also referred to as 2-oxazolidinone,

oxazolid-2-one, oxazolidin-2-one, oxazolidone-2 and oxazolidinone-275
• This author will

use the name oxazolidone.
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2-0xazolidones, both the substituted monocyclic and the bicyclic systems, have been

known for many years, the first known preparation being achieved in about 1890
77

• The

number of examples of these compounds, and their applications, are vast. It was not until

1980 that the first bicyclic system with the nitrogen at the bridgehead position was

reported76
, it being previously believed that this would be impossible to achieve as the

compound wo~ld violate Bredt's Rule76
,78.

Structurally 2-oxazolidones favour the carbamate linkage being in a five-membered ring

system79
,80, although other ring sizes may be found.

1.4.2 PROPERTIES

Physical Properties: Most 2- oxazolidones are stable solids75
,76,77 and most are soluble in

water75,76.

Spectral Properties: In the infrared spectra the carbonyl absorption band usually occurs

at high energy, occurring above approximately 1680 cm-1 and generally being found above

1740 cm-1
75,76. In addition the 2-oxazolidone ring is reported to have a characteristic

absorption band in the 1029 - 1059 cm-1 region75
.

Chemical Properties: 2-0xazolidones are generally stable to acid or alkaline hydrolysis77

and solutions of non-functional group substituted compounds are essentially neutral and

therefore do not fonn salts with either acids or bases75
,77. 2-0xazolidones are cyclic

urethans and in some cases the ring can be opened and polymerisation initiated. In the

bicyclic and hetero-atom bridgehead examples this depends largely on ring strain76
,78.
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1.4.3 USES

Examples of the uses of 2-oxazolidones are vast and varied. Historically these include

antibacterials against a large number of organisms, growth regulators, psycho-and

neuropharmacological agents, central nervous system depressants and relaxants and

polymers or copolymers with a vast variety of applications
75

. More recent examples

. . . 1 d 81 8283 'b' 184 t'fu 185 dmclude theuuse m po ymer pro ucts ' , ; as anti actena , an 1 nga an

antialgicida186 agents; as an agent for the removal of NOx gases from flue gases
87

; as

antidotes for organophosphate poisoning88 and as nervous system agents i. e. as

tranquillisers, antidepressants and antipsychotics89.

1.4.4 FORMATION REACTIONS

1.4.4.1 FROM ~-AMINO ALCOHOLS

The formation of 2-oxazolidones from ~-aminoalcohols forms the biggest class in the

preparation of these cyclic carbamates. Numerous compounds have been used to complete

the cyclisation. Of these the use of phosgene or dialkyl carbonates are the most common.

The production of ~-aminoalcohols can be from numerous starting materials, or from

natural products such as some of the amino acids. Their formation is beyond the scope of

this discussion. Obviously the use of y-aminoalcohols leads to the· formation of six

membered cyclic carbamates, should the molecular orientation and reaction conditions

allow their formation.

Using Phosgene: One of the first reported syntheses of 2-oxazolidone is the reaction of

ethanolamine with phosgene77. The amino group, which must have one available hydrogen

attached, has greater nucleophilicity than the hydroxyl group and the phosgene therefore

initially reacts at this group75, in almost all cases. The general reaction is shown in

Equation 20.
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The conditions for the above reaction vary greatly and numerous mono and bicyclic

examples have been prepared. Triphosgene has also been used successfully16. In these

reactions the stereochemistry, if present in the amino alcohol, is not altered16,75.

If the amine is a tertiary amine, in a cyclic structure, reaction of the phosgene will occur at

the alcohol. Cyclisation is initiated using base and a bicyclic oxazolidone containing a

quaternary ammonium cation is formed as an intermediate. This structure is unstable and

the ring systems strained and therefore the one ring opens to give a substituted 2­

oxazolidone, the five membered· ring, if present in the bicyclic system, being the most

favoured8o. If the two rings in the bicyclic structure are symmetrical then only one product

can form. This can be seen in Scheme 11.

The first bicyclic oxazolidones with nitrogen at the bridgehead position (anti-Bredt

Urethanes) were prepared similarly to those above76. However, in this case secondary

amines in a cyclic structure were used. Two preparation routes are possible (Scheme 12).

The first reacts phosgene with the amine and then cYclisation is initiated by base (Path A).

In the second the amine is protected as a salt and the phosgene then reacts with the alcohol

function. Once again cyclisation is achieved by adding base (Path B).
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Using Dialkyl Carbonates75
: The reaction of a ~-aminoalcohol with a dialkyl carbonate

was also one of the first methods used for preparing 2-oxazolidones. This reaction is of

great importance and is preferable to that using phosgene. This general reaction has wide

scope in the synthesis of the cyclic carbamates. The reaction occurs in two stages (Scheme

13). The first is the base catalysed addition of the amine to the dialkyl carbonate, giving

the carbamate derivative and loss of alkoxide occurring. In the second stage base catalysed

attack at the carbonyl takes place to give the cyclic product with the loss of the second

alkoxide group as the alcohol. The reaction has been shown to be overall third order, being

first order in the dialkyl carbonate and second order in the aminoalcohol.

R4R5C-CR2R3

1 2 3 4 5 base _ HO~ '.NRl
R NH-CR R -CR R + (ROhCO -===-..... ~ I + ROH

I /.C~
OH RU "0

Scheme 13

Using Urea or Isocyanates
7s

: The reaction of a ~-aminoalcohol with urea is carried out

under conditions of fusion above the melting points of the reacting compounds. The urea

decomposes to form cyanic acid which reacts with the amino group to give a ~­

hydroxyethylurea derivative (39), which in turn cyclises to the oxazolidone with loss of

ammonia. Alternately the ~-hydroxyethylurea (39) derivative can be formed by reacting

organic or inorganic isocyanates with the amine. Cyclisation is usually achieved by

heating, with the loss of ammonia or an amine (Scheme 14).

R4R5C~CR2R3
I \ 1 + RNCO

HO NHR
R=H,R

Scheme 14
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Using Chloroformates: In the presence of bases chloroformates react with the amine to

give a ~-hydroxy carbamate, which then cyclises with loss of an alkylhydroxide derived

originally from the chloroformate75
,90 (Eqn 21). Pyrolysis of ~-hydroxyalkylcarbamates,

or ureas, also gives 2-oxazolidones
77

.

base
-HCI •

Equation 21

Miscellaneous: Esters of trichloroacetic acid75 have been used to facilitate cyclisation of

the ~-aminoalcohols. Reaction occurs at the alcohol to form a trichloroester and then

nucleophilic attack on the carbonyl by the nitrogen occurs, with subsequent elimination of

chloroform (Eqn 22).

(Eqn 22)

Bicyclic oxazolidones have also been prepared from y-aminoalcohols of cyclohexane78

(40). The amine, or acetal, is first converted to the hydrotosylate salt (41), which is in turn

reacted with an oxycarbonyl (42) to give a carbamate (43). Cyclisation to the bicyclic

oxazolidone (44) is facilitated by heating the carbamate compound (43) with litharge

(Pb30 4) (Scheme 15).
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OH COl PhD, 0'" 'N

~NHCOO(~M'Ph) • 8
(43) (44)

R=H,COMe Scheme 15

1.4.4.2 MISCELLANEOUS FORMATIONS

There are numerous other ways that have been used to prepare oxazolidones.

The first production of 2-oxazolidone was achieved from a ~-haloamine by Gabriel, who

reacted ~-bromoethylamine hydrobromide with silver carbonate, and later sodium

bicarbonate75,77.

Oxazolidones have been prepared from75
:

• ~-haloalcohols using urea, sodium cyanamide, carbamates, inorganic cyanates and

cyanuric acid

• epoxides using cyanuric acid, organic isocyanates, inorganic cyanates, isothiocyanates,

urea and substituted ureas, carbamates, cyanamide, the cyanide ion, dithiolanes and

oxathiolanes

• carbamates by pyrolytic, alkaline and acidic cyclisation

• 1,2-glycols using urea and urethan (H2NCOOEt)

• cyclic carbonates (2-dioxolanones) using isocyanates, formamide and ammomum

carbonate and potassium cyanide

• acetylenic alcohols using isocyanates and amines with carbon dioxide

• acetylenic amines using carbon dioxide

• ~-hydroxy isocyanates

• a-ketols using isocyanates and potassium cyanide with ammonium carbonate

• 1,2-dihalides
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• nitrenes

• (~-hydroxyalkyl)semicarbazides

• ~-amino chloroformates

• oxazolines and oxazolinones

• 2-aminooxazolidines.

Recent reports in the literature have described the preparation of oxazolidones by the

following methods:

• the reaction of ketone oximes with dimethyl carbonate in an autoclave in the presence of

. b 91potassIUm car onate

• the cyclisation of 2-butenylene dicarbamates using Pd(O) as catalyst, giving 4-vinyl-2-

l'd 92oxazo 1 ones

• from the rearrangement of tertiary a-allenic alcohol carbamates. This reaction occurs

on reaction of the carbamate allenic alcohol with base, followed by addition of an

electrophile, to yield 4-vinyl-5-alkyl- or substituted-2-oxazolidones with high
• • 93949596stereoselectlvlty , , , .

1.4.5 REACTIONS OF OXAZOLIDONES

The reactions of oxazolidones vary greatly and there are numerous examples. Only those

reactions affecting the oxazolidone ring itself, or where the ring plays an integral role in the

progress of a reaction, will be discussed. Reactions of groups on the ring will not be

discussed as they are outside the scope of this research.

1.4.5.1 DECOMPOSITION AND RING OPENING REACTIONS75

The five membered oxazolidone ring tends' to be quite stable77. However ring opening and

decomposition can be induced. Hydrolysis with NaOH or KOH, usually in aqueous or

alcoholic media, yields the ~-aminoalcohol (Eqn 23). These alkaline hydrolyses have



36

usually been carried out to prove structure or stereochemistry. Reduction with lithium

aluminium hydride also yields the p-aminoalcohol. The cyclic carbamate ring is not

affected in attempted oxidation with permanganate
77

•

R4RSC--CR2R3
I I 1
0, /NR

C
11

°

mr ..

N,N' -disubstituted urea is the major product obtained when oxazolidones are reacted with

equivalent amounts of primary aliphatic amines. If aromatic primary amines or araliphatic

amines (e.g. benzylamine) are used in the reaction the products are N,N'-disubstituted urea

and a 2-imidazolidone. p-Aminoethyl carbamate is produced when the parent compound

2-oxazolidone (i.e. R's = H) is reacted with aqueous ammonia. 2-0xazolidones when

reacted with hydrazines yield semicarbazides.

Reaction of oxazolidones with dilute HCl produces the hydrochlorides of the p­

aminoalcohols. Reaction with anhydrous HCl gives the hydrochloride of the p­

chloroamine. In some cases refluxing in HCl yields the p-aminoalcohol with loss of

C02
77

•

Pyrolysis of unsubstituted 2-oxazolidone itself yields CO2 and polyethylenimine. If an

amine or polyamide is present polymerisation is prevented and the compound decomposes

to CO2 and ethylenimine. There are a number of examples where N-substituted

oxazolidones when heated give low weight polymers of the corresponding ethylenimine.

Bicyclic oxazolidones may also be polymerised using various catalysts78
• The ability to

polymerise in these systems depends largely on ring strain or stability.
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1.4.5.2 REACTIONS ON THE OXAZOLIDONE RING

Reactions on the ring occur mainly at the nitrogen. The hydrogen attached to the

endocyclic nitrogen is acidic in nature. Alkylation at the nitrogen is achieved usually

under basic conditions and the alkylating reagents have been alkyl halides, alkyl sulfates

and olefins. Ethers have also been used as alkylating agents utilising mercuric acetate

either alone, with benzoic acid, or with benzyl alcohol. Sulfuric and hydrochloric acids

have also been used as catalysts for this reaction. Acylation at the nitrogen may be

achieved using acidic or basic media and carbamylation has been achieved using phosgene

followed by ammonia. Nitrosation of the nitrogen has been accomplished with nitrous acid

and nitrosyl chloride. Nitration has been achieved using nitric acid either with sulfuric acid

or with acetic anhydride. The nitro group can be reduced to give the amine attached to the

endocyclic nitrogen of the oxazolidone. The nitrogen also reacts with carbonyl compounds

in the presence of additional amine to give a N-aminomethyl oxazolidone derivative.

Substituted 2-oxazolidones react, in the presence of pyridine or NEt), with aryl isocyanates

. b 'l'd 75to gIve car am I es .

Boiling 2-oxazolidone in aniline yields an imidazolidone, where the cyclic oxygen has

been replaced by the amine77.

Stereoselective addition to the a-carbon in oxazolidones has recently been reported97
•

Oxazolidones where all three possible points of substitution are substituted, with an alkoxy

group in the alpha position (45), are precursors for N-acyl iminiurn ions (46). Lewis acid

attack at the a-alkoxy group removes this group to give the N-acyliminium ion (46) a?d

subsequent nucleophilic attack yields nucleophilic substitution at the alpha position (47)

(Scheme 16). Depending on the chiral orientation of the bulky substituent at the beta

position (or the gamma position in a six membered oxazolidone) and on the reagents used

for substitution, the orientation of the substitution at the alpha position can be controlled.
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R2 Nu'. If'.'0.

0, /N, 1
C R
11

°(47)

2-0xazolidones, where there is no substituent on the nitrogen, are potentially tautomeric, it

being possible to have both the keto (48) and enol (49) forms presene
S

,77. This

tautomerism appears to be weak with the keto form being the more favorable
7s

• Little

research appears to have been done in this regard and with regard to potential reactions.

I I .. I I
0, "....NH " 0, ~

C C
11 I

° OH
(48) (49)

1.5 REARRANGEMENT REACTIONS

Of all the rearrangement reactions we were able to find reported in the literature none

closely resembled the reaction we discovered in which N-monosubstituted carbamates

rearrange to secondary, or tertiary, alcohols. Previous preparations of the alcohols

prepared by ourselves were by more traditional methods and yielded no assistance. Those

few rearrangement reactions we were able to find bearing a vague resemblance to, or

shedding some light on, our reaction are briefly discussed below.
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1.5.1 SMILES AROMATIC REARRANGEMENT

The Smiles rearrangement is an aromatic rearrangement which results in the migration of

an aromatic system from one heteroatom to another98
,99 (Scheme 17), This rearrangement

" 'I ' I I 1 h'l' b t't t' 98,100reactIon m effect mvo ves an mtramo ecu ar nuc eop 1 lC SU S 1 U IOn ,

C::O
Scheme 17

CXHDI. ~
y

The mechanism100 involves initial conversion of the YH function to the anion by the action

of sodium hydroxide, or other strong base, followed by nucleophilic attack of this Y­

function on the carbon to which the X atom is attached, This attack results in the

displacement of the X function as its anion, which is then converted to XH,

In the original studies by Smiles the X function was a sulfone, the YH function an alcohol

and the two carbon bridge between the heteroatoms belonged to an aromatic

101 102103 S' h h 'h b h d 'h ' fsystem ' , , mce t en t e reactIOn as een s own to procee WIt a vanety 0

h d h fu ' 1" 99100102103 h ' h h N deteroatoms an eteroatom nctIOna ItIes' , , ,t e mstances were t ese are an

o having relevance for the present study, The carbon bridge does not have to belong to an

aromatic ring and may even be part of an acyclic system102, It may also contain a carbonyl

function, usually adjacent to the YH function and usually forming an amide102
,99, When

the YH function is a NHR group, where R=acyl group, maximum reactivity is achieved,

Initially, and still most often, the aromatic ring on which the rearrangement takes place

must be activated, usually by a nitro (-N02) group in the para position, but non-activated

aromatic systems have been used104, Ortho and para electron withdrawing effects aid the

reaction and recently an arene chromium tricarbonyl complex system has also been used to

create an electron withdrawing environment105
, Substitution on the ring to which the

bridge belongs has varying effects, The Smiles rearrangement also occurs on the pyridyl

ring and with dipyridyl systems103
,



40

The Truce-Smiles rearrangement is an interesting extension of the Smiles reaction that was

discovered in 1958103
• In this reaction the YH function is a methyl group and n­

butyllithium is used to form the anion. The X function is a sulfone and the bridge belongs

to an aromatic system. The reaction only occurs when there is a methyl group in the ortho

position to the point of attachment of the X function on the "bridge" phenyl ring. A similar

reaction occurs if the methyl group is bonded to a naphthalene system.

The transition state in the rearrangement is believed to be a spiro-transition state (50) with

the charges being dissipated, depending on the heteroatoms and the ring substituents,

between a heteroatom and the ring or over the ring and the activating group. Steric effects

have been shown to affect the reaction99
,100,103. Excessive bulk attached to the carbon

bridge or to an amine function may hinder the formation of the five-membered spiro­

transition state and thus prevent the reaction from occurring99
• It has been shown that a

methyl, or alkyl, group in the a position to the X function (or ~ position to the Y function)

on the "bridge" aromatic ring enhances the reaction rateI00
,103. This feature is believed to

be due to steric considerations in the formation of the transition state. The molecule takes

on a "V" shape around the X function. The two phenyl rings therefore have various

positions in the planes to take up with regards to one-another. A substituent in the a

position limits the number of conformations available and favours the formation of a

conformation in which the phenyl rings are perpendicular to each other, with the alkyl

substituent away from the other ring and not in close proximity. This means that the anion

is in a position of close proximity to the ring on which rearrangement takes place, enabling

the transition state to be readily achieved (51).

(SO)
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An interesting variation on the Smiles rearrangement is a reaction reported by Backer
lO3

(Scheme 18).

Scheme 18

1.5.2 PINACOL REAREANGEMENT lO6

The Pinacol Rearrangement acquires its name from the rearrangement and dehydration of

pinacol (2,3-dimethyl-2,3-butanediol) to pinacolone (tert-butyl methyl ketone) upon

treatment with mineral acids. This same rearrangement occurs in other 1,2-diols.

The rearrangement occurs in two steps, the first involving dehydration from the protonated

diol (52) to yield a carbocation (53) and the second being the rearrangement, by 1,2-shift,

of the carbocation (53) to yield the protonated ketone (54), and then ketone (55) (Scheme

19).
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The pinacol rearrangement involves migration of a group to an electron deficient carbon

centre. Due to the nature of the reaction, and particularly if the 1,2-diol contains many

different substituents, there is usually more than one reaction product. However, the

reaction product can often be predicted due to preferential carbocation formation and

preferential movement of aryl groups compared to alkyl groups. Within the aryl group

preferential migration depends on the ability of the aromatic ring to accommodate a

positive charge. This feature is due to the fact that a three membered transition state is

formed in the migration step, with the n-electrons of the aryl ring donating electrons to the

electrophilic centre. This transition state is analogous to the intermediate in aromatic

electrophilic substitution, with creation of the benzenonium ion (56).

(56)

1.5.3 HOFMANN REARRANGEMENT107

The Hofmann rearrangement is essentially the degradation of an amide to an amine (Eqn

24).

o
II

R-C
"NH2

(Eqn 24)

In this reaction rearrangement occurs with the migration of the alkyl group originally

attached to the carbonyl portion of the amide to the nitrogen. The mechanism of the

rearrangement is believed to be as follows (Scheme 20):
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N-Br
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~

H2O

The first steps involve removal of the hydrogens and halogenation of the nitrogen. In the

next stage the 1,2-shift of the alkyl group occurs to the nitrogen, which is electron deficient

due to the departure of the halogen, creating an isocyanate. This rearrangement is believed

to be a concerted process. The last stage involved the hydrolysis of theisocyanate to the

amine and carbonate. In an absence of water the last stage does not occur. The

rearrangement reaction is intramolecular in nature and the stereochemistry of the migrating

group is generally maintained.

The three membered transition state is also believed to occur in the Hofmann

rearrangement, including the creation of the benzenonium ion (56) if the migrating group is

aromatic in character.

1.5.4 CURTIUS REARRANGEMENT108
,109

The decomposition of acid azides, acid hydrazides and acyl azides to isocyanates and

nitrogen is known as the Curtius rearrangement (Eqn 25). This rearrangement therefore is

a preparative method for isocyanates and compounds derived therefrom. If the Curtius

rearrangement is coupled with a hydrolytic step it provides a procedure for the replacement

of a carboxyl group by an amino group, this process of converting an acid through its azide

to the amine being referred to as the Curtius reaction (Eqn 26).



RCON3 --.. RN=C=O + N2 (Eqn 25)
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--~~ RN=C=O --.. RNH2 (Eqn 26)

Carbamates do not react readily with azides, but the corresponding carbamyl chlorides do.

The resultant semicarbazide, from O-carbamates, or substituted semicarbazide, from N­

and O-carbamates, yields carbamyl azides with nitrous acid. The azide derived from

carbamic acid rearranges only with difficulty and monosubstituted carbamyl azides

(RNHCON3) do not rearrange. This is believed to be due to the formation of an isourea

structure - RN=C(OH)N3. The disubstituted carbamyl azides rearrange and this

rearrangement is facilitated if one of the substituents is aromatic, cyclisation to the ring

usually following rearrangement.

1.5.5 WALLACH AZOXYBENZENE REARRANGEMENT110

The Wallach azoxybenzene rearrangement, simply and generally, involves the conversion

of azoxybenzene (57) into p-hydroxyazobenzene (58), by migration of the oxygen, on

addition of concentrated sulfuric acid (Scheme 21).

~=N~
Io

(57)
Scheme 21

(58)
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1.5.6 LOSSEN REARRANGEMENT111
,112

The Lossen rearrangement allows for the rearrangement of O-acyl hydroxamic acid

derivatives (59), via isocyanates, with base or heat to amines or urea derivatives. Like the

Curtius reaction it also allows for the conversion of a carboxylic acid, through the

hydroxamic acid, to an amine. An example of the rearrangement, including the

mechanism, is shown below (Scheme 22).

H
RCONOCORl+KOH

(59)

Scheme 22
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2. DISCUSSION

2.1 CHIRAL INDUCTION IN CARBAMATES

The initial aim of this Masters project was to obtain and determine chiral induction across

the carbamate linkage using chiral amines. To date little success has been achieved in

obtaining induced chirality in a carbamate system (See 1.2). Anidealsituation would be to

use the chirality inherent in one portion of the molecule to induce chirality in another

portion (asymmetric induction), particularly if the initial chirality was needed in future

stages of the reaction scheme or in the final product. Chirality in carbamates is needed as

many carbamate compounds are, or are used as precursors for, biologically active

compounds, it being well known that nature tends to be chiral specific. For this reason

chiral induction in carbamates is of interest and worthy of investigation.

Initially chiral induction was to be attempted using the more stable and bulky benzyl

carbamate. The benzyl carbamate is not as prone to side reactions as are other alkyl or

alkenyl systems. Molecular modelling studies showed the benzyl carbamate system to be

conformationally stable in nature and to exist favourably in only a few conformations.

Because of this more ridged nature and due to the bulk of the phenyl ring the chance of

achieving successful chiral induction is greater. This may be achieved by either

asymmetric induction from another portion of the molecule, due to the more limited

configurations of this part of the molecule in relation to the benzyl configuration and the

phenyl bulk, or from the use of chiral proton abstraction agents as these would have limited

angles of approach to the benzylic protons due to the phenyl ring and the rest of the

molecule. Methods are known for the ready removal of carbamates, allowing for cleavage

of the amine once chiral induction had been achieved.

The envisaged approach was to prepare chiral secondary amines and then use these to form

the carbamate. Chiral induction was to be tested by determining if butyllithium, or LDA, if

the additional steric bulk became necessary, would preferentially abstract one of the

benzylic protons, and the resultant anion reacted with, for example, TMSCI (Scheme 23).
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THF/-780C •1. BuLi
2. TMSCI

Scheme 23

After an initial search through the available literature it became obvious that numerous

chiral amines had been prepared, although many of these preparations were not simple. It

was decided to choose a few of the more promising examples and model them using the

computer programme ALCHEMyl13 and molecular models to determine which of these

examples would theoretically give good chiral induction. It became immediately obvious

that for there to be any hope of success the chiral centre had to be preferably a to the

nitrogen of the amine and that the major group attached to this point had to be a minimum

of three carbons long. If the chiral centre moved P' to the nitrogen the attached group had

to be much longer and far more bulky. Phenyl groups or ring systems Pto the nitrogen

(60) appeared to show more promise than alkyl chains as their position was more fixed,

unlike the flexible alkyl chains. Based on the above conditions most of the chiral amines

mentioned in the literature had to be abandoned.

(60)

One group of molecules that showed some hope of success was the one that had been used

as oxazaborolidines for the chiral reduction of ketones, the compound a,a-diphenyl-2­

pyrrolidinemethanol (61) showing particular promise and appearing simple to prepare. It

was therefore decided to start with this molecule and further compounds would be chosen

according to the success of this compound.

~Ph
H OH

(61)
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2.1.1 PREPARATION OF BENZYL 2-(HYDROXYDIPHENYLMETHYL)­

PYRROLIDINE-l-CARBOXYLATE (64)

Ther~ are a number of procedures in the literature for the preparation of this compound (or
36, 114, lIS

the de-carbamated form thereof (61» .

Initial attempts to prepare the desired compound were based on a recent publication by

Kanth and Periasamy116 where they detail a shortened two step procedure using proline

(62) as the starting compound (Scheme 24).

~COOH
N
H

(62)

PhCH2OcOcI •

CH30H,K2~

Scheme 24

PhMgBr •

The first step of this reaction sequence was repeated a number of times, but on all

occasions the GC-MS results were inconclusive and the NMR spectra did not correspond

to the required N and 0 protected molecule (63), as there always appeared to be

unnecessary peaks present, particularly in the B3,5 region of the IH spectrum and a

doubling up of peaks in the BC spectrum. Owing to this and the belief that the reaction

was unsuccessful the above preparation procedure was abandoned and a multiple single

step reaction strategy followed instead (Scheme 25).

The preparation of N-benzyloxycarbonyl-L-proline (65) was readily achieved by the

reaction ofL-proline (62) with benzyl chloroformatel17
. The methyl ester (63) was formed

by reaction of the N-protected proline with diazomethane118 (made from N-methyl-N­

nitrosoureaI19
). A Grignard reaction116 on this product yielded the desired product of the

benzyl 2-(hydroxydiphenylmethyl)pyrrolidine-l-carboxylate (64) in good yield.
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VCOOCH3

I
OrC'O~Ph

(63)

Scheme 25

Upon analysis of these reaction intermediates it was realised that the initial reaction

scheme (Scheme 24) tried had probably worked, as the same NMR spectra were obtained

for the methyl ester (63). Kanth and Periasamy1l6 do not quote the occurrence of these

excess peaks in their paper. These additional, or doubled-up peaks, in the NMR spectra of

the carbamate protected proline methyl ester (63) could be due to conformational

isomerism, due to the flexibility of the proline structure. This movement is readily seen in

a model with the five-membered proline ring structure being able to twist and bend around

its major plane into two conformations, with the methyl group being in two distinct and

different environments. However, these additional peaks are more likely explained by the

occurrence of rotamers120. This would occur when the compound was in two distinct

conformations which interconvert slowly on the NMR timescale. Due to the pyrrolidine

ring the amide portion of the carbamate bond is limited in the number of orientations it can

assume, and thus also the benzyl carbamate portion This orientation prevents the free

rotation of the methyl ester group, which will cause the methoxy portion to exist in mainly

two conformations, these being when it is situated above and below the plane of the proline

structure. Hence two sets of peaks are observed in the NMR spectra. Variable temperature

NMR studies would have possibly allowed for further elucidation of this phenomenon.
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All that remained was to protect the alcohol, as this would interfere with the chiral

abstraction of the benzylic proton by BuLi. This step; however, proved to be far more

difficult than expected and ultimately could not be achieved. The following protections

were attempted:

• methyl protection with diazomethane in ether and with diazomethane and a neutral

I · I 121a umma cata yst

• benzyl protection using DCC and benzoic acid in dichloromethane

• methyl protection with methyl iodide

• methyl protection with Me2S04 and K2C03 in acetone
122

• tetrahydropyranyl protection123

• ethyl vinyl ether protection with PPTS in dichloromethane
124

• phenyl ester protection with benzoyl chloride and triethylamine

• benzyl ether protection using benzyl chloride and triethylamine and usmg benzyl

chloride and silver oxide catalyst in DMF125
•

None of the above protections was successful, as the required product could not be

isolated.

Protection with many other groups, such as the TMS group, were not attempted as

modelling studies showed that the conformation of the molecule would be changed to such

an extent that chiral induction did not look feasible.

The reason for protection not being successful cannot be explained as modelling studies

showed that there should have been sufficient space for protection to occur; however the

reason could still have been steric hindrance. It is also generally known that tertiary

alcohols are the least reactive in the alcohol series, which may also account for difficulty in

achieving successful protection reactions.

No basic or basic medium protections could be attempted due to the occurrence of a trans­

carbamation type reaction. This reaction became evident from GC-MS analysis data and

was also proven by chemical means (to be discussed later in 2.2).
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It was very unfortunate that no protection of the alcohol could be achieved as in the proton

NMR spectrum of the benzyl 2-(hydroxydiphenylmethyl)pyrrolidine-1-carboxylate (64)

molecule the two benzylic protons (35.10 - 35.17) were already appearing in a split pattern,

showing that these protons were not equivalent. Should the alcohol have been protected it

follows that chiral induction may have been successful, to some degree at least.

At this point it was decided to abandon studies with this molecule and attempt other

molecules before returning to this one and attempting the lengthy procedure of removing

the carbamate, protecting the alcohol and then replacing the carbamate.

Due to the difficulty of protecting this alcohol, it was decided in future to avoid all similar

molecules, such as a-phenylpyrrolidinemethanol126 (66) and (S)-a,a-diphenyl-(indolin-2­

yl)methanol59 (67), when choosing compounds for attempted chiral induction.

n ---/Ph
~/ "oH

H
(66)

2.1.2 PREPARATION OF 2-(1-PHENYLCYCLOPENTYL)-4.4,6-TRIMETHYL­

TETRAHYDRO-1.3-0XAZINE (72)

Due to the difficulties encountered in achieving results in the previous compound it was

decided to attempt the reaction sequence shown in Scheme 26, using a racemic substrate to

determine the success of the preparative route. Should the reactions be successful a chiral

analogue would be prepared to determine the success of chiral induction. The title

compound (72) is an oxazine and is structurally weighted on one side and modelling

studies showed that this type of structure might give some success at a later stage for chiral

induction.
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The 2-(I-phenylcyclopentyl)-4,4,6-trimethyltetrahydro-1 ,3-oxazine (72) was prepared

using the tried and tested method of Politzer and Meyers
127

(Scheme 26).

N
~

~:'3Y"'YCH3 +~c
OH OH

(68) (69)

OOC t
CH~ Ph

CH3 .).--/

CH3 N
(70)

+

Br~Br

o Ph

(72)

NaBRt/OOC
THF/EtOH

Scheme 26

(71)

!BULi
BuLi

The synthesis was readily completed, except for the fact that the high yields that the

authors claimed could never be attained. In the first stage for the preparation of the 2­

benzyl-4,4,6-trimethyl-5,6-dihydro-I,3(4H)-oxazine (70), phenyl acetonitrile (69) had to be

added extremely slowly to sulfuric acid at 0-5°C, after which 2-methyl-2,4-pentanediol

(68) was added extremely slowly once again to keep the reaction temperature at a

minimum. In contrast to the method given, after pouring this reaction mixture over ice no

organic washes could be made as these washed the desired product (70) from the reaction.

The entire solution was made alkaline with a sodium hydroxide solution and then

extracted. Purification was achieved by Kugelrohr distillation to give a disappointing

yield.
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The attachment of the cyclopentyl portion was readily achieved, the first anion colour on

addition of the BuLi being the expected dark orange and the second anion colour being an

unexpected bright emerald green. For the hydrogenation step the reaction conditions had

to be altered from -45°C to O°C to avoid the occurrence of a binary phase system.

The final step in preparation of the compound was the conversion of the amine to the

carbamate. Unfortunately after many attempts using different methods this could not be

achieved as in each case the 2-(1-phenylcyclopentyl)-4,4,6-trimethyltetrahydro-l ,3-oxazine

(72) molecule disintegrated into numerous, mostly unidentifiable, fragments. Those that

could be identified were I-phenylcyclopentanecarboxaldehyde and 2-methyl-2,4­

pentanediol, these being the products of acidic cleavage of the oxirane. Methods attempted

to add the benzyl chloroformate included the use of the bases triethylamine, sodium

hydride and DABCO as catalysts.

Once again the molecule had to be abandoned and further ones sought in an attempt to

achieve the aim of obtaining and determining chiral induction.

2.1.3 FURTHER ATTEMPTS AT CHIRAL INDUCTION

It was observed from molecular models and usmg the ALCHEMyl13 modelling

programme that the biphenyl structure was bulky and that the unsubstituted phenyl ring, in

its minimum energy conformation, was in a perpendicular position in relation to the

substituted phenyl ring and moieties attached to this ring. These studies showed that the 2­

aminobiphenyl molecule (73) and derived structures showed some promise due to the close

proximity of the second phenyl ring to the benzylic carbon. It was therefore decided to

make an attempt using this molecule, by forming the carbamate (73) and substituting the

other hydrogen of the amine with various electrophiles, to determine if this structure (74)

would give a predicted result that could be expanded on. Chiral moieties could then be

attached to either of the phenyl rings or a chiral structure substituted on the nitrogen.



~H I
N................O ~c

11o
(73)

E' 0
~""""c ........o~

11o
(74)
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Initial attempts to alkylate the amine with the benzyl group prior to carbamate formation

proved unsuccessful, and it was decided to initially form the carbamate and then substitute

the now more activated hydrogen on the nitrogen in the second stage. It was also decided

to avoid in future alkylating groups such as the benzyl group due to the presence of the

acidic protons adjacent to the phenyl ring which were likely to cause interference in the

chiral induction step (by abstraction with BuLi).

The formation of the carbamate (73) was readily achieved by reacting the primary amine

with benzyl chloroformate, in THF, with the presence of sodium hydride. It was then

decided to introduce the cyclohexyl group, for its bulk, onto the nitrogen of the carbamate.

Introduction of the preferable phenyl group could not be attempted due to its inability to

act as an electrophile (i.e. to have nucleophilic attack on the phenyl ring by the nitrogen ion

in the carbamate). In addition, the cyclohexyl ring does not posses acidic protons, and the

structure would therefore not interfere in the proton abstraction reaction step.

The substitution reaction was attempted at -78°e using BuLi. The desired product was not

obtained although, surprisingly, a low yield of the carbamate benzylic substituted product,

N-2-(1,1 '-biphenyl) (cyclohexylphenyl)methyl carbamate (75), was isolated, opposing the

theory that the N-monosubstituted carbamate amine hydrogen was the more acidic by far.

The reason that this substitution did not take place could have been steric hindrance,

although this should not have posed a problem. However, it was decided to attempt the

same reaction, but at ooe, to determine if the carbamate could be N-alkylated at this higher

temperature. The desired product was once again not obtained but a good yield of a
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surprise product, l' -phenyldiphenylmethanol (76), was obtained giving rise to evidence of

a new rearrangement reaction (to be discussed in detail in 2.3).

(75)

2.1.4 CONCLUSION

(76)

Due to the emergence of the above rearrangement reaction it was decided to study it further

and abandon attempts at chiral induction, returning to this topic at a later stage if time

allowed. The initial aim of the Master's project, of chiral induction across the carbamate

linkage using chiral amines, was therefore never realised, but the investigation therein

yielded two interesting categories of research, namely the trans-carbamation cyclisation

reaction and the carbamate to alcohol rearrangement.
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2.2 FORMATION AND PREPARATION OF OXAZOLIDONES (CYCLIC

CARBAMATES)

2.2.1 3-0XA-I-AZA-4.4-DIPHENYLBICYCLO[3.3.0]QCTAN-2-0NE (77)

Evidence for a trans-carbamation type reaction to give an oxazolidone, or cyclic

carbamate, first appeared III the preparation of the benzyl 2­

(hydroxydiphenylmethyl)pyrrolidine-I-carboxylate (64) compound. In GC-MS analysis of

the compound no molecular ion peak could be obtained, but rather two peaks were

observed, one with molecular mass of 108 and the other with molecular mass of 297. The

fragmentation patterns correlated well with those predicted for benzyl alcohol and the

cyclised elimination product, 3-oxa-I-aza-4,4-diphenylbicyclo[3.3.0]octan-2-one (77),

respectively.

To test the theory of this trans-carbamation type elimination reaction by chemical means,

and not thermal as in the GC-MS occurrence, it was decided to react benzyl 2­

(hydroxydiphenylmethyl)pyrrolidine-I-carboxylate (64) with sodium hydride, as a base,

and determine if the cyclisation occurred (Scheme 27). TLC analysis of this reaction

showed that the desired reaction had taken place in high yield and this was confirmed by

product analysis after separation.

NaH.

; (77)

Scheme 27
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The above reaction mechanism (Scheme 27) is suggested by Kanth and Periasamy1l6 for a

portion of the elimination reaction of the carbamate protecting group in the preparation of

a,a-diphenyl-2-pyrrolidinemethanol (61), with the oxazolidone (77) as a predicted

intermediate. However, their reaction takes place under very strongly basic conditions and

therefore goes to completion for the hydrolytic elimination. Due to our milder conditions

we were able to obtain the oxazolidone (77), the intermediate in the reaction for the

elimination of the carbamate protecting group.

An extensive search of the literature indicated that this compound, 3-oxa-I-aza-4,4­

diphenylbicyclo[3.3.0]octan-2-one (77), had not been prepared before, as well as the fact

that the formation of oxazolidones by this trans-carbamation type reaction using sodium

hydride was not reported, although the formation of oxazolidones from protected ~-amino

alcohols is one of the most common methods for their synthesis (see 1.4.4.1).

Under the impression that this compound was newly synthesised an extensive structural

characterisation study was undertaken and a crystal structure analysis finally proved our

findings, also bringing to light some interesting aspects to the conformation of this

molecule. The crystal analysis structure may be seen in diag. 1. The bicyclic portion of

the molecule sits in a butterfly shape with the angle between carbons 4, 5 and 6 being

120.6°. The angle between the two phenyl rings is 78.3° and the angle of the two bonds to

the phenyl rings at carbon 4 is 109.6°. Presumably due to the presence of the phenyl rings

this molecule has an exceptionally large polarisability, with the [a]D27 value being -215.1

(0.5058 g/lOO ml).

A few months after completing our studies of this compound a publication by Delauhay

and Le Corre90 appeared, only later discover~d by ourselves, in which they describe their

isolation of this oxazolidone intermediate (77). However, their preparation is via a

different procedure, using that of Kanth and Periasamyl16 but using a much weaker basic

solution (of KOH) and carrying out the reaction at room temperature andnot at reflux.
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DIAGRAM 1: ORTEP diagram of 3-0xa-l-aza-4,4-diphenylbicyclo[3.3.0]octan-2-one (77)
VI
00
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From TLC analysis of the initial Grignard reaction for the formation of the benzyl 2­

(hydroxydiphenylmethyl)pyrrolidine-I-carboxylate (64) it was obvious that this cyclisation

reaction was occurring as a minor side reaCtion under the conditions of the Grignard

reaction. It was our experience that this trans-carbamation elimination cyclisation reaction

occurred very readily in this compound.

Due to the unusual nature of this reaction it was decided to investigate it further, in

conjunction with the then chiral induction studies and later the rearrangement studies. The

generality of this reaction was to be investigated and this was begun by attempting to form

an unsubstituted bicyclic oxazolidone, 3-oxa-l-azabicyclo[3.3.0]octan-2-one (78).

2.2.2 FURTHER STUDIES ON CYCLIC CARBAMATE FORMAnON

The preparation of the simple/unsubstituted bicyclic oxazolidone (78) did not prove as

simple, or occur as readily, as was the case with the substituted derivative. Two methods

were attempted for its preparation (Path A and B of Scheme 28)

Initial attempts to form the carbamate of prolinol via an adaptation of the method used to

form the carbamate from proline1
17 were not successful. The reaction of prolinoI (79) and

benzyl chloroformate was then carried out in THF using sodium hydride. The reaction to

form the carbamate (80) was observed to have occurred by TLC analysis and by NMR

analysis of the unpurified products of the reaction, evidenced by the benzylic proton shift

from 84.8 to 85.12. These unpurified products were dissolved in THF once again and a

further equivalent of sodium hydride added to initiate cyclisation (Path B) - but to no

effect. It was decided to try a more direct one pot method (Path A) and the first stage of



60

the reaction was repeated, except in this case no work-up was und~rtaken, and the second

equivalent of sodium hydride was added directly to the reaction mixture after it had been

stirring for an hour. In both instances reaction appeared to have occurred to some degree,

as could be seen by GC-MS and NMR analysis, but even after numerous attempts none of

the oxazolidone (78) could be isolated.

~CH20H
N
H

(79)

Path A

1. PhCH2OCOCl/NaH

2.NaH

VCH20H ~
I

O'i-C,O./"'-,.Ph

(80)

PathB

Scheme 28

It was the belief of Delauhay and Le Corre90
, which they subsequently proved incorrect,

that the cyclisation reaction to form the oxazolidones was dependent on the nature of the

carbamate O-alkyl portion. The results of their study for the cyclisation of the N­

carbamate protected J3-amino alcohols are summarised in Table 1. It was our theory,

which was never proved, that the lack of success in the formation of the unsubstituted

oxazolidone in comparison to the ease of formation of the diphenyl substituted compound

lay in the fact of unsubstitution i. e. the difference between a primary and a tertiary alcohol.

Possibly, without the presence of electron donating and stabilising groups, such as the

phenyi group, for the oxygen ion, attack on the carbonyl and the stability of the

intermediates is not as successful. This theory is, in essence, supported by the results of

Delauhay and Le Corre who quote lower yields for the less electron-donating alkyl

substituted compounds in comparison to the aryl substituted compound, as can be seen in

Table 1. No reference is made to the unsubstituted oxazolidone.
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Table 1: Preparation of oxazolidones by base cyclisation ofN-protected p-amino

alcohols90
.

R R' Yield (%)

Me Ph 92

Me Et 75

Me Bu 70

Me 2-Naphthyl 80

Et Ph 94

CH2Ph Ph 93

Attempts to create a bicyclic oxazolidone from pyrrole and pyrrole-2-carboxaldehyde were

abandoned due to the inherent instability of the pyrrole ring and its rapid polymerisation.

As the preparation procedure for the oxazolidones had not been reported before it was

decided to test the methodology on an acyclic compound that should rapidly undergo

cyclisation, namely the carbamate derivative of ephedrine (81). The ephedrine oxazolidone

(82) is well documented in the literature, prepared by other means from the p-amino

alcohol and other methods128
. It was initially decided to attempt this synthesis as a two

stage one pot synthesis (Scheme 29).

CH3

CH3 .... ~ ., ••Ph....N ..'
H

OH

PhCH2<XXX::1/ NaH ..

CH3

CH3.... ~ ."Ph....N ....

I
~C...... OHo 0

PhCH!
(81)

Scheme 29

NaH ..

(82)



62

TLC analysis of the first stage showed that a reaction had occurred in good yield and the

second equivalent of NaH was added. Analysis of the reaction products showed an

incomplete cyclisation, there being both the N-benzyloxycarbonylephidrine (81) arid the

required 3,4-dimethyl-5-phenyl-2-oxazolidone (82) present, the oxazolidone in the greatest

yield.

Our methodology proved to be effective in a general case. (It was decided not to attempt to

increase the yield of the monocyclic oxazolidone by a two pot reaction as the one pot

reaction had furnished the desired result).

The occurrence of bicyclic oxazolidones, particularly those with nitrogen at the bridgehead

position, is not extensively reported in the literature76 (see 1.4.1 &.3). It was decided to

see what further examples could be prepared in this class, investigating whether the

reaction went in preference when the alkyl ring, containing the N, was saturated or

unsaturated (therefore being flexible or rigid), or when it was composed of five or six (or

more) member atoms and if it was possible to place a hetero-atom close to the bridge

position. The cyclic portion containing the carbamate linkage is already known to be five

membered in preference79
•

Due to the ready availability of imidazole further investigations were to begin at this point.

The preparation of the carbamate (83) from imidazole was readily achieved by reaction of

imidazole with benzyl chloroformate in the presence ofNaH (Scheme 30).

(5
H

PhCH2OcOcII NaH ~

THF

Scheme 30



63

Substitution of an aldehyde group at the 2-position, on which a Grignard reaction was to be

carried out to produce the alcohol for cyclisation, did not readily occur using DMF and

BuLi. At this stage these studies were abandoned in favour of the carbamate to alcohol

rearrangement reaction.

2.2.3 CONCLUSION

Initial studies show that induced cyclisation of N-carbamate protected ~-amino alcohols

with sodium hydride (NaH) is successful and should prove to be general. Studies also

indicate that the ease of cyclisation and the stability of the product may depend on the.
substituents attached to the carbon to which the alcohol is attached. The scope of products

would, of course, also depend on the ease with which the ~-aminoalcohol could be formed.

2.3 REARRANGEMENT OF N-MONOSUBSTITUTED CARBAMATES TO

ALCOHOLS

2.3.1 INITIAL DISCOVERY

As mentioned previously, this surprise rearrangement and elimination reaction came to

light when attempting to substitute the last hydrogen on the nitrogen of N-(2-biphenyl)

benzyl carbamate (73) (page 54). The reaction was carried out at OCC, using one equivalent

of BuLi to abstract this last proton. However, instead of the desired substitution reaction

taking place to give (75), a good yield (64%) of an unknown product (76), with molecular

mass shown to be 260 by GC-MS, was obtained (Scheme 31). Careful analysis of the

mass spectrum showed that this compound could have the structure of l' ­

phenyldiphenylmethanol (76). NMR and IR analysis supported this conclusion. The IH

NMR spectrum consisted of the peaks in the phenyl region, as expected, and only two
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other peaks - one at {)5.89 and one much further upfield at approximately {)2.2, both with

integral of one proton. The BC NMR spectrum consisted of only the aromatic carbons and

one additional peak at {)72, which was indicated to be a methine carbon. Analysis of the

proton spectrum after deuterated water exchange showed exchange with the peak at ()2.2,

suggesting this peak to be due to an alcohol. The IR spectrum showed a broad absorption

band in the alcohol region at 3420 cm-I.

(73)

+Q-B'

Scheme 31

2oJ)
11
o
(75)

(76)

As this rearrangement reaction had taken place in the presence of bromocydohexane, the

substituent we had hoped would be substituted on the nitrogen, it was decided to repeat the

reaction with only BuLi being added (Scheme 32). Once again the secondary alcohol, 1'­

phenyldiphenylmethanol (1' -phenylbenzhydrol or (2-biphenyl)phenylmethanol) (76), was

obtained in the same yield as that previously obtained.

H 0
N.......C/O~

11
o
(73)

BuLi ..
ooe

(76)

Scheme 32
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As it was unknown to which position on the biphenyl system the rearrangement was

occurring, and to determine if this reaction was more general, it was decided to attempt the

reaction using the carbamate derivative of aniline (N-phenyl benzyl carbamate (84». Once

again the rearrangement and elimination reaction occurred, the yield of diphenylmethanol

(85) (56% by GC peak integration) being in the same region as that obtained for the N-2­

biphenyl benzyl carbamate (73).

In an attempt to increase the yield of this rearrangement reaction the reaction was repeated,

using N-phenyl benzyl carbamate (84), using two equivalents of BuLi, and not one as

previously used (Scheme 33). The yield increased to approximately 95% (by GC peak

integration), the recovered yield being 71 %. From this increase in yield it was deduced

that the rearrangement reaction mechanism obviously required two equivalents of BuLi.

All subsequent reactions were therefore carried out using two equivalents of BuLi.

2BuLi •

OH

(85)
Scheme 33

2.3.2 MECHANISTIC CONSIDERATIONS

As the mechanism, and the generality, of this rearrangement and elimination reaction were

not known it was decided to prepare a range of N-monosubstituted carbamates, including

both aromatic and alkyl substituents attached to the nitrogen (N-carbamates). The butyl

series, (86), (89) and (92), was chosen to determine (a) if the reaction occurred with alkyl

substituents and (b) how many members/atoms the presumed cyclic reaction intermediate

contained. This was to be determined by which position was substituted, the NMR spectra

of the potential products being sufficiently unique to distinguish this fact (Scheme 34). If
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the reaction intermediate was a five membered cyclic structure then compounds (87), (90)

and (91) would be expected. If the reaction intermediate was six membered then

compounds (88), (91) and (90) would be obtained.

OH OH
H CH,YPhCH3~N'C/0~Ph CH3~

• Ph OR
11
0 CH3

(86) (87) (88)

0 OH
11 CH3 OH

CH T C /"-....
CH3AAph

CH'03 ~/ '0 Ph • OR Ph
CH3 CH3CH3

(89) (90) (91)

OH
H CH3 OH

CH
yN

0 Ph CH'0
CH3AAph

'C/ ~ ~ Ph OR
CH3 11 CH3 CH3CH3 0

(92) (91) (90)

Scheme 34

The cyclohexyl derivative, N-cyclohexyl benzyl carbamate (93), was chosen due to its

alkyl, yet cyclic, character. The benzyl derivative, N-benzyl benzyl carbamate (94), was

chosen due to its more alkyl than aromatic nature and to determine the reaction

intermediate, if the reaction occurred, by the product formed. The naphthalene derivative,

N-a-naphthyl benzyl carbamate (95) was used as another aromatic example.

(l~
~N/C'O/"-....Ph

H

(93) (95)
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None of the reactions of the N-alkyl derivatives was successful, a number of unidentifiable

products being produced and not the desired rearrangement product. The reaction with

naphthalene was successful, the yield of (a.-naphthyl)phenylmethanol (96) being on a par

to those of the other aromatic compounds (62%).

(96)

As none of the reactions involving the substituents that were to have given clues to the

reaction mechanism and intermediate were successful, an aromatic compound containing a

marker was chosen, namely the benzyl carbamate derivative ofp-chloroaniline (97). The

position of the rearrangement would be readily recognisable due to the NMR splitting

pattern in the phenyl region. In this compound the chlorine has a weak electron­

withdrawing effect. To determine if the reaction went in preference when there was an

electron-withdrawing or an electron-donating effect the benzyl carbamate derivative ofp­

toluidine (99) was also prepared.

OH
~NHCOOCH2Ph

Cl 0-
Cl

(97) (98)

OH
ONHCOOCH,Ph

I .
H

3
C ~

H3C
(99) (100)
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The rearrangement reactions for the above compounds were successful, producing (p­

chlorophenyl)phenylmethanol (98) and (p-methylphenyl)phenylmethanol (100). However

the reactions were not as clean as those involving unsubstituted aromatic carbamates, there

being numerous other unidentifiable products formed. As a result the yields of required

product were low (approximately 14% for the methyl substituted (100) and approximately

10% for the chlorine substituted (98». A reason for the drastic decrease in yield, except

that of side reactions occurring at the substituent, could not be found and it appeared that

electron-donating or withdrawing effects made little difference in comparison with one

another. It may be possible to suggest that the para-substitution, or the substitution itself,

caused the decrease in yield, but then the good yield obtained for the ortho-phenyl

substituted compound (76) cannot be explained (unless the position is of particular

importance). It has been shown in the Smiles aromatic rearrangement that bulky groups in

the ortho-position decrease the number of transition state structures and enhance the close

proximity of the three important rearrangement participants, thus enhancing reaction

probability and rate (see 1.5.1)100,103. These results may be analogous in this

rearrangement reaction.

Analysis of the products, by NMR, showed that the rearrangement substitution had taken

place in the para position, in relation to the marker, i.e. onto the same position as the

nitrogen had been attached. This suggested a five membered cyclic reaction intermediate.

(Mechanistic details will be discussed at a later stage in 2.3.8)

2.3.3 INTRODUCING A HETERO-ATOM

The studies were extended to aromatic systems containing a hetero-atom to determine if

the rearrangement still occurred in these examples and if the hetero-atom had any effect on

the reaction. First N-4-pyridyl benzyl carbamate (101) was prepared, from 4­

aminopyridine, and the rearrangement reaction attempted. The reaction occurred

successfully with a moderate yield (35%) of (4-pyridyl)phenylmethanol (102) being

produced. As this reaction had been successful it was decided to change the position of the
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hetero-atom and determine the effect, if any. The benzyl carbamate derivative of 2­

aminopyridine, N-2-pyridyl benzyl carbamate (103) was prepared and once again the

reaction was successful, (2-pyridyl)phenylmethanol (104) being formed. In the case of the

N-4-pyridyl benzyl carbamate (101) the yield of secondary alcohol (102) was

approximately 10% greater than in the case of the N-2-pyridyl benzyl carbamate (103).

Unfortunately, due to the lack of ready availability of 3-aminopyridine, the effects of the

hetero-atom in the meta position could not be ascertained.

2.3.4 OTHER CARBAMATE DERIVATIVES

Thus far in the studies only the benzyl carbamate had been used and it was decided to

determine if this rearrangement reaction would occur with other a-carbamate moieties.

The allyl carbamates of aniline and p-chloroaniline, N-phenyl allyl carbamate (105) and N­

p-chlorophenyl allyl carbamate (106) respectively, were prepared. N-naphthyl cinnamyl

carbamate (107) was also prepared, by the reaction of naphthylisocyanate with cinnamyl

alcohol.
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H H

a
N,c/o~ DN,C/O~

I 11 I 11
~ 0 . ~ 0

Cl
(105) (106)

The rearrangement was successful in the case ofN-phenyl allyl carbamate (105), giving 1­

phenylp~op-2-en-1-01 (108). However the yield was very low, as could be seen by GC-MS

analysis, and no product could actually be isolated. The reaction was not a clean one and

numerous side reactions on the allyl portion obviously occurred. The reaction involving

the N-p-chlorophenyl allyl carbamate (106) was not successful.

The rearrangement of the N-naphthyl cinnamyl carbamate (107) was far more successful

with the required product, 1-(a-naphthyl)-3-phenylprop-2-en-1-01 (109), being formed in

40% yield.

OH

(109)

2.3.5 ATTEMPTS TO OBTAIN REARRANGEMENT TO A TERTIARY ALCOHOL

As the above reactions had shown some success it was decided to expand the study further

to a compound that was substituted at the point of rearrangement in the carbamate portion

of the molecule, namely N-phenyl 1-phenylethyl carbamate (110). This compound was

prepared by reaction of two equivalents of BuLi with N-phenylbenzyl carbamate (84) at ­

78°C, with subsequent addition of iodomethane (see 15t half of Scheme 35). Unfortunately
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the product (110) could not be successfully separated from the starting material (84) and

this mixture had to be used when attempting the rearrangement reaction.

The rearrangement (2nd half Scheme 35) was successful but occurred in low yield (10%).

The tertiary alcohol product, l,l-diphenylethanol (111), was easily separated from other

products and the secondary alcohol (diphenylmethanol (85) formed from the starting

material).

Attempts to prepare the tertiary alcohol by a two stage one pot reaction (Scheme 35) from

N-phenyl benzyl carbamate (84) gave a mixture of products and a lower yield of the

tertiary alcohol, as evidenced by GC-MS results.

H

1.2BuLi/-7lPc. crN.......C/OyPh
2.Mel I 11

~ ° CH3

(110)

Scheme 35

2BuLi ~

DOe

(111)

2.3.6 SUMMARY OF RESULTS

The results of all the studies into this rearrangement reaction of N-monosubstituted

carbamates to substituted alcohols, with presumed concomitant loss of cyanic acid

(HNCO), are summarised in TABLE 2.
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TABLE 2: Products and yields for attempted alcohol fonnation from carbamates.

CARBAMATE k ANION

BuLi COLOUR1

PRODUCT YIELD

(%)

N-(2-biphenyl) benzyl carbamate 1 yellow / light I'-phenyldiphenylmethanol 64

orange <P

.... 1
OH

<PI

.... (76)

N-phenyl benzyl carbamate deep yellow diphenylmethanol (benzhydrol) (58Y

dD
OH

1?

I I
~ ~ (85)

N-phenyl benzyl carbamate 2 very dark

orange

diphenylmethanol

OH

d'O::::,... ::::,... (85)

71 (94.5Y

a-naphthylphenylmethanolN-a-naphthyl benzyl carbamate 2 red (very deep

yellow)
,"'"

OH

I
.... (96)

62

N-p-chlorophenyl benzyl carbamate 2 deep orange /

red

p-chlorodiphenylmethanol

m
Cl ~ (98)

10

N-p-methylphenyl benzyl carbamate 2 deep orange / p-methyldiphenylmethanol 14

N-(4-pyridyl) benzyl carbamate

N-(2-pyridyl) benzyl carbamate

((~'e"O»I "
~ N 0 (103)

2

2

red

deep red

deep red

do
H,C ~ (100)

(4-pyridyl)phenylmethanol

~(102)
(2-pyridyl)phenylmethanol

OH

~
~~ V (104)

35

23
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CARBAMATE Eq.. ANION PRODUCT YIELD

BuLi COLOUR1 00
N-phenyl allyl carbamate 2 orange I-phenylprop-2-en-I-ol v.v.low"

a~'eO~
OH

I 11 ~"" 0 (105) "" (108)

N-p-chlorophenyl allyl carbamate 2 orange 0

(106)

N-a-naphthyl cinnamyl carbamate 2 deep olive 1-(a-naphthyl)-3-phenylprop- 40

C(r J)
green to black 2-en-I-ol

I H I
e:7 N,C/O~ b

'" Of{

I 11 I
:::",. 0 (107) <7 <7

1I
"'- "'- (109)

N-phenyl (l-phenyl)ethyl carbamate 2 light orange I,I-diphenylethanol 10

--P ofo"'" ~""c-'0 .&
I 11a 0 H, (110) I OH I

~ ~. (111)

N-n-butyl benzyl carbamate 2 deep bright 0

0 orange11

H'~N"C ...."V" .

'" (86)

N-i-butyl benzyl carbamate (89) 2 deep yellow 0

N-t-butyl benzyl carbamate (92) 2 light bright 0

orange

N-cyclohexyl benzyl carbamate 2 deep yellow / 0

J) orange
~~....C/O .&

11

o (93)

N-benzyl benzyl carbamate 2 red 0

Q~.& ~ ....c/o .&

11
0 (94)

I-Amon colour IS dependant on concentratIOn. 2-Ylelds based on GC peak integration.
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2.3.7 GENERAL DISCUSSION

All the carbamates, with the exception of N-naphthyl cinnamyl carbamate (107), were

prepared by the reaction of the primary amine with the cWoroformate, using NaB as base

(Eqn 27). This method proved to be a simple and general route to the N-monosubstituted

carbamates, with yields being good.

RCH20COCI + R'NH2 NaH ~ RCH20CONHR'
THF, RT., ISh

(Eqn 27)

R = CH2=CH2, Ph
R' = Ph, naphthy~ buty~ benzy~ pyridy~ cyclohexy~p-ClPh,p-MePh

The above reactions for the formation of the carbamate could be seen to have occurred by

the increase in Rc in TLC analysis using an ethyl acetate in hexane mixture and by the

downfield shift of the benzylic protons. These protons in the cWoroformate are found at

84.8 and move to 85.0 - 85.25 in the carbamate. The allyl system showed a similar

downfield shift of all protons in the system.

From an inspection of the analytical data of the starting carbamates and the rearrangement

results an interesting correlation comes to the fore. In the examples where good yields of

the secondary alcohol rearrangement product were obtained, the GC analysis of the parent

carbamate, even when pure, produces peaks representing the carbamate and two

degradation products, namely the aromatic isocyanate and the alcohol of the remaining

portion (usually benzyl alcohol).. The examples where this feature occurred are N-(2­

biphenyl) benzyl carbamate (73), N-phenyl benzyl carbamate (84), N-naphthyl benzyl

carbamate (95), N-naphthyl cinnamyl carbamate (107) and to a lesser extent N-p­

chlorophenyl benzyl carbamate (97) and N-p-methylphenyl benzyl carbamate (99). The

degradation ofN-monosubstituted carbamates, particularly those with good leaving groups

such as aryloxy or benzyloxy, to isocyanates is a common occurrence129 (Scheme 36). In

the case ofN-aryl carbamates the formation of the aromatic isocyanate is further enhanced
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as the electrons are delocalised over the entire molecule and thus the aromatic nature of the

ring stabilises the attached isocyanate portion. The formation of alkyl isocyanates did not

occur under the conditions used to obtain the gas chromatographs, the formation of alkyl

isocyanates not occurring as readily as aryl isocyanates.

o
11

ArN-C-OR
H

o
A .II~

---=U=---,.~ ArN-C-OR --... ArNCO + ROHeJ
Scheme 36

GC-MS analysis of the reaction mixture for the formation of the N-pyridyl benzyl

carbamates, (101) and (103), showed only starting materials and side reaction by-products,

suggesting that the carbamate formation had not occurred. However, NMR analysis

showed that the reaction had occurred, as could be seen from the benzylic proton shift from

approximately 34.8 in the chloroformate to approximately 35.2 in the carbamate. In the

instance of these compounds the rearrangement to secondary alcohol also did occur.

It may be possible to suggest that the above mentioned GC-MS results of the parent

carbamate may act as an indication, in as yet untested molecules, that the rearrangement

reaction to substituted alcohol could possibly occur.

The rearrangement reaction of carbamate to alcohol was carried out by addition of two

equivalents of BuLi to the carbamate, dissolved in THF (Eqn 28) (except in the origional

reaction involving (73».

RCH20CONHR' + 2BuLi

R=Ph, CHi=CH2. PhCH2=CH2
R' =Ar, pyridyl

OH

TIIF • ~OOC - R.T.
R R'

(Eqn 28)
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Analysis of the products by NMR shows a downfield shift of the original benzylic protons

from approximately <55.1 to approximately <55.6 - <55.9, with the exception of naphthyl­

phenylmethanol (96) and (2-pyridyl)phenylmethanol (104), and a decrease in the integral.

There is also the appearance of a slightly broader peak upfield in the <52.2- <52.65 region for

the alcohol. This peak is found further downfield in the pyridyl examples. That this peak

was due to the alcohol was further confirmed by its loss on exchange with deuterated

water, this fact being determined for benzhydrol (85) and l' ..;phenyldiphenylmethanol (76).

Addition of the butyllithium to the carbamates produced a wide range of anion colours,

generally ranging from deep yellow to red. These anion colours are dependent on

concentration, as well as on the compound itself. As the reaction progressed the anion

colour faded, as expected, and this feature aided in the monitoring of the reaction progress.

The rearrangement and elimination reaction is begun at aoc, with the reaction mixture

being allowed to slowly warm to room temperature as the reaction progressed. The

reaction was attempted where the BuLi was added at room temperature; however these

conditions were not favourable with a decrease in yield and numerous by-products being

observed, although the reaction was over more rapidly, as could be seen by the loss of

anion colour. Too rapid an increase in the reaction temperature from aoc to room

temperature had a similar effect.

One of the most difficult functionalities to remove in synthetic organic chemistry is the

amine, and related, functionalities, i.e. the breaking of the C-N bond. The most common

method of achieving this, which is generally only successful in the case of aromatic

amines, is the formation of the diazonium salt (112) and then replacement of this group13
0

(Scheme 37). The reaction is only applicable to primary amines and all amine derived

functionalities must therefore be reduced to the primary amine. The diazonium salt is

prepared by the reaction of nitrous acid (HN02), which is prepared in situ by the reaction

of a mineral acid on sodium nitrite (NaN02), with the amine. The diazonium salt may then

be replaced by a number of functionalities, with loss of the nitrogen as N2. However, the

only reaction to replace the C-N bond with a C-C bond is the replacement of the diazonium



Ar-NH2 + NaN02 + 2HX -O-o-C--l.~

x=cr,HS04-

MZ = H20, CuCI, CuCN, H3P~
Z =OH, Cl, CN, H

Ar-N N+X + NaX + 2H20
(112)

Ar-Z + Nz
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Scheme 37

salt with the cyanide group, to form the nitrile, from which further synthetic steps may be

achieved. The diazotization reaction is in some cases a difficult reaction due to the

instability and reactivity of the salt, which must also be used immediately upon its

formation. The replacement reaction to give the nitrile is further complicated as the

diazonium salt reaction mixture must first be neutralised before reaction with the cuprous

cyanide, to prevent the formation and loss of HCN. After obtaining the nitrile numerous

additional steps are needed to build up the desired molecule. The replacement of the amine

functionality by this traditional method is therefore a lengthy and complicated procedure.

The rearrangement reaction of the N-monosubstituted carbamate to the substituted benzyl

alcohol achieves the same result as the diazotisation reaction as it removes the amine

functionality and replaces it with a C-C bond, with the presence of the alcohol function on

which further synthesis may be achieved. This rearrangement reaction is a simple reaction,

readily carried out, which allows for the replacement of the amine in two steps. It also

gives in the two steps a more complicated, or built-up, compound without the need for

numerous synthetic steps to achieve this, although the reactions scope in this field has not

been fully evaluated. It involves the use of, comparatively, non dangerous reagents and the

"intermediate" N-monosubstituted carbamate formed from the primary amine need not be

used immediately and may be stored, if pure, for a few weeks.

The most common literature method for the preparation of the secondary alcohols formed

from the rearrangement of the carbamates has been the reduction of the corresponding

k d b h d· . 1 h d 131 132 133 134 135 136etones an y ot er more tra ltIona met 0 s ' . , , . . These ketones may not

always be readily prepared and this rearrangement reaction provides a simple two step

procedure to the secondary alcohol.
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2.3.8 MECHANISTIC DISCUSSION

No literature precedent was found relating to a potential mechanism for this rearrangement

reaction of N-monosubstituted carbamate to alcohol. Those that were found that may

resemble a potential mechanism are discussed in 1.5, the Smiles aromatic heteroatom

migration rearrangement being the most significant.

From these initial results obtained for the attempted rearrangement reactions of N­

monosubstituted carbamates to substituted alcohols the following generalised conclusions

can be drawn:

(a) The rearrangement reaction occurs in the case of aromatic carbamate derivatives and

not in the case of alkyl carbamates.

(b) The reaction requires two equivalents of BuLi as can be seen by the increased yield

from one to two equivalents (in the case of N-phenyl benzyl carbamate (84)). This

suggests two anions in the reaction intermediate, one at the nitrogen and one at the benzylic

carbon (113).

(c) The reaction may occur with a variety of carbamate moieties, so long as the carbon

adjacent to the oxygen of the carbamate linkage has a position available for substitution /

anion formation.

(d) The rearrangement occurs to the same position on the aromatic ring that the nitrogen of

the carbamate linkage was attached to. This suggests a five membered reaction

intermediate consisting of the ,carbamate linkage, the adjacent carbon and the position of

substitution. This cyclic transition state complex would in essence be an oxazolidone79
•

(e) Substituents in the para position to the point of attachment of the carbamate on the

phenyl ring appear to decrease the yield of alcohol. There appears to be little difference

between the effects of electron-withdrawing or donating groups with·electron-withdrawing
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groups having fractionally more negative influence on the reaction yield. Electron­

donating groups, or simply substitution, in the ortho position appear to have a positive

effect on the reaction as can be seen by the good yield obtained in the case of N-(2­

biphenyl) benzyl carbamate (73), even with only one equivalent ofBuLi.

(t) Hetero atoms in the aromatic ring do not appear to hinder the reaction occurring, so

long as the aromatic character of the ring is maintained, although yields are slightly lower.

From the above generalised conclusions the following reaction mechanism can be

tentatively proposed (Scheme 38).

H eLt

~$OaN'c/O"-./Ph 2BuLi • o:N 0-::? .........C-r,1

I 11
ooe - R.T. I I ,:

0 0:
- /' ".+

R er8-----Ll
R R I

Ph Ph

1
OH oe

Ph + HNCO .. Ph +~CO

R R

Scheme 38

The formation of cyanic acid (HNCO) as a by-product in this reaction was not confirmed,

although it seems the most likely compound to be formed. Cyanic acid would ~e difficult

to detect as it has the potential to polymerise at temperatures above O°C; however no solid

material was observed to form during the rearrangement reaction. Cyanic acid is also

volatile and in aqueous environments is hydrolysed to NH3, CO2 and H20, making

detection difficult137
• The possible detection of an ammonia odour is overpowered by the

residual odour of the THF and BuLi in the reaction mixture, after quenching.
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The rearrangement and elimination reaction of a N-monosubstituted carbamate to the

substituted alcohol is an unusual and novel reaction, as is the mechanism proposed.

In the mechanism (Scheme 38) the attack of the benzylic anion on the point of attachment

of the nitrogen on the aromatic ring is electronically not favoured as there is already a high

electron density in the area creating a nucleophilic and not electrophilic environment.

However, if the mechanism of attack is of a SNl-type substitution, with the aromatic­

nitrogen bond being broken before substitution of the benzylic anion, then a fractionally

positive (8+ve) charge would exist at that point on the aromatic ring, favouring attack by a

nucleophile to a slightly greater degree. In the first instance (SN2-type) an electron­

withdrawing substituent in the ortho or para position would favour progression of the

reaction as this would minimise the negative charge/greater electron density at the point of

rearrangement. On the other hand an electron-donating group at either of these positions

would help stabilise the positive charge created in the SN1 scenario and thus favour

progression of the reaction. Initially, from the results obtained, it appears that this is the

more likely option, i.e. that ofa concerted SNl-type mechanism. However, in this scenario

the ready cleavage of the aromatic-nitrogen bond is not readily explained, this usually

being difficult to achieve. If the mechanism is of the SN1 type then the question arises as

to whether the rearrangement reaction occurs inter- or intra-molecularly. No studies to

determine which option actually occurs were undertaken. For steric reasons, from

modelling studies and a knowledge of the ready formation of the oxazolidone into a five

membered ring, the intra-molecular case seems the more plausible. However, in the case

of the SN2 scenario the formation of a benzenonium type transition state is possible. The

formation of the benzenonium ion (56) is reported for aromatic migration/rearrangement in

the Hofmann and Pinacol rearrangements (see 1.5). Here the aromatic ring is attached to a

three membered ring transition state with some of the electron density from the aromatic

system being transferred to an electron deficient centre, and this positive charge therefore

being spread over the aromatic ring. In the case of the Hofmann rearrangement the loss of

the halide ion creates an electron deficiency on the nitrogen and the aromatic migration is

believed to occur simultaneously, each fact aiding the occurrence of the other. If, in the

reaction mechanism above (Scheme 38), the formation of the isocyanate ion is a driving
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force in the reaction then a small electron deficiency may exist at the nitrogen, allowing for

formation of a benzenonium type ion (56) and nucleophilic attack on the ring. In this case

electron-donating effects on the ring would stabilise the positive charge over the ring and

favour the reaction occurring. Electron-withdrawing effects would have the opposite

effect. The results obtained for reactions with such electronic features are concurrent with

this theory. The Smiles aromatic rearrangement is well known and involves nucleophilic

attack on the aromatic system, with the formation of a spiro-transition state (50). In this

case electron-withdrawing effects on the aromatic ring enhance the reaction favourability

as the excess negative charge can be distributed over the whole system. However,

reactions for non-activated systems have been reported104, where the aromatic ring holds

the excess electron density. The aromatic system also takes on a negative charge if one of

the hetero-atoms, usually a nitrogen, is positively charged. It has also been shown in the

Smiles rearrangement that substituents in the ortho position enhance the reaction rate and

yield due to the formation of a "V" shaped transition state (51) with the ortho substituent

forcing the reacting components into favourable alignment for the rearrangement to occur.

The results obtained are therefore also able to be fitted to, and are more likely attributable

to, a transition state and reaction mechanism of the SN2-type, resembling that of the Smiles

rearrangement.

In the case of the pyridyl systems reaction to the point of attachment is more likely due to

the existence of resonance structures in the aromatic ring. The nitrogen is able to be

negatively charged and therefore the ortho- and para-positions carry a positive charge100,

aiding progression of the reaction and possibly a five-membered spiro-reaction

intermediate. Pyridyl systems are known to undergo the Smiles rearrangement103
•

The evidence for the need for two equivalents of BuLi in the reaction, and therefore the

presence of two anions in the intermediate complexes in the mechanism, is not totally

conclusive. In the original reaction involving N-(2-biphenyl) benzyl carbamate (73) only

one equivalent of BuLi was used and a yield in excess of 50% was obtained. However, in

the case of the N-phenyl benzyl carbamate (84) doubling the equivalents of BuLi led to an

almost two-fold increase in the yield of the alcohol product. However, this increased yield
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is only slightly greater than that obtained in the original reaction scenario. If in fact the

reaction does not require the addition of two equivalents of BuLi, but only an excess, then

the rearrangement reaction would occur via a different reaction mechanism. In this

mechanism (Scheme 39) there is the formation of only one anion, found at the benzylic

position. The rearrangement step takes place via a SN2 mechanism, with subsequent loss

of the cyanic acid occurring to give the alcohol.

H

BuLi., o:N,c'i'?
ooc -R. . I I !

0,'
0/ L"+0/-----. 1

RI·
Ph

1

~Ph
R

Phd'oe
R

Scheme 39

-HNCO•

Unfortunately the studies undertaken were not extensive enough to reach any binding

conclusions and thus no definite reaction mechanism can be proposed. Furthermore no rate

studies were carried out.
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2.3.9 CONCLUSION

A novel and apparently unique rearrangement reaction of an aromatic N-monosubstituted

carbamate (ArNHCOOCHRIR2
) to a secondary (if RI = H) or tertiary alcohol, with

elimination of cyanic acid, was discovered when the carbamate is reacted with two

equivalents of butyllithium at O°C (in THF). The rearrangement occurs when the

substituent attached to the nitrogen of the carbamate linkage is aromatic in nature, which

may contain a hetero-atom, but appears not to occur when this substituent is alkyl in

nature. The O-carbamate moiety may be varied, so long as the carbon adjacent to the

oxygen has a hydrogen available for abstraction and formation of an anion. The reaction

mechanism may be tentatively proposed to be of an intra-molecular SN2-type concerted

mechanism with concomitant elimination. This reaction resembles, and may be an

extension of, the Smiles rearrangement, with a carbon replacing a nitrogen on the aromatic

nng.

The two reactions involved in obtaining the substituted benzyl alcohol from the primary

amine are simple and readily carried out. At present the yields for both the carbamate

formation reaction and the rearrangement reaction are, unexplainably, variable, although

generally good.

This rearrangement reaction of N-monosubstituted carbamate to secondary, or tertiary,

alcohol of the substituted methanol type, but usually thus far the substituted benzyl alcohol

type, provides a simple route to replacing an amine functionality with a more complex

carbon based functionality. Previously this has been difficult to achieve, the most common

route being via the diazonium salt. This rearrangement reaction should therefore prove to

be very useful in synthetic organic chemistry; however the full scope and therefore the

utility of the rearrangement still needs to be discovered.
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3. CONCLUSION and FUTURE PROPOSALS

Due to the time constraints inherent in a Masters project (one year of practical work) many

facets of this research were not completed and many desired reactions could not be

attempted. This fact only served to augment the number of questions that research

proposes and to answer few..

The initial aim of this Masters project was to obtain chiral induction across the carbamate

linkage, from chiral amines to the benzylic position of benzyl carbamate. This goal was

never achieved; however, in the course of this investigation an extension of existing

oxazolidone work and a novel rearrangement reaction were exposed. The new bicyclic

oxazolidone with nitrogen at the bridgehead position, 3-oxa-l-aza-4,4­

diphenylbicyclo[3.3.0]octan-2-one (77), was formed by a trans-carbamation type reaction

from benzyl 2-(hydroxydiphenylmethyl)pyrrolidine-l-carboxylate (64) by both thermal

and chemical means, using sodium hydride (NaH) which has as yet not been used to

achieve such a reaction. Further investigation into this reaction proved unsuccessful on the

whole, with many proposed questions remaining unanswered. A novel rearrangement

reaction where N-monosubstituted carbamates rearrange to give substituted methanol

products, on treatment with butyllithium, was discovered in attempts to substitute the

nitrogen of the carbamate. Thus far it has been determined that this reaction appears to

occur within the following generalisations:

(a) The nitrogen substituent must be aromatic in nature. It may contain a hetero-atom and

may be substituted.

(b) The O-carbamate moiety may be varied, so long as a position on the carbon adjacent to

the oxygen is available for substitution.

(c) The transition state is a five membered cyclic one and rearrangement occurs to the

position to which the nitrogen was attached.
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Some of the questions that remained unanswered in the oxazolidone work were:

(a) Could the trans-carbamation cyclisation reaction occur with other sized cyclic

structures containing the nitrogen and could these structures be unsaturated?

(b) What effect does the alcohol being either primary, secondary or tertiary have on the

reaction?

(c) What effect do the characteristics of the substituents on the alcohol have on the

cyclisation reaction?

When looking at future proposals for the carbamate to alcohol rearrangement reaction it

becomes obvious that only the initial studies have thus far been completed. Future work

entails:

(a) investigations into the effects of substituents on the N-aryl group, both electronically

and structurally

(b) whether altered reaction conditions could allow the reaction to occur with N-alkyl

substituents

(c) determination of the true reaction mechanism

(d) investigations into altering the O-carbamate moiety. Must this moiety contain an aryl

or unsaturated component or can the rearrangement occur with simple alkyl groups?

What effects do substituents on the carbon adjacent to the oxygen have on the

rearrangement to a tertiary alcohol?

(e) optimising reaction conditions - trying different solvents.
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4. EXPERIMENTAL

4.1 INSTRUMENTATION and CHEMICALS

NMR spectra eH 200 MHz and BC 50 MHz) were recorded on a Varian Gemini 200 NMR

spectrometer and IH 60MHz spectra recorded on a Varian T60 instrument. Unless

otherwise stated, spectra were run using CDCl3 as solvent and tetramethylsilane (TMS) as

internal reference. All values are reported in ppm downfield of TMS and all J values are

reported in Hz. Mass spectra were recorded on a Hewlett-Packard (HP5988A) mass

spectrometer or a Varian high resolution mass spectrometer, linked to a gas

chromatograph. Elemental analyses were carried out on a Perkin-Elmer 2400 CRN

elemental analyser. Melting points were determined using a Kofler hot-stage apparatus and

are uncorrected. Infra-red spectra were obtained on a Shimadzu FTIR-4300 instrument

using KBr disks. Optical rotations were determined on a Perkin-Elmer 241 digital

polarimeter.

For thin layer chromatography, precoated Kieselgel60 F254 Merck plastic sheets were used.

Unless otherwise specified all thin layer chromatography was run using 20% ethyl acetate

in hexane for ease of comparison. All chromatography solvent system ratios were then

adjusted accordingly. Purification of compounds was achieved by centrifugal

chromatography on a Harrison Research Chromatotron Model 7924T, on glass plates

coated with Merck silica gel (200-400 mesh), 2-4 mm thick.

All commercially obtained chemicals were used as is, unless indicated otherwise, and all

solvents were dried using standard literature procedures138
. Low reaction temperatures

. . d . d . / I b h 139were mamtame usmg ry Ice so vent at s .
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4.2 PREPARATIONS

4.2.i PREPARATION OF BENZYL 2-(HYDROXYDIPHENYLMETHYL>PYRROLIDINE­

i-CARBOXYLATE (64)

N-Benzyloxycarbonyl-L-proline (65)

C13H lSN04

MM 249.26 g/mol

L-Proline (5.00 g, 49 mmol) was dissolved in 4N NaOH (10 ml) and the stirred solution

cooled in an ice bath. Benzyl cWoroformate (6.5 ml, 45mmol ) was added dropwise and

the solution then allowed to stir for 2 h. The cooled solution was acidified (Congo red

indicator) using approximately IM HCl and the product separated out as an oil. The

product was extracted into ethyl acetate and the extracts were washed with brine and dried

over anhydrous MgS04. The solvent was removed to yield a very viscous, colourless oil in

almost quantitative yield, which was used without further purificationll7
.

Yield: 10.78 g (99%). DH (200 MHz) 7.?7 (IH, s, COOH), 7.24-7.38 (5H, m, Ar-H),

5.08-5.22 (2H, m, CH2Ph), 4.33-4.44 (IH, m, NCHCOOH), 3.43-3.65 (2H, m, NCH2CHz),

2.00-2.24 (2H, m, CHCH2), 1.85-2.00 (2H, m, CHzCH2CHz); Dc (50 MHz) 177.34 and

176.30 (s, COOH)33, 155.54 and 154.59 (s, C=O)3, 136.39 (s, Ar-C), 128.47, 128.38,

128.06,127.88 and 127.62 (d, Ar-CH), 67.40 and 67.17 (t, PhCHzt, 59.19 and 58.68 (d,

NCHt, 46.92 and 46.58 (t, NCHzt, 30.84 and 29.61 (t, CHCHzt, 24.24 and 23.42 (t,

CHzCHzCHzt; m/z 204(M+ ;.COOH, 3.4%), 160 (9.0), 114 (25.0), 91 (lOO), 70 (7.6), 65

(8.9),44 (7.9).

a due to the occurance ofrotamers (see page 49)
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N-benzyloxycarbonyl-L-proline methyl ester (63)
\

C14H17N04

MM 263.29 g/mol

N-methyl-N-nitrosourealI9 (10 g, 97 mmol) was added to an ice-cooled, well stirred system

of diethyl ether (75 ml) above a 50% solution of KOH, in water (50 ml), to generate an

excess of diazomethanel18. The diethyl ether layer was decanted and dried three times, at

O°C, over potassium hydroxide pellets. N-Benzyloxycarbonyl-L-proline (65) (2.5 g, 10

mmol ) was dissolved in diethyl ether and slowly added to the diazomethane solution. The

mixed solution was stirred and the excess diazomethane allowed to evaporate off overnight

before the diethyl ether was removed to yield the methyl ester as a very viscous colourless

oil. The product was used without further purification for the next step. Yield: 2.45 g

(93%). (Found: C, 64.07; H, 6.70; N, 5.28; C14Hl7N04 requires C, 63.86; H, 6.51; N,

5.32%). DH (200 MHz)1l6 7.23-7.37 (5H, m, Ar-H), 4.97-5.21 (2H, m, PhCH2), 4.28-4.39

(LH:, m, CHCOOMe), 3.69 and 3.55 (3H, 2x s, COOCH3l , 3.41-3.64 (2H, m, NCH2),

2.10-2.21 (1H, m, CHCHH), 1.81-2.00 (3H, m, CHCHHCH2); Dc (50 MHz) 173.17 and

173.9 (s, COOMet, 154.75 and 154.15 (s, NC=Ot, 136.72 and 136.64 (s, Ar-ct, 128.41,

128.35, 127.91, 127.87, 127.79 and 127.68 (d, Ar-CH), 66.87 and 66.80 (t, CH2ph)a, 59.15

and 58.78 (d, NCHCOOMe)a, 52.10 and 51.96 (q, OCH3t, 46.89 and 46.38 (t, NCH2t,
30.85 and 29.84 (t, CHCH2t, 24.28 and 23.48 (t, CH2CH2CH2)a; m/z 263 (M+, 3.5%), 204

(17.8), 160 (22.9), 128 (6.4), 91 (100).

a due to the occurance ofrotamers (see page 49)
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Benzyl 2-(hydroxydiphenylmethyl)pyrrolidine-l-carboxylate (64}116

Io-:/C'-°U
(64)

C25H25N03

MM 387.47 g/mol

Phenyl magnesium bromide (40 mmol) was prepared by adding bromobenzene (6.28 g, 4.2

ml, 40 mmol) to magnesium turnings (1.94 g, 80 mmol) in THF (40 ml), under nitrogen, in

a 100 ml flask fitted with a reflux condenser. The reaction was initiated by applying a

small amount of heat to the flask and the reaction mixture allowed to stir for 30 min. The

PhMgBr was transferred by syringe to an ice cooled solution of N-benzyloxycarbonyl-L­

proline methyl ester (63) (2.63 g, 10 mmol) in THF (20 ml), under nitrogen. The reaction

mixture was allowed to stir for 3 h before being quenched with approximately 7 ml of a

saturated NH4CI solution. The organic layer was extracted into chloroform and the extracts

were washed with brine and dried over anhydrous MgS04 before the solvent was removed.

The product was purified using centrifugal chromatography (10% ethyl acetate in hexane).

Yield 2.70 g (70%). OH (200 MHz) 7.20-7.40 (15H, m, Ar-H), 6.0 (1H, s, OH), 5.10-5.17

(2H, d, CH2Ph, J=6.2), 4.89-4.95 (IH, m, NCHCPh20H), 3.40-3.45 and 3.0 (lH, m,

NCHH), 1.87-2.07 (2H, m, CHCH2CH2), 1.39-1.45 and 0.85 (1H, m, NCHCHH); Oc (50

MHz) 157.95 (s, C=O), 146.16, 143.54 and 136.40 (s, Ar-C), 128.39, 127.99, 127.93,

127.75, 127.65, 127.50, 127.34, 127.21 and 127.06 (d, Ar-CH), 81.52 (s, CPh20H), 67.30

(t, PhCH2), 66.09 (d, NCH), 47.73 (t, NCH2), 29.51 (t, CH2CH2CH2), 22.87 (t, NCHCH2);

m/z Only peaks in GCMS with rn/z of 279 and 108 due to rearrangement and

decomposition products.
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4.2.2 PREPARA TION OF 2-(1-PHENYLCYCLOPENTYL)-4.4. 6-TRIMETHYL­

TETRAHYDRO-1.3-0XAZINE (72)127

2-Benzyl-4,4, 6-trimethyl-5, 6-dihydro-l, 3(4H)-oxazine (70)

C14H19NO

MM 217.31 g/mol

Concentrated sulfuric acid (17 ml), in a flask fitted with an overhead stirrer, was cooled to

between O°C and 5°C in an ice bath. To this was added phenyl acetonitrile14o (9.9 g, 85

mmol) from a dropping funnel at such a rate so as to keep the temperature near O°C. On

completion of this addition 2-methyl-2,4-pentanediol (9.08 g, 76.8 mmol) was added

dropwise at a rate to maintain a temperature of 0-5°C. The reaction mixture was stirred for

1 h before 54 g of crushed ice was added and the reaction mixture stirred until this had

melted. The reaction mixture was made just alkaline with 40% NaOH, with ice being

added when necessary to keep the temperature below 35°C. This aqueous solution was

extracted with chloroform (3x 50 ml) and the extracts dried over anhydrous MgS04 before

the solvent was removed. The product was obtained by distillation under reduced pressure

(320°C/760 mmHg, 180°C/O.4 mmHg). Yield: 3.35 g (19%). (Found: C, .77.33; H, 8.93;

N, 6.21; Cl4Hl9NO requires C, 77.38; H, 8.81; N, 6.45%). DH (200 MHz) 7.18-7.34 (5H,

m, Ar-H), 4.02-4.11 (1H, m, OCHCH3), 3.44 (2H, s, CH2Ph), 1.72 and 1.65 (2H, dd,

Me2CCH2CHMe, J=1.4, J=6.8), 1.22, 1.21, 1.18 and 1.71 (6H, 2x S, (CH3)2C and 3H, d,

OCHCH3); Dc (50 MHz) 157.14 (s, N=CO), 137.15 (s, Ar-C), 129.02, 128.59, 128.17,

127.80 and 126.30 (d, Ar-CH), 67.87 (d, OCHMe), 49.81 (s, NCMe2), 42.40 (t, CH2Ph),

41.70 (t, CCH2CH), 31.78 and 29.52 (q, (CH3)2C), 21.28 (q, OCHCH3); m/z 217 (M+, .

21.8%),202 (2.9), 118 (10.8), 91 (69.4),84 (100).
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2-(l-Phenylcyclopentyl)-4,4,6-trimethyl-5,6-dihydro-l,3(4H)-oxazine (71)

ClsH25NO

MM 271.40 glmol

(71)

To a solution of 2-benzyl-4,4,6-trimethyl-5,6-dihydro-l,3(4H)-oxazine (70) (0.3 g, 1.4

mmol) in THF (10 ml), under nitrogen and anhydrous conditions, at -78°C, was added

BuLi (1.1 ml, 1.1 eq., 1.37 M) over 10 min and the resultant dark orange solution allowed

to stir for 30 min. Freshly distilled 1,4-dibromobutane (0.279 g, 0.16 ml, 1.5 mmol, 1.1

eq.) was then added over 10 min and the reaction mixture allowed to stir for a further 45

min, still at -78°C, before a further portion of BuLi (1.11 ml, 1.1 eq., 1.37 M) was added

over 10 min. The deep emerald green solution was allowed to stir for 1 h before being

stored overnight at -20°C. The reaction mixture was poured into 5 ml ice water and

acidified to pH 2-3 with a 9N HCI solution. It was then washed 3 times with small

portions of diethyl ether before being basified with a 40% NaOH solution. The resulting

solution was extracted into diethyl ether and the extracts dried over anhydrous MgS04.The

solvent was removed by rotary evaporator to yield the pure 2-(1-phenylcyclopentyl)-4,4,6­

trimethyl-5,6-dihydro-1,3(4H)-oxazine (71) as a yellow oil. Yield: 0.33 g (88%). OH (200

MHz) 7.11-7.41 (5H, m, Ar-H), 3.88-3.98 (1H, m, CHCH3), 2.48-2.60 (2H,m,

cyclopentyl), 1.6-1.9 (7H, m, CCH2CH, cyclopentyl), 1.07-1.27 (1H, m, cyclopentyl), 1.18

(3H, OCHCHJ), 1.13 and 1.10 (6H, 2x s, C(CHJ)2); Oc (50 MHz) 159.78 (s, N=C(C)O),

146.09 (s, Ar-C), 127.68, 126.51 and 125.66 (d, Ar-CH), 67.47 (d, OCHCH3), 57.16 (s,

C(CH2)4Ph), 49.68 (s, NC(CH3)2), 42.07 (t, CCH2CH), 36.58 and 35.97 (t, ­

CCH2(CH2)2CHr), 31.99 and 29.26 (q, C(CH3h), 23.36 and 23.31 (t, -CCH2(CH2)2CHr),

21.29 (q, CHCH3); m/z 271 (M+, 78.4%), 243 (56.6),230 (73.3), 194(27.1), 167 (16.1),

145 (55.2), 128 (25.9), 115 (34.5), 103 (29.3),91 (100),58 (25.8).
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2-(l-Phenylcyclopentyl)-4,4, 6-trimethyltetrahydro-l, 3-oxazine (72)

ClsH27NO

MM 273.41 g/mol

(72)

2-(1-Phenylcyclopentyl)-4,4,6-trimethyl-5,6-dihydro-l ,3(4H)-oxazine (71) (0.3 g, 1.1

mmol) was dissolved in a mixture of 5 ml THF and 5 ml 95% EtOH and cooled to O°C.

One drop of cone. HCI was added. A solution ofNaBH4(0.06 g, 1.5 mmol, 1.4 eq.) in 0.5

ml water was prepared, to which 2 drops of 4N NaOH were added. This solution was

added dropwise to the first and the pH tested to determine that the solution was just

alkaline. The reaction mixture was allowed to stir for 2 h before being stored at -20°C

overnight. The solution was basified and extracted into diethyl ether, the extracts dried

over anhydrous MgS04, and the solvent removed by distillation on a rotary evaporator to

yield a fine yellow powder. The product was purified by centrifugal chromatography

(ethyl acetate in hexane). Yield: 0.23 g (75%). OH (200 MHz) 7.18-7.45 (5H, m, Ar-H),

4.11 (1H, s, NH), 3.6-3.8 (lH, m, CHCH3), 1.1-2.4 (10H, m, cyclopentyl & CHCH2C),

1.10, 1.09, 1.07 and 0.88 (6H, 2x S, C(CHJ)2 and 3H, d, OCHCHJ); be (50 MHz) 144.01

(s, Ar-C), 128.99, 127.23 and 125.77 (d, Ar-CH), 86.88 (d, NHCHOCH), 68.57 (d,

OCHCH3), 55.02 (s, NC(CH3h), 48.53 (s, C(CH2)4Ph), 45.36 (t, CCH2CH); 36.17 and

34.94 (t, -CCH2(CH2hCHr ), 32.72 and 23.91 (q, C(CH3h), 23.59 and 23.50 (t, ­

CCH2(CH2)2CHr), 22.34 (q, CHCH3); mlz 273 (M+, 0.06%),258 (0.3), 174 (0.9), 145

(3.2), 128 (100), 115 (3.3),91 (12.9),86 (19.8), 83 (15.8), 77 (1.8),58 (6.2), 46 (4.4).
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4.2.3 PREPARATION OF 2-0XAZOUDONES

3-Oxa-l-aza-4, 4-diphenylbicyc/o[3.3. 0]octan-2-one (77)

ClsH17NOz

MM 279.33 g/mal

c-O
ij

o
(77)

To a stirred suspension ofNaH (0.037 g, 1 mmol, 2 eq., 80%) in dry THF C2 ml) was added

dropwise a solution of benzyl 2-(hydroxydiphenylmethyl)pyrrolidine-1-carboxylate (64)

(0.2 g, 0.5 mmol) in THF (2 ml) and the reaction mixture allowed to stir for 1 h. The

reaction was quenched with water (1 ml) and the product was extracted into chloroform,

the extracts dried and the solvent removed. The crystalline product was purified using

centrifugal chromatography (10% ethyl acetate in hexane) Yield: 90%. Melting Point:

123-124°C; (Found: C, 77.59; H, 6.21; N, 4.89; CIsH17N02 requires C, 77.40; H, 6.13; N,

5.02%). ~H (200 MHz) 7.53 (lH, t, Ph, J=1.0), 7.49 (lH, m, AI-If), 7.19-7.40 (8H, m, AI­

If), 4.49-4.57 (lH, q, NCHCPh2, J=2.6), 3.62-3.75 (IH, dt, NCHHCH2, J=4.0, J=5.6),

. 3.13-3.25 (lH, dq, NCHHCH2, J=2.1), 1.78-1.95 (2H, m, CH2CH2CH2), 1.62-1.76 (lH, m,

NCHCHHCH2), 0.97-1.19 (lH, m, NCHCHHCH2); ~c (50 MHz) 160.26 (s, C=O),

143.06 and 140.01 (s, Ar-C), 128.31, 128.06 127.45, 125.68 and 125.19 (d, AI-CH), 85.63

(s, CPh2), 68.95 (d, NCHCPh2), 45.77 (t, NCH2), 28.73 (t, CH2CH2CH2), 24.62 (t,

CHCH2CH2); IR (cm-I) 1757 (C=O); m/z 279 (M+, 44.3%), 182 (67.7), 165 (67.0), 146

(70.8), 105 (100), 77 (29.9), 69 (25.7); [a]D27: -215.1 ° (0.5058g/100ml in CHCI3).
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3,4-Dimethyl-5-phenyl-2-oxazolidone (82)

CllH13NOz

MM 191.22 g/mol

NaH (0.133 g, 1.1 eq., 50%) was added to a solution of (-)-ephedrine (0.5 g, 3 mmol) in

dry THF (l0 ml) at room temperature. The solution was allowed to stir for 5 min before

benzyl chloroformate (0.516 g, 0.44 ml, 3 mmol, 1 eq.) was added dropwise. The reaction

mixture was allowed to stir for 1 h before another 1.1 equivalents ofNaH (0.133 g, 50%)

were added. The reaction mixture was left to stir for 3 h before being slowly quenched

with water. The THF was removed and the reaction mixture extracted into chloroform, the

extracts dried and the solvent removed under vacuum. The pale yellow oil that was

obtained was purified by centrifugal chromatography (10% ethyl acetate in hexane). The

oxazolidone (81) was obtained as a colourless oil which crystallised out in off-white

needles. Yield: 0.296 g (52%). OH (200 MHz)128C 7.22-7.40 (5H, m, Ar-H), 5.557 (lH, d,

OCHPh, J=4.1), 3.94-4.08 (lH, dq, NCHCH3, J=3.3, J=4.1), 2.84 (3H, s, NCH3), 0.75 (3H,

d, NCHCH3, J=3.3); Oc (50 MHz) 158.04 (s, C=O), 135.17 (s, Ar-C), 128.41 and 126.08

(d, Ar-CH), 78.28 (d, OCHPh), 56.91 (d, NCHCH3), 28.88 (q, NCH3), 14.21 (q, CHCH3);

m/z 191 (M+, 12.4%), 176 (2.5), 147 (1.6), 132 (3.3), 117 (5.0), 105 (3.8), 91 (5.4), 77

(6.1),58 (30.3), 57 (lOO), 51 (5.8),42 (53.9).
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Imidazole benzyl carbamate (83)

MM 202.21 glmol

To a solution of imidazole (1.0 g, 15 mmol) in dry THF (40 ml), at room temperature, was

added NaH (0.648 g, 16 mmol, 1.1 eq., 50%). The solution was stirred for 5 min before

benzyl chloroformate (2.75 g, 2.3 ml, 16 mmol, 1.1 eq.) was added dropwise. The reaction

mixture was allowed to stir for 2 d before being quenched with water. The solvent was

removed and the product was extracted into chloroform. The extracts were dried over

anhydrous MgS04, and the solvent removed to yield a yellow oil which was purified by

centrifugal chromatography (20% ethyl acetate in hexane). Yield: 1.93 g (65%). DH (200

MHz) 8.11 (1H, t, NCHN, J=0.55), 7.34-7.42 (6H, m, Ar-H and (OC)NCH), 7.02 (IH, q,

NCHCHN(CO), J=O.4), 5.36 (2H, s, PhCH2); Dc (50 MHz) 148.09 (s, C=O), 136.68 (d,

NCHN), 133.59 (s, Ar-C), 130.14 (d, (OC)NCH), 128.65, 128.36 and 128.23 (d, Ar-CH),

116.69 (d, NCHCHN(CO», 69.31 (t, PhCH2); m/z 202 (M+, 5.7%), 158 (6.7), 126 (0.7),

105 (0.7),91 (100), 77 (4.9), 65 (18),63 (4.4).
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4.2.4 GENERAL PROCEDURE FOR THE PREPARATION OF BENZYL CARBAMATES

To a stirred solution of the primary amine (aryl or alkyl) (0.25-1.0 g) in dry THF, at room

temperature, NaH (1.2 eq.) was added. To this solution benzyl chloroformate (1.1 eq.) was

slowly added dropwise, as the reaction is exothermic and may be vigorous. The reaction

mixture was allowed to stir for approximately 18 hours before water was added to destroy

any excess NaH. The THF was removed under reduced pressure and the product was

extracted into chloroform. The extracts were dried over MgS04 before the solvent was

removed in vacuo. The carbamates were purified by centrifugal chromatography (ethyl

acetate in hexane) to yield the (usually crystalline) benzyl carbamates.

N-(2-Biphenyl) benzyl carbamate (73)

C20HI7N02

MM 303.36 g/mal

Yield: 61% (oil) (Found: C, 79.36; H, 5.72; N, 4.53; C2oH17N02 requires C, 79.18; H,

5.65; N, 4.62%). ()H (200 MHz) 8.153 (lH, d, Ar-H, J=4.0), 7.03-7.51 (13H, m, Ar-H),

6.77 (lH, s, NH), 5.09 (2H, s, PhCH2); ()c(50 MHz) 153.31 (s, C=O), 137.95, 136.03,

134.66 and 119.86 (s, Ar-C), 130.12, 129.14, 129.03, 128.47, 128.39, 128.22, 127.82 and

123.46 (d, Ar-CH), 66.81 (t, PhCH2); m/z 303 (M+, 8.6%), 258 (4.1), 195 (5.7), 167 (14.3),

106 (3.3), 91 (100); IR (cm-I) 3420 (NH), 1738 (C=O).
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N-phenyl benzyl carbamate (84)

C14H13N02

MM 227.26 g/mol

Yield: 56%. Melting Point: 63-64°C (Found: C, 74.35; H, 5.97; N, 6.15 C14H13N02

requires C, 73.99; H, 5.77; N, 6.16%). 8H (200 MHz) 7.35-7.44 (3H, rn, Ar-H), 7.10-7.25

(7H, rn, Ar-H), 6.89-6.98 (IH, rn, NH), 5.05 (2H, s, PhCH2); 8c (50 MHz) 153.5 (s,

C=O), 137.65 and 135.74 (s, Ar-C), 128.82, 128.40, 128.08, 123.29 and 118.92 (d, Ar­

CH), 66.72 (t, PhCH2); m/z 227 (M+, 4.6%), 183 (3.4), 119 (9.2), 107 (4.2), 91 (100).

N-butyl benzyl carbamate (86)

MM 207.27 g/mol

Yield: 57% (oil) (Found: C, 69.31; H, 8.03; N, 6.77; C12H17N02 requires C, 69.53; H,

8.27; N,6.76%). 8H (200 MHz) 7.24-7.31 (5H, rn, Ar-H), 5.29 (lH, s, NH), 5.05 (2H, s,

PhCH20), 3.08-3.17 (2H, q, CH2N, J=3.2), 1.23-1.46 (4H, rn, CH3CH2CH2), 0.88 (3H, t,

CH3CH2, J=3.5); 8c (50 MHz) 156.59 (s, C=O), 136.79 (s, Ar-C), 128.42, 128.00 and

127.94 (d, Ar-CH), 66.39 (t, PhCH2), 40.76 (t, CH2N), 31.98 (t, CH2CH2N), 19.88 (t,

CH3CH2), 13.74 (q, CH3); m/z 207 (M+, 1.9%), 108 (81.2), 91 (100), 77 (6.3),57 (2.1).
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N-(2-methylpropyl) benzyl carbamate (89)

MM 207.27 g/mol

Yield: 59% Melting Point: 29-30°C (Found: C, 69.54; H, 7.83; N, 6.70; C12H17N02

requires C, 69.53; H, 8.27; N, 6.76%). ()H (200 MHz) 7.19-7.27 (5H, m, Ar-H), 5.65 (lH,

m, NH), 5.03 (2H, s, PhCH2), 2.90-2.97 (2H, t, CHCH2N, J=3.2), 1.63-1.73 (lH, m,

(CH3)2CHCH2), 0.84 (6H, d, (CH3hCH, J=3.4); ()e (50 MHz) 156.26 (s, C=O), 136.34 (s,

Ar-C), 127.80, 127.36 and 127.3 (d, Ar-CH), 65.72 (t, PhCH2), 47.92 (t, CH2N), 28.17 (d,

CHCH2), 19.37 (q, (CH3)2CH); m/z 207 (M+, 2.1 %), 108 (49.9), 91 (100), 77 (6.6), 41

(7.5).

N-tert-butyl benzyl carbamate (92)

MM 207.27 g/mol

Yield: 58% (oil). ()H (200 MHz) 7.24-7.36 (5H, m, Ar-H), 5.04 (2H, s, PhCH2) , 4.75

(lH, s, NH), 1.32 (9H, s, (CH3)3C); ()e (50 MHz) ca. 155 (s, C=O), 136.72 (s, Ar-C),

128.48, 128.05 and 127.99 (d, Ar-CH), 65.96 (t, PhCH2), 50.35 (s, (CH3)3C), 28.90 (q,

(CH3)3C); m/z 207 (M+, 0.7%), 191 (2.0), 148 (8.1), 108 (41.4), 91 (lOO), 77 (8.5), 57

(7.6),42 (13).
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N-cyclohexyl benzyl carbamate (93)

H 0
()

N'C/O~
11
o
(93)

MM 233.31 g/mal

Yield: 58%. Melting Point: 76-80°C (Found: C, 72.49; H, 8.08; N, 5.95; C14H19N02

requires C, 72.07; H, 8.21; N, 6.00%). OH (200 MHz) 7.26-7.38 (5H, rn, Ar-H), 5.10 (2H,

s, PhCH2), 4.65 (lH, s, NH), 3.47-3.53 (lH, rn, CRN), 1.08-1.97 (lOH, rn, cyclohexyl); Oc

(50 MHz) 156 (s, C=O), 136.66 (s, Ar-C), 128.50, 128.13 and 128.05 (d, Ar-CH), 66.47 (t,

PhCH2), 49.87 (d, CHN), 33.42 (t, -CH2CHCHz-), 25.48 (t, -(CH2)2CH2(CH2)r), 24.77 (t, ­

CHCH2CH2CHr ); m/z 233 (M+, 2.0%), 126 (3.3), 108 (100), 107 (85.6), 99 (8.9), 83

(46.8), 79 (50.0), 77 (30.3), 55 (26.9).

N-benzyl benzyl carbamate (94)

0H 0
~N,C/O~

11o
(94)

MM 241.28 g/mal

Yield: 60%. Melting Point: 50-52°C (Found: C, 75.03; H, 6.46; N, 5.67; ClsHlSN02

requires C, 74.66; H, 6.27; N, 5.81 %). OH (200 MHz) 7.24-7.37 (lOH, rn, Ar-H), 5.12 (3H,

S, PhCH20, NH), 4.36 (2H, d, PhCH2N, J=3.0); Oc (50 MHz) 155.94 (s, C=O), 138.38

and 136.45 (s, Ar-C), 128.65, 128.51,128.12 and 127.48 (d, Ar-CH), 66.85 (t, CH20),

45.12 (t, CH2N); m/z 241 (M+, 0.7%), 150 (57.4), 107 (30.9), 91 (100), 79 (27.5).
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N-a-naphthyl benzyl carbamate (95)

H 0
N,C/O~

11
o

(95)

ClSHlSNOz

MM 277.32 g/moI

Yield: 12%. Melting Point: 114-115°C (Found: C, 77.70; H, 5.56; N, 5.06; ClsHlSN02

requires C, 77.96; H, 5.45; N, 5.05%). OH (200 MHz) 7.33-7.90 (12H, rn, Ar~H), 7.03 (1H,

s, NH), 5.25 (2H, s, PhCH2); 0c (50 MHz) 136.06, 134.05 and 132.37 (s, Ar-C), 128.73,

128.62, 128.39, 126.23, 125.99, 125.79, 125.11 and 120.43 (d, Ar-CH), 67.30 (t, PhCH2);

m/z 277 (M+, 11.7%),233(7.2), 169 (26.2), 140 (12.2), 115 (15.5), 108 (10.9), 91 (100), 79

(13.8), 77 (10.7).

N-p-chlorophenyl benzyl carbamate (97)

J)H I

0'
. N,C/O 0

I 11
Cl ~ 0

(97)

C14H12NOzCI

MM 261.70 g/mol

Yield: 49%. Melting Point: 96-98°C (Found: C, 64.16; H, 4.42; N, 5.31; C14H12CIN02

requires C, 64.24; H, 4.62; N,5.35%; OH (200 MHz) 7.22-7.37 (9H, rn, Ar-H), 6.75 (1H,

s, NH), 5.18 (2H, s, PhCH2); 0c (50 MHz) 153.18 (s, C=O), 136.33 and 135.78 (s, Ar-C),

129.04, 128.64, 128.46 and 128.35 (d, Ar-CH), 119.86 (s, Ar-C-CI), 67.19 (t, PhCH2); m/z

261 (M+, 10.3%),217 (4.1), 153 (10.4), 127 (8.8), 91 (100).
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N-p-methylphenyl benzyl carbamate (99)

ClsHlSN02

MM 241.28 g/mol

Yield: 75%. Melting Point: 70-72°C (Found: C, 74.49; H, 5.91; N, 5.59; ClsHlSN02

requires C, 74.66; H, 6.27; N, 5.81%; DH (200 MHz) 7.33-7.40 (5H, rn, CH2Ar-B), 7.07­

7.28 (4H, rn, MeAr-B), 6.65 (lH, s, NB), 5.18 (2H, s, PhCH]), 2.29 (3H, s, CH3); Dc (50

MHz) 153 (s, C=O), 136.09, 135.12 and 133.08 (s, Ar-C), 129.53, 128.59 and 128.3 (d,

Ar-CH), 66.92 (t, PhCH2), 20.75 (q, CH3); m/z 241 (M+, 11.1%), 197 (7.99),133 (6.1),91

(lOO), 77 (7.5).

N-(4-pyridyl) benzyl carbamate (101)

~H I

a N,c/O ~

I 11
N~ 0

(101)

C13H 12N202

MM 228.25 g/mol

Yield: 23%. Melting Point: 141-142°C (Found: C, 68.12; H, 5.17; N, 12.15; C13H12N20 2

requires C, 68.40; H, 5.30; N, 12.28%). DH (200 MHz) (Acetone d6) 9.37 (lH, s, NB),

8.43 (2x IH, d, NCHCH, J=1.6), 7.56 (2x IH, d, NCHCH, J=1.6), 7.33-7.47 (5H, rn, Ar­

B), 5.22 (2H, s, CH]Ph); Dc (50 MHz) 153.91 (s, C=O), 151.10 (d, NCHCH), 147.21 (s,

pyCNH), 137.24 (s, Ar-C), 129.23 and 128.98 (d, Ar-CH), 112.94 (d, NCHCH), 67.36 (t,

CH2Ph); m/z 228, (M+, 10.8%), 210 (2.6), 184 (1.8), 120 (2.3), 108 (2.7), 91 (100), 77

(3.9).
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N-(2-pyridyl) benzyl carbamate (103)

CI3H12N202

MM 228.25 g/mol

Yield: 50%. Melting point: 114°C. OH (200 MHz) 10.39 (1H, s, NH), 8.13-8.17 (lH, rn,

NCH), 8.04 (lH, d, N(CH)2CH, J=4.2), 7.60-7.69 (lH, rn, NCHCH), 7.32-7.42 (5H, rn, Ar­

H), 6.76-6.83 (1H, rn, NCCH), 5.23 (2H, s, PhCH2); Oc (50 MHz) 153.52 (s, C=O),

152.37 (s, pyC), 147.63 (d, NCH), 138.48 (d, NCHCHCH), 135.88 (s, Ar-C), 128.59,

128.43 and 128.37 (d, Ar-CH), 118.37 (d, NCCH), 112.50 (d, NCHCH), 67.09 (t, PhCH2);

m/z 228 (M+, 9.0%), 183 (3.9), 122 (9.0), 106 (7.6), 94 (16.3), 91 (100), 79 (7.9), 78 (7.9),

77 (6.0).
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4.2.5 GENERAL PROCEDURE FOR THE PREPARATION OF ALLYL CARBAMATES

To a solution of the (aryl) primary amme (0.25-1.0 g), in dry THF and at room

temperature, was slowly added one equivalent of allyl chlorofonnate. The reaction mixture

was allowed to stir for 8 hrs (or overnight) and the solvent and unreacted chlorofonnate

removed by vacuum distillation. The products were purified, where necessary, by

centrifugal chromatography (ethyl acetate in hexane) to yield the crystalline allyl

carbamates.

N-phenyl allyl carbamate (105)

CIQHllN02

MM 177.20 g/mol

Yield: 66%. Melting Point: 56-58°C. (Found: C, 68.19; H, 6.44; N, 7.93; ClOHllN02

requires C, 67.78; H, 6.26; N, 7.91%). 8H (200 MHz) 7.26-7.42 (4H, m, Ar-H), 7.02-7.11

(1H, m, Ar-H), 6.68 (1H, s, NH), 5.88-6.07 (1H, m, CH=CH2), 5.23-5.42 (2H, m,

CH=CH2), 4.65-4.69 (2H, dt, OCH2CH, J=2.8, J=0.7); 8c (50 MHz) 153.19 (s, C=O),

137.75 (s, Ar-C), 132.41 (d, CH2CH=CH2), 129.06, 123.51 and 118.66 (d, Ar-CH), 118.27

(t, CH=CH2), 65.85 (t,OCH2CH); m/z 177 (M+, 33.9%), 132 (29.5), 106 (36.3), 92 (29.3),

77 (16.0), 41 (100).
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N-p-chlorophenyl allyl carbamate (106)

H

~
N,C/O~

I 11

Cl ~ 0

(106)

CIOHllN02CI

MM 211.64 g/mol

Yield: 95%. Melting Point: 43-45°C. (Found: C, 57.11; H, 5.01; N, 6.49; C lOH lOCIN02

requires C, 56.73; H, 4.76; N, 6.62%). OH (200 MHz) 7.22-7.36 (4H, rn, Ar-H), 6.9 (IH, s,

NH), 5.85-6.04 (IH, rn, CH=CH2) , 5.22-5.40 (2H, rn, CH=CH2), 4.63-4.67 (2H, dt,

OCH2CH, J=2.9, J=0.7); Oc (50 MHz) 153.23 (s, C=O), 136.41 (s, Ar-C), 132.21 (d,

C1I=CH2), 129.00 and 119.99 (d, Ar-C1I), 118.43 (t, CH=C1I2), 66.02 (t, OC1I2CH); m/z

211 (M+, 37.8%), 153 (20.5), 126 (48.9), 99 (32.0), 90 (17.1), 41 (100).
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4.3.6 PREPARATION OFN-a-NAPHTHYL CINNAMYL CARBAMATE (107)

H 0
N,c/O~~

11
o
, (107)

C20H17N02

MM 303.36 glmol

Naphthyl-l-isocyanate (0.5 g, 2.96 mmol) and cinnamyl alcohol (0.397 g, 2.96 mmol) were

dissolved in dry THF (10 ml) and then 4 drops triethylamine (Et3N) were added to the

stirred solution as catalyst. The now slightly red solution was allowed to stir for 6 h during

which time precipitation of the product began. The solvent was removed in vacuo and the

product purified by centrifugal chromatography (30% ethyl acetate in hexane) to yield the

pale yellow crystalline carbamate. Yield ca. 0.5 g (56%). Melting Point: 99-100°C.

(Found: C, 78.95; H, 5.83; N, 4.64; C2oH17N02 requires C, 79.18; H, 5.65; N, 4.62%). ()H

(200 MHz) 7.42-7.90 (l2H, m, Ar-H), 7.06 (lH, s, NH), 6.69 (lH, d, CH=CHPh, J=7.9);

6.31-6.42 (IH, dt, CH2CH=CH, J=3.2, J=8.0), 4.87 (2H, dd, OCH2CH, J=3.2, J=0.7); ()c

(50 MHz) 136.15, 134.0~ and 132.36 (s, Ar-C), 134.27 (d, CH=CHPh), 128.70, 128.60,

128.08, 126.63, 126.24, 125.99 and 125.77 (d, Ar-CH), 123.32 (d, CH=CHPh), 66.04 (t,

OCH2CH); m/z 303 (M+, 0.5%), 259 (6.5), 169 (36.3), 140 (12.5), 134 (7.3), 117 (lOO),

115 (34.7), 105 (6.6),91 (19.4), 77 (8.8).
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4.2.7 PREPARATION OF N-PHENYL (l-PHENYL>ETHYL CARBAMATE (110)

ClsHlSN02

MM 241.28 glmo1

BuLi (1.82 ml, 1.33 M, 2 eq.) was added to a solution ofN-phenyl benzyl carbamate (84)

(0.25 g, 1 mmol) in THF (5 ml), under nitrogen and anhydrous conditions, at -78°C. The

solution was allowed to stir for 40 min before iodomethane (0.08 ml, 0.17 g, 1 eq.) was

added and the reaction mixture allowed to stir for a further 1.5 h. The reaction was

quenched with water (2 ml) and the solvent removed. The organics were extracted into

chloroform, the extracts dried and the solvent removed. The product was purified by

centrifugal chromatography (10% ethyl acetate in hexane) to yield a very pale yellow oil.

This was determined to be a mixture of starting material and product, which were

inseparable. Yield: 0.142 g (54%) (based on product mass and NMR integral ratios). ()H

(200 MHz) 6.97-7.39 (10H, m, Ar-H), 5.88 (lH, q, CHPh, J=3.3), 1.56 (3H, d, CH3,

J=3.3); ()c (50 MHz) ca. 153 (C=O), 141.55 (s, NAr-C), 137.83 (s, Ar-C), 66.83 (d,

CHPh), 22.21 (q, CH3); m/z 241 (M+, 1.5%), 197 (1.0), 182 (3.9), 119 (3.3), 105 (100),93

(19.3),91 (6.9), 77 (14.7).
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4.2.8 GENERAL PROCEDURE FOR THE REARRANGEMENT OF CARBAMATES TO

SECONDARYAND TERTIARYALCOHOLS

To a stirred solution of the aryl benzyl carbamate or the N-naphthyl cinnamyl carbamate in

dry THF, under nitrogen and at O°C, was added 2.2 equivalents of n-butyllithium (in

hexane). The reaction mixture was allowed to stir for 6-8 h, during which time it was

allowed to warm up to room temperature. (Except in the case of N-(4-pyridyl) benzyl

carbamate where the reaction mixture was allowed to stir at O°C for 3.5 h.) The reaction

was quenched by adding 5 ml water. The solvent was partially removed before the

reaction mixture was extracted into chloroform, the extracts dried over anhydrous MgS04

and the solvent removed on a rotary evaporator. The products were purified by centrifugal

chromatography (ethyl acetate in hexane) to yield the crystalline products in varying yields

(2-Biphenyl)phenylmethanol [1 '-phenylbenzhydrol/ 1'-phenyldiphenylmethanol] (76)

C19H160

MM 260.33 g/mol

(76)

Yield: 64% (leq. BuLi). Melting point: 61°C (Lit133
: 66°C). (Found: C, 87.25; H, 6.35;

CI9HI60 requires C, 87.66; H, 6.20%). OH (200 MHz) 7.51-7.55 (lH, m, Ar-H), 7.10-7.39

(BH, m, Ar-H), 5.89 (lH, s, CHOH), 2.2 (lH, s, CHOH); Dc (50 MHz) 143.77, 141.25,

140.97 and 140.76 (s, Ar-C), 129.96, 129.33, 128.15; 128.09, 127.84, 127.35, 127.14 and

126.59 (d, Ar-CH), 72.20 (d, CHOH); IR (cm-I) 3420 (OH); m/z 260 (M+, 64.4%), 242

(100), 181 (82.1), 165 (96.2), 152 (88.5), 105 (70.5), 77 (89.8).
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Diphenylmethanol [benzhydrol] (85)

OH

C13H120

MM 184.23 g/mol

(85) .

Yield: 71%. Melting point: 60°C (LitI41
: 65-67°C). BH (200 MHz) 7.18-7.29 (lOH, m,

Ar-H), 5.62 (IH, s, CHOH), 2.95 (lH, S, CHOH); Bc (50 MHz) 143.72 (s, Ar-C), 128.34,

127.37 and 126.50 (d, Ar-CH), 75.95 (d, CHOH); IR (cm-I) 3228 (OH); m/z 184 (M+,

36.8%), 165 (8.3), 105 (100), 77 (49.4).

(a-Naphthyl)phenylmethanol (96) ,

C17H140

MM 234.29 g/mol

(96)

Yield: 62%. (Found: C, 86.84; H, 6.24; Cl7H140 requires C, 87.15; H, 6.02%). BH (200

MHz) 7.22-8.03 (12H, m, Ar-H), 6.495 (IH, s, naphCH(OH)Ph), 2.42 (lH, s, OH); Bc (50

MHz) 143.06, 138.74, 133.88 and 130.64 (s, Ar-C), 128.74, 128.50, 128.45, 127.64,

127.02, 126.12, 125.57, 125.30, 124.58 and 123.95 (d, Ar-CH), 73.60 (d, naphCH(OH)Ph);

m/z 234 (M+, 64.6%), 215 (23.9), 155 (21.7), 128 (88.7), 105 (100), 77 (42.9).
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(p-Chlorophenyl)phenylmethanol [p-chlorobenzhydrol / p-chlorodiphenylmethanol] (98)

OH

Cl

C13HIIOCI

MM 218.68 g/mol

(98)

Yield: 10%. Melting point: 55-56°C (Lit134, 135: 50-56°C). (Found: C, 71.63; H, 5.02;

C
13

HllCIO requires C, 71.38; H, 5.07%). ()H (200 MHz) 7.25-7.36 (9H, rn, Ar-lf), 5.79

(lH, s, CHOH), 2.32 (lH, s, CHOlf); ()c (50 MHz) 143.41 and 142.18 (s, Ar-C), 133.25

(s, Ar_C_CI)142, 128.64, 128.58, 127.85 and 126.50 (d, Ar-CH), 75.60 (d, CHOH); m/z

218 (M+, 52.2%),139 (47.3),111 (11.1), 105 (lOO), 77 (39.2).

(p-Methylphenyl)phenylmethanol [p-methylbenzhydrol / p-methyldiphenylmethanol] (100)

OH

Cl4Hl40

MM 198.68 g/mol

Yield: 14%. Melting point: 50-54°C (Lie43 : 52-53°C). ()H (200 MHz) 7.30-7.36 (5H, rn,

Ar-H), 7.10-7.30 (4H, rn, CH3Ar-H), 5.77 (lH, s, CH(OH» , 2.32 (s, CH3), 2.32 (lH, s,

OH); 8c (50 MHz) 143.94 and 140.95 (s, Ar-C), 137.23 (s, Ar_C_Me)142, 128.97, 128.23,

127.23, 126.32 and 126.25 (d, Ar-CH), 75.85 (d, CH(OH», 20.92 (q, CH3); m/z 198 (M+,

45.8%), 183 (23.0), 119 (79.6), 105 (lOO), 92 (55.8), 77 (58.1).
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(4-Pyridy/)phenylmethanol (102)

OH

C12H12NO

MM 185.22 g/mol

(102)

Yield: 35%. DH (200 MHz) 8.33 (2x 1H, dd, NCH, 1=2.3, 1=0.7), 7.24-7.38 (7H, rn, Ar-H

and 2x NCHCH), 5.74 (lH, s, CH(OH», 5.6-5.8 (lH, s, OH); Dc (50 MHz) 153.98 (s,

pyC), 148.98 (d, NCHCH), 143.23 (s, Ar-C), 128.63, 128.57, 128.18 and 126.84 (d, Ar­

CH), 121.53 (d, NCHCH), 74.48 (d, CH(OH»; m/z 185 (M+, 58.1%), 167 (4.5), 107

(25.4), 79 (100), 77 (30.7).

(2-Pyridy/)phenylmethanol (104)

OH

C12H12NO

MM 185.22 g/mol

(104)

Yield: 23%. DH (200 MHz) 9.84 (lH, s, OH), 8.20 and 8.24 (lH, d, NCH, 1=0.4), 7.95­

7.98 (lH, dd, NCCH, J=2.4, J=O.4), 761-769 and 6.93-7.00 (2x 1H, rn, NCHCHCH), 7.50­

7.59 (3H, rn, m & p-Ar-H), 7.25-7.39(2H, rn, 0- Ar-H), 5.30 (1H, s, CH(OH»; Dc (50

MHz) 150.60 (s, pyC), 146.88 (d, NCH), 139.17 (s, Ar-C), 138.93 (d, NCHCHCH),

128.60, 128.44 and 126.72 (d, Ar-CH), 119.92 (d, NCCH), 114.24 (d, NCHCH), 74.51 (d,

CH(OH»; m/z 185 (M+, 84.0%), 167 (9.0), 108 (48.0), 105 (12.6), 79 (100), 77 (40.0),51

(29.6).
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1-(a-lVaphthylj-3-phenylprop-2-en-1-o1(I09)

C19H160

MM 260.33 g/mol

(109)

Yield: 40%. (oil that crystallises out exceptionally slowly) OH (200 MHz) 7.05-8.14

(12H, rn, Ar-H), 6.34-6,72 (IH, dd, CH=CHPh, J=8.0, J=O.4), 6.42-6.53 (1H, dd,

CH=CHPh, J=8.0, J=2.8), 5.95 (1H, d, CH(OH), J=2.8), 2.65 (1H, s, OH); Oc (50 MHz)

138.22, 136.49 and 133.83 (s, Ar-C), 130.99 (d, CH=CHPh), 130.74, 128.75, 128.46,

128.42, 127.64, 126.54, 126.11, 125.60, 125.41 and 123.93 (d, Ar-CH), 123.70 (d,

CH=CHPh), 71.88 (d, CH(OH»; m/z 260 (M+, 21.4%), 181 (3.0), 169 (11.5), 155 (100),

141 (25.7), 127 (34.1), 115 (8.8), 105 (10.7), 77 (17.4).

1, I-Diphenylethanol [a-methylbenzhydrol] (111)

C14Hl40

MM 198.26 g/mol

(111)

Yield: 10%. Melting point: 78-82°C (Lit144
: 77-81°C). OH (200 MHz) 7.05-7.72 (10H,

rn, Ar-H), 3.28 (1H, s, OH), 1.89 (3H, S, CH3); Oc (50 MHz) 142.83 and 137.38 (s, Ar­

C), 130.93, 128.96, 128.54, 128.03, 125.28, 124.42 and 119.64 (d, Ar-CH), 76.92 (s,

Ph2C(CH3)OH), 27.28 (q, CH3); m/z 198 (M+, 5.7%), 183 (69.4), 165 (9.1), 155 (5.2), 120

(15.6), 105 (100), 77 (55.4),51 (19.6),43 (60.9).
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4.2.9 PREPARATION OF N-(2-BIPHENYL) (CYCLOHEXYLPHENYL)METHYL

CARBAMATE (75)

H
N, ........0c

11

°
(75)

CZ6HZ7NOZ

MM 385.50 g/mo

BuLi (0.4 ml, 1.1 eq., 2.35M) was added dropwise to a solution ofN-(2-biphenyl) benzyl

carbamate (73) (0.25 g, 0.8 mmol) in dry THF (5 ml) at -78°C. The slightly orange

solution was allowed to stir for 0.5 h before bromocyclohexanel45 (0.148 g, 0.115 ml, 1.1

eq.) was added. After a few minutes the solution turned a deep emerald green and this

solution was stirred for 3 h before the reaction was quenched with water (2 ml). The THF

was removed and the residue extracted into chloroform and the extracts dried over

anhydrous MgS04• The solvent was removed to yield a pale yellow, milky oil which was

purified using centrifugal chromatography (5% ethyl acetate in haxane). Yield: 27% 8H

(200 MHz) 8.026 (IH, d, Ar-H, J=3.8), 7.04-7.49 (13H, m, Ar-H), 6.63 (1H, s, NH), 5.446

(IH, d, OCH(C6H lI )Ph, J=4), 0.88-1.76 (UH, m, cyclohexyl); 8c (50 MHz) 153.31 (s,

C=O), 139.74, 138.13, 134.71 and 120.46 (s, Ar-C), 130.07, 129.29, 128.98, 128.34,

128.14, 127.81, 127.68, 127.03 and 123.53 (d, Ar-CH), 81.30 (d, OCH(C6Hll)Ph), 42.88

(d, OCH(CH)-Ph), 28.98 (t, -CH2CHCHr ), 26.24 (t, -(CH2)2CH2(CH2)z-), 25.82 and 25.75

(t, -CH2CH2CH2-); mlz 385 (M+, 0.5%),258 (10.9),207 (6.3),173 (11.9),167 (8.6), 107

(21.6),91 (100),81 (11.2), 79 (9.1).
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