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Abstract

Observing and monitoring of the natural and built environments is crucial for main-

taining and preserving human life. Environmental monitoring applications typically

incorporate some sensor technology to continually observe specific features of inter-

est in the physical environment and transmitting data emanating from these sensors

to a computing system for analysis. Semantic Sensor Web technology supports se-

mantic enrichment of sensor data and provides expressive analytic techniques for

data fusion, situation detection and situation analysis.

Despite the promising successes of the Semantic Sensor Web technology, current

Semantic Sensor Web frameworks are typically focused at developing applications

for detecting and reacting to situations detected from current or past observations.

While these reactive applications provide a quick response to detected situations

to minimize adverse effects, they are limited when it comes to anticipating future

adverse situations and determining proactive control actions to prevent or mitigate

these situations. Most current Semantic Sensor Web frameworks lack two essential

mechanisms required to achieve proactive control, namely, mechanisms for antici-

pating the future and coherent mechanisms for consistent decision processing and

planning.

Designing and developing proactive monitoring and control Semantic Sensor Web

applications is challenging. It requires incorporating and integrating different tech-

niques for supporting situation detection, situation prediction, decision making and

planning in a coherent framework. This research proposes a coherent Semantic Sen-

sor Web framework for proactive monitoring and control. It incorporates ontology
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to facilitate situation detection from streaming sensor observations, statistical ma-

chine learning for situation prediction and Markov Decision Processes for decision

making and planning. The efficacy and use of the framework is evaluated through

the development of two different prototype applications. The first application is

for proactive monitoring and control of indoor air quality to avoid poor air quality

situations. The second is for proactive monitoring and control of electricity usage

in blocks of residential houses to prevent strain on the national grid. These appli-

cations show the effectiveness of the proposed framework for developing Semantic

Sensor Web applications that proactively avert unwanted environmental situations

before they occur.
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Chapter 1

Introduction

Observing and monitoring of the natural and built environments is important in

many application scenarios for proactive control over environmental situations. The

natural environment includes naturally occurring phenomena, features, and living

and non-living things that affect human life and activity [52]. The built environment

encompasses the structures and facilities formed by people for living and working

[79, 140]. Environmental monitoring applications typically incorporate some sensor

technology to continually observe specific features of interest in the physical envi-

ronment and transmit data emanating from these sensors to a computing system for

analysis. Sensor applications range from space-borne earth observation satellites to

low-cost indoor sensors, including devices worn by people [32, 115, 167]. Environ-

mental sensor applications can be impactful if the sensor observation data can be

used to proactively take control over environmental situations in favor of the users.

An environmental monitoring application can be designed to be reactive or proac-

tive. Reactive monitoring applications are designed to detect occurrence of specified

situations and act in order to take control of such situations and minimize their

effects in favor of the user. Proactive monitoring applications, however, can antici-

pate the future occurrence of the situation and execute control actions in order to

avert the situation before it occurs. While reactive monitoring situations can detect

situations that have occurred, from sensor data, proactive monitoring can anticipate

1
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future occurrence of situations, making it possible to prevent the situation from oc-

curring. The goal of a proactive application includes analyzing sensor observations

to detect situations of interest; to anticipate future occurrences of the situations;

and to process and enact decisions [146].

1.1 Background

Data captured by sensors are known to be opaque with minimal contextual infor-

mation, thereby necessitating semantic enrichment of the sensor data for analysis

[135]. Thus, Semantic Sensor Web (SSW) technology is widely adopted for process-

ing sensor data, as it provides tools and techniques for semantic enrichment and

analysis of sensor data in order to make sense of it. In this thesis, the term situation

is understood as an interpretation of sensor data in an application domain [164] and

is used in the context of the state of monitored features in a physical environment.

Hence, situation analysis encompasses the process of detecting (situation detection)

and predicting (situation prediction) a situation of interest.

Semantic Web technologies, for example, ontologies, can be used to model concepts

and relationships in a domain of interest [20, 134]. Standardization efforts in the

SSW has led to the Semantic Sensor Network (SSN) ontology which has become

the de-facto ontology for SSW applications [43]. Raw sensor observation data is

annotated and encoded with semantic metadata, which allows for the integration

and fusion of sensor data from heterogeneous sources. It also facilitates reasoning

to make inferences about an observed feature of interest in the environment by

evaluating semantic queries on semantically enriched data [34, 135]. SSW techniques

have been investigated for monitoring and providing environmental decision support

in different application domains [66, 105]. While some progress has been made in

terms of classifying current situations of interest from streaming sensor data and

taking responsive actions to mitigate these situations, predicting future situations

for proactive control remains a challenge.
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Some recent efforts have proposed semantic methods, such as predictive reasoning,

in semantically annotated data streams [87, 92, 93] and, although it is an active re-

search area, it is still quite young with new techniques emerging. Statistical machine

learning provides advanced techniques which support applying algorithms to learn

certain properties and patterns of data to predict future trends. This study suggests

that incorporating machine learning algorithms in an SSW monitoring system will

allow for determining proactive control actions to enhance or avoid specific future

situations in many environmental monitoring application areas.

Proactive control in many computing applications has been implemented in an ad

hoc manner for decades. There have been some recent efforts towards proactive

architectures, especially in event driven architectures [57] and self-adaptive systems

[9], but such systems lack the expressive semantics that SSW offers. In environ-

mental monitoring applications expressive analytical techniques are necessary for

enrichment, analysis, interoperability and dynamic integration of data streams from

heterogeneous sources. Statistical machine learning can be incorporated in an SSW

application for monitoring and control. Advanced planning and decision making

mechanisms, such as Markov Decision Processes (MDP), can provide a robust mech-

anism for modeling a coherent and consistent decision process, which can be incor-

porated in SSW applications.

1.2 Problem statement

SSW applications have great potential to proactively forestall many environmental

situations in both the natural and built environment [66]. Proactive monitoring

and control of the environment requires combining different technologies to support

situation detection, situation prediction and decision processing [27]. Although SSW

technologies provide promising tools and expressive analytical methods for sensor

applications [35, 135], a gap in current SSW frameworks is the lack of essential

mechanisms required for proactive control, namely mechanisms for anticipating the

future and coherent mechanisms for consistent decision processing and planning [27].
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Also, application frameworks that provide tools and techniques for rapid application

development is still a gap in the SSW community [44]. This research is focused on

filling these gaps.

1.3 Aim and objectives

The aim of this research is to investigate how to incorporate statistical machine

learning for situation prediction and MDP theory in an SSW framework for proactive

environmental monitoring and control.

1.3.1 Specific objectives

The specific objectives of this research are

(i) To develop an ontology-driven framework for monitoring and control applica-

tions, based on the SSW principles.

(ii) To design an approach to incorporate statistical machine learning for situa-

tion prediction in the SSW framework for proactive monitoring and control

applications.

(iii) To design an approach to incorporate MDP theory in the SSW framework.

(iv) To evaluate the proactive SSW framework using real-life use case scenarios.

1.4 Contributions of the study

A proactive monitoring and control application shows great promise towards advanc-

ing and maintaining lives by forestalling many environmental situations which afflict

humans. This work proposes a framework that combines the advanced predictive

capabilities of statistical machine learning with the expressive semantic analytical
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capabilities of SSW for proactive monitoring and control applications [5]. The frame-

work also incorporates an MDP theory within the context of the SSW.

The contributions of this research are as follows: first, a framework that incorpo-

rates the required functional components to achieve proactive control in an SSW

framework, the framework shows the design and implementation tools and tech-

niques for a proactive SSW application [5]. Second, an approach to incorporate

statistical machine learning models in an SSW for proactive environmental monitor-

ing and control. The approach shows how to design machine learning for situation

prediction and incorporate it into a proactive SSW framework. Third, an approach

to enhance ontology-driven decision processing with an MDP to improve coherence

and consistency in a proactive decision making application. And finally, a proactive

monitoring and control ontology [4]. The ontology provides concepts to support the

components of a proactive SSW framework. The ontology can be combined with a

domain ontology in an application domain to develop a proactive monitoring and

control application.

1.5 Overview of research design

Two different application use cases were chosen to evaluate the design and devel-

opment of a SSW framework. This is to allow concrete real-world environmental

situations to inform the design and evaluation of the proposed approaches and the

framework.

1.5.1 Methods for achieving the research objectives

Proactive monitoring and control in the SSW is a challenging task which involves

combining analytical methods and techniques. The first step was to review the

state of the art in SSW, the proactive computing paradigm and the disciplines that

support situation detection, situation prediction and decision processes in the extant

literature. This is in order to elucidate requirements necessary for a proactive SSW
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framework. The requirements are distilled into areas of architectural concern and

cross-cutting issues which drive the development of a proactive SSW framework.

A basic prototype of the proposed model is first developed as an ontology-driven

testbed, on which the approaches to incorporate other required components are to

be evaluated.

The framework was evaluated on two different environmental use cases that are

considered viable, with real-life sensor data.

Use case 1. The first use case is in the area of Indoor Air Quality (IAQ) for occupa-

tional health. IAQ is a growing health concern as exposure to indoor pollutants

has been increasingly incriminated in causing illnesses, some of which are fatal

[119, 130, 166]. The focus of this use case is proactive monitoring and control

of occupants’ exposure to indoor pollutants. This use case is carried out with

an occupational health research group who are investigating the effect of in-

door pollutants on pregnant women and children in an ongoing cohort study

in South Durban, a low-cost residential area in South Africa.

Use case 2. The second use case is based in the area of demand side management

(DSM) on the smart grid. Power demand management is a known problem

that is currently receiving a lot of research attention [22, 143]. Load shedding

is a known problem in many countries of the world where power generation

could not meet consumption needs. This is especially true during peak demand

periods due to extreme weather conditions [22, 143]. The focus of the use case

is proactive monitoring and control of electricity use in the residential home

environment to avoid power cuts and improve occupants’ satisfaction.

1.5.2 Expected impact

Proactive SSW applications shows great promise towards improving automation in

sensor-based monitoring applications. These are important in forestalling unwanted

environmental situations before their occurrence. The potential benefits of this are
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as follows:

• Advocate a paradigm shift in the design and development of SSW applica-

tions from reactive to proactive ones. This is to provide seamless control of

environmental situations before they occur.

• Promote proactive decision support in environmental monitoring applications.

• Provide a set of methods and tools to ease the development of proactive SSW

applications.

1.6 Scope

This research is focused on approaches to incorporate statistical machine learning

for situation prediction and MDP for decision processing in a proactive SSW frame-

work. The target framework is situated mainly within the context of SSW, and the

application use cases are mainly focused on monitoring and control in the physical

environment. Hence, the framework is evaluated using two environmental use cases.

1.7 Thesis layout

The remaining part of this thesis is structured as follows:

• Chapter 2 - Literature Review: This chapter reviews the literature in the

relevant fields that serves as background to this research, and recent approaches

that have been proposed in related works.

• Chapter 3 - An Abstract Architecture for a Proactive SSW Frame-

work: This chapter presents the design of an abstract architecture of the

framework which resulted from the requirements that are extracted from the

literature.
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• Chapter 4 - Ontology Driven Situation Analysis: This chapter discusses

the development and evaluation of a prototype of the proposed framework, an

ontology-driven testbed on which the approaches to incorporate other compo-

nents are to be evaluated.

• Chapter 5 - Incorporating Statistical Machine Learning in an SSW

Framework for Proactive Monitoring and Control: This chapter intro-

duces the proposed approach to incorporate statistical machine learning model

in an SSW for proactive monitoring and control. The Chapter also presents the

evaluation of the proposed framework with Use case 1 (see Section 1.5). The

use case evaluates the framework with a focus on how to incorporate statistical

machine learning in an SSW framework for proactive monitoring.

• Chapter 6 - Incorporating MDP Theory into a Proactive SSW Frame-

work: This chapter presents the second use case for this research. The use case

evaluates the proposed framework with the proactive monitoring and control of

electricity use in residential blocks of houses. The chapter further introduces

a proposed approach to incorporate rigor of a probabilistic decision-making

MDP in the proposed proactive SSW framework.

• Chapter 7 - Discussion and Conclusion: This chapter discusses the re-

sults of this research. The evaluations of the proposed framework that are

done in Chapter 5 and Chapter 6 are summarized, analyzed and compared

to existing frameworks. The chapter further discusses how the objectives of

this research are achieved, the feats of the proposed framework and highlights

future directions.

‘



Chapter 2

Literature Review

This chapter reviews related literature that serves as background to this work. Since

this research deals with combining different analytical techniques to manage stream-

ing sensor data based on the proactive computing paradigm, this review covers a

diverse range of disciplines, and identifies challenges that underpin the motivation

for this work.

The Semantic Web is reviewed in Section 2.1 and Section 2.2 reviews the notion

of the Sensor Web, while the SSW is reviewed in Section 2.3. Section 2.4 reviews

the proactive computing paradigm and related paradigms. In Section 2.5 works

relating to the different tools and techniques that are essential to support proactive

control in a computing system are reviewed. Section 2.6 summarizes the chapter

and highlights the gap that motivates this research.

2.1 Semantic Web

The idea of a Semantic Web was originally introduced as an extension of the current

web [20]. The Semantic Web vision relies on using existing technologies such as

extended markup language (XML) and resource description framework (RDF) to

extend the World Wide Web (WWW) to a web of data, that is, shift emphasis from

9
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documents in the current web to data which is accessible and understandable by

humans and machines. These tools support modeling a sharable conceptualization

of a specific domain of interest, an ontology, on the Semantic Web [37, 134].

2.1.1 Ontology

An ontology can be used to model terms, that is, concepts and relationships between

them in a domain of interest, and for structuring web resources [37, 145]. Several

definitions of an ontology are presented in the literature. A widely adopted definition

of an ontology in computer science is that of Gruber [67]:

“An ontology is an explicit specification of a conceptualization” [67].

However, Borst later redefined ontology as:

“. . . a specific, formal representation of a shared conceptualization of a domain”

[25]

The latter focuses on the application of ontology in computational systems, where

“specific” refers to clearly specifying concepts, relations, instances and axioms in the

domain of discourse; “formal” refers to being machine readable; “shared” implies

that a community has consented to the content of the ontology; and “conceptualiza-

tion” implies that it is an abstract model of a domain [25]. They also characterized

ontologies in several dimensions such as granularity, formality, generality and com-

putational capability (see Table 2.1).

2.1.2 Semantic Web languages

A detailed review of early approaches to knowledge representation languages is pre-

sented in Pulido et al. [121]. The extended markup language (XML) was notably

found useful to support separation of the web content markup from that of web

presentation, but its semantics capability is limited [121]. The goal of realizing a Se-

mantic Web drove the creation of newer approaches. The standardized recommended
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Table 2.1: Characterization of ontologies, adopted from Borst [25]

Dimension Types

Granularity • Coarse-grained
• Fine-grained

Formality • Highly informal
• Semi-informal
• Semi-formal
• Rigorously formal

Generality • Top-level (upper ontology),
• Mid-level (utility ontology)
• Task ontologies
• Domain ontologies
• Application ontologies

Computational capability • Heavyweight
• Lightweight

knowledge representation languages for the Semantic Web by the World Wide Web

Consortium (W3C) are Resource Description framework (RDF) [88], RDF Schema

(RDFS) and the Web Ontology Language (OWL) [99].

• RDF and RDFS: The RDF [88, 98] recently revised and updated to RDF1.1

[46], is a W3C recommended language that supports encoding, exchange and

reuse of information about resources on the WWW. The framework adopts

XML syntax (RDF/XML), which imposes structural constraints for unam-

biguous representation of resources. RDF identifies resources with their In-

ternationalized Resource Identifier (IRI) references. An RDF expression is a

triple notation, consisting of subject, predicate and object, where the predicate

(also called property) expresses the relationship between the subject and the

object. A triple can also be expressed as a graph (see Figure 2.1), in which

subject and object are nodes and the predicate is a directed arc connecting

the two [88].

RDFS is a semantic extension of RDF that provides mechanisms for describing

groups of related resources and the relationships between them, such as classes

and properties, including the domain and range of the properties [31]. The need

for a more expressive language than RDF and RDFS led to the Web Ontology
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Figure 2.1: RDF triple as a graph, adopted from Klyne and Carroll [88].

Language (OWL) [31].

• OWL: The web ontology language was developed to fill the need for greater

expressive power than RDF and RDFS could offer. OWL is a family of three

language variants, usually referred to as species [99]. The species of OWL

includes OWL Lite, OWL DL, and OWL Full, with increasing levels of ex-

pressivity. OWL provides extended vocabulary for describing properties and

classes, such as relations between classes (e.g. disjointness), cardinality (e.g.

“exactly one”), equality and richer typing of properties [99]. OWL relies on

XML Schema which is limited in expressivity; the need for more expressivity

fuels the need for revision of the language [65].

• OWL 2: OWL 2, a revision of OWL, adds new functionality to the language.

Some of the new features are referred to as syntactic sugar (e.g. disjoint union

of classes), others provide more expressiveness [65, 72]. These include keys;

property chains; richer data types and data ranges; qualified cardinality restric-

tions; asymmetric, reflexive, and disjoint properties; and enhanced annotation

capabilities [65, 72].

2.2 The Sensor Web

The idea of a Sensor Web was originally conceived by Delin and Jackson [47] as a

macro instrument:

“. . . a system of intra-communicating, spatially distributed sensor pods that can be

deployed to monitor and explore new environments” [47].
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They designed sensor pods equipped with transducers to convert environmental pa-

rameters to electrical signals, a wireless communication module for intra-communication

between pods, a computing module for local analysis of the measured signals, and

power source. Their concept of a Sensor Web was focused on the collective interpre-

tation of signals from the coordinated sensing pods, over space and time, with the

goal of extracting knowledge from data collected. This notion of a Sensor Web can

be summarized as a local network of sensors deployed for a particular goal. The sen-

sor network is not necessarily accessible via the Internet, nor the sensor observation

data necessarily exposed over the WWW.

The notion of a Sensor Web soon changed from a localized macro instrument to an

Internet-wide network. Gibbons et al. [64] proposed “IrisNet” with a vision of an

Internet-wide sensor network, where computing devices on the WWW have sensors

attached. They proposed a scalable agent-based architecture with two types of

agents: sensing agents for collecting and storing sensor data and organizing agents

for querying the data. IrisNet is known to be a resource-intensive approach to

deploying a Sensor Web [36, 64].

Shneidman et al. [136] noted the need for an infrastructure to connect many disparate

sensor networks to the applications that desire data from them. To fill this gap,

they proposed Hourglass [136]. Their infrastructure consists of network-connected

dedicated machines that provide service registration, discovery, and routing of data

streams from sensors to client applications. Hourglass also allows for in-network

data processing services. While Hourglass was able to provide an approach to deliver

sensor data to applications as a service on the Internet, there was a need for a high

level of abstraction on an infrastructure to enable simple and rapid deployment of

sensor applications [2].

Aberer et al. [2] proposed Global Sensor Networks (GSN), a middleware that provides

abstraction over the sensors and infrastructure details, with a goal to support sim-

plicity, adaptability, scalability and rapid deployment of sensor applications. GSN

was focused on sharing and integration of data among heterogeneous sensor net-

works on the Internet and minimizing deployment efforts. A notable abstraction in
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GSN is the virtual sensor, which can be any form of data producer that takes in any

number of input data streams and produces one defined data stream [2]. As several

techniques evolved to support exposing sensor data on the web, interoperability be-

tween different infrastructures and the data model became a challenge due to lack

of standards.

The Open Geospatial Consortium (OGC), a not for profit standard body of over

500 organizations from industry, academia and government, founded the Sensor

Web Enablement (SWE) initiative to build frameworks of open standards for ex-

ploiting web-connected sensors and sensor systems [26]. SWE is a set of standard

encodings and web services to support: discovery of sensors, processes, and observa-

tions; tasking of sensors or models; access to observations and observation streams;

publish-subscribe capabilities for alerts; sensor system and process descriptions [26].

The SWE supports adding sensors and sensor data to the Internet. The SWE ob-

ject oriented description of sensors and sensor data provides efficient generation of

standard schema metadata for the observation data produced by sensors, and also

facilitates the discovery and interpretation of archived data [117]. The SWE ini-

tiative was noted to lack semantically rich discovery mechanisms in the proposed

services [137]. While the initiative solves the issues of interface heterogeneity, the

issues of data and concept incompatibilities remained [42]. Hence the search for

semantically enriched tools and techniques for analyzing sensor data [104, 135].

2.3 The “Semantic Sensor Web”

Sheth et al. [135] first coined the term Semantic Sensor Web. Their goal was to

support the integration and communication between sensor networks, and thereby

support knowledge acquisition from the integrated sensor data streams. They noted

that sensor data, is by nature opaque and thereby propose semantic enrichment of

the sensor data, to aid knowledge acquisition. Sheth et al. [135] noted that sensor

encodings of observed phenomena as provided by the SWE initiative, which is usually

presented in binary or proprietary formats, are by nature opaque and give minimal
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information. Hence, they proposed semantic enrichment of sensor data with spatial,

temporal and thematic metadata, to facilitate expressive analysis. For example,

sensor observations about phenomena such as temperature and precipitation can be

annotated with time, location and theme, which can also be encoded as RDF triples

(see Figure 2.2)[135]. Evaluation of complex semantic queries to derive higher-level

information from the enriched sensor data is thus allowed. This approach leverages

ontologies to describe concepts and the relationships between them, both in the

sensor and the relevant application domain.

Figure 2.2: Annotating sensor data with metadata, adopted from Sheth et al. [135].

Approaches have been proposed to developing ontologies for sensor applications,

focusing on different aspects of sensor systems [11, 55, 80, 129]. Some earlier ap-

proaches to model sensors with ontologies were not focused on managing sensor data;

for example, Avancha et al. [11] proposed an ontology to manage sensor nodes. A

survey of ontologies and semantic specifications that have been proposed for sensors

and sensor networks is provided by Compton et al. [42].
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2.3.1 The Semantic Sensor Network ontology

Drawing from the success of the previous approaches, the Semantic Sensor Network

(SSN) Incubator Group of the W3C (SSN-XG) , which comprises members from the

Semantic Web and Sensor Web communities, developed the SSN ontology. The SSN

ontology is a generic description of sensor assets that can be applied to different

application domains. SSN ontology is modular (see Figure 2.3), and it is compatible

with OGC SWE services. The ontology features four main perspectives [43]:

• Sensor: The sensor perspective focuses on the sensor that senses, how it

senses, and what is sensed;

• Observation: The observation perspective focuses on the observation data

and related metadata. Observations are contexts for interpreting the stimuli;

• System: System perspective focuses on sensor systems as part of sensing

infrastructure and their deployments.

• Feature and property: This is a focus on the particular property that is

sensed and the observations that have been made about it.

Figure 2.3: The SSN ontology, adopted from Compton et al. [43]
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2.3.2 Ontology access to sensor data streams

Sensor data model: Sensor observation data is typically time-series data. Sensor

data consists of measurements recorded over a time interval, generally referred to as

data points recorded and as a sequence ordered by the time stamp of each record

[34]. In real-time applications sensor data is generated continuously, and the data

stream becomes unbounded. A large body of work exists in the areas of Database

Management Systems (DBMS) [23, 147], and Data Stream Management Systems

(DSMS) [12, 13, 49, 90], on the traditional approaches and methods that have been

proposed for managing data streams. DBMS approaches provide a static method

for managing data streams in which the dataset is expected to be persistent. The

downside of the static approach is that when the data stream is generated at a

high frequency, it becomes resource-intensive and may be unnecessary to store the

unbounded data. DSMS methods support the use of continuous queries [13, 147] to

manage continuous data streams. A query is issued once and the data stream filters

through it continually.

Context information about the sensor observations, usually referred to as meta-data,

helps to make sense of the recorded data. The early approaches in the Sensor Web

adopted XML to model sensors and sensor data [2, 113]. XML provides a flexible

method to represent the sensor data and corresponding metadata; it also supports

interoperability of data from heterogeneous sources. The OGC SWE initiative stan-

dardization efforts and services were also based on XML data model for sensor data.

However, XML based approaches are known to be limited in semantics; for instance,

XML does not support explicit description of relationships between data resources

[17].

The SSW approach introduced the use of RDF for modeling sensor data [103, 135].

Extending the XML-based data model to RDF triples and ontology primitives does

not only bring more structure to sensor data, it also provides a semantically rich

method for storing meta-data along with sensor observation data and explicit de-

scription of relationships between data components and attributes. It further allows
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for advanced analysis on the data along with concepts and relationships in ontol-

ogy, for more expressive information recovery and reasoning on the ontology to infer

new information [17]. This approach supports analyzing semantic queries such as

SPARQL query on the stored data, for analysis and information retrieval. This ap-

proach to SSW is similar to DBMS where data is persistent in the database and the

query is transient. Here data is persistent in an ontology or an RDF triple store.

Streaming data is transient. In a real-time application, storing data before querying

it can presents unbearably high latency, and when data stream is generated at a

high frequency it may not be scalable to store all the data [5, 35, 48].

Stream reasoning: Recent research efforts in the SSW have been focused on

approaches that provide ontology-based access to sensor observation data streams

[16, 35, 48]. Stream reasoning approaches also referred to as RDF Stream Processing

(RSP), support semantic methods to process streaming RDF data with continuous

queries, in a manner similar to DSMS (see Section 2.3.2). Most of the continuous

query languages present extensions to SPARQL query language, such as SPARQL-

Stream [35]and C-SPARQL [16]. In the simplest form, the continuous data stream

is divided into time windows, on which SPARQL queries are executed. Stream rea-

soning provides expressive methods to analyze streaming sensor data. It supports

integration of data streams from heterogeneous sources. It also supports querying

data streams with background knowledge in the ontology without necessarily having

to store the data.

2.3.3 Architectures and frameworks

Gray et al.

Gray et al. [66] reported on an SSW for environmental decision support. The service-

oriented architecture features the orchestration of ontologies and services focused on

publishing, discovering and integrating sensor data for emergency decision support.

Their architecture is related to the studies presented in this thesis in two main
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ways. First, their architecture was based on SSW principles, which advocates the

use of Semantic Web technologies such as ontologies to process sensor data. Second,

their work was focused on the physical environment that is providing early warning

based on environmental monitoring. However, their architecture is different from

this research in the following ways. Although their architecture attempts to provide

early warning signs, based on data from discovered services which are external to

the system, it does not emphasize the mechanisms for anticipating the future as

part of the architecture [66]. Their work does not provide an approach to design

and integrate situation prediction in the SSW architecture. Also no approach was

provided for designing, incorporating and executing proactive decisions. Finally,

their architecture does not follow the principles of proactive computing.

Choi and Rhee

Choi and Rhee [40] investigated a distributed SSW architecture which consists of

two main components: an SSW Platform and a smart gateway. The architecture

was focused on separating services domain and information processing. The smart

gateway aggregates sensor data from which it generates context information for

the SSW platform. The SSW platform discovers and aggregates services which use

the context information to provide user-defined services, all within the principles of

SSW. Their system is related to this research being an SSW architecture; however,

it is a reactive SSW architecture, which reacts only to situations that have already

occurred and been detected by the smart gateway. The architecture does not provide

mechanisms to anticipate the future. Hence, the architecture does not offer required

functionalities to avert occurrence of a situation ahead of time.

Moodley and Tapamo

Moodley and Tapamo [104] proposed a knowledge driven Sensor Web (KDSW),

an ontology-driven multi-agent approach for designing Sensor Web systems. The

proposed semantic infrastructure which is based on a Semantic Web Agent Platform
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(SWAP) [103] is robust and capable of an Internet-wide Sensor Web system. This

approach to Sensor Web caters for uncertainties, system dynamisms and provides

support for representing agents, services and tasks. SWAP has been used in earth

observation use cases [105]. Although the KDSW approach and SWAP have great

potential for SSW applications, they are different from this work in the following

way. The architecture has not been focused towards proactive control. Mechanisms

for anticipating the future have not been integrated in the architecture. Hence it is

only a reactive architecture.

2.3.4 Section summary

SSW provides rich sets of promising tools and techniques for developing sensor-based

applications and for managing and processing sensor data streams. SSW has evolved

from the union of activities from two research communities, namely the Sensor Web

and the Semantic Web activity of the W3C. The earlier approaches in SSW are

based on capturing data in an ontology or a data store and then querying them over

temporal constraints, which creates processing overheads, while stream reasoning-

based applications employ continuous semantic queries for processing semantically

enriched streaming data on the fly. However, most of the SSW architectures are

either reactive architecture which do not include mechanisms for predicting the

future or rely on external predictive services. Furthermore, application frameworks

to support rapid development of proactive SSW applications is still a gap [44].

2.4 Proactive computing

Sensor-based monitoring applications are increasingly deployed to support environ-

mental control decisions and appropriate responsive actions about situations in the

physical world. The proactive computing paradigm provides design principles and

potentials that support monitoring and shaping of the physical world [146, 155]. The

paradigm aims at bridging the gap between the virtual and the physical world by
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making computing artifacts equipped with sensors to understand the environment,

anticipate the user’s goal and act on his or her behalf [146].

The term proactive computing was introduced by Tennenhouse [146]. The paradigm

aims to influence computing system design from the current interactive computing

which was based on a human-centered principle, to a proactive one, where humans

play more of a supervisory role rather than being the operator. The paradigm

emphasizes reducing human interactions in the loop of automated process control.

The three research loci for computing research to realize the vision of proactive

computing are:

• “Getting physical”: Connecting the physical environment to a computing

machine is a primary requirement for taking control over it. Proactive com-

puting advocates connecting computing systems to the physical world using

sensors and actuators to both monitor and control the dynamics of the envi-

ronment, in favor of the user [146].

• “Getting real”: A proactive system needs to respond to external stimuli

at a “faster-than-human-speed” [146]. The dynamics of the physical environ-

ment change at a speed higher than that which humans can sustain. Proactive

computing advocates bridging the gap between control theory and computing

systems. For example, computing operations such as software-enabled control,

network-enabled control, online measurement and tuning, and the latency be-

tween input and output should be possible and in near real-time.

• “Getting out”: While interactive computing has placed humans as operator

in the loop of automated process control, the proactive computing paradigm

promotes research for computers to switch into proactive modes of operations

in which humans play more of supervisory role, rather than being the direct

operator. This is essential to enable the system to respond to the physical

world which changes at a speed humans cannot sustain [146].
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2.4.1 Characteristics of a proactive system

Want et al. [155] characterized a proactive computer with three principles, based on

the research loci defined by Tennenhouse [146]. These are: connecting to the physical

world ; real-time and closed loop operation; and anticipation:

• Connecting to the physical world: In order for computing systems to help

in day-to-day activities, the physical world needs to be instrumented in such

a way that they can have direct and intimate knowledge of the environment

and use such knowledge to make changes to the real world.

• Real-time and closed loop operation: Integrating computing systems into

the real world requires real-time operations. Having humans in the control loop

of the computing process is inflexible. The system must be able to respond to

events in the physical world much faster than is possible with a person.

• Anticipation: “Anticipation is the cornerstone of proactive computing” [155].

To be truly proactive, a computing system must predict the future in some

sense. It must leverage context aware operations, statistical reasoning, and

proactive data handling.

Proactive systems should be able to act in favor of the user (pro-user) and on

their own (autonomous) [131]. Salovaara and Oulasvirta [131] further characterized

proactive systems with five different attributes discussed below.

Real time operation: The system must follow an ongoing activity and its context

in real-time.

World model: For a system to follow an activity and make inference, the system

must have knowledge of the world model and the dynamics of its context. These

may be explicitly represented or implicitly implemented in the system.

Hypothesized goal state: A system must know the hypothesis of the user’s goal

state in order to act on his or her behalf.
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Sensitivities to future alternatives: The system must use its real-time infor-

mation to make choices between different future alternatives.

Taking initiatives: The system takes actions on its own in favor of the user’s

goal. The vision of proactive computing is in contrast to the prevailing paradigms

that have influenced the research and the design of computing systems, especially

the ’man-computer symbiosis’ [95] paradigm which promoted the design of inter-

active systems. To clearly identify the goal of the proactive computing paradigm,

in the following sections, the relationship between proactive computing and other

computing paradigms is reviewed.

2.4.2 Related paradigms

In this section we discuss the relationship between the proactive computing paradigm

and other paradigms that have influenced the design and development of computing

systems.

• Man-computer symbiosis

In the early years of computer development Licklider [95] introduced the

paradigm of ‘Man-computer symbiosis’. He envisioned a synergistic symbi-

otic interaction between humans and computers, where computers “augment

human intellect by freeing it from mundane tasks”. The man-computer inter-

action paradigm has largely influenced computing research in many disciplines,

towards the design and development of personal computers, and office automa-

tion [14, 15, 59]. The paradigm essentially puts man in an interactive user mode

with the computer; although this has been very successful in personal comput-

ing applications, as the processing speed of computers drastically increases,

the limitations of the human’s slow response speed become evident. For ex-

ample, in the interactive mode the computing system has to halt several times

to take in necessary data input or commands from the user for the next line of
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operation. Hence, the man-computer symbiosis paradigm cannot achieve the

goal of integrating computer with the physical world. The dynamics of events

in the physical world is complex. To integrate a computing system with the

physical world, the system must be able to respond to real world events in

real-time and at a much faster speed than possible with a person [146, 155].

• Ubiquitous/Pervasive computing

The notion of ubiquitous computing was introduced by Weiser [156], with a

vision of computers ‘disappearing’ into many parts of everyday life, rather

than just on the desk. The goal of ubiquitous computing is to integrate com-

puter functionalities seamlessly into the physical world “as a pervasive part of

everyday life” [156]. Ubiquitous computing has been referred to interchange-

ably as pervasive computing. A typical ubiquitous computing environment

involves several microprocessor chips embedded into day-to-day objects in the

environment, which are capable of sensing the environment, processing infor-

mation and communications. The paradigm has facilitated research in many

computing disciplines towards integrating computing devices and applications

in different environments [3, 91, 115, 116, 139]. Proactive computing leverages

and extends the ubiquitous computing paradigm in its aim to bridge the gap

between the virtual and the physical world. However, integrating computing

devices in the physical environment opened up other challenges in comput-

ing. This includes management of resources of the heterogeneous systems and

communication networks [156].

• Autonomic computing

The autonomic computing paradigm which originated from IBM in 2001 was

aimed at stimulating computing research towards computing systems that are

self-managed [63, 73]. They envisioned emulating the autonomic nature of the

human nervous system to realize computer systems that can manage them-
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selves in the face of the rapidly increasing scale, complexity, heterogeneity

and dynamism of networks, systems and applications [63, 73, 75, 85]. The

main properties of self-management as described by this vision include: Self-

Configuring, Self-Healing, Self-Optimizing, Self-Protecting [75]. To achieve

the self-management of computing resources an architectural blueprint of an

autonomic system and a reference model for an autonomic control loop was

proposed. This is popularly referred to as the MAPE-K (Monitor, Analyse,

Plan, Execute, Knowledge) [77]. A review of the autonomic computing re-

search including the degrees of autonomy, autonomic models and autonomic

applications, can be found in Huebscher and McCann [75].

The self-management perspectives of autonomic computing, and especially the

MAPE-K control loop, are similar to the principles of proactive computing in

two major ways with respect to their activeness. First, both paradigms sup-

port computing systems taking initiatives on their own to manage resources.

Second, both paradigms support systems to pro-act, that is, to act on behalf

of an entity. While the autonomic system principle is focused on acting to

manage themselves, which makes the systems more dependable [142], a proac-

tive system extends the autonomic system principle. More than managing

its internal resources, a proactive system aims to interact with and shape the

physical world [146, 155] in favor of the user.

2.4.3 Architectures and frameworks

Proactive control in computing systems has been implemented in an ad-hoc man-

ners [56]. A review of some recent applications with such approaches is presented

by VanSyckel and Becker [150]. However, there is a growing research interest in

the design of proactive architectural frameworks for computing systems in different

application domains [9, 27, 57, 118, 153, 166].
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Engel et al.

One of the early approaches to model proactive control in a computing system was

that of Engel et al. [57]. Although their work was based on event-driven computing,

they provided a basic architecture for proactive computing systems. Their model,

which was based on “Detect, Predict, Decide and Act” sequential orchestration of

functionalities advocates the proactive computing principle. However, the archi-

tecture is different from ours as it did not employ SSW principles; neither is it

an ontology-driven architecture. This research is focused on SSW technologies for

environmental monitoring applications.

Anaya

Anaya [9] integrated predictive analysis in self-adaptive systems. The author pro-

posed statistical machine learning techniques for predicting the future, and fuzzy

logic for a control mechanism. Although the concept of our work is similar to

Anaya’s [9], who sought to achieve proactive control by integrating predictive anal-

ysis in a pervasive system, the author did not utilize semantic methods for analysis.

Hence, the system lacks a mechanism to manage the model of the world. The ar-

chitecture lacks the expressive analytical techniques of SSW technology which has

been proved important [66] for environmental monitoring applications.

Yu and Lin

Yu and Lin [166] proposed an intelligent wireless sensing and control system to

improve indoor air quality. Although their system design was focused on their ap-

plication scenario, the orchestration of the system components is very similar to a

typical proactive system. They used low-cost sensors for monitoring indoor carbon

dioxide (CO2) levels, they employed the integration of an Auto Regressive Moving

Average (ARIMA) time-series forecasting method to predict future concentration
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levels of CO2 from the sensor data and the system makes control decisions with a

fuzzy logic component. The drawbacks of Yu and Lin [166] are as follows: first, the

system does not provide a means to expressively model the domain, including the

hypothesis of the user’s goal, and the future alternatives, in a manner an ontology

would do. All of these were implemented programmatically in the system, which will

make reconfiguration and extension difficult if not impossible dynamically. Second,

the work did not provide a generic architecture for designing proactive systems.

2.4.4 Section summary

The proactive computing paradigm was proposed to drive research towards the de-

sign and development of computing systems that could be connected to the physical

world and pervade into day-to-day objects. Such systems rely on sensors and actua-

tors to be able to monitor and shape the physical environment. The dynamics of the

physical world is complex and faster than humans can respond to. Hence, proactive

computing advocates reducing human involvement in the loop of automated process

control, in contrast with the existing interactive computing where the human oper-

ator is a necessary part of the process. The paradigm extends the visions of related

paradigms such as pervasive computing and autonomous computing. The immediate

challenges of a proactive system are bringing together the technologies to support the

functionalities required in order to achieve proactive control in computing systems.

2.5 Tools and techniques for proactive control

A proactive system is essentially a pervasive system equipped with a sensor that

continually observes a particular property of a feature of interest in the physical

environment [150]. The system also keeps the knowledge of the states of the world

as interpreted from the sensor data, and the hypothesis of the user’s goal’s state.

Achieving all these in a single framework requires integrating technologies for the

functional components to analyze the sensor data [9, 27, 57]. First, the system
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requires technology to interpret sensor data to detect the state of the environment

at a given time (Situation detection). Second is the ability to anticipate the possible

future state (Situation prediction). Finally, based on its knowledge of the world,

the system must be able to autonomously process decisions to select an appropriate

action among alternatives in favor of the hypothesized user’s goal state (Decision

processing) [27, 57].

The remainder of this section discusses recent works and proposed approaches to

achieve these functionalities in computing systems, with a focus on achieving proac-

tive behavior in the systems.

2.5.1 Situation detection

Techniques for detecting situations from sensor data can fall into one of two major

categories [164] as follows.

• Learning techniques: The machine is made to learn the complex relationship

between the situation and sensor data and generate a model. This approach

is known to require a lot of historical data [164].

• Specification techniques: These techniques require the modeler to specify

the relationship between a situation of interest and data in a model to be en-

coded in the system. Hence, it requires that the modeler has a priori knowledge

of the pattern of the situation to be represented.

The choice between learning techniques and specification techniques for situation

detection is a trade off of requirements. That is lots of historical data and priori

expert knowledge of the pattern of the situation of interest. Ontology-driven systems

for situation detection, which is adopted in this research, is a specification approach

that requires the domain expert knowledge of the situation to be represented in an

ontology supporting the system.
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2.5.2 Machine learning for situation prediction

Predicting the future occurrence of a situation of interest in order to enhance or

reduce its probability of occurrence in favor of the user is the goal of a proactive

system [146]. Predicting the future from sensor observations, time-series data re-

quires time-series machine learning approaches. Sensor time-series data is sequential,

hence, techniques that can handle time-series sequences are required for prediction.

Two categories of approaches that have been proposed for predicting the future from

sensor data include predictive reasoning, a knowledge representation method, and

statistical machine learning.

• Predictive reasoning

Semantic methods based on knowledge representation techniques are emerging

to address predicting the future in sensor data streams [87, 92, 93]. Klarman

and Meyer [87] employed temporal rules that accommodate complex data as-

sociation patterns with logical and temporal constraints over DL-Lite Data

streams for predictive reasoning. Lécué and Pan [92] addressed predictive rea-

soning from semantically annotated data streams by interpreting and correlat-

ing past semantics-augmented data over exogenous ontology and constructed

predictions by cross-stream association rules. Although predictive reasoning

is an active research area which provides expressive methods with promising

results, it is young with new techniques still emerging.

• Statistical machine learning

Statistical machine learning provides advanced techniques which support ap-

plying learning algorithms to learn certain properties and patterns of data to

predict future trends. Sensor observation data is essentially time-series data.

The classical statistical methods for modeling time-series data referred to as
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Box-Jenkins Models were originally introduced by Box and Jenkins [28]. These

methods involve identifying and specifying a model that fits the data. They

have been used widely for predicting future values in sensor time-series data

[166]. These include the Autoregressive Models, Moving Average Models, and

the Autoregressive Moving Average Models, a mix of the first two, which are

stationary models. The Autoregressive Integrated Moving Average is a non-

stationary form of Box-Jenkins model [28, 29]. However, they have known lim-

itations. Firstly, they assume that time-series data conforms to a linear model

and follows a particular known statistical distribution, such as the normal dis-

tribution. Secondly, they assume that time-series data are either stationary

or can be transformed to being stationary [86, 168]. Consequently, they are

known to perform poorly when the continuity in the values of time-series data

is uncertain [149].

On the other hand, a body of works exists on approaches that apply data

mining algorithms for analyzing time-series data and do not require specifying

a model for the data but rather generate the model from the historical data

used in the training process [96, 102, 151, 162, 168]. These approaches have

been grouped into three large categories known as feature-based, distance-

based and model-based [162].

– Feature-based approaches: These approaches rely on properties that

are representative of particular series to classify them. They transform a

series of data into a feature vector onto which conventional classification

methods are then applied to classify the series. The selection of the

appropriate feature set is an important task in this approach. A simple

form of this approach is to find a representative portion of the series that

can be associated with a certain class [133, 165]. Other techniques include

the use of kernel functions and heuristics to identify sub-sequences in the

series that can be used to classify the series to a target class [41, 61, 70].

– Distance-based approaches: These approaches are based on using

distance functions, a measure of the similarity between time-series data
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to classify them [1, 8]. Hence, choosing an appropriate distance function

is the critical task in these approaches. Distance functions based on

Euclidean distance have been found to be easier to compute and very

useful in many scenarios. But their performance is known to be limited to

the same length of series, and since they consider only one-to-one matches

in the series, they are prone to errors even with a small misalignment in

the series [84]. Other distance function approaches with more elastic

matching include Dynamic Time Wrapping, which compares similarities

of a point in a series with a small buffer of other points on the other

series [50]. However, a drawback of this approach is that it is known

to be computationally expensive. In general, distance-based approaches

have been criticized for space and time computation limitations [161].

– Model-based approaches: Model-based approaches generalize classi-

fiers into a certain model, based on the assumption that a class of time-

series is generated by an underlying model [151, 162]. The task is to iden-

tify the model that can generate the sequences of the classes from certain

parameters. Then the model learns the parameters from the training

dataset and use them to assign new time-series to different classes. A

large number of model-based approaches have been proposed for classify-

ing time-series data. Examples of these include Bayesian Networks and

Artificial Neural Networks [162].

A major drawback of using data mining approaches on streaming sensor data is

that most of the approaches are originally designed for static time-series, that

is, time-series in which all the data points are available at the time of processing

[102, 149]. Streaming sensor data is unbounded and evolving. Furthermore, in

a dynamic environment the relationship between the data and the properties

of the target variable which the models predict is known to drift over time

(concept drift) [62]. Hence, approaches that can learn continually and update

the classifiers dynamically with the most recent data are required [51, 102].
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• Sliding window techniques for sensor data prediction

In an effort to use data mining algorithms for prediction tasks on sensor data,

some recent efforts have proposed the sliding window approach [102, 108, 149]

for classification on time-series data. A sliding window is a fixed length of

data that slides through the temporally ordered data stream [60, 149]. Sliding

windows can be useful for two main purposes in time-series data classification

tasks: first, to continually filter through the streaming data and select a fixed

size of the most recent attributes as input for the classifier for predictions;

second, to continually slide through historical data and select fixed size of data

to update the classifier. Sliding window techniques are among the approaches

that have been proposed to overcome concept drifts in dynamic time-series

data [51]. Hence, the sliding window technique with data mining algorithms

is adopted for situation prediction in this research.

2.5.3 Decision processing

Real-time decision processing in order to take control of anticipated situations (proac-

tive control), based on sensor data is a key challenge of a proactive application. Ap-

proaches that have been proposed for structuring decision processing in computer

systems include ontology-driven approaches [39, 127, 154, 160], Bayesian decision

theory [19, 27, 54], MDP [38, 124, 125], and Fuzzy set theory [53]. The latter, how-

ever, has no structure of its own and is rather used to augment the others to cater

for vagueness in input data for decision making [53].

• Ontology-driven approaches

Increasing research efforts are exploring the use of Semantic Web technology,

especially an ontology to model decision processing [39, 127, 128, 154, 160, 169].
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Rospocher and Serafini [127] proposed using ontological representations of the

data in a decision processing system to structure the dataset and to provide

a content exchange format between the modules of the system; and to track

intermediate data and results of the decision processing. They proposed a

framework and an ontology for decision making which is comprised of three

main components, namely, problem, data, and conclusions [128]. Using an

ontology to structure decision processing in this manner has been noted to

have several advantages [127, 128, 154]. First, both the knowledge and data

for making decisions, which can exist in heterogeneous formats, can easily be

combined for decision processing. Second, the decision processing which can

be implemented as a service can also be combined with other semantic services

that are available. Furthermore, this decision processing approach is known to

support advanced reasoning techniques, which results in high-quality decisions.

A known drawback of ontology-driven systems is the lack of adequate support

for uncertainties, which may impair coherence and consistency in decision out-

puts [10]. This inadequacy may be exacerbated, especially in the uncertain

environment which characterizes sensor data. The classical decision theory is

built upon axioms of probability and utility. Probability supports the frame-

work for coherent assignment of beliefs with incomplete information, and util-

ity theory provides a set of principles for consistency in processing preferences

and decisions [71, 74].

• Bayesian decision theory

Bayesian decision theory provides a theoretical framework for modeling ac-

tion and inference under uncertainty [18, 19, 27, 54]. The framework can be

represented by an influence diagram, a directed acyclic graph, in which the

decision variables are represented by nodes and the relationship between two

nodes is represented by directed arcs connecting the nodes. Three different

main types of nodes can be represented, such as chance node, decision node

and utility node. A local probability distribution is maintained at each of the
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chance nodes and an utility table for the utility node. The decision node con-

sists of the decision of alternatives. The alternative that maximizes expected

utility, given the different probability distributions in the chance nodes, is con-

sidered the best decision. The Bayesian theory approach has been noted to be

useful for decision making problems with several structured decision variables

[19, 27].

• Markov decision processes

MDP and the Partially Observable Markov Decision Process (POMDP) have

proven useful as rigorous mechanisms for modeling planning and decision mak-

ing in uncertain environments [38, 107, 124, 125, 148]. MDP can be used for

planning and decision making problems in dynamic environments. The deci-

sion processing task is to find an optimal policy which is a sequence of actions

(given the state of the system) that maximizes the expected reward over a

defined time horizon [148].

MDPs have been explored for making proactive decisions with promising re-

sults [57, 107]. However, the support for uncertainties in MDPs is known to

be limited to fully observable domains [38, 148].

POMDP, which is a generalization of MDP, caters for even more uncertainties

by the introduction of the notion of a belief of being in a state. A basic

POMDP model consists of: a finite set of states; a finite set of actions; a

finite set of observations; a state transition function, which is a probability

distribution over some finite set of states; an observation function, that is, a

probability distribution over some finite set of observations; and an immediate

reward function [38, 148].

The complexity of computing optimal policies in MDPs and POMDPs is known

to be very high due to the extensive computation involved in calculating the

utility and beliefs, which suggests why they are often avoided in real-time
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systems. Some recent works have proposed algorithms and approaches to

minimize the running time and make them suitable for real-time applications

[107, 123, 148].

Some proposed approaches have attempted to leverage the combined advan-

tages of more than one existing theory for decision making. In this manner,

Bayesian decision theory has been combined with an ontology [10, 171]. How-

ever, there have not been many efforts in integrating MDP processes in this

manner.

2.5.4 Section summary

Proactive control in a computing system depends on three main functionalities;

situation detection, anticipation and decision processing. The system also requires

a mechanism to manage the knowledge of the real world, the hypothesis of the

user’s goal state, and alternative actions to shape the world dynamics. Hence, an

architecture that brings together all the technologies to support these functionalities

in an SSW framework is required to achieve proactive monitoring and control within

the context of SSW.

2.6 Summary

This chapter has presented a review of the existing literature in diverse paradigms

that support technologies necessary to achieve the objectives of this thesis. The

review started with the evolution and the state-of-art in SSW technologies. The

related work in the proactive computing paradigm and previous techniques used

to achieve proactive control in computing systems were also reviewed. Finally, to

identify the gap which this thesis attempts to fill, existing related architectures were

reviewed.

The design and development of proactive systems is currently gaining attention in
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different application domains. SSW technologies provide a rich set of promising tools

and techniques for developing sensor-based applications, but most SSW applications

are still designed in a reactive manner, and current SSW architectures are not based

on proactive computing principles. Although there have been some recent efforts

proposing proactive architectures, such models do not employ SSW technologies.

They lack the expressive semantic analytic techniques that SSW offers. There is no

current SSW architecture that offers all functionalities required to achieve proactive

monitoring and control in a single framework.

This review reveals two main gaps which this research is designed to fill. First,

current SSW frameworks lack essential mechanisms required for proactive control.

These are mechanisms for anticipating the future, and coherent mechanisms for

consistent decision processing and planning. Secondly, lack of frameworks for rapid

SSW application development is still a known gap in the SSW community.

The next chapter discusses an abstract architecture for a proactive SSW framework

based on the proactive computing paradigm.



Chapter 3

An Abstract Architecture for a
Proactive SSW Framework

The main goal of this thesis is to investigate a SSW framework for proactive monitor-

ing and control applications. To achieve this, we designed an abstract architecture

to enhance and simplify the incorporation of situation detection, situation prediction

and proactive decision mechanisms in the framework. Part of this chapter has been

reported in Adeleke and Moodley [4].

As a point of departure, we considered the SSW framework [103, 135] and the

proactive computing paradigm originally introduced by Tennenhouse [146], with

their interpretations as reported in the literature (see Chapter 2). We focused on

the basic characteristics of a proactive system [131], and functional components

of a SSW framework [135]. From these (see Section 2.3, Section 2.4), we elicited

four areas of concern necessary to achieve proactive control in a SSW monitoring

and control application, namely, monitoring, situation analysis, control, knowledge

management.

This chapter is organized as follows. In the next section we discuss the design

goals and the areas of concern. Section 3 discusses the abstract architecture of the

framework, while Section 4 presents the use of ontology to drive the framework.

37
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Finally, Section 5 concludes with a summary of the chapter.

3.1 Design principles

Design principles are used in software architecture to guide the principal design

decisions involved in the software design [100]. The design of the framework is

governed by five core requirements, these are listed as follows.

(i) Adequate representation of all the areas of concern to achieve proactive control

in environmental monitoring applications.

(ii) Proactive control represented in line with the proactive computing paradigm

introduced by Tennenhouse [146].

(iii) Implementable within the context of the SSW.

(iv) Extendable and allowing reuse of relevant existing components, that is, allows

incorporation of more functional components.

(v) Applicable in solving different environmental monitoring and control problems,

that is, not application specific.

3.2 Areas of concern

The four AoCs considered to determine the required components of the proactive

SSW are monitoring, situation analysis, control and knowledge management. The

latter is treated as a cross-cutting concern. These are discussed as follows.

3.2.1 Monitoring

A proactive system is required to continually monitor a property of the feature of

interest in an environment and analyze the recorded observation data in near real
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time. The SSW is essentially an ontology-driven application, which leverages ontolo-

gies to manage sensor observations in an application domain and enrich the sensor

observation data with semantics to aid analysis. Hence, monitoring in the frame-

work includes support for sensors, the sensor platforms, communication devices, the

processing system components and the ontology modules that are involved in the

capturing, recording, transmission and enriching of the sensor data. It also includes

static data that are pre-captured in the ontology, such as expert knowledge and

relevant metadata for semantic enrichment of the sensor data.

3.2.2 Situation analysis

A proactive system is essentially required to have a model of the world and a hy-

pothesized user’s goal state [131]. These requirements in turn require specifying

some indexes that can facilitate the translation of quantitative sensor data values

to certain qualitative states of the world, and thereafter, analyzing the semantically

enriched streaming sensor data in order to detect the current state and to anticipate

possible future occurrences of such situations. Situation analysis requires two major

functionalities, namely, Situation detection and Situation prediction.

• Situation detection: In an ontology-driven framework, situation detection

employs specification techniques in which the relationship between the target

situation and sensor data is expressively encoded in the terms of the ontology

(see Section 2.5.1). At run time, queries are evaluated over the ontology to

combine the enriched current stream of sensor data with the assertions in the

ontology in order to detect the situation which the current data represents.

The traditional method is to store the enriched data stream in the ontology in

order to combine both data and the rules in a query. However, recent efforts

in stream reasoning allows ontology based access to streaming data in which

the enriched streaming that can be combined with static data and assertions

in the ontology on the fly (see Section 2.3.2).

• Situation prediction: Anticipation is a cornerstone of achieving proactive
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control in a computing system [146]. Situation prediction involves anticipating

possible future states of the world over a specified horizon of time. Although

some recent efforts are exploring predictive reasoning, which is based on knowl-

edge representation techniques with promising results, in this work we employ

Statistical Machine learning based situation prediction (see Section 2.5.2). A

statistical machine learning technique can be used to model the states of the

world and learn the complex relationship between the data and states of the

world from historical streaming data. This can be used to predict the state of

the world for the next time-step into some defined classes of possible states.

3.2.3 Control

The goal of a proactive system is to make decisions and act, based on an anticipated

situations, in order to reduce or enhance the probability of occurrence of the situ-

ation, on behalf of its user’s goal [146, 155]. That is, to control the system based

on the hypothesis of the user’s goal state [131]. Two important functionalities are

required in this areas of concern, namely, decision processing and action.

• Decision processing: This is necessary to select an appropriate action

among alternatives in order to control the system in favor of the hypothesis of

the user’s goal state. Ontology-driven decision processing involves evaluating

queries on the ontology to activate appropriate rules and infer a corresponding

decision based on some specified logic. The classical decision theory is based on

the axioms of probability and utility. The concern here is to provide support

for a coherent and consistent decision mechanism for the use case at hand.

• Action: Control actions are actions that have either direct or indirect influ-

ence on the dynamics of the states of the world. The actuating components of

the system then give support to committing resources to the decision output.
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3.2.4 Knowledge management

Knowledge management functionality is required across all the other areas of con-

cerns in the framework. Hence, it is treated as a cross-cutting concern in the design

of this framework. An ontology provides adequate proven techniques that can be

used to model the knowledge requirements of all parts of the system such as: sen-

sors and sensing platforms; the contextualized states of the world; the hypothesis

of user’s goals; future alternatives and control actions. The SSN ontology can pro-

vide adequate support for the sensor-related concerns, while a domain ontology can

model the world with its contextualized states. Functional ontology modules can

also be designed to support the various functional components in all the areas of

concerns.

3.3 Abstract architecture

The requirements in the areas of concerns, as discussed in the previous section,

are combined to develop an abstract architecture for the framework. The model

consists of three layers abstracted from the areas of concerns, namely, monitoring,

situation analysis and control, each of which represents the system components and

the ontology modules that support functional requirements of the areas of concern.

Figure 3.1 illustrates the abstract architecture for the framework.

The abstract architecture consists of three layers:

• Monitoring: This serves as the interface between the framework and the

monitored environment where sensor observation data on the features of in-

terest are captured. It represents certain parts of the system and ontology

module that support data and measurements, including both the streaming

sensor observation data and pre-captured static data in the system.

• Situation Analysis: It represents parts of the system and the ontology mod-

ule that support situation detection and situation prediction, the two processes
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Figure 3.1: Abstract architecture for a proactive SSW framework.

that generate the current and future states, respectively. Situation analysis

consists of two sub layers:

– Situation Detection: This sub-layer supports the detection of situa-

tions of interest in the system from the enriched sensor observation. A

critical element of this component is the index that translates sensor data

values to specified states.

– Situation Prediction: This sub-layer represents the part of the system

which enables the prediction of the future states.

• Control: This layer consists of two sub-layers that use the predictions to

create decisions and that transform the decisions into actions that can be

carried out by either human or computer agents.

– Decision Processes: This sub-layer represents parts of the system that

are involved in deciding the control action to take, given the predicted

future states. This layer fuses the identified current situation with the
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predicted situation to evaluate the most appropriate course of action.

– Action: This sub-layer represents parts of the system and ontology mod-

ules that supports encoding the control actions in the system, including

support for enactment of the selected control action that corresponds to

the result of decision process.

3.4 Data flow

In Figure 3.2 we illustrate the data flow through the main components of the system.

Streaming data for proactive monitoring requires processing on the fly where the

output of a process is automatically channeled as input for the next process.



Chapter 3. An Abstract Architecture for a Proactive SSW Framework 44

(a)

(b)

(c)

Figure 3.2: Level 1 Dataflow diagram of the proactive SSW framework: (a) Monitoring
(b) Situation analysis (c) Control

However, historical data can be stored for later use, and temporary storage can

be used to structure data as input for the next process. The observation data is

streamed into situation detection and situation prediction components. The outputs
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of these two are integrated for decision processes. The decision output is then used

by the action component to select the appropriate control actions to influence the

dynamics of the state of the world.

3.5 Summary

In this chapter we have presented the design of an abstract architecture for a proac-

tive SSW framework. The design started with the SSW framework [103, 135] and the

proactive computing paradigm. From these, we identified areas of concerns needed

to achieve proactive control in an SSW framework, which is governed by five core

design principles. The areas of concerns are then distilled into a three-layered ab-

stract architecture. Finally, we illustrated the data flow in the proposed framework

with a data flow diagram.

The efficacy and use of the framework is evaluated through the development of two

different prototype applications for environmental monitoring and control. These

use cases are presented in Chapters 5 and 6. First however, to motivate the im-

plementation strategies, in the next chapter, the development and evaluation of an

ontology for monitoring and control is presented. This serves to provide support for

incorporation and evaluation of other functional components of the framework.



Chapter 4

Ontology Driven Situation
Analysis

This chapter presents an ontology-driven framework for environmental monitoring

and control which was developed based on the abstract architecture presented in

Chapter 3. The ontology-driven framework also serves as a testbed for the incor-

poration and evaluation of other required components for the proposed proactive

monitoring and control framework. Parts of the study in this chapter have been

published [4].

The development of the ontology is evaluated on an indoor air quality use case with

real-life sensor data. Monitoring and control of Particular Matter of aerodynamic

diameter of 10 microns (PM10) in the indoor environment was chosen as the focus

of the use case. Although the system for the evaluation represents the three layers

of the proposed framework, at this stage, it does not include situation prediction.

The development of the ontology is focused on two main sub-ontologies. The first

is for proactive monitoring and control and the second is for indoor air quality.

The ontology reuses terms from existing ontologies such as the SSN ontology [43]

to support the monitoring layer of the architecture, CISRO time ontology [45] for

temporal terms and the activity ontology [1] for activity related terms.

The rest of this chapter is organized as follows. In the next section we present the

motivation for the study, followed by the use case in Section 3. Section 4 presents

the development of the ontology, while Section 5 presents evaluation of the ontology.

46
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The chapter concludes with a summary in Section 6.

4.1 Application use case

Detecting unhealthy indoor environmental situations and determining control ac-

tions to mitigate it requires a wide range of multidisciplinary domain knowledge.

This includes sensor data processing, indoor air quality, and occupational health.

Ontologies have been well investigated and found to be useful in capturing back-

ground and expert knowledge from different perspectives, integrating data from het-

erogeneous sources, building knowledge bases, knowledge acquisition (reasoning),

analyzing data streams and managing knowledge and system dynamisms [35, 81,

104, 106, 114].

A crucial task in monitoring and control of an environmental situation is the de-

tection of the particular situation of interest. This study addresses the situation

detection with an ontology-driven Air Quality Index which can be generated by rea-

soning on the ontology. The ontology is evaluated by populating it with test data

and querying it to analyze indoor environment situations relevant to the targeted

use case scenario.

This use case is based on an ongoing cohort study in communities in the highly

industrialized south Durban area in South Africa [78, 112] in which occupational

health experts investigate the various effects of exposure to indoor air pollution

on pregnant mothers and children. The area is generally inhabited by low income

households. Occupants of houses in such setting are at high risk of indoor pollution.

Houses in these areas have the following characteristics in common:

• Mechanical heating ventilation and air conditioning (HVAC) systems are usu-

ally not available, therefore ventilation is mainly by natural air infiltration

through openings such as windows, doors and vents.

• Indoor activities that aggravate high levels of pollutant concentrations include

smoking, burning fossil fuel for heating and cooking and burning of incense.
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• Nearby light- and heavy-industry also produce harmful emissions that contam-

inate indoor air.

The goal of the occupational health care researcher is to maintain good ventilation,

thermal comfort and harmful indoor air pollutants at acceptable levels.

4.1.1 Monitoring Particulate Matter

In this setting, occupational health researchers monitor the exposure of sensitive

or vulnerable occupants of such buildings by placing expensive and cumbersome

pollutant monitors (gravimetric particle monitors) in the indoor environment of the

building for a day or two which are then removed and taken to the laboratory for

analysis. This method is known as gravimetric analysis of Particulate Matter. [172].

During the procedure, occupants are also asked to complete activity diaries to collect

indoor activity data for analysis. These are then used to understand patterns of air

pollution.

4.1.2 Limitations of monitoring Particulate Matter

There are several limitations and challenges with the current process.

• It is cumbersome, capital intensive and dependent on manual processing. An

occupational health officer needs to physically travel to each house to observe

the equipment daily during the monitoring period.

• The analysis of the result takes several days, therefore it is inadequate to

help occupants abate present situations as the result of analysis will only be

available some days after the monitoring is completed.

• Because the monitoring is not continual, this approach assumes that the air

quality of a monitored house is the same as measured during the monitoring

time, which is actually not so in real life.
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• The current process has low temporal resolution, as some of the pollutant

monitors need several hours usually more than 8 hours to collect enough mass

for analysis [163, 172].

The ontology-driven indoor air quality system attempts to deal with these limita-

tions with a continual monitoring and control approach that alerts the occupants

of unhealthy situations and suggests control actions to abate the situation in near

real-time.

4.1.3 Key terms

(i) Indoor environmental quality (IEQ): A broad phrase that describes “a

building’s environment in relation to the health and well being of those who

occupy space within it” [76]. In this work, the usage scenario is focused on two

main aspects of IEQ. Indoor Air Quality and Thermal Comfort.

(ii) Indoor Air Quality (IAQ): A qualitative measure of the totality of the

attributes of indoor air in relation to occupants health and well being [33].

(iii) Air Quality Index (AQI): A quantitative measure of the current level of

pollution in the air based on the concentration levels of pollutants monitored

[78]. An index is a range of values that corresponds to different scales of

concentration level and possible health effects of each index. In this work we

adopted the AQI by United States Environmental Protection Agency (EPA)

[101].

(iv) Thermal Comfort Index: The level of satisfaction that people feel with

respect to heat level of the environment.
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4.2 An ontology for indoor air quality monitoring

and control

In this section, we present the design of the ontology-driven system for proactive

monitoring and control.

4.2.1 The system

The monitoring and control system is developed as a prototype of the SSW frame-

work. In the use case scenario (see Section 4.1), low cost sensors were installed in the

houses to observe pollutant levels and transmit observations to a central server for

analysis in near real-time. The system was designed to analyze the data by querying

the ontology. When an unhealthy situation is detected, it can raise an alarm and

send feedback messages to the occupants if there is need to take action in order to

abate the poor indoor air quality. Temperature, humidity and Particulate Matter

(PM10) sensors were installed on a Raspberry PI and Arduino prototyping platform,

to capture relevant data. Figure 4.1 illustrates the proposed IAQ monitoring and

control system.

Figure 4.1: IAQ monitoring and control system
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The system in this study was designed as a partial implementation of the abstract

architecture discussed in Section 3.1. However, the situation analysis layer (see

dotted lines in Figure 4.2) consists of situation detection components only. Hence,

the system at this stage does not anticipate the future, but reacts to the situations

detected in favor of the user’s goal (reactive). Figure 4.2 shows the abstract ar-

chitecture for our proposed framework and highlights the focus of this chapter, the

dotted lines highlights the layers, the green line highlights the components focused

on in the layer, while the grey box highlights the part that is not yet included in the

framework.

Figure 4.2: Abstract architecture for a proactive SSW framework.

The monitoring layer captures measurement and observation data. It provides repre-

sentation support for building environment description, sensor observations and the

occupant’s activities in the indoor environment. While the environment description

provides such data as features in the building, their type and quantity (for example

number of windows, type of ceiling), sensor observations provide values of sensor
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measurements of the properties (temperature, humidity, pollutants concentrations)

of the environment. The activity component provides a list of activities that impact

positively or negatively on the air quality or thermal comfort of the environment.

The situation analysis layer provides representation and reasoning support for sit-

uation detection and classification. The Air Quality Index and Thermal Comfort

Index which are sub-layers of this layer provide levels of abstraction over observation

and measurements. The indexes allow for classifying quantitative observation values

to qualitative states (situations) in the environment.

The control layer describes terms to determine whether any control action is nec-

essary to abate a possible harmful situation. Although our approach is not geared

towards activity recognition, capturing known activities relevant to the indoor envi-

ronments in the target communities provides crucial knowledge for control feedback

that can be exploited to abate poor indoor environmental situation. Some activi-

ties are known to induce pollutants, for example smoking indoors and cooking with

paraffin stoves are known to increase indoor particulate matter concentration. This

approach is especially useful in low resource settings where complex sensors and

activities recognition systems are not available.

4.2.2 Design goal

The development of the ontology revolved around three core requirements in line

with the abstract architecture. These are stated as follows.

(i) Adequate representation of sensor measurements pertaining to intended use

case.

(ii) Representation and reasoning services for analyzing sensor data for detecting

target situations.

(iii) Determining possible control actions to mitigate detected unhealthy situations.
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4.2.3 Competency questions

Competency questions (CQs) are requirements presented as questions which an on-

tology must answer [68]. The ontology must contain sufficient terms and axioms to

satisfy the CQs. CQs are useful for two main purposes. First, to enable developers

identify important terms to create the ontology. Second, CQs provide a means to

verify that the requirements of the ontology are satisfied [21].

The competence questions for the development of the environmental monitoring and

control ontology are itemized as follows.

CQ1 Can the ontology adequately represent sensor data pertaining to the use case?

• Is it possible to stream sensor data to the ontology in near real-time?

• Can the ontology enrich the data with necessary meta-data for analysis?

CQ2 Can the ontology support adequate reasoning services for analysis of the sensor

data to detecting targeted situations?

• Can the ontology automatically classify the quantitative sensor data to

qualitative states to identify targeted situations?

• Is it possible to query the ontology for the classified states in near real-

time?

CQ3 Can the ontology determine possible control actions to mitigate unhealthy

situations?

• Can the ontology represent expert knowledge for determining control ac-

tions?

• Can the ontology match detected situations with appropriate control ac-

tions?

• Is it possible to query the ontology for the control actions in near real-
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time?

4.2.4 Ontology engineering

Methonthology [58], the popular ontology engineering method was adopted to de-

velop the ontology because it provides sufficient details, supports prototyping, and

allows reuse of existing ontologies. Methontology proposes seven activity phases for

use in building an ontology, namely, specification, knowledge acquisition, conceptu-

alization, integration, implementation, evaluation and documentation. The phases

of this method are followed as discussed next.

• Specification: During this phase the core requirements of the ontology are

defined . These are to provide support for the following:

– Representation of sensor measurements pertaining to the use case.

– Representation of expert knowledge pertaining to the use case.

– Implementation of Air Quality Index for classification and detection of

targeted situations from sensor data.

– Reasoning and inferencing to determine appropriate control actions to

abate unwanted situations.

– Reuse of relevant terms from existing ontologies.

– Extensibility to allow incorporation of future components.

• Knowledge acquisition: In this phase we acquired knowledge from domain

experts in the field of occupational health. We participated in field works in

order to acquire domain knowledge and data for evaluation.

• Conceptualization: In this phase the structure of the ontology is defined

starting with a glossary of terms from domain vocabulary. The structure is

aligned with the abstract architecture (see Section 3.1), the problems and their
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solutions are described in terms of domain vocabulary.

• Integration: Terms from three different ontologies were reused in the ontology

for this use case. These are the SSN ontology [43], CSIRO new Time-new

ontology [45], and the activity pattern ontology [1].

• Implementation: In this phase the ontology was developed using the Protégé

ontology editor [109].

• Evaluation: Methontology defines evaluation as carrying out technical judge-

ment on the ontology. The ontology is evaluated by populating it with data

and querying it for relevant scenarios to show that it can achieve the goals of

building it. And by answering the competence questions (see Section 4.2.3)

• Documentation: The process, approaches, implementation and usage of the

ontology were documented as specification document. The work was also re-

ported in a published paper [4].

Figure 4.3 shows the main concepts and relations of the monitoring layer of the

abstract architecture.
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Figure 4.3: Fragment of the IAQ the ontology illustrating the main concepts.

Figure 4.4 shows the fragment of the IAQ ontology representing the Situation anal-

ysis layer of the abstract architecture. This includes the Air Quality Index and

Thermal Comfort index.

Figure 4.4: Fragment of the IAQ ontology showing terms representing situation detection.
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The IAQ monitoring and control system relies on indoor activities of the occupants

to control unhealthy levels of the monitored pollutant. Figure 4.5 shows terms in

the ontology that represent the action and control layer of the abstract architecture.

Figure 4.5: Fragment of IAQ the ontology showing terms for situation control.

4.2.5 Implementation of Air Quality Index

The ontology allows for representation and automatic calculation of the Air Quality

Index from current sensor observations. Table 4.1 shows the range and categories

of the Air Quality Index. It describes six states of health concern, such as good,

moderate, unhealthy for sensitive groups, unhealthy, very unhealthy and hazardous.
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Table 4.1: PM10 Air Quality Index, adapted from Mintz [101]

Air quality Ontology classes Concentration Description and control action
(PM10 Index) (µg/m3)

Good PM10IndexGood 0 - 54 Good Air Quality
Control: Nil

Moderate PM10IndexModerate 55 - 154 Moderate Air Quality
Control: Nil

Unhealthy for PM10IndexUnhealthyfor- 155 - 254 Unhealthy air quality for sensitive people
Sensitive Groups SensitiveGroup Control: Limit activities that induce fine particles

Unhealthy PM10IndexUnhealthy 254 - 354 Unhealthy Coarse Particle Level for all
Control: Reduce activities that induce fine particles

Very unhealthy PM10IndexVeryUnhealthy 355 - 424 Very Unhealthy air quality
Control: Stop {activities that induce fine particles}
and Do all {activities that removes fine particles}

Hazardous PM10IndexHazardous 425 - 604 Hazardous Coarse Particle Level
Control: Consider evacuating the house -
temporarily and consult IAQ expert

Table 4.1 shows the adapted AQI for PM10. Each state corresponds to a range

of pollutant concentration values that specifies an index on the AQI. For example ,

PM10 concentrations between 0 and 54 correspond to the Good state. A correspond-

ing instance of PM10 Index PM10GoodIndex, represents this state in the ontology.

Other states are similarly represented in the ontology. The unhealthy range of values

have control feedback messages, which describe what the occupants could do when

necessary to abate unhealthy situations detected by the system. Figure 4.6 shows

the implementation of the AQI with Description Logic (DL) queries on the ontology.
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Figure 4.6: Implementation of Air Quality Index with DL queries.

The ontology can be queried with SPARQL and DL queries. HermiT 1.3.8.3 reasoner

that is bundled with the Protégé ontology editor was used for reasoning on the

ontology. It can also be queried in apache Jena, a Java framework for building

Semantic Web applications.

4.2.6 Thermal Comfort Index

Similar to the Air Quality Index, a Thermal Comfort Index was implemented using

the adopted temperature and humidity values in Table 4.2.
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Table 4.2: Temperature and relative humidity scale for thermal comfort

Season Temperature (0C) Relative humidity (%)

Winter 20 - 24 30 - 70
Summer 23 - 26 30 - 70

4.3 Analysis and evaluation

The ontology is evaluated by demonstrating that it can achieve its goals (see Section

4.2.2) and by answering the competency questions (see Section 4.2.3) .

4.3.1 Representation of sensor observations

The first goal of the system is adequate representation of sensor measurements per-

taining to the intended use case (indoor air quality). To evaluate the ontology for

the capability to represent sensor measurements, it is queried for the sensor data.

Query1 show a sample SPARQL query evaluated on the ontology to list the houses

and sensor values of locations with unhealthy levels of Particulate Matter (PM10).

The result of this query is shown in Table 4.3. This result also answers CQ1 in

affirmative.

Query1: PREFIX i e q : <http ://www. j . adapt ives . c a i r . ukzn . ac . za/ ieq−02#>
SELECT (? l o c as ?PM10UnhealthyHouse ) ? property ( s t r (? value ) as

? sensorValue )
WHERE {

?x i eq : observedProperty ? property .
?x i eq : hasObservat ionLocat ion ? l o c .
?x i eq : hasObservationValue ?value
FILTER regex ( s t r (? property ) , ’ Par t i cu la teMatte r10 ’ , ’ i ’

)
FILTER (? value>=254)

}
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Table 4.3: Result of sensor observations evaluation

PM10UnhealthyHouse property sensorValue

House11 ParticulateMatter10 “255.0”
House12 ParticulateMatter10 “300.6”

4.3.2 Situation detection

The second goal of the system is the representation and reasoning service for

analyzing sensor data to detect target situations. Figure 4.7 shows PM10

observations that are automatically identified as unhealthy by the Air Quality

Index query based on sensor observations values. The index was implemented

with DL queries (see Section 4.2.5). This result answers CQ2 in affirmative.

Figure 4.7: Evaluation of situation detection.

4.3.3 Control actions

Control actions are designed as alerts that the system sends via SMS to the

house occupants when it is necessary to take actions. To evaluate the capa-
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bility of the ontology to support this, it is queried for appropriate actions for

each of the situation detected in the indoor environment. Query2 shown sub-

sequently is an example query listing for control actions to abate unhealthy

PM10 pollution. The result of this query is shown in Table 4.4. This result

also serves to answer CQ3 in affirmative.

Query2: PREFIX i e q : <http ://www. j . adapt ives . c a i r . ukzn . ac . za/ ieq−02#>
SELECT (? x s as ? ControlAct ion )
WHERE {

FILTER regex ( s t r (? y ) , ’ Par t i cu la teMatte r10 ’ , ’ i ’ )
}

Table 4.4: Result of Control Action evaluation query.

ControlAction

useAirFilter
useVacuumCleaner
openWindow

4.4 Summary

This chapter has presented the design of an ontology-driven system for environmental

monitoring and control based on the architecture introduced in Chapter 3. The

system is evaluated on an indoor air quality use case. The situation analysis layer

of the system mainly consists of situation detection based on the ontology-driven

Air Quality Index. Quantitative and qualitative states are defined and represented

for indoor PM10 and thermal comfort, which enables the system to determine the

indoor Air Quality Index by reasoning on the ontology. Thermal Comfort Index

and Air Quality Index most likely do interact, that is, are not independent of each

other. However, this possible interaction is beyond the scope of our thesis. The

index used is based on scales found in the literature. However, these can be set to

desired scale values. Occupants are alerted by an alarm and feedback messages by

SMS to minimize or eliminate pollutant inducing activities when unhealthy levels of

the pollutants are detected.
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The study in this chapter serves to show how to develop an SSW monitoring applica-

tion in line with the gap this research is designed to fill. Although the ontology-driven

framework presented in this chapter reacts to detected current situations (reactive),

the ontology is aimed to drive a proactive application in which the system anticipates

and averts the unwanted situation before it happens. Hence the next step towards

a proactive framework is to incorporate situation prediction into the system. This

will enable it to anticipate the future and produce proactive control actions to avert

pending unwanted situations. In the next chapter, we investigate how to incorpo-

rate situation prediction in the SSW framework using statistical machine learning

techniques.



Chapter 5

Incorporating Statistical Machine
Learning in a SSW Framework for
Proactive Monitoring and Control

In the previous chapter, an ontology driven system for monitoring and control was

proposed. Essentially, the framework in Chapter 4 was able to monitor and only

react to situations that have already occurred (reactive). It does not include a mech-

anism for situation prediction and hence, it could not anticipate future situations.

Anticipation is a corner stone of a proactive system [146]. To make the framework

a proactive one, this chapter presents an approach to incorporate situation predic-

tion in the ontology-driven framework, within the context of SSW. The approach

employs statistical machine learning techniques.

Although some recent efforts have proposed predictive reasoning, a semantic method,

for predicting future in semantically annotated data streams [87, 92], it is an active

research area which is young with new techniques still emerging (see Section 2.5.2).

Statistical machine learning provides advanced techniques that support applying

machine learning algorithms to learn certain properties and patterns of data to

predict future trends. Hence, the choice of statistical machine learning approach for

this study.

The study presented in this chapter has been reported in our published paper [5].

The situation prediction for proactive monitoring and control approach is validated

64
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on an indoor air quality use case. As mentioned before, indoor air quality is a grow-

ing concern [119, 130, 166] and a research area, where proactive monitoring and

control in the SSW can be applied. Monitoring and control of Particular Matter of

aerodynamic diameter of 2.5 microns (PM2.5) in the indoor environment was chosen

as the focus of the use case. Most research efforts in indoor air quality have been

directed to monitoring concentration levels of indoor pollutants and exposure levels

of individuals to the pollutants with applications that react to change in target situ-

ations [4, 66, 130]. Such applications allow for responsive actions to situations which

have already occurred and are useful for minimizing the effect of these situations.

Identifying a possible situation before its occurrence will allow for proactive actions

to be taken to avert or enhance its occurrence. A proactive monitoring application

in a home can anticipate trends of future pollution levels and trigger control actions

to avert the occurrence of such a situation altogether and prevent occupants from

exposure to unhealthy levels of pollution.

The main contribution of the study in this chapter is two-fold. The first is the explo-

ration of machine learning for situation prediction from streaming sensor data. This

resulted in the selection of a Multilayer Perceptron (MLP) model using a sliding

window over the incoming data to predict future values. Secondly, a mechanism for

incorporating machine learning models in SSW architectures to support situation

prediction is proposed. This is to support taking appropriate control actions ahead

of time in order to prevent the occurrence of a future unhealthy situation (proactive).

The approach is aimed at combining the high accuracy and performance of statisti-

cal predictive techniques and the expressiveness of semantic analytic techniques for

proactive monitoring and control applications [5].

This chapter is organized as follows. Section 5.1, presents an overview of the proac-

tive monitoring and control framework. Section 5.2, evaluates the framework with

an indoor air quality use case. The incorporation of the predictive model into a

stream reasoning framework is presented in Section 5.3. The framework is evaluated
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in Section 5.4, while Section 5.5 presents a summary of the chapter.

5.1 Proactive monitoring and control in the SSW

5.1.1 Abstract architecture

Figure 5.1, shows the abstract architecture introduced in Chapter 4 and highlights

the situation prediction component which is the focus of this chapter. The dotted

line highlights the layer while the green line highlights the component focused on in

the layer. The abstract architecture emphasizes the use of ontology, a specification

approach, for situation detection and machine learning, a learning approach for

predicting future situations (see Section 2.5.1, Section 2.5.2). Statistical models can

learn from historical data and use the weights generated to analyze current data to

predict the future with potentially high precision and sensitivity.

Figure 5.1: Abstract architecture for a proactive SSW framework.
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5.1.2 Main components

Figure 5.2 below shows the data flow through the main components of the framework,

this is the same as Figure 3.2 in Chapter 3, except that it highlights the components

focused on in this chapter (see green border in Figure 5.2). The monitoring layer

and situation detection component of the situation analysis layer has been reported

in a previous research [4]. The focus of this chapter is on the implementation of

the situation prediction process with a statistical machine learning based model and

incorporating the outputs of the situation analysis layer of the proposed framework

for the decision processing component.
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(a)

(b)

(c)

Figure 5.2: Level 1 Dataflow diagram of the proactive SSW framework: (a) Monitoring
(b) Situation analysis (c) Control



Chapter 5. Incorporating Statistical Machine Learning in a SSW Framework 69

5.2 Application use case

The use case for this work is an ongoing cohort study [78, 112] along with occupa-

tional health researchers investigating the effects of indoor air pollution, especially

fine particles pollution on pregnant mothers and children. This is the same use case

that was first introduced in Chapter 4, Section 4.1, except that while the reactive

application in Chapter 4 was focused on monitoring and control of PM10, this chap-

ter is focused on proactive monitoring and control of PM2.5. Particulate Matters,

especially those of the aerodynamic diameter of 2.5 µ or less (also referred to as

PM2.5), is one of increasingly incriminated indoor pollutants causing life threatening

illnesses.

Predicting indoor pollution levels of PM2.5 in an indoor environment is a complex

and challenging task. The indoor environment is a dynamic and complex system

of various environmental phenomena, building features, human activities and infil-

trations from the outdoor environment, all of which impact on the fine particles

concentration. The proactive monitoring and control system is to predict PM2.5

pollution trends effectively and provide proactive control actions for the occupants

when necessary to avoid excessive exposure to PM2.5 pollution.

The use case area is South Durban. As mentioned before (Chapter 4, Section 4.1),

the peculiar characteristics of housing in this community include lack of mechanical

heating, ventilation or cooling systems, highly aggravated indoor pollutants through

external pollution, and life style choices such as smoking and fossil fuel burning.

The area is also in proximity of heavy industries; harmful effects of indoor pollution

from outdoor sources have been noted to be more pronounced in residences that are

close to heavy industries.

For this research, the goal of the occupational health researcher is to keep the oc-

cupants’ exposure to particulate pollution within healthy limits. The World Health

Organization (WHO) has recommended an exposure limit of 25µg/m3 daily average

for indoor environments [157, 158]. Hence, a Proactive Pollution Monitoring and
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Control System is required to monitor and provide control actions to the residents

when necessary to avoid exposure to unhealthy PM2.5 pollution levels. The system

will predict the short term future trend of PM2.5 pollution and decide on appropriate

control actions to stimulate proactive actions by the occupants to avert exposure to

any anticipated unhealthy indoor PM2.5 pollution level. The indoor pollution will be

controlled via the control of activities of occupants that influence indoor PM2.5 pol-

lution. The control action will be communicated as a short message service (SMS) to

advise the occupants on proactive actions to take in order to prevent the predicted

pollution from occurring. This is an extension of the previous system [4], which only

alerts the occupants of unhealthy situations that have already occurred.

Three different houses in the use case area were selected and used for testing the

proactive monitoring and control system. One of the locations was first used as a

pilot study for a week in April 2015, during the autumn season and the other two

were used in October 2015, during the spring season.

5.2.1 Proactive pollution monitoring and control

The proactive pollution monitoring and control system was developed as a prototype

implementation of the proposed framework. Sensor units were installed in three

houses (Site 1, Site 2 and Site 3; See Figure 5.3). These were implemented with low-

cost sensors, mounted on prototyping platforms such as Raspberry Pi to capture and

format sensor observation data (PM2.5 concentration). The platforms also hosted

communication devices to transmit the observation data to the processing server.

The sensors sent streaming data over the Internet to the processing server located

in the Cognitive and Adaptive Systems Research Laboratory, at the University of

KwaZulu-Natal which is 20 km away. Site 1 is about 1.1 km away from Site 2,

and about 300 m away from Site 3, while Site 2 and Site 3 are 900 m apart. The

processing server hosts the knowledge base, and runs the monitoring and control

system.
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(a)
(b)

Figure 5.3: (a) Main hardware components; (b) Google map showing Site 1, Site 2 and
Site 3.

The hardware deployed in each site included a sensor network testbed implemented

with low cost sensors for the monitored pollutants. PM2.5 was monitored with two

different low cost sensors, Dylos air quality monitor DC1100 PRO (Dylos monitor)

and Nova PM sensor SDS011 (Nova sensor) 1. Using two low cost sensors for mon-

itoring simultaneously allows for assuring the quality of the recorded observations.

A Raspberry Pi B+ in each location acts as the sensor node that continually trans-

mits streams of sensor observation data to the processing server. The sensor node is

equipped with a LB-Link BL-WN151 wireless N adapter that connects to the Inter-

net through HUAWEI E5330 mobile Wi-Fi router and transmits data to the server

through a Message Queuing Telemetry Transport (MQTT) service.

The software for the Proactive Pollution Monitoring and Control includes the indoor

environmental quality ontology reported on in an earlier study [4], which is now

extended with terms to support prediction of future pollution levels and decision

rules. The testbed was implemented with Apache Jena framework in Eclipse incor-

porated development environment. C-SPARQL library, a stream reasoning engine

and Apache Jena TDB –a triple store– were also incorporated into the framework.

A predictive model that employs a trained MLP, an Artificial Neural Network model

to predict short term pollution levels of PM2.5, was implemented for the situation

1http://www.dylosproducts.com/dc1100paqmc.html, http://inovafitness.com/en/Laser-PM2-
5-Sensor-35.html
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prediction component. This was implemented with the Waikato Environment for

Knowledge Analysis (WEKA) [69] libraries in the Java environment and incorpo-

rated in the architecture. The stream reasoning engine supports incorporating both

the current and future PM2.5 pollution states to determine appropriate feedback mes-

sages. An actuator module is then invoked to send pre-formatted control actions via

SMS to the occupant when necessary.

5.2.2 Situation prediction using machine learning

The situation prediction component of the Proactive Pollution Monitoring and Con-

trol system aims to predict short term trends of fine particulate matter in the indoor

environment. Several factors have been noted to influence PM2.5 concentration in

the indoor environment, such as indoor and outdoor sources of the particles, fine

particles resting on different surfaces can also be resuspended in the air due to im-

pact during activities. Activities, including sweeping, cooking, burning of incense

and cigarette smoking are known to influence the concentration of PM2.5 captured

in the sensor observation data (see Chapter 4).

A sensor data stream is essentially time series data, which requires a time series

approach for predicting future values. Prediction of future states can be achieved

by pattern classification with a sliding window technique [108, 149]. Classification

is an area of machine learning that involves constructing classifiers for character-

izing datasets. A classifier is a function that maps the instances described by a

set of attributes to one of a finite set of class labels [60]. Examples of classifiers

include Bayesian Network classifiers, Artificial Neural Networks classifiers and Deci-

sion Trees classifiers. Classification techniques employ machine learning algorithms

to identify and generate a model that fits the relationship between the attribute set

and class label of the input data, such that the model can accurately predict class

labels of new attribute sets [144]. Situation prediction in this application scenario

is treated as binary classification. The classifier is made to predict the PM2.5 state

over a prediction horizon into one of two non-overlapping classes (“Good” or “Poor”)

guided by the WHO recommended exposure limits for indoor PM2.5 [157].
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The sliding window approach for classification on time series data was adopted to

predict PM2.5 short term pollution levels 30 minutes (m) and 1 hour (h) into the

future. A sliding window is a fixed length of data that slides through the temporally

ordered data stream. Sliding windows can be useful for two main purposes in time

series data classification tasks. First, to select a fixed size of the most recent at-

tributes from the evolving time series data as input for the classifier for predictions.

Second, to slide through historical data and select a fixed size of data to update the

classifier. In our approach, a sliding window is used to select attributes for generat-

ing feature-sets for the classifier to make predictions. Five different classifiers were

considered for predicting PM2.5 short term pollution levels in this study. These are

discussed below.

• Bayesian Network (BN): BN also referred to as belief network is an anno-

tated directed acyclic graph that support representation of joint probability

distribution over a set of random variables. A vertex in the graph represents a

random variable while the edges represent dependencies between the variables.

A conditional probability table is maintained at each node. A BN classifier can

learn appropriate Bayesian Network structure, and the probability tables from

training data given the class variable. Classification is done based on joint

probability distributions over class variables, given the particular instance of

input variables. A class label with the highest posterior probability is predicted

[60]. BayesNet is an implementation of BN in WEKA library [159].

• Multilayer Perceptron (MLP): MLP is one of a family of computation models

called Artificial Neural Networks (ANN). They are used in machine learning

and cognitive science to emulate the biological nervous system in computing

functions. An ANN consists of several interconnected ‘neurons’ and is capable

of changing its internal structure based on the data that flows through it either

from external or internal source. ANNs have been found notably suitable for

non-linear classification tasks. A MLP consists of three type of layers: the

input layer, one or more hidden layers and the output layer. MLP classifiers

have been widely and successfully used for time series prediction tasks [152].
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• Decision Table (DT): DT is a rule based classifier which functions in the form

of a look up table. DT consists of hierarchical tables such that each entry in a

higher level table is broken down by the values of a pair of additional attributes

to form another table, a process called decomposition. As such, DT has two

components, a list of attributes also called a schema, and a multiset of labeled

instances referred to as the body [89]. A decision table algorithm generates

decision tables from training data for a specific prediction task. Given unseen

input data, the generated table is searched for the class label whose attributes

are the same as that of the unseen data to determine the class label for the

data. In the case of no class has exactly same attributes, one with very similar

attributes measured by some metrics (nearest neighbor) is predicted [97].

• J48: This is an open source Java implementation of C4.5, a decision tree

method. A decision tree classification algorithm builds decision trees from la-

beled input datasets. A non-leaf node on the tree represents an attribute vari-

able, while leaf nodes represents class variables. The J48 classifier implements

a concept referred to as information gain, an information theoretic concept

which is used to measure the amount of information an attribute set contains.

The algorithm uses the information gain to generate rules for assigning class

labels to unseen data [83].

• Random Forests (RF): RF is an ensemble learning method. Ensembles are

methods that implement several classifiers and aggregates their results. RF

employs a method called bagging to aggregate results from several decision tree

classifiers. Successive trees in bagging are independently constructed using a

bootstrap sample of the dataset, such that a simple majority vote is taken on

the result of the trees to make a prediction [30, 94]. RF has been noted to give

good performance on time series data [82, 170].

The data set consists of time series data of PM2.5 concentration level generated from

the sensor observation data. One week of continuous PM2.5 sensor observation data

of one minute resolution was collected from each site for this study. The data was

captured by two sensors, the Dylos monitor and the Nova sensor. Dylos monitor
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records PM2.5 observations in particle counts per cubic feet, while the Nova sensor

records observation in micrograms per cubic meter (µg/m3). Conversion of the data

from Dylos monitor to µg/m3 was achieved using the widely used method derived

by Semple et al. [132, 141].

Sensor data from low cost sensors can be inherently noisy. Hence, to minimize

the noise in the data, a 30 m simple moving average of the actual 1 m resolution

sensor observation data is used for the analysis. The sliding window technique

maintains a queue of constant length in the form of first in first out (FIFO) with

one minute resolution sensor observation data. At every minute a new sequence

is formed which differs from the previous sequence only by addition of the newest

time step observation data, and removal of the oldest time step observation data in

the sequence. More formally, if Ot represents the observation at current time t, at

every time step, a new sequence consisting of a series of n observations is formed

by pushing-in the new observation as Ot and popping out the oldest observation

Ot−(n−1) from the previous sequence.

The features for building the classifiers include timestamps, mean of the sliding

window sequence, class value for the mean, and class label for the target class. The

class value and class label are categorical and binary, that is, two non overlapping

classes (“Good” and “Poor”). Guided by the WHO recommended exposure limits

to indoor PM2.5 [157], concentration values that are less than or equal to 25 µg/m3

are set to “Good” and those that are greater than 25 µg/m3 are set to “Poor” (see

Table 5.1).

Table 5.1: Class values, adapted from WHO recommended exposure limits for indoor
PM2.5 [157].

PM2.5 Concentration (µg/m3) Class Value

≤ 25 “Good”
> 25 “Poor”
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5.2.3 Experiments

Experiments were carried out with time series techniques such as Auto Regressive

Integrated Moving Average (ARIMA) but yielded no satisfying result for this use

case. Hence, the adoption of a sliding window technique. 6480 data points of one m

resolution, this consists of four and a half day continuous observation data that was

selected from each site data for analysis (see Section 5.2.2). The data was analyzed to

select the appropriate machine learning algorithm for the use case and to determine

the optimal training methods for the model. The experiments are described below:

Experiment 1: Data visualization

The aim of the data visualization is to visualize the data from each site and under-

stand class distribution of the data. First, the one minute resolution raw observation

data from both Dylos monitors and Nova sensors were plotted together in line charts

to show the trends of PM2.5 in the sites and also to see the agreement between the

two sensors. Second, 30 m moving average data from both sensors was also plotted.

Figure 5.4 shows the visualization of the raw PM2.5 observations from the sites. The

data captured by the Nova sensor is less accurate than Dylos monitor observations

(see Figure 5.4), therefore, data captured by the Dylos monitor is used for the

remaining experiments. The figure shows Site 1 to be a heavily polluted house.

This corresponds to the characteristics of the house; highly congested with one of

the windows perpetually opened. Site 2 and Site 3 are much less polluted, they are

cleaner and less congested. The high frequency of class “Poor” in Site 1 may also

be due to seasonal variations, since Site 1 data was collected in April during the

autumn season and data from the other two sites was collected in October during

the spring season.
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Figure 5.4: Line graph of raw sensor observation from the monitored sites. (a) Site 1; (b)
Site 2; and (c) Site 3.

Figure 5.5 shows the 30 m simple moving average of observation data from the three

sites and the target exposure limit for PM2.5. From the graph, Site 1 is identified

to fall in the category of the houses targeted for the Proactive Pollution Monitoring

and Control system.

As a result of the visualization experiments, Site 1 is identified to fall into the

category of the houses whose occupants are at risk of excessive exposure to fine

particle pollution. Hence, the remaining experiments are performed on the data

from Site 1, captured with the Dylos monitor.
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Figure 5.5: Line charts showing 1 min data from the monitored sites. (a) Site 1; (b) Site
2; and (c) Site 3.

Experiment 2: Evaluation of classifiers for predictive model-

ing

The aim of Experiment 2 is to select the appropriate classifier for a short term

prediction of PM2.5 in the indoor environment. This experiment simulates the real

live use case of the predictive model. For this experiment, the 1 m resolution data

was further resampled to 30 m resolution such that a data point represents an average
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of sensor observation for the past 30 m. Resampling to 30 m resolution makes the

prediction task over a 30 m horizon a one time-step prediction. The 30 m resolution

data is used to generate input data for the classifiers in this experiment. The dataset

is partitioned to allow for the classifiers to slide through the entire dataset at 6 h

time-steps.

First, the model initializes by training the classifiers with the first 36 h observation

data, then the classifier is made to predict target labels of unseen data for the

following 6 h. After the prediction, the 6 h of unseen data is added to the training

data and the classifier is retrained. This process is repeated through the entire

dataset. All the classifiers were evaluated through the dataset in this manner. Table

5.2 shows the partitioning of the dataset for this experiment. The partitions on the

left side of the table are for the training datasets while those on the right side are

for the test datasets.

Table 5.2: Dataset partitions for evaluating classifiers.

Training Set
Train Set Size

Testing Set
Test Set Size

From To From To

3 April 2015 10:00 4 April 2015 21:30 72 4 April 2015 22:00 5 April 2015 3:30 12
3 April 2015 10:00 5 April 2015 3:30 84 5 April 2015 4:00 5 April 2015 9:30 12
3 April 2015 10:00 5 April 2015 9:30 96 5 April 2015 10:00 5 April 2015 15:30 12
3 April 2015 10:00 5 April 2015 15:30 108 5 April 2015 16:00 5 April 2015 21:30 12
3 April 2015 10:00 5 April 2015 21:30 120 5 April 2015 22:00 6 April 2015 3:30 12
3 April 2015 10:00 6 April 2015 3:30 132 6 April 2015 4:00 6 April 2015 9:30 12
3 April 2015 10:00 6 April 2015 9:30 144 6 April 2015 10:00 6 April 2015 15:30 12
3 April 2015 10:00 6 April 2015 15:30 156 6 April 2015 16:00 6 April 2015 21:30 12
3 April 2015 10:00 6 April 2015 21:30 168 6 April 2015 22:00 7 April 2015 3:30 12
3 April 2015 10:00 7 April 2015 3:30 180 7 April 2015 4:00 7 April 2015 9:30 12
3 April 2015 10:00 7 April 2015 9:30 192 7 April 2015 10:00 7 April 2015 15:30 12

Two different classifiers were constructed and evaluated for each of the five different

classification methods selected. The first classifier is trained to predict for the half

hour horizon and the second classifier is trained to predict for one hour horizon.

Evaluation Criteria: In order to evaluate the performance of selected classifiers,

a confusion matrix was constructed from the results of the classification, and the

widely accepted metrics for binary classification tasks in machine learning com-

munity which include Accuracy, Precision, Recall (Sensitivity), Specificity and F-

Measure [120, 138], were calculated from the confusion matrix. This classification
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task is focused on identifying the classifier that can better predict the “Poor” classes

in the dataset over the prediction horizon. Therefore, when a “Poor” state is cor-

rectly classified as “Poor”, it is regarded as true positive (TP), and when a “Good”

state is correctly classified as “Good”, it is regarded as true negative (TN). Likewise,

a “Good” state wrongly classified as “Poor” is false positive (FP) and a “Poor” state

wrongly classified as “Good” is false negative (FN). The counts of TP, TN, FP and

FN predicted by the classifier is used to generate the confusion matrix (see Table

5.3) and the evaluation metrics as discussed below.

Table 5.3: Confusion matrix.

Actual Class Value Classified as “Poor” Classified as “Good”

“Poor” TP FN
“Good” FP TN

• Accuracy: Accuracy represents the overall performance of the classifier and it

denotes the proportion of the whole testset (TP + FP + TN + FN) that are

correctly classified (TP + TN) [138].

• Precision: Precision also referred to as confidence in the data mining community

[120] denotes the proportion of predicted positive cases that are actually positive

(“Poor”) in reality.

• Sensitivity: This is otherwise known as recall and it evaluates the proportion

of the real positive states that are predicted positive [120].

• Specificity: Specificity or true negative rate is an inverse of recall, which denotes

the proportion of real negative cases (“Good”) that are correctly predicted neg-

ative [138].

• F-Measure: F-Measure is an harmonic mean which combines precision and recall

[120, 138].

Result: Table 5.4 presents the result of the evaluation on the classifiers for predic-

tive modeling. Most of the classifiers show good precision and classification accuracy;

however, for the analysis, we are focused on not only precision but also on the bal-

ance between how sensitive the classifier is to the “Poor” states and how much it
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recognizes the “Good” classes (specificity). The Random Forests classifier demon-

strated the highest precision of 0.906 for the half hour prediction horizon but has the

least sensitivity (0.774). This is evident in the bias to the “Good” classes observed

in the prediction task. The BN and the MLP demonstrate best performance in

predicting PM2.5 states for the half hour horizon (see bold figures in Table 5.4), but

the BN demonstrates lesser precision in predicting states for the one hour horizon.

As a result of this experiment, MLP was chosen to model this use case.

Table 5.4: Precision, sensitivity, specificity and F-Measure of evaluated classifiers on the
Site 1 dataset.

Prediction Horizon Classifier Accuracy Precision Sensitivity Specificity F-Measure

BN 0.864 0.855 0.855 0.871 0.855
DT 0.856 0.864 0.823 0.886 0.843

30 m J48 0.856 0.852 0.839 0.871 0.846
MLP 0.864 0.855 0.855 0.871 0.855
RF 0.856 0.906 0.774 0.929 0.835

BN 0.780 0.758 0.770 0.789 0.764
DT 0.773 0.804 0.672 0.859 0.732

1 h J48 0.773 0.816 0.656 0.873 0.727
MLP 0.788 0.780 0.754 0.817 0.767
RF 0.758 0.822 0.607 0.887 0.698

Experiment 3: Evaluation of sliding window sizes

This experiment aims to determine the optimal sliding window length for training

the MLP that was selected for this study in Experiment 2. MLP classifiers were

evaluated on four different datasets, each of which were prepared with different

sliding window lengths (n = 1, n = 10, n = 20 and n = 30) and partitioned as

shown in Table 5.2. The classifiers were made to predict next class values for both

30 min and 1 h prediction horizons. The performance of the classifiers in terms of

precision, recall and specificity on each of set of the data was plotted in line charts.

Result: Figure 5.6 shows the result of this experiment. It reveals that increasing

the sliding window lengths of input data to the classifiers steadily decreases the

performance of the classifiers in predicting the target classes. The point at which

specificity and precision starts increasing when sensitivity (recall) keeps decreasing

demonstrates a point where bias towards one of the target classes (“Good”) sets in,
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and starts increasing. That is, the model steadily loses sensitivity to the “Poor”

class from this point. The dataset with window length n = 1 gave the best perfor-

mance (highlighted with dotted vertical lines in Figure 5.6). Sensitivity especially

demonstrates a free fall with the increase in sliding windows length. This observation

may be due to the notion that more recent data is more relevant to the future than

older ones [110]. A more detailed tabulated result of this experiment is presented in

Table 5.5.

(a) (b)

Figure 5.6: Line charts showing precision, recall and specificity against different sliding
window length, (a) half hour prediction horizon; (b) one hour prediction hori-
zon.

Table 5.5: Accuracy, precision, recall, specificity and F-measure of MLP classifiers in
dataset with different sliding windows.

Sliding Window Length Accuracy Precision Recall Specificity F-Measure

1 0.864 0.855 0.855 0.871 0.855
30 min 10 0.833 0.823 0.823 0.843 0.823

20 0.795 0.787 0.774 0.814 0.780
30 0.803 0.821 0.742 0.857 0.780

1 0.788 0.780 0.754 0.817 0.767
1 h 10 0.773 0.772 0.721 0.817 0.746

20 0.697 0.684 0.639 0.746 0.661
30 0.705 0.739 0.557 0.831 0.636
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5.3 Incorporation of the predictive model in the

framework

The selected MLP predictive classifier was incorporated into the system using the

WEKA library in Eclipse, a Java based Itegrated Development Environment. The

situation prediction component consists of two different MLP classifiers to achieve

two different horizons of prediction. The first was trained to predict pollution levels

for the next half hour, and the second for the next one hour. The result of the

situation prediction generated from the models is incorporated into the stream rea-

soning framework by encoding it as Resource Description Framework (RDF) triples

(see Figure 5.7). The C-SPARQL RDF stream reasoning engine supports registered

queries to combine RDF streams and static RDF triples (in ontologies) for reason-

ing. Through this process, the RDF streams of predicted PM2.5 pollution trends

which correspond to the future situation of the indoor air quality is combined with

RDF streams of the current situation detected by the Air Quality Index for decision

processing.

Figure 5.7: Example implementation of the proposed framework.
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Three continuous queries are registered with the C-SPARQL engine to filter the

RDF streams at the current time (as indicated by the Air Quality Index module)

at the next half hour and at the next one hour. In order to be unobstructive, the

system does nothing when the air quality is “Good”. At any time that either the

current state or the predicted state is “Poor”, the decision processing module in the

control layer is notified. The values detected by the monitoring queries are recorded

in the ontology for reasoning by the decision processing module. Figure 5.8 shows

a fragment of the ontology illustrating how an observation is stored. The model is

based on the SSN ontology [43].

Figure 5.8: Fragment of the ontology showing the data model.

The following listings illustrate how triples are stored in the ontology, and how they

can be processed for monitoring and control with continuous queries. We use iaq-owl

as a shorthand notation for the Internationalized Resource Identifier (IRI).

• How data is stored in the ontology

iaq−owl : SEQ2500 iaq−owl : generatedFrom iaq−owl : s i t e 0 1

iaq−owl : SEQ2500 iaq−owl : generatedAt ”01 :25 : 12 . 100”ˆˆ xsd : time

iaq−owl : SEQ2500 iaq−owl : hasPred i c t i on iaq−owl : PRE7900

iaq−owl : SEQ2500 iaq−owl : hasIndex ”good ”ˆˆ xsd : s t r i n g

iaq−owl : PRE7900 iaq−owl : halfHourValue ” poor ”ˆˆ xsd : s t r i n g

iaq−owl : PRE7900 iaq−owl : oneHourValue ” poor ”ˆˆ xsd : s t r i n g
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• Monitoring current air quality state

This query continually filters through the indoor Air Quality Index stream

to notify the decision processing component about the current air quality de-

tected by the index.

REGISTER QUERY CurrentStateQuery

AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/ iaq . owl#>

SELECT ? s i t e ? cur r ent ? t

FROM STREAM <http :// iaq−ukzn . ac . za/ iaq index /stream>

[RANGE 10m STEP 10m]

WHERE {? seq iaq−owl : hasSeqID ? s i d

? s i d iaq−owl : generatedFrom ? s i t e .

? s i d iaq−owl : generatedAt ? t .

? pid iaq−owl : hasIndex ? cur r ent .

FILTER (? cur rent = ”good ”ˆˆ xsd : s t r i n g )}

• Monitoring half hour prediction state:

This query monitors the predictions over a 30 m horizon, it is activated to no-

tify the decision processing component when air quality predicted in the next

30 m is “Poor”.

REGISTER QUERY hal fHourPredict ionQuery

AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/ iaq . owl#>

SELECT ? s i t e ?p1 ? t

FROM STREAM <http :// iaq−ukzn . ac . za/ p r e d i c t i o n /stream>

[RANGE 10m STEP 10m]

WHERE {? seq iaq−owl : hasSeqID ? s i d

? seq iaq−owl : generatedFrom ? s i t e .

? s i d iaq−owl : generatedAt ? t .

? s i d iaq−owl : hasPred i c t i on ?p .

?p iaq−owl : halfHourValue ?p1 .

FILTER (? p1 = ” poor ”ˆˆ xsd : s t r i n g )}

• Monitoring one hour prediction state

This query is activated to notify the decision processing component when air

quality predicted in the next one hour is “Poor”.
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REGISTER QUERY oneHourPredictionQuery

AS PREFIX iaq−owl : <http :// iaq−ukzn . ac . za/ iaq . owl#>

SELECT ? s i t e ?p2 ? t

FROM STREAM <http :// iaq−ukzn . ac . za/ p r e d i c t i o n /stream>

[RANGE 10m STEP 10m]

WHERE {? seq iaq−owl : hasSeqID ? s i d

? seq iaq−owl : generatedFrom ? s i t e .

? s i d iaq−owl : generatedAt ? t .

? s i d iaq−owl : hasPred i c t i on ?p .

?p iaq−owl : oneHourValue ?p2 .

FILTER (? p2 = ” poor ”ˆˆ xsd : s t r i n g )}

RANGE and STEP are operators used in C-SPARQL queries to support time win-

dows. RANGE specifies the size of the time window that the query filters through,

while STEP specifies time steps with which the time window slides forward. Setting

both RANGE and STEP to the same value (for example 10 min as used in this

use case) specifies a tumbling window scenario, in which the time window does not

slide, but rather, at the end of a time window, another time window starts in a

tumbling manner. This means that subsequent results do not contain observations

from previous results. In this example, the window’s size is set to 10 min, but this

can be set as desired.

The state values detected by the continuous queries can be used by the decision

processing component for reasoning with decision rules in the ontology in order to

determine the appropriate actions at a point in time. For example, lets consider as

a target situation when the predicted PM2.5 state is persistently “Poor” for up to

thirty minutes. We can represent this in the system as when both the half hour and

one hour prediction results are “Poor”. In this situation, the Proactive Pollution

Monitoring and Control System needs to warn occupants to take some recommended

proactive actions to avoid the predicted situation. The listing below demonstrates

reasoning-logic by the decision processing component in this example.

house (? s i t e ) , sequence (? s i d ) ,

generatedFrom (? s id , ? s i t e ) ,
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hasIndex (? s id , ! ” poor ”) ,

ha sPred i c t i on (? s id , ? pid ) ,

hal fHourValue (? pid , ” poor ”)

oneHourValue (? pid , ” poor ”) ,

−> PM25pol lut ionPredicted (? s i t e , ? t rue )

The decision rule can be implemented in any reasoning infrastructure that is com-

patible with the Semantic Web, such as Semantic Web Rule Language (SWRL),

SPARQL or the JENA rule engine 2). In the use case scenario, when the pollu-

tion is predicted, the decision manager can activate the actuation module to send

an appropriate control action to the occupants in order to prevent the pending un-

healthy situations from happening. An example of this could be: “Alert: Unhealthy

Fine Particle Level predicted soon; Proactive Control Advice: Please avoid smoking,

burning incense and excessive cooking indoors”. More details about using activities

to control indoor PM2.5 pollution is presented in one of our papers [4].

5.4 Analysis and evaluation

In order to determine how the Proactive Pollution Monitoring and Control System

will perform in the field, we carried out evaluation tests based on the test data

used to evaluate the classifiers (see Section 5.2.3). The test data for the evaluation

consists of 132 observations in all (see Section 5.2.3). The data was made to run

through the components of the system. The performance of the components and the

overall efficiency of the system were analyzed. The system used for the evaluation

is an ASUS laptop running Windows 7, with Corei5 (Intel(R) Core(TM)i5-3337U

CPU @1.80GHz) processor and 12.0 GB installed memory. Result of the analysis

and evaluation of the system with respect to design decisions made on each of the

components are discussed below.

The situation prediction component initializes by training the classifiers (see Section

2www.w3.org/Submission/SWRL/, https://jena.apache.org/documentation/inference/#rules
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5.2.2) with 36 h of historical data (see Section 5.2.3). Over ten runs, the average

initialization time was 39,208.0 ms (≈0.65 min) to train MLP classifiers for the

half hour prediction and 47,098.4 ms (≈0.78 min) to train the classifiers for the one

hour prediction. The classifiers then effectively processed each subsequent prediction

task in a maximum of 1 ms in all the cases. However, the system is also designed

to update the classifiers every 6 h with the most recent data. We compared the

training times of the MLP classifiers with that of BN classifiers which was found

equally suitable for this work (see Section 5.2.3). Table 5.6 shows the variation of

training time as the size of datasets grows. The re-training time for MLP classifiers

increases rapidly as the dataset grows, while the re-training time of BN is minimal

and remains relatively constant after the initialization. This experiment reveals that

although the MLP model has a slightly better predictive performance than the BN

in this study, it is not as scalable as the BN. Hence, the choice of MLP over BN

for the system is a trade-off between the predictive performance and scalability.

Given the poor model update speed of the MLP as the data set grows, the BN is a

more likely choice for implementation. However, further investigation is required on

mechanisms for reducing the model update time for the MLP.

Table 5.6: Performance of situation prediction classifiers during updates.

MLP BN

One Hour Classifier Half Hour Classifier One Hour Classifier Half Hour ClassifierDataset Size
Training Time (ms) Training Time (ms) Training Time (ms) Training Time (ms)

72 39,208.0 47,098.4 288.2 301.2
84 45,280.4 49,701.2 4.8 3.7
96 54,979.6 55,967.2 4.2 3.0
108 64,487.0 62,518.6 3.4 3.7
120 74,083.8 65,513.8 3.4 3.1
132 76,995.2 71,036.4 3.2 2.9
144 85,660.4 81,994.4 3.0 3.5
156 92,779.4 91,990.8 3.2 4.1
168 92,376.6 97,852.6 4.2 7.0
180 97,573.0 104,304.6 3.8 3.3
192 109,404.8 111,131.4 4.8 4.5

The situation detection component, which detects the current situation by interpret-

ing observation data based on the Air Quality Index (see Section 5.2.2) identifies all

the situations correctly. The output of this component also serves directly as labeled

data for retraining the classifiers during system updates.
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Stream reasoning with C-SPARQL is used to monitor three different streams (see

Section 5.3) in the system, namely, the current pollution situation, the half hour

prediction and the one hour predictions. Out of the 132 observations in the test

data, 62 observations have either half hour predictions or one hour predictions that

are “Poor”. The queries effectively detected all the targeted situations correctly.

The decision to activate alarms is based on the result of a SPARQL query that

is evaluated on the ontology at specified intervals, which was set to 10 m for the

purpose of this evaluation. The query filters through the data to detect situations

in which half hour and one hour predictions are both “Poor” for the past 10 m in

order to activate control actions. When C-SPARQL is used to filter the predictions,

only the 62 triples that have either half hour prediction or one hour predictions

as “Poor” were recorded in the ontology. In a query test that was repeated ten

times, the average execution time of SPARQL query was found to be 295 ms. We

compared this with the execution time of SPARQL query when all the observations

were streamed into the ontology, that is, when C-SPARQL is not used. In this

case, the dataset in the ontology includes the triples representing the predictions of

all the 132 observations. The average execution time of the query is 441 ms. The

difference of 146 ms may seems little because of the minimal dataset for now, but as

the number of triples in the ontology grows, the performance difference may be much

more pronounced. Stream reasoning queries could also have been used to activate

decisions on the fly, without storing data in the ontology, however, the ontology

supports combining the stream reasoning with other static data pre-captured in the

ontology including the control actions to be recommended to the occupants.

In order to asses the overall effectiveness of the system, we compared the number

of times that the system raised alarms for predicting pollution with the number of

times that the corresponding records in the actual data specifies that both half hour

situations and one hour situations are “Poor”. Out of the 132 observations in the

test data, the “Poor” condition is satisfied 52 times, however, the system raised

alarms 59 times, giving 7 (11.86%) false alarms. The false alarms were found to be

due to false positive predictions by the situation prediction component.
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5.5 Summary

Although the concept of proactive computing is not new [6, 9], many SSW monitor-

ing applications are still designed in reactive manners. The reason is perhaps due to

the fact that the predictive methods, such as predictive reasoning [92, 93], that are

native to Semantic Web technologies, are still emerging [87]. And although recent

works in the stream reasoning community offer support for incorporation of het-

erogeneous data stream sources, more work is needed, especially on the approaches

to incorporate predictive models within the processing space of a stream reasoning

framework for SSW applications. This study proposes an architecture that attempts

to fill this gap.

This chapter has presented an approach to achieve proactive monitoring and con-

trol in the SSW framework by incorporating a statistical prediction model in the

processing space of a stream reasoning framework. The proactive monitoring and

control approach was demonstrated with an indoor air quality use case and data

streams from a real life use case in a low-cost residential setting. Secondly, a sliding

window approach that employs MLP classifier for predicting indoor PM2.5 pollution

levels from low cost sensor observation data streams was presented.

The proposed framework provides a mechanism to combine the high accuracy and

performance of statistical predictive techniques and the expressiveness of seman-

tic analytic techniques for proactive monitoring and control. The architecture was

shown to be effective for combining both stream reasoning processes and the outputs

of predictive models for predicting situations of interest.

The decision processing mechanism of the proactive architecture is demonstrated

in this chapter by reasoning on the ontology in Sections 5.3 and 5.4. The next

chapter presents a study that investigates a decision processing mechanism, which

incorporate the classical principles of probability and utility for the proactive SSW

architecture.



Chapter 6

Incorporating MDP Theory in a
Proactive SSW Framework

This chapter presents the incorporation of MDP theory into the proposed proactive

SSW framework in an attempt to enhance consistency and coherence in decision

processing. This chapter also presents the second use case in which the framework

for proactive monitoring and control is evaluated. The use case is in the area of

demand side management in a smart grid. Monitoring and control of demand load

in order to avoid load shedding is the focus of the use case. A successful application

of the framework to the problem of demand-side management, especially, dynamic

load shedding is demonstrated using real world smart grid data.

Real time decision processing in order to take control of anticipated situations (proac-

tive control) based on sensor data is a key challenge of a proactive application in the

SSW [146]. Decision processing with Semantic Web technology, especially ontology

driven applications, has been largely treated by evaluating semantic queries on the

rules in the ontology to infer appropriate decisions. While decision rules support

expressiveness in terms of the knowledge encoded in the rules, classical decision the-

ory is built upon axioms of probability and utility. Probability theory supports the

framework for coherent assignment of beliefs with uncertain information, and util-

ity theory provides a set of principles for consistency in processing preferences and

decisions [71]. In a dynamic environment, maintaining consistency and coherence

in decision processing is a non trivial problem. The approach supports a tighter

91
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incorporation of components of the proposed proactive SSW framework.

The rest of this chapter is organized as follows. In Section 6.1, we present the frame-

work. In Section 6.2 we introduce the application use case and highlight the need for

a proactive monitoring and control system. Section 6.3 discusses the implementation

of the system components and demonstrates how a MDP decision model is incorpo-

rated in the SSW framework. Section 6.4 presents the analysis and evaluation and

in Section 6.5 we present a future direction. Section 6.6 summarizes the chapter.

6.1 The SSW framework for proactive monitoring

and control

6.1.1 Abstract architecture

The three layered abstract architecture was introduced in Chapter 3. Figure 6.1 is

the same as Figure 3.2 except that it highlights the components this chapter focuses

on (see green border in 6.1). This study extends the control layer of the framework

with a hybridized decision processing mechanism.

Figure 6.2 shows the technologies incorporated in the proposed proactive SSW frame-

work for monitoring and control applications. The dotted line shows the focus of

this chapter and the green circle shows the extension in this chapter.
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Figure 6.1: Abstract architecture for a proactive SSW framework.

Figure 6.2: Technologies incorporated in the proactive SSW framework

The data flow among the main components of the framework is illustrated in a data

flow diagram shown in Figure 6.3. The decision processes which is the focus of this

study is highlighted in green.
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(a)

(b)

(c)

Figure 6.3: Level 1 Dataflow diagram of the proactive SSW framework: (a) Monitoring
(b) Situation analysis (c) Control

The implementation details of the proactive decision processing is presented in Sec-

tion 6.3. First, we present an overview of the proactive SSW framework and high-

light the decision problem, to motivate the approach for the decision modeling and
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analysis.

6.2 Application use case

Power demand load management is a known problem in many countries, and it

is currently receiving a lot of research attention [22, 24, 143]. Load shedding in

a community involves cutting off the electric power supply in some part of the

community for an arbitrary period of time when the demand overwhelms the power

supply capacity in order to maintain stability and prevent total grid collapse. For

example, in South Africa, Eskom, the main power utility company in the country,

has noted a rapid increase of approximately 4000MW on the national grid during

the winter seasons, due to the increased demand of electricity for space heating,

geysers, pool pumps operations and cooking needs in residential buildings1. The

peak period has been noticed to be in the evening between 5:00pm and 9:00pm

when most occupants have returned home from daily engagements. However, in the

summer seasons, high demand is usually experienced all through the day perhaps

due to the use of air conditioners to cool down spaces. It is noted that avoiding

the use of geysers, pool pumps, and cooking appliances during the peak periods can

significantly reduce the demand on the grid. Hence, the goal of the utility company

is to stimulate proactive actions among households in order to avert possible load

shedding during the peak periods or at least minimize its occurrence.

During the high demand periods, a pre-scheduled time table is maintained for load

shedding in municipalities across the country where load shedding is required. The

time table groups houses into blocks and specifies when load shedding will be tak-

ing place in each of the blocks. A mobile application is also provided to inform

the dwellers in the communities of the possible load shedding schedules. Also, Es-

kom publishes on its website the current state of power supply with steps on how

individual houses can reduce power demand. Other efforts include information on

the website stating the current situation of the demand load on the national and

1http://loadshedding.eskom.co.za/loadshedding/FAQ
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provincial power grid and demand load forecasts for up to 24 hours. Information

on the national television screens showing the current load status and messages on

responsible usage of electricity in households is shown in Table 6.1.

Table 6.1: Messages in the existing system

Level Load status Messages

1 Stable Commendation on efficient power uses
2 Limited Switch off unnecessary lights to avoid strains
3 Strained Switch off unnecessary lights, geysers, pool, pumps
4 Severely under pressure Switch off unnecessary lights, geysers, pool pumps and

all other appliances to prevent load shedding
5 Load shedding in some places Switch off unnecessary lights, geysers, pool pumps and

other appliances to prevent load shedding from spreading

In the context of this use case, a proactive SSW monitoring and control system is

needed to continually monitor the demand load situation in the block of houses and

avert pending load shedding when necessary. Smart meters as sensors can record

power demand in a household and send same to the utility at specified time intervals

for processing. The system can continuously monitor in real time, power demand

from houses in the communities through the network of smart meters (smart grid). It

can predict future power load situations and possible need for load shedding based

on historical data and provide proactive warnings to the community to stimulate

proactive actions as regards usage of appliances in order to avert load shedding and

forestall its unwanted consequences. In this manner the system can stimulate more

responsible usage of power in the communities and reduce the frequency of load

shedding pro-actively.

6.2.1 System design

Four time periods each of 6 hours durations are defined, as ‘morning’, ‘noon’,

‘evening’ and ‘night’ in a 24 hours (see Table 6.2). The time periods allow tracking

of load situations in each period.

Situation detection in the proactive SSW framework relies on an ontology driven

index to translate quantitative sensor data to qualitative states. A load index is
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Table 6.2: Time periods specifications for the proposed system

Period From To

‘morning’ 4:00 Hour 10:00 Hour
‘noon’ 10:00 Hour 16:00 Hour
‘evening’ 16:00 Hour 22:00 Hour
‘night’ 22:00 Hour 4:00 Hour

defined which classifies the state of power demand load in the monitored block of

houses at any given time into one of 4 classes such as ‘Stable’, ‘Strained’, ‘Under-

Pressure’ and ‘OffLimit’ (see Table 6.3). The specific values of the index depends

on the power available to each of the blocks given the capacity of the supplier. The

ontology driven index also serves to provide class labels for the dataset used to train

classifiers for situation prediction.

Table 6.3: Load indices for situation detection

Hourly power consumption (KWh) Situation

<= 18 Stable
> 18 and <= 28 Strained
> 28 and <= 32 UnderPressure

> 32 OffLimit

6.2.2 The hybridized decision processing model

The decision processing is required to select appropriate control actions the occu-

pants need to take in order to prevent possible load shedding. The decision pro-

cessing in this context is data-driven. The data that is driving the decision in the

framework is the outputs of situation detection (current state) and situation pre-

diction (future state). The hybridized decision processing is modeled with both

semantic web rules and MDP planner.

Rule based reasoning with semantic rules: Reasoning on an ontology in the

Semantic Web involves deriving logical consequences from facts and axioms asserted

in the ontology. Semantic rules allow combining ontologies with sets of assertions

in the ontology for rule based reasoning and analysis. Semantic rules are usually
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expressed with two main parts, the antecedents and the consequents, such that if the

statements in the antecedent part are true, then all the statements in the consequent

parts are executed.

The proposed proactive SSW framework imports and extends the SSN ontology [43].

In this study, the ontology is extended with concepts and relationships to support

reasoning on the decision processing extension. A fragment of the ontology showing

the data model which is based on the SSN ontology is shown in Figure 6.4.

Figure 6.4: Fragment of the ontology showing data model based on the SSN ontology

MDP: MDPs have proven useful for modeling sequential decision making in stochas-

tic environments [38]. A basic MDP model consists of: a finite set of states S which

defines all the possible states of the world; a finite set of actions A which are the

available actions in the world; a state transition function T that defines the relation-

ship between actions and states; and a reward function R which gives a measure of

preference or desirability of states and actions.

More formally [38], a MDP can be represented as follows.

S = set of states;

A = set of actions;

T : S × A× S → R = Pr(s′ | s, a) ;

R : S × A→ R .
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In this study, the MDP model is used to decide on control actions to be implemented

by occupants of the monitored block of houses in order to prevent load shedding with

possible minimal discomfort to the occupants.

6.3 Incorporation of MDP theory in the proactive

SSW framework

The application is implemented in the Java language in an Eclipse Integrated De-

velopment Environment, as an extension of the ontology driven testbed reported

in Adeleke et al. [5]. The situation prediction component is implemented using

the Wakaito Environment for Knowledge Analysis (WEKA) library. JENA and C-

SPARQL libraries are also incorporated in the system for the ontology and stream

reasoning components respectively. The MDP extension to the decision component

runs as a Python module and is connected to the framework over a TCP/IP socket.

The implementation details of the various system components are discussed subse-

quently.

6.3.1 Observation data

This work is evaluated with 3 years’ (June, 2013 to June, 2016) hourly real live

smart meter data obtained with permission from Pecan street dataport, a multi-

institutional smart grid demonstration project in Austin, Texas, that has been widely

adopted for smart grid research [111, 126]. The data consists of 35,111 data points.

The smart meter readings of 12 different houses from the repository is aggregated

to represent a monitored block of houses.

Figure 6.5 shows the visualization of the aggregated data. A typical variation of

power consumption load across the 4 seasons of a year (2015) is shown in Figure 6.6.
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Figure 6.5: Aggregated hourly smart grid data of a block of 12 houses for 3 years.

Figure 6.6: Typical variation of power load in different seasons of a year.

6.3.2 Situation detection

An ontology driven index (load index ) which interprets the current demand load

to a qualitative states (situation) is implemented as demonstrated in Chapter 4.

The load index is queried each time it is necessary to detect the current situation.

Figure 6.7 demonstrates how power consumption cuts across the load index in a

typical year.

Figure 6.7: Power consumption across the load indices in a typical year.
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6.3.3 Situation prediction

Employing machine learning techniques as presented in the previous chapter, a clas-

sifier is then made to classify the situation for the next time step in the future, into

one of three non overlapping classes such as, Stable, Strained and UnderPressure.

The classes are as described for the load index, except that both the UnderPressure

and OffLimit classes are merged as UnderPressure for the prediction task.

J48 (see Section 5.2.2), a decision tree classifier was found suitable and used to

implement the situation prediction in this work [122]. The features for building the

classifiers include month, day, hour, weekday, season, current demand load value,

the demand load value for the same hour the previous day and the demand load

value for the same hour two days before. The latter is important because demand

load prediction task is known to be influenced by the value of load at the same time

of the previous day [7].

The performance of the classifiers was evaluated with the popularly used metrics for

multi-class classification tasks such as Accuracy, PrecisionM, RecallM and F-scoreM

[120, 138] (see Section 5.2.3). For a multiclass classification task, these are calculated

as a macro averaging of the metrics for the individual classes [138]. A PrecisionM of

0.862 and RecallM of 0.860 were achieved in the classification task.

6.3.4 Decision processing and action

The goal of the decision processing mechanism is to avert possible progression to-

wards load shedding. That is, to select and communicate appropriate control actions

to the occupants in order to avert any predicted unwanted load situations. The con-

trol actions are modeled as restrictions on the use of certain appliances to be imposed

on the occupants, which in turn will influence the load situation.

The state of the world defined for the MDP model is a quadruple 〈s, d, p, i〉, where

s ∈ {autumn, spring, winter, summer} is the present season in the year and d ∈
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{0,1} specifies whether it is a weekday (1 ) or a weekend (0 ). p ∈ {morning ,noon,

evening , night} is the period of the day, while i ∈{Stable, Strained,UnderPressure,

OffLimit } is the load index that indicates the demand load situation on the grid.

The available control actions are : NoAction, which imposes no restriction to the

occupants; SwitchOffUnusedLightNApps , a low restriction control action compelling

the occupants to switch off all unused light and appliances; SwitchOffGeysers , a

moderate control action that forbids the use of geysers; SwitchOffPoolPumps which

is also a moderate restriction control action that forbids the use of pool pumps;

SwitchOffCookingNHeating , which is also a moderate restriction control action that

requires the occupants to switch off all cooking and heating appliances; and finally,

SwitchOffAllApps is a high restriction control action that forbids the use of all ap-

pliances except light. Further details on the functionality of the decision processing

is explained the next section. Figure 6.8 illustrates the end to end implementation

of the framework.

Figure 6.8: Incorporation of the decision processing in the SSW framework.
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6.4 Analysis and evaluation.

In order to evaluate the effectiveness of the decision mechanism and the added value

of incorporating the MDP planner with an ontology driven system, experiments

were performed. In the experiments, the use case scenario was modeled to simulate

the possible load situations in the block of houses, and the actions of the decision

mechanism. In the experiments, it is assumed that suggested actions are carried

out. First, we compare the semantic rules and MDP approaches and then presents

the hybrid approach.

The experiment is performed on the hourly smart grid data covering the months of

June to November for the year 2014 and 2015. These are the months of the year

when demand load gets to the peak (see Figure 6.6). The performance of the decision

mechanism is evaluated by two criteria. First, the ability to avert load shedding and

second occupant satisfaction OS. To determine the latter, a penalty P is attached

to each of the control actions which vary according to the level of dissatisfaction it

causes the occupants, and a reward R is given based on the resultant state of the

load index after performing suggested action (see Table 6.6). Occupant satisfaction

is then calculated by subtracting P from R in each case, that is, OS = R - P . Table

6.5 shows the costs and rewards scores used in the experiments. Average daily OS

is calculated and the mean OS values for 5 runs is estimated and plotted against

Datetime for analysis. We first compare the performance of the semantic rules and

the MDP separately and then compare that with the hybrid mechanism.

6.4.1 Comparison of semantic rules and MDP decision pro-

cessing

Semantic rules: Seven semantic rules were implemented with Jena rule engine to

specify the best actions to perform in each possible situations, the rules are based

on domain expert knowledge. The logic of the rules are shown in the listings below.
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Rule 1 . hasLoadIndex (? s i t u a t i o n , ‘ s tab l e ’ )

−> cont ro lAct i on (? s i t u a t i o n , ?NoAction )

Rule 2 . hasLoadIndex (? s i t u a t i o n , ‘ Stra ined ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffUnusedLightNApps )

Rule 3 . hasLoadIndex (? s i t u a t i o n , ‘ Underpressure ’ ) ,

hasPer iod (? s i t u a t i o n , ‘ morning ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffPoolPumps )

Rule 4 . hasLoadIndex (? s i t u a t i o n , ‘ Underpressure ’ ) ,

hasPer iod (? s i t u a t i o n , ‘ noon ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffGeysers )

Rule 5 . hasLoadIndex (? s i t u a t i o n , ‘ Underpressure ’ ) ,

hasPer iod (? s i t u a t i o n , ‘ evening ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffCookingNHeating )

Rule 6 . hasLoadIndex (? s i t u a t i o n , ‘ Underpressure ’ ) ,

hasPer iod (? s i t u a t i o n , ‘ night ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffCookingNHeating )

Rule 7 . hasLoadIndex (? s i t u a t i o n , ‘ O f f l im i t ’ )

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffAl lapps )

MDP: The MDP planner takes in the current state of the world as the initial state.

The probability distribution shown in Table 6.4 was made into a transition function.

The process is made to plan for 3 horizons of 20 minutes each. The reward function is

based on the costs and rewards towards occupants satisfaction. After performing the

suggested action, the process observes the post-action load index which represents

the effectiveness of the action. In order to estimate occupant satisfaction OS, the

action performed and the post-action load index are scored according to Table 6.5
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and Table 6.6 respectfully. These two tables define the MDP reward function.

Table 6.4: Probability distributions modeling effect of control actions on load indices and
used as transition function.

Action Current load index Probabilities of load index after action

Stable Strained UnderPressure OffLimit

Stable 0.9 0.1 0.0 0.0
NoAction Strained 0.2 0.3 0.3 0.2

UnderPressure 0.0 0.2 0.6 0.2
OffLimit 0.0 0.0 0.1 0.9

Stable 0.8 0.2 0.0 0.0
SwitchOffUnusedLightNApps Strained 0.7 0.2 0.1 0.0

UnderPressure 0.1 0.5 0.4 0.0
OffLimit 0.0 0.1 0.5 0.4

Stable 1.0 0.0 0.0 0.0
SwitchOffGeysers Strained 0.7 0.2 0.1 0.0
SwitchOffPoolPumps UnderPressure 0.6 0.3 0.1 0.0
SwitchOffCookingNHeating OffLimit 0.3 0.4 0.3 0.0

Stable 1.0 0.0 0.0 0.0
SwitchOffAllApps Strained 1.0 0.0 0.0 0.0

UnderPressure 1.0 0.0 0.0 0.0
OffLimit 1.0 0.0 0.0 0.0

Table 6.5: Penalties of actions for estimation of occupant satisfaction

Action P

Morning Noon Evening Night
NoAction 0 0 0 0
SwitchOffUnusedLightNApps 5 5 5 10
SwitchOffGeysers 15 10 10 5
SwitchOffPoolPumps 5 5 5 5
SwitchOffCookingandHeating 10 10 10 5
SwitchOffAllApps 55 55 55 55

Table 6.6: Rewards of post-action load index for estimation of occupant satisfaction

post R
Stable 60
Strained 45
UnderPressure 15
OffLimit 0

The experiment is performed on the smart grid data covering the months of June

to November of 2 years (2014, 2015) and average daily occupant satisfaction is

calculated in each case. The mean values of 5 runs is estimated for analysis for both

the semantic rule and MDP mechanism.
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Result: Both the MDP and the semantic rules decision mechanisms are able to

suggest control actions that averted the need for load shedding based on the defined

set of actions. However, the MDP process coherently gave a more consistent and

higher occupant satisfaction. This is more so during the high peak periods. Figure

6.9 shows the average daily occupant satisfaction for the 5 months of the 2 years

(see Figure 6.9).

(a)

(b)

Figure 6.9: Line charts showing occupant satisfaction in the monitored block of houses for
both the MDP and the semantic rules mechanisms (a) June to November 2014
(b) June to November 2015.

6.4.2 The hybrid decision mechanism

The semantic rules in the previous experiment were further enriched to include

predicted states, and the rule is made to call the MDP mechanism when plan-

ning is necessary. The mechanism takes in, both the predicted and the current
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state of the world. Semantic rules are defined to represent expert knowledge which

specifies the course of action depending on values of the current state and the

predicted state. When both the current state and the predicted state are Sta-

ble, the mechanism recommends NoAction and planning is not necessary. When

either the current or the predicted state is Strained, the mechanism recommends

SwitchOffUnusedLightandApps . The rule engine runs the MDP planner anytime ei-

ther the current state or the predicted state becomes UnderPressure and the control

action that the planner outputs is recommended. The logic of the semantic rules is

shown in the following listing.

Semantic rules:

Rule 1 . hasLoadIndex (? s i t u a t i o n , ‘ Stable ’ )

hasPred i c t edState (? s i t u a t i o n , ‘ Stab l e ”) ,

−> cont ro lAct i on (? s i t u a t i o n , ?NoAction )

Rule 2 . hasLoadIndex (? s i t u a t i o n , ‘ Stable ’ )

hasPred i c t edState (? s i t u a t i o n , ‘ Stra ined ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffUnusedLightNApps )

Rule 3 . hasLoadIndex (? s i t u a t i o n , ‘ Stable ’ )

hasPred i c t edState (? s i t u a t i o n , ‘ UnderPressure ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ?MDP−planner )

Rule 4 . hasLoadIndex (? s i t u a t i o n , ‘ Stra ined ’ ) ,

hasPred i c t edState (? s i t u a t i o n , ‘ Stable ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffUnusedLightNApps )

Rule 5 . hasLoadIndex (? s i t u a t i o n , ‘ Stra ined ’ ) ,

hasPred i c t edState (? s i t u a t i o n , ‘ Stra ined ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffUnusedLightNApps )

Rule 6 . hasLoadIndex (? s i t u a t i o n , ‘ Stra ined ’ ) ,

hasPred i c t edState (? s i t u a t i o n , ‘ UnderPressure ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ?MDP−planner )

Rule 7 . hasLoadIndex (? s i t u a t i o n , ‘ UnderPressure ’ ) ,
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hasPred i c t edState (? s i t u a t i o n , ‘ Stable ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ?MDP−planner )

Rule 8 . hasLoadIndex (? s i t u a t i o n , ‘ UnderPressure ’ ) ,

hasPred i c t edState (? s i t u a t i o n , ‘ Stra ined ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ?MDP−planner )

Rule 9 . hasLoadIndex (? s i t u a t i o n , ‘ UnderPressure ’ ) ,

hasPred i c t edState (? s i t u a t i o n , ‘ UnderPressure ’ ) ,

−> cont ro lAct i on (? s i t u a t i o n , ?MDP−planner )

Rule 10 . hasLoadIndex (? s i t u a t i o n , ‘ O f f l im i t ’ )

−> cont ro lAct i on (? s i t u a t i o n , ? SwitchOffAl lapps )

Result: Figure 6.10 shows the average daily occupant satisfaction of the hybrid

mechanism for the 5 months of the 2 years. From the figure, the hybrid mechanisms

optimizes the best performance over the two mechanisms individually. The rules

also serves as a means of incorporating the MDP mechanism to the framework.
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(a)

(b)

Figure 6.10: Line charts showing occupant satisfaction in the monitored block of houses for
the MDP, semantic rules and the hybrid mechanisms (a) June to November
2014 (b) June to November 2015.
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6.5 Possible further incorporation of the MDP

theory into the framework

The machine learning based situation prediction component gives prediction of pos-

sible future states. The prediction classifies the next hour state into one of three

classes (Stable, Strained and UnderPressure). The classification can be expressed

as a probability distribution over the three classes, given the current state, in which

the class that has the highest probability is predicted. Thus, the probability Pr of

predicted state s′ given the current state s can be expressed as Pr(s′ | s). Pr here

represents the probability that s′ will occur in the next time step if the system does

not implement any control action. Hence, the probability of the predicted state can

be expressed in terms of control-actions a ∈ A as

Pr(s′ | s, a = NoAction) = Pr(s′ | s) (6.1)

where NoAction implies that no control action has been implemented. This can be

generalized as

Pr(s′ | s) = Pr(s′ | s, a). (6.2)

Equation (6.2) shows that Pr(s′ | s) which is a product of machine learning com-

ponent relates the current state and control action to the future state in the same

manner as the transition function of an MDP. Hence, it can be incorporated as a

transition function in an MDP process for a dynamic control decision processing.

Although the probability distribution provided by the classifier is valid for only when

no action has been taken, the distribution can be scaled by some functions over dif-

ferent magnitudes of control actions. A change in a will influence the occurrence of

s′ in some manner. This can be exploited for selecting appropriate control action

among the available ones in order to control the occurrence of the future state in

favor of the desired ones.
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Recall that MDP transition function T can be expressed as,

T (s, a, s′) = Pr(s′ | a, s) (6.3)

where Pr(s′ | a, s) is the probability with which s′ is reached via action a.

a can be rewritten as a function Act of s, s′ pair

Act(s′, s) = a. (6.4)

Equation 6.3 then becomes

T (s, Act(s′, s), s′) = Pr(s′ | a, s). (6.5)

For a MDP transition function a valid probability distribution is required over all

possible s′ ∈ S and a ∈ A, that is,

∑
s′∈S

Pr(s′ | a, s) = 1. (6.6)

Note that the Pr(s′ | a, s) given by the machine learning classifier is only valid

for when NoAction. Hence when the prediction from the classifier coincides with

the desired state, the probability distribution given by the classifier can be used to

suggest a NoAction action. However, when the prediction from the classifier does

not coincide with the desirable state, the probability distribution from the classifier

is not valid to select the appropriate action.

In order to overcome this problem a scaling function can be introduced into the

Equation 6.5 such that h composes Act. When the s′ coincides with the desired

state, there is no need for a control-action and no need for scaling. Whenever the

predicted state is not the preferred state, h scales the distribution over different

magnitudes of a needed to achieve the occurrence of the desired state given s and s′
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while adhering to the constraint expressed by (6.6).

An obvious limitation of this approach is that the transition function will only be

valid within the percentage of accuracy of the machine learning classifier that is

providing the probability distribution. More work is still needed to validate the

usefulness of this approach and evaluate it’s efficacy. Hence, it is left for future

work.

6.6 Summary

This chapter has presented an approach to incorporate MDP theory into the proac-

tive SSW framework. The approach incorporates the planning capabilities of the

MDPs in domain expert knowledge for coherent and consistent proactive decision

making.

Incorporating the notion of probability and utility, the axioms on which classical

decision theory is based, in a proactive SSW framework is a step forward in develop-

ing SSW applications. A prototype application of the proactive SSW framework to

address the problem of demand-side management, especially load shedding preven-

tion has been demonstrated, with real live smart grid data. This research suggest

that the prototype application of the proposed proactive SSW framework can avert

load shedding and also improve consumer satisfaction on the smart grid, within the

context of SSW.



Chapter 7

Discussion and Conclusion

This thesis proposes a SSW framework for proactive environmental monitoring and

control. Designing and developing proactive monitoring and control applications

requires integrating and incorporating different techniques for supporting situation

detection, situation prediction, decision making and planning. The proposed SSW

framework incorporates ontologies to facilitate situation detection from streaming

sensor observations, statistical machine learning for situation prediction and MDP

for decision making and planning in a SSW framework. The efficacy of the proposed

framework was evaluated through the design and development of two different pro-

totype applications.

Although the idea of SSW is not new, most current SSW frameworks lack two es-

sential mechanisms required to achieve proactive control, namely, mechanisms for

anticipating the future and mechanisms for coherent and consistent decision pro-

cessing and planning. Furthermore, application frameworks that provide tools and

techniques for rapid application development is a challenge in the SSW community

[44]. This research fills these gaps. The framework proposed in this thesis can sup-

port development of proactive SSW applications for environmental monitoring and

113
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control.

7.1 Summary of results

The main contribution of this research is a new SSW framework for developing

proactive environmental applications, that is, applications that avert unwanted en-

vironmental situation before they occur. The framework allows combining the per-

formance of advanced statistical machine learning techniques and the expressive

analytic techniques of SSW technologies with the coherent and consistent planning

capability of MDP theory to analyze streaming sensor observations. The framework

and its key components are evaluated through the development of two different

prototype applications.

7.1.1 Use case 1: Indoor air quality

The first use case which was in the area of indoor air quality was carried out along

with an occupational health research group. Monitoring and control of unhealthy

indoor air quality was made the focus of the use case. A prototype application of

the framework was developed and evaluated with real life data. This use case was

carried out in two phases.

Monitoring and control of PM10 was first used to evaluate the development of

a SSW monitoring application, a prototype of the proposed framework that does

not include situation prediction. The system was able to monitor and detect PM10

pollution situations, and when an unhealthy situation is detected, the system was

able to provide control actions to abate the unhealthy situation. This phase of the use

case evaluates the development and use of ontologies for environmental monitoring

and control.

The three focus areas that was successfully evaluated in this phase of the use case

include: adequate representation of sensor observations in the ontology; support

for reasoning services for analyzing sensor data to detect target situations through
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the use of an ontology driven index; and determining control actions to mitigate

unwanted situations through reasoning on the ontology. The details of this use case

is described in Chapter 4.

The framework at this stage was a reactive one, it demonstrated the use of ontologies

for a monitoring and control application.

Proactive monitoring and control of PM2.5 was used to evaluate the incor-

poration of the machine learning model for situation prediction. The prototype

application here was an extension of the application in the first phase of this use

case. The evaluation in this phase was focused on two main areas. The first was

the exploration of statistical machine learning for situation prediction. In the use

case that was reported in Chapter 5, a sliding window technique for predicting the

future from streaming sensor data was proposed. The situation prediction approach

demonstrated how to structure sensor data for the prediction tasks and for on-line

retraining of the classifiers; how to select an appropriate classifier for the prediction

task and how to select appropriate sliding window sizes for situation prediction.

The second area evaluated was the incorporation of situation prediction in the SSW

framework. This was achieved using C-SPARQL a stream reasoning engine. The use

of stream reasoning technique ensures that only target situations are recorded in the

ontology, which is in turn important for better query performance on the ontology.

Incorporating the statistical machine learning model in the framework enabled it to

predict future situations and process control actions before their occurrence, thereby

making it a proactive framework. In the application use case, the system could then

monitor short term future PM2.5 pollution situations and provide control actions

before the situations occur.

Evaluation results show that although the MLP classifiers demonstrated slightly

better performance than BN in predicting PM2.5 pollution situations, it is not as

scalable in terms of model update time as the BN when the data set size increases.

The application prototype developed in the indoor air quality use case was done as a

pilot project with an occupational health research group in the university (see Chap-
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ter 5). Hence, the framework can be used by occupational health researchers and

practitioners as an early-warning system to prevent excessive exposure of occupants

to indoor pollutants.

7.1.2 Use case 2: Demand side management

The second use case was in the area of demand side management on the smart grid.

A prototype application for monitoring and control of electricity usage in blocks of

residential houses was developed. The goal of the application was to prevent strain

on the national grid thereby preventing possible power cuts. The focus of this use

case was to evaluate coherence and consistency in decision making and planning.

The proposed framework promotes the use of an ontology driven index for situation

detection. The implementation of an ontology driven index for detecting demand

load situations in this use case is the second successful evaluation of this approach.

The index was able to detect the qualitative power demand states from quantitative

sensor (smart meters) data. The novel technique that allows dynamic labeling of the

dataset using the ontology driven index for retraining the machine learning model

was also evaluated.

This application further evaluates the sliding window technique for situation predic-

tion that was introduced in Chapter 5. The performance of this approach using J48,

a decision tree classifier to predict the next hour demand load on the smart grid

suggests that the sliding window approach can be used to predict power demand

load situations.

The use case demonstrated an approach to incorporate an MDP planner in a SSW

in order to enhance rule based reasoning with coherence and consistency in decision

processing. The approach demonstrated a MDP-semantic rules hybrid mechanism

which is described in more detail in Chapter 6.

Evaluation results shows that the prototype application can effectively avert load

shedding and increase occupant’s satisfaction. The prototype application developed
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and presented in Chapter 6, can be used by an utility manager for effective manage-

ment of power demand in blocks of residential houses to prevent strain on the smart

grid.

7.2 Usage of the framework

The framework can guide a developer in designing and developing SSW applica-

tions for proactive environmental monitoring and control. It provides the required

functional components in the different layers. Since the framework has three lay-

ers, namely, monitoring, situation analysis and control, we recommend application

development to follow this order.

• Monitoring layer: The main component of this layer is observation. Rele-

vant observations from the sensors monitoring the specific feature of interest

in the environment should be identified.

The framework reused and extended the SSN ontology as shown in Chapter 4.

The ontology engineering steps provided can be followed to model concepts and

relationships in an application domain to support the framework’s components

and reuse the SSN ontology.

• Situation analysis layer: There are two main components to be focused

in this layer, namely situation detection and situation prediction.

Situation detection. The proposed framework uses an ontology driven index to

achieve situation detection. The steps provided in the two use cases can guide

a developer to implement an ontology driven index for the specific situations

of interest in an application domain.

Situation prediction. The sliding window approach for situation prediction

introduced in Chapter 5 provides detail steps that can be followed to model

and evaluate and incorporate situation prediction, based on statistical machine

learning, in the application domain.
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• Control layer: This research proposes a hybrid MDP-Semantic rule decision

processing mechanism for making coherent proactive decisions. The steps pro-

vided in Chapter 6 can guide a developer to develop a coherent and consistent

decision mechanism.

By following the steps above and using the proposed mechanisms a developer

can design and implement an application for proactive environmental moni-

toring and control.

7.3 Framework analysis

7.3.1 Comparison with previous work

This section compares the framework proposed in this thesis with existing architec-

tures and frameworks.

SSW architectures and frameworks typically do have several layers of semantic in-

frastructures and services [42, 44]. The SSW framework proposed in this thesis

follows the generic SSN architecture presented by Compton et al. [42], which also

has three layers, namely, sensor and data layer, processing layer and application

layer. The sensor layer and the processing layer are similar to the monitoring and

situation analysis layers respectively. Except that the processing included in our

situation analysis layer has been streamlined to the focus of the layer, namely sit-

uation detection and situation prediction. However, while their architecture’s third

layer is the application layer, the third layer in our architecture is control.

The architecture proposed by Gray et al. [66], (see Section 2.3.3) a multi-tier service

oriented architecture is similar to our architecture in that it was focused towards

providing early warnings in the SSW. However, the architecture was focused towards

orchestration of services. Although it leverages forecast services to anticipate the

future through service integration, and provide early warnings, the architecture is

different from our’s, in that it does not include mechanisms to predict the future as
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a component of the architecture.

The SWAP architecture (see Section 2.3.3) is the most similar to the architecture

proposed in this work. First, it’s a three layer abstract architecture. Second, it

can be used for developing SSW applications. However, SWAP is different from our

proposed framework. Firstly, SWAP is an ontology-driven multi-agent system while

our proposed framework is not focused towards developing agent based application.

Secondly, although SWAP has incorporated machine learning classification in an

application for classifying and detecting informal settlement, the application is a

reactive one. It has not been focused towards predicting the future and acting in

favor of the user. Hence, the approach proposed in this thesis for incorporating

statistical machine learning in a SSW for proactive monitoring and control can be

used with SWAP to develop a SSW application for proactive monitoring and control.

The framework proposed in this thesis is similar to that of Engel et al. [57]. Although

their architecture also follows the proactive computing paradigm, it does not use

SSW techniques. While our architecture is promoting tight incorporation between

the components, their’s is promoting decoupling of the components. They proposed

use of an MDP for decision processing but not a hybrid one like ours.

The approach to achieve proactive control in this work is similar to that of Anaya

[9] who sought to achieve proactive adaptation by incorporating predictive machine

learning models in a self adaptive system. The author’s approach is different by

using fuzzy logic for decision making and the work does not use SSW technologies.

7.3.2 Interaction between the framework components

The proposed framework incorporates three key technologies for analyzing streaming

sensor observations, namely, ontologies for situation detection, statistical machine

learning for situation prediction and MDP for decision making and planning. This

research demonstrates how these three components can be incorporated into a co-

herent architecture such that they enhance the functionality of each other.
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The ontology-driven situation detection component provides supports for the func-

tionality of the statistical machine learning components. First, it dynamically pro-

vides the current states which is an important attribute used by the machine learning

classifiers to predict the future states. Second, it provides class labels for dynamic

labeling of datasets used for on-line retraining of the classifiers. The latter is a

novel technique that enhances system autonomy, and coherence in the outputs of

the framework.

The hybrid decision processing component depends on the outputs of both ontology-

driven situation detection and machine learning predictions for decision processing

and planning. The combination of MDP and semantic rules for decision making is

a novel technique that enhances rule-based reasoning on the ontology with coherent

planning capability. The hybrid decision processing component further allows the

machine learning predictions to inform planning and action selection by the MDP.

7.4 Review of objectives

Objective (i). The first objective of this thesis was to design and implement an

ontology-driven SSW framework for monitoring and control applications. In

fulfilling this objective, we investigated the use of ontology for monitoring and

control (presented in Chapter 4). The ontology-driven framework also serves

as a testbed for the incorporation and evaluation of other components of the

framework.

Objective (ii). The second objective of this thesis was to design an approach to

incorporate situation prediction based on statistical machine learning into a

SSW framework. Anticipating the future is a core component of proactive

control. To fulfill the objective, Chapter 5 presented an approach that leverage

stream reasoning techniques to incorporate situation prediction into the SSW

framework (see Chapter 5). The approach demonstrated how to structure

situation prediction modeling with statistical machine learning techniques and
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how to incorporate the predicted situation in the SSW framework.

Objective (iii). The third objective of this work was to design and incorporate a

coherent and consistent decision processing and planning mechanism in the

proactive SSW framework. This is to introduce the notion of probability and

utility into processing proactive decisions for coherence and consistency in the

decision output. Chapter 6 has presented the study that investigates how

to incorporate MDP theory in a proactive SSW framework. The study pro-

posed a hybrid MDP-Semantic rule decision mechanism for making consistent

proactive decisions and plans.

Objective (iv). Finally, the last objective of this study was to evaluate the pro-

posed proactive SSW framework with real world environmental application use

cases. In order to fulfill this objective, the design, development and evaluation

of prototype applications of the framework in two different use cases has been

presented in Chapter 5 and Chapter 6. The first application was for proactive

monitoring and control of indoor air quality to avoid poor air quality situa-

tions. The second was for proactive monitoring and control of electricity usage

in blocks of residential houses to prevent strain on the national grid.

7.5 Limitations and future work

7.5.1 Application use cases

The framework proposed in this thesis has potentials to facilitate proactive SSW

applications development for different proactive environmental monitoring and con-

trol domains, within the context of SSW. It has only been evaluated through two

environmental use cases, namely, indoor air quality and demand side management.

Both use cases involved proactive monitoring and control of features of interests in

residential home environments. More work is still required to evaluate its generality

of use for other application domains.
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7.5.2 Situation detection techniques

In this work ontologies are used for situation analysis and detection in the current

time frame. Other techniques such as fuzzy logic and machine learning may also

be used for situation analysis and detection. In future work it will be interesting to

perform a more in-depth comparative study of the merits of using ontologies against

these techniques.

7.5.3 Statistical machine learning prediction errors

The framework proposed in this thesis employs statistical machine learning to antici-

pate future states. Hence, the efficiency of the system can be impaired if the machine

learning classifiers performs poorly. This can result in false alarms as demonstrated

in Chapter 5. Possible future research could entail investigating how ontologies can

be used to understand the pattern of errors in the machine learning predictions.

7.5.4 Incorporation of components

As mentioned in Section 7.3.2, an important added value of incorporating several

technologies in the proposed SSW framework is the use of one component to enhance

the functionality of the other. As such ontologies support the machine learning com-

ponent, e.g. labeling historical data which can then be used for model construction.

More work is required in this aspect. The transition function used by the MDP in the

use case which was reported in Chapter 6 was modeled according to expert domain

knowledge. A future direction could be to make the machine learning components

also enhance the functionality of the MDP by providing probability distributions

dynamically (see Section 6.5). This can improve the system dynamism and make

the framework more coherent by learning the transition function from the streaming

data rather than expert knowledge.
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J.-P., Page, K., Garćıa-Castro, R., Frazer, A., Galpin, I., et al. A semantic
sensor web for environmental decision support applications. Sensors, 11(9):
8855–8887, 2011.

67. Gruber, T. R. et al. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.
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92. Lécué, F. and Pan, J. Z. Predicting knowledge in an ontology stream. In
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pages 2662–2669. AAAI Press, 2013.
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