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ABSTRACT 
 

With the drive to save money when supplying electricity to customers, utilities are looking 

for solutions to decrease losses on distribution lines while maintaining good quality of 

supply. Amorphous core transformers are known for having the lower no-load losses 

compared to cold rolled grain orientated transformers and hence may be an important 

technology to decrease losses on the distribution network. The amorphous material is easily 

magnetised, however this comes at the expense of a lower saturation point and the 

transformer may need to be designed at a lower peak flux density. 

 

Inrush currents are a phenomenon that occurs when a transformer is switched on. The 

combination of the voltage switching angle and the remnant flux lead to an overflux and 

subsequent saturation of the core material, this leads to a high current.  

 

The purpose of this dissertation is to investigate the performance of amorphous core 

transformers installed on distribution lines, where they are switched onto the network from 

the high voltage side, and conclude if they are a suitable replacement for cold rolled grain 

oriented steel core.  

 

Inrush currents have been investigated through a circuit model developed in Alternative 

Transients Program/Electromagnetic Transients Program (ATP/EMTP) to determine the 

currents for various designs of transformers. The model consists of the non-linear component 

related to the core used as well as the air core of the high voltage winding. The circuit model 

has been validated through an experiment.  

 

A study was undertaken to understand the difference in the forces between amorphous core 

transformers and cold rolled grain orientated, this was investigated in Finite Element Method 

Magnetics (FEMM) by determining the distribution of magnetic flux. Additionally, as the 

inrush current is only seen on the high voltage winding and not the low voltage winding, the 

models were compared to the forces due to short-circuit currents, where there is current on 

both high voltage and low voltage windings and a different magnetic flux distribution. The 

position of the tap winding was of interest as it results in an unsymmetrical force 

distribution.  
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1 INTRODUCTION 
 

Distribution networks in the South African national utility, Eskom, are generally 33 kilovolt 

(kV) and below. The quality of electricity that Eskom supplies to customers is regulated by 

the National Energy Regulator of South Africa (NERSA) [1].  

 

Transformers are electrical devices that use a magnetic field to transform or regulate voltage 

at the same frequency. They are built in different sizes, have different ratings, different 

cooling methods, different insulation, can be used to increase or decrease the primary voltage 

which enters the transformer or regulate the voltage [2], [3]. 

 

This study is focused on pole mounted transformers rated at 16 kilovolt-ampere (kVA) 

installed on 22 kV distribution networks and are required to decrease the primary voltage 

from 22 kV to a lower voltage to supply customers. Figure 1 - 1 displays a 16 kVA pole 

mounted transformer installed on a distribution network at Eskom. This was part of a pilot 

project done in 2014. A utility generates electricity at a certain voltage and transports it to 

substations, which use transformers to distribute electricity at a specified voltage to other 

substations and customers. Revenue is received by the utility from customers for supplying 

electricity.  

 

 
 

Figure 1 - 1: 16 kVA Transformer installation (courtesy of Eskom) 
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Eskom generates about 95% of electricity that South Africa uses and about 45% of 

electricity Africa uses. Eskom also supplies electricity to diverse customers via transmission 

and distribution networks [4].  

 

Pole mounted transformers are transformers connected on a utility pole. They provide final 

voltage conversion in a distribution system. They consist of a core material, windings, solid 

insulation (e.g.: paper insulation), liquid insulation (e.g.: transformer oil), metal casing and 

materials used for connections and protection [5]. 

 

Pole mounted transformers should be durable as they are subjected to adverse weather 

conditions, multiple switching operations, overloading and short-circuit forces [6].  

 

Transformer type test and routine test includes short-circuit test (load loss), measurement of 

short-circuit impedance on the principal tap and open-circuit test (no-load loss) [7], [8]. 

 

According to International Electrotechnical Commission (IEC) 60076-5:2000 Power 

transformers – Part 5: Ability to withstand short-circuit in reference [8], for transformers 

rated up to 630 kVA, the recommended minimum short-circuit impedance at rated current is 

4%. 

 

These aspects are discussed further in Chapter 2, Chapter 3 and Chapter 4.  

 

A transformer failure results in loss of supply to customers and loss of revenue. It could be a 

safety and environmental issue if there is an oil leak or the transformer is burning.  

 

Amorphous core transformers (AMDTs) have the same network application as the cold 

rolled grain orientated (CRGO) transformers but are designed to have low no-load losses [9].  

 

1.1 Research question 
 

The aim of this dissertation is to investigate the effects of inrush (IR) currents and short-

circuit (SC) currents on AMDTs and determine if there are any problems installing them in 

the distribution network. 

 



3 
 

AMDTs are known to be energy efficient; however, their application on the network may 

have other implications which need to be considered. There is a significant amount of 

switching on the distribution network which means that transformers may be subjected to 

many inrush current events. AMDTs have lower flux density; hence they have higher inrush 

currents compared to the CRGO steel core transformers [10], [11].  

 

AMDTs have been tested and comply with the national and international standards [12].  

 

Inrush currents are dependent on the properties of the core whereas short-circuit currents 

depends on leakage reactance [13], [14]. 

 

These currents lead to forces, which when exerted may have an impact on the mechanical 

integrity of the transformer [15]. 

 

1.2 Hypothesis 
 

The hypothesis is that AMDT has a higher inrush current due to its lower saturation level 

and the forces it experiences are similar to that of CRGO with the same design flux density. 

 

1.3 Importance of study and contribution 
 

This study is to determine if AMDTs are adequate for installation as pole mounted 

transformers and a suitable replacement for CRGO transformers. The main focus is how 

inrush currents affect the performance of AMDTs compared to CRGO transformers. 

 

The study will contribute to the specification and design of AMDTs to account for inrush 

currents. 

 

1.4 Dissertation structure  
 

The chapters in this dissertation are structured in the following manner: 

 

Chapter 1 is the introduction: This chapter explains the proposition of this research. The 

importance of this study and its contribution to a utility are also discussed here. 
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Chapter 2 is on transformers and magnetic circuits: This chapter is a literature review 

and introduces transformers and magnetics. It then focuses on the differences between 

AMDTs and CRGOs. 

 

Chapter 3 is on inrush currents: This chapter presents how source switching angle, 

winding resistance, residual flux in the transformer core, air core inductance and voltage 

drop on the network affects inrush currents in AMDT and CRGO transformers. 

 

Chapter 4 is on electromagnetic forces: This chapter presents how forces affect the 

different core type transformers. These forces result from inrush currents and short-circuit 

currents. The effects of the electromagnetic forces due to the arrangement of the tap changer 

winding are also discussed here. 

 

Chapter 5 is the conclusion: This chapter presents the conclusions derived from Chapter 3 

and Chapter 4. It concludes in what way the different currents and forces impacts on AMDTs 

and CRGO transformers as well as the most suitable tap changer winding arrangement. 

Finally, it discusses if AMDTs are a suitable replacement for CRGO. 

 

Appendix A contains the MathWorks® (Matlab) codes used to determine the graphs in 

Chapter 4. 

Appendix B contains the email with regard to pictures courtesy of Eskom. 
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2 TRANSFORMERS AND MAGNETIC CIRCUITS 
 

From Figure 2 - 1, transformers are used to transmit electrical power from generation 

stations to the customer. Electricity is transmitted from generation stations at high voltages 

over long distances to decrease losses on the power lines to transmission substations. 

Transformers in this case are used to step-up the voltage. Transformers at transmission 

substations step-down the voltage transmitted to distribution substations. Transformers at 

these substations further decrease the voltage. Transformers connected on distribution 

networks are used to step-up, step-down or regulate the voltage been transmitted to the 

customer. Some customers are supplied directly from generation stations or transmission 

stations. Basically, customers are supplied from the power grid depending on their 

requirements [16], [17].  

 

 
 

Figure 2 - 1: Diagram of electricity from the generation station to the customer 
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There are three different types of customers that can be supplied by a distribution substation 

viz: single customer e.g.: farmer; direct customer e.g.: factory and multiple customers been 

supplied from one medium voltage/low voltage (MV/LV) transformer e.g.: in a street with 

nine customers connected to a three phase MV/LV transformer, three customers will be 

sharing a single phase supply from this transformer. This method balances supply to the 

customers [5], [16]. 

 

In Eskom 60% to 75% of the total losses occur in the distribution networks. Losses from 

distribution transformers account for about one third of total losses on the electricity network 

[12], [18].   

 

These losses are broken down into technical and non-technical losses. Technical losses are 

due to equipment that create unnecessary emissions that prevent the electricity generated to 

equal the electricity the customers are supplied. Basically, generation businesses need to 

supply more electricity than the customer requires to cater for losses on the networks. Non-

technical losses are generated by situations where it is beyond the capabilities of the utility to 

resolve such as theft of electricity [19].  

 

AMDTs, developed in Asia, are intended to decrease the technical losses in distribution 

transformers. The advantages of using this technology include reduced carbon dioxide and 

other greenhouse gas emissions, lower no-load losses and magnetising current as well as a 

lower temperature rise compared to CRGO core transformers [20], [21], [22].  

 

2.1 Magnetics of a transformer 
 

To understand the transformer and the behaviour of the transformer under abnormal 

conditions, the basic magnetic concepts are introduced.  

 

Transformers are static electromagnetic devices that couple two electrical circuits through a 

magnetic circuit. In Figure 2 - 2, the primary winding is wrapped around a ferromagnetic 

core. The applied voltage drives a magnetic flux through the core and a voltage is then 

induced on the secondary winding according to Faraday’s law. 
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Figure 2 - 2: Representation of a transformer 
 

Transformers have both electrical and magnetic parameters. The main parameter calculations 

are displayed in Table 2 - 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source 
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Table 2 - 1: Electrical and magnetic equations [23] 
 

Electrical Magnetic 

∑Ii
i

= 0 ∑ϕi
i

= 0 

∑Vi
i

= ∮E. dl = emf ∑(NI)i
i

= ∮H. dl = mmf 

I = ∫ J. dA ϕ = ∫B. dA 

J = σE B = μH 

For uniform J and A: 

I = JA 

For uniform B and A: 

ϕ = BA 

For uniform E: 

V = EL 

For uniform H: 

NI = HL 

I
A

= σ
V
L

=> V = (
L
σA

) I 
ϕ
A

= μ
NI
L

=> NI = (
L
μA

)ϕ 

R =
ρL
A

 ℛ =
σL
A

 

 

Description of symbols in Table 2 - 1 is [23]:  

A = mean area enclosed by a winding turn or net core area measured in square metre (m2)  

B = flux density measured in tesla (T) 

E = root mean square (rms) voltage induced in the winding measured in volt (V) 

emf = electromotive force (V) 

H = field intensity measured in ampere per metre (A/m) 

I = rated current measured in ampere (A) 

J = current density measured in ampere per square metre (A/m2) 

l = L = length of wire or core measured in metre (m)  

mmf = magnetomotive force measured in ampere turn (AT) 
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N = number of turns 

R = resistance measured in ohm (Ω) 

V = voltage drop (V) 

ℛ = reluctance measured in ampere turn per weber (AT/Wb) 

σ = conductivity measured in siemens per metre (S/m) 

ϕ = flux measured in weber (Wb) 

μ = permeability of material measured in henry per metre (H/m) 

ρ = resistivity of material measured in ohm metre (Ωm) 

 

2.1.1 Equivalent circuit parameters of a transformer 
 

Figure 2 - 3 and Figure 2 - 4 displays a simplified transformer model with parameters. 

 

 
 

Figure 2 - 3: Transformer model parameters 
 

 
 

Figure 2 - 4: Transformer simplified model parameters 
 

Description of symbols in Figure 2 - 2 to Figure 2 - 4 are [24]:  

a = ratio of primary and secondary number of turns 

E1 = primary induced emf (V) 

E2 = secondary induced emf (V) 

f = frequency measured in hertz (Hz) 

ic = equivalent core loss current (A) 
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im = magnetising current (A) 

i1 = primary current (A) 

i2 = secondary current (A) 

i2′  = transformer current (secondary side referred to primary side) (A) 

iϕ = shunt current (A) 

Lm = magnetising inductance measured in henry (H) 

L1 = primary leakage inductance (H) 

L2 = secondary leakage inductance (H) 

L2
′  = equivalent value of secondary terminal inductance when referred to primary winding 

(H) 

N1 = number of turns in primary winding 

N2 = number of turns in secondary winding 

Rc = core loss equivalent resistance (Ω) 

R1 = primary winding resistance (Ω) 

R2 = secondary winding resistance (Ω) 

R2
′  = equivalent value of secondary winding resistance referred to primary winding (Ω) 

V1 = primary terminal voltage (V) 

V2 = secondary terminal voltage (V) 

Φm = instantaneous value of flux at any time t (Wb) 

 

The parameters for the equivalent transformer models in Figure 2 - 3 and Figure 2 - 4 are 

calculated as follows [24], [25]: 

 

R2
′ = R2 (

N1

N2
)
2
                                                                                                                                     (1) 

 

X2
′ = X2 (

N1

N2
)
2
                                                                                                                                      (2) 

 

a =
N1

N2
                                                                                                                                                     (3) 

 

E2
′ =  E1                                                                                                                                                   (4) 

 

V2
′ =  V2                                                                                                                                                   (5) 
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RL = R1
′ + R2

′                                                                                                                                         (6) 

 

XL = X1
′ + X2

′                                                                                                                                          (7) 

 

Short-circuit impedance percentage is calculated as [25]: 

 

Vz =  Z% =  
IZ
E

× 100                                                                                                                           (8) 

 

Short-circuit impedance per unit is calculated as [25]: 

 

Vz =  Zpu =  
IZ
E

                                                                                                                                     (9) 

 

Impedance is calculated as [24]:  
 

Z =  √(RL
2 + XL

2)                                                                                                                                (10) 

 

Where [24], [25]: 

E2
′  = equivalent value of secondary induced emf when referred to primary winding (V) 

I = rated current (A) 

RL = resistance (Ω) 

R1
′  = equivalent value of primary winding resistance referred to secondary winding (Ω) 

Vz = transformer voltage drop (%) 

V2
′ = equivalent value of secondary terminal voltage when referred to primary winding (V) 

X2 = secondary winding leakage reactance (Ω) 

X2
′  = equivalent value of secondary leakage reactance referred to primary winding (Ω) 

XL = leakage reactance (Ω) 

X1
′  = equivalent value of primary leakage reactance referred to secondary winding (Ω) 

Z = impedance (Ω) 

Z% = impedance (%) 

 

Supply voltage is calculated as follows [24]: 

 

E = KΦmp fN                                                                                                                                       (11) 
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When supply voltage is sinusoidal, Equation (11) becomes [24]: 

 

E = 4.44Φmp fN                                                                                                                                 (12) 

 

Since [24]:  

 

Φmp = BmpAcore                                                                                                                               (13) 

 

Equation (12) can be [24]:  

 

E = 4.44BmpAcorefN                                                                                                                         (14) 

 

Where [24]: 

Acore = area of the core (m2) 

Bmp = instantaneous peak flux density value (T) 

K = constant 

Φmp = instantaneous peak value of flux (Wb) 

 

2.1.2 Relationship between the primary and secondary windings 
 

There is no physical connection between the primary and secondary windings. The only 

connection is through magnetisation. The relationship between the main parameters is as 

follows [24]: 

 
E1

N1
= KΦmp f =

E2

N2
                                                                                                                           (15) 

 

Hence, the voltage ratio and turns ratio between the two circuits are the same [24]: 

 
E1

N1
=

E2

N2
                                                                                                                                               (16) 

 

And [24]: 
 

N1I1 = N2I2                                                                                                                                         (17)  
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E1

E2
=

N1

N2
=

I2
I1

                                                                                                                                      (18) 

 

Where [24]: 

I1 = primary side current (A) 

I2 = secondary side current (A) 

 

2.2 Transformer efficiency 
 

Transformer efficiency is calculated as follows [24]: 

 

Efficiency % = 
Poutput

Poutput + Ploss
× 100                                                                                         (19) 

 

Ploss =  Pno−load + Pload loss                                                                                                           (20) 

 

Where [24]: 

Ploss = total transformer loss measured in watt (W) 

Pload loss = load loss or copper loss or winding loss (W) 

Pno−load = no-load loss or core loss (W) 

Poutput = output power (W) 

 

2.3 Rated quantities 
 

Single phase transformer’s rated quantities are calculated using Ohm’s law as follows [24]: 

 

RL =
V
I
                                                                                                                                                  (21) 

 

2.3.1 Single phase transformers 
 

The apparent power for single phase transformers is calculated as follows [24]: 

 

S =  V2I2                                                                                                                                               (22) 

 

Where [24]: 
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S = apparent power measured in volt-ampere (VA) 

 

2.4 Voltage regulation 
 

Voltage regulation of the transformer is calculated as follows [24]: 

 

% Regulation =  
E2 − V2

E2
× 100 =  

I2(R2cosθ ± X2sinθ)
E2

                                                    (23) 

 

Where [24]: 

θ = phase angle between V2 and I2 

± = positive implies power factor is lagging (inductive impedance) and negative implies 

power factor is leading (capacitive impedance) 

 

2.5 No-load losses 
 

No-load loss is the active power which consists of core losses (hysteresis losses), eddy 

current losses, stray losses, and anomalous losses [2], [25], [26], [27]. These losses are 

explained below. 

 

Equation (24) to Equation (28) are used for no-load loss calculations. These are displayed 

below [24], [28]: 

 

Pno−load =  
E2

Rc 
                                                                                                                                  (24) 

 

Wh = Khf(Bmp)n                                                                                                                                (25) 

We =
k2 × f2 × t2 × Beff

2

ρ
                                                                                                                (26) 

W = αL∫ H. dB
Bmax

0
                                                                                                                          (27) 

 

∫H. dB = Total area enclosed by Hysteresis Loop                                                                (28) 

 

Where [24], [28]: 
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Beff = flux density corresponding to rms value of applied voltage (T) 

Kh = hysteresis constant, dependent on core lamination material 

k2 = material dependant constant 

n = Steinmetz exponent, this varies between 2 to 2.6 for flux density between 1.45 T to 1.7 T 

t = thickness of laminations (m) 

W = total work done for a complete cycle of magnetism measured in joule (J) 

We = eddy current losses measured in watt per kilogram (W/kg) 

Wh = hysteresis losses (W/kg) 

αL = volume measured in cubic metre (m3) 

 

From Equation (25) and Equation (26), Wh and We are lower for amorphous core 

transformers due to lower peak flux density. 

 

2.5.1 Hysteresis losses 
 

This is defined as the magnetisation and demagnetisation caused by the magnetic field 

alternating in the core laminations which creates frictional movements of magnetic domains. 

Hysteresis is lower for Silicon steel compared to normal steel; however, amorphous metal 

has lower hysteresis than Silicon steel. These losses are generally accountable for 50% to 

70% of the no-load losses [20].   

 

2.5.2 Eddy current losses 
 

Fluctuating magnetic fields induces eddy currents in laminations resulting in heat been 

generated. Losses are decreased by thinner laminated sheets with a slim varnish layer. These 

losses are generally accountable for 30% to 50% of the no-load losses [20].   

2.5.3 Stray and dielectric losses 
 

These losses are marginal and occur in the transformer core and are responsible for 1% or 

less of the no-load losses [20].   

 

2.5.4 Other methods of calculating no-load losses 
 

Albach, Dürbaum and Brockmeyer in reference [29] proposed equations to provide an 

accurate and simple method to define core losses of the magnetic mechanisms for random 
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waveforms. Simulation tools enable currents through the magnetic equipment to be obtained 

and these can be used with the proposed equations to obtain magnetic losses if sufficient 

information is not provided. 

 

Freitag, Kasti and Leibfried in reference [30] uses post processing algorithm in Matlab and 

Finite Element Model (FEM) simulation in Ansys Maxwell 2015 to estimate core losses in a 

transformer. This simulation result is compared to the measured result. The results are 

similar; hence the simulation can be used to estimate transformer core losses. 

 

Nogueira, Facchinello and Ramos in reference [31] simulates open-circuit tests using 

numerical calculations and finite element Computer Aided Design (CAD) software to 

produce estimations of magnetising current waveshape for a given value of sinusoidal 

voltage supply of a single-phase shell-type transformer. Numerical calculations use the 

nonlinear magnetisation characteristic of the transformer’s magnetic core to predict 

magnetisation currents. The results prove that the transformer under open-circuit condition 

behaves like a nonlinear reactor. 

 

Hernandez, Olivares-Galvan, Georgilakis and Cañedo in reference [32] simulates core losses 

as well as excitation current for distribution transformers with wound core using FEM. 

Results from the simulation are compared to results using a lamination by lamination 

method. The differences were small. Hence, FEM software provides accurate results and is 

simpler. 

 

2.6 Load losses 
 

Load loss is the absorbed active power and it consists of winding losses (copper loss), eddy 

current losses and stray losses [2], [25], [27]. 

 

2.6.1 Copper losses 
 

Also known as Ohmic loss. It happens in the windings of the transformer due to the 

resistance of the conductor. It is reduced by decreasing the length of the winding or having a 

bigger conductor (i.e. higher cross sectional area) [20]. 
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Equation (29) and Equation (30) are used for load loss calculations. These are displayed 

below [28]:  

 

Pload loss = I2R = copper loss                                                                                                       (29) 

 

Copper losses also include stray losses, therefore [28]: 

 

Pload loss = I22Req + Stray loss                                                                                                       (30) 

 

Where [28]: 

Req = equivalent resistance measured in ohms (Ω) 

 

2.6.2 Eddy currents 
 

Alternating currents creates magnetic fields which occur in the windings. It is decreased by 

smaller cross sectional area of conductor. Stranded conductors, made up of parallel windings 

and using a continuously transposed conductor (CTC), can attain the low resistance required 

as well as control the eddy current loss [20]. 

 

2.7 Construction of distribution transformers 
 

Figure 2 - 5 displays a typical pole mounted transformer where 22 kV enters the bushing 

(which is the MV incomer to the transformer) and there are double surge arresters per phase 

since the transformer is installed in a high lightning area as per the Eskom standard [33]. 

 
 

Figure 2 - 5: 16 kVA transformer installed at a pilot site (Courtesy of Eskom) 
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2.7.1 Transformer core types 
 

The transformer’s core can be constructed in two common designs, namely closed core or 

shell core. Closed core is also referred to as core form. In this type, the windings get wound 

on the outside and they surround the ring of the core. The windings are wound inside the 

shell core, also referred to as shell type or shell form, such that a shell is formed [34]. 

 

The advantage of shell core is that the leakage flux is minimised since the two windings get 

wound along the centre limb or leg which is double the outer limb cross-sectional area. 

Hence, there are two closed paths for the magnetic flux to flow, thereby increasing the 

transformer’s efficiency and decreasing the core losses [34]. 

 

There are two common shapes of transformer cores, namely rectangular or circular 

(cylindrical or oval) core. The core is made up of laminated core material. The windings are 

wound around the core limbs. Generally, transformers rated above 5 Mega volt amp (MVA) 

(used for industrial applications) have a circular core and transformer rated at 5 MVA and 

below (used for distribution applications) has a rectangular core [34], [35].  

 

The transformer cores simulated in Chapter 4 is rectangular with a rectangular air core, 

which results in higher flux at the corners. Due to its shape, there will be non-uniform radial 

electromagnetic forces which occur around the coil edges which may alter the coil shape 

depending on the magnitude of the forces [10]. 

 

2.7.2 Transformer windings 
 

Windings are conductors used to transport current. These conductors are wound around the 

transformer core. Since they are current carrying conductors, they are required to be 

insulated. As the supply current to the transformer increases, so does the temperature of the 

windings. Hence, it is necessary for the transformer to contain a cooling medium [36]. 

 

Transformer windings need to have the required electrical strength for over voltages and 

remain mechanically stable when forces result from short-circuits [37]. 

 

Generally, aluminium and copper are used for the windings. The disadvantage of aluminium 

is that it requires a larger cross section than copper to carry the same amount of current. 
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Silver-bearing copper may be used when extreme forces are experienced by transformers 

since they provide more strength [36].  

 

Conductors are stranded with rectangular cross section. Sometimes they may be foil or sheet 

conductors. Continuously transposed cable is when a winding cable has lots of rectangular 

conductor strands. This technique decreases or eliminates circulating currents. Usually core-

form transformer windings are concentrically arranged around a core leg. Interleaved 

arrangement is stacked individual coils separated by cooling ducts and insulating barriers. 

Circular windings have higher mechanical strength compared to rectangular windings [36]. 

 

Some winding types are [36]: 

x Pancake windings: This arrangement consists of conductors being wound around in 

a rectangular form. Mainly used in shell-form transformers.  

x Layer (barrel) windings: This arrangement consists of insulated conductors being 

wound around the spacers and cylinder right next to the other insulated conductors. 

Variations of this type of windings can be found in tap windings of transformers. 

x Helical windings: This type of arrangement consists of many insulated strands 

(slightly above one hundred) being wound in parallel alongside the span of the drum. 

Spacers are inserted between the suitable transpositions and discs or adjacent turns 

to decrease circulating currents in the middle of the parallel strands. Mainly used for 

applications (lower voltage classes) requiring higher-current.  

x Disc windings: This type of arrangement consists of insulated conductors with 

single or several strands being wound in a sequence of parallel horizontal orientation 

discs. These discs are connected by the inside disc or outside disc called a crossover 

point. Every disc contains many turns which is wound over the other turns and the 

crossovers alternate between the outside and inside.  

 

Winding classes above and equal to 25 kV in core-form transformers are generally disc type 

because of high voltages. When this transformer is exposed to transient voltage surges, the 

stress between the discs and the turns close to the winding’s end is high [36]. 

 

Circular shaped coils are considered to be very durable and have a small probability to 

distort during a fault. Rectangular shaped coils have a higher probability to distort their 

shape to circular when they are subjected to forces and this may result in insulation damage 

[35]. 
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The primary side and secondary side windings’ electrical centres need to be balanced. 

Helical windings provide the best way of doing this, since axial forces are limited by 

structures such as core clamping. In rectangular shaped coils, the electrical centres are not 

balanced well [35]. 

 

When transformers are subjected to forces, telescoping occurs. This is when the two 

windings are sliding against one another. This may result in transformer failure as the coils 

are being damaged. This can be prevented by appropriate insulation and design selection 

[35]. 

 

2.7.3 Transformer insulation 
 

Paper is used as insulation for the transformer windings. Transformer oil is used as an 

insulation medium for the core [38], [39].  

 

Types of transformer insulation are [38], [39]: 

x Transformer oil: This is a cooling medium. The minimum temperature where 

heated oil exhales sufficient vapour in order to support combustion is called the oil 

flash point. It indicates volatility of oil and presence of contaminates. 

x Solid oil-impregnated paper insulation: This is paper insulation around the 

windings. 

 

2.7.4 Tap changer 
 

Transformers contain tap changers to regulate output voltage. This is achieved by varying 

the turns ratio by altering the amount of turns in a winding. A transformer’s tap changer can 

either be on-load tap changer (OLTC) or de-energised tap changer (DETC). Historically, 

transformer failures where mainly due to the tap changer. Tap changer tests are important as 

they provide information on its integrity [40]. 

 

Generally tap changers are on the higher voltage windings due to the current being lower and 

the lower voltage winding is sometimes wound inside this winding [41].  
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OLTC changes the turns ratio even though the transformer is in operation. DETC also known 

as no-load tap changer (NLTC), changes the turns ratio only when the transformer is 

switched off [40], [42]. 

 

Failures that may occur with OLTC’s are classified as [40]: 

x Dielectric failures as a result of poor oil quality. 

x Thermal failures as a result of crimp problems. 

x Mechanical failures as a result of lubrication problems. 

 

2.8 Different types of tests done on transformers 
 

After transformers are manufactured, they are tested to ensure that they met the necessary 

standards and limits as prescribed by the customer [2].  

 

Below are explanations of the different tests. 

 

Routine test: Every transformer has to be subjected to this test. It includes voltage ratio, 

short-circuit impedance, load loss, no-load loss, current and winding resistance 

measurements. Phase displacement is also checked [2], [25].  

 

Type test: This refers to a test done on a transformer (not covered during routine tests), 

which represents other transformers that are manufactured using the same drawings, 

techniques, materials and by the same factory. This is done to validate that those 

transformers are compliant with specific requirements [2], [43]. 

Non-Routine test: A test which is outside the standards but used to identify phenomena that 

may be encountered in operation [2]. 

 

2.9 Amorphous core transformers 
 

D. Li, Zhang, G. Li, Lu and Zhou in reference [44] experimented on the effects of increasing 

the content of boron in the amorphous core. This developed a technique of field annealing 

which decreased no-load losses in the core. 

 

The magnetic and mechanical properties, viz: hardness and strength are different in 

amorphous alloys compared to conventional crystalline alloys. The core material resistivity 
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was increased by alloying iron and silicon; then cold-rolling the materials into thin laminated 

sheets of 7 millimetre (mm) to 12 mm thickness. This technique allows the iron atoms to be 

randomly oriented (i.e. core is annealed in a magnetic field). The process of a molten alloy of 

iron, silicon and boron is allowed to spill in a ribbon onto a rapidly rotating drum. This is 

where it is chilled at a rate of one million degrees per second. This allows the formation of a 

material that is glasslike ribbon about 1 mm thick without crystalline structure. These 

processes produce a material that has low inherent hysteresis losses, good magnetic 

properties and high resistivity. The eddy currents are reduced drastically because of the very 

thin laminations, which add to the high assembly cost due to their brittleness and difficulty in 

handling them. This core material exhibits less than twenty-five percent of losses per pound 

compared to the best high-grade silicon steel cores [20], [45]. 
 

The disadvantages of amorphous core materials are [20], [45]: 

x Increased core cost. 

x More difficult to manufacture. 

x Lower saturation flux density. 

x Windings are rectangular, which is not as strong as circular windings for short-

circuits. 

 

Their advantages are higher efficiency due to reduced transformer core losses (ranges from 

65% to 90% compared to CRGO steel cores used in Europe under sinusoidal load 

conditions) [20], [45].  

 
Lenke, Rohde, Mura and De Doncker in reference [46] calculated using typical values of an 

oil-cooled distribution transformer. Their results showed that it is feasible to use amorphous 

core in applications that have power electronics with maximum excitation frequency of 1 

kilohertz (kHz).    

 

AMDTs lightly loaded have low losses at higher frequencies compared to CRGO steel core 

transformers. This is because they are manufactured to have a consistent strip and are 

thinner, have small energy magnetic flux reversal and larger electrical resistivity [20]. 
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2.10 Differences between AMDT and CRGO transformers 
 

Amorphous material (2605SA1) is used in AMDTs and M-5 steel material is used in the 

CRGO transformers been investigated in this dissertation. Table 2 - 2 displays the 

differences between the core materials of typical transformers.  
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Table 2 - 2: Differences between AMDT and CRGO steel core transformers. Table drawn with information 
from these references [10], [20], [23], [45], [47], [48], [49], [50], [51] and [52]  
 

 AMDT CRGO  
Electrical Properties   
Density measured in gram per 
cubic centimetre [g/cm3] 

7.15 7.65 

Specific resistance 130 45 
Saturation flux density (T) 1.56 2.08 
Thickness (mm) 0.025 0.27 
Space factor 0.86 0.97 
Stacking factor Lower Higher 
Brittleness Higher Lower 
Annealing temperature measured in 
degree celsius (oC) 

360 810 

Coefficient of rolling 94.8% 82% 
Available form Ribbon/foil Sheet/Roll 
Typical core loss [W/kg] (at 50Hz, 
1.4 T) 

0.2 0.9 

Temperature coefficient of 
resistivity 

Low High 

Short-circuit Not so good and not so strong Good and strong 

Crystallisation 
Must not take place during 
manufacturing 

Silicon steel has crystalline 
structure 

Excitation current Lower Higher 
Inrush Currents Higher Lower 

No-load loss 
About one third of CRGO no-load 
loss 

- 

Operating temperature Lower Higher 
Zero sequence current Less More 
Noise Less More 
Magnetisation current Lower Higher 
Efficiency Higher Lower 
   
Mechanical Properties   
Handling Difficult due to brittleness Not difficult 

Requirements Annealing in magnetic field 
Thermos-mechanical grain 
orientation processing for best 
properties 

Windings Square or rectangular Circular 
Laminations Thin, hence reduced eddy currents Thicker 
Assembly cost Higher Lower 
Sensitivity to Mechanical stress Very sensitive Not very sensitive 

Core structure 
Medium rating transformers have 
square or rectangular core 

Medium rating transformers have 
multi-stepped core 

 

The magnetic flux density (B) verses magnetic field intensity (H) curve is commonly 

referred to as the B-H curve. The B-H curves for CRGO and AMDT are displayed in Figure 
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2 - 6. The operating peak flux density is generally about 10% to 20% below saturation flux 

density [23].  

 

Definitions for the legend in Figure 2 - 6 are: 

x Amorphous represents the B-H curve for AMDT. 

x M-5 represents the B-H curve for CRGO. 

 

 
 

Figure 2 - 6: B-H curves for AMDT and CRGO transformer core materials 
 

2.11 Other developments 
 

Mohan and Singh in reference [53] compared the efficiency and cost of CRGO, amorphous 

core and Amorphous-CRGO core distribution transformers. Their results show that 

amorphous core cost more but is efficient. To reduce the cost, Amorphous-CRGO core can 

be used. 
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Yamamoto, Mori, Kawasaki, Tsutsui, Itoh and Yagisawa in reference [54] recommends that 

a composite core (Silicon-steel and amorphous core) is needed to achieve more strength in 

large wound cores.  

 

Francoeur and Couture in reference [55] used a process called continuous fast-forward rapid 

thermal annealing (CFF-RTA) to produce rolled-up-core amorphous-metal distribution 

transformer kernels. This process allows the core to be easier to handle and less labour 

intensive. 
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3 INRUSH CURRENTS 
 

Pole mounted transformers are in the outdoors; hence they are exposed to adverse weather 

conditions, overloading and faults (internal or external) through its lifespan. When they fail, 

they need to be replaced in order to restore electricity supply to customers. These 

transformers are protected by surge arrestors [6], [56]. 

 

A transformer is switched off in the following ways [5]: 

x Incoming power supply is cut-off by the upstream protection equipment such as a 

breaker opening. 

x The fuse connected on the primary side of the transformer melts due to an electrical 

fault. 

x The operator manually opens the fuse links on the primary side of the transformer. 

 

Inrush currents occur during start-up of the transformer. There are three factors that 

determine the transformer’s energisation current [47]: 

x The residual flux of transformer core (BR). This is dependent on the point of the 

waveform that the transformer was switched off at and the length of time it has been 

off for. 

x The point on the voltage wave at which the transformer is energised. 

x The source impedance, the magnetising inductance and the air core inductance of the 

energised winding.   

 

In a distribution system, the source impedance is very small compared to the impedance of 

the transformer [11].  

 

Inrush currents have predominately second harmonics (i.e. frequency of 100Hz). This is one 

of the differences between inrush currents and fault currents. This causes nuisance tripping 

on some networks, but for the pole mounted distribution transformers, this is not the main 

issue. The inrush currents, however, may lead to forces and these are studied in Chapter 4 

[27], [57], [58], [59]. 
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3.1 Magnetic circuit for inrush currents 
 

The transformer can be represented by the magnetic circuit illustrated in Figure 3 - 1. For a 

single phase three limb core, the reluctances are divided into several portions. Under normal 

no-load conditions the magnetising flux flows through ℛc as it has a lower reluctance than 

that of  ℛair. During abnormal conditions, the core saturates due to magnetic flux flowing 

through the core (ℛc). Hence, the flux flowing through the air gap (ℛair) is the total 

magnetic flux minus the magnetic flux saturation.  

 

 
 

Figure 3 - 1: Magnetic circuit 
 

Description for the symbols on Figure 3 - 1: 

i = current measured in ampere (A) 

N = number of turns 

ℱ = mmf = magnetomotive force measured in ampere turn (AT)  

ℛair = magnetic reluctance of the air gap measured in ampere turn per weber (AT/Wb) 

ℛc = magnetic reluctance of the core (AT/Wb) 

ℛlimb = magnetic reluctance of the limb measured in (AT/Wb) 

ℛyoke = magnetic reluctance of the yoke (AT/Wb) 

ϕair = magnetic flux in the air gap measured in weber (Wb) 

ϕc = magnetic flux in the core (Wb) 

 

The equivalent electrical representation of the transformer is shown in Figure 3 - 2. Only the 

primary is considered here as this is where the magnetising current is drawn from.  
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Figure 3 - 2: Electrical circuit 
 

Description for the symbols on Figure 3 - 2: 

E1 = primary induced emf measured in volt (V) 

iin = inrush current (A) 

Lm = magnetising inductance of the core measured in henry (H) 

L1 = Lair = air core inductance of the winding (H) 

R1 = resistance in the primary winding measured in ohm (Ω) 

V1 = primary terminal voltage (V) 

 

For an applied sinusoidal voltage [48]: 

 

Vp(ωt + θ) =  i0R1 + N1
dΦm

dt
                                                                                                       (31) 

 

Where [48]: 

i0 = instantaneous value of magnetising current (A) 

N1 = primary winding turns 

t = time measured in second (s) 

Vp = peak value of the applied voltage (V) 

θ = angle at which the voltage is switched on (degrees) 

Φm = instantaneous value of flux at any time t (Wb) 

ω = angular frequency measured in radian per second (rad/s) 

ωt = angle related to frequency measured in radian (rad) 
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When the transformer is switched on, the flux may be higher due to a remnant flux and due 

to the switching angle of the source voltage. 

 

The inrush flux in the core consists of the normal AC component as well as a DC component 

due to the switching angle and the residual flux in the core [48], [60]: 

 

Φm = (Φmpcosθ ± Φr)e
−R1
L1

t − Φmp cos(ωt + θ)                                                                  (32) 

 

Where [48], [60]: 

L1 = leakage inductance of primary winding (H) 

Φmp = instantaneous peak value of flux (Wb) 

Φr = residual flux (Wb) 

 

Since the source wave is a cosine wave, from Equation (32), it can be deduced that when the 

angle, θ is zero, the inrush current is the highest because flux is the highest.  

 

The worst case of over-flux occurs at the zero crossing of the voltage, leading to a doubling 

of the flux which then drives the core into saturation [48]. 

 

Referring to Figure 3 - 1, the core saturates, causing the reluctance to increase, which forces 

the flux into the air core of the transformer winding. The flux in the air could be represented 

by [48]: 

 

Φair = μ0HAw = (2Φmp + Φr − BsatAc)                                                                                  (33) 

 

Where [48]: 

Ac = net core area measured in square metre (m2) 

Aw = mean area enclosed by a winding turn (m2) 

Bsat = saturation flux density measured in tesla (T) 

Φair = flux in air (Wb) 

μ0 = permeability of space = 4π × 10−7 (H/m) 
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Referring to the equivalent electrical circuit in Figure 3 - 2, the flux causes saturation, the 

magnetising inductance decreases and the magnetising current increases. The current would 

be limited by the air core inductance of the magnetised winding [47], [60]. 

 

This is quite difficult to model using software due to the non-linearity of the core and the 

calculation of the air core inductance. 

 

Daut, Hasan and Taib in reference [61] used a method to estimate the nonlinear core 

saturation with relation to magnetisation current, power factor and harmonic content. The 

results showed that magnetic flux density is proportional to magnetisation current, harmonic 

content and inversely proportional to power factor during saturation. The magnetising 

current’s pattern and total harmonic distortion current percentage versus the magnetic flux 

density is similar to the magnetic material’s B-H curve. Hence this method provides an 

estimation of the saturation flux density. 

 

Girgis and teNyenhuis in reference [62] showed the impact of design on inrush currents, 

these are [62]: 

1. Transformer cores consisting of high permeability CRGO and are domain refined 

electrical steels have a decrease in the peak inrush current’s magnitude of 15% to 

20%, however the least peak inrush current ratio or percentage second harmonic is 

30% larger in comparison to regular grain oriented core transformers. 

2. The magnitude of the peak inrush current is larger in transformer core with step-lap 

joint and has a least peak current ratio or percentage second harmonic compared to 

transformer cores with non-step-lap joint. 

 

The theoretical single phase transformer inrush currents are given by [48], [63]: 

 

i0max =  
hwH
N1

=
hw(2Φmp + Φr − BsatAc)

μ0AwN1  
=

hwAc(2Bmp + Br − Bsat)
μ0AwN1  

=  i0maxsingle phase                                                                                              (34) 

 

Inductance of the magnetising branch (Lμ) of the transformer is calculated as follows [47]:  

 

Lμ =
N2Acμ0μr

l
                                                                                                                                                   (35) 
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μ0μr =  
B
H

                                                                                                                                             (36) 

 

Where [47], [48], [63]: 

B = flux density (T) 

Bmp = maximum peak flux density (T) 

Br = residual flux density (T) 

H = field intensity measured in ampere per metre (A/m) 

hw = height of the energised winding measured in metre (m) 

i0max = maximum first peak inrush current (A) 

l = length of core (m) 

Lμ = Inductance of the magnetising branch (H) 

N = number of turns 

μr = relative permeability, depends on B-H curve operating point 

 

From Equation (36), permeability of material is proportional to the B to H ratio. After 

saturation, this ratio approaches zero. Equation (34) and Equation (36) explain how 

saturation impacts inrush currents [47]. 

 

3.2 ATP/EMTP models 
 

Inrush currents are affected by residual flux in transformer core and source voltage angle 

switching [47].  

 

In this section, the following parameters were changed to determine their effects on inrush 

currents: 

x Source voltage switching angle. 

x Winding resistance. 

x Residual flux in transformer core. 

x Air core inductance. 

x Voltage drop on the network. 

 

Alternative Transients Program/Electromagnetic Transients Program (ATP/EMTP) software 

was used to simulate the behaviour of CRGO and AMDTs under inrush currents [64].  
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ATP does not calculate the residual flux applied in the simulation. To ensure that the 

simulation is accurate, the residual flux was experimentally determined as outlined in 

Chapter 3.3 and manually entered in ATP. 

 

ATP models with the following design flux densities are simulated: 

x AMDT with design flux density of 1.2 T. 

x AMDT with design flux density of 1.3 T. 

x CRGO with design flux density of 1.3 T. 

x CRGO with design flux density of 1.7 T. 

 

3.2.1 Magnetising inductance 
 

A Type 93 non-linear inductor is used to simulate the magnetising inductance. Values 

derived from the flux linkage against current curves displayed in Figure 3 - 3 are entered in 

the characteristics of this object. The disadvantage of this type of inductor type is that it does 

not account for hysteresis, however, it does account for residual flux. 

 

Description for legend in Figure 3 - 3: 

x Amorphous 1.2T depicts AMDT with design flux density of 1.2 T. 

x Amorphous 1.3T depicts AMDT with design flux density of 1.3 T. 

x M-5 1.3T depicts CRGO with design flux density of 1.3 T. 

x M-5 1.7T depicts CRGO with design flux density of 1.7 T. 
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Figure 3 - 3: Flux linkage vs. current curves for AMDT and CRGO 
 

Figure 3 - 3 illustrates the flux linkage vs. current curves for different design flux densities 

for AMDT and CRGO core materials.  

 

3.2.2 Resistance 
 

The winding resistance was kept the same for all the models, except when testing the effects 

of resistance on inrush currents.  

 

3.2.3 Air core inductance 
 

The inductance in the air core can be calculated as follows [58]: 

 

Lair = μ0N1
2 A1

heq1
                                                                                                                               (37) 

 

Where [58]:  

A1 = mean area bounded by a winding turn for the primary winding (m2) 

heq1 = equivalent primary winding height with fringing effects included (m) 
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In order to determine heq1, the winding height is divided by Rogowski factor, which is KR. 

This factor must be less than one and is generally determined empirically. It’s a function of 

radial width, height and mean diameter of a winding [58]. 

 

3.2.4 Source  
 

The transformers used for this dissertation require a source voltage of 22 kV. Two sources 

are used per model in order to achieve 22 kV. The magnitude of the voltage per source is 

calculated as follows [65] : 

 

Vs =  
V
√3

=
22 kV
√3

= 12.7 kV                                                                                                          (38) 

 

Where [65]: 

V = source line voltage (V) 

Vs = source peak voltage (V) 

 

3.3 Validation of the model 
 

Testing was done in a transformer testing facility. Its setup is displayed in Figure 3 - 4 in a 

single line diagram. A three phase 250 kVA generator is used to supply a 2 MVA 400 V/ 33 

kV star-delta step-up transformer which supplies the test transformer, which is a single phase 

CRGO transformer. The output of the 2 MVA transformer was maintained at 22 kV. 

Switching the circuit breaker on and off was done to obtain the inrush currents.   
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Figure 3 - 4: Single line diagram of the validation test 
 

Description for the symbols in Figure 3 - 4: 

CB1 = circuit breaker 1 

CB2 = circuit breaker 2 

A1 = one point on the HV winding 

A2 = one point on the HV winding 

Lm = magnetising inductance 

a1 = one point on the LV winding 

a2 = one point on the LV winding 

n = neutral point 

 

Table 3 - 1 contains the locations and details of the measuring equipment used in the 

experiment. The oscilloscope (Rigol 50 Megahertz (MHz)) was connected on the LV side of 

the transformer. 
Table 3 - 1: Measuring equipment used for the experiment 
 

Equipment Location Type 

Voltage probe A2  Tektronix P6015A 1:1000 Passive probe 

Current probe A2  Pearson x301 1:100 Rogowski probe 
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Figure 3 - 5 (a) to Figure 3 - 5 (d) displays the results when the circuit breaker is switched 

off and on. Switching off is important because the transformer residual flux before it is 

switched on can be estimated.  

 

Description for legend in Figure 3 - 5 is: 

x Blue curve represents the voltage (kV) curve. 

x Red curve represents the current (A) curve. 

 

 
 

(a) Switch off at 2.5 kV on the waveform where the peak voltage is at 18.3 kV 
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(b) Switch on at -9.54 kV on the waveform 
 

 
 

(c) Switch off at 1.1 kV on the waveform where the peak voltage is 18.3 kV 
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(d) Switch on at 13.3 kV on the waveform 
 

Figure 3 - 5: Current into A2 and voltage measurement at A2  
 

The transformer was energised after 0.22 seconds when the supply was interrupted by the 

circuit breakers opening. The voltage is approximately 2.5 kV when switched off in Figure 3 

- 5 (a).   This results in a flux linkage of 86% of the peak design flux linkage.  

 

The transformer was re-energised after 0.08 seconds, when the circuit breakers were closed. 

In Figure 3 - 5 (b), the voltage is approximately -9.54 kV when switched on. This results in a 

320 degree switching angle.  

 

The transformer was then energised for 0.38 seconds. The circuit breakers were opened 

resulting in the voltage been approximately 1.1 kV when switched off in Figure 3 - 5 (c). 

This results in a flux linkage of 94% of the peak design flux linkage.   

 

The transformer was re-energised at 0.1 seconds resulting in Figure 3 - 5 (d), where the 

voltage is approximately 13.3 kV. This results in a 126 degree switching angle.   

 

The ATP model was simulated using the values in this experiment. The model is displayed 

in Figure 3 - 6. 
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Figure 3 - 6: Validation model simulated on ATP 
 

Description for the symbols in Figure 3 - 6 are: 

P = primary side of transformer 

S = secondary side of transformer 

 

The simulation results are displayed in Figure 3 - 7 (a) to Figure 3 - 7 (d), where the residual 

flux used was calculated from the switch off voltage. These correlate with the experiment 

results even though there is a slight voltage dip on the measured results. The reason for this 

is the generator is only modelled as an impedance on ATP. 

 

Description for legend in Figure 3 - 7 is: 

x Blue curve represents the voltage (kV) curve. 

x Red curve represents the current (A) curve. 
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(a) Experimental results when switched on at -9.54 kV 
 

 
 

(b) Simulation results when switched on at -9.54 kV 
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(c) Experimental results when switched on at 13.3 kV 
 

 
 

(d) Simulation results when switched on at 13.3 kV 
 

Figure 3 - 7: ATP inrush current simulation results compared to the measurements 



43 
 

In Figure 3 - 7 (a), the transformer was energised at 0.08 seconds by closing the circuit 

breakers. The voltage was measured to be -9.54 kV when switched on which also results in a 

320 degree switching angle.  

 

Using this residual flux in the ATP model produces the results in Figure 3 - 7 (b). The results 

are similar to that in Figure 3 - 7 (a). 

 

In Figure 3 - 7 (c), the transformer was re-energised at 0.1 seconds and switched on by 

closing the circuit breakers. The effect was the voltage being approximately 13.3 kV when 

switched on and this result in a 126 degree switching angle.   

 

Using this residual flux in the ATP model produces the results in Figure 3 - 7 (d). The results 

are similar to that in Figure 3 - 7 (c). 

 

3.4 Results 
 

The ATP models for the different designed flux density and core material where simulated. 

The models were built using the same equipment, however their characteristics and values 

where different. Figure 3 - 8 displays the ATP model. The model types and parameters are in 

Table 3 - 2. 

 

 
 

Figure 3 - 8: ATP model 
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In Table 3 - 2 to Table 3 - 12 and Figure 3 - 9, the following indicates: 

x AMDT2 implies AMDT with design flux density at 1.2 T. 

x AMDT3 implies AMDT with design flux density at 1.3 T. 

x CRGO3 implies CRGO with design flux density at 1.3 T. 

x CRGO7 implies CRGO with design flux density at 1.7 T. 
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Table 3 - 2: Model types and parameters 
 

Model type Value 

Source  

Magnitude (rms value) 12.7 kV 

Frequency (measured in hertz (Hz)) 50 Hz 

  

Circuit breaker measured in millisecond (ms) 
tc (ms). Circuit breaker time is 

controlled 

Surge arrestors measured in megaohm (MΩ) 1 MΩ 

Resistance (Ω) 300 Ω 

  

Air core inductance calculated using Equation (37) (H)  

AMDT with design flux density at 1.2 T (AMDT2) 13 H 

AMDT with design flux density at 1.3 T (AMDT3) 12 H 

CRGO with design flux density at 1.3 T (CRGO3) 12 H 

CRGO with design flux density at 1.7 T (CRGO7) 7 H 

  

Magnetising inductance 
As per flux linkage verse current 

curves depicted in Figure 3 - 3 

Residual flux for magnetising inductance measured in Weber 

turns (Wb.turns) 
0 Wb.turns 

Core resistance (MΩ) 100 MΩ 
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3.4.1 Switching angle  
 

The aim of this test is to demonstrate the effects of source voltage switching angle on inrush 

currents. The circuit breaker time (tc) is controlled; the model parameters are the same as in 

Table 3 - 2, besides the circuit breaker time which is varied. The results are displayed in 

Table 3 - 3. 

 
Table 3 - 3: Circuit breaker start time effects on inrush current 
 

tc (ms) 
Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

Current for 
AMDT2 (A) 

Current for 
CRGO7 (A) 

0 -0.0024 -0.0031 -0.00076 -0.01953 

1 -1.533 -0.0396 -0.9288 -2.3012 

2 -3.2 -1.4293 -2.4734 -5.3348 

3 -4.352 -2.864 -3.56 -7.44 

4 -5.13 -3.82 -4.2829 -8.836 

5 -5.39 -4.13 -4.52 -9.28 

6 -5.0772 -3.7514 -4.2316 -8.727 

7 -4.25 -2.736 -3.4599 -7.2457 

8 -2.9754 -1.1615 -2.2725 -4.9426 

9 -1.36 -0.0202 -0.7673 -1.98 

10 0.003985 0.0032 0.00083 0.0256 

11 1.62 0.0493 1.01 2.46 

12 3.19 1.43 2.47 5.333 

13 4.4 2.925 3.6 7.52 

14 5.15 3.85 4.308 8.87 

15 5.4 4.133 4.522 9.282 

16 5.075 3.75 4.23 8.725 

17 4.25 2.7341 3.46 7.24 

18 3.0467 1.2518 2.34 5.07 

19 1.446 0.0298 0.848 2.14 

20 -0.00239 -0.00309 -0.00076 -0.01953 

 

The results from Table 3 - 3 are displayed graphically in Figure 3 - 9. 
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Figure 3 - 9: Graph of inrush current vs. circuit breaker time 
 

From the graph in Figure 3 - 9, it can be seen that the higher the designed flux density, the 

higher the inrush current. CRGO designed at 1.3 T still has a lower inrush current peak 

compared to AMDT designed at 1.2 T. It is evident that AMDT has a higher inrush current 

compared to CRGO at the same designed flux density.  

 

Inrush currents can have magnitudes up to eight times greater than the full load current for 

AMDT and up to six times greater for CRGO.  

 

The zero crossing of the source voltage is at 5 ms and 15 ms. The is due to the flux being the 

highest. For the remainder of tests, tc will be set to 15 ms since this results in the highest 

positive peak. 

 

Moon and Dhatrak in reference [66], examined the performance of inrush currents and 

revealed when a transformer operated at a 90 degree angle, the inrush current was minimum, 

when operated at 0 degree angle, it was maximum. However, the source voltage type of the 

curve was not clear. 
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3.4.2 Resistance 
 

This test is done at tc = 15 ms. The parameters are kept the same as in the Table 3 - 2 except 

for the resistance. The resistance is varied between 100 Ω and 500 Ω. The results are 

displayed in Table 3 - 4. 

 
Table 3 - 4: Resistance effects on inrush currents 
 

Resistance 
(Ω) 

Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

Current for 
AMDT2 (A) 

Current for 
CRGO7 (A) 

100 5.57 4.27 4.66 9.8971 

200 5.48 4.2 4.6 9.57 

300 5.4 4.133 4.522 9.282 

400 5.3 4.05 4.45 9 

500 5.2 4 4.38 8.7 

 

From Table 3 - 4, it can be seen that as the resistance increases, the peak inrush current 

decreases. 

 

When varying a value using percentages in Table 3 - 5 to Table 3 – 10; a positive percentage 

implies addition to the calculated value and negative percentage implies subtracting the 

calculated value. For example: 50% of calculated value means that it is 50% extra of 

calculated value and if it is -50% of calculated value, it means 50% less of calculated value. 

 

3.4.3 Residual flux for magnetising inductance 
 

This test is done at tc = 15 ms. The parameters are kept the same as in the Table 3 - 2 except 

for the residual flux. The residual flux is varied between -100% to 100% of its calculated 

value to display the effects of residual flux on inrush currents. The calculated residual flux 

values are rounded up and displayed in Table 3 - 5 to Table 3 - 7. 

 

3.4.3.1 AMDT and CRGO designed at 1.3 T 
 

For these transformers, the residual flux = 91 Wb.turns. Table 3 - 5 displays the inrush 

current peak values when the residual flux for the magnetising inductor is varied for AMDT 

and CRGO designed at 1.3 T. 
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Table 3 - 5: Residual flux effects on inrush currents for cores with design flux density = 1.3 T  
 

Percentage of 
calculated value 

Residual flux (Wb.turns) 
Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

-100% 0 5.4 4.133 

-75% 23 6.4 4.35 

-50% 46 7.576 4.97 

-25% 69 8.7 5.86 

Calculated value 91 9.538 6.72 

25% 114 9.7 7.38 

50% 137 9.45 7.55 

75% 160 9.02 7.53 

100% 183 8.47 7.388 

 

3.4.3.2 AMDT designed at 1.2 T 
 

For this transformer, the residual flux = 91 Wb.turns. Table 3 - 6 displays the inrush 

current peak values when the residual flux for the magnetising inductor is varied for AMDT 

designed at 1.2 T. 

 
Table 3 - 6: Residual flux effects on inrush currents for AMDT with design flux density = 1.2 T 
 

Percentage of calculated value Residual flux (Wb.turns) Current for AMDT2 (A) 

-100% 0 4.522 

-75% 23 5.48 

-50% 46 6.6 

-25% 69 7.67 

Calculated value 91 8.58 

25% 114 9 

50% 137 8.9 

75% 160 8.57 

100% 183 8.17 
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3.4.3.3 CRGO designed at 1.7 T 
 

For this transformer, the residual flux = 95 Wb.turns. Table 3 - 7 displays the inrush 

current peak values when the residual flux for the magnetising inductor is varied for CRGO 

designed at 1.7 T. 

 
Table 3 - 7: Residual flux effects on inrush currents for CRGO with design flux density = 1.7 T 
 

Percentage of calculated value Residual flux (Wb.turns) Current for CRGO7 (A) 

-100% 0 9.282 

-75% 24 9.35 

-50% 48 9.85 

-25% 71 10.69 

Calculated value 95 11.36 

25% 119 11.44 

50% 143 11.2 

75% 166 10.637 

100% 190 10 

 

From the results in the Table 3 - 5 to Table 3 - 7, as the residual flux increases, so do the 

inrush currents. 

 

3.4.4 Air core inductance 
 

This test is done at tc = 15 ms. The parameters are kept the same as in the Table 3 - 2 except 

for the air core inductance. This is varied between -20% to 20% of its calculated value to 

determine its effects on inrush currents.  

 

3.4.4.1 AMDT and CRGO designed at 1.3 T 
 

The calculated air core inductance using Equation (37) is 12 H. Table 3 - 8 displays the 

inrush current peak values when the air core inductance is varied for AMDT and CRGO 

designed at 1.3 T. 
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Table 3 - 8: Air core inductance effects on inrush currents for cores with design flux density = 1.3 T 
 

Percentage of calculated value Inductance (H) 
Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

-20% 9.6 6.25 4.97 

-15% 10.2 6.01 4.73 

-10% 10.8 5.79 4.51 

-5% 11.4 5.58 4.316 

Calculated value 12 5.4 4.133 

5% 12.6 5.2 3.9652 

10% 13.2 5.04 3.81 

15% 13.8 4.88 3.66 

20% 14.4 4.73 3.5359 

 

3.4.4.2 AMDT designed at 1.2 T 
 

The calculated air core inductance using Equation (37) is 13 H. Table 3 - 9 displays the 

inrush current peak values when the air core inductance is varied for AMDT designed at 1.2 

T. 

 
Table 3 - 9: Air core inductance effects on inrush currents for AMDT with design flux density = 1.2 T 
 

Percentage of calculated value Inductance (H) Current for AMDT2 (A) 

-20% 10.4 5.252 

-15% 11.05 5.0484 

-10% 11.7 4.86 

-5% 12.35 4.68 

Calculated value 13 4.522 

5% 13.65 4.37 

10% 14.3 4.2275 

15% 14.95 4.0947 

20% 15.6 3.97 
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3.4.4.3 CRGO designed at 1.7 T 
 

The calculated air core inductance using Equation (37) is 7 H. Table 3 - 10 displays the 

inrush current peak values when the air core inductance is varied for CRGO designed at 1.7 

T. 

 
Table 3 - 10: Air core inductance effects on inrush currents for CRGO with design flux density = 1.7 T 
 

Percentage of calculated value Inductance (H) Current for CRGO7 (A) 

-20% 5.6 10.88 

-15% 5.95 10.43 

-10% 6.3 10 

-5% 6.65 9.63 

Calculated value 7 9.282 

5% 7.35 8.95 

10% 7.7 8.65 

15% 8.05 8.36 

20% 8.4 8.09 

 

From the results in Table 3 - 8 to Table 3 - 10, an increase in air core inductance results in a 

decrease in inrush currents. 

 

3.4.5 Effect of supply voltage on inrush currents 
 

Referring to Figure 3 - 10, as the installation site moves further away, the voltage decreases 

because of voltage drop on the network.  
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Figure 3 - 10: Illustration of the effects of voltage drop on a network 
 

From Eskom’s Distribution voltage regulation and apportionment limits in reference [67]; in 

Eskom the percentage voltage (%V) maximum limit is 106% and minimum limit is 85% for 

distribution networks. Each network has a normal and abnormal minimum and maximum 

%V limits that need to be adhered to depending on the class and tap zone that each network 

is classified as. The %V for the majority type of networks within Eskom’s distribution grid 

during abnormal conditions for percentage minimum voltage (%Vmin) is 93.5% or 91% and 

percentage maximum voltage (%Vmax) is 105%.  At Eskom the voltage source for 

distribution networks is simulated at %V. As the installation site moves further down the 

source, a voltage drop is seen.  

 

The reason percentage voltage was chosen and not distance was due to the diverse scattering 

of customers connected to networks. Hence, percentage voltage can be universally applied to 

overcome the diversity of customer placements on distribution networks.  

 

The models were simulated under various voltage drop conditions to determine the inrush 

currents.  
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This test is done at tc = 15 ms. The parameters are kept the same as in the Table 3 - 2 except 

for the source voltage (Vs measured in kV). Equation (38) was used to calculate the voltage 

split per source. The results are displayed in Table 3 - 11. 

 

In Table 3 - 11, 22 kV is nominal voltage expressed as 100%. 

 
Table 3 - 11: Voltage drop effects on inrush current 
 

Percentage of 
calculated value 

Source 
voltage (kV) 

Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

Current for 
AMDT2 (A) 

Current for 
CRGO7 (A) 

105% 23.1 5.95 4.82 5.05 10.28 

100% 22 5.4 4.133 4.522 9.282 

95% 20.9 4.83 3.45 4 8.27 

90% 19.8 4.25 2.75 3.477 7.25 

85% 18.7 3.7 2.076 2.95 6.24 

80% 17.6 3.13 1.377 2.43 5.2 

 

From Table 3 - 11, as the voltage decreases, so does the peak inrush current. This is expected 

as a higher voltage results in a higher flux in the core. 

 

3.4.6 Comparison between calculated and simulation results 
 

Equation (34) is used to calculate the peak inrush currents for the single phase transformers. 

The calculated results are compared to the ATP simulated results when tc = 15 ms. The 

results are displayed in Table 3 - 12. The ATP results are assumed to be more accurate than 

the calculated results as it accounts for flux leakage around the winding and the damping 

resistance of the circuit. 

 
Table 3 - 12: Calculated vs. simulated results for inrush currents 
 

 
Current for 
AMDT3 (A) 

Current for 
CRGO3 (A) 

Current for 
AMDT2 (A) 

Current for 
CRGO7 (A) 

Calculated 10.6115 7.3464 9.0417 13.6254 

Simulation 5.4 4.133 4.522 9.282 
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3.5 Discussion and conclusion 
 

The peak flux occurs at the zero crossing of the voltage. AMDT designed with 1.3 T 

experiences a higher inrush current compared to CRGO designed with 1.3 T. 

 

The following parameters are proportional to inrush currents:  

x Residual flux: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 8.47 A and 7.388 A respectively when the residual 

flux was the highest (100% of the calculated value). 

x Source voltage: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 5.95 A and 4.82 A respectively when the source 

voltage was the highest (105% of the nominal voltage). 

 

The following parameters are inversely proportional to inrush currents: 

x Resistance: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 5.57 A and 4.27 A respectively when the resistance 

was the lowest (100 Ω). 

x Air core inductance: AMDT and CRGO with design flux density of 1.3 T 

experienced the highest peak inrush current of 6.25 A and 4.97 A respectively when 

the air core inductance was the lowest (-20% of the calculated value). The air core 

inductance is dependent on the number of turns. The higher the magnetic flux 

density design point, the lower the turns and the inductance. 

 

The conclusions from this chapter indicate how the above mentioned parameters impact on 

inrush currents of single phase transformers with AMDT and CRGO cores. Hence, by 

changing certain transformer parameters, it is possible to design a transformer that may 

experience lower inrush currents. 

 



56 
 

4 ELECTROMAGNETIC FORCES 
 

When a transformer is subjected to forces, the coils are stressed. Axial forces are due to the 

unbalance in the electrical centres of the windings and this causes the coils of the two 

windings to slide against each other which may result in transformer failure [35]. 

 

Electromagnetic forces have the ability to do the following [68]: 

x The inner winding radius reduces. 

x The outer winding radius increases. 

x The height of the winding reduces due to the axial forces. 

x Axial component of leakage flux results in forces created in the radial direction. 

x Radial component of leakage flux results in forces created in the axial direction. 

 
The windings and internal structures of the transformer are exposed to mechanical forces 

because of the inrush currents and short-circuit currents. These forces are axial and radial 

forces and they are related to magnetic flux interactions and current. The forces, depending 

on magnitude, may lead to winding displacement and subsequent dielectric failure [15]. 

 

This chapter investigates the forces on the windings of the transformer using Finite Element 

Method Magnetics (FEMM), where inrush and short-circuit currents are simulated and 

compared for AMDT and CRGO transformers. Matlab code was written to extract the data 

from the FEMM models to obtain graphs for the axial and radial forces. 

 

Steurer and Fröhlich in reference [69]  investigated mechanical stresses of inrush and short-

circuit currents on high voltage power transformers. The authors’ showed that the axial 

forces due to inrush currents are higher than short-circuit currents. This was done using a 

two dimensional model (magnetic field calculations) and comparing the results with a three 

dimensional model (done using FEM).  

 

Chapter 3 concluded that the peak inrush currents can have magnitudes up to eight times 

greater than the full load current for AMDT and up to six times greater for CRGO. AMDT 

has a higher inrush current compared to CRGO with the same design flux density. 
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4.1 Forces experienced by transformer windings 
 

Mechanical forces occur in the windings. This is due to interactions of current in the 

windings as well as the magnetic flux distribution. The force experienced by a current 

carrying conductor is given by [69]: 

 

F⃗ = ∫ J × B⃗⃗ dV                                                                                                                                     (39) 

 

Where [69]: 

B⃗⃗ =flux density measured in tesla (T) 

F⃗ = force measured in newton (N) 

J =current density in the coil measured in ampere per square metre (A/m2) 

V = volume of the coil measured in cubic metre (m3) 

 

Equation (39) can be broken into radial and axial forces illustrated in Figure 4 - 1 and Figure 

4 – 2. The equations are [15], [69]:  

 

Fr = Ba × J × V                                                                                                                                   (40) 

 

Fa = Br × J × V                                                                                                                                   (41) 

 

Where [15], [69]: 

Ba = axial flux (T) 

Br = radial flux (T) 

Fa = axial force (N) 

Fr = radial force (N) 

J = current density in the coil (A/m2) 

V = volume of the conductor (m3) 
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Figure 4 - 1: Radial force 
 

The sum of all the electromagnetic forces on the winding is the radial force. Failures due to 

radial forces are [68]: 

x Inner winding buckling. 

x Outer winding diameter increases. 

x Spiralling occurs when the end turn tips in the helical type winding make a 

tangential shift. 

 
Compressive stress results in the inner winding when the radial forces are inwards. Tensile 

stress results in the outer winding when the radial forces are outwards. The mean value 

across the winding may be used for the withstand analysis [68]. 

 

 
 

Figure 4 - 2: Axial force  
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The axial force of each conductor as displayed in Figure 4 - 3 consists of an electromagnetic 

force as well as the electromagnetic forces exerted by the adjacent conductors.  

 

 
 

Figure 4 - 3: Forces experienced per conductor 
 

Failures due to axial forces are [68]: 

x The conductors tilt. 

x Axial bending occurs between the spacers. 

x The end turn tips of the helical type windings spiral. 

x Mechanical withstand of core clamps, spacers and yoke insulation decreases. 

 

Axial forces occur as a result of load tap changer or de-energised tap changer in HV winding 

operation since it changes the distribution of the ampere turn [15]. 

 

The windings for both transformer core types tested were rectangular shaped and layer type. 

 

Chapter 2.7.2 explains that rectangular or square windings are not as strong as circular 

windings for short-circuits.  

 

Winding arrangement and core shape affects leakage flux. Winding depth, length and size 

affects copper losses and mutual flux in transformers [70]. 

 

Flux distribution has an impact on the forces experienced by transformers. During short-

circuit current conditions; current density exists in both high voltage (HV) and LV windings. 
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This causes the magnetic field intensity to be very high between both windings. The flux 

flowing in the core is the design flux and there is leakage flux between the HV and LV 

windings as seen Figure 4 - 4. The black arrows indicate the direction of the flux density. 

 

 
 

Figure 4 - 4: Illustration of flux in the core during short-circuit current conditions  
 

Short-circuit current results in [68]: 

x A mechanical force as a result of the interaction between the current and flux. 

x An increase in the temperature of the transformer if the short-circuit current is 

sustained for a few seconds or longer. This heat contributes to the losses of the 

transformer. 

 

The International Electrotechnical Commission (IEC) recommends the following criteria for 

short-circuit test, these are [68]: 

x Short-circuit impedance varied. 

x Routine test been repeated with successful results. 

x Active parts must not have noticeable physical damages throughout the test. 

x Low voltage impulse and frequency response analysis are additional 

recommendations. 
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During inrush current conditions, current density only exists in the HV winding. This causes 

the magnetic field intensity to be slightly higher around the HV windings compared to the 

surroundings. The flux saturates in the core and thus is forced out of the core as seen in 

Figure 4 - 5 and explained in Chapter 3.1. The black arrows indicate the direction of the flux 

density. 

 

 
 

Figure 4 - 5: Illustration of flux in the core during inrush current conditions  
 

The following govern fault current [68]: 

x Source impedance. 

x Open-circuit voltage. 

x The instant of the fault onset. 

 

The risk for short-circuit failure mainly depends on [68]: 

x Source impedance. 

x The instant of the fault onset. 
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Generally, transformers in service might not experience the maximum force. There is a 

possibility that transformers may experience forces of about 20% to 40% of the peak 

theoretical force [68]. 

 

Equation (42) to Equation (44) demonstrate the relationship between the force and current 

[68]: 

 

F ∝ IB                                                                                                                                                    (42)  

 

B ∝ I                                                                                                                                                      (43) 

 

Equation (42) and Equation (43) result in the following [68]: 

 

F ∝ I2                                                                                                                                                     (44) 

 

Equation (44) proves that the force is proportional to the square of the instantaneous current 

[68]. 

 

Where [68]: 

B = flux density (T) 

F = force (N) 

I = current measured in ampere (A) 

 

4.2 Finite element model 
 

Finite element is commonly used to determine the flux distributions in the transformer 

models. Other uses are solving axisymmetric and two dimensional planar problems [71].  

 

de Azevedo, Delaiba, de Oliveira, Carvalho and de Souza Bronzeado in reference [72] 

proposed a method (time domain approach) to calculate  mechanical stresses which occur 

under short-circuit conditions in the windings. The results were compared to a finite 

elements software based model.  The investigation was carried out for stresses and radial 

forces. In conclusion, time domain approach is acceptable to achieve the internal forces of 

the transformer and stress evaluation. 
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de Azevedo, Rezende, Delaiba, de Oliveira, Carvalho and de Souza Bronzeado in reference 

[73] investigated transformer internal electromagnetic forces due to external faults (short-

circuit conditions). Finite element method (FEM) was used to model and simulate a three-

phase transformer. The simulated results were compared to the calculated results obtained 

from using mechanical and electrical equations. Both results were similar. The FEM model 

showed that using tap sections may result in huge changes in magnetic flux distribution, 

which causes higher radial magnetic field density and axial force inside the transformer. 

Axial force is accountable for damages to the structures that support the windings in the 

transformer. High currents created by an external short-circuit have a huge effect on flux 

path, which causes higher radial forces due to increase in the axial leakage field. Axial forces 

are responsible for causing a more damaging effect on transformers. 

 

The single phase AMDT and CRGO transformers were simulated using FEMM to determine 

the magnetic flux density distribution in the windings for inrush and short-circuit currents.  

 

The voltage ratio and turns ratio were calculated based on the transformer parameters. The 

inrush currents were determined in the ATP simulation as described in Chapter 3.   

 

The B-H curves used in the FEMM simulations for CRGO and AMDT are displayed in 

Figure 2 - 6 in Chapter 2.10. Both models were simulated at a design flux density of 1.3 T. 

The boundary condition types for the models were set to zero so that FEMM confides the 

simulations to the working area, which are models only. Models were set-up to a certain 

depth.  

 

The FEMM models are confined to the core, windings and space between the windings of 

the transformers (also called air core). The spaces are defined as air which does not conduct 

and has a relative permeability of one; this is the same for oil. 

 

The air core corners of the core are curved and not rectangular like in FEMM. Unfortunately, 

the corners could only be drawn rectangular. This rectangular air core results in higher flux 

at the corners. According to [10], this shape causes non-uniform radial electromagnetic 

forces which may alter the coil shape depending on the magnitude of the forces. 

 

A cubic spline line is used by FEMM to interpolate between the entered B-H curve data 

points. The disadvantage is that this function is problematic for the sharp ‘knee’ point of the 
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B-H curve. Hence, FEMM uses a three-point moving average filter to obtain a single-valued 

curve. If there are still problems, then extra points by the ‘knee’ point can be added. Adding 

extra points by the ‘knee’ point is more beneficial since FEMM extrapolates the end of the 

entered B-H curve linearly if out of range flux density or field intensity levels are 

encountered making the material appear more permeable compared to reality at high flux 

densities [74], [75].   

 

During short-circuit conditions; the B-H curve is a nonlinear curve since there is no 

additional flux in the core. 

 

When modelling and simulating the inrush current on FEMM, only the high voltage winding 

is simulated with current.  

 

For the AMDT and CRGO designed at 1.3 T, the transformer details are as follows: 

x N1= 5168 turns (primary winding turns). 

x N2= 60 turns (secondary winding turns). 

 

The turns ratio for these two models are kept the same to keep the models as similar as 

possible. The rated primary current (Irated) is 0.73 Ampere (A) and primary voltage is 22 kV 

for both transformers. The secondary voltage is controlled using the tap changer position. 

 

From the above details, the secondary current (I2) can be calculated from Equation (17) in 

Chapter 2.1.2. 
 

The flux density (|B|) for the models is determined by drawing a horizontal contour line in 

the centre of the core from the front of one HV winding to the other as displayed in Figure 4 

- 6. 
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Figure 4 - 6: Obtaining peak flux density 
 

The maximum flux density for the models in this chapter is higher than the peak flux density 

values in Table 4 - 1 to Table 4 - 6. The reason is the peak flux density displayed on the 

tables is the maximum flux density from the outside of the HV winding through to the 

opposite side of the HV winding as displayed by the red contour line in Figure 4 - 6.  

 

The models are tested using 10 A and 5 A for the primary windings for short-circuit and 

inrush current models. These values were selected from the range of inrush current results in 

Chapter 3. One disadvantage with AMDT compared to CRGO with the same design flux 

density is that the inrush currents are higher in AMDT. 

  

4.3 FEMM models for no-load test 
 

This test is done to validate the FEMM model. The secondary current is set to zero and the 

primary current is increased from zero such that the peak supply voltage magnitude is 

reached. Supply voltage is 22 kV. Hence, the primary current to achieve this is called the 

magnetisation current. |B| determined in these models is the designed flux. Table 4 - 1 

displays the input values and simulation results. 
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Table 4 - 1: Data for no-load simulations 
 

Symbol AMDT CRGO 

I1 =  Imag  0.758 mA 28.325 mA 

V1 31 112.1 V 31 113.2 V 

|Bp|  1.305 T 1.302 T 

 

Where: 

||Bp| = peak flux density (T) 

Imag = magnetisation current (A) 

I1 = primary current (A) 

V1 = peak primary voltage measured in volt (V) 

 

Figure 4 - 7 and Figure 4 - 8 displays the magnetic flux density distribution of the no-load 

models for AMDT and CRGO where the upper limit is ~1.4 T. The AMDT model has a 

higher and more evenly distribution of magnetic flux density in the core compared to the 

CRGO model. 

 

 
 

Figure 4 - 7: Magnetic flux density for no-load AMDT model 
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Figure 4 - 8: Magnetic flux density for no-load CRGO model 
 

4.4 FEMM models for full load test 
 

This test is done using the rated current and magnetisation current. The primary voltage 

should be as close as possible to the peak supply voltage (31 113 V). Using Equation (17) in 

Chapter 2.1.2, the secondary current was calculated. For these models, the input parameters 

were the primary and secondary currents. Table 4 - 2 displays their values and simulation 

results. 

 
Table 4 - 2: Data for full load simulations 
 

Symbol AMDT CRGO 

I1 = Irated + Imag  0.730758 A 0.758325 A 

V1  30 764.5 V 31 338.6 V 

I2  -62.88 A -62.88 A 

|Bp|  1.28 T 1.27 T 

 

Where: 

I2 = secondary current (A) 
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Figure 4 - 9 and Figure 4 - 10 displays the magnetic flux density distribution of the full load 

models for AMDT and CRGO where the upper limit is ~1.4 T. The AMDT model has a 

higher and more evenly distribution of magnetic flux density in the core compared to the 

CRGO model. 

 

 
 

Figure 4 - 9: Magnetic flux density for full load AMDT model 
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Figure 4 - 10: Magnetic flux density for full load CRGO model 
 

4.5 FEMM models for short-circuit test 
 

This test is done to determine the flux density during short-circuit conditions and is 

simulated using the short-circuit FEMM model. The short-circuit test is performed on the 

models when the primary current is 10 A and 5 A. Using Equation (17) in Chapter 2.1.2, the 

secondary current is calculated. 

 

4.5.1 10 A FEMM models short-circuit test 
 

For these models, the input parameters were the primary and secondary currents. Table 4 - 3 

displays their values and simulation results. 
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Table 4 - 3: Data for 10 A short-circuit simulations 
 

Symbol AMDT CRGO 

I1 = I1 + Imag  10.000758 A 10.028325 A 

V1  35 693.2 V 38 089 V 

I2  -861.324 A -860.6 A 

|Bp|  1.305 T 1.305 T 

 

Figure 4 - 11 and Figure 4 - 13 displays the magnetic flux density distribution for AMDT 

and CRGO under short-circuit conditions for a primary current of 10 A. Figure 4 - 12 and 

Figure 4 - 14 displays the magnetic field intensity for AMDT and CRGO under short-circuit 

conditions for a primary current of 10 A. 

 

 
 

Figure 4 - 11: Magnetic flux density for 10 A short-circuit AMDT model 
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Figure 4 - 12: Magnetic field intensity for 10 A short-circuit AMDT model 
 

 
 

Figure 4 - 13: Magnetic flux density for 10 A short-circuit CRGO model 
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Figure 4 - 14: Magnetic field intensity for 10 A short-circuit CRGO model 
 

4.5.2 5 A FEMM models short-circuit test 
 

For these models, the input parameters were the primary and secondary currents. Table 4 - 4 

displays their values and simulation results. 

 
Table 4 - 4: Data for 5 A short-circuit simulations 
 

Symbol AMDT CRGO 

I1 = I1 + Imag  5.000758 A 5.028325 A 

V1  29 064.2 V 35 931.4 V 

I2  -430.796 A -430.12 A 

|Bp|  1.30674 T 1.30467 T 

 

Figure 4 - 15 and Figure 4 - 17 displays the magnetic flux density distribution for AMDT 

and CRGO under short-circuit conditions for a primary current of 5 A. Figure 4 - 16 and 

Figure 4 - 18 displays the magnetic field intensity for AMDT and CRGO under short-circuit 

conditions for a primary current of 5 A. 
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Figure 4 - 15: Magnetic flux density for 5 A short-circuit AMDT model 
 

 
 

Figure 4 - 16: Magnetic field intensity for 5 A short-circuit AMDT model 
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Figure 4 - 17: Magnetic flux density for 5 A short-circuit CRGO model 
 

 
 

Figure 4 - 18: Magnetic field intensity for 5 A short-circuit CRGO model 
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4.6 FEMM models for inrush current test 
 

The disadvantage of FEMM is that it does not simulate the saturation region well. FEMM is 

based on currents and not voltages. During inrush current conditions, the core saturates and 

FEMM does not allow for extrapolation correctly. The B-H curve used is a linear curve, it is 

not exactly correct but the model gives an acceptable distribution of the flux. The relative 

permeability was set to ensure that the flux in the core does exceed the saturation point for 

the inrush currents and to make sure that the correct magnetic flux is flowing through the 

windings. Using equations in Chapter 2 and Chapter 3, an equation to calculate the relative 

permeability for these models was derived as follows [23], [47], [48] : 

 

μr =
lc
μo

Bs

N1iin
                                                                                                                                      (45) 

 

Where [23], [47], [48]: 

Bs = saturation flux density (T) 

lc = length of the core measured in metre (m) 

iin = inrush current (A) 

N1 = number of turns for the primary winding 

μo = permeability of space = 4π × 10−7 (H/m) 

μr = relative permeability 

 

This test is done to determine the flux density during inrush current conditions. This test is 

simulated using the inrush current FEMM model. The inrush current test is performed on the 

models when primary current is 10 A and 5 A. During inrush current conditions, there is no 

current in the secondary windings; hence I2 = 0 A.  Equation (45) is used to calculate the 

relative permeability used in these models. 

 

From Table 2 - 2 in Chapter 2.10, the saturation flux density is 1.56 T for AMDT and 2.08 T 

for CRGO. 

 

4.6.1 10 A FEMM models inrush current test 
 

For these models, the input parameters were relative permeability, primary and secondary 

currents. Table 4 - 5 displays their values and simulation results. 
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Table 4 - 5: Data for 10 A inrush current simulations 
 

Symbol AMDT CRGO 

I1 = I1 + Imag  10.000758 A 10.028325 A 

I2  0 A 0 A 

μr 17.79 25.85 

|Bp|  1.558 T 2.075 T 

 

Figure 4 - 19 and Figure 4 - 21 displays the magnetic flux density distribution for AMDT 

and CRGO under inrush current conditions for a primary current of 10 A. Figure 4 - 20 and 

Figure 4 - 22 displays the magnetic field intensity for AMDT and CRGO under inrush 

current conditions for a primary current of 10 A. 

 

 
 

Figure 4 - 19: Magnetic flux density for 10 A inrush current AMDT model 
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Figure 4 - 20: Magnetic field intensity for 10 A inrush current AMDT model 
 

 
 

Figure 4 - 21: Magnetic flux density for 10 A inrush current CRGO model 
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Figure 4 - 22: Magnetic field intensity for 10 A inrush current CRGO model 
 

4.6.2 5 A FEMM models inrush current test 
 

For these models, the input parameters were relative permeability, primary and secondary 

currents. Table 4 - 6 displays their values and simulation results. 

 
Table 4 - 6: Data for 5 A inrush current simulations 
 

Symbol AMDT CRGO 

I1 = I1 + Imag  5.000758 A 5.028325 A 

I2  0 A 0 A 

μr 38.4 54.85 

|Bp|  1.558 T 2.07533 T 

 

Figure 4 - 23 and Figure 4 - 25 displays the magnetic flux density distribution for AMDT 

and CRGO under inrush current conditions for a primary current of 5 A. Figure 4 - 24 and 
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Figure 4 - 26 displays the magnetic field intensity for AMDT and CRGO under inrush 

current conditions for a primary current of 5 A. 

 

 
 

Figure 4 - 23: Magnetic flux density for 5 A inrush current AMDT model 
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Figure 4 - 24: Magnetic field intensity for 5 A inrush current AMDT model 
 

 
 

Figure 4 - 25: Magnetic flux density for 5 A inrush current CRGO model 
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Figure 4 - 26: Magnetic field intensity for 5 A inrush current CRGO model 
 

4.7 Short-circuit and inrush current models comparison 
 

Looking at Figure 4 – 11 to Figure 4 – 26, the following is observed: 

x The magnetic flux density is lower during short-circuit conditions.  

x The magnetic field intensity is higher during inrush current conditions. 

x During short-circuit conditions; there is an interaction between the windings since 

current flows in both HV and LV windings.  

x During inrush current conditions; current flows in the HV winding only, the core 

saturates and more flux flows through the air core of the windings. 

 

4.8 Comparison of the forces experienced on the windings 
 

Code written in Matlab enabled the extraction of data from the FEMM models. Matlab 

calculated the force for each layer of the winding in order to determine the radial forces and 

axial forces were calculated for each sectional layer of the windings. The Matlab code can be 

found in Appendix A. 
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The assumption is that the transformer winding is square shaped and when a force occurs; 

the flux distribution is no longer uniform. 

 

The position of the tap changer windings have an impact on the flux distribution during 

inrush and short-circuit conditions. Currently, they are installed at the end of the HV winding 

which results in a flux distribution that is unsymmetrical when forces are experienced. If the 

tap changer windings were installed at the centre of the HV winding, the magnitude of the 

forces might be lower due to a more symmetrical flux distribution. 

 

The transformer core sees the arrestors in series, hence the capacitance of the surge arrestors 

are higher. A neutral surge arrestor is connected on the LV side of the transformers to one 

phase and straight to ground. Capacitance affects the current and hence the magnitude of the 

forces. Surge arrester size affects the short-circuit withstand capability [76]. 
 

Both AMDT and CRGO core materials’ were tested with the same design flux density of 1.3 

T. It has been established in Chapter 3.4.1 that AMDT has a higher inrush current compared 

to CRGO. 

 

4.8.1 Forces experienced by AMDT and CRGO with primary current of 10 A 
 

This section discusses the forces experienced by AMDT and CRGO during short-circuit and 

inrush current conditions with a primary current of 10 A. Hence, these FEMM models were 

used. 

 

Definitions for the legend in Figure 4 - 27 to Figure 4 - 30: 

x Amorphous IR indicates AMDT inrush current condition. 

x Amorphous SC indicates AMDT short-circuit current condition. 

x M-5 IR indicates CRGO inrush current condition. 

x M-5 SC indicates CRGO short-circuit current condition. 
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Figure 4 - 27: Average axial force of a layer of the HV winding for models with primary current of 10 A 
 

Figure 4 - 27 displays that the top and bottom ends of the HV winding is cancelled out 

because the axial force is an accumulation of the forces of each conductor on each layer of 

the winding as displayed on Figure 4 - 3 in Chapter 4.1.  

 

The axial force during inrush current conditions is about twice that of the axial force during 

short-circuit conditions. The axial force for CRGO during inrush currents is slightly higher 

than that of AMDT.  
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Figure 4 - 28: Magnetic flux density through the centre of the windings and core for models with primary 

current of 10 A 
 

Figure 4 - 28 displays the magnetic flux density from the outside of the HV winding through 

to the opposite side of the HV winding with the contour defined in Figure 4 - 6 in Chapter 

4.2. 

 

CRGO has a higher axial magnetic flux density peak compared to AMDT during inrush 

currents even though the design flux density is the same and AMDT has a higher inrush 

current compared to CRGO. 
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Figure 4 - 29: Net radial forces experienced on the HV windings for models with primary current of 10 A 

 

In Figure 4 - 29, the radial forces experienced during inrush current conditions is much lower 

than the radial forces experienced during short-circuit conditions. The radial force for CRGO 

during inrush currents is slightly higher than AMDT. 
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Figure 4 - 30: Radial magnetic flux density of the HV windings for models with primary current of 10 A 
 

Figure 4 - 30 displays the magnetic flux density for the outer layer of the HV winding from 

top to bottom. The highest magnetic flux density is by the ends of the windings. At the centre 

of the windings, the magnetic flux density is such that the electrical force is cancelled so 

there is no radial magnetic flux density in the centre. The radial magnetic flux densities are 

different between the inrush currents and short-circuit currents because the flux density in 

the core is saturated during inrush current conditions causing the additional flux to be pushed 

out. 

 

4.8.2 Forces experienced by AMDT with primary current of 10 A and 5 A 
 

From Figure 4 - 31 to Figure 4 - 34, the AMDT FEMM models with primary current of 10 A 

(base case) is compared to the AMDT FEMM models with primary current of 5 A during 

short-circuit and inrush current conditions. 

 

 

 



87 
 

Definitions for the legend in Figure 4 - 31 to Figure 4 - 34: 

x 5 A inrush indicates the inrush current condition with a primary current of 5 A. 

x 5 A Short Circuit indicates the short-circuit condition with a primary current of 5 A. 

x 10 A inrush indicates the inrush current condition with a primary current of 10 A. 

x 10 A Short Circuit indicates the short-circuit condition with a primary current of 10 

A. 

 

 
 

Figure 4 - 31: Average axial force of a layer of the HV winding for models with primary current of 10 A 
and 5 A 

 

Figure 4 - 31 displays that the axial forces during short-circuit and inrush current conditions. 

The 10 A short-circuit and inrush current axial forces are almost four times higher than that 

of the 5 A short-circuit and inrush current axial forces. 
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Figure 4 - 32: Magnetic flux density through the centre of the windings and core for models with primary 

current of 10 A and 5 A 
 

In Figure 4 - 32, the axial magnetic flux density during short-circuit conditions between the 

HV and LV windings in the 10 A model is almost doubled when compared to that of the 5 A 

model. However, the peak axial magnetic flux density is almost similar for both models 

under short-circuit and inrush current conditions by the core. 
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Figure 4 - 33: Net radial forces experienced on the HV windings for models with primary current of 10 A 

and 5 A 
 

There is a huge difference in the radial forces during short-circuit conditions between the 10 

A and 5 A models in Figure 4 - 33. During inrush currents, the 10 A model experiences a 

higher radial force compared to the 5 A model. This is a result of the different currents 

simulated in the windings.  
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Figure 4 - 34: Radial magnetic flux density for models with primary current of 10 A and 5 A 
 

The radial magnetic flux density curves in Figure 4 - 34 for the 10 A and 5 A models under 

short-circuit and inrush current conditions are different because of the different currents 

simulated in the windings.  

 

4.9 Positioning of the tap changer winding 
 

Forces experienced by conductors in the windings of transformers are based on the current 

density and magnetic flux density. Equation (39) to Equation (41) as well as Figure 4 - 1 to 

Figure 4 - 3 explain in detail how forces are calculated.  

 

Definitions for the legend in Figure 4 - 35 to Figure 4 - 36: 

x Tap Changer IR represents the tap changer winding under inrush current condition. 

x Tap Changer SC represents the tap changer winding under short-circuit current 

condition. 

x Winding IR represents winding under inrush current condition. 

x Winding SC represents winding under short-circuit current condition. 



91 
 

 
 

(a) Symmetrical winding distribution 
 

 
 

(b) Unsymmetrical winding distribution 
 

Figure 4 - 35: Axial force that each conductor experiences on a single layer of the HV winding and tap 
changer winding 
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The position of the tap changer on the windings is displayed in Figures 4 – 35 (a) and Figure 

4 – 35 (b) with the Tap Changer IR and Tap Changer SC curves. It can be clearly seen that 

when the tap changer position has a symmetrical arrangement (Figure 4 – 35 (a)), the net 

force exerted on the layer will be zero. In the unsymmetrical figure (Figure 4 – 35 (b)), it can 

be seen that the net force on the winding is non-zero. This may cause the layer to experience 

a force unnecessarily. In Figure 4 – 35 (a), the axial force is higher during inrush currents 

compared to short-circuit conditions. Figure 4 – 35 (b) displays that when there is a force, it 

is negative for the tap changer winding during inrush current and short-circuit conditions.  

 

The axial force causes the conductor to move upwards and downwards, if the force is high 

enough, it could push the ends of the conductors out of place. If the tap windings were 

centrally located, the result is symmetrical flux distribution when the transformer is 

energised and minimum vertical forces due to short-circuit [77].  

 

 
 

(a) Symmetrical winding distribution 
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(b) Unsymmetrical winding distribution 
 

Figure 4 - 36: Radial force on HV tap changer winding 
 

Figure 4 - 36 displays that the radial force is higher under short-circuit conditions compared 

to inrush current conditions. This is due to both HV and LV windings having current under 

short-circuit conditions. The forces experienced in both Figure 4 - 36 (a) and Figure 4 - 36 

(b) does not seem to be very sensitive to the tap changer position on the winding.  

 

4.10 Discussion and conclusion 
 

During inrush current conditions the core saturates and the flux is forced to go through the 

air unlike during short-circuit conditions. Inrush currents only occur during start-up of the 

transformer.  

 

The axial force for inrush current conditions is higher than short-circuit conditions. The 

radial force for short-circuit conditions is higher than inrush current conditions. AMDT and 

CRGO experience similar axial and radial forces. 
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When any non-current carrying tap changer windings are symmetrically arranged in the 

centre and when the entire layer in the HV windings carries current, the net axial force will 

be zero.  

 

When any non-current carrying tap changer winding is unsymmetrical, the net axial force is 

non-zero. This has the potential to impact on the mechanical integrity of the winding, 

especially during inrush current conditions.   
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5 CONCLUSION  
 

The simulations and tests conducted established that the peak current occurs at the zero 

crossing of the voltage due to the flux been the highest at this point. 

 

Based on the simulations and tests conducted, AMDTs experience higher inrush currents 

than CRGO even though they have the same design flux density. This is due to the lower 

saturation point of the AMDT. 

 

The primary inrush current can be reduced according to the results in Chapter 3, these are 

explained further below. 

 

The following parameters are proportional to inrush currents:  

x Residual flux: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 8.47 A and 7.388 A respectively when the residual 

flux was the highest (100% of the calculated value). 

x Source voltage: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 5.95 A and 4.82 A respectively when the source 

voltage was the highest (105% of the nominal voltage). 

 

The following parameters are inversely proportional to inrush currents: 

x Resistance: AMDT and CRGO with design flux density of 1.3 T experienced the 

highest peak inrush current of 5.57 A and 4.27 A respectively when the resistance 

was the lowest (100 Ω). 

x Air core inductance: AMDT and CRGO with design flux density of 1.3 T 

experienced the highest peak inrush current of 6.25 A and 4.97 A respectively when 

the air core inductance was the lowest (-20% of the calculated value).  

 

The axial force for inrush current conditions is higher than short-circuit conditions. The 

radial force for short-circuit conditions is higher than inrush current conditions. However in 

Chapter 4.8.1, the axial and radial forces AMDT and CRGO with design flux density of 1.3 

T experienced are almost the same. In order to decrease the magnitude of the forces 

experienced, the primary current must be decreased.  
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The tap changer position on the HV windings also influences the forces. When any non-

current carrying tap changer windings are symmetrically arranged in the centre and when the 

entire layer in the HV windings carries current, the net axial force will be zero.  

 

When any non-current carrying tap changer winding is unsymmetrical, the net axial force is 

non-zero. This has the potential to impact on the mechanical integrity of the winding, 

especially during inrush current conditions. 

 

The hypothesis is valid for this dissertation since AMDT experiences a higher inrush current 

than CRGO with the same design flux density, but the forces they experience as a result of 

inrush currents and short-circuit currents are similar.  

 

In conclusion, AMDTs are a suitable replacement for CRGO. AMDTs are known for having 

lower no-load losses. According to Table 2 - 2, AMDTs may have approximately one third 

of CRGO no-load losses. This is an important technology that may be used to decrease 

losses on the distribution network.  
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APPENDIX A1: MATLAB CODE 1 
 

This code in conjunction with the code in Appendix A2 was used for extracting the data 

from FEMM, as well as analysing and plotting the graphs in Chapter 4.8 and Chapter 4.9. 

 

I = 10; 

mua = 4.2; 

Na = 5168; 

mub = 3.88; 

Nb = 5600; 

muc = 5.6; 

Nc = 5168; 

mud = 7.04; 

Nd = 4115; 

 

openfemm; 

%try 

%    vv=ver; 

%    opendocument([cd,'/Trans_single_acore_IR.fem']); 

%catch 

    opendocument('Trans_single_acore_IR_10.fem'); 

%    opendocument('Trans_single_acore_IR.fem'); 

%end 

mi_saveas('temp.fem'); 

mi_analyze; 

mi_loadsolution; 

 

[Fx1,Fy1,Bx1,By1,Br1,x1,y1] = force_ex(I); 

[Fx5,Fy5,Bx5,By5,Br5,x5,y5] = force_tc(I); 

closefemm; 

 

openfemm; 

% try 

%     vv=ver; 

%     opendocument([cd,'/Trans_single_acore_SC_10.fem']); 
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% catch 

    opendocument('Trans_single_acore_SC_10.fem'); 

%end 

mi_saveas('temp.fem'); 

mi_analyze; 

mi_loadsolution; 

 

[Fx2,Fy2,Bx2,By2,Br2,x2,y2] = force_ex(I); 

[Fx6,Fy6,Bx6,By6,Br6,x6,y6] = force_tc(I); 

closefemm; 

 

openfemm; 

% try 

%     vv=ver; 

%     opendocument([cd,'/Trans_single_conv_IR.fem']); 

% catch 

    opendocument('Trans_single_conv_IR_10.fem'); 

%end 

mi_saveas('temp.fem'); 

mi_analyze; 

mi_loadsolution; 

 

[Fx3,Fy3,Bx3,By3,Br3,x3,y3] = force_ex(I); 

[Fx7,Fy7,Bx7,By7,Br7,x7,y7] = force_tc(I); 

closefemm; 

 

openfemm; 

% try 

%     vv=ver; 

%     opendocument([cd,'/Trans_single_conv_SC.fem']); 

% catch 

    opendocument('Trans_single_conv_SC_10.fem'); 

%end 

mi_saveas('temp.fem'); 

mi_analyze; 
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mi_loadsolution; 

 

[Fx4,Fy4,Bx4,By4,Br4,x4,y4] = force_ex(I); 

[Fx8,Fy8,Bx8,By8,Br8,x8,y8] = force_tc(I); 

closefemm; 

 

y = y1-min(y1); 

y2 = y; 

x1 = x1-min(x1); 

x2 = x2-min(x2); 

 

figure(1),hold on  

p1 = plot(mean(Fy1'),y,'blue'); 

p2 = plot(mean(Fy2'),y,'red'); 

p3 = plot(mean(Fy3'),y2,'black'); 

p4 = plot(mean(Fy4'),y2,'green'); 

ylabel('Distance (mm)'),xlabel('Axial Force (N)'), grid('on'),legend([p1(1) p2(1) p3(1) 

p4(1)],'Amorphous IR','Amorphous SC','M-5 IR','M-5 SC') 

hold off 

print('-dpng','-r300','axial1.png'); 

 

figure(2),hold on  

p1 = plot(Fx1,y,'blue'); 

p2 = plot(Fx2,y,'red'); 

p3 = plot(Fx3,y2,'black'); 

p4 = plot(Fx4,y2,'green'); 

ylabel('Distance (mm)'),xlabel('Radial Force (N)'), grid('on'),legend([p1(1) p2(1) p3(1) 

p4(1)],'Amorphous IR','Amorphous SC','M-5 IR','M-5 SC') 

hold off 

print('-dpng','-r300','radial1.png'); 

 

figure(3),hold on  

p1 = plot(mean(Fy1'),y,'blue'); 

p2 = plot(mean(Fy2'),y,'red'); 

p3 = plot(Fy5(:,1),y2,'black'); 
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p4 = plot(Fy6(:,1),y2,'green'); 

ylabel('Distance (mm)'),xlabel('Axial Force (N)'), grid('on'),legend([p1(1) p2(1) p3(1) 

p4(1)],'Winding IR','Winding SC','Tap Changer IR','Tap Changer SC') 

hold off 

print('-dpng','-r300','axial1.png'); 

 

figure(4),hold on  

p1 = plot(Fx1,y,'blue'); 

p2 = plot(Fx2,y,'red'); 

p3 = plot(Fx5,y2,'black'); 

p4 = plot(Fx6,y2,'green'); 

ylabel('Distance (mm)'),xlabel('Radial Force (N)'), grid('on'),legend([p1(1) p2(1) p3(1) 

p4(1)],'Winding IR','Winding SC','Tap Changer IR','Tap Changer SC') 

hold off 

print('-dpng','-r300','radial1.png'); 

 

 

% figure(3),pcolor(abs(Fy1)),h = colorbar,h.Label.String='Axial Force [N]',caxis([0 

100]),ylabel('Length (mm)'),xlabel('Width (mm)'),colormap('jet') 

% figure(4),pcolor(abs(Fy2)),h = colorbar,h.Label.String='Axial Force [N]',caxis([0 

100]),ylabel('Length (mm)'),xlabel('Width (mm)'),colormap('jet') 

 

% figure(5),hold on  

% p1 = plot(Bx1(1,:),y,'blue'); 

% p2 = plot(Bx2(1,:),y,'red'); 

% p3 = plot(Bx3(1,:),y2,'black'); 

% p4 = plot(Bx4(1,:),y2,'green'); 

% ylabel('Distance (mm)'),xlabel('Radial Magnetic Flux Density (T)'), 

grid('on'),legend([p1(1) p2(1) p3(1) p4(1)],'Amorphous IR','Amorphous SC','M-5 IR','M-5 

SC') 

% hold off 

% print('-dpng','-r300','radial2.png'); 

%  

% figure(6),hold on  

% p1 = plot(x1,Br1,'blue'); 
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% p2 = plot(x1,Br2,'red'); 

% p3 = plot(x1,Br3,'black'); 

% p4 = plot(x1,Br4,'green'); 

% xlabel('Distance (mm)'),ylabel('Axial Magnetic Flux Density (T)'), grid('on'),legend([p1(1) 

p2(1) p3(1) p4(1)],'Amorphous IR','Amorphous SC','M-5 IR','M-5 SC') 

% hold off 

% print('-dpng','-r300','axial2.png'); 

 

% figure(7),pcolor(abs(By1)),h = colorbar,h.Label.String='Axial Force [N]',caxis([0 

1]),ylabel('Length (mm)'),xlabel('Width (mm)'),colormap('jet') 

% figure(8),pcolor(abs(By2)),h = colorbar,h.Label.String='Axial Force [N]',caxis([0 

1]),ylabel('Length (mm)'),xlabel('Width (mm)'),colormap('jet') 
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APPENDIX A2: MATLAB CODE 2 
 

This code was written for the radial pressure and axial forces analysis and is used (i.e. called 

up) in the code in Appendix A1. 

 

function [Fx,Fy,Bx,By,Br,x5,y] = force_tc(I_1) 

% 

%I_1 = 20; 

CA_1 = 0.7/1000^2; 

J = I_1/CA_1; %A/m2 

%J = 12.7e6 

 

x = [52:(74-52)/25:74]; 

x5 = [52:1:255]; 

y = 96:(278-96)/228:278; %103...267 

l = (278-96)/1000;      %[m] 

dl = y(2)-y(1); 

V = dl*(x(2)-x(1))*170; %[mm3] 

V = V/1000^3;           %[m3] 

 

for k = 1:length(x)  

for kk = 1:length(y) 

        M = mo_getpointvalues(x(k),y(kk)); 

        Bx(k,kk)=M(2); 

        By(k,kk)=M(3); 

end 

 

end 

 

for h = 1:length(x5) 

M = mo_getpointvalues(x5(h),187); 

Br(h,1) = abs(M(2)+j*M(3)); 

end 

 

% Axial forces 
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%for k = 1:length(y) 

%    sum(Bx(1,:)) 

%Fy1 = J*l*t/3/l*2*pi*r*dl*/1000; 

 

%Fy2 = J*Bx(2,:)/1000; 

%Fy3 = J*Bx(3,:)/1000; 

%end 

 

Fy = J*Bx*V; 

%for k = 1:100  

 for k = (228/2-50):1:(228/2+50)  

   Fy(1,k) = 0; 

end 

Fyt = sum(sum(Fy)) 

Fy = cumsum(Fy'); 

%Fy = sum(Fy'); 

 

%Fyt2 = cumsum(Fy2); 

%Fyt3 = cumsum(Fy3); 

 

%Fy = Fy1+Fy2+Fy3; 

%Fy = abs(sum(Fy)) 

 

% Radial pressure 

Fx = J*By*V; 

%for k = 1:100  

for k = (228/2-50):1:(228/2+50)  

   Fx(1,k) = 0; 

end 

Fx = sum(Fx); 

%Px2 = J*By(2,:)/1000; 

%Px3 = J*By(3,:)/1000; 

 

%Px = Px1+Px2+Px3; 

Fxt = sum(Fx)  
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APPENDIX B: PERMISSION FOR PICTURES 
 

Figure B 1 displays the e-mail for permission granted to display pictures courtesy of Eskom. 

 

 
Figure B 1: Permission for courtesy of Eskom pictures 

 


