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ABSTRACT 

 

The Sugarcane Industry contributes approximately 400 000 jobs and ZAR 8 billion annually to 

South Africa’s economy. Due to climate change and the subsequent threat posed by disease, 

these figures have been on the decline. Brown rust, a contributor to this decline is caused by 

the basidiomycete Puccinia melanocephala Syd. and P. Syd., which previously resulted in 50% 

yield losses in susceptible varieties. This highlighted the need for improved screening and 

breeding techniques which will result in the replacement of susceptible varieties.  

The objectives of this study were to: 

a) Adopt and optimise a glasshouse whorl inoculation screening technique applicable 

for mass screening of large populations.  

b) Develop a rapid and cost effective rust resistance screening technique using 

detached leaves. 

c) Utilise two flanking marker sets (R12H16 and 9O20-F4-PCR primers) for the rust 

resistance Bru1 gene in a diagnostic polymerase chain reaction (PCR) to identify 

rust resistant genotypes lacking Bru1 and possessing either quantitative resistance 

or an alternative major qualitative resistance gene. 

d) Correlate rust phenotypic data to AFLP marker data for the Linkage Disequilibrium 

(LD2) mapping population.  

e) Utilise suppression subtractive hybridization (SSH) profiling on rust challenged 

genotypes to discover differentially expressed genes between susceptible and 

resistant (susceptible Bru1 negatives taken away from resistant Bru1 negatives); 

and resistant genotypes (resistant Bru1 positives taken away from resistant Bru1 

negatives). 4 

Results from the glasshouse whorl inoculation trials showed the technique could be reliably 

used to screen large populations, as two independently conducted pot trials showed highly 

correlated rust ratings. A visually assessed detached leaf assay (DLA) was developed using 

selected genotypes. Chlorophyll fluorescence and SPAD readings were used in the DLA to 

determine the leaf photochemical efficiency (PIABS) with relation to chlorophyll content, 
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resulting in reduced assessment time of at least two days. PCR diagnostics revealed 31% of LD2 

did not possess either flanking marker, 8% had one or the other marker, and 61% had both 

markers. The overall rust phenotypic ratings (rating scale of 0-10) and Bru1 status of the 

genotypes was used to group the population, with the Bru1 negative genotypes containing all 

three rating categories (resistant 0-3.5; intermediate 3.51-6.5; susceptible 6.51-10); while the 

Bru1 positive genotypes were all resistant. The phenotypic data was correlated to AFLP data 

using the Pearson product-moment correlation coefficient and stepwise multiple linear 

regression employed to build marker based models to use for predicting non-Bru1 mediated 

resistance. SSH analysis was then subsequently conducted on genotypes selected on the basis 

of Bru1 status and AFLP correlation data. Two subtraction cDNA libraries were constructed and 

the cDNA inserted into electro-competent Escherichia coli cells. PCR on transformed cells 

revealed cDNA inserts ranging from 200- 1300bp. BLAST analysis of the cDNA sequences 

indicated the presence of high proportions of disease and drought stress related sequences in 

the libraries. Analysis of the sequences in both libraries showed that the resistant Bru1 

negative genotypes contained oxidative stress related sequences which were however absent 

in the Bru1 positive resistant genotypes. The library comparing the Bru1 negative resistant 

genotypes against the Bru1 negative intermediate and susceptible genotypes showed a higher 

proportion of differentially expressed sequences coding for putative disease resistance 

proteins, highlighting their presence in the resistant genotypes. Both subtraction libraries also 

contained high proportions of a leucine rich repeat protein coding cDNA which contained a 

conserved domain homologous to that of a disease resistance protein conferring resistance to 

Pseudomonas syringae in Arabidopsis thaliana. The outcomes of this study will subsequently 

enable an improved understanding of sugarcane-rust resistance mechanisms and improved 

breeding and screening techniques for sugarcane by identifying SSH and AFLP markers linked 

to rust resistance QTLs or alternative R genes.  
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Chapter 1 

 

Introduction and Rationale 

 

Sugarcane is a large perennial grass belonging to the tribe Andropogoneae, family Graminae and is 

of the genus Saccharum (Asnaghi et al., 2004).  The sugarcane industry in South Africa is responsible 

directly and/or indirectly for providing up to 429 000 jobs and eight billion rand a year to the 

national economy (www.sasa.org.za). These large contributions are almost entirely resulting from 

sugar production. More recently, sugarcane has been more widely used as a source of ethanol, an 

environmentally friendly additive or substitute to petroleum based fuel (Geller, 1985). Ethanol has 

reduced fuel imports by Brazil by up to 20%, proving the benefits that sugarcane has besides that of 

sugar production (Xavier, 2007). These developments underline the potential beneficial impacts 

sugarcane could have on the South African economy. Sugarcane is however prone to disease which 

can result in devastating losses, such as the rust outbreak experienced in the late 1970’s, when 

losses of up to 50% were experienced in Cuba due to the rust causing fungal pathogen Puccinia 

melanocephala (Purdy et al., 1983). The South African sugarcane industry was also affected by P. 

melanocephala during that period, with an outbreak occurring in the 1974/75 season in which the 

variety N55/805 was affected (Bailey, 1979). More recent losses in the South African industry have 

occurred, with estimates of 26% reduction in yield on the rust susceptible variety N29 (McFarlane et 

al., 2006).  

 
A widely recognized solution to this problem is the use of resistant varieties (Bischoff and Gravois, 

2004; Purdy et al., 1983). R570, a rust resistant sugarcane variety predominantly grown in Mauritius 

and the Reunion Islands was found to contain a qualitative rust resistance gene named Bru1 (Le 

Cunff et al., 2008). Flanking markers for the Bru1 gene have been used to show the presence of this 

gene in some of the sugarcane varieties in the South African industry. The use of a major resistance 

gene as the sole protective measure against disease is however risky, as major genes are prone to 

break down due to the high genetic plasticity of pathogen populations (Hu et al., 1996). This is in 

contrast with quantitative resistance which offers partial resistance and is also controlled by multiple 

loci (Hoarau et al., 2001). Quantitative trait loci (QTL) do not normally follow simple Mendelian 

inheritance, making their selection difficult. Studies have shown that the stacking of resistance QTLs 

can achieve similar or even more effective disease resistance when compared to that conferred by 

major genes (Parlevliet and Van Ommeren, 1988). The breeding and selection cycle used to 
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successfully develop a commercial sugarcane variety is approximately 12-15 years, which makes it 

important to find more efficient and rapid means of identifying and detecting quantitative resistance 

loci (QRLs). It is with this background that the aims of this research were formulated. The aim was to 

determine the genetic basis of rust resistance within a sugarcane linkage disequilibrium mapping 

population, and this determined the following objectives: 

 

1 To develop a rapid method for rust resistance screening.  

 

A detached leaf assay (DLA) was developed and optmised for screening purposes based on 

literature sources (Braithwaite, 2005; Jackson et al., 2008; Twizeyimana et al., 2007; Zhao et 

al., 2011). Varieties with known rust responses (N12- Rust resistant; N29- Rust susceptible; 

N39- Rust tolerant) were used to develop the DLA. Visual analysis and chlorophyll associated 

parameters were used to determine the extent of rust infection and assign rust resistance 

ratings.  

 

2 To screen population LD2 for resistance to rust. 

 

A whorl inoculation technique (Sood et al., 2009) was adopted and used to screen 80 

genotypes from the South African Sugarcane Research Institute’s (SASRI) linkage 

disequilibrium (LD2) mapping population. Rust responses which included lesion severity and 

sporulation were recorded for each replicate and used to calculate and assign rust ratings to 

each genotype. The DLA was used to screen selected genotypes from LD2 so as to verify this 

method’s ability to give comparable results to those obtained from whorl inoculation. 

 

3 To relate resistance ratings to presence or absence of markers for the Bru1 major 

resistance gene and also to AFLP markers. 

 

Bru1 PCR marker analysis was conducted on each LD2 genotype to determine whether it 

contained Bru1 or not. Two flanking markers were used to determine the presence or 

absence of Bru1 in the population. The Bru1 marker analysis data and rust resistance ratings 

obtained from whorl inoculation where correlated to previously acquired AFLP marker data 

(Butterfield, 2007). Stepwise multiple linear regression was used to obtain the best markers 

for rust resistance using both lesion ratings and overall rust ratings obtained from whorl 

inoculation for those genotypes lacking Bru1. 



3 
 

 

 

 

4 To identify candidate genes involved in the rust resistance response. 

 

Suppression subtractive hybridization was used to compare the expression profiles among 

rust challenged resistant Bru1 negative; resistant Bru1 positive; and susceptible Bru1 

negative sugarcane genotypes from LD2. cDNA sequences obtained from this process were 

cloned, sequenced and analysed using BLAST algorithms. 
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Chapter 2 

 

Literature Review 

 
 

2.1 Background  

 
Sugarcane is a tropical perennial grass in the genus Saccharum, which is thought to have originated 

in New Guinea and spread to South East Asia and Western India around 327 B.C. (Baucum et al., 

2009; Grivet et al., 1994; James, 2004; Kampen, 2002). Sugarcane cultivation, now widespread in 

most tropical and sub-tropical regions is globally located between the latitude 36.7° north and 31.0° 

south of the equator (James, 2004).  

 

Fig 2.1: World distribution of sugarcane cultivation and the Palm Tree Line (James, 2004). 

The South African sugar industry is located predominantly in Kwa-Zulu Natal and extends from 

Northern Pondoland in the Eastern Cape to the Mpumalanga Lowveld. In South Africa, sugarcane 

was first cultivated as a commercial crop on the North Coast of Kwa-Zulu Natal between 1847 and 

1851, with the first public sale of sugar from these plantations being made in Durban in 1855 (Lewis, 

1990; Van Antwerpen et al., 2005). From having only 4 953 hectares of sugarcane in 1860, there 

were 392 000 ha of land under cane in 2010, with 2.2 million tons of sugar being produced in that 

year (Anon, 2010a; Lewis, 1990). The average area under sugarcane in the past 15 years has been 

approximately 430 000ha, with an average of 2.5 million tons of sugar being produced (Anon, 

2010a). 
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Fig 2.2: South African sugarcane growing region (Anon, 2010a). 

 

Sugarcane has in recent years found use as more than just a source of sugar, as it is now extensively 

used in ethanol production. Ethanol is a biofuel used in countries such as Brazil, where it is used as 

an additive to oil based fuels and in some instances, as a substitute (Martines-Filho et al., 2006; 

Rudorff et al., 2010). This makes sugarcane an important crop with both a high economic and 

industrial potential, as biofuels are seen as solutions to mitigating greenhouse emissions as well as 

an alternative fuel source to dwindling oil reserves (Rudorff et al., 2010). 

 

2.1.2 Economic importance 
 

Sugarcane is a renewable, natural agricultural resource which mainly provides sugar, and more 

recently ethanol, fibre and numerous other by-products with ecological sustainability (Bolling and 

Suarez, 2001). Out of the world’s total white crystal sugar production, approximately 79% comes 

from sugarcane, with the remainder coming from sugar beet (Grivet and Arruda, 2001; Anon, 

www.illovo.co.za, 2012). Molasses, the main by-product of sugar production, is the raw material for 

http://www.illovo.co.za/
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alcohol production and thus for alcohol-based industries. Excess bagasse is used as raw material in 

the paper industry and also in the co-generation of power in most sugar mills (Chen and Negulescu, 

2002). Sugarcane has been successfully used in a number of countries in the production of ethanol 

for use in blending with petrol. This has aided these countries to save millions in foreign exchange, 

as they effectively save up to 20% on petroleum fuel imports, and inject this directly into their 

economies by manufacturing ethanol themselves (Geller, 1985; Rudorff et al., 2010; Xavier, 2007). 

Worldwide, sugarcane is cultivated in 127 countries and occupies an area of 32 million ha (Cordeiro 

et al., 2007). Of these countries, Brazil has the highest area under sugarcane (6.96 million ha), while 

South Africa has an average 430 000 ha (Anon, 2010a; Zuurbier and van de Vooren, 2008). These 

figures have seen South Africa consistently ranked in the top 15 sugar cane producers in the World, 

behind leaders Brazil and India (Anon, 2010b; Grivet and Arruda, 2001).  

The sugarcane industry in South Africa is responsible for both direct and indirect employment of 

approximately 429 000 people and has an approximate 35 300 registered sugarcane growers 

annually producing an average 20 million tons of sugarcane (Anon, 2010a). The South African 

economy is reliant on the sugar industry contributing a significant share of its export earnings 

(Cordeiro et al., 2007). This is shown by figures that show that the sugarcane industry directly 

generates an average of R8 billion per year to the South African economy (Anon, 2010a). 

 

2.1.3 Taxonomy and Morphology of Sugarcane 

 
Botanically, sugarcane (Saccharum spp. hybrids) belongs to the Andropogoneae tribe of the 

monocotyledonous family Gramineae (Asnaghi et al., 2004; Grivet and Arudda, 2001). Modern 

sugarcane cultivars (Saccharum spp. hybrids) have been derived from crosses amongst the wild 

species S. spontaneum and S. robustum with domesticated S. officinarum (James, 2004; Baucum et 

al., 2009). Sugarcane comprises a large number of varieties, each a single clone producing stalks with 

variations in colour, wax cover, internode shape, length and diameter (Bremmer, 1961a; Cordeiro et 

al., 2007). The internodes are regularly spaced and each possesses a single nodal bud capable of 

asexual propagation. N29 is a commercial variety in the South African sugarcane industry which was 

initially deemed to be rust tolerant, but became susceptible after introduction into the cooler 

climate of the Midlands (McFarlane et al., 2006). N29 is characterised by high sucrose content, is a 

fairly erect variety with a medium width blade, a hairy purple sheath and pinkish wax coated 

internodes (N29 Information sheet). The N12 variety however is rust resistant and has slight 

differences when its characteristics are compared to those of N29. N12 is erect, also has a purple 
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waxy sheath and has narrower leaves which are much paler in colour than N29. The variety N12 has 

green to yellow internodes and often lacks hair on its sheath (N12 Information sheet). 

 

2.2 The Genome of Sugarcane 
 

The genome of cultivated sugarcane is a complex, highly polyploid and aneuploid interspecific hybrid 

with between 2n=100 and 2n=130 chromosomes (Grivet and Arruda, 2001; Raboin et al., 2006). 

Most of these chromosomes originate from the sugar-producing species S. officinarum (2n=80), with 

15 to 25% of these being derived from the wild species S. spontaneum (2n=40 to 128) (Asnaghi et al., 

2004). A small percentage of the genome (5- 10%) has also been contributed by interspecific 

recombination with other Saccharum species, namely S. barberi, S. robustum, and S. sinense 

together with other related grass genera, namely Miscanthus, Narenga and Eriunthus (Cuadrado et 

al., 2004; Grivet and Arruda, 2001; Hoarau et al., 2001; Le Cunff et al., 2008; Ming et al., 2006). 

Genomic in situ hybridization has demonstrated that recombination is also possible between 

homoeologous chromosomes in modern cultivars (Fig 2.3) (Grivet and Arruda, 2001).  

Breeding of modern sugarcane cultivars was initiated in the early 19th century by breeders in Java, 

who produced interspecific hybrids between S. officinarum and S. spontaneum, and backcrossed 

them twice with S. officinarum as the recurrent parent (Cordeiro et al., 2007; Grivet et al., 1996). S. 

officinarum was used as the female parent and S. spontaneum as the pollen donor, resulting in 

progeny with a 2n+n chromosome number (Butterfield, 2007). This was a result of either fusion of 

two megaspore nuclei after the second mitotic division or endo-duplication that takes place in the 

nucleus of the chalazal megaspore of S. officinarum (Grivet et al., 1996; Bremer, 1961b). Both these 

occurrences resulted in the formation of 40 bivalents. The chromosome number after the second 

backcross became normal.  

Considering that introgression has considerably increased the genome complexity, the meiosis of 

modern sugarcane cultivars appears to be fairly regular, mainly involving prevalent bivalent pairing, 

rare univalent and multivalents (Raboin et al., 2006; Grivet et al., 1996). This almost normal trend is 

due to the changes that occur within the genome of newly hybridized organisms to ensure the 

genomes are coordinated and act in harmony (Cuadrado et al., 2004).  

Synteny clusters between sugarcane and some other members of the Andropogoneae tribe such as 

maize and sorghum have been revealed through the use of DNA probes. Sugarcane linkage groups 

have shown syntenic relationships to the repeated regions in maize and sorghum, indicating close 

relationships with respect to chromosomes among the genomes of these crops (Dufour et al., 1997). 
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Syntenic positions in the Andropogoneae genomes have been useful in the detection of numerous 

quantitative trait loci (QTLs) (Raboin et al., 2006). 

 

Fig 2.3: Schematic of the genome of a current sugarcane cultivar. Each yellow bar represents S. officinarum 

and each green bar S. spontaneum. Chromosomes aligned within the same row are homologous (Grivet and 

Arruda, 2001). 

Though heterologous probes derived from these syntenic regions with other members of the 

Andropogoneae tribe have not enabled detection of any major genes, they have assisted in the 

improvement of existing genetic maps (Grivet and Arruda, 2001). Genetic maps based on molecular 

markers have proved more useful for understanding genome structure and for the isolation of 

important genes (Maureira and Osborne, 2004). Breakthroughs in the genetic mapping of sugarcane 

were reported in 1992 for S. spontaneum and in 1996 for S. officinarum (Asnaghi et al., 2000). This 

technology quickly spread to the modern cultivars and Q165 and R570 were mapped soon after, 

using RFLP and/ or RAPD markers (Asnaghi et al., 2000; Raboin et al., 2006). Subsequent use of AFLP 

and bulked segregant analysis in the development of a more detailed genetic map resulted in the 

identification of a major rust resistance gene Bru1, which was identified in the sugarcane cultivar 

R570 (Asnaghi et al., 2000; Asnaghi et al., 2004).  
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Despite the complexity of the sugarcane genome, Bru1 has a moderate to high heritability. Bru1 is a 

durable gene that has maintained its integrity, is stable and has not broken down in over 20 years 

that the R570 cultivar has been cultivated (Asnaghi et al., 2004). This gene was also found to be a 

monogenic and dominant allele as it gave a three to one segregation ratio of resistance in the 

progeny resulting from selfed R570 (Asnaghi et al., 2000). 

 

2.3 Disease in Sugarcane 
 

Sugarcane is commonly grown over large contiguous areas, is a ratoon crop and is also propagated 

vegetatively which subsequently makes it prone to disease build-up (Bailey, 2004; Bremer, 1961a). 

Diseases in sugarcane are caused by a variety of organisms which include fungi, bacteria and viruses. 

The diseases resulting from these organisms have been compiled and described, the first manuscript 

being published in 1938 by Stevenson and Rands, with the latest one being compiled this past 

decade. The complilation of the latest manuscript was mainly coordinated by the International 

Society of Sugar Cane Technologists (ISSCT) (Bailey, 2004). Brown rust of sugarcane is an example of 

such a disease which is found in this manuscript. This disease has resulted in moderate to severe 

losses in sugarcane yield in India, Australia and South Africa, amongst other sugarcane producing 

countries (Purdy et al., 1983; Raid and Comstock, 2000; Taylor et al., 1986). 

 

2.4 Brown Rust of Sugarcane 
 

Brown rust of sugarcane is caused by Puccinia melanocephela H. & P. Sydow, a basidiomycete fungus 

(Hoy and Hollier, 2009; Purdy et al., 1983; Raid and Comstock, 2000). P. melanocephala is an 

obligate biotrophic parasite which incites new infections only on living host tissue. Changes in 

varietal susceptibility to rust have been observed over the years, suggesting the existence of several 

brown rust variants (Comstock and Milligan, 2007; Jackson et al., 2008; Raid and Comstock, 2000; 

Sood et al., 2009).  

This disease, formerly known as common rust, has had considerable economic impact on global 

sugarcane industries (Asnaghi et al., 2004; Raid and Comstock, 2000). The causative fungal pathogen 

is now widespread and found almost everywhere where sugarcane is grown (Dixon, 2010; Hoy and 

Hollier, 2009; Raid and Comstock, 2000).  
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2.4.1 History of Brown rust 
 

Brown rust was first recorded in South Africa in 1941, then in Madagascar in 1962, in Mauritius in 

1964 and in the Réunion Islands in 1965 (Hull et al., 2008; Nagarajan and Singh, 1990). P. 

melanocephala was then reported in the America’s in 1978, where it was thought to have reached 

the Dominican Republic via trans-oceanic high altitude air currents from Cameroon in Africa (Purdy 

et al., 1983; Raid and Comstock, 2000). From the Dominican Republic, brown rust spread to the 

other Caribbean countries, northern South America, Central America and to the United States, 

where a severe epidemic resulting in losses of up to 50% was experienced on susceptible varieties 

which made up over half their sugarcane crop. In the same year (1978), the epidemic spread to 

Australia, which had never observed P. melanocephala in its crop before (Purdy et al., 1983). P. 

melanocephala is now widespread and found almost everywhere sugarcane is grown, with some 

recent reports confirming its continuing spread (Dixon, 2010; Kelly et al., 2009). 

 

2.4.2 History of Brown Rust in South Africa 
 

P. melanocephala was first described in 1907 by H. and P. Sydow on bamboo and was only 

considered a disease of economic importance in India in 1949 (Purdy, 1985; Ryan and Egan, 1979). 

The origin of the fungus in South Africa is unknown, though its presence in the local industry was 

reported as early as 1941 on the variety Co301 (Bailey, 1979a). This period was the beginning of an 

epiphytotic which extended into the 1950s, with an estimate made that enough wind-borne rust 

spores were produced to infect an area the size of the whole of South Africa (Hull et al., 2008). There 

was a further outbreak of rust in the 1974/75 season in which variety N55/805 was affected and 

losses of 23% were recorded (Bailey, 1979b; McFarlane et al., 2006). Brown rust has since been 

found in Mozambique, Zimbabwe, Zambia, Malawi, Tanzania, Kenya and Uganda since this initial 

report and is likely to be present in virtually all sugarcane growing countries in future (Hull et al., 

2008). There was a resurgence of brown rust after 2000 in South Africa, which was prevalent 

particularly in the varieties N29 and N33 and resulted in yield losses of 10- 26% in yield loss trials for 

the N29 variety (McFarlane et al., 2006; Ramouthar, 2009). 

 

2.4.3 Economic Importance 
 

Rust is an economically important disease which results in losses due to severe reductions in yield 

because of the loss of effective leaf area (Bailey, 2004). Losses are also a result of the combined 
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effects of reductions in the numbers of millable stalks, stalk diameter, canes per stool and stalk 

biomass (Purdy et al., 1983; Raid and Comstock, 2000). Brown rust was initially regarded as an 

economically unimportant disease in the America’s until the 1978-1982 seasons, when heavy losses 

were incurred due to an outbreak which occurred in the South and North American continents 

(Purdy et al., 1983; Taylor et al., 1986). The disease affected yield in susceptible varieties and losses 

as high as 50% were registered in Mexico (1981-82) on the susceptible cultivar B4362 (Asnaghi et al., 

2004; Purdy et al., 1983). The epidemic also resulted in indirect losses being incurred, as varieties 

were frequently withdrawn from commercial production because of susceptibility to rust (Kelly et 

al., 2009).  Cuba, which had 40% of its crop being a susceptible variety, reduced the hectarage of this 

variety to 28% the following season so as to curb losses (Purdy et al., 1983). 

In South Africa, the 1979 epidemic resulted in significant losses in the variety N55/805, with an 

estimated 100 000 ton loss of cane annually (Bailey, 1979b). In recent years, a resurgence in the 

incidence of brown rust resulted in the previously rust tolerant variety N29 becoming susceptible, 

resulting in an estimated 26% loss (McFarlane et al., 2006). 

 

2.4.4 Taxonomy and Morphology of Puccinia melanocephala 
 

Puccinia melanocephala belongs to the Phylum Basidiomycota, class Pucciniomycetes, Order 

Pucciniales, family Pucciniaceae and the genus Puccinia (Agrios, 2005; Ramouthar, 2009). Puccinia 

melanocephala and a close relative, P. kuehnii, are regarded as pathogens of economic importance 

with regards to sugarcane (Purdy et al., 1983; Raid and Comstock, 2000). P. melanocephala is distinct 

by its appearance primarily on the abaxial side of leaves, with cinnamon-brown, linear (up to 4mm) 

uredinia (Fig 2.4). The urediniospores are ellipsoidal (25-39 X 17-28µm) and cinnamon to dark brown 

in colour (Dixon, 2010).  The echinulate spores have a darker cell wall and lack a thickened apical 

wall when compared to those of P. kuehnii (Purdy, 1985; Purdy et al., 1983). The urediniospores 

have 4-5 equatorial germ pores. The paraphyses are capitate, golden, club shaped structures with 1-

2.8µm thick wall and a 1-15µm apex (Dixon, 2010; Purdy et al., 1983). The paraphyses can be used to 

distinguish between P. melanocephala and P. kuenhii, as brown rust produces more abundant 

capitate paraphysis with thicker walls at the apex (Dixon, 2010). 
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Fig 2.4: Uredinia with urediniospores erupting from a leaf surface (Photograph by Terence Mhora). 

 

2.4.5 Symptoms of Brown Rust 

 

Sugarcane rust is mainly a disease of the leaf and presents as reddish-brown (later dark brown) 

pustules (uredinia) that erupt mainly on the abaxial side of sugarcane leaves and lie parallel to the 

vascular bundles (Bailey 2004; Dixon, 2010; Raid and Comstock, 2000). The earliest symptoms are 

small, elongated yellowish spots that are visible on both leaf surfaces (Purdy et al., 1983; Raid and 

Comstock, 2000). The spots increase in length, become red-brown in colour and mature and 

sporulate within 10-14 days.  

On highly susceptible varieties, considerable numbers of pustules may occur on a leaf, covering  the 

entire abaxial surface and coalescing to form large, irregular, necrotic areas (Bailey, 2004; Raid and 

Comstock, 2000). In the later stages of disease development, premature drying-off of infected leaves 

can result in severe loss of photosynthetic leaf area. High rust severities may result in premature 

death of even young leaves. Severe infections have caused reductions in both stalk mass and stalk 

numbers, subsequently reducing cane tonnage (McFarlane et al., 2006; Purdy et al., 1983; Raid and 

Comstock, 2000). 

 

2.4.6 Mode of Infection 

 
Urediniospores germinate to produce a germ tube that contacts the guard cells and forms an 

appressorium over the stomatal aperture. A penetration peg then develops and enters the sub-

stomatal cavity, where a sub-stomatal vesicle develops. Two to four infection hyphae then develop 

100µm 
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and colonize the intercellular part of the leaf (Purdy et al., 1983). The infection hyphae then come 

into contact with the mesophyll cell. A septum cuts off the terminal hyphal cell and forms a 

haustorial mother cell. The haustorium mother cell, when in contact with the host cell wall forms a 

multi branched, lobed haustorium within the host cell (Purdy et al., 1983; Sotomayor et al., 1983). 

The rust fungus then grows parallel to the venation of the leaf and advances in both directions from 

the point of penetration. After approximately seven days, urediospores and paraphyses develop 

from the sporogenous hyphae and subsequently, the epidermis is ruptured by the developing 

urediniospore mass (Purdy et al., 1983). 

 

2.4.7 Dispersion 

 

Rust spores are very well-suited to dissemination by air currents and its spores can be found in high 

concentrations in the air during dry afternoons (Brown and Hovmøller, 2002; Jackson et al., 2008; 

Viljanen-Rollinson et al., 2007). On a more local scale, rust epidemics have been demonstrated to 

develop in the direction of prevailing winds (Viljanen-Rollinson et al., 2007). Brown rust can also be 

disseminated by rain and irrigation splash (Anon, 2011; Raid and Comstock, 2000). Two important 

forms of aerial dispersion that describe rust involve the travel of spores over very long distances 

(possibly intercontinental) in a single step invasion, while the other is a gradual expansion of the 

range of a pathogen population within large territory. The single step invasion has been largely 

instrumental in the spread of P. melanocephala as meteorological data has shown that this method 

was responsible for the 1978 epidemic in the America’s by spores from West Africa (Brown and 

Hovmøller, 2002; Nagarajan and Singh, 1990). P. melanocephala is especially suited for long distance 

dispersal as its spores are robust, thick walled and pigmented, giving it protection and sustained 

viability from the sun in its peak transport period (Raid and Comstock, 2000; Viljanen-Rollinson et al., 

2007). 

 

2.4.8 Epidemiology 

 

Leaf wetness and atmospheric temperature are the environmental factors most influential for 

disease development (Raid and Comstock, 2000). Several hours of free moisture on the leaf surface 

at a favourable temperature (25°C) is necessary for successful urediniospore germination and 

infection. However, though heavy rains may add to leaf wetness, they tend to remove spores from 
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the atmosphere, rendering them ineffective if they land on the soil (Jackson et al., 2008; Purdy et al., 

1983; Ramouthar, 2009). Urediniospore germination takes place between 15-20°C, while the 

subsequent formation of appresoria, a stage necessary for successful infection is optimal at 

temperatures between 15-30°C (Purdy et al., 1983; Sotomayor et al., 1983).  At optimal leaf wetness 

and temperature conditions, urediniospores germinate within an hour, and infection hypha and 

haustorium develop after 36 hours (Sotomayor et al., 1983). Several other factors can influence rust 

development, and these include host genotype, plant age and soil conditions such as pH and 

nutrient levels (McFarlane et al., 2008; Raid and Comstock, 2000). Rust severity can rapidly increase 

within a short time, as P. melanocephala has a short life cycle of 14 days from germination to 

urediniospore production (Purdy et al., 1983; Raid and Comstock, 2000). 

 

2.5 Control of Brown Rust  

 
Brown rust has been documented to result in devastating yield losses, which makes it imperative to 

reduce resultant losses by either the prevention or mitigation of infection and resultant losses due 

to the fungus. Preventative measures are a more preferred method of controlling rust, especially as 

the costs and processes for mitigating the disease can be removed from the producers.    

 

2.5.1 Varietal Control 

 
The most economically effective way to control brown rust of sugarcane is through the use of 

resistant cultivars such as R570, which has maintained rust resistance for over its 20 years of 

extensive cultivation (Asnaghi et al., 2004; Bailey, 2004). This method should also be complemented 

by the withdrawal and withholding of susceptible varieties from cultivation (Purdy et al., 1983; Sood 

et al., 2009). The development of resistant cultivars has resulted in the improved control of brown 

rust and subsequent reduction of the resultant economic losses (Asnaghi et al., 2001). Overall 

resistance has however not been durable in certain varieties as was observed in N29, presumably 

because of the existence of numerous rust variants (McFarlane et al., 2006; Raid and Comstock, 

2000). Varietal diversification has also been encouraged as it plays an important role in holding 

down disease pressure (Raid and Comstock, 2000). 

 



17 
 

 

2.5.2 Chemical Control 

 

Fungicides have been found to be effective in the reduction of rust severity and yield losses in 

sugarcane (Hoy, 2008). In the USA, a systemic fungicide, pyraclostrobin (Headline® fungicide 

produced by BASF) has been approved for the control of brown rust (Hoy, 2010). In Southern Africa, 

Dithane (Mancozeb), a contact fungicide has been used with some success in increasing the yield in 

rust infected sugarcane (Gullino et al., 2010; McFarlane, 2008; Raid, 1992; Zvoutete, 2006). Abacus 

(epoxyconazole/ pyraclostrobin) has also been used in trials in South Africa and has shown good rust 

control and increase in yield (personal communication, S. A. McFarlane). The commercial application 

of fungicides is however not economically viable, though it has been postulated to be useful and 

effective in the event of a rust outbreak (McFarlane et al., 2006; Raid and Comstock, 2000). This is 

mostly due to the extended duration of the spray programs and the small yield responses obtained 

(Zvoutete, 2006). In such a case, it would be important to conduct regular checks on fields and apply 

the fungicide timeously once the early symptoms are recognised (McFarlane et al., 2006).  

 

2.6 Plant Defence Mechanisms 

 
Plants defend themselves from various forms of pathogens through defensive mechanisms which 

involve constitutive and induced resistance mechanisms (Dixon and Lamb, 1990; Kang et al., 2005; 

Mert-Türk, 2002). The complexity of the sugarcane genome has however meant that progress in 

deciphering the mechanisms of resistance to pathogens is limited. Observations have however 

shown syntenic relationships amongst sugarcane, sorghum and maize, leading to the discovery of 

genes within sugarcane, some of which include disease resistance genes (Le Cunff et al., 2008; 

Raboin et al., 2006). There are basically four forms of resistance to diseases, these being innate 

resistance, qualitative resistance, quantitative resistance and recessive resistance (Heath, 2000; 

Kang et al., 2005; Nimchuck et al., 2003). In the sugarcane-rust interaction, it has been 

demonstrated that resistance is a result of physiological defence mechanisms triggered within the 

host. This has been proved true with the Puccinia species on some Gramineae species, as the spores 

germinate, but progression of the infection is decided in the developmental stage of the haustorial 

mother cells (Luke et al., 1987). 
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2.6.1 Innate Resistance 

 
Innate resistance is sometimes described as non-host resistance and is characterised by its durable 

and complete nature, together with the fact that it is broad spectrum and displayed by an entire 

plant species against entire pathogen species (Heath, 2000; Nürnberger and Lipka, 2005). It is 

characterised by a multifaceted nature which is a result of a combination of physical, chemical and 

generic recognition processes which provide immunity to many potential pathogens (Dangl and 

Jones, 2001; Heath, 2000; Huang, 2008; Lopez et al., 2004). Innate resistance partly consists of pre-

formed physical and biochemical (anticipin) barriers which must be circumvented by an invader, 

requiring appropriate infection structures and anticipin immunity or detoxification (Heath, 2000). 

There is also an induced response initiated by a recognition or surveillance system detecting generic 

conserved pathogen-derived molecules such as bacterial lipopolysaccharides, flagellin or fungal 

constituents such as ergosterol and chitin (Van Loon, 2009). These surveillance systems constitute of 

pathogen-associated molecular patterns (PAMPs) which are recognised by non-specific host pattern 

recognition receptors (HPRR) at plasma membrane receptors in plant cells, activating a signalling 

cascade which results in a basal resistance against potential pathogens (Jones and Dangl 2006; 

Nürnberger and Kemmerling, 2009; Thordal-Christensen et al., 1997; Van Loon, 2009). These HPRRs 

consist of an extracellular ligand binding domain, a single trans-plasma membrane domain and a 

cytosolic protein kinase domain that have been collectively termed as receptor-like kinases (RLKs) 

(Shiu and Bleecker, 2001). RLKs detect evolutionarily conserved PAMP molecules such as β-glucan 

and chitin from fungi leading to PAMP triggered immunity (PTI) (Kaku et al., 2006; Nürnberger et al., 

2004). 

The evolution of plant immunity has been proposed to follow a zigzag interplay between effector-

triggered susceptibility (ETS), and effector-triggered immunity (ETI) (Chisholm et al., 2006; Jones and 

Dangl 2006; Nürnberger and Kemmerling, 2009). An example is barley (Hordeum vulgare), a non-

host to the wheat (Triticum aestivum) powdery mildew fungus Blumeria graminis f. sp. tritici, whose 

incompatibility appears to be a PTI-based penetration resistance associated with the formation of 

cell-wall appositions (Collins et al., 2003; Trujillo et al., 2004). This highly effective non-host 

resistance contrasts with the susceptibility of many barley genotypes to the corresponding 

appropriate pathogen B. graminis f. sp. hordei. In this latter case, PTI is overcome by pathogen 

effector molecules that trigger ETS by altering the plant’s physiological state to benefit pathogen 

colonization, or by suppressing host plant defenses that were activated by PAMP detection (Speth et 

al., 2007). In ETS, a detectable PAMP induced resistance can remain to greater or lesser extents, 

depending on the efficiency of ETS (Nurnberger and Lipka, 2005). This type of resistance has been 
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referred to as basal resistance, which is quantitative in nature (Dangl and Jones, 2001; Boller and 

Felix, 2009). 

 

2.6.2 Qualitative Resistance  

 
The transition from PTI to ETS can lead to a second group of responses known as gene-for-gene 

resistance or effector triggered immunity (ETI). ETI is initiated through recognition of pathogen 

effectors (avirulence - avr gene products) by resistance (R) gene products of the host plant (Jones 

and Dangl 2006; Nimchuk et al., 2003). R-genes encode receptors such as those containing an N-

terminal coiled-coil structure, a central nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) 

region. Such NBS-LRR R-genes recognize fungal effectors and lead to a range of resistance responses 

usually associated with a hypersensitive response (HR), a cell death process that occurs at the site of 

attempted pathogen entry (Govrin and Levine, 2000; He, 1996; Kuta and Tripathi, 2005; Lopez et al., 

2004). The HR is effective against obligate biotrophic pathogens such as rusts and smuts, which must 

obtain nutrients from living host tissue (He, 1996; Kuta and Tripathi, 2005; Lopez et al., 2004; Mur et 

al., 2008; Mert-Türk, 2002; Ren et al., 2010). An example of the effectiveness of HR was obseved in 

the response of sugarcane clone Ja60-5 to infection by the bacteria Gluconaceto 

bacterdiazotrophicus (Arencibia et al., 2006). 

NBS-LRR proteins make up the majority of qualitative resistance proteins available in nature (du 

Preez, 2005). Qualitative resistance, also known as vertical resistance or race-specific resistance has 

been preferred in breeding programs due to the relative ease of transfer of single genes into well 

adapted cultivars by crossbreeding (Keane and Brown, 1997; McDowell and Woffenden, 2003). The 

gene-for-gene concept is one in which a single avr gene of the plant pathogen corresponds to a 

single resistance gene of the host (Flor, 1971; Martin et al., 2003). Qualitative genes are more often 

inherited dominantly, and are also normally found clustered together in certain chromosome arms 

(Ribiero do Vale et al., 2001). These genes have major effects and are expressed throughout the life 

of a plant, tending to produce a plant completely resistant to one or more strains of a particular 

pathogen (McDowell and Woffenden, 2003; Sakr et al., 2011). Their expression can however be 

modified by epistatic interaction, the developmental stage of the plant or the environment 

(Messmer et al., 2000; Ribeiro do Vale et al., 2001). Qualitative resistance is present as both durable 

and non-durable resistance, where resistance is considered durable if it remains effective when used 

for many years over a substantial area (Ribeiro do Vale et al., 2001). Such an example is the 

sugarcane variety R570, harbouring the major resistance gene Bru1, which has been widely grown 
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for over twenty years in Mauritius and the Reunion Islands and yet maintains its resistance to brown 

rust (Asnaghi et al., 2001; Asnaghi et al., 2004). Non-durable resistance has also been observed, such 

as the case where resistance of the wheat cultivar Tadorna, to Puccinia striiformis f. sp. tritici was 

broken down within the first year of commercial production (Johnson, 1977; Ribeiro do Vale et al., 

2001). 

Qualitative resistance provides a high level of protection, but is frequently prone to breakdown, 

regardless of the method of management (McDowell and Woffenden, 2003; Sakr et al., 2011). This 

occurs as new virulent pathotypes evolve, rendering previously resistant plants susceptible (Gu et 

al., 2008; Keane and Brown, 1997; Sakr et al., 2011).Vertical resistance most likely functions well in 

natural ecosystems not only because it occurs in mixed populations of the plant, but also because it 

is supported by quantitative horizontal resistance that has accumulated in the population in 

response to natural selection (Keane and Brown, 1997). 

 

2.6.3 Quantitative resistance  

 
In all plant species, resistance to herbivores and necrotrophic pathogens is mostly quantitative 

(Dangl and Jones, 2001; Boller and Felix, 2009). Resistance to biotrophs can be qualitative, a mixture 

of qualitative and quantitative resistances, or quantitative in nature. Quantitative resistance (QR) is 

defined as “a resistance that varies in a continuous way between the various phenotypes of the host 

population, from almost imperceptible to quite strong” (Ribeiro do Vale et al., 2001). QR is also 

considered to be horizontal, a property which makes it equally effective against all pathogen races, 

or race-nonspecific.  QR makes up the largest proportion of genetic resistance used by sugarcane 

breeders and also by maize breeders, mostly due to the fact that these are outcrossing species 

(Buckler et al., 2001; Poland et al., 2011). Also called horizontal resistance, QR provides a lower level 

of resistance but importantly, is not liable to breakdown because of the absence of strong selection 

pressure in favour of some pathotypes and against others (Keane and Brown, 1997; Poland et al., 

2011; Ribeiro do Vale et al., 2001). Resistance has also often been observed to increase as plants 

mature, becoming most effective when there is genetic uniformity within and between crops (Keane 

and Brown, 1997; Ribeiro do Vale et al., 2001). 

QR is usually inherited additively and has an oligogenic or polygenic nature, such as that found in 

rice to bacterial blight caused by Xanthomonas campestris pv. oryzae and in barley leaf rust caused 

by Puccinia hordei (Ribeiro do Vale et al., 2001). The additive effect of QR has also been observed in 

the Swiss wheat variety “Forno”, which has improved resistance in the presence of six currently 
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documented quantitative trait loci (QTL’s) (Messmer et al., 2000). Horizontal resistance has been 

known to reduce the rate and degree of infection, colonisation and sporulation, together with the 

rate of epidemic development due to its quantitative nature (Keane and Brown, 1997; Ribeiro do 

Vale et al., 2001). Horizontal resistance is however often avoided by breeders because it is often 

difficult to detect and manipulate. In recent times however, more plant breeding programs are 

becoming concerned with breeding for quantitatively inherited characters (Keane and Brown, 1997). 

This new concern for QR’s has culminated from the suggestion that horizontal resistance in plants 

may be the reason why many minor diseases are regarded as minor (Keane and Brown, 1997). 

Fortunately, QR is still found abundantly in adapted cultivars and can be stacked fairly rapidly by 

selecting lines that have lower levels of disease severity (McIntosh, 1997; Parlevliet and Van 

Ommeren, 1988). 

While race specific resistance relies on plant recognition of pathogen effectors or their 

consequences, in the majority of cases by NBS-LRR genes, non-race specific QR should involve genes 

with other modes of action. However, it has been hypothesized that some QRLs may be weak, or 

defeated, R-genes since they have been reported to have similar or identical linkage map positions 

with major R-genes in other various crop plants, including rice and maize (Wang et al., 1994; Wisser 

et al., 2005; Xiao et al., 2007; Young et al., 1995). Defeated R-genes could contribute toward a 

quantitative level of field resistance through residual effects (Durel et al., 2003; Pedersen and Leath 

1988; Stewart et al., 2003).  

Another form of quantitative resistance, termed basal resistance, can be considered as part of 

innate resistance sharing common mechanisms and remaining operative in compatible interactions 

to limit pathogen growth. Also included in QR are traits that likely require the action of multiple 

genes, including a myriad of morphological, anatomical and biochemical traits such as stomata 

density, biochemical composition and water repellency of surfaces, all of which can have effects on 

resistance (Bradley et al., 2003; Melotto et al., 2008). 

QR is poorly understood and is often said to be conferred by QRLs of relatively small effect (Poland 

et al., 2011), for example as found in the study of McIntyre et al., (2005) on brown rust in a 

biparental sugarcane cross. Variations in resistance phenotypes have been attributed to the possible 

accumulation of numerous loci of small cumulative effect, though it is likely that some QRLs can also 

be of large effect (Poland et al., 2011).  An example of a larger effect QRL is the wheat gene Lr34 

which provides resistance against leaf rust (Puccinia triticina formerly recondita f. sp. tritici). Lr34 is 

associated with a reduced rate of haustorium formation in early stages of infection, reduced 

intercellular hyphal growth, increased latent period, reduced infection frequency and smaller 
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uredinia (Rubiales and Niks, 1995; Singh and Huerta-Espino, 1997). Lr34 is constitutively expressed 

and based on its sequence, is predicted to encode an ATP-binding cassette (ABC) transporter 

(Krattinger et al., 2009). Most significantly, Lr34 (Yr18/Pm38) provides multiple disease resistance 

against leaf rust, stripe rust (Puccinia striiformis f. sp. tritici) and also powdery mildew (Blumeria 

graminis f. sp. tritici). This resistance is still durable after more than 50 years in the field (Priyamvada 

et al., 2011). 

Krattinger et al. (2011) showed through the construction of ABC transporter phylogenetic trees, 

including homologous ESTs from sugarcane and other grasses, that a sugarcane sequence is 

clustered together with Lr34 orthologs. These authors considered it likely that sugarcane contains 

orthologous Lr34 genes. However, they also suggested that the particular Lr34-haplotype found in 

resistant wheat cultivars may be unique, probably arising from functional gene diversification after 

the polyploidisation event at the origin of cultivated wheat. Among many other genes, Carmona et 

al. (2004) and Oloriz et al. (2012) detected increased differential ABC transporter gene expression in 

Puccinia melanocephala resistant somaclonal variants and chemically induced sugarcane mutants 

respectively, compared to susceptible “parent” genotypes. 

 

2.7 Sugarcane Breeding 

 
Genetic maps based on molecular markers have proven useful in understanding crop genome 

structure and for isolating important genes from many species (Jiang et al., 2000; Manigbas and 

Villegas, 2007; Raboin et al., 2006). The need for a saturated map is critical in the efficient 

localization of major genes or Mendelian factors involved in QTL (Raboin et al., 2006). In the past 

few years, these markers, in association with more powerful statistical models, have been applied to 

genetic analysis and breeding of several crops (Manigbas and Villegas, 2007; Maureira and Osborne, 

2004; Ming et al., 2002). The application of these tools has however been hindered by several 

factors in sugarcane, such as the coexistence of alleles at each locus due to polyploidy and polysomic 

inheritance in the species, complicating linkage analysis and the detection of QTL (Grivet and Arruda 

2001; Maureira and Osborne, 2004; Raboin et al., 2006). 

Traditional breeding in sugarcane employs the sexual route to create clones with different genetic 

makeup and phenotype. The new clones are then fixed in clonally propagated cuttings for successive 

selection stages (Midmore, 1980; Ramdoyal et al., 2000; Sleper and Poehlman, 2006). These 

techniques have seen sugarcane breeders make advances in increasing the yield and disease 

resistance in the modern sugarcane cultivars derived from the early interspecific genotypes, coupled 
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with some cycles of intercrossing and selection (Grivet and Arruda 2001). The sugarcane breeding 

process is however complicated due to modern sugarcane genomes being large and having a high 

degree of ploidy (Asnaghi et al., 2001). The Bru1 rust resistance trait has however been found to be 

of high narrow and broad sense heritability, assisting in the development of the existing rust 

resistant varieties (Asnaghi et al., 2001; Hogarth et al., 1993). Observations of marked transgressive 

segregation towards rust susceptibility in bi-parental crosses and selfed families have also been 

made, suggesting the partial dominance of the rust resistance trait (Ramdoyal et al., 2000).  

One of the main components of plant breeding is the identification of germplasms containing genes 

that could improve the performance of current cultivars (Maureira and Osborne, 2004). As this 

activity is the cornerstone of all advanced sugarcane industries, it is important to integrate it with 

biotechnology to ensure that maximum advantage of the new possibilities to maintain and increase 

production is sustained (da Silva and Bressiani, 2005). Molecular markers are valuable tools for the 

breeder, as they increase the efficiency of indirect and early selection in sugarcane (da Silva and 

Bressiani, 2005; Huang, 2008; Ming et al., 2002). Biochemical and molecular markers provide a more 

accurate means of monitoring unifactorial inheritance in such complex genomes, resulting in 

varieties with high sugar content and disease resistance (da Silva and Bressiani, 2005; Grivet et al., 

1996). 

A conventional sugarcane variety improvement cycle (breeding and selection) is normally conducted 

in the field and takes an average of 12 years from hybridization to cultivar release (Bischoff and 

Gravois, 2004; Purdy, 1985; Sleper and Poehlman, 2006). This process is however lengthy, as far as 

meeting industry requirements is concerned (Bailey, 2004).  Extended cultivar turnover has 

motivated for the use of technology such as marker assisted selection (MAS), which could 

significantly speed up this process (da Silva and Bressiani, 2005; Ming et al., 2002). Comparative 

genetic mapping across species has revealed the organization of plant genomes and aided in the 

identification of several candidate genes for disease resistance (Grivet and Arruda, 2001). Genetic 

mapping could subsequently assist in the design of markers in sugarcane which could facilitate the 

screening of large numbers of new accessions in breeding programs more efficiently than field of 

glasshouse trials (Keane and Brown, 1997; Märländer, 2000). 

 

2.8 Resistant Varieties 

 
Resistant varieties arise due to the presence of either a major qualitative gene or a collection of 

minor genes called quantitative resistance (McDowell and Woffenden, 2003; Sakr et al., 2011). 
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These resistant varieties provide the most efficient means of control to disease and indeed, to 

brown rust in sugarcane (Asnaghi et al., 2001; Bischoff and Gravois, 2004; Keane and Brown, 1997; 

Ribeiro do Vale et al., 2001). Resistant cultivars are not only important as an efficient means of 

disease control, but also due to their positive environmental implications and the reduction in high 

costs incurred as a result of losses or in the use of alternative means of control (Bischoff and Gravois, 

2004; Keane and Brown, 1997; Ramdoyal et al., 2000). R570, a widely grown variety of sugarcane 

with resistance to P. melanocephala is one such example of a successfully used resistant variety 

(Asnaghi et al., 2001; Le Cunff et al., 2008; McIntyre et al., 2005; Raboin et al., 2004). 

There have been suggestions made that the sugarcane variety R570, whose rust resistance has been 

attributed to the major gene Bru1 contains other genes with smaller effects acting in a quantitative 

way, as the one gene hypothesis does not fully explain the susceptibility levels within some 

previously conducted crosses (Ramdoyal et al., 2000). Such information is crucial, as it would suggest 

breeding strategies to adopt for controlling rust. Stacking of major resistance genes alone, or 

together with the accumulation of minor resistance genes conferring quantitative resistance are 

strategies used for breeding wheat. This strategy could be incorporated into sugarcane breeding 

programs to improve resistance to brown rust, among other diseases (Messmer et al., 2000). 

Suggestions have been made that tolerant varieties to brown rust have little use in the industry, as 

they could contribute to the development of new pathogenic races, especially when grown in large 

populations (Purdy et al., 1983). These uncertainties have called for the further development of 

resistant varieties, as new rust races and climate change are resulting in previously resistant/ 

tolerant varieties becoming susceptible (McFarlane et al., 2006; Purdy et al., 1983). The advent of 

novel molecular breeding techniques has resulted in resistant cultivars being produced more 

efficiently and rapidly for most commercial crops (Manigbas and Villegas, 2007; Märländer, 2000). 

The use of such technology would ensure the replacement of susceptible varieties with resistant 

cultivars, reducing rust outbreak risk, maximising on profit and reducing inputs (Purdy et al., 1983).  

 

2.9 Rust Resistance Screening Methods 

 
Disease screening is an important step in the breeding process, as it determines the resistance and 

subsequent quality of cultivars selected in the breeding program. A variety of methods are used in 

disease screening and these range from glasshouse experiments, field trials and in vitro experiments. 

Complete resistance to rust is generally assessed by conducting inoculations and observing the 

reactions on seedlings in a greenhouse; while partial resistance tests are primarily observed in the 
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field on plants that have reached the age at which they are most susceptible (Jackson et al., 2008). 

Rust resistance can also be assessed by inoculating plants and placing them inside dew chambers to 

assess disease development (Jackson et al., 2008). In vitro methods using detached leaf assays have 

also been formulated for the disease screening of soya beans, wheat, oats and more recently on 

sugarcane (Ali et al., 2008; Asnaghi et al., 2001; Hoy and Hollier 2009; Twizeyimana and Hartman, 

2010). An ideal screening method would be one where the results can be obtained rapidly, with 

minimum use of land or space and testing material. A major advantage would be an increase in new 

variety turnover, as lag time spent waiting for plant growth and favourable disease conditions could 

be eliminated. The starting material required for an ideal method would have to be minimal, as 

bulking up sugarcane to sufficient levels for both field and pot trials is a lengthy process. 

MAS as a rust resistance screening method has its advantages in that it requires a minimal amount 

of starting material, it requires no planting space and is rapid. Screening via the use of inoculation is 

however necessary as some resistance traits are unknown, limiting MAS to a screening function for 

known traits only, whereas other methods can assist in the identification of additional modes of 

resistance. Another challenge with MAS is that it occasionally identifies traits which are controlled by 

epistatic interactions which may be unrelated to the marker. Furthermore, screening for disease 

resistance QTL’s in sugarcane using MAS is still not practical, as the sugarcane genome has not been 

sufficiently decoded (Le Cunff et al., 2008).  

 

2.9.1 Detached Leaf Assay 

 
The maintenance of detached leaf pieces on media containing plant growth regulators to ensure 

optimal health and their subsequent inoculation with pathogens is useful in the study of host-

pathogen interactions for a variety of rust fungi (Browne and Cooke, 2005; Jackson et al., 2008; 

Loladze et al., 2005; Twizeyimana and Hartman, 2010). Detached leaf assays (DLAs) are useful in 

countering the large environmental influence on phenotypic estimates of disease resistance and the 

complex polygenic nature of fungal resistance in cultivars often experienced when conducting whole 

plant assays. These environmental influences are obstacles to developing resistant cultivars (Browne 

and Cooke, 2005). The DLA gives a technique capable of screening large numbers of breeding or 

mapping population lines for complete resistance. DLAs also overcome space and time constraints 

that are experienced when using conventional methods of assessing genotypes for disease 

resistance (Twizeyimana and Hartman, 2010). 
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This method has been successfully used in the identification of important components of resistance 

to Fusarium head blight (FHB) in European wheat germplasm (Browne and Cooke, 2005). DLA has 

already been proven to have similar responses to both field and seedling assays, with low standard 

errors among the evaluation methods (Loladze et al., 2005). This makes it a potentially better 

method of screening for disease resistance after considering its advantages. This method however 

has not yet proved valuable in determining partial resistance (Jackson et al., 2008). 

 

2.9.2 Field Trials 

 
Field based assessments have long been an important means of assessing disease resistance, proving 

to be useful not only in identifying resistant genotypes but as being the best known way of 

identifying QTL’s (Nair et al., 2005). Field trials are normally conducted in areas with high disease 

pressure to allow the plants to be adequately challenged at near optimal conditions for disease 

infection. Inoculations are normally carried out to ensure similar treatment to each plant. Whorl 

inoculations and spore sprays among other techniques are used to inoculate, depending on the host 

and the pathogen of interest.  Rust experiments have normally been carried out under conditions of 

high natural infection incidence and assessments made thereafter (Zvoutete, 2006). This however is 

not reliable as it is not possible to ascertain whether inoculum has been received and to quantify the 

inoculum among other parameters.  

These same issues are also raised when spraying plants, as application rates and host receipt cannot 

be guaranteed. Whorl inoculation methods have been used in recent sugarcane rust experiments 

with much success (Sood et al., 2007). This method not only provides an assurance that inoculum is 

delivered evenly to the plant, but can also be quantified.  Whorl inoculation has also been 

successfully used with other crops such as maize in the identification of QTLs and resistant 

genotypes (McCammon et al., 1985; Nair et al., 2005). Whorl inoculation also has the advantage of 

being able to maintain controls, unlike other experiments conducted using airborne pathogens 

(Shokes et al., 1996). 

 

2.9.3 Glasshouse Trials 

 
Glasshouse trials have been used in the rapid screening of a large number of cultivars (Sood et al., 

2009). This method is advantageous in that it provides controlled conditions under which disease 
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development and pathogen/ host interactions can be observed. The increased severity of infection 

in glasshouse trials makes them ideal in the identification of complete resistance.  This is due to 

conditions which are frequently optimal for the development of rust, which on the contrary is an 

inaccurate assessment, as such conditions are rarely found in the field. This factor is one such 

limitation in the use of glasshouse experiments for identifying QTLs, as plants seldom respond as 

they would under natural conditions, where several other factors can influence the outcome of 

disease expression. 

2.10 Molecular Marker Based Systems 

 
Molecular markers used in MAS for identifying a wide array of traits have been obtained from a 

variety of techniques which include amplified fragment length polymorphisms (AFLP), random 

amplified polymorphic DNA (RAPD) and Simple Sequence Repeats (SSR) amongst other methods 

(Hoarau et al., 2001; Le Cunff et al., 2008). These markers have also been used in genetic map 

technology where they have been useful in the identification of genes such as Bru1 (Asnaghi et al., 

2000; Asnaghi et al., 2004). More recently, molecular markers from technologies such as Subtraction 

Subtractive Hybridization (SSH) and NBS profiling have been useful in the improvement of existing 

genetic maps by saturating them and increasing their resolution (Alsop et al., 2011). 

 

2.10.1 Amplified Fragment Length Polymorphism (AFLP) 

 
AFLP is a highly reproducible method of characterising genomic DNA that can be used to generate 

numerous informative genetic markers for DNA of any origin or complexity (Vos et al., 1995). This 

ability to consistently diferentiate individuals using the AFLP method was proved by Jones et al. 

(1997) in a proficiency test amongst a network group of laboratories in Europe. This method is 

generally used for fingerprinting and has been successfully used to differentiate between individuals 

and independently evolving lineages. AFLP has also been found to be very useful in the analysis of 

genetic variation, even below the species level and has been successfully used to analyse population 

structure and differentiation (Mueller and Wolfenbarger, 1999). The strength of AFLP has been 

demonstrated in its use in the differentiation of near-isogenic lines of soybean differing at single to 

small regions in their genome (Mueller and Wolfenbarger, 1999).  

AFLPs have also shown their capability to be used for QTL mapping, as they are capable of 

generating many genome wide polymorphic markers (Mueller and Wolfenbarger, 1999). Linkage 

maps for QTL analysis have been used to analyse agronomic traits which include disease resistance 
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and salt tolerance (Asnaghi et al., 2004; Mueller and Wolfenbarger, 1999; Raboin et al., 2006). Maps 

constructed with AFLP markers have shown a much higher resolution than other methods and show 

extended genome coverage and decreased distance between markers when added to existing maps. 

This was demonstrated by Le Cunff et al., (2008), who used AFLP markers to get to within 0.14 and 

0.28 cM of the Bru1 rust resistance gene, whose closest markers were previously located at 1.9 and 

2.2 cM on either side of the gene (Asnaghi et al., 2004). AFLPs have also been used for Linkage 

Disequilibrium mapping on a sugarcane breeding population in an association analysis study. This 

study revealed the presence of negatively correlated markers between smut and eldana association, 

but most importantly, improved the method of identifying cross combinations resistant to both smut 

and eldana (Butterfield, 2007). 

 

2.11 Detection of Differential Gene Expression  

 
Identification of host genes involved in disease resistance is a critical step in understanding 

resistance mechanisms in host pathogen interactions (Sutton and Shaw 1982; Xiong et al., 2001). 

Suppression Subtractive Hybridization (SSH) is a screening method used for distinguishing between 

two closely related cDNA samples (Diatchenko et al., 1996; Rebrikov et al., 2004; Roelofs et al., 

2007). The use of infection and stress induced cDNA libraries has been successfully used to identify 

defence related genes in a number of plants including rice, wheat and sugarcane using the SSH 

protocol (Oloriz et al., 2012; Watt 2003; Xiong et al., 2001; Yan et al., 2009). This method is 

frequently used to analyse differentially expressed genes between samples by using extracted poly-

A+ RNA transcribed into cDNA from both sets of interest (Distler et al., 2007). The current SSH 

method has been improved and uses fewer steps than that initially described by Diatchenko et al., 

(1996). This more recent SSH protocol has the ability to enrich for genes (and mRNA) with low 

expression levels and also to identify differentially expressed genes, while eliminating the 

homologous cDNAs (Distler et al., 2007; Li et al., 2002; Oloriz et al., 2012; Roelofs et al., 2007; 

Triplett et al., 2006). These different SSH analyses have yielded interesting results, as they have 

turned up combinations of genes responsible for signal transduction, transcriptional regulation and 

hypersensitive responses (Yan et al., 2009). SSH analysis in sugarcane has also been successfully 

conducted for the sugarcane- smut interaction and has shown the presence of putative receptors 

involved in the signalling of resistance mechanisms, transcription factors and enzymes in resistant 

genotypes (Borrás-Hidalgo et al., 2005; Heinze et al., 2001). Such results are important as they not 

only elucidate host-pathogen interactions, but can be subsequently used in the development of 

markers to aid in the development of resistant cultivars. 
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The use of AFLPs in the analysis of differential gene expression has also been employed and has 

shown great versatility in that it can be used to elucidate important differences in combination with 

other genome analysis methods (Carmona et al., 2004). cDNA-AFLP analysis has been used in the 

analysis of differential gene expression in the interaction between somaclonal variants of the 

sugarcane genotype B4362 and P. melanocephala (Carmona et al., 2004). This method has also been 

used to analyse the differentially expressed genes in the sugarcane- smut interaction of sugarcane 

hybrids and has revealed the presence of putative chitin receptor kinases, a Pto ser/thr protein 

kinase interactor and an active gypsy type LTR retro-transposon in a resistant variety (Thokoane and 

Rutherford, 2001). This method has more recently been used to analyse the differential expression 

of cDNA produced by two sugarcane cultivars after inoculation with Sporisorium scitamineum (Syd.) 

M. Piepenbr., M. Toll & Oberw (LaO et al., 2008). The research by LaO et al. in 2008 demonstrated 

the high differentiating abilities of AFLP, as it indicated that the method can even be used to show 

expression differences in the same individual before and after its interaction with a pathogen. 

 

2.12 Summary 

 
Puccinia melanocephala, a major pathogen of sugarcane, has resulted in severe losses to the 

international sugarcane industry and to the economies of affected countries where sugarcane is a 

major economic contributor.  The effects of brown rust have made it imperative to ensure that 

methods of controlling the disease are constantly formulated and improved. The use of resistant 

varieties against rust has by and large been the favoured method of control as it not only reduces 

losses due to rust infection, but also comes with the benefits of reduced expenditure in the form of 

fungicides and related control measures. These factors are important in this modern world, as 

sugarcane has taken on the added role of being a source of energy for the industrial sector in the 

form of ethanol, an environmentally feasible fuel option, considering climatic challenges that are 

being faced globally. The reduced use of agrochemicals can subsequently aid in a reduction of the 

carbon footprint in sugarcane production. 

The identification of QRLs and alternative major genes of resistance to rust is a crucial exercise in the 

goal to increase production of resistant cultivars for the sugarcane industry. As QRLs have been 

identified as a durable source of resistance due to their non-specificity, their identification and 

accumulation into new resistant genotypes will increase resistance to brown rust in new cultivars. 

An increase in the number of cultivars with added resistance would see the withdrawal of 

susceptible cultivars, and a massive reduction in the threat the disease currently poses. The 



30 
 

 

development of resistant varieties would have benefits which include increased productivity, lower 

production costs, reduction in the carbon footprint and positive contributions towards mitigating 

environmental pollution and climate change.  

Both field and pot trials have been traditionally utilised for the identification of genes of resistance 

for use in breeding programs. These tools have proved valuable as they have yielded most of the 

varieties still in use today. The use of genetic analysis tools has augmented these traditional 

procedures, validating them and ensuring that there are fewer inaccuracies. These methods have 

significantly reduced the time it takes for screening protocols to be conducted and promise to 

reduce the sugarcane variety improvement cycle, as they become more accurate and efficient. 

Molecular techniques also provide an avenue towards the more rapid identification of resistance 

mechanisms through the use of technology such as cDNA-AFLP and SSH. These possibilities give rise 

to the aim of this project, which is to uncover the genomics of rust resistance within the LD2 

breeding population.  
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Chapter 3 

Rust resistance screening methods: A whorl inoculation technique for discriminating 

among resistant, intermediate and susceptible genotypes from a sugarcane population. 
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Abstract 

 

Brown rust of sugarcane is a disease best controlled by the use of resistant cultivars. The production 

of resistant cultivars is however highly dependent on the efficiency of a breeding program, as major 

drawbacks pertaining to rust related losses have been due to escapes in these programs. Escapes 

have resulted in unforeseen losses such as those experienced when the rust tolerant N29 sugarcane 

variety became susceptible. An inoculation technique for the efficient large scale screening of 

sugarcane cultivars in the South African Industry was subsequently developed using whorl 

inoculation. Whorl inoculation was conducted on the 80 genotype LD2 breeding population in two 

pot trials conducted under different weather conditions. Bru1, a major rust resistance gene was 

found in 54 of the genotypes in the LD2 population. Lesion development, sporulation and an overall 

symptom rating system were parameters used to analyse the effects of whorl inoculation. The 

Restricted Maximum Likelihood procedure showed significant differences between the pot trials, an 

occurrence attributed to the different weather conditions under which the trials were conducted. 

This underlined the impact of genotype by environment (GE) interactions when conducting 

screening exercises. The first pot trial was conducted in rust optimal conditions, with an average 

temperature of 20⁰C. Rust symptoms were subsequently more severe than in the second trial, in 

which the average temperature was a sub-optimal 17.9⁰C. Correlation coefficient analysis showed 

significant correlations between both pot trials. Sporulation however did not show a significant 

correlation between the trials when the Bru1 negative genotypes in LD2 were analysed. The Bru1 

positive genotypes maintained rust resistance. The Bru1 negative genotypes 96E0212, 96E0895, 

97E0589, 97W0181, 93F0234 and 97E0410 were consistently highly resistant in both screening 

methods, suggesting either an alternative major rust resistance gene or strong quantitative 

resistance. These trials demonstrated that whorl inoculation can be successfully used to screen large 

populations in pot trials, with minimum escapes when conducted under optimal conditions. 

mailto:terence.mhora@sugar.org.za
mailto:stuart.rutherford@sugar.org.za
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3.1 Introduction 
 

Brown rust of sugarcane is a disease capable of inflicting severe yield losses on a harvest, and has 

previously resulted in losses of greater than 50% (Purdy et al., 1983). Losses are dependent on 

cultivar susceptibility and prevailing environmental conditions (Bailey, 2004; Hoy and Hollier, 2009; 

Taylor et al., 1986). Recent losses in the South African sugarcane industry amounted to 26% yield 

reductions in the N29 variety (McFarlane et al., 2006). Research has shown that the application of 

fungicides can be successfully used to mitigate yield losses and increase yields (Hoy and Hollier, 

2009). These yield improvements have however been negated by the cost of fungicides, which 

impact negatively on net profit, resulting in the use of fungicides being suitable only as a contingency 

measure, in the event of an unexpected outbreak (Hoy and Hollier, 2009; Sood et al., 2009; 

Zvoutete, 2006).  

The use of resistant cultivars and good cultural practices was proven to be the most effective means 

of control, not only from a practical aspect, but also from an environmental perspective. Resistant 

cultivars have been used successfully since the global rust outbreak in the late 1970’s and early 80’s, 

resulting in a rust screening step being incorporated into most breeding programs (Purdy et al., 

1983; Sood et al., 2009). These breeding programmes have seen the replacement of rust susceptible 

varieties with resistant ones, resulting in reduced losses from brown rust. 

A variety of techniques are employed in the screening of rust resistance in breeding populations, 

with field trials being more widely used, as the results are a better representation of crop responses 

in the actual conditions the crops will be propagated (Anand et al., 2003; Izanloo et al., 2008; Sood 

et al., 2009). Field analyses also have the advantage of being able to screen for both quantitative 

and/ or qualitative resistance as compared to glasshouse screening which is more inclined towards 

selecting for qualitative resistance (Jeger and Viljanen-Rollinson, 2001; Nair et al., 2005). This has 

been proved in the successful breeding of disease resistant potato cultivars, using field trials to 

identify horizontal/ quantitative resistance (Roane, 1973). Field analyses are normally conducted in 

areas of high disease pressure and infection rates, analysed and used to assign resistance ratings to 

cultivars within breeding populations (Asnaghi et al., 2001; Sood et al., 2007; Tai et al., 1981). Field 

trials however have limitations in that they are affected by a host of variables, of which most are not 

under human control (Izanloo et al., 2008; Sood et al., 2009). Efforts have been made to control 

some of these variables under field conditions, with inoculation of field plants being common 

practice to ensure disease pressure is both present and uniform among test genotypes. Field trials 

have also been carried out in conjunction with glasshouse pot trials to mitigate field trial limitations, 

which include lack of temperature and humidity control (Izanloo et al., 2008). The stringency of the 



47 
 

 

glasshouse method can also have the advantage of ensuring a high throughput (Sood et al., 2009). 

This exercise, though expensive, has not only aided in confirming field data, but has also aided in the 

discovery of other sources of vertical resistance (Hu et al., 1996).  

The stacking of resistance mechanisms has been found to improve the efficacy and durability of 

pathogen resistance in crops (McIntosh, 1997; Parlevliet and Van Ommeren, 1998). The stacking of 

resistance genes confers stronger and more durable resistance when compared to the use of single 

gene resistance mechanisms. Single gene resistance is prone to breakdown due to the presence of 

strong selection pressure in favour of virulent pathotypes, which are characterised by a high genetic 

plasticity (Hu et al., 1996; Keane and Brown, 1997; Ribeiro do Vale et al., 2001).  

Whorl inoculation of sugarcane has recently allowed the reliable, mass screening of large numbers 

of sugarcane cultivars (Sood et al., 2009). This method fares better for sugarcane and for 

inoculations using obligate pathogens such as P. melanocephala, which do not produce large 

quantities of spores (Sood et al., 2009). This characteristic of P. melanocephala eliminates the 

possibility of spraying as an inoculation technique, as large amounts of inoculum would be required 

to spray numerous cultivars that are screened in a cultivar development programme (Sood et al., 

2009). The ability to screen large numbers of genotypes for rust resistance will result in more 

resistant genotypes being available for use in breeding programmes and the subsequent release of 

more rust resistant commercial cultivars. 

To reach a stage where the threat posed by rust is minimal, ideal screening methods must be 

employed to identify resistant genotypes. This ideal method should be one in which the technique 

used gives high throughput, eliminates escapes and ensures an accurate expression of resistance. 

Ultimately, this screening method should give reproducible disease expression when compared to 

known cultivars and must also be able to correlate with field observations under natural conditions 

(Bugdee and Sappenfield, 1967). The need to reach this ideal has increased this past decade, with 

the reminder of how much of  a threat rust still is, after the devastating outbreak experienced on the 

partially rust resistant variety N29. This occurrence has led to the objectives of this study, which aim 

to adopt and optimise a glasshouse pot trial for the mass screening of large populations in the South 

African sugarcane industry. This study also aims to uncover the rust resistance levels present in a 

breeding population (LD2), for use in further studies and subsequent release of resistant varieties. 

These objectives can be reached by the use of leaf whorl inoculations in the screening stages of the 

SASRI breeding program. 
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3.2 Materials and Methods 

 

Two pot whorl inoculation trials were conducted at different time intervals and under different 

weather conditions using an LD2 breeding population consisting of 80 genotypes and three controls, 

namely N12 (resistant), N29 (susceptible) and N39 (intermediate).  

 

3.2.1 Pot trial preparation 

 

Pots with a 20l volume were filled with a mixture of sandy soil and vermiculite, labelled from 1-80 

for each LD2 genotype and three pots labelled N12, N29 and N39 for the controls. The pots were 

placed into steel troughs half filled with water. Five seedlings of each genotype were transplanted 

into their corresponding pot and watered daily using a sprinkler. The speedlings were fertilised with 

100g of 2.3.2 granular fertiliser (Grovida Horticultural products, KZN) once a month for two months 

before inoculation. Temperature ranged between 19- 25.5°C and relative humidity between 61.3- 

73.6% (Fig 3.2.1).  

 

3.2.2 Urediniospore collection and inoculum preparation 

 

Rust infected leaves from the cultivars N29 and N39 were harvested from the field, cut into small 

pieces and the spore infested areas placed into a 500ml SHOTT DURAN® glass bottle containing 300 

ml distilled water and glass beads. The bottle was shook vigorously till the spores were removed 

from the pustules in the leaves, turning the water into a murky brown colour. The leaves were 

removed from the glass bottle and the process repeated using water from the previous extraction. 

The spore extraction water was occasionally topped up to 300 ml with water used to rinse previously 

extracted leaves. The process was repeated till the solution was completely opaque. 

The spore solution was immediately quantified using a Neubauer counting chamber (Marienfield 

Superior, Germany) under a Nikon Eclipse 50i light microscope (Sood et al., 2009). The suspension 

was adjusted to a concentration of 106 spores/ ml and transferred to a glass beaker. Germination 

counts were conducted on 1% (w/v) water agar, prepared using bacteriological agar (Merck, 

Gauteng) in distilled water and set in plastic Petri dishes. Spore suspension (100 µl) was added to the 

agar surface and spread by swirling sterile glass beads inside the petri dishes. Germination tests 

were conducted on five plates and incubated overnight in the dark at 20°C (Braithwaite, 2005). 

Percentage germination was obtained by counting spores under a Nikon Eclipse 50i light microscope 
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and using the formula: Percentage germination = (germinated spores/ total spore count) * 100. 

Spore solutions with at least a 15% germination rate were used for whorl inoculation. 

 

3.2.3 Plant preparation 

 

After four months, the sugarcane had tillered and four stalks were selected per genotype from 

different stools in each pot. Each of the four stalks was tagged using danger tape to monitor the 

inoculated plant. The innermost leaves, including the top visible dewlap (TVD) were cut off with a 

pair of scissors to expose the whorl and aid in identification and monitoring of the leaves in direct 

contact with the rust inoculum. Parafilm (Pechiney plastic packaging, Chicago, IL.) was wrapped 

around each whorl to secure it from inoculum loss and ensure equal exposure to the inoculum.  

 

3.2.4 Screening of LD2 population for rust resistance by leaf whorl inoculation 

 

Spore suspension (1 ml) was dispensed into the leaf whorl of each tagged and secured plant using an 

Eppendorf micropipette. Inoculation was done towards sunset to allow dark incubation of the 

inoculated plants. The parafilm was removed during the first week to allow unobstructed growth of 

the plants. Observations were conducted daily and the recording of observations commenced from 

the first to the sixth week. Disease reactions were rated using lesion development and sporulation 

intensity as observed under a Leica MZ 125 dissecting microscope at 80X magnification. Lesion rating 

was based on a modified 1 to 5 scale (Fig 3.2.2a) as described by Sood et al. (2009), while sporulation 

was based on a 0-3 scale, 0 denoting no sporulation, 1= slight, 2= medium, and 3= heavy sporulation 

(fig 3.3.2b).  An overall rust resistance rating scale was calculated by multiplying the combined 

average lesion ratings by the average sporulation ratings for each individual genotype in both pot 

trials. 
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Fig 3.2.1: Weather data during the rust inoculation trials compared to (A) late 

2010, when a rust epiphytotic broke out in the field. These trials include the first 

pot trial (B) and the second pot trial (C). The weather data consisted of rainfall 

averages, percentage relative humidity taken at 0800hrs (RHA) and at 1400hrs 

(RHP) and daily average temperature (°C).  
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   (a)     (b) 

Fig 3.2.2: Visual rating scale used for rust symptoms after whorl inoculation with P. melanocephala spores. A 

lesion rating scale (fig a) were used together with sporulation ratings (fig b).  

 

3.2.5 Statistical analysis 

 

Prior to analysis, data were tested for normality using the Shapiro-Wilk test. Each trial was analysed 

using the rust ratings within a trial over time, which were then compared to each other using 

analysis of variance (ANOVA) with repeated measures. Analyses were also conducted between the 

two pot whorl inoculation trials using the Restricted Maximum Likelihood (REML) procedure - Meta 

Analysis (Genstat ver.13). Correlations were performed using SAS, to analyse the similarities 

between trials, using Spearman’s correlation coefficient and Pearson’s Product Moment Correlation 

Coefficient (PPMCC). The two methods of calculating correlation were compared to each other to 

ensure validity of the results (Shokes et al., 1996).  
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3.3 Results 

 

The lesion rating scale of 0- 5 (Fig 3.2.2) was used to rate rust resistance in the trials in which 

ratings of 0- 1.5 were considered resistant; 1.51- 2.5 were intermediate and ≥ 2.51 were 

susceptible. Sporulation ratings were used in conjunction with the lesion ratings in which the 

ratings 0-1 were considered resistant, 1-2 intermediate and 2-3 susceptible. The sporulation 

ratings were usefull in the formulation of an overall rust resistance rating (Section 3.2.4). The 

whorl inoculation technique showed the efficiency of the Bru1 gene as a major rust resistance 

gene, as only 8% of the genotypes testing positive for both markers were rated as susceptible 

while 51% were resistant and most of the intermediate rated genotypes narrowly missed the 

upper resistance “cut off” rating of 2.5. The Bru1 negative genotypes however showed a 

greater proportion (25%) of susceptible genotypes. Surprisingly, 42% of the Bru1 negative 

genotypes screened via whorl inoculation demonstrated resistance to brown rust, suggesting 

the presence of strong quantitative resistance, or an alternative major rust resistance gene in 

the population. Among the genotypes with 0.5 of the Bru1 marker (one of either markers), all 

were susceptible, except the genotype 92M1397 which was of intermediate resistance. 

REML variance components analysis showed significant differences when the different rust 

infection trials were compared to each other over time and among genotypes. Significant 

(P<0.001) differences were observed through the first and fourth weeks, with increasing rust 

severity. Visual ratings for the fifth and sixth weeks were not significantly different from week 

four readings. It was decided to use week six data to explain the remaining trials, to ensure 

that no symptoms were missed. ANOVA (repeated measures) showed that the individual trials 

were significantly (P<0.001) different among genotypes and during the different time points 

that visual analyses were carried out.  

The data for both whorl inoculation trials are represented in Figures 3.3.1 and 3.3.2 in which 

the overall rust reaction ratings are represented by black bars, while Bru1 marker presence is 

represented by the grey diamond shapes in the same graphs. The number “1” on the right 

hand y axis represents presence of both markers, implying Bru1 presence, “0.5” represents the 

presence of one or the other of the two markers, a result which was interpreted as not 

confirming Bru1 presence and zero represents absence of both markers, an indication of Bru1 

absence. Overall rust ratings between 0- 3.5 were regarded as resistant, 3.51- 6.5 were 

regarded as intermediate and 6.51- 10 as susceptible. The first pot trial showed 35% of the 

Bru1 negative genotypes to be rust resistant, while 23% were susceptible (fig 3.3.1). The 
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remaining genotypes were of intermediate resistance, with overall rust ratings close to the cut 

off point for resistance, indicating a relatively high level of resistance. These observations 

underlined the particularly virulent conditions experienced during the first pot trial. Of the 

Bru1 positives, 63% were highly resistant and the remaining 37% appeared intermediate, with 

overall ratings of slightly over the 3.5 threshold for resistance. In the second pot trial, only 5% 

of the Bru1 positive genotypes were above the 3.5 rating, with the highest being rated 4.0, half 

a unit outside the resistance range. A high proportion of these intermediate genotypes were 

marginally missing the upper resistance cut off point, yet again demonstrating the Bru1 gene’s 

efficacy. The genotypes 96E0212; 96E0895; 97E0589; 97W0181; 93F0234 and 97E0410 were 

Bru1 negative and consistently resistant in both pot trials. 

 

Fig 3.3.1: Overall rust reaction ratings of the LD2 breeding population in Pot Trial One six weeks after 
whorl inoculation with P. melanocephala spores.   

 

The second pot trial on the same genotypes gave a similar trend for most of the observed 

genotypes, with the Bru1 negative genotypes 96E0212; 96E0895; 97E0589; 97W0181; 93F0234 

and 97E0410 being resistant, as in the first pot trial. The second pot trial showed a higher 

proportion of Bru1 negative resistant genotypes, with 73% being under the 3.5 rating and 12% 
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being susceptible. There was also a significant (P= 0.05) increase in the percentage of resistant 

Bru1 positive genotypes, with 95% being resistant, while the remaining 5 % were all rated 

below 4.0, showing near resistance among the intermediate group. The genotype 91M1610 

was the most susceptible in both pot trials, an observation made previously in the field.  

 

Fig 3.3.2: Overall rust reaction ratings of the LD2 breeding population six weeks after whorl inoculation 
with P. melanocephala spores in a second pot trial.  

 

The differences noted between the pot trials’ overall rust ratings showed that the first pot trial 

had more severe symptoms than the second pot trial. The different weather conditions 

experienced in both trials (Fig 3.2.1) could have resulted in the differences in severity of the 

symptoms. Genotypes in both pot trials generally maintained their resistance rating ranges, 

with genotypes 95E0116, 92L1636 and 96W1340 however being the most divergent between 

both trials with highly contrasting ratings. Between the pot trials, 95% of the Bru1 positive 

genotypes were in similar overall resistance rating groups (groups consisting of resistant, 

intermediate and susceptible); while 5% of similar Bru1 positive genotypes between the pot 

trials were grouped differently due to slight differences of between 0.06-0.5 rust rating units 

between genotypes.  

Comparisons between the Bru1 negative genotypes in both pot trials showed a 66% similarity 

in resistance group between genotypes. Only 2.5% of the genotyes in the entire population 
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gave completely divergent ratings in both trials, with the genotypes 92L1636 and 95E0116 

being resistant in the first pot trial, but being susceptible in the second trial. 

Correlation coefficients were calculated for the different parameters recorded between the 

two pot trials. The Pearson’s product moment correlation coefficient (PPMCC) and the 

Spearman’s rank correlation coefficient were used simultaneously to ascertain the similarity 

between the whorl inoculation data. It was found that in terms of the overall rating scale (fig 

3.3.3) and lesion rating scale (fig 3.3.4), the genotypes gave a similar response (P= 0.05) 

between the pot trials, with both correlation methods showing statistically significant 

correlation coefficients. There were however no significant similarities in genotype response 

when sporulation was used as a parameter and analysed using the Spearman correlation 

coefficient. The PPMCC for sporulation was however significant, with r = 0.03 (Fig 3.3.5).  

 

 

Fig 3.3.3: Correlation between the overall ratings of the first and second pot trials. The letter r 
represents the Pearson product moment correlation coefficient while the letter P denotes the 
probability of the correlation coefficient being significant (P= 0.05). n=80 

 

The overall rating system had a higher and more significant correlation coefficient than the 

other rust symptom parameters measured in the LD2 population using both correlation 
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analysis methods (Fig 3.3.3). The Bru1 negative genotypes however had a slightly more 

significant correlation between the trials when compared to the overall rating correlations, 

with the r for sporulation not being significant. The Bru1 positive genotypes showed symptoms 

of brown rust infection in the form of varying lesion intensity, which was however confounded 

by the absence of heavy sporulation which resulted in them having low overall rust ratings (Fig 

3.3.3). Three of the Bru1 positive genotypes, one in Pot Trial One and two in Pot Trial Two did 

not sporulate at all in any of the replicates, resulting in a sporulation rating of zero, and a 

subsequent overall rating of zero. 

The sporulation correlations were slightly significant when all the LD2 genotypes were 

compared (Fig 3.3.5), likely due to the resistant nature of the Bru1 positive resistant 

genotypes. However, sporulation correlations were not significant for the Bru1 negative 

genotypes (Fig 3.3.8), whereas the lesion ratings were significant (fig 3.3.7). This was probably 

due to different effects weather has on the extent/ severity of rust symptom development.  

 

 

Fig 3.3.4: Correlation between the lesion ratings of the first and second rust screening pot trials. The 
letter r represents the Pearson product moment correlation coefficient while the letter P denotes the 
probability of the correlation coefficient being significant (P= 0.05). n=80. 
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Fig 3.3.5: Correlation between the sporulation ratings of the first and second rust screening pot trials. 
The letter r represents the Pearson product moment correlation coefficient while the letter P denotes 
the probability of the correlation coefficient being significant (P= 0.05). n=80. 
 
 
 
 

 

Fig 3.3.6: Correlation between the overall ratings of the Bru1 negative genotypes in the first and 
second pot trials. The letter r represents the Pearson product moment correlation coefficient while the 
letter P denotes the probability of the correlation coefficient being significant (P= 0.05). n=26. 
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Fig 3.3.7: Correlation between the lesion ratings of the Bru1 negative genotypes in the first and 
second pot trials. The letter r represents the Pearson product moment correlation coefficient while the 
letter P denotes the probability of the correlation coefficient being significant (P= 0.05). n=26. 
 
 
 
 

 

Fig 3.3.8: Correlation between the sporulation ratings of the Bru1 negative genotypes in the first and 
second pot trials. The letter r represents the Pearson product moment correlation coefficient while the 
letter P denotes the probability of the correlation coefficient being significant (P= 0.05). n=26. 
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3.4 Discussion 

 

The whorl inoculation technique demonstrated its effectiveness by its ability to generate 

reproduceable observations in the sugarcane- P. melanocephala interaction in the two pot 

trials. The effectiveness of the whorl innoculation technique has also been observed in some 

sugarcane trials in Florida (Sood et al., 2007; Zhao et al., 2011). Though the observations from 

both pot trials significantly correlated to each other, there were some phenotypic differences 

between similar genotypes, with 25% of the genotypes used in the trials (both Bru1 positive 

and negative) being placed into different resistance groups; albeit due to slight differences in 

rating units. Only 2% of the genotypes were extremely different in terms of resistance groups 

(resistant to susceptible). This observation was due to the influence of genotype by 

environment (GXE) effects on rust development which resulted from the different weather 

conditions experienced during the separate pot inoculation trials (Asnaghi et al., 2001; Hu et 

al., 1996; Tai et al., 1981; Twizeyimana et al., 2007). GXE interaction on rust development was 

further shown by differences in the correlations between the first and second pot trial for all 

the parameters analysed, with the sporulation parameter not being significantly correlated 

when the Bru1 negative genotypes were analysed. Environmental conditions, which are major 

contributing factors in GXE interactions, include temperature, humidity (Fig 3.2.1) and the 

simultaneous presence of other pathogens (Twizeyimana et al., 2007). The differences, mainly 

in the temperature and humidity between the first and second pot trial, were thought to have 

resulted in Pot Trial Two displaying less severe rust infestation than Pot Trial One in terms of 

both lesions and sporulation as shown in Figures 3.3.5 and 3.3.6. The temperatures for Pot 

Trial One were between 19-22°C consistently throughout the trial period; while Pot Trial Two 

had temperatures consistently between 16-19°C, with the temperature below 18°C for 

extended periods. These lower temperatures could have resulted in the rust pathogen being 

less virulent and subsequently resulting in the less severe observations that were made 

(Braithwaite et al., 2005; Sood et al., 2009). Relative humidity was also substantially different 

between the trials, as Pot Trial Two had much lower RHA and RHP, which also fluctuated more 

than in Pot Trial One. 

Some of the varieties consistently maintained a low range of resistance ratings in both pot 

trials, indicating high resistance to rust. This result was coherent with previous results, which 

confirmed the ability of the method to produce consistent, reproducible and reliable results 

(Sood et al., 2007). When weather data was observed, it was found that previously, the most 
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severe infections had occurred when there were relatively low average temperatures observed 

(20⁰C), coupled with high relative humidity as experienced in late 2009, when the most recent 

rust epiphytotic occurred (Fig 3.2.1 A). The weather data from late 2009 was compared to that 

of the different rust trials (Fig 3.2.1 B and C). Brown rust has been observed to germinate and 

develop optimally at temperatures between 19-25°C (Braithwaite, 2005; Purdy et al., 1983; 

Ramouthar, 2009). Temperatures of 19-21°C, coupled with the presence of leaf surface 

wetness have been shown to be crucial for rust development on the first day of inoculation. 

Temperatures can then fluctuate to a maximum of 25°C afterwards, with no positive or 

negative effects on rust development (Braithwaite, 2005). The temperature conditions during 

the pot trials were close to optimal, as temperatures were consistently between the ranges of 

18-20°C, though the average temperature for the second pot trial was below average optimal 

temperature, at 17.9⁰C.  

The whorl inoculation screening results proved that this method can be successfully used to 

screen for rust resistance. Leaf whorl inoculations were conducted in the late evening in all 

trials. This ensured that spore solutions were constantly in contact with the leaf surface in 

favourable conditions for sufficient periods to allow rust germination and establishment (Sood 

et al., 2009). Whorl inoculation has been postulated to work better as a screening method as 

the leaf whorls may act as a barrier to temperature and moisture fluctuations, ensuring 

conditions for spores are conducive for germination and infection (Sood et al., 2009). This 

method resulted in the LD2 population being successfully screened for rust resistance in two 

separate pot trials. A significant number of genotypes in the population which tested resistant 

in one whorl inoculation trial were consistently resistant in the other whorl inoculation trial. 

This confirmed the effectiveness of whorl inoculation as a screening method and its ability to 

reveal susceptible genotypes which otherwise escaped detection under natural infection 

conditions in the field (Sood et al., 2009). The effectiveness of whorl inoculation over other 

methods was also observed in maize inoculated with Cochliobolus heterostrophus Drechsler, 

the causal agent of southern corn leaf blight (Simmons et al., 1998).  

The Bru1 positive genotypes analysed by whorl inoculation in Pot Trial One showed slight 

sporulation in some of the leaf replicates of nearly all the genotypes, while those in Pot Trial 

Two exhibited less severe sporulation and on fewer relicates than in Pot Trial One. Only three 

genotypes in both trials did not sporulate in any of the replicates (94F0663 in Pot trial one, 

96E1663 and 95W1786 in Pot trial Two), resulting in an overall rating of zero which was 



61 
 

 

calculated by multiplying the average lesion rating by the average sporulation rating. The 

genotype 94F0663 had an average overall rating of 0.2, while 96E1663 and 95W1786 were 

both rated 1.6, after averaging the overall ratings from both pot trials. Slight sporulation on 

Bru1 positive genotypes has been previously noted during in vitro analyses on the rust 

resistant cultivar R570, which exhibited lesion formation and sporadic incidence of sporulation 

after inoculation with P. melanocephala (Asnaghi et al., 2001). Similar observations were also 

made in a maize cultivar which is resistant to Cochliobolus heterostrophus Drechsler, the 

causative agent of leaf blight. These resistant maize cultivars are known to produce sterile 

lesions due to the possible activation of defence systems and necrosis of affected areas, in 

what is sometimes referred to as lesion mimicry (Anand et al., 2003; Asher and Thomas, 1987; 

Honée, 1999; Simmons et al., 1998). This highlighted the need to be able to ascertain the 

sporulation or sterility of rust lesions when making observations, as resistant genotypes could 

be discarded or overlooked during screening due to lesion development. The use of the whorl 

inoculation technique will greatly assist in ensuring the release of truly rust resistant varieties 

as such an efficient method will reduce the number of genotypes which escape detection, 

subsequently decreasing the number of situations were resistant varieties become susceptible 

after commercial release (Hoy and Hollier, 2009; McFarlane et al., 2006; Pillay et al., 2005).  

Correlation analysis demonstrated the ability of whorl inoculation to give reasonably 

consistent responses among the LD2 genotypes. This was shown by the consistency of the 

genotypes which maintained rust resistance throughout both trials, even though favourable 

conditions in Pot Trial One resulted in the genotypes exhibiting more severe rust symptoms 

than in Pot Trial Two. The significant correlation between the trials demonstrated that even 

with environmental conditions contributing to differences, the other factors involved such as 

genotype resistance mechanisms, aided in keeping the trials significantly similar. These results 

were useful in that they were able to give an indication of the approximate period and ideal 

conditions in which rust screening tests should be conducted, to ensure the least number of 

escapes, as was observed in Pot Trial One. Climate change has resulted in weather patterns 

becoming less predictable, making timing of trial initiation more difficult, even with the use of 

whorl inoculation. This was highlighted by the relatively low correlation coefficients, though 

significant and the non-significant correlation coefficient when the sporulation parameter was 

used. The coefficients obtained from analysis of these trials showed the variability that arises 

due to different weather conditions (Hu et al., 1996; Nair et al., 2005).  
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Pot trials have the advantage of having the capacity to be conducted under more controlled 

conditions to cater for changes which might occur in outside weather conditions. The ability to 

control conditions is beneficial as it can complement the advantages of whorl inoculation to 

give more consistent observations. This exercise is however costly, as it requires equipment 

such as air conditioners, humidifiers, pots and also additional labour to conduct this type of 

trial. The use of pot trials where optimal infection conditions are prevalent, such as in the first 

pot trial is recommended. Such a setup would greatly reduce the number of escapes by 

encouraging infection under the pathogens optimal conditions, while eliminating the risk that 

arises from conducting trials in the field, where conditions might confound the actual 

resistance status of a particular genotype (Izanloo et al., 2008). 

More rapid detection methods such as marker assisted selection and detached leaf assays 

would also be beneficial in augmenting and improving screening exercises (Braithwaite, 2005; 

Nair et al., 2005; Twizeyimana et al., 2007). The use of other parameters that can be used to 

measure disease response such as photosynthetic capacity, chlorophyll content, and enzyme 

activity can be investigated within these inoculation trials to ascertain their usefulness in 

developing more accurate, robust and time saving screening analyses. 
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Chapter 4 

A PCR diagnostic and AFLP based approach for the identification of Bru1 containing 

genotypes and a possible means of detecting alternative resistance in a sugarcane 

population. 
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Abstract 

 

Puccinia melanocephala, the cause of brown rust of sugarcane, is known to result in losses of 

up to 50% in susceptible varieties.  The use of resistant genotypes is the most effective method 

of control. Production of resistant varieties is however time consuming and labour intensive, 

with breeding programs taking up to 12 years to release a variety. Marker assisted selection 

(MAS) has been successfully used in other crops to substantially reduce cultivar release times, 

increase yields and reduce losses to pests and disease. Amplified fragment length 

polymorphism (AFLP) is a technique which has been used to develop genetic maps which can 

elucidate the genome of an individual and allow for the identification of major genes and 

quantitative trait loci (QTLs). A breeding population (LD2) was characterised using AFLP 

markers and screened for the presence of Bru1, a major rust resistance gene. LD2 was grouped 

according to Bru1 presence or absence and AFLP marker data was correlated to LD2’s rust 

phenotypic responses as the dependent variable. AFLP markers for quantitative resistance/ 

susceptibility and major resistance/ susceptibility were subsequently selected using these 

correlations. Linear regression was conducted to test the significance (P=0.05) of these 

correlations. Genotypes were grouped using scatter analysis and PCA to ascertain the effect of 

these selected markers. Strongly correlating AFLP markers were identified from the correlation 

analyses and managed to significantly segregate the differently rated genotypes. Relationships 

were observed between, and among markers such as the marker pair 82M56 and 18M30 

(r=0.79) which were highly correlated to each other and also to both 53M41 and 34M24S. 

Stepwise multiple linear regression was then used to select markers with which a resistance 

model was created for the different phenotypic measures assessed, these being the lesion 

mailto:terence.mhora@sugar.org.za
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ratings and the overall phenotypic rust ratings. The lesion rating models displayed lower 

standard error of observation (SEE) in a 5 unit lesion rating scale. The overall phenotypic rating 

model comprising eight markers allowed 84% (SEE = 0.9) of the variance to be accounted for in 

the Bru1 negative genotypes, compared to 96.1% (SEE = 0.163) in the lesion rating model. 

Overall, this information suggested the existence of an alternative major rust resistance gene 

and a number of useful QTLs which can be used to strengthen rust resistance in sugarcane. The 

data also showed potential to generate markers for MAS in the breeding program. 

 

4.1 Introduction 

 

Modern cultivars of sugarcane are inter-specific hybrids between S. officinarum and S. 

spontaneum (Cordeiro et al., 2007; Grivet et al., 1996; Pan et al., 2004). Sugarcane has a highly 

complex genome which is a highly polyploid and aneuploid inter specific hybrid, with between 

2n=100 and 2n=130 chromosomes (Aitken et al., 2006; Edmé et al., 2005; Grivet and Arruda, 

2001; Raboin et al., 2006). Most of the chromosomes in the modern cultivars originate from 

the sugar-producing species S. officinarum (2n=80), while 15 to 25% are derived from the wild 

species S. spontaneum (2n=40 to 128) (Asnaghi et al., 2004; Pan et al., 2004). A small 

percentage of the genome has also been contributed from inter-specific recombinations and 

by the other Saccharum species and related grass genera (Hoarau et al., 2001; Le Cunff et al., 

2008; Ming et al., 2006). S. saccharum has contributed to the high sugar content of the 

modern sugarcane cultivars, while S. spontaneum has greatly contributed towards improved 

disease and insect resistance, stubble vigour and longevity of the modern sugarcane cultivar 

(Pan et al., 2004). Recombination between homoeologous chromosomes in the modern 

cultivars has resulted in between 5-10% of the genome in modern cultivars consisting of 

recombinant and/ or translocated chromosomes between S. officinarum and S. spontaneum 

(Cuadrado et al., 2004; Grivet and Arruda, 2001). 

As sugarcane is such an important economic contributor to many countries, it is vital for its 

genome to be better understood, as this would allow modern breeding techniques to be 

utilised, resulting in increased and cost effective cultivar production. Sugarcane’s economically 

important traits have been found to be mostly quantitative in nature. These quantitative traits 

can however be masked by genotype x environment (GxE) interactions, resulting in a large 

number of them being discarded in the early stages of breeding programs (Dreher et al., 2000; 
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Pan et al., 2004; Zhao et al., 2011).The genomic setup of sugarcane is such that many of these 

quantitative trait loci (QTL’s) are clustered in a particular locus, and the effect of an allele is 

only visible when it exceeds the average effect of all other segregating alleles in the 

background (Raboin et al., 2006). A more objective approach to cultivar selection is required, 

and the development of molecular markers has aided in this regard, with several marker types 

being developed for sugarcane breeding since the mid-nineties. These molecular markers 

include random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism 

(RFLP), AFLP and microsatellite markers (Aitken et al., 2006; Asnaghi et al., 2000; da Silva and 

Bressiani, 2005; Daugrois et al., 1996; Pan et al., 2004; Raboin et al., 2006). Such molecular 

markers have greatly aided in the construction of genetic maps, which have elucidated the 

genome of sugarcane, and in the process mapped the position of the major rust resistance 

gene, Bru1 (Asnaghi et al., 2004; Maureira and Osborne, 2004; Raboin et al., 2006). 

AFLP has been successfully used to differentiate sugarcane cultivars and to map the sugarcane 

genome. This method has a major advantage in that it can distinctly differentiate among 

closely related genotypes and individuals (Agarwal et al., 2008; Belaj et al., 2003; Mueller and 

Wolfenbarger, 1999; Powell et al., 1997). AFLP has the advantage of being multiplex, which 

offers the potential to improve the efficiency and throughput of marker data compilation (Vos 

et al., 1995; Vuylsteke et al., 2007).These properties of AFLP have all contributed to the 

breakthroughs in sugarcane genomics, where maps constructed using AFLP have uncovered 

numerous QTLs, including the Bru1 gene (Asnaghi et al., 2000; Hoarau et al., 2001; Le Cunff et 

al., 2008). 

DNA probes derived from these marker technologies have also been used to show the 

presence of synteny clusters between sugarcane and some other members of the 

Andropogoneae tribe (Le Cunff et al., 2008). Syntenic positions in the Andropogoneae 

genomes have been useful in the detection of numerous QTLs and the accurate location of the 

Bru1 gene (Asnaghi et al., 2000; Raboin et al., 2006). The use of AFLP and bulked segregant 

analysis resulted in a more detailed genetic map around Bru1 (Asnaghi et al., 2004). Flanking 

markers located 0.14 and 0.28cM from Bru1 were subsequently identified (Le Cunff et al., 

2008). 

Bru1 has been found to have moderate to high heritability, despite the complexity of the 

sugarcane genome (Asnaghi et al., 200; Asnaghi et al., 2004). Bru1 is stable and durable as it 

has not broken down in over 20 years that the R570 cultivar has been cultivated (Asnaghi et 
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al., 2004). This gene has also been postulated to be a monogenic and dominant allele, as it 

gave a 3:1 segregation ratio of resistance in the selfed progeny of R570 (Asnaghi et al., 2000). 

It is with this background that the objectives of this paper were set. Flanking primers based on 

AFLP markers and mapping data for detecting the Bru1 gene were obtained from CIRAD and 

used to diagnose for Bru1 presence in the LD2 plant breeding population at the South African 

Sugarcane Research Institute. An older population, LD1, was also screened for Bru1 in order to 

get a better idea of the overall incidence of this gene in South African germplasm. The Bru1 

marker data, together with the AFLP data for the LD2 population and pot trial rust resistance 

data were correlated. 

 

4.2 Materials and Methods 

 

4.2.1 DNA extraction 

 

DNA was extracted from the young leaves of each of 80 genotypes from the LD2 breeding 

population, using the Qiagen DNeasy® Plant Mini Kit (Hilden, Germany). The DNA was 

quantified using the NanoDrop ND-1000 spectrophotometer (Thermo Fischer Scientific Inc.) 

and diluted to 25ng/μl. Previously extracted DNA from the LD1 population was also diluted to 

25ng/µl. DNA from both breeding populations was used to perform Bru1 diagnostic 

polymerase chain reaction (PCR), using an optimised CIRAD protocol described in section 4.2.2. 

 

4.2.2 Bru1 PCR1 and PCR2 reagents and cycling conditions 

 

KapaTaq DNA Polymerase (Cape Town, South Africa) was used for all PCR reactions. 

Magnesium chloride (MgCl2), PCR grade water, 10X buffer and deoxyribonucleotide 

triphosphate (dNTP’s) were all supplied in the KAPA Biosystems kit. Primers were designed by 

the French Research Organisation, CIRAD and synthesised by Inqaba Biotech (Costet et al., 

2012). PCR reactions were carried out in an Applied Biosystems PCR System 9700 thermal-

cycler. The CIRAD protocol however had to be optimised and the procedure is described 

below.  
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4.2.2.1 Optimisation of PCR protocol 

 

A Bru1 positive sample, a Bru1 negative sample, a random subsample of the LD2 genotypes 

and a negative control were used in PCR optimisation. The following optimisation steps were 

carried out repeatedly and concurrently with the standard protocol and the results compared: 

 

1.  The number of cycles in the thermal cycling profile was increased from 35 to 40. 

2. The temperature of the denaturation steps was increased to 95°C. 

3.  A touchdown protocol was employed. The maximum temperature used was within 1°C 

of the Tmax of the primers used (60°C for the primer set 9O20-F4 (alias PCR1) and 61°C 

for the primer set R12H16 (alias PCR2)); a stepwise 2°C decrease in temperature was 

employed until the optimum temperature was reached (55°C) for both primers. 

4.  A 2% (v/v) dimethyl sulfoxide (DMSO) was added as an enhancer to the Bru1-PCR2 

master mix. 

The CRAD based protocol for both primer pairs made use of 50 ng of DNA mixed with 1xPCR 

buffer, 2 mM MgCl2, 0.2 mM, dNTP, 0.2 µM forward primer, 0.2 µM reverse primer, 0.5 U DNA 

polymerase in a final volume of 25 µl for the R12H16 primer whereas 9O20-F4 was made up to 

a final volume of 50 µl (Costet et al., 2012). The PCR profile used was: one step of 94 °C for 5 

min followed by 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s.  

 

The protocol was optimised for the prevailing laboratory conditions by using 25 ng of DNA and 

1.6 U of Taq DNA polymerase in both reactions. DMSO (1 µl) was added only to the R12H16 

reaction whereas 2 mM of MgCl2 was excluded from the 9O20-F4 reaction. In addition to these 

changes in the PCR master mix, the thermal cycling conditions were changed to a touchdown 

protocol which was as follows:  95 °C for 5 min followed by 3 two cycle stages with 2 °C 

decrements in the annealing temperature in the cycle 95 °C for 30 s, 61 °C for 30 s, and 72 °C 

for 45 s. This was followed by 34 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s. A 

final elongation step of 72 °C for 8 min was conducted. 

 

The touchdown thermal cycling protocol was subsequently selected for screening the breeding 

populations using both the PCR1 and PCR2 flanking primers. In addition, DMSO (1 µl) was 



71 
 

 

incorporated into the PCR2 master mix as it greatly enhanced the PCR reaction. In the PCR1 

optimisation process, it was found that the touchdown protocol without additional MgCl2 and 

DMSO was the best. This was due to the enhancer interfering with Rsa1 during the 

endonuclease digestion step, whereas the additional MgCl2 had no overall effect on the 

reaction. 

 

4.2.2.2 PCR diagnostics of breeding populations using optimised protocol 

 

Previously extracted DNA from both breeding populations were screened for the presence of 

Bru1 using the optimised PCR protocol described in section 4.2.2.1. PCR reaction products 

(20µl) from each reaction were mixed with 3µl of Fermentas 6X orange DNA loading dye 

(Carlsbad, CA, USA). This mixture was loaded into a 2.5% (w/v) agarose gel containing 3.3 

mg/ml ethidium bromide. A DNA molecular weight ruler (O’GeneRuler™ 100bp DNA Ladder 

Plus, Carlsbad, CA, USA) was also loaded into the gel as a reference for band size identification. 

The gel was electrophoresed in a 1X TBE buffer (54 g/l Tris base, 27.5 g/l boric acid and 0.01 M 

EDTA, pH 8.0) at 80V for three hours. The gel was immediately viewed in the AlphaImager™ 

2200 transilluminator (Alpha Innotech Corporation) at 302nm and the images were captured 

and printed. A 570bp fragment was expected for Bru1 positive samples using the PCR2 primer, 

while amplification of multiple fragments was expected in all samples with the PCR1 primer. 

All the Bru1 diagnostic PCR reactions were carried out at least twice for each genotype in both 

populations analysed. Each gel was scored independently for each time the reaction was 

conducted. 

 

4.2.3 Rsa1 endonuclease digests 

 
PCR products from the PCR1 reaction were cleaved using the Fermentas FastDigest® Rsa1 

endonuclease. A 200 bp digest product was expected for Bru1 positive samples. Twenty 

microliters of the 9O20-F4 PCR products were digested with 2.5 U of Rsa1 (Fermentas), 1x Rsa1 

fast digest buffer and made up to a final volume of 30 µl.  The reaction mix was briefly mixed 

and incubated in a heating block at 37°C for five minutes. The tubes were immediately put on 

ice, after which 3 µl of Fermentas 6X orange DNA loading dye (Carlsbad, CA, USA) was added 
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to each tube and loaded into a 2.5% (w/v) agarose gel containing 3.3 mg/ml of ethidium 

bromide. The gel was electrophoresed in 1X TBE buffer at 80V for three hours. 

 

4.2.4 AFLP markers 

 
AFLP profiles for the LD2 population were obtained from the SASRI Plant Breeding 

Department, who used the Invitrogen™ Life Technologies AFLP kit on genomic DNA extracted 

from the leaves of each genotype. This genetic marker data was obtained using an 8x8 primer 

combination with slight modifications as suggested by Hoarau et al. (2001) and the 

manufacturer’s instructions for γP33 labelling, using the Gibco BRL kit. The individual AFLP 

primers used are shown in Table 4.2.1.  

 

 

Table 4.2.1: AFLP primers used for marker generation. 8 x 8 = 64 combinations were used. 
 

EcoR1 primer Mse1 primer 

Code 
Selective 

nucleotide 
Code Selective nucleotide 

1 AAC 1 CAA 

2 AAG 2 CAC 

3 ACA 3 CAG 

4 ACC 4 CAT 

5 ACG 5 CTA 

6 ACT 6 CTC 

7 AGC 7 CTG 

8 AGG 8 CTT 
 

 

The whole plant inoculation data (lesion and spore ratings) were then converted to overall rust 

ratings for each genotype (Fig 4.2.1). Overall rust ratings ranged between 0 – 10. The range 0- 

3.5 was assigned as resistant; 3.51- 6.5 assigned as intermediate; and 6.51-10 as susceptible. 

The LD2 population was then divided into the Bru1 negative and Bru1 positive groups. The 

AFLP profiling data for the Bru1 negative genotypes were correlated with the respective 

genotypes’ whorl inoculation data using the Pearson product-moment correlation coefficient 

(PPMCC). The inoculation data obtained in chapter three of this thesis were used as the 
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dependant variables. This procedure was conducted so as to reveal markers linked to 

quantitative and possibly qualitative resistance in the Bru1 negative genotypes (Otsen et al., 

1996; Vandenberghe et al., 2003). Regression analyses were carried out on markers of 

potential quantitative trait loci and possible alternative qualitative genes to determine if the 

correlations were significant at a confidence interval of 95%.   

 

Fig 4.2.1: Average overall rust phenotypic ratings of the LD2 breeding population from two pot trials, 
six weeks after whorl inoculation with P. melanocephala spores.   

 

4.2.5 Data analysis 

 
Three marker categories were determined, based on the PPMCC (r) and a significant regression 

P value at a 95% confidence interval. These marker categories were defined as quantitative 

resistance, quantitative susceptibility and qualitative resistance markers. Markers for 

qualitative resistance were determined using a rule which stated that “the selected markers 

should be present in resistant genotypes, be totally absent from the susceptible genotypes and 

be present in at most one of the intermediate genotypes”. Markers for resistance and 

susceptibility were then selected to build a quantitative rust resistance prediction model using 

stepwise multiple linear regression (MLR) analysis, a method which uses a mixture of the 

backward elimination and forward selection (Jansen, 1993; Kao et al., 1999). This prediction 

model subsequently developed was based on the LD2 Bru1 negative genotype regression 
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analyses. Two models were derived using the overall phenotypic ratings and the lesion ratings. 

This was after considering the correlation observed between two whorl inoculation pot trials 

which showed significant correlations for both the lesion and overall phenotypic parameters 

(Chapter Two). The Bru1 positive genotypes were then analysed using these models to assess 

their possible rust responses in the event of the brown rust resistance gene Bru1 being broken 

down. Dendrograms were computed using the Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) clustering method and Euclidean distances used to show the 

relationships among the markers (Zhang et al., 2004). The LD2 population was then analysed 

based on the AFLP marker data generated from each genotype using principle component 

analysis (PCA) using the ADE-4 multivariate analysis software (Thioulouse et al., 1997).  

 

4.3 Results 
 

4.3.1 Bru1 diagnostic PCR 

 
Optimisation of the Bru1 marker diagnostic PCR protocol allowed more accurate and 

consistent results to be obtained, as shown by the differences between the results before and 

after optimisation (Fig 4.3.1). Optimisation allowed the entire LD1 and LD2 populations to be 

screened for the presence of the Bru1 gene. The Bru1 gene analysis gave an overview of the 

presence of the Bru1 gene within the breeding populations in the South African industry (Fig 

4.3.2). The screening results in Chapter Three suggested the possibility of an alternative rust 

resistance gene, as eight of the genotypes from LD2, lacking the Bru1 major rust resistance 

gene were highly resistant and were from the same genealogy. Previously conducted rust 

phenotypic analysis also gave inferences on how much alternative rust resistance mechanisms 

to Bru1 exists in these populations. The results indicate breeding improvements from LD1 to 

LD2 as there are fewer genotypes showing absence of the Bru1 markers in LD2, and a 

subsequent increase in the Bru1 containing genotypes in the LD2 population as compared to 

the LD1 population, which is the predecessor.  
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Fig 4.3.1: PCR diagnostics for the presence of the Bru1 gene using two flanking markers. The markers used 

were: (A) PCR 2 primers, with an expected 570bp product for Bru1 positive genotypes and (B) PCR 1 primers, 

whose PCR product was digested with Rsa1 endonuclease to give a 200bp product for Bru1 positive 

genotypes. Lanes 1 and 20 on both gels (A and B) contained the 100bp ruler while lanes 12 and 13 on both 

gels are examples of Bru1 positive genotypes. Lanes 18 on images A and B are positive controls, while lanes 

19 are negative controls. The gel images A and B represent the optimised PCR reaction, while C and D show 

the inconsistency of the reaction before optimisation. 

 

Fig 4.3.2: Presence and absence of the Bru1 gene in the breeding populations LD1 and LD2. 
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4.3.2 AFLP correlations 

 
Results from correlations conducted using AFLP and whorl inoculation data indicated the 

presence of markers which have the potential to be used as markers of rust resistance, due to 

their high correlation with the phenotypic responses obtained from pot trial whorl inoculation 

(Tables 4.3.1-3). These correlations also allowed the identification of markers for possible 

quantitative and qualitative resistance and susceptibility traits.  The genetic marker and 

phenotype correlations were conducted on the Bru1 negative genotypes in order to obtain 

markers specific to the alternative resistance mechanisms these genotypes possess.  

Markers were associated with possible quantitative resistance based on a significant 

correlation coefficient (r) at a 95% confidence interval (r≥ 0.381) (Table 4.3.1). The rating scale 

used resulted in negative correlations being associated with rust resistance, whereas positive 

correlations were associated with rust susceptibility. The markers 53M31, 34M24S and 

24M17S were all present in the resistant and intermediate genotypes, but were absent in the 

susceptible genotypes. The markers found to be associated with quantitative rust resistance 

were found in the highly resistant Bru1 positive genotypes, whose average rust phenotypic 

ratings were below 2.0, indicating the markers’ association with traits of strong rust resistance. 

The markers 18M30, 87M02, 55M27 and 27M03S were all present in the resistant genotypes 

but were absent in both the intermediate and susceptible genotypes. The Bru1 positive 

genotypes these markers were associated with were also highly resistant, with average 

phenotypic ratings of less than 1.80 and as many as 42 genotypes possessing one of these 

markers (marker 87M02). The marker 55M27 (average rust rating of 1.13) had the lowest 

mean phenotypic rating in the Bru1 positive clones, suggesting its association with a highly 

effective resistance trait which could most likely be an alternative major rust resistance gene, 

as it was absent in both the susceptible and intermediate genotypes. The markers 53M31, 

16M54, 84M04, 46M47, 18M39 and 82M56 also displayed low average phenotypic ratings 

when found in combination with Bru1. The marker 26M07S was found to be present in most of 

the Bru1 negative genotypes, but found in only 4% of the Bru1 positive genotypes. The marker 

24M17S was found to be the marker present in the highest proportion in the Bru1 positive 

genotypes as well as in the resistant Bru1 negative genotypes.   
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Markers associated with a quantitative form of susceptibility were selected based on 

significant correlation coefficients at P> 0.005 (Table 4.3.2). The marker 41M10, associated 

with quantitative susceptibility was present in 75% of the Bru1 positive clones, suggesting that 

this marker was only effective in instances where there were no other forms of resistance. 

41M10 was also found to be present in only one of the Bru1 negative resistant genotypes.  

Markers were also selected as possible indicators of an alternative source of qualitative 

resistance to P. melanocephala. Markers for qualitative resistance were determined using the 

criteria stated in section 4.2.5 (Table 4.3.3). There were 15 markers found to adhere to this 

rule, of which nine of these markers were completely absent in the Intermediate group and 

were present between the range of 17- 50% in the Bru1 positive clones. The intermediate 

clones which contained the selected markers for qualitative resistance showed phenotypic rust 

rating ranges which were in the low to medium severity range, suggesting the usefulness of 

these markers in selecting for highly resistant clones in future breeding programmes. The 

markers 77M02S and 27M25S were however found in intermediate genotypes whose 

resistance ratings were higher, and closer to the susceptibility rating cut off point.  
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Table 4.3.1: AFLP markers associated with quantitative rust resistance.  

Marker 
Pearson 

correlation 
coefficient 

P-value 

Number of Bru1 negatives with marker 
Number of Bru1 

positives with 
marker (out of 54) 

Average 
phenotypic rating  
for Bru1 positives 
with the marker  

Resistant 
(out of 17) 

Intermediate 
(out of 6) 

Susceptible 
(out of 3) 

53M31b -0.651 0.0002 14 2 0 26 1.59 

34M24S -0.651 0.0002 14 2 0 23 1.58 

24M17S -0.625 0.0006 14 2 0 35 1.69 

86M24 -0.538 <0.001 13/16 a 4 0/2 30/48 1.64 

55M39 -0.476 0.0011 14 3 1 30 1.59 

34M01S -0.540 0.0026 11 3 0 22 1.64 

71M13S -0.480 0.0041 15 15 1 32 1.74 

82M56 -0.574 0.0042 13 1 0 24 1.74 

18M30 -0.604 0.0047 13 0/5 0 22/51 1.66 

35M12S -0.556 0.0049 14 3 0 36 1.67 

62M12S -0.613 0.0059 17 6 1 51 1.67 

88M37 -0.544 0.0059 16 4/5 1 42 1.81 

86M04 -0.537 0.0059 16 5 1 28/50 1.61 

26M16S -0.506 0.0059 16 6 1 47 1.67 

18M39 -0.484 0.0059 16 5/5 1 39/51 1.74 

38M01S -0.512 0.0075 17 3 2 6 1.66 

87M02 -0.506 0.0084 9 0 0 42 1.76 

43M58 -0.398 0.0106 8 4 0 33 1.74 

76M07S -0.461 0.013 10/16 3/4 0 29/51 1.78 

16M54 -0.457 0.014 14/16 4 1 47/53 1.70 

55M37 -0.394 0.0154 12 4 1 38 1.72 

18M17 -0.473 0.0169 17 2/5 2 32 1.59 

46M47 -0.382 0.0188 15 4 2 39 1.55 

26M07S -0.451 0.0208 17 3 2 2 1.78 

17M37 -0.458 0.0209 13 2 1 33 1.76 

44M57 -0.402 0.0238 12 4 0 32 1.63 

73M02S -0.451 0.0247 14 4 1 32 1.74 

54M34 -0.433 0.0273 13 2 1 26 1.58 

55M27 -0.426 0.0300 5 0 0 7 1.13 

71M06S -0.478 0.0304 12 1 1 20 1.76 

27M25S -0.418 0.0335 7 1 0 33 1.77 

43M44 -0.393 0.0468 6 0 0 12 1.53 

58M23 -0.409 0.0471 10 1/ 4 0 53 1.84 

27M03S -0.392 0.0474 4 0 0 9 1.53 

84M04 -0.404 0.0493 13 3 1 20/52 1.41 

 
a-
 Missing data: Number of genotypes with the marker/ total number of genotypes scored i.e. 13/16 would 

mean 13 genotypes with the marker recorded out of 16 scored instead of 17 scored.  
b-
 Highlighted markers represent those selected by MLR in the final eight marker models. 
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Table 4.3.2: AFLP markers associated with quantitative rust susceptibility. 

Marker 
Pearson 

correlation 
coefficient 

P-value 

Number of Bru1 negatives with marker Number of Bru1 
positives with 

marker (out of 54) 
Resistant 

(out of 17) 
Intermediate 

(out of 6) 
Susceptible 
(out of 3) 

47M04
b
 0.531 0.0006 5 3 3 17/51 

18M20 0.491 0.0006 6 2/5 3 25/51 

72M16S 0.490 0.0028 3 2 3 21/50 

47M12 0.492 0.0047 7 3 3 24/51 

45M52 0.435 0.0047 4 1 3 20 

43M32 0.552 0.0052 3 2/5 3 16/53 

25M02S 0.474 0.0057 7 3 3 27 

54M03 0.512 0.0075 0 1 2 28 

85M23 0.494 0.0082 3 3 2 12 

11M43 0.443 0.0115 3 2 2 17 

82M52 0.408 0.0149 4 2 3 21 

31M02S 0.468 0.0160 6 4 3 27 

15M55 0.462 0.0175 0 1 1 3/29 

16M30 0.495 0.022 4/14
 a

 1/4 3 11/50 

82M49 0.447 0.0222 1 1 1 37/51 

15M36 0.389 0.0237 8 2 3 24/53 

22M04S 0.406 0.0265 3 2 3 27 

34M21S 0.432 0.0277 7 4 3 47 

41M10 0.474 0.028 6/16 5 2 39/52 

84M29 0.427 0.0294 6 4 2 45 

54M05 0.450 0.0307 2 2 3 27 

56M09 0.423 0.0314 2 2 2 1/53 

47M16 0.389 0.0339 4 2 2 11/52 

58M22 0.431 0.0356 6 2/4 3 17/51 

62M10S 0.413 0.0358 5 5 3 39 

34M16S 0.431 0.0382 3 1 3 10 

 
a-
 Missing data: Number of genotypes with the marker/ total number of genotypes scored i.e. 4/14 would mean 

4 genotypes with the marker recorded out of 14 scored, instead of 17 scored.  
 

b-
 Highlighted markers represent those selected by MLR in the final eight marker models. 
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Table 4.3.3: AFLP markers associated with qualitative rust resistance  

 
               Bru1 negatives                Bru1 positives 

Rating 
Range   

   0- 3.5 3.51- 6.5        6.51- 10 

Marker 

Number of 
resistant 

genotypes 
with marker 
 (out of 17) 

Mean 
phenotypic 
rating for 
resistants 

with marker 

Number of 
intermediate 

genotypes 
with marker 

(out of 6) 

Mean 
phenotypic 
rating for 

Intermediates 
with marker 

Number of  
susceptible 
genotypes 

with marker 
(out of 3) 

Number of 
genotypes 

with marker 
(out of 54) 

18M30
a
 13 2.19 0/5 - 0 22/51 

87M02 9 2.02 0 - 0 27 

67M15S 7 2.69 0 - 0 16 

43M44 6 1.97 0 - 0 12 

45M45 6 2.09 0 - 0 12 

12M58 6 2.18 0 - 0 18 

48M35 6 2.56 0 - 0/2 20/50 

54M08 6 2.67 0 - 0 16 

71M14S 6 2.78 0 - 0 9 

82M56 13 2.18 1 4.93 0 25 

53M09 7/16 2.39 1/5 3.56 0 17/50 

54M15 7 1.98 1 4.93 0 17 

27M25S 7 1.71 1 5.35 0 24 

51M13 6 2.03 1/5 4.93 0 18 

77M02S 6 1.94 1 5.35 0 20 
a-

 Highlighted markers represent those selected by MLR in the final eight marker models. 

 

4.3.3 Multiple Linear Regression Analysis  

 
The regression model selected 50% of the markers from either resistance group in the overall 

phenotypic rating model and stepwise elimination resulted in marker pairs consisting of a 

resistant and susceptibility linked marker being eliminated consecutively during the marker 

reduction step. Stepwise linear regression revealed eight markers which were significantly 

correlated to rust resistance or susceptibility and in turn were highly significant when 

constructing a regression model for rust response. These markers when reduced by backward 

elimination resulted in models being determined for eight markers down to one (Fig 4.3.3). 

Both the lesion and overall models were highly significant, with r2 values ranging between 0.77 

for eight markers and 0.41 for one marker in both the overall phenotypic and lesion rating 

models.  
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Eight markers were able to explain 96.1% of the percentage variance as compared to 38.3% 

when one marker remained after backward elimination in the lesion rating model (Fig 4.3.3), 

whereas in the overall phenotypic rating model, eight markers explained 84% while one 

marker explained 40% of the variance. These results showed that these markers work well in 

combinations, as the percentage variance explained rose from 40% to 61.8% in the overall 

rating model with the addition of the marker 25M02S to 53M31 (fig 4.3.4b). Lesion ratings 

when used to predict models for rust resistance using stepwise MLR generally showed a much 

higher percentage variance accounted for with the two marker model, right up to the eight 

marker model of the phenotypic rating (fig 4.3.3). The lesion rating models also had much 

smaller standard errors of observation (SEE) when compared to the overall phenotypic rating 

models, demonstrating increased accuracy of prediction (fig 4.3.4a-b  and fig 4.3.6 a-b). 

 

 

Fig 4.3.3: The change in percentage variance accounted for in the overall phenotypic rating and lesion 

rating models with an increase in markers obtained by stepwise multiple linear regression analysis.  

 

When the models were used to analyse the Bru1 positive population, with the assumption that 

Bru1 was absent, it was found that the genotypes lacking markers for quantitative/qualitative 

resistance were predicted to be susceptible, according to the models (fig 4.3.5a-b and fig 

4.3.7a-b). According to the different models, the implications are that between 50% and 70% 

of the Bru1 positive genotypes could be potentially susceptible to brown rust in the event of 

the Bru1 gene breaking down (Fig 4.3.5 and Fig 4.3.8). An example of such genotypes were the 

Bru1 positives 94F0663; 97E0406 and 90F0556; which were highly resistant post inoculation, 
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but when analysed using the model, were predicted to be susceptible due to the absence of 

AFLP markers associated with quantitative resistance. These results suggest that in the event 

of the efficacy of the Bru1 resistance gene being lost, such genotypes are potentially highly 

susceptible. The observation that genotype 94F0663 was initially highly resistant when 

compared to the other Bru1 positive genotypes suggests the presence of other factors which 

may not have been accounted for in this model, but contributed in conferring greater 

resistance to this genotype. The genotypes 97E0910, 97E0915 and 95W1023 on the contrary, 

were among the least resistant of the Bru1 positive genotypes when phenotypic ratings were 

conducted. These genotypes were also predicted to be susceptible when fit into the Overall 

rating and lesion rating models consisting of the range from eight to one marker.  

 

The predictions for the Bru1 positive group when using the overall rating model, was not 

significantly correlated to the phenotypic responses in any of the models (Fig 4.3.5a and b), an 

observation also noted in the lesion rating models (Fig 4.3.7a and b). As all the genotypes 

produced lesions, a model was also considered where all the genotypes were incorporated 

into one model, regardless of Bru1 presence. The stepwise MLR was also used, but the models 

showed non significant correlations between the actual lesion ratings and the predicted ratings 

(Fig 4.3.8). The overall phenotypic rating and the lesion rating models consisting of eight 

markers or less had 53M31 as the only common marker between them. Five markers were 

however similar between the models at the 20 marker stage, but were eliminated through 

stepwise MLR at different stages of both the overall and lesion rating models. These markers 

were 12M58, 24M17S, 34M01S, 45M52 and 53M31 (Table 4.3.4). The marker 53M31 had the 

highest r for the quantitative resistance linked markers. 45M52 was the only quantitative 

susceptibility marker while the rest were qualitative resistance linked markers.  

 

Table 4.3.4: Common markers between stepwise multiple linear regression derived models for the 

overall rating and for the lesion rating. 

Marker name Overall rating analysis r Lesion rating analysis r 

53M31 -0.65 -0.55 

12M58 

24M17S 

-0.34 

-0.63 

-0.38 

-0.55 

34M01S -0.54 -0.465 

45M52 0.435 0.462 
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4.3.4 Cluster Analysis  

 
The dendrogram topology revealed marker relationships relative to each other and grouped 

the markers according to how closely they gave similar rust infection responses in the LD2 

population. Cluster analysis is a common exploratory classification method employed in most 

diversity analyses. It is known to be particularly useful in discovering natural groupings among 

entries or items without assumption on the number of groups or group structure (Arro, 2005). 

Markers were initially selected using the PPMCC and grouped into their respective categories. 

Stepwise multiple linear regression was then used to select markers from these combined 

categories, which were then highlighted using coloured blocks according to their resistance 

group (Fig 4.3.9). Overall, the markers selected by the model were found to be distributed 

evenly along the length of the dendrogram. The markers were generally clustered according to 

their resistance groups, with the resistance markers 24M17S and 35M12S being clustered 

together.  

 

The segregating units in the dendrograms were percentage similarity, an example being shown 

in Table 4.3.5 (part of a table containing similarity data shown by the dendrograms). The 

markers 45M52 and 34M16S were very similar to each other (91%), but significantly different 

from 85M23 (5% similar to 45M52 and 9% to 34M16S). This trend is shown on the 

dendrogram, where the markers are found in different clusters, suggesting markers of 

different susceptibility genes.   
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Fig 4.3.4a: Model derived from stepwise multiple linear regression of AFLP markers with the overall phenotypic rating of the Bru1 negative LD2 genotypes after 
inoculation with a P. melanocephala spore suspension (n=26). 
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Fig 4.3.4b: Model derived from stepwise multiple linear regression of AFLP markers with the overall phenotypic rating of the Bru1 negative LD2 genotypes after 
inoculation with a P. melanocephala spore suspension (n=26). 
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Fig 4.3.5a: Model of predicted overall resistance ratings of the Bru1 positive genotypes using formulae derived from stepwise linear multiple regression analyses 
of the Bru1 negative genotypes (n=54). The black dotted line represents the cut off point for resistance. 
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Fig 4.3.5b: Model of predicted overall resistance ratings of the Bru1 positive genotypes using formulae derived from stepwise linear multiple regression analyses 
of the Bru1 negative genotypes (n=54). The black dotted line represents the cut off point for resistance. 
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Fig 4.3.6a: Model derived from stepwise multiple linear regression of AFLP markers with the lesion ratings of the Bru1 negative LD2 genotypes after inoculation 

with a P. melanocephala spore suspension (n=26). 
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Fig 4.3.6b: Model derived from stepwise multiple linear regression of AFLP markers with the overall phenotypic response of the Bru1 negative LD2 genotypes 

after inoculation with a P. melanocephala spore suspension (n=26). 
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Fig 4.3.7a: Model of predicted lesion ratings of the Bru1 positive genotypes using formulae derived from stepwise linear multiple regression analyses of the Bru1 
negative genotypes (n=54). 
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Fig 4.3.7b: Model of predicted lesion ratings of the Bru1 positive genotypes using formulae derived from stepwise linear multiple regression analyses of the Bru1 
negative genotypes (n=54). 
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Fig 4.3.8: Model of predicted lesion ratings versus observed lesion ratings of all the LD2 genotypes using formulae derived from stepwise linear multiple 

regression analyses (n=80).  
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Fig 4.3.9: Dendrogram topology showing marker relationships for the quantitative marker sets. The 

markers in yellow (       ) denote markers for quantitative susceptibility; the markers in light blue                 

(  ) represent markers of quantitative resistance; and the makers in dark blue (          ) are 

possible markers of qualitative resistance.  
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Table 4.3.5: Percentage similarity between markers of quantitative susceptibility 

 

Marker 45M52 25M02S 85M23 11M43 82M52 22M04S 54M05 34M16S 

45M52 100        

25M02S 66 100       

85M23 5 24 100      

11M43 13 19 63 100 
 

   

82M52 25 22 43 78 100    

22M04S 85 71 0 3 12 100   

54M05 32 30 45 75 92 21 100 
 

34M16S 91 63 9 20 33 76 40 100 

 

4.4 Discussion 

 
The optimised Bru1 marker analysis showed its ability to accurately and consistently diagnose 

for the presence of Bru1. Genotypes found to be positive for the presence the Bru1 gene had 

correspondingly low overall rust lesion and sporulation ratings (an average of 1.67 ranging 

from 0.24 to 3.56) after inoculation. These observations were expected, as genotypes 

possessing Bru1 were anticipated to be resistant to rust. PPMCC correlations revealed markers 

associated with rust resistance among the rust resistant genotypes diagnosed as being Bru1 

negative. These markers, when analysed using PCA, showed their ability to discriminate the 

genotypes into distinct groups (Bru1 negative resistant, Bru1 positive resistant, susceptible and 

intermediate). Most importantly, these markers showed their ability to discriminate all the 

resistant groups from the susceptible group. Some of the markers selected for resistance were 

found in the intermediate and sometimes even in the susceptible groups. This phenomenon 

was explained by Zhang et al. (2004), who found that important traits related to habitat 

adaptation in sugarcane, exhibited enormous variability in sugarcane germplasm and were also 

shown to be both complex and quantitatively inherited. 

 

MLR analysis using the lesion response of LD2 after rust inoculation resulted in an eight marker 

model which accounted for 96.1% of the variation within the Bru1 negative genotypes, as 

compared to the overall rating model which had 84% of the variance explained. The number of 

markers in the model was subsequently reduced to one marker using stepwise MLR, with all 

models having relatively high and significant r2 values and an F. probability of <0.001. The five 
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maker lesion rating model was a strong candidate for further use, as it had fewer markers and 

still accounted for 88.7% of the variance and a standard error of observation of only 0.28. The 

overall phenotypic rating MLR model had lower percentage variance accounted for, relative to 

the lesion rating models. The overall rating model also had greater standard errors of 

observation compared to the lesion rating model, suggesting reduced accuracy of prediction. 

These observations resulted in the lesion rating model being considered as a strong candidate 

for further use due to its more accurate prediction power. 

 

These observations underlined the fact that it is critical when using data modelling techniques, 

to select an optimum number of variables. This prevents redundancy in the X-variables and 

over fitting of the model, which often results in poor prediction results (Butterfield, 2007). The 

selection of fewer markers bears the risk of under fitting the model and subsequently a large 

number of samples must be used to develop the model in order to be able to obtain better 

predictions (Kao et al., 1999; Naes et al., 2002). This particular study was characterised by such 

limitations, as the available Bru1 negative genotypes from the LD2 population were only 26. 

These 26 genotypes selected for modelling also had an uneven distribution within the 

resistance groups, resulting in a skewed distribution in which there were only three susceptible 

genotypes and six intermediate genotypes. The limited sample number and skewed ratings of 

the available population resulted in the need to obtain additional genotypes from the variety 

collection, so as to not only increase the sample size, but to even out the distribution of 

resistance groups and obtain a wider spread of resistance ratings. 

 

The models determined by the stepwise MLR were then used to predict the possible resistance 

status of the Bru1 positive genotypes, with the assumption that Bru1 major rust resistance 

gene breaks down. The model showed that 50- 70% of the Bru1 positive genotypes did not 

possess sufficient markers associated with resistance to be able to maintain resistance in the 

event of Bru1 breakdown. This demonstrated the usefulness of using the model to select 

genotypes containing these resistance conferring traits for rust resistance, in addition to Bru1.  

This would enable the development of even more resistant genotypes, as it has been 

previously documented that pyramiding of resistance elements often results in more durable 

and effective resistance (Keane and Brown, 1997; Parlevliet and Van Ommeren, 1988; Poland 

et al., 2011). Other studies have also shown that such marker based models could result in the 

discovery of new gene combinations for specific traits (Butterfield, 2007).  
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Markers selected as those possibly conferring quantitative resistance were loosely grouped 

into three sets of distinctly different markers, which suggested the presence of more than one 

form of quantitative resistance in the Bru1 negative resistant group. These markers displayed 

the potential to be useful, if they are found to indeed tag different resistance conferring traits. 

Identification of such markers could allow these traits to be more easily identified and 

subsequently be incorporated into genotypes for use in the breeding program, as it has been 

demonstrated that combining vertical and horizontal resistance can confer greater resistance 

to disease (Keane and Brown, 1997; Lagat et al., 2008; Parlevliet and Van Ommeren, 1988; 

Poland et al., 2011). The markers 34M24S, 53M31, 82M56 and 18M30 had a high r when 

correlated to the phenotypic ratings and were also aliased to each other during MLR. These 

markers were also grouped together after cluster analysis, with the markers 53M31 and 

34M24S showing the closest similarity on the dendrogram, suggesting that they could tag the 

same trait. In addition, these makers, when found in Bru1 positive genotypes, gave the lower 

range of phenotypic ratings, displaying the associated gene’s ability to confer additional 

resistance to brown rust. This effect of stacking resistance genes in order to obtain a stronger 

and more durable resistance against disease has been successfully used in other crops such as 

maize and continued research will be able to confirm these observations in sugarcane (Lagat et 

al., 2008; McIntosh, 1997; Parlevliet and Van Ommeren, 1988; Poland et al., 2011).  

 

Markers associated with quantitative susceptibility suggested that the traits they tag are 

recessive, as their presence in the resistant groups did not necessarily result in susceptibility of 

these genotypes to brown rust. These markers were however occasionally found associated 

with the more susceptible of the intermediate genotypes. This suggested that the genes 

tagged by these markers could result in susceptibility in the absence of rust resistance traits 

found in the resistant groups. PCA analysis showed that these markers segregate the 

genotypes such that the susceptible group is located further from the other three groups, 

which are situated more closely together (Fig 4.4.1). This is an undesirable effect as this could 

result in the less resistant intermediate genotypes not being selected out, resulting in 

retention of susceptibility traits in these genotypes. The observation with the markers of 

quantitative susceptibility was in contrast with that of the resistance markers, where there was 

a wider spread in the groups, showing the variability of genotype resistance.  

 



97 
 

 

Markers associated with qualitative resistance were found to be associated with genotypes of 

stronger resistance when found in the intermediate group. The markers 43M44 and 57M38 

were the most closely correlated (r= 0.4), with an 86% similarity to each other. This effect 

indicates two possibilities, which are that the two may be separate groups which correspond 

to one linkage group or haplotype due to sharing a probe (Butterfield 2007; Barnes and Bester, 

2000); or that they are part of a single cosegregation group which is likely to be revealed with 

the use of sufficient markers in a mapping exercise (Barnes and Bester, 2000).  

 

 

Fig 4.4.1: Principle component analysis of the quantitative resistance marker set relative to the overall 

phenotypic responses after whorl inoculation. The numbers in the PCA represent: 1= Bru1 negative 

resistant; 2= Bru1 negative susceptible; 3= Bru1 negative Intermediate; 4= Bru1 positive. 

 

Most markers for susceptibility to rust were found to be highly correlated to each other, 

suggesting that the markers could all tag a similar trait. This would imply that only one or a few 

genes are responsible for susceptibility. The markers 44M38, 45M42 and 45M57, interestingly 

had a correlation coefficient of one among each other and were not present in any of the 

other genotypes outside the susceptible group of LD2. This observation led to the conclusion 

that these markers tag a gene which is responsible for rust susceptibility and will not be found 

when major rust resistance genes are present. These makers also suggested that the gene 
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tagged by these markers could be found on the same locus as the major resistance gene/s, and 

could probably be a recessive gene. An alternative explanation to the presence of many of 

these related markers is the anonymity of AFLP markers (Butterfield, 2007).  

 

AFLP markers are “anonymous in nature, making it difficult to postulate any potential allelic 

relationships between these markers without a genetic map through which homology 

relationships between linkage groups can be identified (Butterfield, 2007).” This is more 

difficult as some of these markers may represent allelic diversity at the same locus, a 

phenomenon arising from genetic duplication and recombination which is a known occurrence 

in modern sugarcane cultivars (Butterfield, 2007; Hoarau et al., 2001; Le Cunff et al., 2008). 

The need to map the populations in order to arrive at markers which will be useful in breeding 

programs is further highlighted by the fact that the presence of one resistance allele can be 

nullified by the presence of multiple copies of susceptibility alleles (Butterfield, 2007). A 

genetic map is a solution to this situation, and allows for relationships between markers to be 

taken into account, increasing the efficiency and reliability of using these markers for marker 

selected breeding (Butterfield, 2007; McIntyre et al., 2005). 

 

Results from these analyses demonstrated and confirmed the ability of AFLP to effectively 

evaluate a population with precision (Garcia et al., 2004). The successful implementation of 

MAS can result in the reduction of cultivar release cycles and the realisation of other breeding 

objectives (Dreher et al., 2000; Garcia et al., 2004). Increasing the number of genotypes and 

ensuring equal representation of the resistance groups within the model described will refine 

it and increase its accuracy (Butterfield, 2007), as was shown by this study which used a 

skewed population consisting of a limited number of genotypes for modelling.  
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Rust resistance screening methods: Detached leaf assays as a means of selecting for 

resistance to Puccinia melanocephala. 
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Abstract 

 

Resistant cultivars are the most efficient method of mitigating losses resulting from pests and 

disease. Breeding programs are tailored to improve the release of cultivars with high 

resistance and high yield potential, among other desirable agronomic traits. Screening 

methods which are cost effective, have high throughput and save time are desirable in the 

sugarcane industry, whose average release time for a cultivar is 12 years. The detached leaf 

assay (DLA) was used to screen for rust resistance in selected genotypes from the LD2 breeding 

population. Selected genotypes were grouped as Bru1 negative resistant, Bru1 positive, Bru1 

negative susceptible and Bru1 negative intermediate. DLA conducted on water agar (large 

square plates and Petri dishes) and Magenta® plant culture boxes containing water were 

compared. Leaves were inoculated with Puccinia melanocephala. Visual analyses were 

conducted through counting of lesions and sporulation frequency and intensity. Chlorophyll 

fluorescence (3000µmol m2/s light intensity) and soil plant analysis development (SPAD) were 

measured. These parameters ascertained the effects of rust on chlorophyll a activity and 

chlorophyll content, with a view to using them as an early diagnostic tool. Visual analysis 

proved to be a reliable screening method, as it clearly differentiated the resistant and 

susceptible genotypes within 12 days. Greater lesion formation and sporulation were observed 

in the susceptible group. Effects of rust on chlorophyll indicated differing rust reactions from 

the different resistance groups of plants between four to five days. Overall, chlorophyll related 

observations showed a decrease in the performance index (PIABS) and chlorophyll content over 

time, a common characteristic of detached leaves.  The differences however were more 

pronounced in inoculated leaves when compared to un-inoculated leaves. The PIABS in the un-

inoculated region of inoculated leaves also showed greater activity relative to that of the 

mailto:terence.mhora@sugar.org.za
mailto:stuart.rutherford@sugar.org.za
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control, suggesting a compensatory effect to counter the effect of rust. These observations 

resulted in resistance groups being differentiated within four days as compared to the 12 

required when conducting visual analysis. The chlorophyll analyses also resulted in screening 

being conducted before the onset of contamination related leaf necrosis and death as 

compared to the visual analysis method. These studies showed that DLA can be used as a rapid 

screening tool in a breeding program.  

 

5.1 Introduction 

 
Breeding commercial cultivars with desirable agronomic traits and durable resistance to 

disease has been a practice on-going for over a century (Bremer, 1961). Cultivars with disease 

resistance properties are the most effective in terms of disease control and have become an 

integral component of modern agriculture (Asnaghi et al., 2004; Bailey, 2004; Bürling et al., 

2011). These cultivars not only control disease effectively, but reduce carbon footprints and 

potential environmental issues associated with fungicides.  

 

Disease resistance genes have been sourced from the wild species of Saccharum, such as S. 

spontaneum and S. robustum (Baucum et al., 2009; James, 2004; Kelly et al., 2009). Resistance 

traits have been traditionally identified for integration into the genome of offspring from 

crosses by field screening techniques which often take several years to conduct and require 

high financial input (Bürling et al., 2011; Purdy et al., 1983; Sood et al., 2009). These screening 

techniques can be highly subjective and have the disadvantage of being seasonal, being limited 

by uncontrollable variables such as the environment and being affected by the availability and 

uniform exposure to inoculum in instances where natural infection is relied upon (Bürling et 

al., 2011; Sood et al., 2009; Twizeyimana et al., 2007). 

 

The need to develop efficient, objective and rapid methods of disease screening with results 

comparable to field screening techniques is crucial in plant breeding (Bürling et al., 2011; 

Purdy et al., 1983). Assays conducted on detached leaves have been considered such a method 

and have been successfully exploited for their ability to be used in a diagnostic manner in 

screening plant genotypes against a variety of fungi (Browne and Cooke, 2005; Jackson et al., 

2008; Pettitt et al., 2011; Twizeyimana and Hartman, 2010). The use of screening methods 
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which employ plant-pathogen interactions have proved to be invaluable as they can more 

accurately expose the resistance status of genotypes selected by marker assisted selecton, as 

some resistance genes may be controlled by epistatic interactions which might be unrelated to 

the target gene (Le Cunff et al., 2008).  

A fundamental part in conducting DLAs is the maintenance of leaf health, which can be 

attained by the use of plant growth regulators (Jackson et al., 2008). This is an important step, 

as maintenance of healthy leaves allows differentiation to be made between infected and 

uninfected leaves. The maintenance of healthy leaves in a DLA allows the identification of 

susceptible genotypes and non-virulent pathogen species, as the effect of scenescence on 

detached leaves is negated, giving rise to the ability to use negative controls without risk of 

factoring in scenescence related leaf death to screening results (Twizeyimana et al., 2007). 

Maintenance of healthy leaves can be attained through the use of a variety of plant growth 

regulators, which include benzylaminopurine (BAP), benzimidazole and the cytokinin kinetin 

(Jackson et al., 2008; Twizeyimana et al., 2007). Fungicides and lactic acid have also been 

commonly used in media amendments to protect detached leaves from saprophytic fungi and 

bacteria (Twizeyimana et al., 2007). 

Visual analysis is commonly used to make observations on disease resistance when using DLAs 

and parameters such as lesion coverage and sporulation have been used to determine cultivar 

resistance and pathogen virulence (Jackson et al., 2008; Twizeyimana et al., 2007; 

Twizeyimana and Hartman, 2010). Other parameters such as chlorophyll fluorescence have 

been widely studied in the detection of fungal pathogen resistance in host plants. The method 

has also been used to discriminate between genotypes differing in pathogen resistance 

(Bürling et al., 2011; Rolfe and Scholes, 2010; Scholes and Rolfe, 2009). 

The use of photochemical efficiency as a means to diagnose disease or pest effects on crop 

yield is one which has the potential not only to predict and understand yield responses to 

disease, but also to act in a diagnostic manner (Lopes and Berger, 2001). This is made possible 

by the effects of pests and pathogens on crop carbon flow processes which can be summarised 

as being the effects on radiation interception and radiation use efficiency (Lopes and Berger, 

2001; Zhao et al., 2011). This makes the quantification of these effects a possible tool in the 

prediction of yield reductions when coupled to crop growth simulators (Lopes and Berger, 

2001). Chlorophyll fluorescence has the ability to detect slight changes in the photosynthetic 

metabolism of a plant which can be brought about by infection of plant tissues by a pathogen 
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(Rolfe and Scholes, 2010). This capability has been demonstrated by the early detection of 

changes in the photosynthetic profile of an infected plant even before visible symptoms have 

been observed (Rolfe and Scholes, 2010; Scholes and Rolfe, 2009).     

The use of chlorophyll fluorescence has been employed to screen for disease resistance in a 

variety of plants, including sugarcane (Rolfe and Scholes, 2010; Zhao et al., 2011). Chlorophyll 

fluorescence analyses the response of the PSII reaction center in a dark adapted leaf by 

illuminating it with a saturated light pulse (Strauss et al., 2007; Van Heerden et al., 2003). The 

intensity of chlorophyll a fluorescence undergoes characteristic changes, known as the Kautsky 

effect. The fast rise of the Kautsky transient represents the primary reactions of 

photosynthesis, which subsequently provides information on the photochemical activity of PSII 

(Strauss et al., 2007). The JIP test is then applied to the fluorescence data, deriving parameters 

such as the performance index (PIABS). The PIABS is a multiparametric expression that combines 

the three main functional steps of photosynthetic activity by a PSII Reaction Center complex 

(Strauss et al., 2007; van Heerden et al., 2003).  

The relationship between disease severity and yield loss is also greatly influenced by Genotype 

X Environment (GxE) factors (Lopes and Berger, 2001). This makes in vitro screening 

techniques valuable as susceptible genotypes can be identified before being released, avoiding 

situations where varieties can suddenly be found to be susceptible. GxE interactions also need 

to be strongly considered as they play a major role in rust resistance (Ribeiro do Vale et al., 

2001). Studies have shown that genotypes found to be susceptible or of intermediate 

resistance when using screening techniques outside the field such as glasshouse trials and in 

vitro analyses could well be resistant in the field (Asnaghi et al., 2001; Dixon et al., 2002). 

Research has frequently demonstrated how certain crops can be disease resistant in an 

environment and then become susceptible in a different one as was shown by Dixon et al. 

(2002) on the differing responses of cassava to different pests and diseases under different 

environmental conditions. 

With this background, the objectives of the study in this paper were conceived. An in vitro 

method of detecting resistance of sugarcane cultivars to P. melanocephala was formulated 

around the commonly used visual analysis. The visual results were then compared to an 

analysis of the response of the PSII reaction center (PIABS) of infected leaves from a breeding 

population so as to ascertain the best approach towards screening for rust resistance using the 

DLA. Chlorophyll content of the leaves was also measured using the soil plant analysis 
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development (SPAD) meter to relate chlorophyll content of infected leaves to their 

photochemical efficiency (PIABS). These two parameters were measured so as to better 

understand the effects P. melanocephala has on infected leaves and to more rapidly screen 

genotypes relative to the visual analysis of the detached leaf assay. Another objective of this 

paper was to ascertain if these methods could be used in a high throughput screening system. 

 

5.2 Materials and Methods 

 
A detached leaf assay was conducted using the method described in Mhora et al. (2011). 

Genotypes from a Linkage Disequilibrium breeding population at the South African Sugarcane 

Research Institution (SASRI) called LD2 were selected based on previous resistance information 

obtained from whorl inoculation, Bru1 marker data and AFLP correlation. These selected 

genotypes were put through the screening technique to ascertain the effectiveness of the 

previously developed assay. 

 

5.2.1  Germination and pathogenicity tests on P. melanocephala urediniospores 

 

5.2.1.1 Spore germination tests 

 
Optimal spore germination conditions were assessed by comparing the effect of 1-nonanol 

(SIGMA-ALDRICH®, Steinheim, Germany) to water on P. melanocephala spores (Braithwaite, 

2005; French and Gallimore, 1972; Zhao et al., 2011). Concentrations of 0.001% (v/v), 0.002% 

(v/v) and 0.005% (v/v) of 1-nonanol were compared to water, to determine the best 

germination conditions for the spores. P. melanocephala spores were harvested from N29 

leaves obtained from the field. Spores on the leaves were suspended in a 100ml SHOTT 

DURAN® glass bottle containing 50ml each of the different concentrations of sterile 1-nonanol 

in its different concentrations and glass beads. In a separate glass bottle, spores were 

suspended using 50ml of sterile water and glass beads. Germination counts were conducted 

on 1% (w/v) water agar prepared using bacteriological agar (Merck, Gauteng) in distilled water 

and set in plastic Petri dishes. Spore suspension (100 µl) was added to the agar surface and 

spread using glass beads. The germination tests were conducted on 5 plates per spore 

concentration and incubated overnight in the dark at 20°C (Braithwaite, 2005). Germination 
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counts were conducted under a Nikon Eclipse 50i light microscope by counting the spores and 

obtaining a percentage germination using the formula: Percentage germination = (germinated 

spores/ total spore count) * 100. 

Prior to analysis, the data were subjected to a normality test using the Shapiro-Wilk test. The 

data were found to be normal and were subsequently subjected to an analysis of variance test 

(ANOVA) followed by the Holme Sidak post-hoc test. 

 

5.2.1.2 Pathogenicity tests 

 
Infectivity tests were conducted using P. melanocephala spores suspended in 0.001% (v/v) 1-

nonanol and in water as described in section 5.2.1.1. Leaves from the mid-section of the top 

visible dewlap (TVD) of the rust susceptible variety N29 were cut into 3-4cm long pieces and 

placed, abaxial side up onto 1% (w/v) water agar containing 0.33 g/l pentachloronitrobenzene 

(PCNB). Inoculum (100 µl) was applied to the abaxial side of the leaves according to the 

corresponding treatment. The leaves were dark incubated at 20°C overnight before being 

transferred to an 18-hour photoperiod room where they were monitored daily for symptoms 

of rust infection till the third week. Lesion and spore formation on N29 leaf pieces were 

recorded and compared between the two treatments. Statistical analysis was conducted using 

the two sample T-test.  

 

5.2.3 Inoculum preparation for DLA 

 
Distilled water was chosen as the sole constituent of the spore suspension medium. Inoculum 

was prepared in 300ml of distilled water using the protocol described in 5.2.1.1. The spore 

solution was immediately quantified using a Neubauer counting chamber (Marienfield 

superior, Germany) under a Nikon Eclipse 50i light microscope (Sood et al., 2009). The solution 

was adjusted to a concentration of 106 spores/ ml and transferred to a glass beaker. 

Germination counts were conducted on 1% (w/v) water agar as described in section 5.2.1.1. 
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5.2.4 Media preparation 
 

Media preparation was conducted using a combination of plant growth regulators, fungicides 

and lactic acid as described in Mhora et al. (2011). Media containing water and PCNB (SIGMA-

ALDRICH®, Steinheim, Germany) in 1% (w/v) agar was selected as the best media for 

maintaining leaf health. This media was subsequently used in all DLAs. The media was 

autoclaved at 121°C for 20 minutes and poured into plates, where it was allowed to set before 

being stored at 4°C. Sterile water was used to maintain the leaves in Magenta® plant culture 

boxes using the alternative method (Braithwaite, 2005).  

 

5.2.5 Leaf material and inoculation 

 
Twelve genotypes were selected from LD2, planted and maintained as described in Chapter 2. 

Leaves from the TVD were harvested from each genotype after three months. The mid 

sections of the leaves were cut into 6cm pieces, retaining the midrib and then dark 

acclimatised for an hour. The leaves were then attached onto a humidifier consisting of a 

pipette tip box containing distilled water using a rubber band; and inoculated with 100µl of 

inoculum. The leaves were incubated overnight at 20°C in a tip box humidifier (Fig 5.3.3a), 

placed into their respective media and maintained in an 18-hour photoperiod room. The 

experiment was conducted using square plates and Petri dishes containing water agar and 

PCNB and also in Magenta® plant culture boxes containing water. Three leaves were 

inoculated in each Magenta® box and square plate experiment, while two leaves were used as 

negative controls. Nine leaves were used in the Petri dish experiment for inoculation and nine 

as a negative control. 

 

5.2.6 Chlorophyll fluorescence and (SPAD) measurements 

 
Cut leaves which had been dark acclimatised for an hour as described in section 5.2.5 were 

measured for chlorophyll fluorescence and chlorophyll content prior to inoculation. 

Chlorophyll a fluorescence measurements were taken from each dark-acclimatised leaf cutting 

using a Hansatech Handy Pea fluorescence meter at a light intensity of 3000 μmol m2/s. Two 

readings were taken from the leaf area directly in contact with the inoculum, while another 
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two were taken from an area which did not get into contact with the inoculum, making a total 

of four readings on each leaf. Chlorophyll content was also measured immediately after the 

fluorescence readings, using a SPAD chlorophyll meter (Konica Minolta, USA) (Zhao et al., 

2011). Four readings were taken on each leaf, in a similar way to the fluorescence readings. 

The leaves were then embedded into their respective treatments, incubated overnight in the 

dark at 20°C, and then transferred to an 18-hour photoperiod growth room. Chlorophyll a 

fluorescence and SPAD measurements were carried out every 24 hours for eight days. The 

chlorophyll fluorescence data was processed using the JIP test (Strasser et al., 2000), which led 

to the calculation of the PIABS, which is regarded as a reliable indicator of electron transport 

efficiency and photosynthetic capacity during stress (Strauss et al., 2007). ΔPIABS was calculated 

using the formula: ΔPIABS = PIABS (day 0) - PIABS (day x).  

 

5.2.7 Visual analysis 

 
The leaves were monitored daily for 15 days to observe any visual rust symptoms (lesions and 

spores). The lesions on each leaf cutting were counted and assessed for sporulation. The 

degree of sporulation on each lesion was assessed using the sporulation rating scale shown in 

fig 5.2.1. Lesion ratings were also carried out using the rating scale described in Table 5.2.1 for 

the larger leaf pieces used in the method by Braithwaite (2005). 

 

Table 5.2.1: A lesion rating scale used to separate differing rust infection symptoms 

Rating scale Symptoms 

0 no lesions/ chlorotic flecks 

1 one to a few lesions 

2 more than a few lesions 

3 numerous lesions 

4 numerous coalescing lesions 

5 severe symptoms with numerous coalescing lesions and necrosis 
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Fig 5.2.1: The sporulation rating scale used in the visual assessment of sporulating lesions. No 
sporulation= 0, slight sporulation= 1, medium sporulation= 2 and heavy sporulation= 3. (Pictures by T. 
T. Mhora). 

 

5.2.8 Data analysis 

 
Data were analysed using GenStat v.13.2 (United Kingdom) at a 95% confidence interval. The 

student T-test was used to analyse the germination rates of the different treatments used to 

stimulate spore germination. Restricted Maximum Likelihood (REML) variance component 

analysis and analysis of variance (ANOVA) were used to analyse the data obtained from visual 

analysis. Tests on the data were then followed by the Holm-Sidak post-hoc analysis. Regression 

analysis and REML analysis were also used to analyse the SPAD and chlorophyll fluorescence 

measurements. 
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5.3 Results 

 

5.3.1 Germination tests 

 
Germination of P. melanocephala spores was significantly (P=0.004) stimulated by the addition 

of 0.001% (v/v) 1-nonanol. Increasing the concentration of 1-nonanol however reduced the 

rate of spore germination (Fig 5.3.1). 

 

Fig 5.3.1: Germination rates using different concentrations of 1-nonanol against water. The average 
percentage of germinated spores with the same letter is not significantly different.   

 

5.3.2 Pathogenicity tests 

 
There was a significant (P=0.004) decrease in the pathogenicity of P. melanocephala on N29 

when 1-nonanol was added as a germination stimulant when compared to spores suspended 

solely in distilled water (Table 5.3.1). Addition of 0.001% (v/v) 1-nonanol resulted in fewer 

lesions developing, coupled with reduced sporulation intensity (Fig 5.3.2). This response was 

contrary to expected results, as germination of P. melanocephala was significantly (P= 0.004) 

higher when 1-nonanol was added (Fig 5.3.2A compared to 5.3.2B). Spores were subsequently 

suspended in water for all the following DLAs, based on this analysis. 
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Table 5.3.1: Infection responses of sugarcane variety N29, when inoculated with P. melanocephala 

spores suspended in water and in 0.001% 1-nonanol. 

Treatment 
Average lesion 

number 

Leaves with 

lesions 

Average number of sporulating lesions 

Heavy medium low nil 

Water 29.22 9 29.22 0 0 0 

1-nonanol 6.36 10
a
 0 0.36 0.82 5.18 

a
- Ten out of 11 inoculated leaves were used for data collection due to the death of one replicate. 

 

 

Fig 5.3.2: Germination and pathogenicity tests on P. melanocephala in 0.001% (v/v) 1-nonanol 
compared to water. Germination is greater (A) when spores are suspended in 1-nonanol, but reduced 
pathogenicity is observed when compared to water suspended spores (B), where germination might be 
low, but infection is more severe, resulting in heavy sporulation. Infection severity is shown by arrows 
pointing out infected leaves from each treatment at X40 magnification (Pictures by T. T. Mhora). 

 

1 mm 1 mm 

100 µm 100 µm 

5 cm 
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5.3.3 Visual analysis 

 
The detached leaf assay was optimised using a variety of methods to ascertain a method which 

would work best for the samples used in this trial. Overall ratings for the DLA were calculated 

by multiplying the average lesion ratings by the average sporulation ratings for each leaf in a 

specific genotype. These overall ratings were then correlated to the pot trial phenotypic 

ratings using the Pearsons product moment correlation coefficient to determine the accuracy 

of the DLA relative to the pot trials. The method development demonstrated different 

strengths and weaknesses associated with each method adapted. The method of Braithwaite 

(2005) allowed easier handling of leaf material after inoculation as compared to the methods 

using agar as a support medium for the detached leaves (Fig 5.3.4 and 5.3.5). The methods 

using agar (Jackson et al., 2008; Twizeyimana et al., 2007) were more difficult to handle and 

were prone to contamination and secondary infections after continued handling when 

conducting chlorophyll fluorescence and chlorophyll content measurements (Fig 5.3.4). 

Contamination in the agar based techniques could have contributed to this method being less 

correlated to the overall ratings obtained through pot trials. The method of Braithwaite (2005) 

produced results which were highly correlated to those of corresponding pot trial whorl 

inoculation results, highlighting its superiority over the agar based methods (fig 5.3.6 and 

5.3.7).   

 

Fig 5.3.3a: Tip box humidifier containing distilled water. This apparatus was used for the overnight 
incubation of inoculated detached leaves as described by Braithwaite (2005) (Picture by T. T. Mhora).  
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Fig 5.3.3b: A magenta® box containing an inoculated detached leaf. This process was conducted for all 
the genotypes screened using this method (Picture by T. T. Mhora). 
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Fig 5.3.4: Detached leaf assay (DLA) conducted in square plates containing 1% (w/v) agar using the method of Jackson et al., (2008). The numbering on the labels 
represents the coding each genotype was given prior to planting out into pots. These codes were used to label the leaves used in the DLA, with “1I” representing a 
leaf from the clone coded one and inoculated, while “1 Control” represents a leaf from clone one without inoculum.  

5 cm 
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Fig 5.3.5: Detached leaves 15 days post-inoculation, using the method by Braithwaite (2005). P. 
melanocephala spore solution was applied centrally on the abaxial side of detached leaves. Selected 
genotypes were selected from the LD2 population based on their resistance to P. melanocephala. 
Genotype 93M0004 (20) was in the resistant Bru1 negative group, 93E0888 (16) in the Bru1 negative 
Intermediate group, 91M1610 (4) in the Bru1 negative susceptible group and 96E0524 (55) in the 
resistant Bru1 positive group. 

 

The detached leaf assay showed it could discriminate between resistant and susceptible 

genotypes. Results from the selected LD2 genotypes could be related to the controls 

conducted using cultivars of known rust resistance (N12 and N29), validating the method’s 

ability to classify varieties according to known rust ratings (Table 5.3.2.). The controls 

demonstrated a trend where lesion formation was significantly (P<0.001) higher in the 

susceptible cultivars as compared to the resistant ones (Tables 5.3.2 and 5.3.3). REML analysis, 

followed by the Holm-Sidak post hoc analysis was able to group the genotypes used in the 

assay. Groups using this method were identical to those based on previous pot trial and 

molecular characterisation.  

5 cm 
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Table 5.3.2: Detached leaf assay response of selected LD2 clones compared to two sugarcane varieties 

with a known rust response in a Petri dish contained experiment. 

Sugarcane Clone 

Overall resistance 

rating by whorl 

inoculation 

Average number 

of lesions formed 

per leaf 
e
 

Average 

lesion rating 

Leaves with 

lesion 

formation 

Average 

Sporulation 

rating 

N12 (Resistant)
a
  1a (±0.53) 1 3 0 

N29 (Susceptible)
a
  17.67bc (±2.27) 4 9 3 

Bru1 –ve Resistant       

93M0004 1.42 0a 0 0/9 - 

96E0212 1.06 1.44a (±0.73) 1 4/9 0 

97E0589 1.11 0.67a (±0.33) 1 4/9
 b

 0 

Bru1 +ve Resistant       

89L0591 0.67 2a (±0.667) 1 6/9 
b
 1 

93W0879 1.73 5.89ab (±1.39) 3 8/9
 b

 1 

96E0524 1.26 2.78a (±0.98) 2 8/9 0 

Bru1 –ve Intermediate       

93E0888 1.83 21.11cd (±0.26) 4 9 1 

96E0391 3.30 4.33a (±0.60) 3 9 0 

96W1340 3.46 3.44a (±1.33) 3 5/9
b
 1 

Bru1 –ve Susceptible       

91M1610 9.17 31.44e (±3.88) 5 9 2.2 

95W1865 6.14 18.36c (±3.34) 4 8/8 
c
 2 

97W0568 7.22 29.83de (±3.73) 5 6/6 
d
 3 

a
- Released varieties with known rust ratings used as controls 

b
- Some inoculated leaves had severe chlorosis in inoculated areas, but no lesion formation 

c
- One leaf completely dried out due to severe necrosis. Severe necrosis also occurred around the 

inoculated parts of three leaves, but did not result in complete leaf death. 
d
- Three leaves completely dried out due to severe necrosis and no results could be taken from these 

e
- Means for all leaves from the replicated assays. Values in brackets are standard errors. Average mean 

figures followed by the same letter are not significantly different (95% confidence interval) by REML 
variance components analysis. Lesion numbers were used to calculate the lesion ratings.  

 

Correlation coefficient analysis was conducted between the DLA methods used and the overall 

rust ratings obtained from whorl inoculation (Figures 5.3.6 and 5.3.7). Both methods showed 

their ability to reliably match the pot whorl inoculations with significant r2 values, though the 

method of Braithwaite (2005) had a higher and more significant r2 than the Petri dish DLA.  
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Fig 5.3.6: Correlation coefficient analysis between the overall ratings from the Petri Dish contained 
detached leaf assay and the Pot whorl inoculation trial (n= 12). 

 

Sporulation also proved to be greater and more intense in the susceptible genotypes. 

Genotype 97W0568 showed to be highly susceptible, with over 50% of the lesions formed 

sporulating heavily (Table 5.3.2). Genotype 93W0879, in the Bru1 positive resistant group 

showed to be the least resistant of these genotypes, displaying the most severe lesion 

symptoms along with slight sporulation on one of the nine inoculated leaves.  

Results for the method adapted from Braithwaite (2005) gave similar inferences as the method 

of Twizeyimana et al. (2007). In the method of Braithwaite (2005) however, the plants 

exhibited restricted sporulation in the resistant genotypes, which was present in Twizeyimana 

et al.’s (2007) method, where slight sporulation was observed in the Bru1 positive resistant 

genotypes 89L0591 and 93W0879. ANOVA was carried out on the data and the Holm-Sidak 

post-hoc test was used to group the genotypes. The groupings were able to distinguish among 

the resistant, intermediate and susceptible groups. The genotype 95W1865 was consistently 

rated as being susceptible but close to the intermediate group in both the visual rating systems 

used.  
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Table 5.3.3: Detached leaf assay response of selected LD2 genotypes using the method of Braithwaite 

(2005). 

Sugarcane Clone 
Overall resistance rating 

by whorl inoculation 

Average lesion rating 

per genotype 
a
 

Average sporulation 

rating 

Bru1 –ve Resistant      

93M0004  1.42 1.25ab (±0.25) 0 

96E0212  1.06 1a (0) 0 

97E0589  1.11 1.75ab (±0.48) 0 

Bru1 +ve Resistant      

89L0591 0.67 1.25ab (±0.25) 0 

93W0879  1.73 2.5ab (±0.5) 0 

96E0524  1.26 1a (±0.41) 0 

Bru1 –ve Intermediate      

93E0888  1.83 2.25ab (±0.48) 1.25 

96E0391  3.30 2.5ab (±0.289) 1 

96W1340  3.46 2.25ab (±0.48) 1 

Bru1 –ve Susceptible      

91M1610  9.17 4.75c (±0.25) 2.5 

95W1865  6.14 3bc (±0.41) 2 

97W0568  7.22 4.5c (±0.29) 3 

a.
 The average lesion ratings of all leaves from each replicated assay. Values in brackets are standard errors. Mean 

figures followed by the same letter are not significantly different (at a 95% confidence interval) by ANOVA. 
 

 

Overall DLA ratings were calculated by multiplying the average lesion ratings of the detached 

leaves by the average sporulation ratings in the tables 5.3.2 and 5.3.3. The method of 

Twizeyimana et al. (2007) utilised smaller leaf pieces, and resulted in lesions being counted 

more easily. The method of Braithwaite (2005) however utilised larger leaves and the lesion 

ratings described in table 5.2.1 were used to descibe these lesions, as lesions tended to be too 

numerous to count in the susceptible genotypes.  

 



121 
 

 

 

Fig 5.3.7: Correlation coefficient analysis between the overall ratings from the detached leaf assay 
adopted from Braithwaite (2005) and the Pot whorl inoculation trial (n=12). 

 

5.3.4 Chlorophyll Analyses 

 
ANOVA with repeated measures, followed by the Holm-Sidak post hoc analysis showed that 

there were significant differences in PIABS among the genotypes used. The performance index 

declined steadily over the eight days that measurements were taken (Fig 5.3.8). The decline in 

PIABS was more marked in the first three days, but stabilised, as was shown by a less steep 

gradient in the graphs (Figure 5.3.8). PIABS measurements for all but two controls in the “Bru1 

negative susceptible” and “Bru1 negative intermediate” groups showed significant changes in 

all the resistance groups and treatments at day one compared to day zero. When the 

inoculated treatments were compared to the un-inoculated treatments, it was found that the 

Bru1 negative resistant group was significantly different from the other groups at day one, 

with a positive difference in %∆PIABS. The Bru1 positive resistant group showed a highly 

significant difference (29%) at day four as compared to the other groups (9%-12%). This trend 

indicated that the Bru1 positive genotypes can be identified by larger differences between the 

inoculated leaves and the un-inoculated leaves relative to the other resistance groups (Fig 

5.3.9). The general trend showed that the method was able to discriminate between 

susceptible and resistant genotypes from day two, with the largest difference being observed 
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at day four (Fig 5.3.9). The Bru1 negative groups also showed that despite inoculation with P. 

melanocephala, these genotypes maintain significantly lower ΔPIABS relative to the controls 

when compared to the other resistance groups. The differences in %ΔPIABS between the 

inoculated and the un-inoculated regions of inoculated leaves showed that they could 

discriminate not only between Bru1 groups, but also between the resistant and the susceptible 

genotypes in the differently grouped Bru1 negative genotypes. The Bru1 negative resistant and 

intermediate groups were shown to be significantly different from the susceptible group 

between days two and four.  

 

The differences between %ΔPIABS measurements in inoculated areas and the un-inoculated 

areas of inoculated leaves showed that there were significant differences between the 

resistant groups and the susceptible and intermediate groups on the first day (Fig 5.3.10). The 

%ΔPIABS generally maintained this trend throughout the measurement period, though the Bru1 

negative resistant group significantly rose above the Bru1 positive resistant group after day 

five. The sharp decrease observed in the ΔPIABS of the inoculated regions of the sugarcane 

leaves relative to the un-inoculated regions of the same leaf showed that the photosynthetic 

mechanism in the susceptible genotypes is more incapacitated by P. melanocephala infection 

relative to the other resistant groups.  
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Fig 5.3.8: Decrease in %∆PIABS for each treatment among the four classifications assigned as Bru1 negative resistant, Bru1 positive, Bru1 Susceptible and Bru1 
Intermediate. Chlorophyll fluorescence measurements were taken for each classification from leaves which had been inoculated; un-inoculated control and controls 
in which measurements were taken from the un-inoculated area of an inoculated leaf. PIABS was calculated using the JIP test (Strasser et al., 2000).  
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Fig 5.3.9: Differences in %Δ PIABS when leaves inoculated with P. melanocephala spores were 
compared to un-inoculated leaves over a period of eight days. 

 

An apparent recovery of the inoculated areas to a point where the %∆PIABS of both the 

inoculated leaf and the un-inoculated area of the same leaf are almost equal over eight days is 

observed in the resistant leaves (Fig 5.3.10). This observation is however contrary in the Bru1 

negative susceptible and intermediate leaves as the difference in %∆PIABS does not decrease 

significantly. This observation suggests that there is a large compensatory effect characterised 

by an increase in PIABS in the uninoculated regions.  

 

The susceptible and intermediate genotypes showed an overall increase in the %Δ PIABS when 

the un-inoculated regions of the leaf were compared to the un-inoculated control. This 

observation suggested that the leaf compensates for rust infection by increasing its 

photosynthetic capacity in the uninfected areas. The Bru1 positive resistant group however 

showed a general decline, suggesting that there is no major difference between the two leaf 

areas being compared. 



125 
 

 

 

Fig 5.3.10: Differences in %Δ PIABS when the inoculated areas on leaves were compared to the un-
inoculated area on the same leaf over a period of eight days. 

The Bru1 negative resistant genotypes however suggested that the genotypes employ a 

compensatory method upon infection, but after four days, begins to return to normal as the 

rust infection is controlled in the affected areas (Figure 5.3.11). This observation would explain 

why the susceptible and intermediate genotypes maintain their elevated PIABS in the un-

infected areas, as the leaf does not recover or control the infection in the inoculated areas. 

The steady decline however in the %∆PIABS difference in the Bru1 positive genotypes suggests 

that the diseased leaves are less photosynthetically capable than the healthier controls. 

The susceptible and intermediate groups were significantly similar to each other from the 

second day, suggesting that this method of analysing the data would result in a screening 

protocol which would eliminate the susceptible and intermediate genotypes as they give 

similar responses. This characteristic of the screening technique is however not desired as the 

intermediate genotypes are required to contribute the possible quantitative resistance genes 

which confer partial resistance to rust. Quantitative genes are important sources of resistance 

as they are non-host specific, and when stacked, result in a more durable form of resistance 

(Parlevliet and van Ommeren 1988; Poland et al., 2011). 
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Fig 5.3.11: Differences in %Δ PIABS when the un-inoculated areas of inoculated leaves were compared 
to un-inoculated leaves over a period of eight days. 

 

The SPAD index data showed a steady decline in chlorophyll content with time for all the 

groups (Fig 5.3.12). This observation was synonymous with that made in detached leaves, 

which tend to have a rapid decrease in chlorophyll content over time (Falqueto et al., 2010). 

There were distinct differences among the groups, as the Bru1 negative susceptible group 

showed differences between day three and six; and in the un-inoculated control leaves, which 

had significantly (P<0.001) higher SPAD indices than both the inoculated leaf and the un-

inoculated area within an inoculated leaf. The other groups’ treatments were however not 

significantly different from each other at the different time points at which the measurements 

were taken. SPAD index measurements were expectedly different for each genotype, and as 

such, trends within treatments were considered in response to trends within a specific 

classification or group (Loh et al., 2002). 
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Fig 5.3.12: Differences in the SPAD Indices among the four classifications assigned as Bru1 negative resistant, Bru1 positive, Bru1 Susceptible and Bru1 
Intermediate. SPAD measurements were taken for each classification from leaves which had been inoculated, un-inoculated control and controls in which SPAD 
index measurements were taken from the un-inoculated area of an inoculated leaf.  
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5.4  Discussion 

 

The effect of 1-nonanol on the germination of Puccinia melanocephala spores showed increased 

germination at 0.001% (v/v), when compared to spores suspended in water. Increased 

concentrations of 1-nonanol (0.002- 0.005% v/v) decreased the germination of the spores, an effect 

which was previously reported by French and Gallimore (1972). Previous research had shown 1-

nonanol to have its optimal stimulatory effects on spore germination at concentrations of between 

0.025- 0.0025% (v/v), with concentrations on either side of this range being relatively lower (French 

and Gallimore, 1972). The use of 1-nonanol as a spore germination stimulator was found to 

negatively affect the pathogenicity of P. melanocephala spores in the DLA conducted in this 

research. The optimal concentration of 1-nonanol (0.001% (v/v)) when used to suspend the spores, 

resulted in noticeably reduced pathogenicity of the spores on the leaves of the rust susceptible 

sugarcane variety N29. The treated inoculum resulted in only 21% of the lesions observed, when 

water was used to suspend the rust spores. 1-nonanol treated spores also resulted in less severe 

sporulation occurring on the leaf surface. These results were contrary to those obtained by 

Braithwaite (2005) when conducting detached leaf assays using P. kuehnii spores. The results were 

also contrary to those obtained by French and Gallimore (1972) who found that pustule formation 

was greatly increased in the presence of nonanol in a dew chamber. It is possible that 1-nonanol 

could have inhibited the growth of P. melanocephala, an observation previously made on Sclerotinia 

sclerotiorum whose mycelial growth was completely inhibited by nonanol (Liu et al., 2008). The 

detached leaf assay was subsequently carried out using water suspended spores. 

The preliminary methods used to conduct the detached leaf assay were those of Braithwaite (2005), 

Jackson et al. (2008) and Twizeyimana et al. (2007). The method of Twizeyimana et al. (2007) proved 

to be useful in providing a wider range of the visual data, as compared to the other methods. This 

method was also more reliable in terms of cost efficiency, as it facilitated high throughput and 

allowed large sample sizes to be processed at a minimal cost. This was in comparison to the other 

methods which required more costly inputs as the square plates and Magenta® plant culture boxes 

were more costly than the Petri dishes. The method however had the disadvantage of not permitting 

easy handling of the leaves for the measurement of chlorophyll fluorescence and SPAD indices. 

Excessive handling in the confined Petri dishes frequently resulted in contamination, which resulted 

in misdiagnosis and rust unrelated necrosis of the detached leaves. This observation was similar to 

one made by Asnaghi et al. (2001) on sugarcane leaves maintained on agar, also in a detached leaf 

assay for rust resistance. This method proved that it could be useful as a diagnostic tool and also as a 

method of propagating pure P. melanocephala inoculum.  
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The production of inoculum would assist with the screening process, which only normally takes place 

in peak rust periods to be conducted all year round (Purdy et al., 1983; Twizeyimana et al., 2007). 

This method could also greatly reduce the time taken to release varieties, as the screening step 

could then be conducted at any time of the year, compared to the yearly seasonal approach. The 

ability of the DLA to use only leaf material in rust screening would prevent the use of whole plants 

which can be subsequently used in bulking up and in other analyses conducted in the sugarcane 

breeding cycle. This method would also allow saving field space which would have otherwise been 

used for this analysis to be used for other breeding assessments, reducing cultivar release time by at 

least one year. 

The method adopted from Jackson et al. (2008) proved to be the least efficient of the methods 

attempted for visual analysis, as contamination was prevalent. This was particularly so because agar 

is prone to the development of microorganisms, more so when the chlorophyll fluorescence and 

SPAD index measurements were attempted on the detached leaves (Asnaghi et al., 2001). This 

method was also less descriptive when compared to the method by Braithwaite (2005) and 

Twizeyimana et al. (2007) (Figures 5.3.4 and 5.3.5). The method was also more costly and labour 

intensive as square plates were washed and sterilised, in an attempt to lower costs.  

The method of Braithwaite (2005) proved to be the most accommodating, in terms of allowing 

multiple analyses to be conducted on the leaves. Chlorophyll fluorescence and SPAD indices could be 

easily measured, as the leaves were maintained upright in water, whose level was at the base of the 

detached leaf. Visual analysis was simultaneously conducted on the leaves, producing results which 

discriminated among the 12 test genotypes, similarly to the adopted method used by Twizeyimana 

et al. (2007). Visual analysis of the DLA confirmed previous research, which demonstrated the 

method’s ability to screen plants for disease resistance. This technique has also been found to be 

suitable for genetic studies on host resistance (Asnaghi et al., 2001; Jackson et al., 2008). 

Observations from these assays showed that even resistant varieties developed lesions in response 

to rust infection. These lesions were however much smaller, did not coalesce and did not sporulate, 

as was observed in the susceptible genotypes. This observation was consistent with that of Asnaghi 

et al. (2001), who found that sporulation did not occur when various inoculation methods were 

conducted on the rust resistant variety R570. Sporulation intensity proved to be an important factor 

when differentiating between susceptible and resistant genotypes. This parameter complemented 

lesion numbers, and allowed the assay to be more stringent, allowing greater differentiation and 

separation of the differently grouped genotypes.  
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The chlorophyll fluorescence data indicated a decrease in the photosynthetic activity of all the leaf 

treatments over time. These observations were supported by the gradually decreasing SPAD indices, 

which indicated a decrease in chlorophyll content over time in the detached leaves. Studies have 

shown that senescence of leaves, a frequent occurrence in detached leaf assays is characterised by 

discoloration which results in disassembly of the photosynthetic apparatus and subsequent 

photosynthetic capacity (Falqueto et al., 2010). These results showed that when the leaves were 

detached, they had a significant decrease in PIABS in the first day for all treatments and classifications 

(Fig 5.3.8), as a result of the onset of induced senescence after detachment.  The leaves stabilised 

after day one and the reduction in photosynthetic activity began to decrease in a more gradual 

manner than observed on the first day. This was thought to be due to the leaves acclimatising to the 

artificial environment.  

Inoculated leaves showed a greater decrease in PIABS when compared to the other treatments 

(Figure 5.3.8). This decrease was consistent with findings on tomato plants infected with Fusarium 

(Wagner et al., 2006), and also to that observed in rust infected bean leaves, which showed reduced 

net photosynthetic rates (Lopes and Berger, 2001). The reduced PIABS in infected leaves was possibly 

due to P. melanocephala competing for nitrogen reserves, which would normally be utilised in the 

synthesis of ribulose 1, 5- biphosphate carboxylase (Rubisco) (Daley, 1995). The difference between 

the control and the inoculated leaves was much higher in the Bru1 positive group, suggesting that 

the Bru1 gene results in leaves accumulating resources, which would otherwise be used for 

photosynthetic activity and instead use them to prevent rust infection. The inoculated leaf showed 

significant changes on day four as compared to day 1 (day when leaves had acclimatised). These 

results were synonymous with the observations of Sotomayor et al. (1983), who revealed that 

infection hyphae form 36 hours after infection and that infection terminates before day seven in 

resistant plants. Non-host interaction studies using P. melanocephala showed that substomatal 

vesicles deteriorate, leading to a termination of the fungal infection in wheat (Sotomayor et al., 

1983). Infection hyphae however, are subsequently formed in oat leaves, forming haustorial mother 

cells, after which the infection process is stopped (Sotomayor et al., 1983). The response in oats 

results in chlorosis and a golden fluorescence, synonymous to that observed in the Bru1 positive 

genotypes. Chlorophyll fluorescence results also showed that chlorophyll a activity in these leaves 

was drastically reduced at this period (3 - 4 days), which is synonymous with defensive mechanisms 

terminating rust infection. The Bru1 negative resistant classification had results which indicated that 

its defence mechanisms do not result in drastic changes in the photosynthetic activity of the plant, 

suggesting an alternative resistance mechanism (Rolfe and Scholes, 2010). 
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The difference between the inoculated and un-inoculated regions on the same leaf showed 

significant differences in the susceptible and intermediate groups, as compared to the resistant 

groups (Figure 5.3.10). These significantly (P< 0.001) greater differences in %∆PIABS, compared to the 

resistant genotypes suggested that the susceptible leaves were compensating for the infection by 

elevating their photochemical activity in the healthier plant tissues. These results tallied with 

observations made by Rolfe and Scholes (2010), that high peak fluorescence was observed five days 

after inoculation. Healthy areas of infected leaves have been shown to exhibit high increases in 

fluorescence, which quenches rapidly, while infected areas show reduced fluorescence and little 

quenching, as shown in the leaves of Nicotiana tabacum exposed to the Tobacco Mosaic Virus. 

These observations were consistent for all the sugarcane groups infected with P. melanocephala. 

The resistant groups however began to show signs of recovery which were characterised by 

reduction in the differences in %∆PIABS until both regions were almost equal The recovery of the 

inoculated areas was observed to begin between the fourth and fifth day post inoculation a period 

synonymous with the termination or control of the pathogen in a resistant sugarcane-rust 

interaction (Sotomayor et al., 1983). This elimination or control would result in the release of 

resources which were being shared between the host and the pathogen, allowing cellular activity to 

resume normally (Daley, 1995). This is in contrast with the susceptible leaves where the infection 

persists and there is only a slight recovery of the leaves.  

The almost similar differences in PIABS between the infected areas and uninfected areas within a 

sugarcane leaf and the difference between the infected and the uni-inoculated leaves in both 

resistant groups, suggested a localised response from the sugarcane leaves to P. melanocephala 

infection. These localised infection reactions suggested the presence of resistance mechanisms 

frequently associated with hypersensitive responses and the restriction of fungal growth (Bürling et 

al., 2011; Sotomayor et al., 1983).  These responses did not significantly affect the chlorophyll 

content of the leaves, as compared to the susceptible group, where there was a decrease between 

day 3-5, which again coincided with the period where infection hyphae and mother haustorial cells 

are known to freely develop in susceptible varieties, resulting in necrosis and lesion formation of 

infected tissues (Sotomayor et al., 1983). This response was similar to previously obtained results, 

where P. kuehnii resulted in significant changes in chlorophyll content in sugarcane and also to 

results obtained when Vigna sesquipedalis was infected with Colletotrichum lindemuthianum and 

the chlorophyll content of the leaves began falling at the onset of necrosis (Lopez and Berger 2000; 

Zhao et al., 2011). On the contrary, studies on wheat showed no difference in the chlorophyll 

content of wheat genotypes which were resistant and susceptible to spot blotch (Rosyara et al., 

2007).  
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The chlorophyll fluorescence results demonstrated the wide spectrum of host responses expected in 

the different resistant groups of genotypes, ranging from complete resistance to susceptibility. The 

observations from this study confirmed that the assessment of photosynthetic metabolism in 

different disease resistance groups expresses different patterns for various host- pathogen 

interactions, such as the rust- sugarcane interaction (Bürling et al., 2011; Lopes and Berger, 2000; 

Rolfe and Scholes, 2010). This information is however crucial, in that it can provide important 

information on host- pathogen interactions, such as the timing and location of pathogen 

development, while also providing an insight into the underlying mechanisms of host resistance or 

susceptibility. This technique can assist in developing methods of preventing damaging losses 

experienced due to rust. This can also be useful as it can show the presence of different forms of 

resistance mechanisms, aiding in crop improvement programmes as these traits can be added to 

already existing ones (Rolfe and Scholes, 2010). 

The detached leaf assay confirmed its ability to differentiate between resistant and susceptible 

cultivars consistently, with results comparable to field assessments and resistance ratings assigned 

by the South African Sugarcane Research Institute (SASRI). The results obtained in this paper 

demonstrated that chlorophyll fluorescence could be used for more rapid screening for rust 

resistance when using DLA as compared to visual analysis. Visual analysis takes 12 days compared to 

2-4 days using chlorophyll fluorescence and is also prone to error due to excessive leaf loss and 

damage occurring as a result of contamination. Larger sample sizes are however required to validate 

the chlorophyll fluorescence technique as previous authors have suggested that the method does 

not have uniform responses (Bürling et al., 2011; Lopes and Berger, 2000; Rolfe and Scholes, 2010).  

Near infrared spectroscopy (NIRS) is a potential addition or improvement of this non-invasive 

method, as it can be used as a more rapid and descriptive alternative to visual analysis (Chaerle et 

al., 2007; Purcell et al., 2009). NIRS has shown a large scope in predicting disease ratings and 

deciphering host-pathogen interaction signatures (Purcell  et al., 2009), of which there is also scope 

to use chlorophyll fluorescence, spectral and time-resolved chlorophyll fluorescence imaging as an 

auxiliary to this method (Berger et al., 2010; Chaerle et al., 2007). These methods have been shown 

to discriminate between resistant and susceptible varieties within two days of pathogen inoculation 

(Bürling et al., 2011; Chaerle et al., 2004). The DLA demonstrated its differentiating capabilities when 

known controls (N29 (susceptible) and N12 (resistant)) were sufficiently distinguished and 

appropriately matched to selected LD2 genotypes of corresponding rust rating using visual analysis 

(Table 4.3.2). This analysis supported the observations by Asnaghi et al. (2001), which described the 

potential of the DLA to differentiate between resistant and susceptible cultivars. The results also 
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confirmed the Bru1 gene’s ability to confer resistance to sugarcane genotypes even in a DLA, as 

shown by the genotypes (N12; 89L0591; 93W0879; 96E0524), which maintained their resistance to 

rust. Three Bru1 negative genotypes (93M0004; 96E0212; 97E0589) also proved to be rust resistant. 

Further genetic analysis needs to be conducted to uncover these genotypes’ source of resistance. 

This resulting knowledge could subsequently be used improve the resistance and durability of rust 

resistance in future varieties, by stacking these different types of resistance.  
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Table A1: Performance Indices (PIABS) of detached leaves from four sugarcane genotype classifications, each consisting of three genotypes. 

a
- Performance index means followed by the same letter within a banded row are not significantly different (at a 95% confidence interval) using the REML analysis and the 

Holm-Sidak post-hoc analysis. 

b
- Data are means ± standard error of means (n=24) for the control measurements for all the classifications 

c
- Data are means ± standard error of means (n=18) for the inoculated leaf and the control within inoculated leaf measurements for all the classifications 

d
- Day zero measurements were obtained after 1 hour of dark acclimatisation on the leaves before their respective treatments were conducted  

Classification Treatment 
Performance index (PIABS) at 3000µmol m-2 s-1 

Day 0 d  Day 1 Day 2 Day 3 Day4 Day5 Day6 Day 7 Day 8 

Bru1 negative 
resistant a 

Control b 9.99 ± 0.7    k 
6.07 ± 0.4 

 hi 
5.36 ± 0.4  fghi 

4.23 ± 0.2 
defg 

4.04 ± 0.3 
cdef 

3.65 ± 0.2 
abcde 

3.45 ± 0.2 
abcde 

3.92 ± 0.2 
bcdef 

3.76 ± 0.2 
abcdef 

Inoculated c 8.12 ± 0.7     j 5.85 ± 0.6 ghi 
3.51 ± 0.3 

abcde 
2.79 ± 0.3 

abcd 
2.36 ± 0.2 ab 

2.14 ± 0.2 
 a 

2.50 ± 0.2 
abc 

2.70 ± 0.3 
abcd 

2.71 ± 0.2 abcd 

Control within 
inoculated leaf 

9.96 ± 0.5 
k 

6.79 ± 0.4 
 ij 

6.05 ± 0.3  
hi 

4.80 ± 0.2 
efgh 

4.58 ± 0.3 
efgh 

3.76 ± 0.3 
abcdef 

3.17 ± 0.2 
abcde 

3.35 ± 0.3 
abcde 

3.41 ± 0.3 
abcde 

Bru1 positive 
resistant 

Control 
17.26 ± 2.2  

g 
11.73 ± 0.9 ef 10.14 ± 0.6  de 

9.78 ± 0.7 
cde 

9.45 ± 0.8 
bcde 

7.70 ± 0.8 
abcde 

7.13 ± 0.9 
abcde 

6.81 ± 0.9 
abcde 

6.71 ± 0.9 
abcde 

Inoculated 16.66 ± 3.1 fg 10.25 ± 0.7 de 
6.68 ± 0.4 

abcde 
5.15 ± 0.4 

abcd 
4.21 ± 0.4  

a 
3.06 ± 0.2  

a 
3.13 ± 0.4 

 a 
3.14 ± 0.3 

 a 
2.98 ± 0.4 

a 
Control within 
inoculated leaf 

18.06 ± 2.8 
 g 

11.52 ± 0.4 ef 10.48 ± 0.6 ef 
7.91 ± 0.6 

abcde 
7.14 ± 0.7 

abcde 
6.93 ± 0.8 

abcde 
5.29 ± 0.6 

abcd 
4.70 ± 0.5 abc 

4.55 ± 0.5 
 ab 

Bru1 negative 
susceptible 

Control 
16.41 ± 1.6 

  j 
12.34 ± 0.9 ghi 9.57 ± 0.8 efgh 

7.10 ± 0.5 
bcde 

6.83 ± 0.4 
abcde 

5.19 ± 0.4 
abcd 

4.31 ± 0.5 
abc 

4.30 ± 0.5 abc 
4.11 ± 0.5 

abc 

Inoculated 
13.56 ± 1.2 

 ij 
8.84 ± 0.5 defg 7.15 ± 0.5 bcde 

5.71 ± 0.6 
abcd 

4.06 ± 0.6 
abc 

3.75 ± 0.5 ab 3.51 ± 0.4 ab 3.97 ± 0.6 abc 
3.28 ± 0.4 

 a 
Control within 
inoculated leaf 

12.79 ± 1.1 hij 11.63 ± 0.9 fghi 8.75 ± 0.9 defg 8.16 ± 1.0 def 
7.49 ± 1.2 

cde 
6.45 ± 0.9 

abcde 
5.61 ± 0.7 

abcd 
5.94 ± 0.8 

abcde 
5.46 ± 0.7 abcd 

Bru1 negative 
intermediate 

resistant 

Control 
16.16 ± 1.7 

 i 
11.39 ± 0.9 fg 9.85 ± 0.7 def 

7.53 ± 0.6 
abcdef 

6.78 ± 0.6 
abcde 

6.09 ± 0.3 
abcde 

4.94 ± 0.2 
abc 

4.58 ± 0.3 abc 
4.11 ± 0.3 

 ab 

Inoculated 15.35 ± 1.1 ghi 8.66 ± 0.9 cdef 
6.81 ± 1.0 

abcde 
5.46 ± 0.7 

abcd 
5.03 ± 0.8 

abc 
3.71 ± 0.5  

a 
3.75 ± 0.6  

a 
3.86 ± 0.6  

a 
3.35 ± 0.5 

a 
Control within 
inoculated leaf 

15.91 ± 2.0 
 hi 

11.68 ± 1.2 fgh 11.28 ± 1.1 fg 9.50 ± 1.0 def 9.89 ± 1.4 ef 
8.34 ± 0.1 

bcdef 
7.65 ± 1.3 

abcdef 
6.90 ± 0.9 

abcde 
6.58 ± 1.3 

abcde 
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Chapter 6 

Analysis of Differential Gene Expression During the Early Stages of Rust Infection in 

Selected Genotypes of a Sugarcane Population 
 

MHORA T. T.1, RUTHERFORD R. S.1, SWEBBY D. L.1, JACOB R. M.1, MAKOME L.1 & DANSON J. W.2 
1SASRI, 170 Flanders Drive, Mount Edgecombe, Durban, 4300, email address: 

terence.mhora@sugar.org.za, stuart.rutherford@sugar.org.za. 
2School of Agricultural Sciences and Agribusiness, University of KwaZulu-Natal, Pietermaritzburg, 

Private Bag X01, Scottsville 3209.  

Abstract 

 
Resistant cultivars are the most effective way of controlling brown rust of sugarcane caused by 

Puccinia melanocephala. Molecular techniques can be used to identify undocumented rust 

resistance mechanisms, which can then be utilised in breeding strategies to develop cultivars with 

increased resistance and durability. Suppression Subtractive Hybridization (SSH) was used to identify 

differentially expressed genes among sugarcane genotypes with differing resistance profiles. Leaves 

were sampled from young plants 48h after inoculation with P. melanocephala. mRNA from each 

genotype was purified, quantified and pooled into its respective rust-resistance group. The mRNA 

was then converted into cDNA using the Clontech SMARTer™ cDNA synthesis kit. Two subtracted 

cDNA libraries were constructed using a PCR-Select™ cDNA subtraction kit. Library One consisted of 

Resistant Bru1 positive subtracted from Resistant Bru1 negative. Library Two consisted of pooled 

samples of Susceptible and Intermediate genotypes subtracted from Resistant Bru1 negative 

genotypes. Subtracted cDNA libraries were transformed into Escherichia coli. cDNA was inserted into 

individual bacterial colonies using the pGEM®-T easy vector and was amplified by PCR. Successfully 

transformed clonescontained cDNA inserts ranging from 200-1300bp. DNA Sequence analysis of 

inserts and BLAST searches for both libraries revealed the presence of sequences homologous to 

various disease and drought stress related gene sequences and protein homologies. Library One 

revealed enrichment for protein-kinases, reticulon-like proteins and RNA recognition motif domains 

found in proteins involved in post-transcriptional gene expression processes. Sequences homologous 

to oxidative stress proteins responsible for triggering hypersensitive responses were also identified 

in Library One. Library Two showed the presence of sequences homologous to proteins responsible 

for transcriptional control and in the regulation of the salicylic acid pathway, which results in 

systemic acquired resistance to pathogens in plant systems. cDNA sequences homologous to  

leucine-rich repeat proteins were found to be in the majority of clones in both libraries. These 

mailto:terence.mhora@sugar.org.za
mailto:stuart.rutherford@sugar.org.za
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sequences contained a conserved domain homologous to a resistance protein in Arabidopsis 

thaliana, which was unusual due to the presence of stop codons, suggesting the transcription of 

pseudogenes. Pseudogenes have been associated with mRNA stabilisation of their parent genes and 

the translation of truncated proteins among other functions. These results gave an insight into the 

possible mechanisms of rust resistance contained in both libraries. They also showed the usefulness 

of SSH in providing information on gene expression in response to brown rust infection. This 

information could be used to develop markers for resistance, having potential application in the 

SASRI breeding and selection programme.  

 

6.1 Introduction 

 
Suppression Subtraction Hybridization (SSH) is a technique which allows the distinguishing of 

differentially expressed DNA between two closely related samples (Diatchenko et al., 1996; Rebrikov 

et al., 2004; Roelofs et al., 2007). This technique has been widely used in studies conducted to 

isolate differentially expressed genes in both compatible and incompatible plant-pathogen 

interactions (Shi et al., 2005; Zhang et al., 2003). SSH has been successfully used in elucidating gene 

expression in interactions between cereals and rust fungi. Examples of cereals that have been 

analysed in this manner include barley, wheat, and sugarcane (Neu et al., 2003; Watt 2003; Yan et 

al., 2009; Zhang et al., 2003) 

Previous research on differential gene expression using SSH has been conducted on a variety of 

crops, including wheat challenged with Puccinia triticina and P. recondita interactions (Huang, 2008; 

Yan et al., 2009; Zhang et al., 2003). These results have indicated the expression of genes related to 

signal transduction, transcription regulation and hypersensitive response when wheat was 

inoculated with P. recondita (Yan et al., 2009). Such observations corresponded with previous 

research conducted using cDNA- AFLP, which indicated that response genes expressed when wheat 

was challenged with a pathogen included hydrolytic enzymes such as chitinase and β-1, 3-glucanase, 

antifungal proteins and enzymes involved in antimicrobial biosynthesis (Zhang et al., 2003). 

Most SSH analyses are carried out in the initial stages of infection, as that is the period when 

defence mechanisms are initiated. The analysis of gene expression is critical at both the pre- and 

post-haustorial stages of fungal infection, as it explains the mode and degree of resistance in the 

genotypes concerned (Neu et al., 2003). Studies have shown that the best form of defence is those 

that occur in the very early stages of infection and result in the absence of leaf damage, which is a 

major cause of yield losses. These early defence mechanisms have been demonstrated by the use of 
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SSH and have revealed the presence of nonspecific wall- associated defence responses and the 

production of antifungal saponins (Neu et al., 2003). Most of these mechanisms have been found to 

be mainly non-host specific, presenting a potential source of durable resistance (Neu et al., 2003). 

Brown rust of sugarcane is a disease whose severity can be effectively controlled by the use of 

resistant cultivars. The high complexity of the sugarcane genome has however resulted in only two 

major rust resistance genes having been identified in recent times (Le Cunff et al., 2008; Raboin et 

al., 2006). The complexity of the genome makes it difficult to use modern techniques to identify 

alternative sources of resistance. This has left the production of rust resistant varieties to traditional 

methods which are not only land and labour intensive, but take a very long time before results can 

be achieved. Utilisation of SSH in analysing rust-sugarcane interactions and identifying alternative 

sources of resistance will greatly aid in producing more resistant sugarcane varieties. This can be 

achieved by identifying markers for these genes and using this technology to stack the genes, in turn 

producing varieties that have strong and durable resistance (Parlevliet and van Ommeren, 1988). 

These developments can subsequently reduce the pressure on the major rust resistance gene (Bru1), 

and cater for the possibility of this gene being overcome by Puccinia melanocephala, the causal 

agent of sugarcane rust.  

6.2 Materials and Methods 

 

6.2.1 Experimental design 

 
In order to conduct subtractions which would elucidate the resistance mechanisms present in the 

LD2 population, four resistance groups of sugarcane were created. These groups were created based 

on the genotypes AFLP data, resistance ratings after whorl inoculation and Bru1 status as shown in 

Chapter Four. Twelve genotypes in total were selected, three to each group as shown below: 

 Bru1 positive resistant (89L0591; 93W0879; 96E0524) 

 Bru1 negative resistant (93M0004; 96E0212; 97E0589) 

 Bru1 negative intermediate (93E0888; 96E0391; 96W1340) 

 Bru1 negative susceptible (91M1610; 95W1865; 97W0568) 
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From these groups, the following subtractions were conducted: 

1- Resistant Bru1 positive taken away from resistant Bru1 negative 

2- Susceptible Bru1 negative + Intermediate Bru1 negative taken away from resistant Bru1 

negative. 

 

6.2.2 Host material preparation 

 

Five single budded setts of each of the selected genotypes were grown in 20 litre pots containing 

potting soil and fertigated weekly for one month. The plants were inoculated using the whorl 

inoculation technique with P. melanocephala inoculum as described in previous chapters. Plants 

were then dark acclimatised overnight at 20°C in a temperature controlled glasshouse before being 

exposed to normal light and temperature conditions. Leaves from the inoculated plants were 

harvested 48 hours post-inoculation. The leaves were immediately frozen in liquid nitrogen and 

stored at -80°C prior to RNA extraction. 

 

6.2.3 Poly (A) mRNA purification 

 
Total RNA was extracted from the inoculated leaves using the Qiagen RNeasy® Plant Mini kit (Hilden, 

Germany) according to manufacturer’s instructions. The RNA was quantified using the NanoDrop® 

ND-1000 Spectrophotometer (Thermo Fischer Scientific Inc.). The RNA was then assessed for its 

quality by denaturing gel electrophoresis. One microgram of RNA was mixed with 10 µl deionised 

formamide, 4.5 µl formaldehyde, 5 µl 5X 3-(N-morpholino) propanesulphonic acid (MOPS) buffer, 4 

µl 6X orange loading dye (Fermentas) and made up to 40 µl with diethylpyrocarbonate (DEPC) 

treated water. The resulting samples were heated to 65°C and chilled on ice before being 

fractionated via gel electrophoresis on a 1.2% (w/v) agarose gel in 1% sterile 1XTBE at 60V for one 

hour. After electrophoresis, the gel was stained in 1mg/ml ethidium bromide for 30 minutes before 

viewing under the Alpha Imager™ 2200 (Alpha Innotech Corporation) at 302nm. 

The total RNA was bulked according to its respective resistance group and aliquoted into 200 µg 

containing volumes. Poly (A) mRNA was then isolated from one 200 µg total RNA aliquot using the 
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Macherey-Nagel (MN) NucleoTrap® midi kit (Düren, Germany) according to manufacturer’s 

instructions.  

6.2.4 Construction of subtraction cDNA libraries 

 
The mRNA was reverse transcribed into cDNA using the SMARTer™ cDNA synthesis kit. cDNA SSH 

was then conducted using the PCR-Select™ cDNA subtraction kit (Clontech Laboratories Inc.) 

according to the manufacturer’s instructions. Optimisation of the LD-PCR stage was carried out and 

24 cycles were used to synthesise the cDNA.  

 

6.2.5 Cloning of subtracted cDNA libraries 

 
Subtracted cDNA products from the SSH process were inserted into the pGEM®T vector’s T-

overhangs using the Promega pGEM® T-easy kit (Promega Corpration). Insertion of the SSH products 

was conducted by adding cDNA ( 2µl) from each subtracted library to pGEM® T-easy ligation mix and 

incubating it overnight at 4°C to allow the cDNA to ligate to the vector. A negative control was made 

using 2 µl of water instead of cDNA.  

The overnight ligated mix (2 µl) was mixed with 50 µl Escherichia coli electro-competent cells and 

incubated on ice in a micropulser cuvette for ten minutes. Electroporation was carried out in the 

BioRad Micropulser™ (Bio-Rad Laboratories) using the bacterial Ec2 time and settings, after which 

450µl of Luria Bertani (LB) broth was immediately added to the cuvette, mixed and incubated in a 

shaking incubator for one hour at 37°C. Successfully transformed colonies were isolated using blue-

white colony selection on LB agar plates containing 100mg/l ampicillin, 20mg/l X-gal (5-bromo-4-

chloro-3-indolyl-beta-D-galactopyranoside) and 0.5mM isopropyl-beta-D-thiogalactopyranoside 

(IPTG). Plates were incubated overnight at 37°C and inspected for transformed colonies containing 

inserted cDNA (white), which were then picked using a sterile toothpick and stabbed into a 

Nunclon™ 96 well cell culture plate (Kamstrupvej, Denmark) containing LB media, to maintain 

individual colonies. A PCR reaction was then conducted using DNA from each selected colony as a 

template using SP6 and T7 primers as described in the pGEM® T-easy manual. This was done to 

analyse the insert size and to ensure that only a single cDNA insert had been transferred to each well 

in the Nunclon™ 96 well cell culture plate (Kamstrupvej, Denmark). The PCR products were loaded 

into an agarose gel, electrophoresed and observed as previously described (Section 6.2.3). 
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6.2.6 cDNA sequence analysis 

 
Plasmid extraction and purification was conducted using the MN Nucleic Acid and Protein 

Purification Kit (Düren, Germany). Overnight cultures of the clones transformed in section 6.2.5 were 

prepared for plasmid extraction by inoculating 1 ml LB broth in cell culture plates provided in the 

MN Nucleic Acid Purification kit. Plasmid extraction was conducted as instructed by the 

manufacturer. Inserts were amplified using the colony PCR protocol and purified using the Celtic PCR 

clean up kit (Cape Town, South Africa). PCR product (40 ng) was then sequenced  with the BigDye™ 

Terminator v3.1 cycle sequencing kit (Applied Biosystems) using the stepped elongation time cycle 

sequencing protocol (SteP) (Platt et al., 2007). Sequencing was conducted in both directions using 

the SP6 and T7 primers in an Applied Biosystems 3500 Genetic analyser. 

 

6.2.7 Sequence data analysis 

 
The cDNA sequences obtained were trimmed to remove vector sequences and edited for 

ambiguities using Geneious (version 5.3.4). cDNA sequences were compared to the NCBI GenBank 

database using the BLASTN (nucleotide database), BLASTX (nr protein databases) and TBLASTX 

(translated nucleotide database) algorithms.  BLASTX is a program which translates the cDNA into all 

possible reading frames and compares the resultant protein sequence against a protein sequence 

database (Altschul et al., 1997; Anderson and Brass, 1998). 

 

6.3 Results 

 
Plants inoculated with P. melanocephala and retained to confirm the success of whorl inoculation 

displayed symptoms of rust ranging from chlorotic flecks to severe lesion formation and necrosis in 

the third week post inoculation. The observations from these inoculations were all expected as the 

inoculated genotypes maintained their previously observed resistance ratings. 
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6.3.1 cDNA insert analysis 

 
mRNA was successfully purified and converted into cDNA (fig 6.3.1). cDNA inserted using the 

pGEM®-T easy vector was amplified using a crude PCR on transformed cells from each individual 

colony. Gel electrophoresis of the PCR amplicons showed successfully transformed clones with cDNA 

inserts ranging from 200-1300bp in both libraries (Fig 6.3.2). Some of the sequences had similar sizes 

(kb) when observed on the agarose gel, suggesting that these similar sized cDNA amplicons could be 

the same. This assumption was confirmed as sequencing showed identical or near identical 

nucleotide sequences in most of the same size cDNA fragments. The higher levels of certain 

amplicons suggested elevated expression levels. 

 

Fig 6.3.1: Gel electrophoresis image showing the extracted total RNA from the 12 genotypes analysed. Lanes 

1 and 14 are a 500 bp DNA ladder. 
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Fig 6.3.2: Gel electrophoresis image showing the size of cDNA inserts after transforming into E. coli 
competent cells. Image A shows subtraction library one, in which Resistant Bru1 positive genotypes were 
taken away from resistant Bru1 negative genotypes. Image B shows subtraction library two, in which 
Susceptible Bru1 negative + Intermediate Bru1 negative genotypes were taken away from resistant Bru1 
negative genotypes. 

 

6.3.2 Putative identification of differentially expressed genes 

 

6.3.2.1 BLASTN analysis of Library One and Library Two 

 
BLASTN analysis was conducted on the sequences obtained from the cDNA subtraction libraries and 

the sequences grouped according to the description given to each respective BLASTN search (Tables 

6.3.1 and 6.3.2). Approximately 18.6% of the sequences from subtraction Library One and 24% from 

Library Two were best described as Saccharum hybrid cultivar and subsequently grouped in the 
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category Sugarcane EST. The sequences in both libraries were found to be mainly homologous to 

GeneBank sequences obtained from drought and disease stressed plants. Drought stressed 

sequences made up 36% of these sequences for both groups, making up the highest contributions to 

both libraries.  

Library One had an additional group described as “maturation associated sequences”. One of the 

sequences (clone ssh4_49_A07) had a conserved domain which was homologous to a 

pentatricopeptide repeat (PPR), which is about 35 amino acids long and found in up to 18 copies in 

some proteins. This family appears to be greatly expanded in plants and may be involved in RNA 

stabilisation. This domain is also known to occur in crp1 that is involved in RNA processing 

(Marchler-Bauer et al., 2011). 

Two clones from Library One (ssh4_1_A01) and Library Two (ssh2_34.1_B05) were found to be 

homologous to the same nucleotide sequence (gb|EY275297.1). The sequence obtained from the 

BLASTN database contained a conserved domain that was homologous to the multiprotein bridging 

factor 1 (MBF1) which has been shown to make direct contact with the TATA-box binding protein. 

This domain is part of a transcriptional regulator. 
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Table 6.3.1a: Putative sequence homology from subtraction Library One as identified using BLASTN analysis 

Clone No. Accession No. Source of matching sequence 
e-value  

(
a
 BLASTN) 

No. of identical 
clones 

 

Sugarcane EST 

    

ssh4_10 _B02 gb|CA093276.1| Saccharum hybrid cultivar cDNA clone  0 5 

ssh4_13_2 _E02 gb|CA099097.1| Saccharum hybrid cultivar cDNA clone 0 2 

ssh4_2 _B01 gb|CA224795.1| Saccharum hybrid cultivar cDNA clone  0 1 

ssh4_23 _G03 gb|CA165921.1| Saccharum hybrid cultivar cDNA clone  1E-61 1 

ssh4_7 _G01 gb|CA128742.1| Saccharum hybrid cultivar cDNA clone 2E-54 1 

ssh4_2_B01 gb|CA267461.1| Saccharum hybrid cultivar cDNA clone 8E-46 1 

ssh4_10_B02 gb|CA236611.1| Saccharum officinarum hybrid cultivar (mixed) cDNA clone 8E-44 1 

ssh4_3.3 _C01 gb|CA130550.1| Saccharum hybrid cultivar cDNA clone 1E-43 2 

 

Water stress associated sequences   

ssh4_17 _A03 gb|DN743506.1| Full Length Mixed Tuber Solanum tuberosum cDNA clone 0 1 

ssh4_54 _F07 gb|HO065556.1| SSH library Cicer arietinum cDNA 0 1 

ssh4_27 _C04 gb|HO066630.1| SSH library Cicer arietinum cDNA. 0 4 

ssh4_18 _B03 emb|AJ770915.1| Populus euphratica leaf cDNA clone 0 9 

ssh4_14 _F02 gb|GH734256.1| Camellia sinensis var. assamica cDNA clone 0 1 

ssh4_13 _E03 gb|GH734756.1| Camellia sinensis var. assamica cDNA clone 0 5 

ssh4_37 _E06 gb|GH738521.1| Camellia sinensis var. assamica cDNA clone 0 1 

ssh4_10_B04 gb|GT969111.1| Camellia sinensis var. assamica cDNA clone 0 1 

ssh4_25 _2_B02 gb|GH734512.1| Camellia sinensis var. assamica cDNA clone 9E-98 1 

ssh4_4 _D01 gb|GW348341.1| Cajanus cajan cDNA library. 3E-95 1 

ssh4_10_B03 emb|CU223764.1| Populus EST from leave 2E-73 1 

ssh4_50 _3_C03 gb|HO066319.1| SSH library Cicer arietinum cDNA 2E-20 1 

a. 
Putative identification indicates the best match to a sequence in the NCBI EST nucleotide database.  
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Table 6.3.1b: Putative sequence homology from subtraction Library One as identified using BLASTN analysis 

Clone No. Accession No. Description e-value (BLASTN) 
No. of identical 

clones 

 

Disease associated sequences 

  

ssh4_25_3 _C02 emb|FN822468.2| Fagus sylvatica cDNA clone. 1E-67 2 

ssh4_50_2 _B03 gb|JG293147.1| SSH library Cicer arietinum cDNA. 2E-32 1 

ssh4_1 _A02 gb|JG292508.1| SSH library Cicer arietinum cDNA. 8E-25 1 

ssh4_50_4 _D03 emb|FN822322.2| Fagus sylvatica cDNA clone. 2E-18 1 

Maturation associated sequences 
  

ssh4_49 _A07 gb|FL302236.1| Zea mays cDNA clone. 0 1 

ssh4_14_F02 gb|FL814960.1| Panicum virgatum cDNA clone. 0 1 

ssh4_15 _6_F01 gb|GO897975.1| SSH library Cucumis sativus cDNA. 0.000001 1 

Miscellaneous   
  

ssh4_5 _E01 gb|EY275296.1| Hordeum vulgare subsp. vulgare cDNA  0 1 

ssh4_1_A01 gb|EY275297.1| Hordeum vulgare subsp. vulgare cDNA  0 1 

ssh4_12 _D02 gb|EY275298.1| Hordeum vulgare subsp. vulgare cDNA  0 9 

ssh4_17_A03 gb|EY275299.1| Hordeum vulgare subsp. vulgare cDNA  0 2 

ssh4_12_D02 gb|GO313654.1| SSH library of Pettunia x hybrida cDNA. 0 2 

ssh4_19 _C03 gb|HS389735.1| Camellia sinensis var. assamica cDNA clone. 0 2 

ssh4_25_A04 gb|DT629876.1| SSH library Pinus taeda cDNA clone. 2E-150 1 

ssh4_26 _B04 gb|DV103654.1| SSH library Solanum lycopersicum cDNA clone. 2E-105 3 

ssh4_9 _A03 gb|GW355581.1| Cajanus cajan cDNA library. 6E-80 1 

ssh4_9_A02 gb|JK036689.1| Chlorophytum borivilianum cDNA. 3E-54 1 

ssh4_15_1_A01 gb|GH738599.1| Camellia sinensis var. assamica cDNA clone. 7E-33 1 

ssh4_25_1_A02 gb|EX465249.1| SSH library Nicotiana tabacum cDNA clone. 2E-19 1 

ssh4_15_2_B01 gb|JK492888.1| Chlorophytum borivilianum cDNA. 4E-17 1 
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Table 6.3.2: Putative sequence homology from subtraction Library Two as identified using BLASTN analysis 

Clone No. Accession No. Description e-value (BLASTN) 
No. of identical 

clones 

 

Sugarcane EST 

   ssh2 34 _B05 gb|CA274231.1| Saccharum hybrid cultivar (mixed) cDNA clone  2E-159 1 

ssh2 85 _E11 gb|CA227446.1| Saccharum officinarum  cDNA  2E-138 1 

shh2 22 _D03 gb|CA065892.1| Saccharum hybrid cultivar cDNA clone 4E-82 1 

shh2 21 _D03 gb|CA218499.1| Saccharum hybrid cultivar cDNA clone 4E-82 4 

ssh2 34.2 _B05 gb|CA261641.1| Saccharum hybrid cultivar cDNA clone 1E-14 1 

 

Water stress associated sequences 

 ssh2 38 _F05 gb|GT969092.1| Camellia sinensis var. assamica cDNA clone  0 1 

ssh2 19 _C03 gb|GH734640.1| Camellia sinensis var. assamica cDNA clone  4E-163 1 

ssh2 35 _C05 gb|FE840563.1| SSH library Saccharum hybrid cultivar cDNA clone  3E-162 3 

ssh2 19.2 _C03 gb|HO066472.1| SSH library Cicer arietinum cDNA 2E-157 3 

ssh2 46 _F06 gb|GH709899.1| Camellia sinensis var. assamica cDNA clone 4E-100 2 

ssh2 86 _F11 gb|CF093497.1| Helianthus argophyllus cDNA clone  7E-99 1 

ssh2 65 _A09 gb|FF682691.1| SSH library Saccharum hybrid cultivar cDNA clone 0.000006 1 

 

Disease associated sequences  

  ssh2 60 _D08 gb|GW787732.1| SSH library Camellia sinensis cDNA clone 0 1 

ssh2 59 _C08 gb|JG293012.1| SSH library Cicer arietinum cDNA  3E-162 1 

ssh2 14.2 _F02 gb|JG292871.1| SSH library Cicer arietinum cDNA 1E-44 1 

 

Miscellaneous 

   a
 ssh2_34.1_B05 gb|EY275297.1| Hordeum vulgare subsp. vulgare cDNA  0 1 

ssh2_43_C06 gb|FG745096.1| Anolis carolinensis cDNA library  0 3 

ssh2_84_D11 gb|EY275299.1| Hordeum vulgare subsp. vulgare cDNA 9E-142 1 

ssh2_36 _D05 dbj|FS750605.1| Bombyx mori cDNA clone  6E-138 1 

ssh2_16_H02 gb|DV103804.1| Solanum lycopersicum cDNA clone 9E-97 2 

ssh2 45_E06 gb|DT630116.1| SSH library Pinus taeda cDNA clone  9E-69 1 

ssh2 62_F06 gb|DT630556.1| SSH library Pinus taeda cDNA clone 1E-67 1 
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Table 6.3.3a: Putative differentially expressed protein sequences from subtraction Library One as identified using BLASTX analysis  

Clone No. Accession No. Source of matching sequence 
No. of 

identical 
clones 

e-value  
(
b
 BLASTX) 

Putative protein name/ functions  

 

Transcriptional regulation 

 
      

 ssh4_10_B02 XP_002463097.1 SORBIDRAFT_02g037800 [Sorghum bicolor]  1 1E-87 RRM (RNA recognition motif) 

 ssh4_50_3_C03 CAD59768.1 Cicer arietinum 1 9E-15 Putative Reverse transcriptase 
 

 ssh4_25_2_B02 ACL54966.1 Cichorium intybus 1 1E-08 MEF2-like/Type II (transcriptional regulator) 

 

Oxidative stress 

 
      

 ssh4_15.1_A01 Q59296.1 Campylobacter jejuni 1 8E-57 Catalase 
  

 ssh4_15_B01 XM_002271718.1 Vitis vinifera  1 1E-53 Cytochrome C oxidase subunit II 

ssh4_2_B01 ref|XP_002457769.1 SORBIDRAFT_03g013290 [Sorghum bicolor]  1 2E-36 
a
 Dihydrolipoamide dehydrogenase 

ssh4_9_A02 emb|CAD42938.2| Taiwanofungus camphoratus 3 1E-07 Manganese superoxide dismutase 

  

Protein processing/ signal transduction 

 
     

 ssh4_10_B01 XP_002438444.1 SORBIDRAFT_10g019720 [Sorghum bicolor]  11 3E-119 Reticulon like protein 
 

 ssh4_15.6_F01 XP_002521235.1 Ricinus communis 1 4E-30 Catalytic domain of Protein Tyrosine Kinases 

ssh4_9_A02 CAD98809.1 Spodoptera frugiperda 1 0.0001 Cell signalling Proteins 

 

Disease resistance 

 
      

 ssh4_50.4_D03 XP_003541206.1 Glycine max 1 2E-48 Putative senescence-associated protein 

 

Metabolic proteins 

 
      

 ssh4_22_F03 DN743506.1 Solanum tuberosum 1 5E-102 S-adenosyl-L-homocysteine hydrolase 

ssh4_14_F02 ref|XP_002466662.1 SORBIDRAFT_01g011810 [Sorghum bicolor]  1 2E-84 Magnesium transporter MRS2-A 

ssh4_25.1_A02 P49037.1 Solanum lycopersicum 2 8E-57 GT1 family of glycosyltransferases 
a.

 This sequence was found to have a conserved domain homologous to the pyridine nucleotide-disulphide oxidoreductase, dimerisation domain; This family includes 
both class I and class II oxidoreductases and also NADH oxidases and peroxidases (an Expect value of 1.11E-47). 

b. 
Putative identification indicates the best match to a sequence in the NCBI protein database. 
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Table 6.3.3b: Putative differentially expressed protein sequences from subtraction Library One as 

identified using BLASTX analysis 

Clone No. Accession No. 
Source of matching 

sequence 

No. of 

identical 

clones 

e-value 

(BLASTX) 

Putative Protein function/ 

similarities 

 

Miscellaneous 

ssh4_23_G03 

 

 

XP_002457020.1 

 

 

Sorghum bicolor  

 

 

2 

 

 

1E-38 

 

 

hypothetical protein 
 

 ssh4_49_A07 NP_001143372.1 Zea mays  1 4E-11 hypothetical protein  

ssh4_12_D02   emb|CCD21012.1 Trypanosoma vivax        41 3E-17 
a
 Leucine-rich repeat protein 

ssh4_1_A01 XP_002455846.1| Sorghum bicolor  4 0.000001 hypothetical protein 

 
 

a. 
This Leucine-rich repeat was found to contain a conserved domain homologous to the resistance protein 

found in Arabidopsis thaliana resistance to Pseudomonas syringae (an Expect value of 2.12E-15) 

 

6.3.2.2  BLASTX analysis of Library One and Library Two 

The NCBI BLASTX program was used to determine the putative functions of the cDNA sequences in 

both subtraction libraries (Tables 6.3.3 and 6.3.4). Both libraries contained a large number of clones 

(55% for Library One and 33% for Library Two) homologous to protein sequences coding for a 

leucine-rich repeat protein (LRRP). This LRRP contained a conserved domain homologous to that of 

the resistance protein found in Arabidopsis thaliana and conferring resistance to Pseudomonas 

syringae (Expect value of 2.12E-15) (Marchler-Bauer et al., 2011). There was a difference between 

libraries, as Library One contained sequences homologous to oxidative stress related proteins such 

as manganese superoxide dismutase, catalase and cytochrome oxidase.  Another major difference 

between both libraries was that of the disease resistance associated proteins found in Library One 

(putative senescence-associated protein found in Glycine max). This sequence is unique as it is the 

difference between the two sets of brown rust resistant sugarcane groups, but is absent in Library 

Two, suggesting that it is also found in the susceptible/ intermediate groups. Library Two contained 

more sequences homologous to disease resistance proteins, showing the difference between the 

Bru1 negative resistant and susceptible/intermediate groups (Table 6.3.4). Library One was also 

unique in that it possessed metabolic proteins, one of which was the magnesium transporter MRS2-

A, which is responsible for the transport of magnesium ions which are necessary for the action of 

dihydrolipoamide dehydrogenase, which was among the sequence homologies for antioxidant 

enzymes found in Library One. A large number of sequences in both libraries were also found to be 

homologous to proteins responsible for transcriptional regulation, suggesting the potential source of 

alternative resistance between the groups of sugarcane analysis.    
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Table 6.3.4: Putative differentially expressed protein sequences from subtraction Library Two as identified using BLASTX analysis 

Clone name Accession No. Source of matching sequence 
No. of 
identical 
clones 

e-value 
(BLASTX) 

Putative Protein/ Function 

 

Transcriptional regulation 

    

ssh2_27 _C04 XP_003225516.1 LOC100561123 [Anolis carolinensis] 1 6E-19 Exonuclease/endonuclease/phosphatase domains 

ssh2_34 _B05 XP_002466155.1 Zea mays  1 2E-12 Global transcription factor 

ssh2_34.2 _B05 Q8H6B1.1 Zea mays 1 2E-11 Chromatin transcription complex subunit SPT16 

 

Disease resistance 

 

  

 

ssh2_34 _B04 XP_003589199.1 Medicago truncatula  1 0 Disease resistance protein 

ssh2_20 _D03 NP_001152232.1 Zea mays  4 5E-29 Auxin repressed; Dormancy/ auxin associated protein 

ssh2_65 _A09 XP_002169446.1 Hydra magnipapillata 1 1E-26 Baseplate hub subunit and tail lysozyme.  

ssh2_26_B04 XP_001019401.1 Tetrahymena thermophila 2 0.74 Ras family protein. Small GTPase Rab11D 

ssh2_14.2 _F02 O23758.1 Cicer arietinum 1 8E-69 Non-specific lipid-transfer protein 

 

Protein Processing 

 

  

 

ssh2_85 _E11 XP_002458745.1 SORBIDRAFT_03g039500 [Sorghum bicolor] 1 1E-74 Ribonuclease catalytic domain  

      

Miscellaneous  
  

 

ssh2_14_ F02 XP_001627639.1 Nematostella vectensis >gb|EDO35539.1| 6 2E-16 Hypothetical protein found at transcript level 

ssh2_46 _F06 XP_001767263.1 Physcomitrella patens subsp. Patens 1 1E-12 Hypothetical protein found at transcript level 

ssh2_6 _F01 YP_173374.1 Nicotiana tabacum 1 9E-37 Hypothetical protein similar to mitochondrial protein 

ssh2_38 _F05 CCD21012.1 Trypanosoma vivax Y486 11 3E-17 
a
 Leucine-rich repeat protein  

ssh2_48 _H06 XP_002455846.1 SORBIDRAFT_03g026090 [Sorghum bicolor]  1 0.000001 Hypothetical protein 

a.
 This Leucine-rich repeat was found to contain a conserved domain homologous to the resistance protein found in Arabidopsis thaliana resistance to Pseudomonas 

syringae (an Expect value of 2.12E-15)



153 
 

 

Library One contained 17% sequence homologies which were associated with protein 

processing and signal transduction. The majority of these sequences were those homologous 

to the reticulon like protein which is associated with the rough endoplasmic reticulum and is 

responsible for protein modification. The remaining sequence homologies in this group were 

similar to proteins responsible for cell signalling, an expected result as the subtractions were 

conducted 48 hours post inoculation.  

 

6.4 Discussion 

 
The identification of disease resistance mechanisms is important in the breeding process of 

sugarcane as it would allow the production of commercial sugarcane varieties with good 

disease resistance among other desirable agronomic properties (Le Cunff et al., 2008). 

Suppression subtraction hybridization (SSH) is such a method which could allow the rapid 

identification of genes responsible for these characteristics (Degenhardt et al., 2005; Huang, 

2008). The identification of these genes could allow for the development of markers which can 

then be used in a breeding program for the selection of sugarcane genotypes with desirable 

characteristics. Such markers have the advantage in that they could significantly reduce the 

production time of a sugarcane cultivar which is currently 12-15 years. The use of markers 

could also see the production of cultivars with stacked resistance, a condition in which a 

genotype contains multiple sources of resistance which ensures more stable and complete 

resistance. 

The SSH method has been successfully used for for identifying differentially expressed genes in 

sugarcane varieties exposed to smut (Ustilago scitaminea H&P Sydow) and P. melanocephala 

among other diseases (Butterfield et al., 2004; Heinze et al., 2001; Oloriz et al., 2012). SSH has 

also been used on other plants and has resulted in the elucidation of the transcription profiles 

in cultivars such as Malus domestica that respond differently to apple scab (Degenhardt et al., 

2005). The subtraction libraries constructed in this study were able to show differences 

between the two libraries, and subsequently among the different sugarcane resistance groups. 

These changes were visible within 48 hours of inoculation, demonstrating the immediate 

changes resistant sugarcane varieties make when challenged with the rust pathogen, relative 

to intermediate and susceptible varieties.  The presence of sequences homologous to 

transcription factors confirmed that there were changes in gene expression due to the rust 
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challenge. Bray (2002) noted that several different classes of transcription factors are induced 

by stress and result in the up-regulation of genes, many of which are signalled through abscisic 

acid (ABA). ABA has been demonstrated to act together with auxins and subsequent ethylene 

production in transcription and post transcriptional control (Hansen and Grossmann, 2000; 

Stafstrom et al., 1998). Among the sequences found to be homologous to mRNA coding for 

transcription factors, was the auxin repressed/ auxin associated protein coding mRNA 

sequence. This protein has been found associated with disease resistance in maize and in 

Arabidopsis thaliana, where the repression of auxin signalling by the salicylic acid (SA) pathway 

has been shown to induce antibacterial resistance (Llorente et al., 2008). The SA molecule is 

vital in plant defence systems and is known to elicit both the local and systemic-acquired 

resistance by inducing the accumulation of pathogenesis related proteins (Loake and Grant, 

2007; Shah, 2003).  

The enzyme adenosyl-l-homocysteine hydrolase is known to prevent feedback inhibition of 

transmethylation reactions by impeding the build-up of S-adenosyl-l-homocysteine (Malanovic 

et al., 2008; Wu et al., 2005). Methylation has been shown to play a role in the rust-sugarcane 

interaction as enzymes involved in methylation have displayed altered expression levels during 

infection (Oloriz et al., 2012). S-adenosylmethionine (SAM) is a precursor in the biosynthesis of 

the polyamines spermine and spermidine and also in ethylene biosynthesis (Marini et al., 

2001).  The enzyme S-adenosylmethionine decarboxylase (SAMDC) catalyses the conversion of 

SAM to S-adenosylmethioninamine, a substrate involved in the biosynthesis of these 

polyamines from putrescine and is also known to influence the rate of ethylene biosynthesis 

(Marini et al., 2001; Oloriz et al., 2012). The samdc gene was shown to be up-regulated in the 

incompatible P. melanocephala- sugarcane reaction, leading to the biosynthesis of the 

polyamines, which are known to accumulate and play a role in hypersensitive responses 

exhibited by this type of reaction (Marini et al., 2001; Oloriz et al., 2012; Torrigiani et al., 1997; 

Yoda et al., 2003; Yoda et al., 2009). 

Library two contained a sequence homologous to the Facilitates Chromatin Transcription 

(FACT) complex, a transcription factor involved in multiple processes that require DNA as a 

template such as mRNA elongation, DNA replication and DNA repair (Duroux et al., 2004; 

Marchler-Bauer et al., 2011). The FACT complex also acts in establishing transcription initiation 

complexes and promotes SPT15/TBP-binding to a TATA box (Marchler-Bauer et al., 2011). The 

compacting of DNA in chromatin plays an important role in gene regulation as it represses the 
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transcription of genes by restricting the access of DNA binding regulatory factors to their DNA 

target sites with the subsequent effect of inhibiting initiation and elongation of transcription 

by RNA polymerase II (Duroux et al., 2004; Lolas et al., 2010). Biochemical analysis has 

revealed that the FACT complex in maize, partly consisting of the SSRP1 protein can specifically 

recognize certain DNA structures and structurally flexible regions in linear DNA (Lolas et al., 

2010). The FACT complex has also been found to be enriched over the entire transcribed 

region of RNA Polymerase II-transcribed genes in Arabidopsis and also in areas where there is 

less compacted chromatin in maize (Lolas et al., 2010). This observation suggests that the FACT 

complex is responsible for the transcription of specific genes, which in this case, could be those 

responsible for rust resistance in the genotypes analysed. 

Library One showed an interesting difference between the sugarcane genotypes resistant to 

rust, as the Bru1 containing genotypes did not seem to contain the oxidative stress coding 

sequences shown in Table 6.3.3a. This observation could be an indicator of the alternative 

source of resistance contained by the Bru1 negative genotypes. The early stages of a rust 

infection are normally characterised by an oxidative burst generating reactive oxygen 

intermediates (ROS), which is synonymous with the hypersensitive response (Carmona et al., 

2004). Proteins predicted from sugarcane ESTs and involved in this form of defence response 

mechanism include superoxide dismutase and catalases, which have been found in the 

subtraction Library One (Carmona et al., 2004). Protein kinase involvement in the recognition 

of pathogens is useful in triggering disease resistance mechanisms such as these oxidative 

bursts and the activation of signal transduction cascades, which are features of gene for gene 

interactions found in host-pathogen interactions (Carmona et al., 2004; Hu et al., 1996). The 

clone ssh4_15.6_F01 in subtraction library one contained a sequence homologous to a 

tyrosine protein kinase, confirming the possibility of a protein kinase mediated hypersensitive 

response to rust in the Bru1 negative genotypes. 

Reactive oxygen species and redox signalling has also been shown to undergo synergistic and 

antagonistic interactions with phytohormones and in turn regulating the protective responses 

of plants against biotic and abiotic stress (Tognetti et al., 2010). Recent studies have shown 

that hydrogen peroxide-responsive UDP-glucosyltransferase is involved in the modulation of 

plant architecture and water stress response through its activity towards the auxin indole-3- 

butyric acid (IBA) (Tognetti et al., 2010). The presence of two clones containing a sequence 

homologous to the GT1 family of glycosyltransferases suggests that this is another possible 
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mechanism of rust resistance in the Bru1 negative rust resistant genotypes, which is open to 

further study. 

The great majority of the sequences in both libraries were homologous to Leucine-rich repeat 

proteins (LRRP). LRRPs are synonymous with disease resistance proteins, and this was shown 

by the LRRP’s obtained in both libraries containing conserved domains significantly 

homologous (an Expect value of 2.12E-15) to the resistance protein found in A. thaliana to P. 

syringae (Kim et al., 2009; Zhang et al., 2000). However, the majority of these sequences 

contained stop codons, an indication of their possibly being pseudogenes (Ameline-Torregrosa 

et al., 2008; Zou et al., 2009). Pseudogenes are defined as non-functional genomic sequences 

with significant sequence similarity to functional RNA or protein-coding genes (Hirotsune et al., 

2003; Zou et al., 2009). Protein-coding sequences are defined as pseudogenes if degenerative 

features such as premature stops, frameshift mutations, and truncations of the full-length 

gene are present (Pink et al., 2011; Zou et al., 2009). These duplicated genes normally lose 

their protein-coding potential due to the loss of promoters or enhancers or crippling mutations 

(Pink et al., 2011). Other common features of pseudogenes include their poly-A tracts and 

direct repeats at either end of the gene (Pink et al., 2011). The use of a translation tool showed 

that in all three reading frames, the resulting amino acid sequence from BLASTx searches was 

essentially identical for many of these putative pseudogenes (Figure 6.4.1 A) (Zhang et al., 

2000). 

Pseudogenes have been shown to control the epigenetic regulation of gene function in cells 

with their regulatory capabilities varying among different situations (Pink et al., 2011; Zhang et 

al., 2006). Pseudogenes have been shown to increase or decrease the expression of their 

parent genes by regulating mRNA stability (Hirotsune et al., 2003). They have also been shown 

to be able to be processed into small interfering RNA (siRNA) molecules whose effect can be 

positive or negative on the expression levels of the parent genes. The effects of separate 

pseudogenes however needs to be studied individually, as the genes have also been found to 

be capable of undergoing transcription and coding for truncated proteins (Pink et al., 2011; 

Zhang et al., 2006).  
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A: 5'3' Frame 1 
T L R Stop Y H C L L C V D T T A Y S A L I P L L T L R Stop Y H C L L C V D T T A Y S A L I 

P L L T L R Stop Y H C L L C V D T T A Y S A L Met P L L T L R C Y H C L L C V D T T A Y 

S A L I P L L T L R Stop Y H C L L C V D T T V Y S A L I P V L T L R Stop Y Q C L L C V D T 

T A H S A L I P L L T L R Stop C H C L L C V V T T A H S A L I P L L T L R Stop Y H C L L C 

V D T T A W Q S  

     5'3' Frame 2 
L C V D T T A Y S A L T P L L T L R Stop Y H C L L C V D T T A Y S A L I P L L T L R Stop Y 

H C L L C V D T T A Y S A L I P L L T L R Stop C H C L L C V V T T A Y S A L I P L L T L R 

Stop Y H C L L C V D T T A Y S V L I P L F T L R Stop Y Q C L L C V D T S A Y S A L I P L L 

T L R Stop Y H C L L C V N A T A Y S A L L P L L T L R Stop Y H C L L C V N T T A Y S A L 

I P L L G R  

     5'3' Frame 3 
S A L I P L L T L R Stop H H C L L C V D T T A Y S A L I P L L T L R Stop Y H C L L C V D T 

T A Y S A L I P L L T L R Stop Y H C L L C V N A T A Y S A L L P L L T L R Stop Y H C L L C 

V D T T A Y S A L I P L L T L C Stop Y H C L L C V D T S A Y S A L I P V L T L R Stop Y H C 

S L C V D T T A Y S A L Met P L L T L R C Y H C S L C V D T T A Y S A L I P L L T L R Stop 

Y H C L A E  

 

B: 
http://systemsbiology.liv.ac.uk/legr/troutbase/troutbase_2_0//subgroup

_html_priority/118-123.html 

BLASTX 2.2.5 [Nov-16-2002] 

>ref|XP_344805.1| similar to putative protein (5I806) [Rattus 

norvegicus] Length = 509 

 

 Score = 83.6 bits (205), Expect = 3e-16  Identities = 57/142 (40%), 

Positives = 64/142 (45%) Frame = -2 

 

Query: 528 

YHCLLCVDTTAYSALIPLLTLR*YHCLLCVDTTAYSALIPLLTLR*YHCLLCVDTTAYSA 349 

YH L  V+TTA    +P      YH L  V TTAY   +P L    YH L  + TTA    

Sbjct: 99  

YHSLSTVNTTACQLSVPQPVNCQYHSLSTVSTTAYQLSVPQLVNCQYHSLSIISTTACQL 158 

 

Query: 348 

LIPLLTLR*YHCLLCVDTTAYSALIPLLTLR*YHCLLCVDTTAYSALIPLLTLR*YHCLL 169 

 +P L    YH L  V TTA    +P      YH L  V TTAY   IP      YH L  

 

Sbjct: 159 

SVPQLVNCQYHSLTTVSTTACQLSVPQPVNCQYHSLSTVSTTAYQLSIPQPVNCQYHSLS 218 

 

Query: 168 CVDTTAYSALIPLLTLR*YHCL 103 

            V TTAY   +P L    YH L 

Sbjct: 219 TVSTTAYQLSVPQLINCQYHSL 240 

 

 

Fig 6.4.1: A- Translated putative LRR cDNA sequence in three reading frames for the cDNA clone 

ssh4_12_D02; B- Google search using resultant amino acid sequence. 

http://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.26000,1
http://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.26000,2
http://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.26000,3
http://systemsbiology.liv.ac.uk/legr/troutbase/troutbase_2_0/subgroup_html_priority/118-123.html
http://systemsbiology.liv.ac.uk/legr/troutbase/troutbase_2_0/subgroup_html_priority/118-123.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=34852947&dopt=GenPept
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ssh2_19_C03 

ACTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTT

ACTCTGCGTTGATACCACTGCTTCGCATGTACTCTGCGTTGATACCACTGCTTACTCTGCGTTGATAC

CACTGCTTACTCTGCATTGATACCACTGCTTACTCTGCATTGATACCACTGCTTACTCTGCGTTGATAC

CACTGCTTACTCTGCGTTGATACCACTGCTTACTCTGCGTTGATACCACTGCTTACTCTGCGTTGATAC

CACTGCTTACTCTGCGTTGATACCACTGCTTTCTCTGCGTTGATACCACTGCTTCCCGTGTACTCTGC

GT   345 

Blastx 

Accession Description 
E 

value 

Max 

ident 

XP_001623329.1 

predicted protein [Nematostella vectensis] 

>gb|EDO31229.1| predicted protein [Nematostella  
9e-06 39% 

CAJ17107.1 

hypothetical protein Tb11.1280 [Trypanosoma brucei 

brucei strain 927/4 GUTat10.1] 
4e-05 27% 

> gb|EDO31229.1|  predicted protein [Nematostella vectensis] 

Expect = 9e-06  Frame = +1 

 

Query  19   LLTLR*YHCLLCVDTTAYSALIPLLRMYSALIPLLTLR*YHCLLCIDTTAYSALIPLLTL  198 

            L TL   H  LC   T + AL  LL ++ AL  LLT+   H  LC   T + AL  LLT+ 

Sbjct  6    LCTLLMIHHALCTLLTIHHALCTLLMIHHALCTLLTI---HHALCTLLTIHHALCTLLTI  62 

 

Query  199  R*YHCLLCVDTTAYSALIPLLTLR*YHCLLCVDTTAFSALIPLLPVYSA  345 

               H  LC     + AL  LLT+   H  LC   T   AL  LL ++ A 

Sbjct  63   ---HHALCTLLMIHHALCTLLTI---HHALCTLLTIHHALCTLLMIHHA  105 

Blastn vrs est database 

Accession Description 
E 

value 

Max 

ident 

HO066472.1 Chickpea drought stressed cDNA SSH library  2e-157 99% 

DV103804.1 

Tomato root subtractive cDNA library for heat-shock 

down-regulated genes Solanum lycopersicum   
2e-157 100% 

GH734439.1 Camellia sinensis var. assamica cDNA  6e-157 98% 

 
Blastx using first est 

>  gb|EDO31229.1|  predicted protein [Nematostella vectensis] 

Expect = 3e-08 Frame = -2 

 

Query  511  TLR*YHCLLCVDTTAYSALIPLLTLR*YHCLLCVDTTAYSASIPLLTLR*YHCLLCVDTT  332 

            TL   H  LC   T + AL  LLT+   H  LC     + A   LLT+   H  LC   T 

Sbjct  148  TLLTIHHALCTLLTIHHALCTLLTI---HHALCTLLMIHHALCTLLTI---HHALCTLLT  201 

 

Query  331  AYSALTPLLTLR*YHCLLCVDTTAYSALIPLL-------TLR*YHCLLCVDTTAYSALIP  173 

             + AL  LL +   H  LC   T + AL  LL       TL   H  LC   T + AL   

Sbjct  202  IHHALCTLLMI---HHALCTLLTIHHALCTLLMIHHALCTLLMIHHALCTLLTIHHALCT  258 

 

Query  172  LLPAYSALIPLLTLR*YHCLLCVDTTAYSSLIPLLTLR*YHCLLC  38 

            LL  + AL  LLT+   H  LC   T + +L  LLT+   H  LC 

Sbjct  259  LLMIHHALCTLLTI---HHALCTLLTIHHALCTLLTI---HHALC  297 

Fig 6.4.2: Results of BLAST searches for one of the putative LRR transcripts. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANRH5KY013&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANRH5KY013&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANRH5KY013&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Translations&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANRH5KY013&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=3&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/protein/156354286?report=genbank&log$=prottop&blast_rank=1&RID=HANRH5KY013
http://www.ncbi.nlm.nih.gov/protein/70908114?report=genbank&log$=prottop&blast_rank=2&RID=HANRH5KY013
http://www.ncbi.nlm.nih.gov/protein/156210016?report=genbank&log$=protalign&blast_rank=1&RID=HANRH5KY013
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Nucleotides&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANR50D201N&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=11&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Nucleotides&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANR50D201N&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=11&DISPLAY_SORT=0&HSP_SORT=0#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Nucleotides&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANR50D201N&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=11&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&DATABASE_SORT=0&DESCRIPTIONS=100&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Nucleotides&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=HANR50D201N&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=11&DISPLAY_SORT=3&HSP_SORT=3#sort_mark
http://www.ncbi.nlm.nih.gov/nucleotide/313089615?report=genbank&log$=nucltop&blast_rank=1&RID=HANR50D201N
http://www.ncbi.nlm.nih.gov/nucleotide/76571137?report=genbank&log$=nucltop&blast_rank=3&RID=HANR50D201N
http://www.ncbi.nlm.nih.gov/nucleotide/222372933?report=genbank&log$=nucltop&blast_rank=4&RID=HANR50D201N
http://www.ncbi.nlm.nih.gov/protein/156210016?report=genbank&log$=protalign&blast_rank=3&RID=HCY2NAXB012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=156210016[PUID]&RID=HANRH5KY013&log$=genealign&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=156210016[PUID]&RID=HCY2NAXB012&log$=genealign&blast_rank=3
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Performing a Google search using this amino acid sequence also revealed that other 

researchers have encountered this same phenomenon, for example in trout (Fig 6.4.1B). The 

BLAST results for the one of these putative LRRPs are shown in Fig 6.4.2 and again it appears 

that this repetitive sequence has been encountered in EST libraries from chickpea, tomato and 

green tea. These sequences could therefore be artifacts of the SSH methodology. Given their 

high frequency in this study, the SSH experiments will need to be repeated and complemented 

with techniques such as Northern Blot analysis and qPCR. Pseudogene sequences coding for 

these LRRPs have previously been isolated from separate studies using different organisms 

exposed to a variety of conditions. Expression analysis of genes identified through this method 

can then be evaluated using real time PCR (Scholtz and Visser, 2012). 

This differential gene expression study can also be improved by the additional use of a reverse 

SSH. Reverse SSH will provide information on the enriched population of the up-regulated 

transcripts resulting from successful infection by P. melanocephala in the resistance groups 

used as drivers in this study (Huang, 2008; Sahu and Shaw, 2009). Additional libraries can also 

be constructed to discriminate between the various individual resistance groups or genotypes 

in order to gain additional information on variety specific modes of resistance or susceptibility. 

The use of Northern blots can also be employed to ensure the quality control and effectiveness 

of the SSH procedure. Data obtained this way would be useful in developing a marker based 

system for selecting genotypes with stacked rust resistance mechanisms in the SASRI breeding 

programs.  
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Chapter 7 
 

Concluding Remarks and Future Work 
 

Resistance to brown rust of sugarcane is conferred by a major gene called Bru1, among other 

poorly documented/ undocumented resistance mechanisms (Raboin et al., 2006). A study to 

improve the existing rust screening procedures and to subsequently uncover alternative 

resistance mechanisms using the SASRI Linkage Disequilibrium mapping population (LD2) was 

undertaken. Of the screening techniques employed, it was confirmed that whorl inoculation 

produced more or less consistent results (Sood et al., 2009). Two pot whorl inoculation trials 

were conducted in different weather conditions and showed differences in the severity of rust 

infection between both trials after four weeks. These differences underlined the effect of GxE 

interactions on disease development, despite both trials being exposed to optimal rust 

conditions on the first day. The second pot whorl inoculation showed less severe rust infection 

as it was conducted in sub optimal conditions relative to pot trial one. Despite these 

differences, the trials were still significantly correlated to each other at a 95% confidence 

interval.  

A detached leaf assay was also tested as a possible rust resistance screening method for the 

SASRI breeding and selection program. Methods of conducting detached leaf assays (DLA) 

were obtained from literature and compared to each other using sugarcane leaves from 

cultivars of known rust resistance inoculated with Puccinia melanocephala (Braithwaite, 2005; 

Jackson et al., 2008; Twizeyimana et al., 2007; Zhao et al., 2011). The use of the chlorophyll 

fluorescence derived performance index (PIABS) proved to be a more time saving method of 

screening for rust resistant genotypes as compared to visual observations. The observations 

made in detached leaves corresponded with the infection stages described by Sotomayer et al. 

(1983) with regards to the timing of the onset of infection and infection termination in 

resistant plants. These observations also allowed inferences to be made regarding the routes 

taken by differently rated sugarcane genotypes to ward off or survive rust infection. Though 

visual observations have been proved to be a reliable and consistent method of analysis, they 

take a longer time when compared to the use of PIABS and are also prone to secondary 

infection due to prolonged stay in artificial media during symptom development. The use of 

PIABS also has the advantage of obtaining readings within 2-5 days post inoculation, reducing 

the chances of the deterioration of chlorophyll which has a direct impact on the PIABS (Falqueto 
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et al., 2010). A gradual decrease in chlorophyll content and PIABS on all the detached leaves 

regardless of treatment was observed, confirming Falqueto et al.’s (2010) observations. A wide 

spectrum of host responses ranging from complete resistance to susceptibility have in the past 

dictated that no single pattern of response will emerge from assessing photosynthetic 

metabolism (Bürling et al., 2011; Lopes and Berger, 2001; Rolfe and Scholes, 2010). The results 

obtained however suggested that PIABS can be used and increasing the sample size could 

validate this method. Percentage differences between the PIABS of inoculated treatments and 

their controls were compared and indicated trends that had potential diagnostic implications 

among the different resistance groups. These trends were maintained in some LD2 genotypes 

selected on the basis of their resistance ratings obtained from the pot whorl inoculation trials, 

showing the efficiency of the DLA approach. The trends obtained demonstrated that the use of 

∆PIABS readings taken from different treatments and leaf locations could be used to clearly 

distinguish between susceptible and resistant genotypes by the second day post inoculation. 

Differences between inoculated leaves and un-inoculated regions of the same leaf showed 

significant differences between the resistant groups and the susceptible and intermediate 

groups on the first and second days of comparing the ∆PIABS. The observations made in the rust 

resistance screening experiments all showed the potential of these methods to significantly 

improve and shorten the current rust screening stage in the breeding and selection cycle. 

Developments such as these could significantly impact on the improved release of rust 

resistant cultivars, curbing resultant losses and related expenses arising from rust outbreaks 

(Asnaghi et al., 2004; Bailey, 2004; Purdy et al., 1983). The DLA was successfully used to 

confirm the resistance ratings obtained in the pot whorl trials using twelve genotypes selected 

from LD2. 

The use of Near Infrared (NIR) Spectroscopy could also be employed for the rapid screening of 

rust resistant genotypes and compared to that of chlorophyll fluorescence for efficiency and 

reproduceability. NIR is a technology which utilises the ability of different compounds in 

differing compositions to be analysed and characterised using their unique absorption capacity 

of specific wavelengths of NIR light energy (Unity Scientific Brochure, 2010). Specifically, NIR 

light affects the C-H, N-H, and O-H molecular bonds which are directly related to proteins, 

lipids and carbohydrates among other metabolites that could be produced in plants in 

response to disease infection (Unity Scientific Brochure, 2010). This quality of NIR spectroscopy 

makes it a potential tool in the rapid and non-invasive detection/ screening of disease 

resistance in commercial crops. The speed at which NIR can give accurate predictions has been 
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observed in the analysis of soya bean resistance to mosaic virus, where an analysis has been 

made as early as the latent symptomless stages of infection (Jinendra et al., 2010). NIR has 

been successfully used in the detection of disease resistance in many other crops, with 

subsequent reductions in analysis times coupled with high degrees of accurate disease 

predictions of over 90% in most reported cases (Draganova et al., 2010; Jinendra et al., 2010; 

Sankaran et al., 2010). NIR spectroscopy has also been used in sugarcane breeding programs 

where screening of smut and Eldana saccharina Walker resistance has been successfully 

conducted (Churchill et al., 2006; Purcell et al., 2010; Rutherford, 1998). There is potential for 

NIR to be used in the current study to screen for rust resistant genotypes from the LD2 

population. This method is useful in detecting genotypes containing either innate and 

pathogen induced resistance, allowing the screening exercise to be even more descriptive. To 

explain whether the resistance is innate or induced, the screening process can be conducted 

on non-challenged genotypes and on challenged genotypes, an exercise which will allow the 

type of resistance available to each particular genotype to be revealed. The use and calibration 

of NIR for use in a rust screening protocol could result in the ability to screen larger genotype 

populations at earlier stages within the SASRI breeding and selection program, subsequently 

achieving gains in efficiency and a significant retention of genetic variability (Purcell et al., 

2010). The use of high performance liquid chromatography (HPLC) could further elucidate the 

mechanisms involved in rust resistance, as specific metabolites responsible or found in 

response to rust resistance could be identified (Rutherford, 1998). Such a metabolomics based 

approach could also allow a cheaper biochemical assay to be used as a screening tool.  

Marker analysis was conducted on the LD2 and LD1 mapping populations using two flanking 

marker sets in order to distinguish between genotypes containing Bru1 and those containing 

other unknown resistance mechanisms towards brown rust of sugarcane. Approximately 33% 

(26 of 80) of LD2 did not contain Bru1, and of these, 18 of these genotypes were resistant 

based on the overall rating scale, five were intermediate and three were susceptible. The Bru1 

positive genotypes all had overall rust ratings in the resistant or more resistant genotypes of 

the intermediate range, showing the efficacy of Bru1 in conferring resistance to rust.  

LD2 was subsequently grouped based on Bru1 presence and then ranked according to the 

phenotypic data obtained from pot whorl inoculation trials. Correlation between the 

phenotypic ratings and the AFLP marker data were then calculated for the genotypes and the 

best markers were selected. Two models were created based on the overall rust ratings and 
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the other on the lesion ratings. The selected markers were then further reduced using 

stepwise multiple linear multiple regression analysis to come up with the best markers and an 

equation to predict rust resistant genotypes using their respective AFLP marker profiles. The 

AFLP marker analysis showed the potential to provide useful markers for use in selecting 

markers for non-Bru1 rust resistance traits. The AFLP analysis resulted in more informative 

data about LD2 being obtained and in the subsequent selection of 12 genotypes for use in 

suppression subtractive hybridization (SSH). These genotypes were divided into groups which 

were Bru1 positive resistant, Bru1 negative resistant, Bru1 negative intermediate and Bru1 

negative susceptible.  

The selected genotypes were planted and whorl inoculated after two months and mRNA 

extracted from the leaves 48 hours post inoculation. The SSH procedure was then carried out 

and two subtraction libraries were constructed. These libraries revealed possible rust 

resistance mechanisms available in the Bru1 negative genotypes, with the identification of 

possible resistance mechanisms in sequences homologous to proteins involved in the 

jasmonate pathway and to leucine-rich-repeat (LRR) proteins. SSH showed it can also be useful 

not only in decoding the alternative rust resistance mechanisms used by the Bru1 negative 

genotypes in LD2, but also in the development of markers for the selection of varieties 

containing these qualities. This study resulted in more questions being raised, as a large 

number of clones were homologous to LRR pseudogenes, resulting in the need to repeat the 

analyses and confirm whether or not LRR pseudogene homologues are artifacts of SSH.  

Overall, the possibilities of improving the analyses conducted and incorporating more probing 

assays toward the development of screening techniques and marker systems for selecting rust 

resistant genotypes were displayed in this research. These improvements could result in a 

better understanding of the rust resistance mechanisms within this mapping population and in 

sugarcane in general, resulting in an improvement of the commercial varieties produced for 

the South African Sugarcane industry. In improving this study, the SSH profiling of the different 

genotypes can be exhaustively conducted, as only a limited number of clones were analysed 

due to time constraints. In the non-exhaustive SSH profiling exercise conducted, only forward 

subtractions were conducted, giving only an indication of the up-regulated genes in resistant 

genotypes after rust inoculation. SSH could also have been conducted with the Bru1 negative 

susceptible genotypes being the tester in order to determine if there are genes that could be 

resulting in the susceptibility of these genotypes (Huang, 2008). Differential screening can then 
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be conducted on clones obtained through SSH using Northern blots, together with the analysis 

of the expression levels of these genes using Real-time PCR (qPCR) (Huang, 2008; Krishnaraj et 

al., 2011; Scholtz and Visser, 2012; Zhang et al., 2012).  

The majority of isolated resistance (R) genes are grouped in a class of R genes called the 

Nucleotide-Binding-Site-Leucine-Rich-Repeat (NBS-LRR) genes (du Preez, 2005). This class of R 

genes is divided into subclasses based on their N-terminal domain which are the Toll-

Interleukin receptor homology NBS-LRR (TIR-NBS-LRR) genes, leucine-zipper homology NBS-

LRR (LZ-NBS-LRR) genes and the coiled-coil homology NBS-LRR (CC-NBS-LRR) genes (du Preez, 

2005; Martin et al., 2003). NBS profiling is a method designed to probe functional diversity in 

and near disease resistance genes of the NBS-LRR type (van der Linden et al., 2004). NBS 

profiling can be used to produce markers tightly linked to R-genes and R-gene clusters for 

genomic mapping and positional cloning, and to mine for new alleles and new sources of 

disease resistance in available germplasm (Gu et al., 2008; Mantovani et al., 2006; van der 

Linden et al., 2004). NBS profiling will be used in the continuation of this study to aid in the 

identification of R genes or resistance gene analogues (RGAs) present in the Bru1 negative 

resistant genotypes. The markers generated from this technique will also be correlated to the 

rust phenotypic responses of the genotypes analysed in order to isolate the NBS-LRR genes 

directly responsible for rust resistance (Gu et al., 2008). The use of Northern blots or 

microarray technology can also be considered for further use in the rapid identification of 

genotypes containing these resistance mechanisms to aid in the selection of future genotypes 

in the breeding and selection cycles (Alsop et al., 2011). The R genes identified through NBS 

profiling can also be directly compared to subtracted mRNA pools isolated from rust 

challenged genotypes through hybridisation in order to confirm their involvement in rust 

resistance and that the isolated R genes or RGAs have a direct impact on rust resistance. 

Genetic mapping using AFLP markers has been successfully used in the discovery of two rust 

resistance genes which include Bru1 (Asnaghi et al., 2004; Hoarau et al., 2001; Le Cunff et al., 

2008; Raboin et al., 2006). The current work conducted can be further improved by increasing 

the number of genotypes incorporated into the model (Butterfield, 2007; Raboin et al., 2001). 

Existing AFLP data together with that which will be obtained from the additional genotypes can 

then be used to generate markers for this genetic mapping exercise. Markers generated from 

SSH and NBS profiling can also be used to increase the coverage and resolution of this 

proposed genetic map, making it more informative and increasing the chances of isolating 
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major resistance genes or Mendelian factors involved in QTL (Alsop et al., 2011; Gu et al., 

2008; Hoarau et al., 2001; Le Cunff et al., 2008; Raboin et al., 2006). Previous studies 

conducted on genetic mapping exercises have utilised large progeny numbers coming from bi-

parental crosses and subsequent phenotypic analyses arising from field trials and greenhouse 

experiments (Raboin et al., 2001). The use of linkage disequilibrium (LD) and association 

methods is however a method that has recently become preferable to that of using bi-parental 

crosses, as it has immense benefits which include; 

 The sampling of the full allelic variation within the breeding population, as opposed to 

that occurring only within a bi-parental progeny population; 

 Detecting QTL effects within a diverse genetic background representing elite varieties 

means that markers detected are less likely to be background-specific, and more 

widely applicable in breeding (Butterfield, 2007). 

As the Bru1 negative genotypes from the LD1 and LD2 populations have already been 

identified, additional genotypes lacking the Bru1 gene could be selected for further use in 

improving the prediction model (Raboin et al., 2006). A balanced set with equal numbers of 

resistant, intermediate and susceptible genotypes could be assembled. The phenotypic data 

for this balanced set could be assessed using the optimised pot whorl inoculation technique 

and the DLA screening methods combined with chlorophyll fluorescence or NIR for detecting 

reaction phenotypes. Field analyses using either whorl inoculation or natural infection can also 

be conducted to ensure that as much descriptive information about the genotypes is obtained 

(Raboin et al., 2001; Sood et al., 2009). 

The techniques and strategies outlined above are all methods which can be undertaken 

towards the aim of better understanding the mechanisms responsible for rust resistance. Once 

these mechanisms are identified and understood, marker systems can be developed which will 

allow the rapid and more efficient selection of genotypes for use in the breeding and selection 

process for rust resistant varieties. These rapid selection techniques will significantly aid in the 

reduction of the time used in the current techniques and aid in producing more rust resistant 

genotypes for the industry. Improving the screening techniques will also greatly assist in the 

initial stages of identifying which markers tag specific traits. These methods will also be 

invaluable in confirming the resistance of the genotypes selected through MAS. The methods 

of NBS profiling and AFLP analyses could produce markers which can form the basis of analyses 

for resistance to other diseases within these and other sugarcane genotypes.  
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Analysis of differential gene expression during the early stages of rust infection in a 

sugarcane breeding population. 
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Resistant cultivars are the most effective way of controlling brown rust of sugarcane caused by 

Puccinia melanocephala. Molecular techniques can be used to identify undocumented rust 

resistance mechanisms, which can then be utilised in breeding strategies to develop cultivars 

with increased resistance and durability. Suppression Subtractive Hybridization (SSH) was used 

to identify genes differentially expressed between sugarcane genotypes that are resistant (two 

groups with different modes of resistance, each group having three genotypes), intermediately 

resistant and susceptible to rust. Leaves were sampled 48h after inoculation with P. 

melanocephala. mRNA for each genotype was purified, pooled into its respective groups and 

converted into cDNA using the Clontech SMARTer™ cDNA synthesis kit. Two subtracted cDNA 

libraries were constructed using a PCR-Select™ cDNA subtraction kit. For Library 1pooled 

samples of Susceptible and Intermediate resistant genotypes were subtracted from Resistant 

Group One. For Library 2, Resistant Group Two was subtracted from Resistant Group One. 

Subtracted cDNA libraries were transformed into Escherichia coli. The cDNA inserted using the 

pGEM®-T easy vector in individual bacterial colonies was amplified by PCR and showed 

successfully transformed clones with cDNA inserts ranging from 200-1300bp. DNA Sequence 

analysis of inserts and BLAST searches for both libraries revealed that over 70% of the 

sequences were identified as various disease and drought stress related gene sequences. 

Library 1 revealed enrichment for serine/ threonine kinases, reticulon-like proteins and RNA 

recognition motifs, domains found in proteins involved in post-transcriptional gene expression 

processes. The Mob1 gene was also identified in Library 1. Mob1 is known to play a role in 

hypersensitive responses and in cytokinesis, critical processes in host resistance to pathogens. 

Processing of Library 2 results is still in progress. These results show the usefulness of SSH in 

providing information on gene expression in response to brown rust infection. This 

information could be used to develop markers for resistance, having potential application in 

the breeding and selection programme.  
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Abstract 

Puccinia melanocephala is the causal agent of brown rust in sugarcane. Brown rust can 

result in over 50% yield loss. The most reliable and eco-friendly way of combating rust is 

through development and use of resistant varieties. A rapid screening method in the form of 

a detached leaf assay (DLA) is required to speed up the varietal selection process. Media 

compositions were formulated in 1% agar using water and 10 mg/L of kinetin, 

benzylaminopurine (BAP) and benzimidazole as the base of the media. Lactic acid, 

benomyl and pentachloronitrobenzene (PCNB) were also used to make up varying media 

combinations. Leaves of varieties N12, N29 and N39 exposed to P. melanocephala spores 

were cut and sandwiched between media inside square plates. The leaves were dark-

acclimatised at 25°C before incubation in a growth room at 25°C and 18 h photoperiod. 

Analysis of the effects of rust on the leaves was conducted using a chlorophyll fluorescence 

meter at a light intensity of 3000 μmol m2/s and by visual observation of lesion and spore 

formation. The Performance Index (PIABS) showed water was a better medium for 

maintaining photosynthetic activity and that the resistant variety N12 had the best _PIABS 

when exposed to spores after the fifth day as compared to the susceptible and intermediate 

varieties N29 and N39. Sporulation was observed on the 12th day on N29 maintained on 

Kinetin. The leaves on water, BAP and benzimidazole agar sporulated after 13-14 days. 

These results show that with refinements, a DLA could be reliably used to rapidly diagnose 

resistance to rust in sugarcane.  
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Introduction 

 

Brown rust of sugarcane is caused by the basidiomycete Puccinia melanocephela H. & P. 

Sydow (Hoy and Hollier, 2009). Brown rust presents as reddish-brown pustules that erupt 

on the abaxial side of sugarcane leaves (Dixon, 2010; Bailey, 2004). The earliest symptoms 

are small, elongated yellowish spots that are visible on both leaf surfaces (Purdy et al., 

1983). The spots increase in length, become red-brown in colour, mature and sporulate 

within 10-14 days. Lesions typically range from 2-10 mm in length, but occasionally reach 

30 mm (Raid and Comstock, 2000). Rust is an economically important disease that results 

in severe reductions in yield, with losses as much as 40-50% having been experienced in 

susceptible varieties (Bailey, 2004). In recent years, resurgence in the incidence of brown 

rust has been observed, with the variety N29 registering losses of up to 26% (McFarlane et 

al., 2006).  

 

The most effective and economically feasible method of long term control of rust is through 

the use of resistant cultivars and cultivar diversification (Asnaghi et al., 2004; Bailey, 

2004). Breeding programmes now incorporate a rust screening step to mitigate the effects of 

rust. Natural infection has been the primary means of assessing rust resistance in sugarcane 

cultivars. This method is, however, not always efficient as it is dependent on environmental 

conditions (Sood et al., 2009). A more reliable and robust screening method is consequently 

required to effectively select resistant genotypes.  

 

An in vitro method using detached leaf assays has been formulated, and has shown potential 

to overcome the current limitations associated with resistance screening. This makes it a 

potentially better method of screening for disease resistance, as it is cost effective, space 

saving and a faster method of conducting screening tests on large sample sizes (Jackson et 

al., 2008). This method also has the advantage of having control over environmental 

conditions which have been a common source of errors in past analyses (Purdy et al., 1983). 
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Materials and Methods 

 

Three varieties (N12 (resistant), N29 (susceptible) and N39 (intermediate)) were selected 

from a rust challenged environment and the leaves from the middle section of the top visible 

dewlap (TVD) cut into 6 cm pieces. The mid rib was removed and the leaf cuttings rinsed in 

sterile water. A 1% agar media was prepared based on combinations of plant growth 

regulators (Kinetin (10 mg/L); BAP (10 mg/L); benzimidazole (10 mg/L)), two fungicides 

(benomyl (0.05%) and PCNB (0.33 g/L)) and lactic acid (3 ml/L). The 16 combinations 

used in this experiment are outlined below: 

Treatment 1 water and PCNB 

Treatment 2 water, benomyl and PCNB 

Treatment 3 water, lactic acid and PCNB 

Treatment 4 water, lactic acid, benomyl and PCNB 

Treatment 5 BAP and PCNB 

Treatment 6 BAP, benomyl and PCNB 

Treatment 7 BAP, lactic acid and PCNB 

Treatment 8 BAP, lactic acid, benomyl and PCNB 

Treatment 9 kinetin and PCNB 

Treatment 10 kinetin, benomyl and PCNB 

Treatment 11 kinetin, lactic acid and PCNB 

Treatment 12 kinetin, lactic acid, benomyl and PCNB 

Treatment 13 Benzimidazole and PCNB 

Treatment 14 Benzimidazole ,benomyl and PCNB 

Treatment 15 Benzimidazole, lactic acid and PCNB 

Treatment 16 Benzimidazole, lactic acid, benomyl and PCNB.  

 

The media was autoclaved, set in square plates and cut into slabs to make a sandwich. The 

sugarcane leaf ends were embedded within the agar slabs, adaxial sides exposed. The agar 

amending solution was added in between the agar layers. Four leaf cuttings were used in 

each plate (Jackson et al., 2008). 

 

Two chlorophyll a fluorescence measurements were taken from each dark-acclimatised leaf 

cutting using a Hansatech Handy Pea fluorescence meter at a light intensity of 3000 μmol 

m2/s. The leaves were then embedded into their respective agar treatments, incubated 
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overnight in the dark at 25°C, and then transferred to an 18-hour photoperiod growth room. 

Chlorophyll a fluorescence measurements were carried out every 24 hours for five days, 

and then every two days thereafter until the ninth day. The leaves were constantly 

monitored visually to observe any visual rust symptoms (lesions and sporulation) and to 

monitor how long they maintained their colour. 

The chlorophyll fluorescence data was processed using the JIP test (Strasser et al., 2000), 

which lead to the calculation of the Performance Index (PIABS), which is regarded as a 

reliable indicator of electron transport efficiency and photosynthetic capacity during stress 

(Strauss et al., 2007). _PIABS was calculated using the formula: _PIABS = PIABS (day 0) - 

PIABS (day x). 

 

Results and Discussion 

 

Treatment 1 (water and PCNB) was the best media combination in maintaining leaf 

pigmentation and rust development. Lesion formation began after the first week, whereas 

sporulation was observed on the 12th day of incubation in N29. The leaves however tended 

to dry out from the middle section and spread towards the ends within the third week. 

Benzimidazole treatments were the best in retaining leaf pigmentation, but inhibited 

maximal presentation of rust symptoms, possibly due to its fungicidal properties. All the 

treatments induced declines in _PIABS in the initial three days, after which values stabilised 

and remained relatively constant until day nine. This was thought to be as a result of the 

leaves being detached, entering and then acclimatising to foreign environments. The _PIABS 

of the leaves was further reduced when components besides water were added to media. 

This trend confirmed the visual observations where treatment 1 had the best overall 

response in terms of pigment retention and symptom development. Variety N29 had the 

largest negative _PIABS due to it developing lesions and spores. Rust is known to reduce the 

photosynthetic activity of sugarcane and this was confirmed by the lower _PIABS shown in 

N29 as compared to N12 and N39 (Rolfe and Scholes, 2010). N12 had the least change in 

PIABS, and this was attributed to the leaves being asymptomatic, with consequently better 

photosynthetic activity. Further trials will determine whether chlorophyll a fluorescence 

measurements can be used in a diagnostic way. Tubes have also been acquired in an attempt 

to develop a method in which handling and contamination of test material is reduced. 
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