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ABSTRACT

Municipal wastewater treatment plants are designed to treat domestic wastewater. Industrial

wastewaters are accepted to sewer provided they do not adversely affect the performance of the

wastewater treatment plant. Although by-laws have been promulgated to control the discharge

of industrial wastes, they do not directly address the potential inhibitory nature of the discharge.

The recalcitrant nature of most dyes, together with their toxicity to micro organisms, makes

biological treatment difficult.

The eThekwini Municipality has promoted the use of low environmental impact chemicals in

the textile industry through a co-regulatory approach by scoring the textile chemicals. The

objective of this investigation is to model the effects of two textile dyes (Drimarene Violet K2

RL and Levafix Blue CA gran) of different scores, on the performance of a wastewater treatment

works (yIWTW). The score system (Laursen et aI., 2002) was used to choose a high

(Drimarene Violet K2-RL) and low (Levafix Blue CA gran) scoring dye to be used in laboratory

experiments. Drimarene Violet K2-RL dye has an A-score (discharge amount) value of 1,

B-score (biodegradability) value of 3, C-score (bioaccumulation) value of 2, a resulting

exposure score of 6 and a D-score (toxicity) of 4. Levafix Blue CA gran dye has an A-score

value of 1, B-score value of 4, C-score value of 1, a resulting exposure score of 4 and aD-score

of 3. Batch respirometry was used as the experiment since it is a robust and sensitive method.

The optimal experiment design method (Dochain and Vanrolleghem, 2001) was used in to

design the batch respirometric experiment. The optimal batch respirometric experiment design

provided rapid and reliable experimental data that were used in parameter estimation. Batch

respirometric experiments were performed with dyes as the test substance, sodium acetate and

ammonium chloride being the reference substrates, and activated sludge from Umbilo

Wastewater Treatment Works aeration basin. Performing batch respirometric experiments with

a series of different dye concentrations allowed the deduction of the dependence of the kinetic

parameters on the dye concentrations. The results from the respirometric experiments performed

with both dyes indicated that both dyes have a greater inhibitory effect on the autotrophic

biomass growth process as compared to heterotrophic biomass growth process.

A Batch Respirometric Experiment (BRE) Model was created and the model calibration

involved the assessment of the relevant bio-kinetic parameters. Biomass growth kinetic

parameter estimations were performed using the measured data from the batch respirometric

experiments, the BRE model and numerical optimisation algorithms provided in the WEST



software package. The results from the parameter estimation indicated that both dyes used in

this investigation have a mixed inhibition effect on both heterotrophic and autotrophic biomass

growth process. The mixed inhibition type effect on maximum specific growth and half

saturation constant are represented by the following equations: J.1:ax =J.1rnax/(1+ (1/K/.m )) and

K; =Ks . (1 + (1/K/.s )) respectively. Inhibition kinetics for both dyes were determined using

the estimated kinetic parameters. The scores and the inhibition kinetic parameter of both dyes

are presented in Table i.

Table i: Scores and inhibition kinetics of dyestuffs

Dyestuffs Toxicity
Score

Exposure
Score

Inhibition Kinetics for
Heterotrophic biomass

growth

Inhibition Kinetics
for Autotrophic
biomass growth

K/ m K/.s K/ m K/ s

Drimarene 6 4 921.8 61.1 194.2 5.1
Violet K2-RL

Levafix Blue 4 3 1131.6 1.3xl09 576.4 24.0
CA gran

The inhibition kinetics were used in the activated sludge process model of the COST simulation

benchmark model (Copp, 2002), which was used to assess the impact of both dyes on the

performance of the COST simulation benchmark wastewater treatment works. The benchmark

model has a fully defined protocol which provides an unbiased basis without reference to any

particular wastewater treatment works. From the results of the COST benchmark simulations it

was concluded that the higher scoring dye had a great negative impact on the performance of the

wastewater treatment works model compared to the lower scoring dye.
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Acclimation

Activated sludge

Adaptation

Aerobic

Algae

Azo dyes

Bacteria

Batch culture

Biodegradable

Chemical oxygen demand

Degrade

GLOSSARY

The adaptation of a microbial community to degrade a
previously recalcitrant compound through prior exposure.

A mixed association of prokaryotic and eukaryotic micro
organisms, which aerobically decompose waste in an activated
sludge effluent treatment system.

A change in the microbial community that increases the rate of
transformation of a test compound as a result of prior exposure
to that test compound.

The condition of living or acting only in the presence of
molecular oxygen.

Organisms that perform oxygenic photosynthesis and possess
chloroplasts. May be single or multi cellular organisms.

Dyes which contain at least one azo group (-N=N-), and can
contain up to four azo groups.

Single-cell, prokaryotic micro organisms.

A closed culture environment in which conditions are
continuously changing according to the metabolic state of the
microbial culture.

A property which allows the microbial decomposition of an
organic compound to inorganic molecules.

A measure of the total amount of organic waste stream.

Breakdown into simpler substances by bacterial action.
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Effluent

Inhibition

Kinetics

Pollution

Reactive dyes

Recalcitrant

Respiration

Seeding

Sludge

Suspended solids

Toxicity

Wastewater

A stream flowing from a sewage tank or industrial process.

An impairment ofbacterial function.

The explanation of the observed characteristics of chemical
reactions.

An adverse alteration of the environment.

Reactive dyes are coloured components capable of forming a
covalent bond between the dye molecule and the fibre.

Resistant to microbial degradation.

The oxidative breakdown and release of energy from nutrient
molecules by reactions with molecular oxygen.

The use of an actively digesting sludge to aid the start-up of a
digester by supplying a quantity of the preferred types of
organisms. This usually reduces the time taken for a digester to
become active.

The general term applied to the accumulated solids separated
from wastewater. A large portion of the sludge material in a
digester consists ofbacteria which are responsible for its
decomposition.

Undissolved non-settleable solids present in wastewater.

An adverse effect (not necessarily lethal) on bacterial
metabolism.

General term to denote a combination or mixture of domestic
sewage and industrial effluents.
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LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

Name Description Unit

a Mole hydrogen in 1 mol-C ofbiomass

ASM Activated sludge model

ASMI Activated sludge model number I

ASM2 Activated sludge model number 2

ASM2d Activated sludge model number 2d

ASM3 Activated sludge model number 3

ATV Allylthiourea

b Mole oxygen in 1 mol-C of biomass

BOD Biological oxygen demand mg 02/L

BRE Batch respirometric experiment

c Mole nitrogen in I mol-C of biomass

CHaObNc Molecular composition ofbiomass I mol-C

COD Chemical oxygen demand mgCOD/L

COY Covariance matrix (inverse ofFIM)

DANCED Danish Cooperation for Environment and Development

DANIDA Danish Agency for Development Assistance

DWAF Department of Water Affairs and Forestry

EU European Union

FIM Fisher Information Matrix

KLa Mass transfer coefficient

MLVSS Mixed liquor volatile suspended solids mg SS/L

MSDS Material Safety Data Sheets
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ODE Ordinary differential equation

OED Optimal experimental design

SoIXo Initial substrate to biomass ratio

SIX Substrate to biomass ratio

TKN Total kjeldahl nitrogen mgN/L

WWTW Wastewater treatment works

ROMAN SYMBOLS

Symbol Description Unit

bA
Endogenous decay coefficient of autotrophic biomass lid

bH
Endogenous decay coefficient of heterotrophic biomass lid

DO Dissolved oxygen concentration mg 02/L

Jp Inert particulate fraction of the biomass

I Inhibitor concentration mg/L

J Objective function

k h
Hydrolysis rate lid

K NH
Ammonium half-saturation constant mgN/L

K NO
Nitrate half-saturation constant mgN/L

K OA
Oxygen half-saturation constant for autotrophic biomass mg 02/L

KOH
Oxygen half-saturation constant for biomass heterotrophic mg 02/L

K s Substrate half-saturation constant mgCOD/L

Kx
Particulate COD half-saturation constant mgCOD/L

N Number of data points
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P Number of parameters

OUR Oxygen uptake rate mg OiL.min

OURend
Endogenous oxygen uptake rate mg 021L.min

OURexo
Exogenous oxygen uptake rate mgOiL.min

OURmax
Maximum oxygen uptake rate value mg 02/L.min

Q Measurement error covariance matrix

SND
Soluble degradable organic nitrogen mgNIL

SNH (0) Initial ammonium concentration mgNIL

SNH
Ammonium concentration mgN/L

SNO
Nitrate concentration mgNIL

So Oxygen concentration mg 02/L

Ss (0) Initial soluble readily biodegradable COD mgCOD/L

Ss Soluble readily biodegradable COD mgCOD/L

V Reactor volume L

Vo Maximum settling velocity mid

YA
Autotrophic yield coefficient mg COD/mg NH4-

N

YH
Heterotrophic yield coefficient mg COD/mg COD

X BA
Autotrophic biomass concentration mgCODIL

XBH (0) Initial heterotrophic biomass concentration mgCODIL

XBH
Heterotrophic biomass concentration mgCODIL

X ND
Particulate degradable organic nitrogen mgN/L

Xs Slowly biodegradable COD mgCODIL

IX



GREEK SYMBOLS

Symbol Description Unit

/imsqr Parameter sensitivity

'T/g Anoxic growth reduction factor

e Parameter

f.lA
Growth rate for autotrophic biomass lid

f.lmA
Maximum growth rate of autotrophic biomass lid

f.lH Growth rate for heterotrophic biomass lid

f.lmH Maximum growth rate of autotrophic biomass lid

rA First order time constant in autotrophic activity mm

rH First order time constant in heterotrophic activity min
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CHAPTER 1

INTRODUCTION

This chapter outlines the scope of this study and the manner in which this dissertation has been

organised.

1.1 Textile Effluent and Municipal Bylaws

The textile industry is one of the largest industrial liquid wastewater generators and the

wastewater is chemically concentrated. The resultant volume of dye generated from textile

industry is large and complex, consisting of a varied range of dyes, auxiliaries, salts, acids and

alkalis (Buckley, 2002). Some pollutants in textile effluent are unable to be treated by

conventional wastewater treatment process.

The Department of Water Affairs and Forestry (DWAF) is responsible for monitoring the water

use and discharge of wastewater of this country. They accomplish this by formulating and

implementing policies governing national water resources. Municipalities formulate their own

tariffs and bylaws based on local government policies which are inline with DWAF policies.

Companies are fined for not conforming to municipal bylaws. The eThekwini Municipality

sewage disposal bylaws tariffs for wastewater are only related to Settleable solids (SS) and

Chemical Oxygen Demand (COD), no account is taken of possible inhibition caused by textile

effluent.

A Cleaner Textile Production Project, sponsored by the Danish Agency for Development

Assistance (DANIDA), formally know as the DANCED, set up a pilot project in KwaZulu

Natal. Nine textile companies in the Durban and Pinetown area volunteered to participate in the

score system pilot project. Participants in the first and second South African Study Tours to

Denmark identified the score system as being applicable in South Africa.

Score system is a qualitative tool that is used to sort organic chemical and dyestuffs based on

information in the Material Safety Data Sheets (MSDS) from the supplier. The sorting

prioritizes and identifies chemicals and dyestuffs, which impact negatively on the environment

and allows companies and environmental authorities to deal with these chemicals pro-actively

to reduce the environmental burden. The first Score System for sorting chemicals on the basis of

environmental data and on information on consumption was developed by Ringkjoebing County

and the Danish Water Quality Institute in 1989. After using the system in 13 companies over a
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period of more than one and a half years, the system was revised in 1994. The system is still

being used in more than 15 companies in Denmark. The eThekwini Municipality has adopted

the score system.

The research hypothesis is do lower scoring dyes translate to a lower negative impact on

wastewater treatment performance.

1.2 Project Outline

This project will describe a method of determining the inhibitory effects of textile dyes on

activated sludge processes. More specifically the inhibitory nature of two commercial dyestuffs

on the operation of the wastewater treatment works will be investigated. The accuracy with

which the score system describes the negative impact of the textile dyes on wastewater

treatment works activated sludge processes is investigated. Reliable laboratory and modelling

methods are required to assess the inhibitory effect of the textile dyes on activated sludge

processes.

Therefore the aims of this project are to:

• use the score system to choose a high and a low scoring dye to be used in laboratory

experiments.

• verify the score system ranking of chemical's negative impact to the environment.

• design a respirometric experiment that provides rapid and reliable experimental data

that can be used to assess inhibition for process modelling.

• use an activated sludge model, along with respirometric experiment data to obtain

kinetic parameters which can represent the inhibition caused by the dyes.

• use a wastewater treatment works model, along with kinetic data collected from the

process modelling to assess whether the high scoring dye has a greater negative impact

on the wastewater treatment works activated sludge processes.
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The thesis would provide a:

• methodology to evaluate the impact of toxic substances on wastewater treatment works
activated sludge process.

• optimal respirometric experiment design that will provide reliable data to be used in
process modelling.

• activated sludge model which can be used to determine kinetic data to be used later in
wastewater treatment works model.

• protocol in using the COST Simulation Benchmark procedure to evaluate the effect of
toxic substances on a wastewater treatment works model.

1.3 Thesis Outline

The thesis consists of five chapters following this one:

• CHAPTER TWO - LITERATURE REVIEW:

This chapter provides background information on the theoretical concepts referred to in
this thesis. A full description of the inhibitory nature of textile wastewaters, the score
system, respirometry, Optimal Experiment Design (OED) (Dochain and Vanrolleghem,
200 I) and activated sludge kinetic models is provided. A brief description of
mathematical process modelling and the COST simulation benchmark model (Copp,
2002) used in this study is provided in this chapter. Mathematical process modelling
theory is discussed in detail in Chapter 3. The COST simulation benchmark model is
described in detail in Chapter 6.

• CHAPTER THREE - MATHEMAnCAL MODELLING THEORY:
This chapter provides the mathematical process modelling theory used in the
quantification of the inhibitory nature of textile dye effluent on the activated sludge
processes. A Batch Respirometric Experiment (BRE) model was created to obtain the
relevant information to quantify the inhibition of textile dyes on the kinetics of biomass
respiratory activity. To determine which of the parameters of the model are central in
quantifying the inhibition, the kinetic effects of inhibition have been investigated.
Subsequently the BRE model was inputted into wastewater treatment modelling
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program WEST. A continuity check and the identifiability study were performed on the

BRE model. The model theory of parameter estimation and the method used in WEST

is also discussed.

• CHAPTER FOUR - BATCH RESPIROMETRIC EXPERIMENT:

This chapter describes the batch respirometric experimental protocol developed to

quantify the inhibitory effects of textile dyes. The respirometric protocol developed

provides information rich data, which reliable parameter estimation can be performed.

Previous unsuccessful experimental designs used during the optimising of the

experimental design are discussed. The batch respirometric experimental optimal design

along with the results from this experiment design is presented. This experimental data

is used in Chapter 5 for parameter estimation.

• CHAPTER FIVE - BRE MODEL SIMULATION RESULTS AND DISCUSSION

In this chapter the results from the identifiability study and parameter estimation

performed on the BRE model are presented and discussed. The type of inhibition and

the resultant inhibition kinetics of both dyes used in this study are presented. These

inhibition kinetics are inputted into the COST benchmark simulation model in

Chapter 6.

• CHAPTER SIX :- ASSESSMENT OF WASTEWATER TREATMENT WORKS

PERFORMANCE:

In this chapter the impact of the textile dyes on the wastewater treatment works

performance is assessed, the COST simulation benchmark was used for this assessment.

Background information on COST and the concept of the COST simulation benchmark

are discussed. The simulation benchmark model was used in this study to quantify the

inhibitory effect of two dyes and determine whether the high scoring dye has a greater

negative impact on wastewater treatment works performance than the low scoring dye.

• CHAPTER SEVEN - DISCUSSION:

In this chapter the broad spectrum impact of the results presented in Chapter 4,

Chapter 5 and Chapter 6 are discussed. The formulation of the conclusion and

recommendations stated in Chapter 8 is presented in this chapter.

• CHAPTER EIGHT - CONCLUSIONS AND RECOMMENDATIONS:
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CHAPTER 2

LITERATURE REVIEW

This chapter provides some background information on the theoretical concepts referred to in

this thesis. Descriptions of the inhibitory nature of textile wastewaters, the score system,

respirometry, activated sludge kinetic models, Optimal Experiment Design (OED),

mathematical process modelling and the COST simulation benchmark model used in this study

are provided in this chapter. The COST simulation benchmark model, the respirometric

experiments and the activated sludge model used in parameter estimation will be discussed in

greater detail at a later stage.

2.1 The Toxicity and Inhibitory Nature of Textile Wastewaters

Toxicity is an adverse effect (not necessarily lethal) on the metabolism of bacteria, and

inhibition is the impairment of bacteria function (Speece, 1996).

2.1.1 Toxicity of textile wastewaters

Aesthetic environmental impact is a recognised problem associated with textile dye effluents,

but the possible toxicity effects on algal growth (Willetts, 1999) has a major impact on the

ecosystem as algal photosynthesis is a major source of oxygen in river water. This toxicity is not

limited to lower life forms; a toxicity to fish has been documented (Laing, 1991).

2.1.2 Inhibitory nature of textile wastewaters

Textile dyes are designed to be resistant to oxidation, hence textile dye effluent are resistant to

oxidative microbial breakdown. Conventional aerobic wastewater treatment is unsuccessful in

degrading textile dye effluent. Azo reactive dyes are particularly difficult to treat biologically.

Azo reactive dyes account for about 70% of all the textile dyestuffs produced. They are

pigmented components capable of forming a covalent bond between the dye molecule and fibre

(Godefroy, 1993). Azo dyes are water-soluble synthetic organic colourants possessing the

characteristics azo (-N=N-) bond. Studies have shown that aerobic processes at conventional

wastewater treatment works are unable to substantially treat azo dyes, the strong electron

withdrawing character of the azo group stabilizes these aromatic pollutants against conversion

by bacteria (Razo-Flores, 1997). The treatment of textile dyes by activated sludge has been
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researched extensively by many researches (Flege, 1970, Pagga and Brown, 1986), it was found

that some dyes are partially degraded but most remain untreated, particularly azo dyes.

Autotrophic biomass responsible for nitrification process is considered to be more sensitive to

toxins, than the hetetrophic biomass which is responsible for the carbon oxidation process

(Blum and Speece, 1991).

2.2 The Score System

As discussed earlier textile industry wastewaters are difficult to treat through conventional

activated sludge process, hence resulting in the dyes entering the natural water system. The

amount of colourants being discharged has been steadily decreased by cleaner production

techniques and pre-treatment of effluent before being discharge into sewer system. Although

these counteractive methods have improved the effluent treatment process, a remedy is required

to drastically reduce the impact of textile effluents on the environment. A possible remedy is the

use of the score system for sorting of chemicals on basis of environmental data and information

on consumption (Laursen et al., 2002).

The score system is an administrative method of sorting organic chemicals on the basis of

information especially from the chemical supplier's material and data sheets (MSDS). The

sorting enables the identification of chemicals and dyestuffs that have a negative impact on the

environment and should be subject to closer examination; this is based on the consumption and

environmental behaviour of the chemicals and dyestuffs.

The score system is based on four parameters which are important for the characterization of

chemicals and dyestuffs which are harmful to the environment. These four parameters are:

• A - Discharged amount of substance to drain over a given period,

• B - Biodegradability

• C - Bioaccumulation and

• D - Toxicity.

Each parameter (i.e. A, B, C or D) is given a score between 1 and 4, with 1 indicating the least

environmental impact and 4 indicating the most serious impact. In the case of missing

information required to determine the parameter score, the highest score is assigned along with
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a remark H4u" (HU " indicating unknown).

2.2.1 A-score (Discharge amount)

The A score is determined from the amount of dye or chemical that is discharged to drain by the

facility on site per year (refer to Table 2-1). The amount to drain is the total amount of product

used from which the quantity of product which adheres to the textile is subtracted.

2.2.2 B-score (Biodegradability)

In most cases the B-score for biological degradability is based on the substance biodegradability

in sludge. In some cases it is based on the substance biodegradability in surface water or based

on the BaDs/COD ratio (refer to Table 2-1).

2.2.3 C-score (Bioaccumulation)

The C-score can be established on the basis of qualitative information based on solubility. The

parameter score can also be obtained from standardised bioaccumulation tests with fish or from

examinations based on determination of the distribution of the substance in two-phased mixture

of octanol and water (Pow - data). A few products are scored purely on information about the

molecular weight (refer to Error! Reference source not found.).

2.2.4 Exposure score (A x B x C)

The product of A, Band C (i.e. A x B x C) is called the Exposure score. The Exposure score

gives an indication of the potential presence of the substance in the environment. The details of

the exposure component scores system is presented in Error! Reference source not found..
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Table 2-1: Exposure component parameter scores adapted from (Laursen et aI., 2002)

Score Figure - 1 2 3 4

Parameter!

A - Discharged amount of
substance to drain

kg/week < 1 1-10 > 10 - 100 > 100

kg/year < 50 50 - 500 >500 - 5000 > 5000

B - Biodegradability

Surface water (%) > 60 (50 - 100) 10 - 60 <10

Sludge culture (%) >70 20 -70 <20

BaD/COD ratio >0.5 ~0.5

C - Bioaccumulation

Cl If MW . 1000 g/mol *
C2 If 500 ~ MW ~l000 g/mol

Pow - data < 1000 ~ 1000

Water solubility g/L > 10 10 - 2 <2

C3 If MW < 500 g/mol

Pow - data < 1000 ~ 1000

Water solubility glL > 100 100 - 2 > 2 -0.02 <0.02

The asterisks (*) represents the bioaccumulation score of substance

2.2.5 D-score (Toxicity)

The D-score is based on information about the substance toxicity to fish which is LCo or LCso,

or on information concerning inhibition resulting from the substance in activated sludge. The

method of determining the Toxicity score is detailed in Table 2-2.

Table 2-2: Toxicity score adapted from (Laursen et aI., 2002)

Score Figure -

Parameter!

D - Effect concentration divided by
effluent concentration

1

> 1000

2

1000 - 101

3

100 - 10

4

< 10
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2.2.6 The score plot

The Exposure score is then plotted against the Toxicity score to determine whether the

substance is a low impact or high impact substance on the environment. A typical plot is

presented in Figure 2-1. The substances that fall left of the diagonal line have relatively lower

environmental impacts and those which fall to the right of the diagonal line have relatively

higher environmental impacts. The high impact substances should be subject to closer

examination.

•••~ High Scoring Chemicals

432

Toxicity (D-Score)

1

Low Scoring Chemicals <IIIIIIIII•••"

64

56

48
---U
~ 40

loo:
<:
';' 32
I.=
'"8. 24
loo:

f.:l
16

8

0
0

Figure 2-1: Score plot, plot of exposure against toxicity to identify the high impact chemicals

The hypothesis of this study is that a low score translates to a low toxicity to the activated

sludge processes at a municipal wastewater treatment works.

2.3 Respirometry

Respirometry is frequently used in wastewater characterisation and in the determination of

activated sludge model kinetics. Respirometry is a measure of the respiration rate of activated

sludge biomass. It is defined as the amount of oxygen per unit volume and time consumed by

the activated sludge biomass. Respirometric data can be used for modelling purposes and in the

control of aerobic activated sludge processes (Henze et al., 1987, Vanrolleghem et al., 1999).
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Figure 2-2 shows a flow diagram of a respirometer (Spanjers et aI., 1998), a respirometer can be

classified based on two criteria:

1. The phase in which the oxygen concentration is measure (liquid or gas phase)

2. Batch or continuous flow regime of the gas and liquid phases (flowing or static flow)

Figure 2-2: Flow diagram of a respirometer (Spanjers et aI., 1998)

In general dissolved oxygen concentration is measured in the liquid phase; hence this discussion

will be limited to respirometers which measure dissolved oxygen concentration in the liquid

phase using dissolved oxygen electrodes. By performing a ge~eral mass balance for dissolved

oxygen concentration So presented in Equation 2-1, the respiration rate can be obtained. The

equation consists ofa transport term ~n .(So,in -So), aeration term KLa.(S~ -So) and the

oxygen uptake rate OUR of the biomass. The transportation term and aeration term may be

removed; depends on the configuration of the respirometer.

dSo = Qin .(S . -S )+K a.(SO -S )-OURdt V O,m 0 LOO

2.3.1 Respirometric Techniques

(2-1)

In the following sections different respirometric techniques are examined, the advantages and
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disadvantages of these techniques in the wastewater and kinetic characterisation are discussed.

2.3.1.1 Static gas - flowing liquid

Static gas - flowing liquid respirometer is a continuous system in which the dissolved oxygen

concentration (So) is measured at the inlet and outlet of a closed respiration vessel (Spanjers,

1993). Aerated sludge is continuously pumped through the respiration vessel. The OUR is

calculated from the dissolved oxygen mass balance over the unaerated respiration vessel as

shown in Equation 2-2:

dSo =Qn .(S . -S )-OUR
dt V O,In 0

Where:

SO,in = inlet dissolved oxygen concentration

So = outlet dissolved oxygen concentration

Q Iv = residence time in respiration vesselin

(2-2)

For this type of respirometer a closed respiration vessel the aeration term KLa· ( S~ - So) in

Equation 2-1 is absent from the dissolved oxygen mass balance, hence complex substrates such

as wastewater can be used because the K La value determination is not required. Knowledge of

the flow rate and reactor volume is required to calculate the residence time Qn IV .The

flowrate should be adjusted so as to prevent oxygen limitation condition. When there is a small

difference between the two dissolved oxygen probes (So,in - So) drift in the electrodes may

result in erroneous OUR data. To resolve this problem the dissolved oxygen concentration of

the inlet and outlet are measured by the same dissolved oxygen probe, this is achieved by

switching the direction of flow in the respiration vessel (Spanjers, 1993). This frequent switch

in flow direction results in lower measurement frequency of OUR (Vanrolleghem and

Spanjers, 1998).

2.3.1.2 Static gas - static liquid

Static gas - static liquid respirometers are typically operated by aerating for short period of time

thereafter monitoring the decline of dissolved oxygen concentration with time in a closed
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vessel (Cech et al., 1984, Kappler and Gujer, 1992, Kristensen et al., 1992). For this type of

respirometer the mass balance of dissolved oxygen shown in Equation 2-1 is simplified to

Equation 2-3, since the transportation and aeration terms are removed.

dSo =-OUR
dt

(2-3)

These respirometers are closed vessels with no head space, since no aeration of the activated

sludge sample through surface aeration or bubble in the liquid phase must occur during the

experiment. In the case of an open vessel being used the measured data may be influenced by

surface aeration, in this case an aeration term may be included in the mass balance equation.

Typically the influence of surface aeration is ignored (Randall et al., 1991, Takamatsu et al.,

1982). The oxygen transferred through the liquid-air interface can be limited by covering the

liquid surface with plastic balls (Wentzel et al., 1995), or by using a vessel that is the diameter

ofthe dissolved oxygen electrode (Gemaey et al., 1997).

The experiments performed with this design are carried out with high substrate concentration

and low biomass concentrations (high SolX o ratio) to prevent oxygen limitation conditions.

The danger in performing the respirometric experiment under high SolX o ratio is that the

sludge behaviour may not be representative of the full scale system (Novak et al., 1994). This

type of respirometer is limited in the characterisation of wastewater and determination of

activated sludge kinetics. Since the experiments are performed under high SolX o ratio the

maximum specific growth rate (f.Lrruu ) may be determined but the half-saturation constant (Ks )

cannot be determined because the substrate concentration may never drop near the value of Ks .

Furthermore the problem of oxygen limitation condition associated with this type of

respirometer has been resolved by frequent re-aeration of the sample (Suschka and Ferreira,

1986, Watts and Garber, 1993). In addition another solution to the oxygen limitation problem

condition has been to over saturate the activated sludge sample with oxygen (Ellis et al., 1996),

but the shortcoming of this solution is that the dissolved oxygen concentration will differ from

the full-scale operating condition.

Static gas - static liquid respirometers sampling frequency of OUR cycle are rather low, since

one OUR value would be obtained per aeration. This low sampling frequency is a

disadvantage, because it results in difficulties in determining activated sludge kinetic parameters
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(Vanrolleghem and Spanjers, 1998).

2.3.1.3 Flowing gas - static liquid

In flowing gas - static liquid respirometers high concentration of sludge (low So / X 0 ratio) can

be used because the vessel is continuously aerated, therefore no oxygen limitation occurs (Blok,

1974, Farkas, 1981, Ros et aI., 1988). An advantage of high sludge concentration X o is shorter

time for experiments. For this type of respirometer the mass balance of dissolved oxygen shown

in Equation 2-1 is simplified to Equation 2-4, since the transportation is removed.

dSo =K a .(SO -S )-OUR
dt LOO

(2-4)

To obtain reliable OUR data an optimal aeration should be determined. If the aeration is too

high the OUR data may contain significant amount of measurement noise.

In general, oxygen uptake rate (OUR) can be considered to consist of two components

(Spanjers, 1993) as shown in Equation 2-5; the exogenous oxygen uptake rate (OURexo ) which

the uptake of the degradable substrate and the endogenous oxygen uptake rate (OURend ).

OUR = OURexo + OURend (2-5)

Under the assumption that OURend is constant, Equation 2-4 can be changed to Equation 2-6

(Vanrolleghem et aI., 1994).

(2-6)

When OURexo is zero, the oxygen concentration in the vessel reaches a steady state value of

So which indicates the equilibrium between the oxygen transfer and endogenous respiration.
•eq

A flowing gas - static liquid respirometer allows a high frequency measurements of OUR data

as compared to the static gas - static liquid respirometers (Vanrolleghem et aI., 1994). There are

several methods to determine the value of the oxygen transfer coefficient KLa, it can be
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determined from a separate re-aeration experiment with sludge in the endogenous state

(Bandyopadhyay et al., 1967) or from a re-aeration curve obtained after an addition of a known

amount of readily biodegradable substrate to the system (Vanrolleghem et al., 1994).

2.4 Optimal Experimental Design (OED)

In this section the concept of optimal experimental design (OED) (Dochain and Vanrolleghem,

2001) is introduced and a detailed discussion is provided for the concept of OED applied to the

design of an experiment in which the data will be used for parameter estimation. The OED

methodology was used to obtain the optimal batch respirometric experiment design in this

study.

2.4.1 Optimal experimental design concept

Obtaining quality experimental data is a critical task when this data is to be used in model

building, model selection and parameter estimation. The experimental design is an important

task for modelling, since the experiment design is the critical factor in obtaining good

information-rich experimental data. The goals pursed in an experimental design procedure can

be categorised in three areas; experiment design for a reliable selection of an adequate

mathematical model structure of the process, the design of experiment for precise estimation of

model parameters, and the dual problem of structure characterisation and parameter estimation

(Dochain and Vanrolleghem, 2001). There are a number of quantitative functions associated

with the respective goal of the experimental design. The focus of this study is the design of an

experiment for precise estimation of model parameters; therefore the experiment design

procedure associated with this goal is discussed in detail. The Optimal Experimental Design

(OED) procedure (Dochain and Vanrolleghem, 2001) is summarised in Figure 2-3 (De Pauw,

2005).

Once a preliminary model is created based on previously acquired data, the experiment degrees

of freedom and constraints for the experimental design procedure are defined (De Pauw, 2005).

The experiment degrees of freedom are subdivided into measurements and manipulations

categories (Dochain and Vanrolleghem, 2001). With regard to the measurements in the

experiment category several question can be posed: (1) what to measure, (2) where to measure

and (3) when to measure (Dochain and Vanrolleghem, 2001). The manipulation category often

is the most important category and relates to the excitation signal that acts on the system to
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produce highly qualitative information.

Lab/Sensor

Perform Initial
Experiment(s)

Perform Proposed
Experiment

Computer

Calibrated
Model

Proposed
Experiment

Simulate
Experiment

Yes Calibrated
Model

Evaluate Objective
Function

No

Figure 2-3: Schematic of optimal experimental design (QED) procedure (De Pauw, 2005)

The optimal experiment design procedure for parameter estimation (Dochain and

Vanrolleghem, 2001) was applied in the design of this study's batch respirometric experiments.

The assessment of the quality of a set of parameter estimates can be based on the way the

parameters allow a model to make good predictions of process behaviour. However the most

popular method of assessing the quality of parameter estimates is by providing information on

the parameter estimation errors in the form of confidence intervals or by providing the
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covariance matrix. These concept are related to practical identifiability which and are discussed

in detail in Section 2.7.2 and Chapter 3, Section 3.5.2. The objective of the batch respirometric

experiment design is to obtain reliable parameter estimate, therefore it is clear that the

covariance matrix (V ) or similarly the Fischer matrix (F ) are central components in this task

(refer to Section 3.5.2 for the respective mathematical expressions of these matrices).

In this study a single variable, oxygen uptake rate (OUR), is measured and fitted. In such a case,

a realistic estimate of the parameter estimate confidence can be obtained by evaluating the

residual mean square (S2) (Dochain and Vanrolleghem, 2001).

(2-7)

Where p is the number of parameters in the model, J
OP1

(B) is the quadratic objective function

which is minimised during parameter estimation (this function is described in detail in

Section 3.5.2) and N is the number of experimental data points.

If the covariance matrix V is available approximate standard errors ( a (Bj ) ) for the parameters

can be calculated as follows (Dochain and Vanrolleghem, 2001):

(2-8)

2.5 Description of Activated Sludge Kinetic Models

The most common wastewater treatment method is the activated sludge process. In this process

bacteria (biomass) remove pollutants; these are in the form of organic carbon, nitrogen and

phosphorus. The design of the wastewater treatment works determines which of the pollutants

are removed. Dynamic kinetic models of the activated sludge processes have been created as a

result of knowledge gained from research into the mechanisms of the different biological

degradation processes. This review will focus primarily on Activated Sludge Model No. 1

(ASM 1) (Henze et al., 1987), which is the most popular activated sludge model used in the

design and operation of wastewater treatment works.

Information of the ASMl (Henze et al., 1987) and ASM3 (Gujer et al., 1999) activated sludge
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models are covered. The activated sludge models which include phosphorus removal are not

covered in this study, hence ASM2 and ASM2d (Henze et aI., 1995, Henze et al., 1999) are not

described.

2.5.1 Activated sludge model No. 1 (ASMl)

ASM1 is presented in Petersen matrix format III Table 2-4 (Henze et al., 1987). Carbon

substrates are defined in terms of Chemical Oxygen Demand (COD) and nitrogen substrates in

terms of nitrogen content.

2.5.1.1 Fundamentals of Petersen matrix

The Petersen matrix consists of the components (C j), parameters (P), and processes (j). The

components are state variables and vary with time. Processes are the transformation in which

the components take part. The parameters are found in the stoichiometric expressions (aji ) and

in the process rate equations (Pj)' these parameters are constant in respect to independent

variables.

Table 2-3: Typical Petersen matrix

Components ~ Cl

! Processes

Process 1

Processj

Process m

C j Process Rates

Pm

In the Petersen matrix the mass conservation principle IS applied, this IS described by

Equation 2-9:

n"a .. =OL..J JI
j=1

(2-9)

The dynamics of the i-th component of the Petersen matrix is described by the differential
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equation, Equation 2-10:

(2-10)

2.5.1.2 ASMl components

Total COD is subdivided based on solubility, biodegradability, biodegradation and biomass, this

partitioning of COD is shown in Figure 2-4. Total COD is divided into biodegradable, non

biodegradable and active mass groups. The biodegradable and non-biodegradable groups are

then separated into soluble (S) and particulate (X) components. The non-biodegradable

components pass through the system unchanged since they are biologically inert. The soluble

inert (S.) enters and leaves the system at the same concentration. The particulate component Xp

is produced through decay ofbiomass, both particulate components Xp and X. are removed from

the system via sludge wastage. The biodegradable matter consist of readily biodegradable (Ss)

and slowly biodegradable (Xs) substrate. Readily biodegradable substrate consists of simple

molecules which are utilised by heterotrophic biomass (XBH), and slowly biodegradable

substrate consists of complex molecules which are broken down into simple molecules to be

consumed by heterotrophic biomass. The active mass is divided into autotrophic biomass (XBA)

which consumes ammonia (SNH) and heterotrophic biomass (XBH). The partitioning of total

COD is summarised in Equation 2-11.

(2-11)
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Total COD

Soluble
Ss

Particulate
Xs

Soluble
SI

Particulate
XI&Xp

Heterotrophs
XBH

Autotrophs
XBA

Figure 2-4: COD components of ASMl adapted from (Petersen, 2000)

Total nitrogen can be subdivided in a similar way as total COD, based on solubility,

biodegradability, biodegradation and active mass, this partitioning of nitrogen is displayed in

Figure 2-5. Total nitrogen is divided into total kjeldahl nitrogen (TKN) and nitrate/nitrite.

Nitrate/nitrite (SNO) is biodegradable nitrogen component; whereas TKN consists of

biodegradable, non-biodegradable and active mass nitrogen matter components. The

biodegradable and non-biodegradable groups are then separated into soluble (S) and particulate

(X) components. The soluble non-biodegradable organic nitrogen (SNl) occurs in negligible

amounts so is excluded from the ASMl model, the particulate non-biodegradable organic

nitrogen (XN1) is linked to non-biodegradable particulate components of COD. The

biodegradable nitrogen matter consists of ammonia nitrogen (SNH), nitrate/nitrite (SNO), soluble

organic nitrogen (SND) and particulate organic nitrogen (XND). The particulate organic nitrogen

is hydrolysed to soluble organic nitrogen. Soluble organic nitrogen is converted to ammonia

nitrogen through the process of ammonification. The ammonia nitrogen is converted in a single

step process to nitrate by autotrophic biomass and also serves as the nitrogen source for biomass

growth. The fraction of nitrogen content in heterotrophic and autotrophic biomass is indicated

by the iXB parameter. The partitioning of total nitrogen is summarised in Equation 2-12.
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(2-12)

Total Nitrogen I
I

~ ~
Total Kjedahl Nitrogen NitratelNitrate

SNO

1
I

Biodegradable I Non-biodegradable I Active mass I
I

1 1 1 1 1
Ammonia Organic Soluble Particulate Heterotrophs Autotrophs

SNH Nitrogen SNFiNs1.S. XNFiNxl,XI ixB,XBH ixB,XBH
XNP=ixp·S.

I
1 1

Soluble Particulate
SND XND

Figure 2-5: Nitrogen components of ASMl adapted from (Petersen, 2000)

2.5.1.3 ASMl processes

From Table 2-4 it can be observed that there are four main processes in the ASMl model

(Henze et aI., 1987). The growth processes of biomass, that is of hetetrophic (Process 1 and 2)

and autotrophic (Process 3) biomass. The decay processes ofbiomass, once again ofhetetrophic

(Process 4) and autotrophic (Process 5) biomass. Also the ammonification process (process 6)

of converting organic nitrogen (SND) to ammonia nitrogen (SNH)' Finally the hydrolysis of

particulate organic matter processes, which is of slowly biodegradable substrate (Xs) (Process 7)

and particulate organic nitrogen (XND) (Process 8).
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Aerobic growth of heterotrophic biomass

The Monod relationship is used to describe aerobic growth of heterotrophs and autotrophs. The

growth of heterotrophs occurs by the consumption of readily biodegradable substrate (Ss) and

oxygen (So), ammonia is incorporated into the biomass.

Anoxic growth of heterotrophic biomass

This is essentially the denitrification process, in which nitrate is used by heterotrophic biomass

as a terminal electron acceptor and readily biodegradable substrate (Ss) as the substrate. As a

result biomass growth occurs and nitrogen gas is formed. The same Monod kinetics as the

aerobic process is used, except a correction factor (11g) is included to account for the anoxic

process occurring at slower rate than the aerobic process. In addition a switching function,

KOH/(KoH+SO), is included to describe the inhibition resulting from the presents of oxygen

Aerobic growth of Autotrophic biomass

Aerobic growth of autotrophic biomass is the nitrification process of oxidising ammoma

nitrogen (SNH) to nitrate (SNO)' This results in the formation of autotrophic biomass and the

incorporation of a fraction of SNH into the autotrophic biomass. The nitrification process impacts

significantly on alkalinity.

Decay of heterotrophs

The death regeneration concept (Do1d, 1980) was used to describe the process reactions which

occurs when biomass die. Traditional decay concepts describe the decay process as a fraction of

the biomass being broken down to release energy for maintenance. The death regeneration

concept has no direct link between the decay of biomass and oxygen represented as COD. The

concept describes decay as resulting in the release of slowly biodegradable substrate, which is

then broken down into readily biodegradable substrate. This readily biodegradable substrate is

used in the growth of more biomass. Hence oxygen utilisation is associated with decay

indirectly through the growth of new biomass on released substrate. Simultaneously organic

nitrogen is converted to ammonia nitrogen. The magnitude of decay coefficient is greater in this

concept than in traditional endogenous respiration concepts. This is as a result of the decay

coefficient compensating to obtain the same oxygen utilisation per unit time due to decay.
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Therefore the net amount of biomass increases, as a result the biomass growth rate is higher in

the death regeneration model than in reality.

Decay of autotrophs

The decay of autotrophs can be explained in a similar way to the decay ofheterotrophs.

Ammonification of soluble organic nitrogen

Soluble organic nitrogen (SNO) is converted to ammonia nitrogen (SNH) in a first order process

accompanied by alkalinity changes.

Hydrolysis of entrapped organics

Slowly biodegradable substrate (Xs) is broken down into readily biodegradable substrate (Ss). A

correction factor (llh) is included to account for the hydrolysis rate decrease under anoxic

conditions.

Hydrolysis of entrapped organics nitrogen

The hydrolysis of entrapped organic nitrogen can be explained in a similar way to the hydrolysis

of entrapped organics.

2.5.2 Activated sludge model No. 3 (ASM3)

The ASM3 stoichiometry and process rate equations are presented in matrix form in Table 2-5

and Table 2-6 respectively.

The major difference between ASMI and ASM3 is that ASM3 accounts for conditions of

elevated concentrations of readily biodegradable organic substrate which can lead to storage of

polyhydroxy-alkanoates, lipids and glycogen (Petersen, 2000). This process is not included in

ASM 1; the aerobic storage process is described in ASM3 as the process of readily

biodegradable substrate (Ss) being stored in a cell internal component XSTO• All readily

biodegradable substrate is first stored then used for growth; the energy required for this storage

process is obtained from aerobic respiration. Another important difference between ASMl and

ASM3 is the replacement of the death regeneration concept by endogenous respiration. The
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death regeneration concept decay coefficient was difficult to determine, while the endogenous

respiration process presented in ASM3 is much easier to obtain through batch experiments and

is closer to what is experienced in reality (Petersen, 2000).
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Table 2-6: Process rate equations of ASM3 (Gujer et aI., 1999)

i Process
Process rate Pl

k. XS!XH ,XHJ Hydrolysis
h KX+XS!XH

2 Aerobic storage of k . So Ss ,XHCOD STO K +S K s +Sso 0

Anoxic storage of k Ko SNO Ss ,XH3 COD sTO'17No' K +S K NO + SNO K s +Sso 0

4 Aerobic growth of So SNH SALK XSTO!XH ,XHheterotrophs JJmH' K + S K NH +SNH K ALK + SALK KsTO + X STO ! X Ho 0

5 Anoxic growth of Ko SNO SNH SALK XSTO!XH ,XHheterotrophs JJmH '17NO . K + S
KNO+SNO K NH +SNH K ALK + SALK KSTO + X STO ! X Ho 0

Aerobic endogenous
b . So6 respiration of H.O, K +S

,XH
heterotroDhs o 0

Anoxic endogenous b . Ko SNO ,XH7 respiration of H.NO Ko + So K NO + SNO
heterotrophs

8 Aerobic respiration of b . So ·XSTOXSTO STO.D, K + S
o 0

9 Anoxic respiration of b . Ko SNO ·XSTOSTO,NO S K SXSTO Ko + 0 NO + NO

Aerobic growth of So SNH SALK
10 Autotrophs, JJ . ,XA

Nitrification MA KA,o +So KA,NH +SNH K A,ALK + SALX

Aerobic endogenous
b . So .XJ1 respiration of ,1.,0, K +S A

autotrophs ,1..0 0

Anoxic endogenous b . KA,o SNO.X
J2 respiration of A,NO S S A

autotrophs KA,o + 0 KA,NO + NO

2.5.2.1 ASM3 components

From Figure 2-6 it is observed that ASM3 total COD components are basically defined in the

same way as ASM 1; except particulate inert produced through decay (Xp) is incorporated into

XI since it is impossible to differentiate between them, and the storage term X STO is introduced.

The breakdown of total COD is summarised in Equation 2-13.

(2-13)
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Soluble
Ss

Particulate
Xs

Soluble
SI

Heterotrophs
XH

Particulate
XI

Autotrophs
XA

Figure 2-6: COD components of ASM3 adapted from (Petersen, 2000)

A simplified division of total nitrogen is used in ASM3 compared to ASM1; this nitrogen
breakdown is presented in Figure 2-7. Soluble and particulate organic nitrogen components are
not present in ASM3 since they complicate the model and their concentrations and reaction
kinetics cannot be easily determined; these components have been replaced by fractions of
nitrogen in components SI, Ss, Xi> Xs and active biomass. In addition nitrogen gas has been
introduced as a component allowing a closed nitrogen balance. The breakdown of nitrogen is
summarised in Equation 2-14.
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Total Nitrogen I
~ ~ ~

Nitrogen gas Total Kjedahl Nitrogen NitratelNitrate

SN2 SNO

1
I Biodegradable I Non-biodegradable I Active mass I

I
1 1 1 1 1

Ammonia Organic Soluble Particulate Heterotrophs Autotrophs

SNH Nitrogen SNFiNs.,SJ XNFiNXJ·X. iXB,XBH iXB,X BH

I
1 1

Soluble Particulate
iNss·Ss iNxs·Xs

Figure 2-7: Nitrogen components of ASM3 adapted from (Gujer et aI., 1999)

2.5.2.2 ASM3 processes

From Table 2-6 it can be observed that there are four main processes in the ASM3 model (Gujer

et al., 1999). These processes are storage of readily biodegradable substrate, growth ofbiomass,

decay ofbiomass and the hydrolysis ofparticulate organic matter.

Aerobic storage of readily biodegradable substrate

In this process oxygen is consumed through the storage of readily biodegradable in the form of

XSTO°
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Anoxic storage of readily biodegradable substrate

This process is identical to the aerobic storage oJ readily biodegradable substrate process
described above, except nitrate (SNO) is used as a terminal electron acceptor instead of oxygen
(So). A correction factor (llNo) is also included to account for that only a fraction of the
heterotrophic biomass maybe capable of denitrifying.

Hydrolysis

This process is responsible for the breakdown of slowly biodegradable substrate to readily
biodegradable substrate. The process is described in a similar method to the ASM 1 hydrolysis
process except that this process is now electron donor independent.

Aerobic growth ofheterotrophs

XSTO and oxygen is consumed during the aerobic process of heterotrophic biomass growth.
Nitrogen is also incorporated into the biomass as discussed earlier.

Anoxic growth of heterotrophs

Anoxic growth is similar to aerobic growth, except a correction factor (llNo) is included to
describe the reduced growth of biomass observed in anoxic respiration compared to aerobic
respiration.

Aerobic growth of autotrophs

The aerobic growth of autotrophs is similar to the ASMl process.

Aerobic and Anoxic decay of heterotrophs

The aerobic decay of heterotrophs is independent from the autotrophic biomass decay; this is
the main difference from the decay regeneration concept of ASMl. There is a direct link
between oxygen COD and the decay of heterotrophic biomass. Anoxic decay of heterotrophs
process is described in a same way as aerobic decay.

2-25



LITERATURE REVIEW

Aerobic and anoxic decay of autotrophs

The process of aerobic and anoxic decay of autotrophs is the same as the heterotrophic decay

processes.

Aerobic and anoxic respiration of storage product

Aerobic and anoxic respiration of storage products processes are the decay processes of the

storage product (XSTO).

2.6 Mathematical Process Model Building

The modelling methodology for model building described by Dochain and Vanrolleghem

(2001) is discussed below; using this methodology the BRE model was created. The model

building procedure is summarised in Figure 2-8 (Castensen et aI., 1997). After the steps in

Figure 2-8 were completed successfully, the created model was used.
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Figure 2-8: The model building procedure (Castensen et aI., 1997)

2.6.1 Problem formulation

The first step in the model building procedure is clearly defining the objective of the model

before constructing the model. The overall purpose of the BRE model was to quantify the

inhibitory nature of the textile dyes, Therefore the BRE model was constructed with the

objective of obtaining reliable estimates of the required parameters to quantify the inhibition,

using the form of inhibition kinetics used in COST Benchmark Simulation Model. The method

of determining which parameters are required for inhibition quantification is discussed in detail

in Section 3-1.
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2.6.2 Prior knowledge collection

This task entails the collection of relevant, available and expert knowledge, from literature or

experts in model building. Experiments maybe performed or previous performed experimental

data maybe collected and stored. The BRE model is an activated sludge model created in this

study based on knowledge obtained from prior activated sludge models which are discussed in

detail in Section 2-5.

2.6.3 Frame definition

After performing the first two tasks once, a first iteration of the model building procedure can

start. The frame defmition task aims to define the conditions under which the model will be

used (e.g. temperature, pH, etc), to choose the class of models that seems fit for the task (time

series, state-space, distributed parameter, stochastic, etc), to identify the variables that seem

important to find a solution to the formulated problem (inputs, outputs, states), the range of time

constants that need to be covered by the model, etc.

As soon as the frame is defined, the purposes set and the prior knowledge is collected, one or

more possible candidate models are created for the system. The candidate models are created

using two types of reasoning (Beck, 1989). The first being the assembling of all prior

hypotheses made on the mechanisms and phenomena that govern the behaviour of the system

and refuting or confirming these hypotheses on the basis of a set of field data. The second stage

determines whether the candidate model approximates reality, this stage involves the evaluation

of the model against experimental data and is described as system identification. System

identification may be considered as model calibration.

The modelling process is an iterative process in which the experiments play the role of

indicating areas of model deficiency and this is tackled in a new hypothesis generating step

(Dochain and Vanrolleghem, 2001).

2.6.4 Model structure selection

The objective of this task is to select a unique model structure according to the principles of a

quality of fit (Dochain and Vanrolleghem, 2001).

2.6.5 Parameter estimation
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Parameter estimation is based on the maximisation or minimisation of a goodness-of-fit

criterion such as Least Squares, Weighted Least Squares, Maximum Likelihood and a number

of other methods. The aim of parameter estimation is to provide values for parameters and state

variables in the model. The identifiability analysis performed prior to the parameter estimation

determines whether for a given set of measured variables, unique parameter values can be

obtained. The structural identifiability study evaluates if parameters can be given unique values

or not at all, the model or frame defmition is then altered to make the model more identifiable.

Model reduction can lead to models that require less data, hence improving the models

identifiability. The practical identifiability study determines the information content of the

dataset intended for parameter estimation. The optimal experimental design (Dochain and

Vanrolleghem, 2001) procedure is based on these methods, this design procedure uses the

model to calculate experimental conditions such that sufficient information is contained in the

data.

2.6.6 Model diagnosis

After the parameters are estimated, it has to be determined whether the identified model violates

the assumptions made in the frame definition. Statistical tests of systematic deviations between

model results and measurements, and distributions are frequently used (Dochain and

Vanrolleghem, 2001). Furthermore an evaluation whether non-sense parameter values such as;

negative affinity constants, initial or boundary values are obtained, this allows the diagnosis of

potential violation of the experimental frame (Dochain and Vanrolleghem, 2001).

2.6.7 Model testing

The robustness of the model is evaluated by comparing its performance with data obtained

under different conditions than the conditions at the time of the data collection performed for

model identification (Dochain and Vanrolleghem, 2001). This process of confronting the model

with new data is most often called model validation.

2.7 Identifiability Study for Dynamic Process Models

The identification of a dynamic model is characterised by; activated processes described by a

highly complex model, in addition high order non linear systems incorporating a large number

of parameters, and the scarcity of cheap and reliable on-line sensors (Dochain and

Vanrolleghem, 2001). Because of this an identifiability study of the dynamic model prior to any

identification is essential. The fundamental objective of the identifiability analysis is to
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determine whether unique values for the model parameters can be obtained from parameter
estimation, given a certain number of state variables are available for measurement on the basis
of the models structural identifiability or on the practical identifiability of the dynamic model
from the available data.

2.7.1 Structural identifiability

Structural identifiability is associated with the possibility of obtaining unique values for each
parameter of a dynamic model (Dochain and Vanrolleghem, 2001). The structural identifiability
of the dynamic model is determined from the given model structure and assuming model
variable data corresponds perfectly to the model. It may be concluded that from the structural
identifiability study that combinations of the model parameters and not the individual
parameters are identifiable. In this case knowledge of some parameters may be required to
achieve identifiability.

2.7.2 Practical identifiability

Practical identifiability is related to the quality of the data; that is whether the available data are
rich enough in information to identify and obtain accurate values for the model parameters
(Dochain and Vanrolleghem, 2001). Structural identifiability is performed under the assumption
of perfect (i.e. noiseless) data; as a result problems arise when parameter estimations are
performed on highly correlated parameters using noise corrupted experimental data. Under these
conditions the values of the estimated parameters may not be unique, since a change in one
parameter may be compensated by a change in another parameter which could still result in a
good fit between the experimental data and the model prediction (Dochain and Vanrolleghem,
2001). The Monod kinetic model has been documented as a biological system model in which
parameter estimates may be highly correlated (Boyle and Berthouex, 1974, Holmberg, 1982,
Munack, 1989). This problem is frequently encountered in cases in which parameter estimations
are performed using insufficient experimental data over a range greater than the experimental
data. To solve this problem it has been suggested to use documented parameter values to
enforce parameter bounds (Holmberg, 1982) or to increase the sample frequency in a defined
period of an experiment to increase the information content of the experimental data.

2.8 Parameter Estimation of Dynamic Models

Parameter estimation is defined as determining the optimum values of the mathematical model
parameters with the aid of experimental data assuming the relationships between the
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variables and the parameters are explicitly known (Dochain and Vanrolleghem, 2001). Certain

parameter values (typically for zero values) result in a part of a model structure being deleted,

hence it has been assumed that all parameters do not have these (e.g. zero values) parameter

values (Dochain and Vanrolleghem, 2001). In this section concepts and theory of the parameter

estimation process which was used in this study are discussed.

2.8.1 Initial steps in parameter estimation

Some preliminary steps need to be performed before the actual parameter estimation IS

performed. The first step discussed is the selection of parameters that will be estimated and

fixed to certain assumed values. The different methods that support this selection are also

discussed. In a parameter estimation algorithm, initial parameter estimates need to be given to

start the iterative search procedure; hence the choosing of proper initial guesses is essential to

obtain successful parameter estimations. The method of choosing initial parameter guesses is

discussed.

2.8.1.1 Selection of parameters

The selection of the parameters to be estimated is an important step in the parameter estimation

procedure. Parameter are estimated, whereas the variables are calculated by the model or given

as time series and constants are assumed to be given from prior knowledge. Initial and boundary

conditions of state variables and some inputs can also be formulated with the aid of parameters;

hence the set of parameters considered in the parameter estimation problem contains all of these

and can be estimated simultaneously (Dochain and Vanrolleghem, 2001). A few of the methods

are introduced that are used to select a certain subset of model parameters, these methods are:

structural and practical identifiability analysis and sensitivity analysis.

Structural identifiability analysis is a method used to find out the possible identifiable

parameters or combinations thereof, provided the data is sufficiently rich in information (refer to

Section 2.7.1 and Section 3.5.1). For this reason only the structurally identifiable subset will be

contained in the parameter estimation problem. Hence for the identifiable parameter

combination of this study presented in Section 3.5.1, (1 - YH ) / YH • fLmH • X (0) and

(1- YH ) • Ks' One parameter from each combination were chosen to be estimated, fLmH and

Ks' and the remainder of parameters were set to values. It should be noted that the parameter
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estimates obtained are conditioned by the choice of the values of the set parameters.

Practical identifiability problems are encountered because the data are insufficiently informative

to reliably estimate all parameters, a sub-selection of this parameter set can be made after an

analysis of the parameter estimation error covariance matrix (refer to Section 2.7.2 and

Section 3.5.2). By eliminating the parameter that is causing the identifiability problem from the

parameter set and giving it an assumed value, the estimation of the other parameters will be

highly facilitated. But the estimates obtained will be conditional on the assumed value of the

non-identifiable parameters.

A method was developed which used sensitivity analysis as a method to preselect parameter

subsets that ensure reliable estimation (Weijers and Vanrolleghem, 1997). This method requires

the calculation of sensitivity functions; this becomes tedious when dealing with complex

models.

2.8.1.2 Initial estimates of the parameters

Except for linear parameter estimation problems in which parameters can be determined readily

analytically from the objective function, the minimisation algorithms used for nonlinear

parameter estimation need initial guesses for parameter values. The choice of good initial guess

determines whether the minimum is successfully obtained and how long it takes to converge

towards it. The method to obtain good initial guesses is based on intuition and prior knowledge

in selecting initial guesses.

2.9 COST Benchmark Model

The COST Simulation Benchmark Model (Copp, 2002) is an activated sludge wastewater

treatment model that was designed to evaluate different control strategies. A fully defmed

protocol is implemented in the Simulation Benchmark Model, which provides an unbiased basis

without reference to any particular wastewater treatment works. This model has also been

successful in comparing different wastewater treatment modelling software packages.

The Simulation Benchmark Model configuration is shown in Figure 2-9; it consists of five

biological reactors in series, followed by a secondary clarifier. The first two tanks are operated

under unaerated and fully mixed conditions; the last three are operated under aerated conditions.

The model has two recycles, a nitrate recycle from the fifth tank to back to the first tank and a
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sludge recycle from the secondary clarifier underflow back to the first tank. There are two

output streams, a sludge waste stream and an effluent stream.

Clarifier

ASUl ASU2 ASUJ ASU4 ASUS

Figure 2-9: Flow diagram of the 'simulation benchmark' configuration showing activated sludge

units (ASU) 1 and 2 mixed and unaerated and ASU 3, 4 and 5 aerated

CariJ2

Figure 2-10: COST simulation benchmark model configuration as appears in WEST

The activated sludge reactors (refer to Figure 2-10) are modelled by the Activated Sludge Model

No.l (ASM1) (Henze et al., 1987), which has been described in detail earlier. Kinetic parameter

default values expected at 15°C (Henze et al., 1987) are used in the model simulations. The

effluent data are obtained from the model after it is simulated for 14 days under dynamic

influent conditions. The effluent data along with operational conditions are used to determine

the effluent quality index, effluent violations and operational costs. This concept will be

discussed further in greater detail in Chapter 6.
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CHAPTER 3

MATHEMATICAL MODELLING THEORY

This chapter provides the mathematical process modelling theory used in the quantification of

the inhibitory nature of textile dye effluent on the activated sludge processes. A Batch

Respirometric Experiment (BRE) model was created to obtain the relevant information to

quantify the inhibition of textile dyes on the kinetics of biomass respiratory activity. To

determine which of the parameters of the model are central in quantifying the inhibition, the

kinetic effects of inhibition have been investigated. Subsequently the BRE model was inputted

into wastewater treatment modelling program WEST. A continuity check and the identifiability

study were performed on the BRE model. Furthermore the model theory of parameter

estimation and the method used in WEST is discussed.

3.1 Kinetic Effect of Inhibition

Little is known about the inhibition of textile dyes on activated sludge biomass. Therefore it is

particularly difficult to hypothesize mechanistic models from which kinetic effects maybe

created. Hence empirical models must be used to aid in understanding how inhibitors are likely

to influence the functioning of activated sludge processes. The most basic kinetic approach is to

assume that the inhibitor effects the specific substrate removal rate of a biomass in a manner

analogous to the way an inhibitor influences enzyme activity (Hartmann and Laubenberger,

1968). The four main types of inhibition (Volskay and Grady, 1988) which occur are;

competitive, non-competitive, uncompetitive and mixed. The form of inhibition is dependent on

the influence of the inhibitor on the maximum specific growth rate (~,,) of biomass and the

half saturation constant (Ks) in a Monod kinetic growth rate expression. The definition of

inhibition types is shown qualitatively in Table 3-1.

Table 3-1: Definition of inhibition types (Volskay and Grady, 1988)

Type of Inhibition Effect on Ilmax Effect on Ks

Competitive None Increase

Non-competitive Decrease None

Uncompetitive Decrease Decrease

Mixed Decrease Increase
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A mathematical way of expressing the effects of different inhibitions types is with simple
reversible linear inhibition models (Patterson and Brezonik, 1969). If J.l.max and K·s represent the
observed values of I-lmax and Ks in the presence of the inhibitor can be represented by models
shown in Table 3-2. The concentration of inhibitor is represented by I, while K1,m and K1,s is
called the inhibition coefficients of maximum specific growth rate and of half saturation
coefficient.

Table 3-2: Quantification of inhibitory effects using simple reversible linear inhibition models
adapted from (Volskay and Grady, 1988)

Inhibitor type

Competitive

Non-competitive

Uncompetitive

Mixed

Effect on J.lmax Effect on Ks

· K; =K s {I +(]{I.J)Jimax =Jirnax

• Jimax

~- ~ (1+(]{J) K; =Ks

~~, ~ (1+(;:JJ K· - K s

s - (1+(]{JJ
• Jimax

K; ~Ks {I+(]{,JJ~- ~ (1+(]{,J

The importance of the identification of the inhibition type is essential since it determines the
manner in which the substrate and inhibitor concentrations interact in regulating the removal
and biomass growth (Volskay and Grady, 1988).

3.2 Description of the Batch Respirometric Experiment (BRE) Model

From the investigation into inhibition above it was concluded that the maximum specific growth
rate and half saturation constant were the critical parameters required for the determination of
the type of inhibition model.

Hence the Batch Respirometric Experiment (BRE) model was created with the objective of
obtaining accurate estimates of maximum specific growth rate and half saturated constant
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parameters. The batch respirometric experiment model is a combination of ASM 1 (Henze et al.,

1987) and ASM3 (Gujer et al., 1999) model concepts; it is shown in Table 3-3. Some of the

modification to the model was done for mathematical convenience.

3-3



T
ab

le
3-

3:
B

at
ch

re
sp

ir
om

et
ri

c
ex

pe
ri

m
en

t (
B

R
E

)
ki

ne
ti

c
m

od
el

C
om

po
ne

nt
i -+

1
1

!
P

ro
ce

ss
j

S
s

X
s

Ix
B

H
IX

BA
IX

p

1
A

er
ob

ic
gr

ow
th

o
f

he
te

ro
tr

op
hs

2
A

er
ob

ic
gr

ow
th

o
f

au
to

tr
op

hs

Y H

2
3

4
I

5
6 S
o

l-
Y

H
_

._
-

Y H

4.
57

-
Y

A

Y A

7

S
N

O

Y A

8

S
N

H

-i
X

B

1
-
i X

B
-y

A

9

S
A

L
K

_
i X

B 14

_
i X

B
_

_
1

_
14

7
·Y

A

P
ro

ce
ss

ra
te

P
j

.(l
_e

-I /
TH

)
.
(

SS
J
.X

BH
Jlm

H
K

s
+

S
s

-I
/T

A
)

(
SN

H
J
.X

BA
Jl

mA
.(I

-e
.

K
NH

+
SN

H
3

D
ec

ay
o

f
he

te
ro

tr
op

hs
4

D
ec

ay
of

au
to

tr
op

hs

H
yd

ro
ly

si
s

o
f

5
en

tr
ap

pe
d

or
ga

ni
cs

-1
I

IJp
I -

(1
-

Jp
)

-1
IJ

p
I -

(1
-

Jp
)

-I

i X
B

-
Jp

·i
xp

i X
B

-
Jp

·i
xp

b H
·X

BH

b A
·X

BA

X
S

/X
BH

·X
BH

kh
·K

x+
(X

S
/X

B
H

)

3-
4



MATHEMATICAL MODELLING THEORY

3.2.1 BRE components

The BRE model components are defined in the same way as ASMl components. Except for the

combination of inert particulates XI and X p into one inert particulate component X p, this is same

reason that X p is incorporated into XI in ASM3 since it is impossible to differentiate between

the two inert components; this has been discussed in Section 2.5.2.1. Furthermore the BRE

model has simplified the division of nitrogen in similar approach to that used in ASM3,

discussed in Section 2.5.2.1. Soluble (SND) and inert (XND) organic nitrogen components are not

present in BRE model; these components have been incorporated as fractions of Xp, Xs and

active biomass. The soluble inert component (SD is absent from the BRE model to simplify the

model, since in the ASM 1 model it is not involved in any of the processes and the concentration

remains unchanged. The breakdown of total COD and total Nitrogen are summarised in

Equation 3-1 and Equation 3-2 respectively.

CODTOTAL =Ss + X s + X BH + X BA + X p

3.2.2 BRE processes

(0-15)

(3-16)

The BRE model processes are similar to those in ASM 1; except the process of anoxic growth of

heterotrophs is not present since the experiments are performed under saturated oxygen

conditions. Furthermore the hydrolysis of entrapped organic nitrogen has been removed since

the inert organic nitrogen component XND is not present and the ammonification process is

absent since this process occurs extremely fast and soluble organic nitrogen SND has not been

included in the model. The BRE model presented in Table 3-3 has three main processes,

namely:

• biomass growth

• biomass decay

• hydrolysis of entrapped organic matter

Aerobic Growth ofHeterotrophs

The processes of aerobic growth of heterotrophs and autotrophs biomass are described by the

same method as ASM 1 using the Monod relationship. The growth of heterotrophs occurs by
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the consumption of readily biodegradable substrate (Ss) and oxygen (So) and ammoma IS

incorporated into the biomass. An empirical factor was added to the process rate equations
(Vanrolleghem et al., 2004); this term serves to represent the fast transient phase observed in
respirometric profiles in reaching the maximum OUR value after a substrate pulse. The transient
phenomenon is modelled in a simple first order model, in the following way (Vanrolleghem et
al.,2004):

JLabs =Trans . JL

Trans =(1- e-tjr
)

(3-17)

(3-18)

Where Trans is the transient first order term, 't is the first-order time constant (s), t is time (s),
f.lobs is the observed specific growth rate of the biomass (S·l), f.l is the maximum specific growth
rate (S·I). This first order approach has been successfully used in a number of batch
respirometric studies (Gemaey et al., 2002, Sin, 2004).

The batch experiment IS operated under saturated oxygen conditions; hence oxygen
concentration (So) will be much greater than oxygen half saturation coefficient of heterotrophs
(KOH) for that reason the switching term (So/KOH+SO) is not present in the BRE model.

Aerobic Growth of Autotrophs

Aerobic growth of autotrophic biomass is the nitrification process of oxidising ammoma
nitrogen (SNH) to nitrate (SNO)' This results in the formation of autotrophic biomass and the
incorporation of a fraction of SNH into the autotrophic biomass. This process is described in a
similar method to aerobic growth of heterotrophs, except for obvious reasons the
(SNHIKNH,N+SNH) switching term has been excluded from the process rate expression.

Heterotrophic Decay

The death regeneration concept used in ASM I was not used to describe the hetetrophic decay
process; a modified endogenous respiration process presented in ASM3 was preferred. The
death regeneration concept decay coefficient was difficult to determine, while the endogenous
respiration process presented in ASM3 is much easier to obtain through batch experiments and
is closer to what is experienced in reality. This is explained in Section 2.5.2. The ASMI
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model decay process has been observed to have an inability in predicting the tail of

respirograms where storage effects are emphasized (Sin, 2004), ASM1 does not predict the tails

when the substrate pulse contains only readily biodegradable substrate which is the case in this

study. To negate this problem the decayed biomass is broken down into fractions of oxygen

(So), inert particulate (Xp) and ammonia nitrogen (SNH)'

Autotrophic Decay

The autotrophic decay process is described the same as the heterotrophic decay process.

Hydrolysis of Entrapped Organics

The hydrolysis of entrapped organics process is described in the same way to the ASM1 process

described in Section 2.5.1.2, apart from the exclusion of the anoxic term since the experiment is

operated under saturated oxygen conditions.

3.3 BRE Model Inputted into WEST Simulation Engine

The BRE model was implemented into the Worldwide Engine for Simulation, Training and

automation (WEST) software package. WEST is a software package designed for environmental

engineering simulations. A continuity check and a sensitivity test were performed on BRE

model in WEST.

3.3.1 Background of WEST software package

WEST was created in the early 1990s by Hemmis in close collaboration with the University of

Gent (www.hemmis.com.2006).Itis a powerful tool for dynamic modelling, simulations and

optimisations.

3.3.2 WEST subprograms

WEST consist of a model base which is a collection of text files providing a mathematical

description of the processes, a graphical user interface (GUI) and a simulation engine. The

model base is written in MSL-USER (Model Specification Language), this is a highly

hierarchical structure which represents the dynamics of the system along with symbolic

information (Vanhooren et al., 2003). The four subprograms that WEST consists of are:
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• WEST Manager

• WEST Model Editor

• WEST Configuration Builder

• WEST Experimental Environment

WEST Manager is a platform in which the user can view created projects and also new projects
can be created. All configurations and experiments performed in a project can be viewed and
accessed.
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Figure 3-1: Screen shot of WEST sub-program WEST Manager

The WEST Model Editor is used to create a new process model or edit an existing process
models; this can be performed in the matrix editor or in the MSL text files. Editing any section
of the hierarchal structure of WEST can be performed in the WEST Model Editor MSL text
files. Furthermore stoichiometry continuity check can be performed on newly created models or
on edited models.
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structure. (b) Screen shot of WEST sub-program WEST Model Editor Petersen Matrix Editor
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WEST Configuration Builder is a subprogram in which the user selects the activated sludge

model for the system; thereafter the user creates the desired system configuration by selecting

the treatment process units and connecting these process units. The treatment process units are

sub-models and the properties of these units can be edited in the WEST Model Editor, the

process units that are available are activated sludge reactor, primary clarifier, secondary clarifier

and many more.
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Figure 3-3: Screen shot of WEST sub-program WEST Configuration Builder

WEST Experimental Environment is based on the system model created in WEST Configuration

Builder. In this subprogram the user sets the values for treatment process unit parameters and

variables. The user then has the option of performing a standard simulation, a sensitivity

analysis on the system model, optimisation simulations and testing of different scenario.
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Figure 3-4: Screen shot of WEST sub-program WEST Experimental Environment

3.3.3 Fundamentals of WEST

The sub-models in WEST Experimental Environment use fluxes as the reference unit. By

applying the mass conservation principle to the fluxes, the following is obtained:

d
-M =0 (3-19)
dt

M = vector containing mass (M j ) of each component (i)

The mass balance on a tank with volume (V) with many incoming and outgoing flows (a), can

be described as follows:
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dt i Pi a

Where:

Mi = mass of component i (g)

v = volume of tank (m3
)

MATHEMATIeAL MODELLING THEORY

(3-20)

(3-21 )

<Pia = net flux in/out of component i in flow a (g/d)

ri = reaction rate of component i (g/m3Id)

Pi = density of component i (g/m3
)

Using the above ordinary differential equations (ODE) of each process unit, WEST sets up
algebraic equations for the entire system. In a simulation in WEST these ordinary differential
equations are integrated numerically in time and the system algebraic equations are solved
simultaneously. The integrator methods in WEST can be divided into three types:

• Fixed step size integrator. This is an integrator that takes a constant step in order to
solve the integration of the system of ODEs. The available fixed step integrators in
WEST are; AB2, AB3, AB4, Euler, Heun, Midpoint, Milne, Modified Euler and Runge
Kutta 4th order [RK4])

• Adaptive step size integrator. This is an integrator that modifies its step size in order to
obtain optimal calculation speed and optimal calculation accuracy. WEST only offers
the Runge-Kutta 4th order adaptive step size controller [RK4ASC] as an adaptive step
size integrator.

• Stiff solvers. This obtains a high performance gain for stiff systems. A stiff system is a
system where there is a large difference between the time constants of the processes
(e.g. biological and chemical processes). The two stiff solvers found in WEST are
Rosenbrock and eVODE.

The RK4ASe integrator was used In the WEST simulation and optimisation performed In
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WEST Experimental Environment for the batch respirometric experiment (BRE) model, since it

is fast and accurate. The step size ranged from 6x10.4 to 6 min for simulations.

The WEST Experimental Environment sensitivity analysis, scenario analysis and trajectory

optimisation functions were utilized in this study; details of these functions will be discussed

later.

3.4 Continuity Check of BRE Model

An important stage in modelling is model verification. Performing the continuity check is a

valuable tool for model verification. A continuity check is required to be performed on the

model stoichiometry and mass balance.

3.4.1 Stoichiometry continuity check

The stoichiometry continuity check is the calculation of a number of continuity equations.

Continuity equations are the mathematical equivalent of the principle that in chemical reactions,

elements, electrons (or COD) and net electrical charges may neither be formed nor destroyed. In

the continuity check it is determined whether the result of the equation is equal to zero or not.

The stoichiometry continuity check was performed in WEST and the result of the continuity

check was successful.

3.4.2 Mass balance continuity check

A mass balance continuity check was performed on the model to determine whether the model

COD and nitrogen components balance. The COD mass balance was determined by performing

a simulation in which nitrification was disabled and similarly the nitrogen mass balance was

determined by disabling the carbon reduction process. For the COD mass balance the input

COD concentration, output COD concentration and Oxygen Uptake Rate (OUR) were used to

determine the continuity of the model. The input and output nitrogen concentrations were

necessary for the nitrogen balance to determine the continuity of the model.

A detailed calculation of the mass balance continuity check is presented in Appendix F. In

summary the ErrorcOD is equal to 0 g COD/L and the ErrorN is 0 g NIL; hence both the COD

and Nitrogen mass balance continuity check performed on the model were successful.
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3.5 Identifiability Study of Dynamic Models

An identifiability study of the dynamic model prior to any identification is essential for reason
discussed in Section 2.7.,The model theory of structural and practical identifiability is discussed
in this section.

3.5.1 Structural identifiability

The structurally identifiable parameter combinations for heterotrophic growth of ASM I (Henze
et al., 1987) using batch respirometric experiment data is presented in Table 3-4. The same
parameter combinations are identifiable for autotrophic growth using batch respirometric
experiment data. For a detailed derivation of the identifiable parameter combination presented
in Table 3-4 using the Taylor Series Expansion method refer to (Dochain and Vanrolleghem,
2001).

Table 3-4: Identifiable parameter combinations for heterotrophic growth kinetics (Dochain et aI.,
1995)

No Biomass Growth

l-Y
_H./1 ·X (0)Y r-mH H

H

(I - YH ) . Ss (0)

(I-YH )·Ks

Biomass Growth

(1- YH ) . Ss (0)

(1- YH ).Ks
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3.5.2 Practical identifiability

Practical identifiability is related to whether the available data are rich enough in information to

estimate and obtain accurate values for the model parameters. The accuracy of a parameter

estimation performed using the available experimental data can be expressed by the value of the

minimised quadratic objective functional presented below (Munack, 1991):

(3-22)

Where:

8 = vector of optimised parameters

Yi = experimental data vector ofN measurement values

1\

Yi( 8) = model predictions at times tj (i = 1 to N)

Qi = square matrix of user supplied weighted coefficients

The expected value of the objective function for a parameter set that is slightly different from

the optimal one is given by (Munack, 1989):

(3-23)

The term Ci represents the measurement error covariance matrix, the Qi matrix is typically

chosen as Ci·
1 to reduce the second term to a scalar. To optimise the practical identifiability; the

term between brackets [.] in Equation 3-9 has to be maximised. As a result a maximum

difference between J (8 + 88) and J (8) is obtained, which implies that a fit obtained from a

slightly different parameter set is significantly worse (Dochain and Vanrolleghem, 2001). Hence

obtaining a unique optimal parameter set. This term between brackets [.] in Equation 3-9 is

called the Fischer Information Matrix and describes the information content of the experimental

data (Ljung, 1999):

3-15



MATHEMATICAL MODELLING THEORY

(3-24)

This matrix is the inverse of the parameter estimation error covariance matrix of the best linear
unbiased estimator(Godfrey and Di Stefano III, 1985):

(3-25)

Confidence Region of the Parameter Estimates:

A critical result of a practical identifiability study is to determine the parameter estimation error.
The parameter variance of the estimated parameters indicates the level of confidence that can be
entrusted in the estimated parameters. In the Fischer Matrix calculation performed earlier the
matrix Qj was defined as the inverse of the measurement error covariance matrix Cj", hence by .
using the covariance matrix V approximate standard errors for the parameters can be calculated
as follows:

Furthermore confidence intervals for the parameters can be obtained as follows:

e ± t a(D)a ~N _ P I

(3-26)

(3-27)

Where the confidence level is specified as 100(l-a) and t-values are obtained from the Student-t
distribution.

Sensitivity Functions:

The output sensitivity ay/aB equations play an important role in evaluating the practical

identifiability, since this term is a component in both the Fisher Information Matrix and
parameter estimation error covariance matrix (Dochain and Vanrolleghem, 2001). Furthermore
if the sensitivity equations are proportional the covariance matrix becomes singular and the
model is not practically identifiable (Robinson, 1985). In particular in biological models the
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sensitivity equations are nearly proportional, resulting in parameter estimates that are highly

correlated. This phenomenon can be described by the error functional J which looks like a

valley, hence several combinations of parameters may describe the same data equally well

(Dochain and Vanrolleghem, 2001). Consequently by plotting the sensitivity equations the

practical identifiability can be easily evaluated.

The sensitivity equations can be determined in many different methods; the most popular is the

analytical derivation and a numerical approximation of the sensitivity. The analytical derivation

of the sensitivity equations is the most accurate, but with complex models software programs

are necessary to derive the equation to prevent derivation errors.

A numerical approximation basically requires additional evaluations of the model with

parameter values that are slightly different from the nominal values used. A parameter (); is

perturbed at a time with a perturbation factor 0 ();, the sensitivity of output variable y; to the

parameter (); is then calculated as follows:

(3-28)

Sensitivity Measure:

Sensitivity measure is another form of sensitivity analysis that is used to rank the influence of

parameters on the output variables. The sensitivity measure is defined as (Brun et al., 2002):

s;:msqr = .!- '" n 2
u· LJ s··1 n ;=) IJ

O()j ay.
s .. =--.--'

IJ se; a()j

(3-29)

(3-30)

The sensitivity measure, measures the mean sensitivity of the model output to change in the

parameter ()j (in the mean square sense). A high 5;sqr means that the value of the parameter

()j has an important influence on the output variable y;, and a value of zero indicates the output
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variable does not depend on the parameter.

3.6 Parameter Estimation of BRE Model

In this section the methodology of parameter estimation is discussed and the WEST parameter
estimation method is described.

3.6.1 Objectives in parameter estimation: estimators

The subjective approach of guessing parameter values by a visual inspection of model
prediction and data is commonly practiced. A better approach is to objectify the estimation of
parameters in the form of functions that represent the goal to fit a model to the data. These
functions are typically minimisation functions for which the model parameters are adjusted to
achieve a minimum in these functions. This minimisation process is in many dimensions, the
number of parameters to be estimated is the number of minimisation process dimensions.

These functions have many names; loss, merit, cost or objective functions. The best known
objective function for parameter estimation is the sum of squared errors function. This objective
function is presented in Equation 3-17; it is the cost function of the WEST trajectory optimiser
which was used in this study parameter estimations.

(3-31 )

Where:

Yi = the observations (a total of N observation)

;i (e) = the model prediction for a given parameter set e
The objective function J is representative of all the information contained in the observations
that is not explained by fitting the model to the data (Robinson, 1985). All classic objective
functions originate from maximum likelihood (ML) estimators.

3.6.2 Minimisation approach

As stated in the previous section determining the best parameter estimates typically involves
minimising the deviation of the model predictions from the data points using an objective
function (J) (Dochain and Vanrolleghem, 200 I). The minimisation solution methods for
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linear and nonlinear parameters are quiet different. For linear parameters in a one step

calculation give best estimates, while for nonlinear parameters numerical methods that search

the parameter space in a systematic way is the best estimation method. This study requires

nonlinear parameter estimates to be performed, hence nonlinear parameter estimation only is

discussed.

Nonlinear parameter estimation problems can not be solved as easily as parameters which

appear linear in the model. In some cases nonlinear parameters can be determined analytically

by solving the nonlinear equations. However the problems very quickly turns mathematically

inflexible, also the minimum of a nonlinear objective function is required. The purpose is to

find, as efficiently as possible values, of parameters (B) that make J (B) minimal. Nonlinear

function minimum can either be global (the lowest function value in the whole parameter space)

or local (the lowest function value in a finite neighbourhood). No perfect minimisation

algorithm exists, therefore a global minimum for nonlinear problems cannot be guaranteed

(Dochain and Vanrolleghem, 2001). As a result an important characteristic of a minimisation

algorithm will clearly be sensitivity to local minima. The overall procedure of nonlinear

parameter estimation is schematised Figure 3-5. Initially, the selection of the parameter to be

estimated and the experimental data need to be specified. The algorithm is started by giving first

guesses of the parameters. The minimisation algorithm will then request for model predictions

corresponding to this first parameter set. These model predictions are obtained by solving the

set of model equations and are passed on to the routine where the objective function is

calculated by confronting the predictions with the data. On the basis of rules that are different

for each minimisation algorithm either a new proposal for parameters is made and sent to the

model solver or, if certain criteria are met, the parameter values are passed on to the user as best

estimates. Stopping criteria may be that the maximum number of iterations is reached or that no

improvement in objective function is found in recent iterations.
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First guess of parameters

Integration of model equations

Calculation of objective function

Minimum
of objective

function
reached?

NO

New estimate of parameters

YES

Experimental data

Best estimate of parameters

Figure 3-5: Flow diagram of parameter estimation routine adapted from (Wanner et al., 1992)

3.6.3 Using WEST for parameter estimation of BRE model

The BRE model parameters were estimated using the WEST trajectory optimiser and
respirometric experiment data. The WEST trajectory optimiser estimates a number of
parameters by minimising a cost function, which is a measure for the difference between the
simulated results and a measured data set. In this study the cost function variable is oxygen
uptake rate (OUR) and the cost functions input is the OUR experiment data. The cost function is
a relationship between the available data and the simulation results. A best fit is obtained when
the cost function is minimised with respect to the parameters. During a trajectory optimisation
several runs are executed and after each simulation run the cost function is evaluated. Two
criteria are used to calculate the cost function:

• Squared error. This is the sum of squared errors, were the error IS the difference
between the simulated results and the measured data.

• Absolute error. This it the sum of absolute errors.
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An optimal fit is reached when the cost function becomes minimal. The BRE model maximum

specific growth rate and half saturation coefficient parameters for both heterotrophic and

autotrophic biomass growth were estimated.
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CHAPTER 4

BATCH RESPIROMETRIC EXPERIMENT

This chapter describes the batch respirometric experimental protocol developed to quantify the

inhibitory effects of textile dyes. The developed respirometric protocol provides information

rich data from which reliable parameter estimation can be performed. Previous unsuccessful

experimental designs used during the optimisation of the experimental design are discussed. The

batch respirometric optimal experimental design along with the results from this experiment

design is presented.

4.1 Batch Respirometric Experiments Setup

The respirometric layout is presented in Figure 4-1; this respirometer is operated with a cyclic

on-off air supply controlled by the oxygen uptake rate (OUR) meter. The OUR meter

measures and stores the OUR data during the air supply off phase. A detailed description of the

OUR meter is provided in Section 4.1.2. Since the OUR data is measured during the air

supply off phase the respirometer can be described by the static gas - static liquid respirometer

principles. The Batch Respirometric Experiment system consists of three components:

• the bioreactor and respirometer

• the Oxygen Uptake Rate (OUR) meter instrument

• computer system

4.1.1 The bioreactor and respirometer

The bioreactor is a 2 L cyclic aerated continuously stirred vessel which is shown in Figure 4-2.

The bioreactor has a dissolved oxygen probe and temperature probe which are connected to the

UeT DO/OUR meter; in addition the bioreactor has a pH probe which is connected to a pH

meter. The air supply to the reactor is controlled by the OUR meter; the air supply is switched

on when the dissolved oxygen concentration (DO) reaches the lower bound (LB) and switched

off when the DO reaches the upper bound (VB). The respirometer follows the principle of static

gas - static liquid, since the OUR data are measured during the air supply phase. The

respirometer OUR meter is operated with a small difference between the VB and LB dissolved

oxygen concentration values (acetate spikes VB = 5.0 mg02/L, LB = 4.5 mg02/L and ammonia

spikes VB = 5.0 mg02/L, LB = 4.8 mg02/L); this prevents oxygen limitation conditions which
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allows the respirometer to be operated with a high concentration sludge (low SolX o ratio), it

also provides a high frequency of measurements of OUR and shorter duration of experiments.

The high frequency measure of OUR data is a critical property for this study, since this data

will be used for wastewater characterisation and in determination of activated sludge kinetics

(Dochain and Vanrolleghem, 2001). Furthermore to prevent the transfer of oxygen through the

liquid-air interface which occurs when using an open vessel, the liquid surface was covered with

pieces of plastic (Wentzel et aI., 1995). In addition a bubble sparger was used to produce

effervescent small bubbles, hence preventing the formation of large bubble on the surface of the

liquid which would result in surface aeration. The respirometer follows the static gas - static

liquid principle (refer to Section 2.3.1.2) this type of respirometer is described by the mass

balance presented in Section 2.3.1.2, Equation 2-3. The measured OUR data consists of two

components as shown in Section 2.3.1.2, Equation 2-5; the exogenous oxygen uptake rate

(OURexo ) which is the uptake of the degradable substrate and the baseline endogenous oxygen

uptake rate ( OURend ).

Air Supply
Analogue Module

Single Board MPU
System

Key Board and
Display

Solenoid'
Valve DO Probe

r - - - ............ -.
I
I
I
I

.........~

LCD

Temp Probe
: .

KEYPAD

PC

Relay

..\ ....

.•........•.~
~:

...... -_ ...... ~ ... _-

~
Signal
Amp

.............~ Stirrer Unit

...................~ Biological Reactor

pH Probe

....................................~ Bubble Sparger

Figure 4-1: Schematic of respirometer used in batch respirometric experiments
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4.1.2 Oxygen uptake rate (OUR) meter instrument

The UCT DO/OUR meter (Randall et aI., 1991) was used for the control of dissolved oxygen

concentration and determination of oxygen uptake rate (OUR), an overview of the components

of this instrument is shown in Figure 4-1. The electronic controller unit coupled to a dissolved

oxygen (DO) meter with probe controls the air supply with an on-off solenoid valve in such a

way that the bioreactor is aerated intermittently to control the DO concentration between

specified upper and lower limits. The OUR meter is connected to a host computer which stores

the meters data with the DOMPC program.

T

o

pH

- -:- - - Plastic,..........•
Pieces

o 0

o Bubble....---"'----'''---,.........................................
o Sparger

Figure 4-2: Overview of components of the batch respirometric experiment adapted from (Randall

et aI., 1991)

Description of the VCT DO/OUR meter

The dissolved oxygen and temperature probe are connected to the ucr DO/OUR meter. The

OUR meter consists of:
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• controller

• crystal timer

• microprocessor for computing the OUR

• memory

• key pad for receiving instructions

• liquid crystal display (LCD) for displaying the results

The dissolved oxygen (DO) probe, meter and controller components serve to control the DO
concentration between the selected upper and lower DO set points, with the aid of the
microprocessor which is driven by a specially written program. The OUR is determined by
collecting DO and time data pairs from the DO probe and crystal timer respectively at a pre
selected time interval during the air-off period and performing a statistical linear least-square
regression analysis on the accumulated data points. The LCD displays the current DO
concentration, reactor temperature, the current OUR and the corresponding correlation
coefficient. Various instructions can be given with the aid of the key-pad, these functions are
discussed in Appendix B.

Hardware of the VCT DO/OUR meter

The schematic of the OUR meter component shown in Figure 4-1 and consists of an analogue
module, microprocessor system and keyboard/display unit. The DO signal amplifier consist of a
high stability amplifier with facilities for zero and gain adjustment which are required for
calibration (calibration procedure is discussed in Appendix B). A second amplifier channel on
the board is for the temperature sensor. The solenoid valve control relay switches the air supply
on and off in accordance with the upper and lower DO set points on the DO meter circuit board.
The operation of all the input/output devices of the OUR meter is controlled by the
microprocessor unit under program control. The microprocessor unit reads the analogue to
digital conversions.

Determination of Oxygen Uptake Rate (OUR)

The method in which the Oxygen Uptake Rate (OUR) is determined is best describe by
considering a complete cycle presented in the saw-tooth waveform in Figure 4-3, the dissolved
oxygen concentration (DO) changes from upper bound (VB) to lower bound (LB) and back to
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the upper bound during an on-off aeration cycle.

After the upper bound DO set point is reached the air supply is switched off and the DO starts to

decrease due the biological uptake of oxygen. To ensure that at the time of aeration stopped no

transient values affect the slope (OUR) calculation, the slope (OUR) is calculated by least

squared linear regression method. The linear regression analysis of the collected DO-time data

pairs is assisted by three statistical functions written in the microprocessor software for the

variables time (X) and DO concentration (Y). The ClearSigma statistical function clears all

variables at start of each curve fitting procedure, UpdateSigma function calculates running totals

of X, Y, XY, X 2
, y2 and N (the number of data points collected) and CalcStat function

calculates the following statistical parameters based on the current values of the running totals,

average and standard deviation of X and Y values, m slope of the line (i.e. the OUR), c the

Y intercept of the line, and r the correlation coefficient by linear least squared regression

(Randall et al., 1991).

AIR OFF

SAMPLE DATA (6)

'~
DO \

mgOl/L "
\
\
\
\
\
\
\
\
\
\
\
\
\
\

LOW SET POINT \LB .

VB } Ju.G.~ ~.H..r.mN:r. ..
OFFSET

AIR ON TIME

Figure 4-3: Saw-tooth waveform of the DO concentration-time trace obtained from on-off aeration

adapted from (Randall et al., 1991)
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Least Squares Linear Regression Method

For DO-time data collected the variable time (X) and DO (Y) are used in the least squares linear

regression method to determine the statistical parameters. For data to fit a linear function

presented in Equation 4-1 :

Y=mX+c (4-32)

The slope (i.e. the OUR), m ,of the linear function presented in Equation 3-7 is calculated from

Equation 4-2:

(4-33)

The Y intercept, C , of the linear function presented in Equation 3-7 is calculated from averages

of the X and Y data sets as presented in Equation 4-3:

IY m·IX
C=----~~

N N
(4-34)

The correlation coefficient, r, which is used to determine the accuracy of the linear regression

is calculated from Equation 4-4:

(4-35)

4.1.3 Computer system

The measured and calculated experiment data stored in the VCT DO/OUR meter was

transferred to a personal computer (PC) by using a program named DOMPC. This data was then

stored on disk and later analysed.
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4.2 Analytical Tests

For the respirometric experiments conducted, the following analyses were performed according

to Standard Methods (APHA, 1998):

• organic content (refer to Appendix D)

• total suspended solid (refer to Appendix D)

• volatile suspended solids (refer to Appendix D)

4.3 The OED Procedure Applied to the Batch Respirometric Experiment Design

The optimal experimental design procedure was applied in the design of the batch respirometric

experiment. The objectives were to characterise the wastewater (obtained from Umbilo

Wastewater Treatment Works) and obtain kinetic parameter estimates (emphases on the

determination on maximum specific growth rate and half saturation constant).

The initial objectives of the batch respirometric experiments were to characterise the

wastewater, determine autotrophic growth kinetics, heterotrophic growth kinetics and hydrolysis

kinetics. In these experiments un-concentrated activated sludge and wastewater collected from

Umbilo Wastewater Treatment Works aeration basin and the primary settler tops respectively

were used. The preliminary respirometric experiment design consisted of two separate

experiments; the first experiment was used to determine heterotrophic hydrolysis and growth

kinetic by inhibiting nitrification, and the second experiment was used to determine autotrophic

growth kinetics. Nitrification in the first experiment was inhibited using Allylthiourea. The

hetetrophic kinetic parameter estimates determined in the first experiment was used as default

values along with data collected from the second experiment, during the parameter estimation of

the autotrophic kinetics. The bioreactor, respirometer and computer system mentioned in

Section 4.1 were used in these experiments; a sample (1.7 L) of un-concentrated activated

sludge was placed in the bioreactor and 0.3 L wastewater was used as the substrate spike. The

respirometer OUR meter was operated with a sample rate of lOs, 5 mg 02/L upper bound and

3 mg 02/L lower bound dissolved oxygen concentration.
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First Series of Respirometric Experiments:

The resultant parameter estimations of the measured data of first respirometric experiment

design and the BRE model are presented in Table 4-1 and the model fits are Figure 4-4 to

Figure 4-6. A second uninhibited nitrification experiment was performed in order to determine

if there had been any change in the characteristics of the biomass or wastewater during the

course of the experiments. It is observed from Figure 4-4 to Figure 4-6 that the substrate from

the wastewater takes about 24-30 h to be consumed thereafter the activated sludge returns to

endogenous respiration, hence a single experiment can be performed in a day and the total time

taken for the three experiment runs was three days. Furthermore it is observed in Figure 4-4 to

Figure 4-6 that insufficient data points are measured from the start of the spike to the maximum

oxygen uptake value (OURmax ) and at the OURmax value, resultantly unreliable parameter

estimates of maximum specific growth and half saturation constants of heterotrophic and

autotrophic biomass were obtained.

The curve fit of an experiment in which nitrification is inhibited is presented in Figure 4-4; it is

observed that insufficient data points are measured to provide reliable parameter estimates of

heterotrophic growth kinetics. The estimated parameters from the nitrification inhibited run are

presented in Table 4-1; these parameter estimates are unreliable and no confidence interval

information could be obtained. Furthermore, as presented in Table 4-1 the heterotrophic growth

kinetic parameter estimates do not match those obtained in other studies (Insel et aI., 2003,

VanrolIeghem et aI., 2004).

The curve fits presented in Figure 4-5 and Figure 4-6 are experiments in which nitrification is

not inhibited. These respirographic profiles have no clear indication of the degradation of the

ammonia component, hence unreliable estimates (refer to Table 4-1) of ammonia kinetics were

obtained. Furthermore, from Table 4-1 there is a large difference between the nitrification

parameter estimates of the two nitrification uninhibited runs, this could be as a result of a

change in the characteristics of the biomass or wastewater during the course of the experiments

or since the parameter estimates were unreliable.
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Second Series of Respirometric Experiments:

As stated above unreliable estimates of ammonia kinetics were obtained for the experiments in

which nitrification is not inhibited presented in Figure 4-5 and Figure 4-6, since the

respirographic profiles have no indication of the degradation of the ammonia substrate

component. To solve this problem the identical experiment was performed as before, except

2 mglL ammonium chloride along with the wastewater was added as the substrate spike to the

activated sludge to produce a respirometric profile in which the degradation of ammonia and

organic carbon components can be observed.

The resultant curve fit of this experiment to the model is presented in Figure 4-7; this

respirometric profile has more measured data points at the maximum oxygen uptake rate value

( OURmax ), but once again no clear differentiation can be observed between the degradation of

ammoma and organic carbon substrates. The parameter estimation performed using this

measured data and the estimated parameters are presented in Table 4-2. These parameter

estimates are unreliable and no confidence information was obtained, since no clear
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differentiation of the degradation of ammonia and organic carbon substrates can be observed in

the respirometric profile (refer to Figure 4-7). Furthermore, as presented in Table 4-2 the

parameter estimates do not match those obtained in previous studies (Gernaey et aI., 2001, Insel

et al., 2003, Spanjers and Vanrolleghem, 1995, Vanrolleghem et aI., 2004). Hence the addition

of ammonia chloride with the wastewater had no positive effect for parameter estimation

process.
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data (squares) and BRE model (line)

Third Series of Respirometric Experiments:

As discussed earlier the time taken to perform the experiments of the preliminary respirometric

experiment design was lengthy (refer to Figure 4-4 to Figure 4-6), since the biomass had a slow

rate of consumption of the substrate in the wastewater. Furthermore unreliable parameter

estimates of maximum specific growth and half saturation constants of heterotrophic and

autotrophic biomass were obtained, since insufficient data points are measured from the start of

the spike to the maximum oxygen uptake value (OURmax ) and at the OURmax value (refer to

Figure 4-4 to Figure 4-6). A possible reason for these problems was that the activated sludge

was too dilute, that is the biomass concentration in the bioreactor was too low. To solve this

problem an identical experiment design was used as before, except activated sludge was

concentrated by allowing to the activated sludge to settle thereafter half the volume of top layer

of supematant liquid was removed.

The resultant respirometric profile of this experiment are presented in Figure 4-8 and Figure
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BATCH RESPIROMETRIC EXPERIMENT

4-9; these respirometric profiles show the duration of the experiments was shorter, since the

substrate in the wastewater is consumed in about 4 h. The parameter estimation performed using

this measured data and the estimated parameters are presented in Table 4-3; as a result of no

observed differentiation between the degradation of ammonia and organic carbon in the

respirometric profiles (refer to Figure 4-8 and Figure 4-9) these parameter estimates are

unreliable and no confidence information was obtained. Furthermore, as presented in Table 4-3

the parameter estimates do not match those obtained in previous studies (Gernaey et aI., 2001,

Insel et aI., 2003, Spanjers and Vanrolleghem, 1995, Vanrolleghem et aI., 2004). Furthermore,

from Table 4-3 there is a large difference between the parameter estimates of the two

concentrated activated sludge runs, once again this could be as a result of a change in the

characteristics of the biomass or wastewater during the course of the experiments or since the

parameter estimates were unreliable. The concentrating of the activated sludge did not aid in

parameter estimation but had a significant effect on the duration of respirometric experiments;

hence a greater number of experiments could be performed in a single day.
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Figure 4-8: Regressed fits of OUR when nitrification is uninhibited, after addition of 0.3 L

wastewater into 1.7 L concentrated activated sludge for which the experimental data (squares) and

BRE model (line)
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BRE model (line)
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Fourth Series of Respirometric Experiments:

The previous three experiment design discussed above were time consuming and proved to be

unable to produce sufficient measured data points to provide reliable parameter estimates. The

objectives of the respirometric experiment design were reassessed to possibly provide clearer set

of objectives. Previous experiment design produced unreliable parameter estimates of maximum

specific growth rates (JlmH and JlmA ) and half saturation constants (Ksand K NH) since

insufficient data points from the start of the spike to the maximum oxygen uptake value

(OURmax ) and at the OU~x value were measured, hence one of the major objectives of this

experiment design is to obtain more measured data points in those areas. As discussed in the

section describing the third experiment design concentrating the activated sludge resulted in a

shorter duration of experiments.

The initial objectives of characterising the wastewater and obtaining heterotrophic hydrolysis

parameter estimates were not the critical sub objectives as the main objective of this study was

to determine the inhibitory effect of textile dyes. The use of wastewater as a substrate was not

essential; hence sodium acetate and ammonium chloride were used as substrates in the new set

of experiments. The characterisation of wastewater and estimation of heterotrophic hydrolysis

kinetic parameters were no longer objectives; therefore sodium acetate and ammonium chloride

were used as substrate instead of wastewater, this also reduced the number of parameters to be

estimated. From Section 2.4.1, Equation 2-7 by reducing the number of parameters (p ) to be

estimated more confident parameter estimates may be obtained since the residual mean square

(S2 ) is reduced. Since the numbers of parameters to be estimated were reduced, more confident

parameter estimates could be achieved. As hetetrophic hydrolysis reaction is a slow reaction by

using readily biodegradable substrate like sodium acetate the hydrolysis process is eliminated,

hence shorting the duration time for the consumption of a substrate and the duration of the

experiment.
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This respirometric experiment design consisted of two separate experiments; the first

experiment was used to detennine growth kinetic by inhibiting nitrification and adding sodium

acetate as substrate, and the second experiment determined the autotrophic growth kinetics by

adding ammonium chloride. Performing two separate experiments to determine heterotrophic

and autotrophic parameter estimates has the disadvantage of being more time consuming since

double the number of experiments need to be performed, but the advantage is that more

confident parameter estimates will be obtained since separate parameter estimation will be

performed for heterotrophic and autotrophic kinetic parameters.

A major objective of this experimental design is to obtain sufficient measured data points in the

area from the start of the spike to the maximum oxygen uptake value (OURmax ) and at the

OURmax value. The previous experiment design produced insufficient data points from the start

of the spike to the OURmax and at the OURmax value. The respirometer OUR meter previously

was operated with a sample rate of lOs, 5 mg 02/L upper bound and 3 mg 02/L lower bound

dissolved oxygen concentration. To increase the number of measured data points in the first

experiment design (i.e. the experiment performed with sodium acetate as substrate) the OUR

meter upper and lower bound dissolved oxygen concentration was changed to 5 mg 02/L and

4.5 mg 02/L respectively, also the sample rate was increased to sample every 6 s. For the second

experiment design (i.e. the experiment performed with ammonium chloride substrate) the OUR

meter the sample rate was increased to sample every 1 s, upper and lower bound dissolved

oxygen concentration was changed to 5 mg 02/L and 4.8 mg 02/L respectively, since ammonia

spike has a lower OURmax value.

The respirometric profiles of the sodium acetate and ammonium chloride substrate spikes of this

experiment design is presented in Figure 4-10 and Figure 4-11 respectively. In both experiments

the endogenous activated sludge was spiked twice with the respective substrate. The regressed

fits of these substrate spikes are presented in Figure 4-12 and Figure 4-13, and resultant

parameter estimates are shown in Table 4-4. This experimental design has achieved all the

objectives stated above; sufficient measured data points in the area from the start of the spike to

the maximum oxygen uptake value (OU~x ) and at the OURmax value were obtained, reliable

parameter estimates of maximum specific growth rates (fJmH and fJmA ) and half saturation

constants (Ksand K NH ) and the duration of experiments were significantly shorter.

4-19



BATCH RESPIROMETRIC EXPERIMENT

This experiment design respirometric profiles presented in Figure 4-12 and Figure 4-13 have

significantly more data points in the area from the start of the spike to the maximum oxygen

uptake value (OURmax ) and at this peak OURmax ' This was a critical objective that was

achieved because more measured data points in this area were essential in obtaining reliable

parameter estimates of maximum specific growth rates (f.lmH and f.lmA ) and half saturation

constants (Ks and K NH ).

Parameter estimation was performed usmg the measured respirometric data to obtain the

maximum specific growth rates (f.lmH and f.lmA)' half saturation constants (Ksand K NH ) and

heterotrophic yield coefficient (YH ). In previous studies it has been observed that autotrophic

yield coefficient (YA ) parameter estimates do not vary significantly from system to system

(Henze et aI., 1987), hence this parameter was not estimated and fixed at a literature value of

0.24 g COD/g N was used (Henze et aI., 1987). The estimated parameters and confidence

intervals for both substrate experiments are presented in Table 4-4. The heterotrophic yield

coefficient (YH ) estimates of the first and second substrate spike do not vary significantly and

these estimates (0.669 and 0.676 g COD/g COD) are relatively close to the activated sludge

model No. 1 (ASM1) value of 0.67 g COD/g COD, hence in the future parameter estimations

this value was fixed at 0.67 g COD/g COD.

The respirometric profiles for sodium acetate and ammonium chloride substrate spikes are

presented in Figure 4-10 and Figure 4-11 respectively. These respirometric profiles show a

significantly shorter duration for experiments, the sodium acetate substrate spikes are consumed

in approximately 30 min and the ammonium chloride substrate is consumed in approximately

40 min. This higher substrate consumption rate will allow a series of substrate spikes to be

performed in a single experiment; hence a series of dye-substrate spikes can be performed in a

single experiment.

This respirometric experimental design was the optimal design which achieved all the

objectives, hence this experimental design was used as the design for any further respirometric

experiments performed in this study.
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Figure 4-10: OUR profile with two sodium acetate (60mgCODIL) substrate spikes
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Figure 4-12: Regressed fits of OUR after addition of 60 mglL sodium acetate into 1.7 L activated

sludge for which the experimental data (squares) and BRE model (line), (a) First substrate spike

and (b) Second substrate spike
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Figure 4-13: Regressed fits of OUR after addition of 4 mglL ammonium chloride into 1.7 L
activated sludge for which the experimental data (squares) and BRE model (line), (a) First
substrate spike and (b) Second substrate spike

4.4 The Batch Respirometric Optimal Experiment Design

An optimal Batch Respirometric Experiment procedure was developed by implementing the
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concept of Optimal Experimental Design (Dochain and Vanrolleghem, 2001) which has been

discussed earlier. The experimental procedure consists of two main stages.

Before conducting the experiment the stock solutions for the reagents were prepared, details of

the reagent preparation are presented in Appendix A. The pH in the bioreactor was monitored

and maintained at a value of 7.5±0.2 by the prepared titrant reagents sodium hydroxide and

hydrochloric acid. Sodium acetate and ammonium chloride were used as substrate spike

reagents in separate experiments; the two substrates were used in separate experiments to ease

the modelling process. Both the high and low scoring dyes used were scored according to the

Score system. Furthermore both the dyes used in this study were azo dyes; since research has

found that azo dyes are not degraded under aerobic conditions (Section 2.1.2). Drimarene

Violet K2-RL was the high scoring dye used in the respirometric experiments; this dye has an

A-score value of 1, B-score value of3, C-score value of2, a resulting exposure score of6 and a

toxicity score of 4. LevaflX Blue CA gran was the low scoring dye used in the respirometric

experiments; this dye has an A-score value of 1, B.-score value of 4, C-score value of 1, a

resulting exposure score of 4 and a toxicity score of 3.

Stage one of the experimental procedure consisted of sampling concentrating of activated

sludge. Grab samples of activated sludge were obtained from the Umbilo Wastewater Treatment

Works aeration basins; this activated sludge was stored and concentrated under condition

discussed in Appendix D.

The experimental procedure for stage two consists of the following steps (steps discussed in

detail in Appendix D):

• UCT DO/OUR meter start up

• pH probe calibration

• OUR meter calibration

• OUR meter set point adjustments

• Test monitoring

• OUR meter shut down

For the batch respirometric experiments the bioreactor was filled with 1.8 L of concentrated

activated sludge. Acetate and ammonia were used as substrates since they are the predominant
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substrates found in wastewater; for heterotrophic and autotrophic biomass growth respectively.
The concentration of sodium acetate and ammonium chloride were 30 mg COD/L and 8 mg NIL
respectively. To obtain representative data on the range of inhibition caused by the dyes the
IC50 concentration value of the dyes used in the experiments were used as a guideline for the
range of dye spike concentrations (Kong et aI., 1996). The concentration of the dye spikes were
doubled after each spike addition (Kong et aI., 1996).

4.5 Results of Batch Respirometric Experiments

To obtain the required inhibition data the batch respirometric experiments were performed in a
similar method to those of Kong et al. (1996). The resulting respirometric profile of the
respirometric experiments performed using the high scoring dye and low scoring dye are
presented in Figure 4-14 and Figure 4-15 respectively. Dye used in the respirometric
experiments contained four to five concentrations. The cumulative concentration for the two
dyes used in the respirometric experiments are summarised in Table 4-5. In all the experiments
the first peak arises when endogenous activated sludge in the bioreactor is spiked with substrate
only, the peaks thereafter are results of substrate and increasing concentrations of dye. The data
collected from theses experiments were used in parameter estimations to assess the effect of the
dyes in terms of kinetic parameters (refer to Chapter 5).

By observing the respirographic experiment profile peaks preliminary conclusions of whether
the dyes have an inhibiting effect on the activated sludge processes were obtained, these
conclusions can be obtained by observing the profiles maximum oxygen uptake rate ( OURnux )

and the area under the peaks. When observing the respirometric experiment profiles, the
exogenous oxygen uptake rate (OURexo ) is observed, that is the resultant respirometric profile

(OUR) after substrate spike less the baseline initial endogenous respiration rate (OURend ).

In all four respirographic profiles shown in Figure 4-14 and Figure 4-15, it can be observed as
the concentration of dye increases the OURmax and the area under the peaks decrease. Hence

from these resultant experiment respirographic profiles it can be concluded that the dye spikes
have an inhibitory effect on the activated sludge processes. The following observation are made
when comparing acetate and ammonia spike respirometric profiles; in Figure 4-14 (b) as the
concentration of dye increases a greater decrease in OURmax and the area under the peaks is

observed compared to Figure 4-14 (a). This is observed once again when comparing the
respirometric profiles of Figure 4-15 (b) and Figure 4-15 (a). As previously discussed in
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Chapter 2, previous studies have observed that the autotrophic biomass are more sensitive to

toxic substances than heterotrophic biomass; this is concluded once again from the comparisons

between acetate and ammonia substrate profiles.

A conclusion on whether the high scoring dye has a greater inhibitory effect than the low

scoring dye can not be made by comparing the respective respirometric profiles. This

conclusion can only be made once inhibitory kinetic parameters are obtained (refer to

Chapter 5), and are used in the COST simulation benchmark (refer to Chapter 6) and the

results from the COST simulation benchmark are analysed.
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Figure 4-14: (a) OUR profile with sodium acetate (30mgCODIL) substrate and high scoring
toxicant dye Drimarene Violet Kl-RL, first peak is pure sodium acetate followed by a series of
mixtures of substrate and dye (b) OUR profile with ammonium chloride (8mgNIL) substrate and
high scoring toxicant dye Drimarene Violet Kl-RL, first peak is pure ammonium chloride followed
by a series of mixtures of substrate and dye
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Figure 4-15: (a) OUR profile with sodium acetate (30mgCODIL) substrate and low scoring toxicant

dye Levafix Blue CA gran, first peak is pure sodium acetate followed by a series of mixtures of

substrate and dye (b) OUR profile with ammonium chloride (8mgNIL) substrate and low scoring

toxicant dye Levafix Blue CA gran, first peak is pure ammonium chloride followed by a series of

mixtures of substrate and dye
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Table 4-5: Cumulative dye concentrations used for respirometric experiments (mglL)

Concentration Series 1 2 3 4 5

High scoring dye -Drimarene Violet K2-RL & Sodium Acetate 0 25 75 175

High scoring dye -Drimarene Violet K2-RL & Ammonium Chloride 0 25 75 175

Low scoring dye - Levafix Blue CA gran & Sodium Acetate 0 25 75 175 375

Low scoring dye - Levafix Blue CA gran & Ammonium Chloride 0 25 75 175
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CHAPTERS

BRE MODEL SIMULATION RESULTS AND DISCUSSION

In this chapter the results from the identifiability study and parameter estimation performed on

the BRE model are presented and discussed. The type of inhibition and the resultant inhibition

kinetics of both dyes used in this study are presented.

5.1 Identifiability Study of BRE Model

An identifiability study was performed on the BRE model, the results of this identifiability

analysis is presented in this section. The structural and practical identifiability of the BRE

model was analysed.

5.1.1 Structural identifiability of BRE model

The identifiable parameter combinations for the BRE model for heterotrophic and autotrophic

growth are identical to that of the ASMl model presented in Section 3.5.1, Table 3-4 . In the

batch respirometric experiments (BRE) performed no significant biomass growth occurred since

the substrate pulses were at low concentrations relative to the sludge concentration. Therefore

the identifiable parameter combinations for the BRE model will be the combinations found in

the first column of Table 3-4.

5.1.2 Practical identifiability of BRE model

The output sensitivity function was used to evaluate the practical identifiability of the BRE

model, because it is an important component in practical identifiability study, for reasons which

have been discussed earlier in Section 2.7.2 Section 3.5.2. Sensitivity function data was

generated in the sensitivity analysis mode in WEST Experiment Environment. WEST sensitivity

analysis mode applies the numerical approximation method, discussed in Section 3.3, to

determine the absolute and relative sensitivity. In the sensitivity analysis mode the absolute and

relative sensitivity of the Oxygen Uptake Rate sensitivity variable due to change in sensitivity

parameter was calculated. This was done for sensitivity function combinations of Oxygen

Uptake Rate and chosen parameters. The absolute sensitivity of the OUR variable to change in

parameter B; is calculated in WEST as follows:

5-1



BRE MODEL SIMULATION RESULTS AND DISCUSSION

SF = aOUR =_O_UR---->-(B.:...<..i)_-_O_UR---->-(B.:....-i +_!1_B~i)
aBi !1Bi

(5-36)

The relative sensitivity of the OUR variable to change in parameter Bi is then calculated in

WEST as follows:

(5-37)

Two different respirometric experiments were performed to determine nitrification and carbon

reduction process kinetics independently, hence separate sensitivity analysis were performed on

the BRE model nitrification and carbon reduction processes. The output sensitivity functions

were calculated for JimH' K S' kh, K x' rH' JimA , K NH and r A these sensitivity plots are

presented in Figure 5-1 and Figure 5-2.
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Figure 5-2: (a) OUR profile for BRE model autotrophic biomass growth, (b) Output sensitivities for

BRE model autotrophic biomass Growth

From the above Figure 5-1 (b) it is observed that the heterotrophic hydrolysis process

parameters kh and K x output sensitivity functions are correlated with each other, hence both

parameters cannot be identified uniquely. Among the parameters considered the maximum

specific growth rate for heterotrophic biomass JlmH has the highest sensitivity. The Monod
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parameters JlmH and K s output sensitivity functions show some correlation with each other,
hence the initial values chosen for these parameters in parameter estimation will be critical task
to obtain unique parameters estimates.

It is observed from the autotrophic sensitivity plots presented in Figure 5-2(b), that the
maximum specific growth rate for autotrophic biomass J.1mA has the highest sensitivity. The

autotrophic Monod parameters JlmA and K NH output sensitivity functions show a similar
correlation relationship as the heterotrophic Monod parameters, resultantly great care must be
taken in selecting initial values for these parameters when performing parameter estimation.

The sensitivity measure was performed using the output sensitivity function data obtained from
the sensitivity analysis perform in WEST. A time interval of 0.1 min between data points was
used in the sensitivity analysis simulations, since the respirometric experiment frequency at
which OUR data is measured is limited to a time interval of 0.1 min. The sensitivity measure
results for heterotrophic biomass growth are present in Table 5-1 and Figure 5-3. Sensitivity
measure results for autotrophic biomass growth are present in Table 5-2 and Figure 5-4.

Table 5-1: Heterotrophic parameters ranked according to importance

Parameter j

JlmH

Sensitivity Measure 8;sqr

0.313

0.159

0.156

0.150

0.145
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Figure 5-3: Heterotrophic parameters sensitivity measure

The heterotrophic parameter sensitivity measure results presented above, once again confirms

that the maximum specific growth rate JimH has the highest average sensitivity to the output

variable.

Table 5-2: Autotrophic parameters ranked according to importance

Parameter j Sensitivity Measure 5;sqr

0.313

0.159

0.156
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Figure 5-4: Autotrophic parameters sensitivity measure

The autotrophic parameter sensitivity measure results presented above indicates that K NH has

the highest average sensitivity to the output variable. This implies that both f-lmA and KNH are

significant parameter for parameter estimation.

5.2 Parameter Estimation of BRE Model

Parameter estimation was performed using the experimental data obtain from the Batch

Respirometric Experiments (refer to Section 4.5) and the BRE model created in WEST. The

parameters of the BRE model which were not estimated are presented along with the parameters

default values in Table 5-3. The yield for heterotrophic biomass (YH ) was estimated during the

model calibration and was found to be equal to the default value 0.67 found in literature (Henze

et aI., 1987). The WEST Experimental Environment trajectory optimiser was used for the

parameter estimation. Regressed data fits for the high scoring dye - acetate and high scoring dye

- ammonia mixtures are presented in Figure 5-5 and Figure 5-6 respectively. Also the regressed

data fits for the low scoring dye - acetate and low scoring dye - ammonia mixtures are presented

in Figure 5-7 and Figure 5-8 respectively.
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The BRE model kinetic parameters for high and low scoring dyes obtained from the parameter

estimation are shown in Table 5-4 and Table 5-5 respectively. It is observed from the estimated

parameters that the mixed inhibition type kinetic model represents the inhibition caused by both

dyes on the activated sludge processes of carbon reduction and nitrification. This is so because

both dyes cause a decrease in maximum specific growth rate and an increase in the half

saturation constant (Volskay and Grady, 1988). Refer to Section 3.1, Table 3-2 for the mixed

inhibition type kinetic model. Mixed inhibition is the worst inhibition type of the four inhibition

types presented in Section 3.1, since the inhibitory substance has a negative effect regardless of

the substrate concentration.
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The effect of mixed inhibition type on activated sludge processes can be quantified by

Equation 5-3 and Equation 5-4.

(5-38)

(5-39)

Using the data presented in Table 5-4 and Table 5-5 the KI,m and KI,s inhibition parameters

were calculated through regression. These inhibition parameters for the high and low scoring

dyes are presented in Table 5-6, the inhibition function and the respective parameters will be

inputted into the COST simulation benchmark model (a detailed description of this model is

provided in Chapter 6). The maximum specific growth rate is temperature dependent and

obtained at the experiment temperature of 25°C, hence the this parameter was adjusted to satisfy

a temperature condition of 15°C of the COST simulation benchmark by using the Arrhenius

equation (Equation 5-5).

k (T) =k(T,). eO(T-T,)

Table 5-6: Inhibition parameter values for high and low scoring dyes

(5-40)

Inhibiting Dye Heterotrophic biomass growth Autotrophic biomass growth

K KI,s K lm KI,sI,m

High scoring dye - 921.800 61.113 194.246 5.103
Drimarene Violet
K2-RL

Low scoring dye - 1131.698 1.29x109 576.369 24.008
Levafix Blue CA
gran
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CHAPTER 6

ASSESSMENT OF WASTEWATER TREATMENT WORKS

PERFORMANCE

In this chapter the impact of the textile dyes on the wastewater treatment works performance is

assessed, the COST simulation benchmark was used for this assessment. Background

information on COST and the concept of the COST simulation benchmark are discussed. The

simulation benchmark model was used in this study to quantify the inhibitory effect of two dyes

and determine whether the high scoring dye has a greater negative impact on wastewater

treatment works performance than the low scoring dye.

6.1 Background on the COST and the COST Simulation Benchmark

COST (founded in 1971) is a European intergovernmental framework for co-operation in the

field of scientific and technical research, allowing the coordination of European national funds.

COST is the largest European framework for research co-operation, it has almost 200 Actions

and involves nearly 30 000 scientists and more than 50 participating institution.

The COST Simulation Benchmark Model (Copp, 2002) is a publication which has been

produced as a result of co-operation between two COST Actions. The two COST Actions;

COST Action 682 'Integrated Wastewater Management' (1992-1998) which focused on

biological wastewater treatment processes and the optimisation of design and operation based

on process models, and COST Action 624 which is dedicated to the optimisation of the

performance and cost-effectiveness of wastewater management systems. The goal of the COST

simulation benchmark was to gain a greater understanding of the microbial system in

wastewater treatment works and to evaluate different control strategies on the wastewater

treatment works model.

The COST simulation benchmark protocol has been used in a number of studies to evaluate

control strategies (Spanjers et al., 1998, Vanrolleghem and GilIot, 2002). The simulation

benchmark model was used in this study since it is a well understood calibrated model, and the

benchmark simulation protocol is clearly defined (Copp, 2002). The benchmark simulation

model serves as a basis to evaluate the inhibitory impact of both dyes in this study (Iow scoring

and high scoring dyes) on the process performance of a wastewater treatment works. The

effluent requirements and treatment costs (that is labour costs) are often specific to a location.
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This problem is prevented by using the benchmark model protocol, since the benchmark model

uses a standard evaluation criterion.

6.2 Overview of COST Simulation Benchmark

As discussed in the above section to obtain an unbiased comparison of the inhibition caused by

both dyes, both dye inhibitions are evaluated under the same conditions, hence the clearly

defined simulation benchmark protocol (Copp, 2002) is used. Also the simulation benchmark

provides a suitable reference output. In this section an overview of the simulation benchmark

model (Copp, 2002) is provided; the plant layout, process models and influent components are

described.

6.2.1 Plant layout of simulation benchmark

A schematic representation of the simulation benchmark plant layout is shown in Figure 6-1, the

plant design comprises of five reactors in series with a 10-layer secondary settling tank.

Clarifier

ASUl ASU2 ASU3 ASU4 ASUS

Figure 6-1: Schematic representation of the simulation benchmark plant layout showing activated

sludge units (ASU) 1& 2 mixed and unaerated, ASU 3, 4 & 5 aerated, and 10 layer secondary settler

The physical attributes of the activated sludge units and settler are presented in Table 6-1 and

the system variables are listed in Table 6-2. The simulation benchmark plant design consists of

5 activated sludge units in series with a secondary settler. Activated sludge units (ASU) 1& 2

each have a biological volume of 1 000 m3 and are unaerated fully mixed reactors. ASU 3, 4 &

5 each have a biological volume of 1 333 m3 and are aerated with saturated dissolved oxygen

concentration (DO) value of 8 g 02/m3. The oxygen transfer coefficient (KLa) value in ASU 3

& 4 are 10 11h, whereas the KLa value in ASU 5 is 3.5 11h. The secondary settler is a 10 layer
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non-reactive settler with a volume of 6000 m3 (area of 1 500 m2 and a depth of 4 m). The feed

enters the settler in the middle of the sixth layer that is the feed point is 2.2 m from the bottom

of the settler. The plant design has two internal recycles; a nitrate recycle from the fifth ASU to

the first ASU at a rate of 55338 m3/d, and an activated sludge recycle from the underflow ofthe

secondary settler to the first ASU at a flow rate of 18 446 m3Id. The waste activated sludge is

pumped continuously from the underflow at a rate of385 m3/d.

Table 6-1: Physical attributes of the activated sludge units and settler for the COST simulation

benchmark plant configuration

Biological Process Unit Physical Configuration Units

Volume - Tank 1 1000 m3

Volume - Tank 2 1000 m3

Volume - Tank 3 1 333 m3

Volume - Tank 4 1 333 m3

Volume - Tank 5 1 333 m3

Depth - Settler 4 m

Area - Settler 1 500 m2

Volume - Settler 6000 m3

Table 6-2: System variables of the COST simulation benchmark plant configuration

System Variable

Influent flow rate

Recycle flow rate

Internal recycle flow rate

Wastage flow rate

KLa -ASU 1

KLa -ASU 2

KLa -ASU 3

KLa -ASU 4

KLa -ASU 5

Default System Flow Rates

18446

18446

55338

385

n/a

n/a

10

10

3.5

Units

m3/d

m3/d

m3/d

m3/d

l/h

1/h

l/h
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6.2.2 Process models of simulation benchmark

The COST benchmark simulation model uses two internationally accepted models to describe

the biological process and settling process. The Activated Sludge Model 1 (ASMl) (Henze et

aI., 1987) is used as the biological process model and the double-exponential settling velocity

function is used as the settler process model (Takacs et aI., 1991).

6.2.2.1 Biological kinetic process model

As mention in Section 2.5 a number of new activated sludge models have been proposed since

ASMl model was developed. These models include ASM2, ASM2d and ASM3. The ASMl

model is still the most popular model used internationally. There are a number of limitations to

the ASMl model which have been discussed in Section 2.5.1, but the worldwide appeal and

practical confirmation of this model are the motivated reasons for it being used as the biological

model for the simulation benchmark model. A detailed description and Petersen matrix

representation of the ASM1 model are presented in Section 2.5.1.

The default stoichiometric and kinetic parameter values are presented in Table 6-3 and Table

6-4 respectively. The listed parameter estimates approximate those that are expected at the

temperature of 15 QC.

Table 6-3: ASMl stoichiometric parameter default values used in the simulation benchmark

Parameter

Autotrophic yield (YA )

Heterotrophic yield ( YH )

Fraction of biomass to particulate products (Jp)

Fraction nitrogen in biomass (iXB )

Fraction nitrogen in particulate products (ixp)

Value

0.24

0.67

0.08

0.08

0.06

Units

gCOD/gN

gCOD/gCOD

gN/gCOD

gN/gCOD
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Table 6-4: ASMI kinetic parameter default values used in the simulation benchmark

Parameter

Maximum specific heterotrophic growth rate ( f.JmH )

Heterotrophic growth half-saturation coefficient (Ks )

Heterotrophic oxygen half-saturation coefficient (KOH )

Half-saturation coefficient for nitrate (KNO)

Heterotrophic decay rate (bH )

Anoxic growth rate correction factor (77g)

Anoxic hydrolysis rate correction factor (77h )

Maximum specific hydrolysis rate (kh )

Hydrolysis half-saturation coefficient (Kx )

Maximum specific autotrophic growth rate (f.JmA )

Autotrophic growth half-saturation coefficient (KNH )

Autotrophic decay rate (bH )

Autotrophic oxygen half-saturation coefficient (K
OA

)

Ammonification rate (ka )

6.2.2.2 Settling process model

Value

4.00

10.00

0.20

0.50

0.30

0.80

0.80

3.00

0.10

0.50

1.00

0.05

0.40

0.05

Units

lid

gCOD/m3

lid

gCOD/gCOD.d

g/gCOD

lid

lid

m3/gCOD.d

The Takacs double-exponential settling velocity function (Takacs et aI., 1991) was used as the

settling process model for the simulation benchmark, since it is an internationally accepted

settling process model. The double-exponential settling velocity function is shown in

Equation 6-1; this function is based on the solid flux concept and is applicable to both hindered

and flocculent settling conditions, unlike other settling models.
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Where:

Vs) is the settling velocity in layer j (mid), subject to 0 :s vs) ~ v~

X; is the suspended solids concentration in layer j (g/m\ subject to X; = X) - X rnin

X) is the suspended solids concentration in layer j (glm3
)

X min is the minimum attainable suspended solids concentration (g/m\ calculated from

(6-41 )

X min =Ins' X in (Xin is the mixed liquor suspended solids concentration entering the settler

and Ins is the non-settleable fraction)

The settler model parameters and default values are shown in Table 6-5.

Table 6-5: Settler model parameters and default values

Parameter

Maximum settling velocity

(v~ )

Maximum Vesilind settling
velocity (vo)

Hindered zone settling
parameter ( rh )

Flocculent zone settling
parameter ( rp )

Non-settle able fraction (Ins)

6.2.2.3 Influent composition

Value

250

474

0.000576

0.00286

0.00228

Units

mid

mid

In the COST simulation benchmark protocol control strategies are evaluated by using three

disturbances in the influent composition. The three disturbances are dry weather, storm event

and rain event. The dry weather influent composition is used as the basis, the storm and rain

event outputs are compared to the dry weather output. The ability of a control strategy to handle
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these disturbances determines the performance of the control strategies.

In this study the impact of the two dye inhibitions are evaluated, hence the two dyes serve as the

disturbances to the system while using the dry weather influent composition. The flow-weighted

dry weather influent composition is presented in Table 6-6 (COST 624, 2005).

Table 6-6: Flow-weighted average dry weather influent composition (COST 624, 2005)

Component Dry weather Units

Ss 69.50 gCOD/m3

X BH
28.17 gCOD/m3

X s 202.32 gCOD/m3

Xl 51.20 gCOD/m3

SNH
31.56 gN/m3

SI 30.00 gCOD/m3

SND 6.95 gN/m3

X ND
10.59 gN/m3

Q 18446 m3/d

6.3 Modification made to simulation benchmark kinetic process model

In Section 5.2 the type of inhibition and inhibition kinetics caused to activated sludge processes

of the two dyes (i.e. high scoring dye Drimarene Violet K2-RL and low scoring dye Levafix

Blue CA gran) which were examined in this study were determined. It was determined that both

dyes exhibit a mixed inhibition type to both the activated sludge processes of carbon reduction

and nitrification. The mixed inhibition type influence on the maximum specific growth rate and

half saturation can be represented by Equation 6-2 and Equation 6-3 respectively.

(6-42)
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(6-43)

As mention earlier in Section 6.2.2.1 the Activated sludge model No.l (ASM1) is the biological

kinetic process model of the COST benchmark simulation model and the default stoichiometric

and kinetic parameter values are presented in Table 6-3 and Table 6-4 respectively. The listed

parameter estimates presented in Table 6-3 and Table 6-4 approximate those that are expected at

the temperature of 15°C, since the batch respirometric experiments were performed at 25 °C

the parameter estimates were adjusted to represent 15°C condition. The maximum specific

growth rate was the only temperature dependent parameter; hence it was the only parameter

adjusted to cater for the simulation benchmark temperature by using Arrhenius equation (refer

to Section 5.2). The inhibition kinetic parameter values for both dyes obtained from regression

of estimated parameter are presented in Section 5.2, Table 5-6.

The dye (inhibitor) concentration I shown in Equation 6-2 and Equation 6-3 was assumed to be

a constant parameter value and not a concentration variable, this was assumed because both

dyes are azo dyes and do not degrade under aerobic condition as discussed in Section 2.1.2.

The mixed inhibition function presented in Equation 5-2 and Equation 5-3, and the inhibition

kinetic parameter values presented in Table 5-6 (Section 5.2) were inputted into the simulation

benchmark biological kinetic model.

6.4 Simulation Procedure

The COST benchmark simulation model is an available model in WEST. The modifications

discussed in Section 6.3 to the simulation benchmark biological kinetic model were performed

in the WEST Model Editor. The configuration of the benchmark model as it appears in WEST

Corifiguration Builder is presented in Figure 6-2.
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Figure 6-2: COST simulation benchmark model configuration as appears in WEST

A two step simulation procedure as defined in the simulation benchmark (Copp, 2002) were

performed in WEST Experimental Environmental, these steps consists of a steady state

simulation followed by a dynamic simulation using the dry weather influent input files.

6.4.1 Steady-state simulations

The first step in the simulation procedure is to simulate the simulation benchmark model under

steady-state conditions using an influent of constant flow and composition. The flow-weighted

dry weather data presented in Table 6-6 is used for this purpose and the simulation is performed

for 60 d using a constant influent. Dynamic simulations follow the steady state simulation. This

ensures a consistent starting point and should eliminate the influence of starting conditions on

the generated dynamic output.

6.4.2 Dynamic simulations

The second step is the dynamic simulation which is performed using dynamic influent data

(COST 624, 2005). Start the dynamic simulation from the steady state solution, using the dry

weather dynamic influent file, simulate for 14 d. The resulting state variable values for all unit

processes are saved and used to evaluate the dynamic performance of the plant to the inhibitor

disturbance. The dynamic simulation output data generated during the last 7 d of simulation is

used examine the dynamic performance of the plant. Output data is recorded at 0.01 d intervals.

The above two-step procedure was repeated for dye (inhibitor) concentration I in the range of

oto 100 mglL. The WEST Scenario Analysis function was used to reduce the time required to

perform the above discussed simulations. WEST Scenario Analysis function allows multiple

6-9



ASSESSMENT OF WASTEWATER TREATMENT WORKS PERFRORMANCE

simulations to be performed using a vector of parameter values, in this study the parameter

vector is dye (inhibitor) concentration I . Two separate Scenario Analysis simulations were

performed for the high scoring and low scoring dyes.

6.5 Performance Index of Simulation Benchmark

The performance index aids in evaluation of the large amount of output data from the dynamic

simulations and is specifically used to compare the impact of both dyes on the performance of

the plant. The performance index is a set of geographically independent measures that combine

the output data into a small number of composite terms called performance indices. The

assessment of the plant process performance is quantified by the following three sub-levels:

• effluent quality index

• effluent violations

• operational costs

6.5.1 Effluent quality index

Effluent quality of the simulation benchmark model is considered through an effluent quality

index (EQ), which quantifies into a single term the effluent pollution load to a receiving water

body.

The composite variable used in the calculation of EQ are; TSSe, CODe' BODe' TKNe,

NOe and N tot •e , these variables are defined by Equation 6-4, 6-5, 6-6, 6-7, 6-8 and 6-9

respectively.

(6-44)

(6-45)

(6-46)
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(6-47)

(6-48)

(6-49)

The effluent quality (EQ )is calculated by integrating through the final 7 days of the dry

weather simulation as shown in Equation 5-10, the EQ units is kg pollution units per day

(kgPU/d).

1 hdtlYS

EQ = f [PUrss (t)+ PUCOD (t)+ PUBOD (t)+PUTKN (t)+ PUNO (t)J 'Qe (t)dt (6-50)
1000-T (

o

The composite variables used in Equation 6-10 to calculate effluent quality index, units are

converted to pollution units by multiplying the composite variables by their respective /3;

factors. These unit conversions for the respective composite variables are shown in

Equation 6-11 to Equation 6-15.

PUTSS (t) =PTSS -TSSe (t)

PUCOD (t) = PCOD .CODe (t)

PUBOD (t) = PBOD .BODe (t)

PUTKN (t) = fJTKN -TKNe (t)

PUNO (t) = PNO .NOe (t)

(6-51)

(6-52)

(6-53)

(6-54)

(6-55)

The Pi factors presented in Table 6-7 were determined, in part, on empirical component

weightings. The weightings are based on a Flanders effluent quality formula for calculating

fines (Vanrolleghem et al., 1996). That formula is based on several terms including terms for

organics, nutrients, metals and heat. The metals and heat terms are not of concern to the
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simulation benchmark, but the organics and nutrient terms are related. Organic and nutrient

terms can be calculated by using the Flanders equation and steady-state data from each of the

layouts. From these terms it is then possible to determine the specific fraction that each term

makes up of the fine formula, that is %nutrients =Nnulrienls/( NnurrienlS + NOrganics). The fli

factors reflect these calculated fractions (Copp, 2002). For the COST benchmark layout, the

steady state EQ was found to be weighted as 22% nutrients and 78% organics (Copp, 2002).

Table 6-7: Pi Factors for composite variables

Pi Factor

flTSS

flCOD

Value

2

PBOD 2

fl 20
TKN

P 20
NO

6.5.2 Effluent violations

The effluent violations are an additional measure to evaluate the performance of the wastewater

treatment plant. The constraints for the five effluent components and the percentage of time that

the constraints are not met are reported. The violations are calculated for five terms: ammonia,

total nitrogen, BaDs, total COD and suspended solids. The effluent constraint values for these

five constraint terms are presented in Table 6-8.
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Table 6-8: Effluent constraints values

Effluent Constraint Adopted Effluent Units
Constraint Value

Ammonia (SNH e ) 4 gN/m3

Total Nitrogen (N,o"e) 18 gN/m3

BaDs (BOD ) 10 gBOD/m3

e

Total COD ( CODe) 100 gCOD/m3

Suspended Solids (TSSe) 30 gSS/m3

The effluent violations are reported through two quantities which are calculated from the output

data generated at 15 min intervals, these two quantities are; number of violations and percentage

time plant is in violation.

Number of violations represents the number of times the wastewater treatment plant is in

violation of the effluent constraints (i.e. the number of times the plant effluent increases above

the effluent constraint). This value does not represent the length of time the wastewater

treatment plant is in violation.

Percentage time plant in violation is a measure of the percentage of time the wastewater

treatment plant is in violation of the effluent constraints.

6.5.3 Operational variables

Operational issues are considered through three items; sludge production, pumping energy and

aeration energy. Integrations are performed on the final 7 days of the dry weather simulations

data.

Sludge Production

Sludge production consists of (i) sludge for disposal and (ii) total sludge production.
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(i) Sludge for disposal (kg/d) is calculated from Equation 6-16.

P.IUdge =[6.M ( TSSsysrem ) +M (TSSw )J/T

Where:

6.M (TSSsysrem) = change in system sludge mass for the final 7 days.

The change in system sludge mass is calculated using Equation 6-17 to Equation 6-19.

(6-56)

6.M (TSSsysrem) =M (TSSsysrem) - M (TSSsysrem) (6-57)day28 day21

M (TSSsysrem) =M (TSSreacrors) +M (TSSsettler) (6-58)

t7dtl~

M (TSSw) =0.75· J[Xs,W(t)+XBH,W(t)+XBA,W(t)+Xp,W(t)+XI,W(t)}Qw(t)dt (6-59)

(ii) Total sludge production (kg/d) is calculated from Equation 6-20.

(6-60)

Where:

17Jays

M (TSSe) = 0.75· J[Xs,e (t) + XBH,e (t) + XBA,e (t) + XP,e (t) + X1,e (t)} Qe (t )dt (6-61)

Pumping Energy

The pumping energy (kWh/d) is calculated using Equation 6-22.
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004 17day,

PE =~ . f [Qa (t) + Qr(t )+ Qw (t )]dt
10

Where:

Qa (t) = internal recycle flow rate at time t (m3/d)

Qr (t) = return sludge recycle flow rate at time t (m3Id)

Qw (t) = waste sludge flow rate at time t (m3Id)

Aeration Energy

The aeration energy (kWh/d) is calculated using Equation 6-23.

(6-62)

(6-63)

Where: KL Q j (t) = the mass transfer coefficient (lib) in lh aerated reactor at time t

6.6 Results from COST Benchmark Simulations for Both Dyes

The COST simulation benchmark model was used in this study to quantify the inhibitory effect

of two dyes (i.e. High scoring dye Drimarene Violet K2-RL and low scoring dye Levafix Blue

CA gran) and determine whether the high scoring dye has a greater negative impact on

wastewater treatment works than the low scoring dye. This evaluation is based on the

performance indices (refer to Section 6.5) calculated using output data obtained from simulation

performed on the modified COST simulation benchmark model (refer to Section 6.3).

Simulations on the simulation benchmark model with both dye inhibition kinetics were

performed, as stated previously using the scenario analysis function conditions of dye (inhibitor)

concentration I in the range of 0 to 100 mgIL were simulated.

A comparison of effluent quality index (EQI) of both dyes in the dye concentration range of 0 to

100 mg/L is presented in Figure 6-3. From Figure 6-3 it can be concluded that both dyes have

an inhibitory effect on wastewater treatment works processes, since as the concentration of both

dyes increase the effluent quality index (EQI) increases. This implies the processes of
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nutrient reduction are inhibited by the dyes, since greater amounts of nutrients are present in the

effluent (i.e. higher EQI values). Furthermore it can be concluded that the high scoring dye

(Drimarene Violet K2-RL) has a greater negative impact on the performance of the wastewater

treatment works model than the low scoring dye (Levafix Blue CA gran), since in Figure 6-3 it

is observed that as both dye concentration increases the EQI of the high scoring dye has a

greater increase than the low scoring dye.
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C<
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Inhibitor Concentration (mgIL)

Figure 6-3: The relationship between effluent quality index and dye concentration for high and low

scoring dyes.

The companson of sludge disposal and total sludge production of both dyes in the dye

concentration range of 0 to 100 mg/L is presented in Figure 6-4 and Figure 6-5 respectively.

From Figure 6-4 and Figure 6-5 the conclusion of both dyes inhibiting the wastewater treatment

works processes is reiterated since as the concentration of both dyes increase the sludge disposal

and total sludge production decrease. This implies the activated sludge processes are inhibited

by the dyes, since less sludge is produced and disposed (i.e. lower sludge disposal and total

sludge production values). Once again it can be concluded that the high scoring dye (Drimarene

Violet K2-RL) has a greater negative impact on the performance of the wastewater
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treatment works model than the low scoring dye (Levafix Blue CA gran), since in Figure 6-4 and

Figure 6-5 it is observed that as both dye concentration increases the sludge disposal and total

sludge production respectively of the high scoring dye has a greater decrease than the low

scoring dye.
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Figure 6-4: The relationship between sludge disposal and dye concentration for high and low

scoring dyes.
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Figure 6-5: The relationship between total sludge production and dye concentration for high and

low scoring dyes.

The comparison of number of violations and time in violation of both dyes in the dye

concentration range of 0 to 100 mg/L is presented in Figure 6-6 and Figure 6-7 respectively.

The conclusion stated above; that both dyes have an inhibitory effect on wastewater treatment

works processes and that the high scoring dye (Drimarene Violet K2-RL) has a greater negative

impact on the performance of the wastewater treatment works model than the low scoring dye

(LevaflX Blue CA gran), are reiterated once again when observing Figure 6-6 and Figure 6-7.

Since in Figure 6-6 and Figure 6-7 the number of ammonia effluent violations and the

percentage time that the plant is in violation of ammonia effluent constraints increase as the

concentration of both dyes increase, and in Figure 6-6 and Figure 6-7 the high scoring dye has a

greater number of ammonia effluent violations and the percentage time that the plant is in

violation of ammonia effluent constraints is greater than the low scoring dye. Furthermore in

Figure 6-6 and Figure 6-7 the number of violations and the percentage time in violation of

ammonia and total nitrogen in effluent is affected by an increase in dye concentration, therefore

it is concluded that the nitrification process experiences greater inhibition by the dyes than the

carbon reduction processes. Since there is no BaD, COD and suspended solids effluent

violations (refer to Figure 6-6); a negligible inhibitory effect of the dyes to the carbon reduction

processes can be concluded.
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Figure 6-6: The relationship between Number of effluent violation and dye concentration for (a)

high and (b) low scoring dyes.
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Figure 6-7: The relationship between time in violation and dye concentration for (a) high and (b)
low scoring dyes.
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Aeration energy and pumping energy are 6476 kWhld and 2967 kWhld respectively for both

dyes. These energy values remain unaffected by the dyes since the pumping energy is calculated

from respective constant flow rates (refer to Equation 6-22) and the aeration energy is calculated

from constant mass transfer coefficients (refer to Equation 6-23).

To summarise it has been concluded from simulation performed on the simulation benchmark

model; that both dyes used in this study have an inhibitory effect on wastewater treatment

processes and the high scoring dye has a greater negative impact than the low scoring dye on

wastewater treatment works performance.
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CHAPTER 7

DISCUSSION

In this chapter the broad spectrum impact of the results presented in the previous chapters are

discussed. This chapter provides the context to the subsequent chapter (Chapter 8) which

presents the conclusions and recommendations.

7.1 Respirometric Experiments

The activated sludge used in the batch respirometric experiments was obtained from the Umbilo

Wastewater Treatment Works (WWTW). The feed to this WWTW is a mixture of domestic and

industrial effluent. Activated sludge in a wastewater treatment works acclimatises after

prolonged exposure to effluent, hence a more accurate measure of the inhibition caused by the

dye effluent probably could be to acclimatise the activated sludge to the test effluent before

being used in the batch respirometric experiments. The reference substrates used in the

experiments were sodium acetate and ammonium chloride, which are key intermediate products

in wastewater biodegradation. In order to have a consistent and reproducible substrate, sodium

acetate and ammonium chloride were used in preference to the variable wastewater feed to the

works. Commercial dyestuffs were used as the test substance in these experiments to quantify

the inhibition caused by the textile dye. Dye effluents contain a range of chemicals and not just

a single dyestuff. A sample of dye effluent should be used to determine the overall impact of a

particular operation.

The optimal experimental design (QED) (Dochain and Vanrolleghem, 2001) procedure was

used for data collection, model selection and model calibration. This technique was used to

design experiments to produce the most amount of information with the least amount of effort

(Nopens et al., 2001). The QED method was effectively used in this study to design a batch

respirometric experiment that produced information rich experimental data to facilitate reliable

parameter estimates.

The batch respirometer used in this study followed the principle of static gas-static liquid

respirometer (refer to Section 2.3.1.2). These respirometers are characterised by low sampling

frequency resulting in difficulties in determining kinetic parameters. By applying the QED

technique the maximum amount of information was obtained from the batch respirometer.

Although the measured data obtained from the batch respirometric experiment were sufficient to

obtain reliable parameter estimates, the addition of a titrimetric measurement could aid in the
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DISCUSSION

estimation of kinetic parameters. Titrimetry is a method for gaining information about the
biological nitrogen removal processes of the activated sludge by monitoring pH. Nitrification
and denitrification causes the pH to decrease and increase respectively due to proton production
and proton consumption respectively. The titrimetric method is frequently used for monitoring
the acid and base consumption rate while keeping the pH setpoint of the activated sludge
constant (Ramadori et aI., 1980). It also is effective for monitoring nitrification (Gemaey et aI.,
1998). A combined respirometric-titrimetric experiment setup (Gemaey et aI., 2002, Gemaey et
aI., 2001, Petersen, 2000, Sin, 2004) could allow the determination of both biological carbon
source degradation and nitrogen removal information in a single experiment; hence the number
of required experiments would be reduced.

This study investigated the effect of the test substances on the aerobic activated sludge
processes. The inclusion of an anoxic sensor similar to the sensor used in a previous study (Sin
et aI., 2003) would enable the impact of the test substances to both the aerobic and anoxic
processes to be assessed.

7.2 Batch Respirometric Experiment (BRE) Model

It was assumed that the same combination of the model parameters determined in the structural
identifiability study by the Taylor expansion method performed on the ASM1 model (Dochain
and Vanrolleghem, 2001) applied for the BRE model. In a future study a structural
identifiability analysis should be performed on the BRE model (Weijers and Vanrolleghem,
1997). If the experiment setup is changed to a respirometric-titrimetric design then some
changes to the BRE model will be required; a proton concentration variable replacing the
alkalinity concentration variable SALK' accounting for cumulative protons consumed or

produced during biodegradation must be added (Gemaey et aI., 1998), the nitrification process
in the BRE model is also required, split into two processes to enable the titrimetric measured
data to be used for parameter estimation (Gemaey et aI., 2001) and including a carbon stripping
process (Gemaey et aI., 1998).

7.3 Assessment ofImpact to WWTW Performance

The COST simulation benchmark model (Copp, 2002) is an activated sludge wastewater
treatment model designed to evaluate different control strategies (De Pauw, 2005,
Vanrolleghem and Gillot, 2002). Based on the features of the simulation benchmark over a
hundred scientific papers have been published world-wide (Jeppsson and Pons, 2004). In this
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DISCUSSION

study the benchmark model was adapted to assess the impact of the test substances

concentration on the performance of the wastewater treatment works (WWTW) model. The

assessment was based on performance indices which were calculated from the simulation data.

The results from the assessment indicate the higher score dye had the higher impact. For both

dyes, increasing concentrations of dyes resulted in increased inhibition. Both dyes exhibited

mixed inhibition type. The limitation of the assessment was that the performance indices used in

the assessment can not be converted to monetary values. A possible solution to this limitation is

to include a control scheme as used in a previous study (Vanrolleghem and Gillot, 2002); were

the dissolved oxygen concentration is controlled by manipulating the mass transfer coefficient

(KLa). The K La variable is used in the benchmark protocol to calculate aeration cost which is

in the form of power (kW/h); hence, a relationship between inhibitor concentration and aeration

can be obtained, and the aeration cost can be easily converted to a monetary value. Therefore a

relationship between test substance concentration and monetary values can be obtained;

furthermore this relationship can be used in the design of trade effluent tariff.

The COST benchmark simulation model is not an actual municipal WWTW, in a future study

the COST benchmark simulation procedure can be used on an actual municipal WWTW (e.g.

Umbilo WWTW). In this study the COST benchmark simulation model was sufficient to

investigate the effect of the test substances.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

It has been concluded from the results of this study that:

1. The score system which is an administrative method of sorting organic chemicals based

on the consumption and environmental behaviour of the chemicals. It effectively ranked

the negative impact on the environment of the two textile dyes used in this study, which

is high scoring Drimarene Violet K2-RL and low scoring Levafix Blue CA gran dyes,

based on the results obtained from the experiments and the regressed parameters from

the batch respirometric experiment (BRE) model.

2. The optimal experimental design method was an efficient method in designing the batch

respirometric experiment. The batch respirometric experiment design provides rapid

and reliable experimental data (Section 4.3) that can be used to obtain reliable

parameter estimates (Section 5.2).

3. The conservative approach used in this study of selecting test sludge (Umbilo

Wastewater Treatment Works), reference substrate (sodium acetate and ammonium

chloride) and test substance (Drimarene Violet K2-RL and Levafix Blue CA gran), was

successful in providing respirometric experiment data.

4. The combination of the batch respirometric experiment (BRE) activated sludge model

and the respirometric experiment, successfully obtained kinetic data which represented

the inhibition caused by textile dyes.

5. Autotrophic biomass is more sensitive to the textile dyes in this study than the

hetetrophic biomass. Thus the effect on ammonia removal will be greater than the effect

on COD removal.

6. The activated sludge models No. 1 (ASMI) and No. 3 (ASM3) were found to be too

complex to obtain reliable parameter estimates from batch respirometric experiments.

Thus the batch respirometric experiment (BRE) model was developed. This model is a

simplified model, and is a combination of ASMI and ASM3 model concepts.
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CONCLUSIONS AND RECOMMENDATIONS

7. The COST benchmark model standard evaluation criteria successfully investigated the

effect of the test substances on a municipal WWTW performance.

8. The combination of the inhibition parameters and the COST benchmark simulation

model was able to predict regulatory infringements.

Based on the work conducted in this study, the following is recommended:

1. A more rigorous approach to selecting test sludge, reference substrate and test

substance. This may produce respirometric experiment data that better represent the

bioprocesses.

2. To reduce the number of experiments required; a combined respirometric-titrimetric

experiment setup would allow the determination of both biological carbon source

degradation and nitrogen removal information in a single experiment, hence reducing

the number of required experiments.

3. The inclusion of an anoxic sensor to the experiment design would enable the impact of

the inhibitory substances to the anoxic processes to be assessed.

4. A structural identifiability analysis be performed on the BRE model.

5. Obtain a relationship between inhibitory substance concentration and economic values.

6. The design of tariff for inhibitory substance discharged by industries to WWTW and

application of the COST benchmark simulation procedure on an actual municipal

WWTW that receives inhibitory substances (e.g. Umbilo WWTW).

8-2





REFERENCES

APHA (1998) Standard methods for the examinaiton of water and wastewater (20th). United

Book Press Inc. Baltimore, Maryland.

BANDYOPADHYAY B, HUMPHREY A and TAGUCHI H (1967) Dynamic measurement of

the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9 533

544.

BECK M. (1989) System identification and control (pATRY G and CHAPMAN D, eds.)In

Dynamic modelling and expert systems in wastewater engineering, pp. 261-323, Lewis

Publishers, Chelsea, Michigan.

BLOK J (1974) Respirometric measurements on activated sludge. Water Res 811-18.

BLUM D and SPEECE R (1991) A database of chemical toxicity to environmental bacteria and

its use in interspecies comparisons and correlations. Res. 1. Wat. Pol/ut. Control Fed. 63 198

207.

BOYLE Wand BERTHOUEX P (1974) Biological wastewater treatment model building: fits

and misfits. Biotechnol Bioeng 16 1139-1159.

BRUN R, KUHNI M, SIEGRIST H, GUJER W and REICHERT P (2002) Practical

identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets.

Water Res 364113-4127.

BUCKLEY C (2002) Waste minimisation guide for the textile industry: A step towards cleaner

production. Water Research Commission, Durban, South Africa.

CASTENSEN J, VANROLLEGHEM P, RAUCH Wand REICHERT P (1997) Terminology

R-I



and methodology in modelling for water quality management - a review. Water Sci Technol 36

(5) 157-168.

CECH J, CHUDOBA J and GRAU P (1984) Determination of kinetic constants of activated

sludge microorganisms. Water Sci Technol 17 (2-3) 259-72.

COPP J (2002) The COST simulation benchmark - Description and simulator manual.

European Communities. Luxembourg, Belgium.

COST 624 (2005) http://www.ensic.inpl-nancy.fr/COSTWWTP/.

DE PAUW D (2005) Optimal experimental design for calibration bioprocess models: A

validated software toolbox. PhD thesis. Department of applied mathematics, biometrics and

process control. Gent University. Gent. 263p.

DOCHAIN D and VANROLLEGHEM P (2001) Dynamical modelling and estimation in

wastewater treatment processes. IWA Publishing. London, UK.

DOCHAIN D, VANROLLEGHEM P and VAN DAELE M (1995) Structural identifiability of

biokinetic models of activated sludge respiration. Water Res 29 (11) 2571-2578.

DOLD P (1980) A general model for the activated sludge process. Prog. Wat. Tech. 12 (6) 47

77.

ELLIS T, BARBEAU D, SMETS B and GRADY C (1996) Respirometric techniques for

determination of extant kinetic parameters describing biodegradation. Water Environ Res 38

917-926.

FARKAS P (1981) The use of respirography in biological treatment plant control. Water Sci

Technol 13 125-131.

FLEGE R (1970) Determination of degraded dyes and auxiliary chemicals in effluents from

R-2



textile dyeing processes. OWRR Project No. B-027-GA,

GERNAEY K, PETERSEN B, DOCHAIN D and VANROLLEGHEM P (2002) Modeling

aerobic carbon source degradation processes using titrimetric data and combined respirometric

titrimetric data: structural and practical identifiablity. Biotechnol Bioeng 79 (7) 754-766.

GERNAEY K, PETERSEN B, NOPENS I, CORNEAU Y and VANROLLEGHEM P (2002)

Modeling aerobic carbon source degradation processes using titrimetric data and combined

respirometric-titrimetric data: experimental data and model structure. Biotechnol Bioeng 79 (7)

741-753.

GERNAEY K, PETERSEN B, OTTOY J and VANROLLEGHEM P (2001) Activated sludge

monitoring with combined respirometric-titrimetric measurements. Water Res 35 (5) 1280

1294.

GERNAEY K, VANROLLEGHEM P and VERSTRAETE W (1998) On-line estimation of

nitrosomonas kinetic parameters in activated sludge samples using titration in-sensor

experiments. Water Res 32 (I) 71-80.

GERNAEY K, VERSCHUERE L, LUYTEN Land VERSTRAETE W (1997) Fast and

sensitive acute toxicity detection with an enrichment nitrifying culture. Water Environ Res 69

1163-1169.

GODEFROY S (1993) The regional treatment of textile and industrial effluent. Project No. 456,

GODFREY K and DJ STEFANO III J. (1985) Identifiability of model parameters In

Identification and System Parameter Estimation, pp. 89-114, Pergamon Press, Oxford.

GUJER W, HENZE M, MINO T and VAN LOOSDRECHT MCM (1999) Activated sludge

model No. 3. WaterSci Technol 39 (1) 183-193.

HARTMANN Land LAUBENBERGER G (1968) Toxicity measurements in activated sludge.

R-3



1. San. Engr. Div. Proc. Am. Soc. Civ. Eng 94247.

HENZE M, GRADY CPL J, GUJER W, MARAIS G and MATSUO T (1987) Activated sludge

model No. I. Sci. and Tech. Reports,

HENZE M, GUJER W, MINO T, MATSUO T, WENTZEL M and MARAIS G (1995)

Activated Sludge Model No. 2. Sci. and Tech. Reports,

HENZE M, GUJER W, MINO T, WENTZEL M, VAN LOOSDRECHT MCM, MARAIS G

and MATSUO T (1999) Activated sludge model No. 2d, ASM2d. Water Sci Technol 39 (1)

165-182.

HOLMBERG A (1982) On the paractical identifiability of microbial growth models

incorporating Michaelis-Menten type nolinearities. Math. Biosci. 6223-43.

INSEL G, ORHON D and VANROLLEGHEM P (2003) Identification and modelling of

aerobic hydrolysis - application of optimal experimental design. J Chem Tech Biotech 78437

445.

JEPPSSON U and PONS M (2004) The COST benchmark simulation model - current state and

future perspective. Contr Eng Pract 12 (Control Engineering Practice) 299-304.

KAPPLER J and GUJER W (1992) Estimation of kinetic parameters of heterotrophic biomass

under aerobic conditions and characterization of wastewater for activated sludge modelling.

Water Sci Technol25 (6) 125-139.

KONG Z, VANROLLEGHEM P, WILLEMS P and VERSTRAETE W (1996) Simultaneous

determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer.

Water Res 30 (4) 825-836.

KRISTENSEN G, JORGENSEN P and HENZE M (1992) Charaterization of functional

microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and

R-4



OUR. Water Sci Technol 25 (6) 43-57.

LAING (1991) The impact of effluent regulations on the dyeing industry. Rev. Prog. Coloration

2156-71.

LAURSEN S, KNUDSEN H, HANSEN J and ANDERSEN T (2002) Danish experience. Best

Available Techniques - BAT - in the clothing and textile industry. Working Report no. 10,

2002,

LJUNG L (1999) System Identification - Theory for the User Prentice-Hall. Englewood Cliffs,

NJ.

MUNACK A (1989) Optimal feeding strategy for identification of Monod-type models by fed

batch experiments. Proc. Comp. Appl. in Ferm. Techn.: Mod. and Control of Biotech. Proc.

195-204.

MUNACK A (1991) Optimization of sampling. Biotechnology, aMulti-volume Comprehensive

Treatise 4251-264.

NOPENS 1, HOPKINS Land VANROLLEGHEM P (2001) An overview of the posters

presented at Watermatex 2000. Ill: Model selection and calibration/optimal experimental

design. Water Sci Technol 43 (7) 387-389.

NOVAK L, LARREA L and WANNER J (1994) Estimation of maximum specific growth rate

of heterotrophic and autotrophic biomass: A combined technique of mathematical modelling

and batch cultivations. Water Sci Technol 30 (11) 171-180.

PAGGA U and BROWN D (1986) The degradation of dyestuffs: Part II; Behaviour of dyestuffs

in aerobic biodegradation tests. Chemosphere 15 (4) 479-491.

PATTERSON J and BREZONIK P (1969) Discussion of 'Toxicity Measurements in Activated

Sludge'. J. San. Engr. Div. Proc. Am. Soc. Civ. Eng 95 (775)

R-5



PETERSEN B (2000) Calibration, identifiablity and optimal experimental design of activated

sludge models PhD thesis. Department of applied mathematics, biometrics and process control.

Universiteit Gent. Gent. 364p.

RAMADORI R, ROZZ1 A and TANDOI V (1980) An automated system for monitoring the

kinetics of biological oxidation of ammonia. Water Res 141555-1557.

RANDALL E, W1LKINSON A and EKAMA G (1991) An instrument for the direct

determination of oxygen utilization rate. Water SA 17 (1) 11-18.

RAZO-FLORES E (1997) Biotransfonnation and biodegradation of azo dyes by anaerobic

granular sludge bed reactors. Appl. Microbiol. and Biotechnol 47 83-90.

ROBINSON J (1985) Determining microbial parameters using nonlinear regression analysis:

Advantages and limitations in microbial ecology. Adv. Microb. Ecol. 861-114.

ROS M, DULAR M and FARKAS P (1988) Measurement of repiration of activated sludge.

Water Res 22 1405-1411.

SIN G (2004) Systematic calibration of activated sludge models PhD thesis. Department of

applied mathematics, biometrics and process control. Gent University. Gent. 372p.

SIN G, MALISSE K and VANROLLEGHEM P (2003) An integrated sensor for the monitoring

of aerobic and anoxic activated sludge activities in biological nitrogen removal plants. Water Sei

Technol 47 (2) 141-148.

SPANJERS H (1993) Respirometry m activated sludge. PhD thesis. Landbouwuniversiteit.

Wageningen, Netherlands. 199p.

SPANJERS Hand VANROLLEGHEM P (1995) Respirometry as a tool for rapid

characterisation of wastewater and activated sludge. Water Sci Technol 31 (2) 105-114.

R-6



SPANJERS H, VANROLLEGHEM P, NGUYEN K, VANHOOREN Hand PATRY G (1998)

Towards a simulation-benchmark for evaluating respirometry-based control strategies. Water

Sci Technol 37 (12) 219-226.

SPANJERS H, VANROLLEGHEM P, OLSSON G and DOLD P (1998) Respirometry in

control of the activated sludge process. International Association on Water Quality. London,

UK.

SPEECE R (1996) Anaerobic biotechnology for industrial wastewaters Archae Press. Nashville,

Tennessee.

SUSCHKA J and FERREIRA E (1986) Activated sludge respirometric measurements. Water

Res 20137-144.

TAKACS 1, PATRY G and NOLASCO D (1991) A dynamic model of the clarification

thickening process. Water Res 25 (10) 1263-1271.

TAKAMATSU T, SHIOYA S, MORISAKI K and IHARA D (1982) On-line monitoring and

control of an activated sludge process for wastewater using 'MMOUR'. Eur J Appl Microbial

Biotech 14 187-192.

VANHOOREN H, MEIRLAEN J, AMERLINCK Y, CLAEYS F, VANGHELUWE Hand

VANROLLEGHEM P (2003) WEST: modellling biological wastewater treatment. J Hydro 5

(1) 27-50.

VANROLLEGHEM P and GILLOT S (2002) Robustness and economic measures as control

benchmark performance criteira. Water Sci Technol 45 (4-5) 117-126.

VANROLLEGHEM P, JEPPSSON U, CARSTENSEN J, CARLSSON Band OLSSON G

(1996) Integration of wastewater treatment plant design and operation - a systematic approach

to cost functions. WaterSci Technol 34 (3-4) 159-171.

R-7



VANROLLEGHEM P, KONG Z, ROMBOUTS G and VERSTRAETE W (1994) An on-line

respirographic sensor for the characterization of load and toxicity of wastewaters. J Chem Tech

Biotechnol 59321-333.

VANROLLEGHEM P, SIN G and GERNAEY K (2004) Transient response of aerobic and

anoxic activated sludge activities to sudden substrate concentration changes. Biotechnol Bioeng

86 (3) 277-290.

VANROLLEGHEM P and SPANJERS H (1998) A hybrid respirometric method for more

reliable assessment of activated sludge model parameter. Water Sci Technol 37 (12) 237-246.

VANROLLEGHEM P, SPANJERS H, PETERSEN B, GINESTET P and TAKACS I (1999)

Estimating (combinations of) activated sludge model No.1 parameters and components by

respirometry. Water Sci Technol39 (1) 195-214.

VOLSKAY V and GRADY C (1988) Toxicity of selected RCRA compounds to activated

sludge microorganisms. J Water Poll Cont Fed 60 (10) 1850-1856.

WANNER 0, KAPPLER J and GUJER W (1992) Calibration of an activated sludge model

based on human expertise and on a mathematical optimization technique - A comparison. Water

Sci Technol 25 (6) 141-148.

WATTS J and GARBER W (1993) On-line respriometry: A powerful tool for activated sludge

plant operation and design. Water Sci Technol 28 (11-12) 389-399.

WElJERS S and VANROLLEGHEM P (1997) A procedure for selecting best identifiable

parameters in calibrating activated sludge model no. 1 to full-scale plant data. Water Sci Technol

36 (5) 69-79.

WENTZEL M, MBEWE A and EKAMA G (1995) Batch test for measurement of readily

biodegradable COD and active organism concentrations in municipal waste waters. Water SA

21 (2) 117-124.

R-8



WILLETTS J (1999) Thennophilic treatment of textile dye wastewater. PhD Thesis. School of

Civil and Environmental Engineering. University of New South Wales.

WWW.HEMMIS.COM. (2006), http://www.hemmis.com/products/west/historywest.htm

R-9



REAGENT PREPARATION

APPENDIX A

A.I REAGENT PREPARATION

Hydrochloric Acid Titrant

[ ]

D

D

m

UsiDg a 32% (w/w) solutioD ofHCI

0.01 M

n/V

[] . V

(0.01 x 1) mol/Lx L

0.01 mol

36.46 g/mo1

(0.01 x 36.46) mol x g/mol

0.3646 g

0.32 0.3646 g

x

x 1.1394 g
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REAGENT PREPARATION

Sodium Hydroxide Titrant

n

0.01 M

[] . V

(0.01 x 1) moUL xL

0.01 mol

Using Sodium Hydroxide pellets of 98% purity.

n

m

40.00 g/mol

(0.01 x 40.00) mol x g/mol

0.40 g
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REAGENT PREPARATION

Sodium Acetate Spike

n

0.18 g COD/L

[] . V

(0.18 x 1) mol/Lx L

0.18mol

Using Sodium Acetate Anhydrous of98% purity.

n

m

m/Mm

82.03 g/mol

(0.18 x 82.03) mol x g/mol

14.7654 g
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REAGENT PREPARATION

Ammonium Chloride Spike

n

0.07 M

[] . V

(0.07 x 1) mol/L x L

0.07 mol

Using Ammonium Chloride Anhydrous of 98% purity.

n

m

Textile Dye Spike

Using the required dye.

[dye]

m

m/Mm

53.50 g/mol

(0.07 x 53.50) mol x g/mol

3.7450g

10.00 glL

[] . V

(10.00 x 1) g/L x L

10.00 g
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RI EQUIPMENT

DISSOLVED OXYGEN PROBE

APPENDIXB

EQUIPMENT

Type: YSI 5739 Field Probe

Membrane: FEP Teflon

Cathode: Gold

Anode: Silver

Electrolyte: Half-saturated KCL

Temperature Range: -5 to 45 QC

Polarizing Voltage: 0.8 V

Probe Current: 19mA
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EQUIPMENT

OXYGEN UPTAKE RATE METER

Type:

Key Pad Functions:

UCT DO/OUR Meter

• When in Mode A - press the "B" key. Display confirms - Mode B Selected.

• When in operation display indicates; DO (mg/L), Temperature (0C), Hi Limit and Lo

Limit (mg 02/L).

• Set Hi and Lo limits by holding down the following keys:

C

D

E

F

Increases Hi Limit

Decreases Hi Limit

Increases Lo Limit

Decreases Lo Limit

• Re-selecting Mode A clears all accumulated data.

• The 10 most recent OUR determinations are available via the LCD.

Hold down "0" key - display current cycle OUR

Hold down "1" key - display current cycle - 1 OUR

Hold down "9" key - display current cycle - 9 OUR
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EQUIPMENT

B.2 EQUIPMENT CALlBRAnON

OXYGEN UPTAKE RATE METER

Requirements:

• Sodium sulphite solution of 27 g/L concentration.

• Beaker of distilled Water.

Procedure:

• Connect DO electrode to the "probe" socket and temperature probe to "temp" socket.

• Switch on instrument.

• Push the "A" key to get meter in Mode A, instrument displays dissolved oxygen

concentration (mg/L) and temperature COC).

• To set DO zero, place DO probe in sodium sulphite solution (27 g/L) and leave in

solution until dissolved oxygen concentration (DO) reading is stable for about 1 minute.

Adjust ZERO pot on rear of instrument such the DO reading is 0.0 mg/L.

• Remove DO probe from sodium sulphite solution and flush in distilled water.

• To set DO gain, place DO probe in beaker of distilled water. Bubble air into the water

such that the water becomes saturated with oxygen. Continue bubbling air until reading

is constant. Use the temperature probe to measure the water temperature. Refer to

Table B-1 to determine the saturated value of DO at the current temperature. A

correction factor for the atmospheric pressure should be included, see Table B-2.

Example

DO = 9.00 mg/L at 21°C

DO = (9.00 x 0.88) = 7.92 mg/L

(at 1 atmosphere)

(at 669 mrnHg)

Adjust GAIN pot on rear of instrument such that the DO reading is correct.

• Verify the zero setting by replacing the probe in the sodium sulphite solution.
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EQUIPMENT

Table B-1: Oxygen solubility (at sea level)

Temperature Dissolved Oxygen Temperature Dissolved Oxygen
(CC) (mg/L) (CC) (mglL)

14.60 23 8.70

2 14.20 24 8.50

3 13.90 25 8.40

4 13.50 26 8.20

5 13.20 27 8.10

6 12.80 28 7.90

7 12.40 29 7.80

8 11.90 30 7.70

9 11.60 31 7.50

10 11.30 32 7.40

11 11.10 33 7.30

12 10.80 34 7.20

13 10.60 35 7.10

14 10.40 36 7.00

15 10.20 37 6.80

16 9.90 38 6.70

17 9.70 39 6.60

18 9.50 40 6.50

19 9.30 41 6.40

20 9.20 42 6.30

21 9.00 43 6.20

22 8.80 44 6.10
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Table B-2: Atmospheric pressure correction factors

Atmospheric Pressure Correction Factor

(mmHg)

760 1.00

745 0.98

730 0.96

714 0.94

699 0.92

684 0.90

669 0.88

654 0.86

638 0.84

623 0.82

608 0.80

593 0.78

578 0.76

562 0.74

547 0.72

532 0.70

517 0.68

502 0.66

EQUIPMENT
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EQUIPMENT

Oxygen Solubility at Sea Level
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Figure B-1: Oxygen solubility at sea level
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APPENDIXC

Cl THEORETICAL METHODS

Estimating Chemical Oxygen Demand (COD) Content

The theoretical COD can be detennined by using the following equation:

Where:

2n a b c
d=-+----

3 6 3 2

COD =(3/2)d

(C-65)

(C-66)

An example of the calculation to determine the theoretical COD is presented and the results

summarised in Table C-2.

The molecular weights of the reacting species are required for this calculation and are shown

below in Table C-l.

Table C-l: Compound molecular formulae and weights

Acetate:

n

a

Compound

Acetate

Biomass

2

3

Formula Molecular Weight

g/mol

82

113
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b

c

2

THEORETICAL METHODS

Substituting into equation (C-2):

d 0.67 moles of O2

Resultantly equation (C-I) is:

Hence, using equation (C-3):

(3/2)d

I mole of O2

But,

I mole O2

82 g

32 g

Thus for the complete oxidation of 82 g of CH3COONa, 32 g of oxygen is required.

Therefore: 19 CH3COONa requires 0.392 g02 or equivalently 0.392 gCOD.

Table C-2: Theoretical estimates of chemical oxygen demand

Compound

Acetate

Biomass

Formula n

2

5

a

3

7

b

2

2

c d

0.67

3.33

gCOD

0.392

1.416
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APPENDIXD

D.I OPERATIONAL MANUAL

STAGE ONE

The activated sludge sampled from the aeration basin maybe stored for no more than 2 weeks

before concentration. The sludge must be kept in a dark cold room set at 4°C with no substrate.

Biomass Concentration

• Remove raw activated sludge from 4°C cold room.

• Allow particulates to settle in container.

• Concentrate activated sludge by removing as much supematant liquid from container.

• Place container of sludge in warm bath, leave in bath until sludge reaches 25°C. The

sludge is now ready to be used in reactor.

STAGE TWO

Start up

• Locate UCT DO/OUR meter main socket. Ensure that the amplifier and computer are

plugged in.

• Check that the computer and amplifier are connected to UCT DO/OUR meter.

• Switch on UCT DO/OUR meter at main switch, the LCD displays:

DO Meter V2.1

UCT Chem Eng 1992

• Switch on computer and In DOS mode start the programme i.e.

(C:\doprogs\DOMPC.exe).

• A blue main menu screen should appear.

Probe Calibration

The pH electrode is calibrated using pH4 and pH 7 buffer solutions. The pH probe is immersed

in the lower pH buffer solution then into the higher pH buffer solution. The temperature probe
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does not require calibration.

OUR Meter Calibration

Calibrate UCT DO/OUR meter as described in Appendix B.

Set point Adjustment

The set points adjustments for sodium acetate spikes and ammOnIum chloride spikes

experiments are different. This is so as a result of noise effects and the differing rates at which

the two substrates are consumed.

Sodium Acetate Spike Experiments:

• The Hi and Lo limits for dissolved oxygen (DO) concentration must be set on the

DO/OUR meter.

• Press "B" key on the meter to get into Mode B.

• The Hi limit for DO concentration is increased by pressing "c" key and decreased by

pressing "D" key. Set Hi Limit of DO concentration to 5.00 mg/L.

• The Lo limit for DO concentration is increased by pressing "E" key and decreased by

pressing "F" key. Set Lo Limit of DO concentration to 4.50 mg/L.

• The offset DO value and the sample rate are adjusted in the main menu of the DOMPC

programme.

• Select the "Offset" option in the main menu.

• Set offset to a value of zero. Press ENTER to return to the main menu.

• Select the "Sample rate" option in the main menu.

• Set Sample rate to 6 s. Press ENTER to return to the main menu.

Ammonium Chloride Spike Experiments:

• The Hi and Lo limits for dissolved oxygen (DO) concentration must be set on the

DO/OUR meter.

• Press "B" key on the meter to get into Mode B.

• The Hi limit for DO concentration is increased by pressing "c" key and decreased by

pressing "D" key. Set Hi Limit of DO concentration to 5.00 mg/L.
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• The Lo limit for DO concentration is increased by pressing "E" key and decreased by

pressing "F" key. Set Lo Limit of DO concentration to 4.80 mg/L.

• The offset DO value and the sample rate are adjusted in the main menu of the DOMPC

programme.

• Select the "Offset" option in the main menu.

• Set offset to a value of zero. Press ENTER to return to the main menu.

• Select the "Sample rate" option in the main menu.

• Set Sample rate to 1 s. Press ENTER to return to the main menu.

Test Monitoring

• The pH of the reactor must be monitored continually and controlled at a value of pH 7.5

(± 0.2), using the hydrochloric acid and sodium hydroxide 0.01 M titrate solutions.

• At intervals of 3 hr or sooner depending on the rate of activity, OUR data should be

analysed until endogenous respiration conditions are observed.

• After spiking with substrate the OUR data should be analysed at intervals of about 30

min, once again depending on the rate of activity.

• Select the "Collect Historic data" option in the main menu.

• Choose the "Write disk only" option. Press ENTER to return to the main menu.

Shut down

• Collect the remaining OUR data.

• Exit from DOMPC program. Select "Quit to DOS" option.

• Remove all probes from reactor.

• Rinse pH probe with distilled water and cap it. Place some potassium chloride solution

into cap before placing it over the probe.

• Rinse DO probe with distilled water and place probe in bottle. Ensure moist sponge is

in the bottle.

• Rinse Temperature probe.
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D.l ANALYTICAL TEST PROCEDURES

Organic Content

The Chemical oxygen demand (COD) was used as a measure of the oxygen equivalent of the
organic matter content of samples that were susceptible to oxidation by a strong chemical
oxidant.

COD Open Reflux Method:

This method is suitable for wastes where a larger, more concentrated sample is preferred. The
test was used to evaluate the COD of the wastewater which was used as a substrate in the
respirometric experiments. A sample is refluxed in strong acid solution with a known excess of
potassium dichromate (K2Cr207). After digestion, the remaining unreduced K2Cr207 is titrated
with ferrous ammonium sulphate to determine the amount of K2Cr207 consumed and the
oxidizable matter is calculated in terms of oxygen equivalent. The procedure of the open reflux
method is presented below.

A 250 mL sample of the test substance was diluted to 500 mL in a volumetric flask. The
dilution is necessary because the sample COD could be greater than 900 mg 02/L. A 10 rnL
aliquot of this was placed into a 250 mL refluxing flask. To this was added 0.04 g of mercuric
sulphate, several glass beads and 5 mL aliquot of potassium dichromate solution (0.0417 M)
was added. A 5 rnL of sulphuric acid reagent was added to this. The flask was attached to the
condenser and cooling water turned on. The mixture was refluxed for 2 h. A blank consisting of
10 mL distilled water, instead of the substrate, was refluxed in the same way. The samples were
allowed to cooled and the condenser was rinsed with 80 mL distilled water. Thereafter, they
were titrated with ferrous ammonium sulphate solution (FAS) using ferroin indicator.

The COD of the sample was evaluated using Equation,

COD =-'-(A_-_B--,)_'C_'8_00_0
Vs

(D-67)
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A = FAS (Blank)

B = FAS (Sample)

C = Molarity of FAS

Vs = Volume of Sample

Total Suspended Solids:

[mL]

[mL]

[M]

[mL]

ANALYTICAL TEST PROCEDURES

The test was used to evaluate the total solid content of the activated sludge which was used in

the respirometric experiments. A well-mixed sample is filtered through a weighed standard

glass-fiber filter and the residue retained on the filter is dried to a constant weight at 103°C.

The increase in weight of the filter represents the total suspended solids. The procedure of the

total suspended solids test is presented below.

10 mL, 20 mL and 30 mL well-mixed samples of activated sludge were filtered separately

through 3 weighed standard glass-fiber filter papers respectively and the residue retained on the

filters is dried to a constant weight at 103°C. The filter with this residue is allowed to cool in a

desiccator then weighed.

The total suspended solids of the sample were evaluated using Equation.

TSS =....:....(A_-_B--"-)_.l_OO_O

Vs

(D-68)

A = weight of filter + dried residue [mg]

B = weight of filter [mg]

Vs = Volume of Sample [mL]

Volatile Suspended Solids:
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This measurement of volatile solids is an approximation of the amount of organic matter present
in the solid fraction of the activated sludge. The residue from the TSS test is ignited at 550 cC
for 2 h. The remaining solids represent the fixed total, dissolved, or suspended solids while the
weight lost on ignition is the volatile solids. The procedure of the volatile suspended solids test
is presented below.

The residue of the 3 samples from the TSS test is ignited at 550 cC for 2 hr. The filter with this
residue after ignition is allowed to cool in a desiccator then weighed.

The volatile suspended solids of the sample were evaluated using Equation.

VSS =....:.....(A_-_B-:...)_.1_00_0
Vs

(D-69)

A = weight of filter + dried residue after ignition

B = weight of filter + dried residue before ignition

Vs = Volume of Sample

[mg]

[mg]

[mL]
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APPENDIXE

E.l EXPERIMENTS DATA AND SAMPLE CALCULATION

The respirometric experiment raw data is presented in Annexure 1; CD-Rom

Annexl_Respirometric Experiment Data.xls file. Results and the calculations from COD and

Solids tests are presented in Annexure 2
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APPENDIXE

K1 EXPERIMENTS DATA AND SAMPLE CALCULATION

The respirometric experiment raw data is presented in Annexure 1; CD-Rom

Annexl_Respirometric Experiment Data.xls file. Results and the calculations from COD and

Solids tests are presented in Annexure 2; CD-Rom Annex2_COD& Solid Tests.xls file.

E.2 PARAMETER ESTIMATION SIMULATION DATA

The BRE model kinetic parameters obtained from parameter estimation performed on WEST

and the conversions calculation required so that the parameters can be inputted into COST

benchmark model are presented in Annexure 3; CD-Rom Annex3 BRE Kinetic process

parameters.xIs file.

K3 ASSEMENT OF WASTEWATER TREATMENT WORKS PERFORMANCE DATA

The raw data obtained simulation performed on the COST benchmark simulation model and the

COST benchmark calculation used to obtain performance indices are presented in Annexure 4;

CD-Rom Annex4 COST Simulation Benchmark model Results file.
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APPENDIX F

F.l MODEL CONTINUITY CHECK

A continuity check was performed on the model stoichiometry and mass balance.

Stoichiometry Continuity Check

The stoichiometry continuity check was performed in West and the result of the continuity
check was successful.

Mass Balance Continuity Check

A mass balance continuity check was performed on the model to determine whether the model
COD and nitrogen components balance..

The default parameters for ASM 1 model where used in the COD and nitrogen mass balances
simulations and is shown below in Table F-l.

F-I



MODEL CONTINUITY CHECK

Table F-l: Parameters used in COD and nitrogen mass balance continuity check simulations

Name CODSim Nitrogen Sim Unit

Parameters Parameters

Autotrophic decay coefficient (bA) 0.01 0.01 lid

Heterotrophic decay coefficient (bH) 0.4 0.4 lid

Fraction ofbiomass converted to inert (fp) 0.2 0.2

Fraction TSS to COD (FTSS,COD) 0.75 0.75

Mass nitrogen per COD biomass (iXB) 0.086 0.086 gN/gCOD

Mass nitrogen per COD product (ixp) 0.02 0.02 gN/gCOD

Oxygen transfer coefficient (KLa) 500 500 lid

Max. specific hydrolysis rate (kh) 2 2 lid

Ammonia half saturation coefficient for 1 gNH3/m
3

autotrophic biomass (KNH)

Oxygen half saturation coefficient for 0.1 0.1 g02/m3

autotrophic biomass (KoA)

Half saturation coefficient for heterotrophic 20 20 gCOD/m3

biomass (Ks)

Oxygen half saturation coefficient for 0.1 0.1 gO21m3

heterotrophic biomass (KOH)

Half saturation coefficient for hydrolysis (Kx) 0.02 0.02 gCOD/gCOD

Max. specific growth rate of autotrophic 0 0.55 lid

growth rate (/lA)

Max. specific growth rate of heterotrophic 4 0 lid

growth rate (/lH)

Oxygen saturation coefficient (SO,sat) 10 10 g/m3

Yield for autotrophic biomass (YA) 0.24 0.24 gCOD/gN

Yield for autotrophic biomass (YH) 0.67 0.67 gCOD/gCOD
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COD Mass Balance Continuity Check:

The COD mass balance parameters and components concentrations are presented in Table F-l
and Table F-2 respectively. The resultant output OUR profile is shown in Figure F-1.

The total COD concentration is the sum of all COD components, represented by Equation (F-l).

(F-70)

By using the component concentrations presented in Table F-2 and Equation (F-l) the initial
and final COD concentrations are 1.595 gCOD/L and 1.389 gCOD/L.

The error in COD mass balance of the model is calculated as the difference of initial total COD
concentration, final total COD concentration and area under OUR profile plot. The resultant
Equation (F-2) is presented below.

E COD /nilial COD Final J dtrrorCOD = TOTAL - TOTAL - Y,otal (F-71)

The area under the OUR profile was obtained using the Trapezoidal method; a value of 0.206
gCOD/L was obtained. Therefore the ErrorcOD is equal to 0 gCOD/L by using Equation (F-2).
Hence the result of the COD mass balance continuity check performed on the model is
successful.
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Table F-2: Initial and final concentrations obtained from batch reactor COD mass balance

continuity check simulations

Name

Soluble Inert (S)

Readily Biodegradable (Ss)

Autotrophic Biomass (XBA)

Heterotrophic Biomass (XBH)

Particulate Inert (XI)

Particulate Product (Xp)

Slowly Biodegradable (Xs)

Initial Concentration

(gCODIL)

0.040

0.100

0.100

1.000

0.100

0.005

0.250

Final Concentration

(gCOD/L)

0.040

0.000

0.100

1.120

0.100

0.028

0.000

Figure F-1: Oxygen uptake rate (OUR) profile the area of the plot is used in COD mass balance

continuity check simulations
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Nitrogen Mass Balance Continuity Check:

The Nitrogen mass balance was performed in a similar method to the COD balance, the

parameters and components concentrations used are presented in Table F-l and Table F-3

respectively.

The total Nitrogen concentration is the sum of all Nitrogen concentration, represented by

Equation (F-3).

(F-72)

The error in Nitrogen mass balance of the model is calculated as the difference of initial and

final total Nitrogen concentration, represented by Equation (F-4) below.

E N lnitial NFinal
rrorN = TOTAL - TOTAL (F-73)

The resultant ErrorN is 0 gN/L; hence Nitrogen mass balance continuity check performed on the

model is successful.

Table F-3: Initial and final concentrations obtained from batch reactor nitrogen mass balance

continuity check simulations

Name

Ammonia and Ammonium (SNH)

Nitrate and Nitrite (SNO)

Heterotrophic Biomass (XBH)

Particulate Product (Xp)

Autotrophic Biomass (XBA)

Initial Concentration (g/L) Final Concentration (g/L)

0.013 0.000

0.001 0.020

0.086 0.078

0.000 0.000

0.008 0.009
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