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ABSTRACT 

An effective vaccine against HIV-1 remains elusive and this is mainly due to the ability of the 

virus to readily mutate and evade immune responses. Computational models, namely Ising and 

Potts, have been developed, using methods from physics, with the ability to predict the viral 

fitness landscapes of different HIV-1 proteins. This could reveal vulnerabilities within the 

proteins which may indicate regions suitable for inclusion in a HIV vaccine that aims to corner 

the virus and block immune escape. These models were previously validated by testing in vitro 

the viral fitness landscape for the Gag protein. Even though Nef is an important HIV-1 virulence 

factor, the predicted viral fitness landscape for the Nef protein has not yet been tested. The 

present study aimed to evaluate the accuracy of these computational models in predicting the 

fitness consequences of mutations in HIV-1 Nef, by measuring the Nef-driven replication 

capacities as well as CD4 and HLA down-modulation capacities of 32 different Nef mutants. 

Mutants were selected that had a wide range of energy (E) values (predicted fitness where high E 

values are expected to correspond to low fitness and low E values are expected to correspond to 

high fitness) and were created by site-directed mutagenesis of a NL4-3 plasmid encoding the 

consensus B Nef sequence. Virus stocks were generated by transfection of a GXR cell line with 

mutant plasmids and replication capacities of the viruses were then measured in peripheral blood 

mononuclear cells using p24 ELISA. Additionally, CD4 and HLA down-modulation capacities 

of the mutant Nefs were measured by transfecting a GXR cell line modified to express high 

levels of HLA-A*02 with the mutant Nef sequences that were cloned into a pselect plasmid, 

followed by staining with fluorochrome-conjugated CD4 and HLA-A*02 antibodies and 

measurement of the level of cell-surface expression of these molecules by flow cytometry. The E 

values predicted by both the Ising and Potts models correlated significantly with Nef-driven 
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replication capacities (Ising: r = ‒0.5793, p = 0.0006 and Potts: r = ‒0.4118, p = 0.0213) and 

CD4 down-modulation capacities (Ising: r = ‒0.5266, p = 0.0023 and Potts: r = ‒0.3781, p = 

0.0360, but not HLA-A*02 down-modulation capacities (Ising: p = 0.8530 and Potts: p = 

0.3676), of the various Nef mutants. The experimental data supports the predictions of both the 

Ising and Potts models, however, the Ising model proved to more accurately predict fitness 

consequences of mutations in the Nef protein.  Model predictions for Nef were not as accurate, 

however, as for the highly conserved Gag protein. In addition, the data suggests that Nef-driven 

replication capacity and CD4 down-modulation may be more important functions of Nef in vivo 

than HLA down-modulation. Overall, our data supports computational modelling as a valid 

approach to rational immunogen design. 
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CHAPTER 1 

INTRODUCTION 
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1.1 Overview 

The causative agent of acquired immune deficiency syndrome (AIDS), a syndrome of 

opportunistic infections and cancers, is the retrovirus human immunodeficiency virus (HIV) 

which infects human immune cells expressing the CD4 antigen (11, 47, 114). HIV type 1 (HIV-

1) causes the vast majority of HIV infections (11, 47). HIV/AIDS is a global pandemic, with 

almost seventy million people infected since its initial identification and approximately thirty 

five million people were living with HIV at the end of 2013 (158). 

 

 

Currently, HIV-1 is treated with antiretroviral therapy which increases the life expectancy of 

infected individuals (14). However, this treatment is associated with several limitations including 

a high cost factor (95). In addition it is improbable that the virus will be eradicated with 

antiretroviral therapy in areas where the epidemic is rife (112). The most affordable and efficient 

way in eliminating HIV-1 is through the development of an effective vaccine against the virus 

(5). Despite immense efforts in developing an effective vaccine, attempts thus far remain 

unsuccessful (112). One vaccine however showed partial success in protection against HIV 

infection, but it is not sufficiently efficacious (137). The major hurdle in vaccine design and 

development is eliciting a human immune response that is not evaded by the highly diverse and 

mutable HIV-1 (5, 85, 164). Thus, new strategies are required for the production of an effective 

HIV-1 vaccine. 

 

This review will highlight the structure and replication cycle of HIV-1. Additionally, HIV-1 

pathogenesis and immune evasion strategies will be discussed. Current treatment and 
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preventative measures as well as challenges in HIV-1 vaccine design will be briefly outlined.  

Throughout the review, there will be an emphasis on Nef since it is critical to HIV-1 

pathogenesis and host immune evasion and is the focus of the current project. Finally, a new 

vaccine strategy that uses computational models predicting the viral fitness landscape of HIV-1 

proteins to aid in vaccine immunogen design will be discussed followed by an introduction of the 

aim of the present project to test the accuracy of these models in predicting the fitness landscape 

for the HIV-1 Nef protein.   

 

1.2 Genome and Structure of HIV-1 

 

1.2.1 Genome organisation 

The HIV-1 genome encodes nine genes namely group specific antigen (gag), polymerase (pol), 

envelope (env), transactivator of transcription factor (tat), regulator of virion protein (rev), 

negative regulatory factor (nef), viral infectivity factor,  (vif), viral protein R (vpr) and viral 

protein U (vpu) (54, 156). Gag, Pol, and Env polyproteins (Pr55
Gag

, Pr160
GagPol

 and gp160, 

respectively) are proteolysed into individual proteins (54). Pr55
Gag

 is cleaved by the viral 

protease (PR) to Gag protein matrix (MA/p17), capsid (CA/p24), nucleocapsid (NC/p7) and p6 

as well as two spacer peptides (p1 and p2) (55, 153). In addition, Pr160
GagPol

 is cleaved by the 

viral PR to form the enzymes reverse transcriptase (RT) and integrase (IN) (55, 153). The Env 

polyprotein precursor is cleaved by a cellular protease and results in the generation of the surface 

unit (SU) Env glycoprotein, gp120, and the transmembrane (TM) glycoprotein, gp41 (55). Nef, 

Vif, Vpu, and Vpr are termed accessory proteins as they were, initially, not thought to be 

essential for infection (142). However, it is now known that these proteins are involved in 
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multiple mechanisms of immune evasion (103). Tat and Rev are regulatory proteins required for 

transcription and viral RNA transport, respectively (55). 

 

1.2.2 Structure 

HIV particles are typically sphere shaped and have a diameter of approximately 120 nm (16, 84). 

The envelope, containing viral glycoproteins, constitutes the virion outer layer and is of cellular 

origin (120). HIV envelope spikes are composed of three gp120 and gp41 glycoproteins each 

(72). Within the viral envelope is a conical-shaped core particle which encompasses the viral 

genome and replication proteins (58). The outer shell of this core, is formed by the Gag p17 

matrix molecules, and surrounds Gag p24 capsid molecules (110). The Gag p24 capsid encloses 

a ribonucleoprotein (RNP) complex with two copies of single-stranded genomic ribonucleic acid 

(RNA) which interact with each other and are associated with Gag p7 nucleocapsid molecules 

(32, 65, 120). Additionally, PR, RT and IN are encased in the nucleocapsid (65).   

 

1.3 HIV-1 replication cycle 

HIV-1 replication occurs through a series of steps (Figure 1.1): (i) viral entry, (ii) reverse 

transcription, (iii) uncoating and nuclear import, (iv) proviral DNA integration, (v) transcription 

and nuclear export, (vi) assembly and budding, (vii) maturation; and a brief description of each 

step follows. In addition, the role of Nef at several steps during the virus replication cycle is 

discussed. 
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Figure 1.1. HIV-1 replication cycle (modified from AIDSinfo [www.aidsinfo.nih.gov] (3)) 

The diagram represents the mechanistic steps involved in HIV-1 replication:  1 – virus entry by 

binding and fusion, 2 – reverse transcription of HIV-1 RNA, 3 – nuclear import, 4 – integration 

of viral DNA, 5 – transcription and nuclear export, 6 – assembly and budding, 7 – maturation, 

respectively.  

http://www.aidsinfo.nih.gov/
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1.3.1 Viral entry 

HIV-1 gp120, binds to CD4 (known as the primary receptor), which may be present on the 

surface of helper T cells, memory T cells, macrophages, monocytes, dendritic cells and 

Langerhans cells (37, 46, 86). Once gp120 has bound to the CD4 receptor, it changes 

conformation to allow for binding of secondary/co-receptors, most commonly C-C chemokine 

receptor 5 (CCR5) or the CXC chemokine receptor 4 (CXCR4) (13, 43). Upon co-receptor 

attachment, glycoprotein (gp41) interacts with the membrane of the target cell through the 

formation of a triple-stranded coiled-coil (108). This consequently leads to the development of a 

six-helix bundle and ultimately to the formation of a fusion pore which in turn leads to the fusion 

of the virus and the target cell membranes (108, 115).   

 

Once the fusion of host cell and virion occurs, the HIV-1 genome needs to be integrated into the 

genome of the host cell (63). In order for integration to occur, it is first required that the single-

stranded RNA be converted to double-stranded proviral DNA and this is accomplished through a 

process called reverse transcription (63). 

 

1.3.2 Reverse transcription 

Firstly, host cell tRNA
Lys3 

anneals to the 5'-end of the primer binding site (PBS) of the HIV-1 

viral RNA template (71). The tRNA/RNA complex is then recognised by RT which extends the 

3'-end of the annealed primer thereby initiating reverse transcription (63). A segment of minus 

strand DNA is produced when RT completes synthesis at the 5'-end of genomic DNA (71). 

RNase H then degrades the 5' end of the RNA releasing minus strand DNA which binds to the 3'-
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end of the RNA and initiates minus strand DNA synthesis from this end (termed first strand 

transfer) (63, 71). As minus strand DNA is produced, RNase H cleaves the RNA template 

creating RNA primers which are used for the formation of two plus strand RNA fragments (71). 

RNase H cleaves and displaces tRNA from the PBS leaving complementary plus and minus PBS 

DNA strands that hybridise and allow DNA synthesis to resume to completion (63).   

 

The last step in HIV-1 reverse transcription is DNA flap formation (9). This event in reverse 

transcription promotes uncoating of HIV-1 at the nuclear pore (9). 

 

1.3.3 Uncoating and nuclear import 

Before entry of the viral genome into the nucleus of an infected cell, the virus loses its viral 

capsid by a process termed uncoating (8). The mechanism of HIV-1 uncoating is poorly 

understood but it is required for the next step in the viral replication cycle, i.e. nuclear import 

(163). During nuclear import, it accompanies the transition from reverse transcriptase complexes 

[(RTCs) in which RT takes place] to pre-integration complexes (PICs) which are competent for 

integration into the host genome (8, 9). 

 

1.3.4 Proviral DNA integration 

Viral integrase which enters the host cell as part of the virion, catalyses the reactions required for 

successful integration of HIV-1 DNA into the host genome (152). The 3'-ends of the viral DNA 

are cleaved and ligated to the 5'-ends of the similarly cleaved host target DNA (152). Ligation 
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results in a gapped product which is then repaired by the host cell DNA repair enzymes (152). It 

has been shown that several host cellular proteins and other HIV-1 proteins, some of which form 

part of the PICs, are required for successful proviral DNA integration into the host DNA (97). 

 

The integrated proviral genome needs to be transcribed for the production of progeny virions and 

occurs through a process termed transcription (138). 

 

1.3.5 Transcription and nuclear export 

HIV-1 transcription depends on interactions between several host cell factors and the viral Tat 

protein (126). Tat recognises a trans-activation responsive element region (TAR) and recruits the 

cellular positive transcription elongation factor (P-TEFb) which increases binding of TAR to the 

Tat activation domain (126). The Tat/TAR interaction, in turn, recruits one component of 

PTEFb, CDK9 (a cyclin-dependent kinase), which phosphorylates the carboxy-terminal domain 

of the host cell RNA polymerase II (RNAPII) stimulating elongation (45). Completely and 

incompletely spliced RNA species (encoding for viral proteins) as well as full length RNA 

species (which constitutes the viral genome) are transcribed (126). Rev is involved in exporting 

these RNA species into the cytoplasm, where they are translated into the HIV-1 proteins (126). 

 

1.3.6 Assembly and budding 

During trafficking of the Env glycoprotein to the plasma membrane, it is matured into gp120 and 

gp41 subunits by the cellular protein furin (121). The Gag polyprotein, pr55
Gag

, synthesised on 
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free ribosomes, associates with the Env glycoproteins in lipid rafts of the plasma membrane 

where assembly transpires (94). Specifically, the Gag matrix domain interaction with Env gp41 

results in incorporation of Env proteins into virions (61, 129). The Gag nucleocapsid region of 

the Gag polyprotein binds and transports viral genomic RNA to the plasma membrane where 

Gag multimerisation follows (129). Once enough Gag subunits are produced, a viral capsid is 

formed, which encloses the viral genomic RNA, viral proteins and cellular proteins (121). 

Completion of virion assembly leads to subsequent budding. 

 

Budding of HIV-1 is initiated when domains in Gag p6, for example the PTAP motif, interact 

with cellular machinery termed endosomal sorting complexes required for transport (ESCRT) 

(94, 121). Viral maturation is the succeeding step and is critical in viral infectivity (88). 

 

1.3.7 Maturation 

A mature virion is produced when viral protease cleaves the Gag and Gag-Pol precursors upon 

budding (61). Upon maturation, while the Gag matrix protein remains associated with the viral 

envelope, the Gag capsid molecules reassemble to form a conical core which encloses the 

nucleocapsid, genomic dimeric RNA as well as viral and cellular proteins (88). After virion 

maturation, the viral replication cycle is compete and the virus is rendered infectious (162).  
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1.4 HIV-1 replication cycle: role of Nef 

HIV-1 Nef is a small myristoylated protein (~27kDa), usually, with a length of 206 amino acids 

(51). Nef has a structured core, flexible N and C termini and an internal flexible loop (52). This 

HIV-1 protein serves in several stages of the viral life cycle and is required for optimal viral 

replication (64). Nef enhances viral replication through a number of strategies/activities, which 

will be discussed next.  Major functional motifs involved in these activities are summarised in 

Table 1.1. 

 

1.4.1 Nef-mediated CD4 down-modulation 

Nef-mediated CD4 down-modulation occurs early after viral infection and prevents the 

acquisition of unfavorable viral superinfections which may lead to premature cell death thereby 

enhancing HIV replication (64). In addition, Env sequestration into a CD4/Env complex which 

would result in impaired virion infectivity is avoided by CD4 down-modulation as it enables 

progeny virions to incorporate higher amounts of Env products (thus becoming more infectious) 

(125). Another benefit to the virus would be an expected increase in the release of viral particles 

as high levels of surface CD4 have been shown to interfere with the budding of virions (64). For 

CD4 down-modulation, Nef (amino acids 57 – 59, 95, 97, 106 and 110) binds to the CD4 

cytoplasmic tail (64) (Table1). In addition, the dileucine (EXXXLL extending from amino acids 

160 – 165) and diacidic ([E/D]D from amino acids 174 – 175) residues present in Nef allows for 

binding of the AP-2 which recruits proteins for CD4 internalisation in clathrin-coated pits (38, 

51, 64) (Table 1.1).  
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Table 1.1. Nef motifs and related functions 

Motif Codon Function 

MGxxxS   1 – 6  Signals Nef myristoylation for cellular 

membrane targeting and plays and important 

role in all Nef functions 

WLE, G, L, R, L 57 – 59, 95, 97, 106, 

110  

Binds to the cytoplasmic tail of CD4, which is 

required for CD4 down-modulation 

EEEE 62 – 65  This motif mimics an acidic cluster which 

binds to PACS-1.  Through this PACS-1 

binding ability, Nef may stimulate a signaling 

pathway for the down-regulation of HLA-I.  

Additionally, it is important for PAK2 

activation and enhanced infectivity 

PxxPxR 72 – 77 This is a SH3 binding region and is required 

for PAK2 activation, HLA-I down-

modulation and enhanced virion infectivity 

RR 105 – 106 This is a highly conserved Nef motif which 

induces PAK2 activation.  In addition it is 

suggestive that this site is functional in CD4 

and HLA-I down-modulation 

FPD 121 – 123 This motif plays a role in several Nef 

functions, namely, CD4 down-modulation, 

HLA-I down-modulation, PAK2 activation 

and enhancement of viral infectivity 

ExxxLL 

[E/D]D                         

160 – 165  

174 – 175  

These motifs bind to adaptor proteins to 

enable CD4 down-modulation 

Information provided in the table was sourced from (52) and (60).  
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1.4.2 Nef-driven infectivity: early stage of the life cycle  

Nef increases the infectivity of HIV-1 not only through CD4-dependent mechanisms, as 

described above, but also through CD4-independent mechanisms which are not well understood 

(4, 25). A study showed that viruses mutated in nef are four to 40 times less infectious than wild-

type HIV-1 in a single-round of infection (4). It was also shown that these nef-defective virions 

bind and enter the target cells efficiently, however once inside the cell these viruses are restricted 

in their ability to reverse transcribe their genomes, all suggestive of a role of Nef at an early post-

entry stage in the viral replication cycle before reverse transcription (4, 25). It has been 

suggested that Nef might modify the virus core following entry, making it more competent for 

viral DNA synthesis (4).   

 

1.4.3 Nef-mediated cellular activation 

HIV-1 replication is restricted in resting T cells and ensues once the cells are activated (128). 

Nef induces cell activation by lowering the threshold required for T cell receptor (TCR) 

stimulation through its interaction with cell signaling molecules (128). Nef activation of p21 

activated kinase 2 (PAK2) is a well described Nef activity (51). Activation of PAK2 by Nef is 

stimulated when Nef (RR motif; amino acids 105 – 106) forms a complex with this molecule 

(51) (Table 1.1).  It is known that the Nef/PAK2 association induces T cell activation but the 

complex remains uncharacterised (128). It has been shown that in sub-maximally activated T 

cells, viruses defective for Nef/PAK2 association, but not other Nef functions, did not enhance 

replication and, it was therefore suggested that Nef/PAK2 association is important for Nef-

mediated enhancement of HIV-1 replication (128).   
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In addition to the aforementioned strategies used by Nef to directly enhance HIV-1 replication, 

Nef can promote immune evasion through human leukocyte antigen (HLA)-I down-modulation 

and therefore indirectly enhance virus replication. A discussion on this function of Nef follows in 

the section on HIV-1 immune evasion (Section 1.5.4.2.3). 

 

1.5 HIV-1 pathogenesis 

Transmission of HIV-1 is a consequence of exposure to blood, a blood product or bodily 

secretion that have been contaminated with the virus (34). HIV-1 is dominantly transmitted 

sexually (oral, vaginal or anal), as well as less frequently, parenterally (drug use and blood 

transfusion) and vertically (mother to child transmission - before, during or after birth and 

through breast milk) (36). Once transmitted, the progression of HIV-1 to AIDS is intermediated 

by a series of stages, namely primary and chronic stages (79) (Figure 1.2). The aforementioned 

stages are briefly outlined. 

 

1.5.1 Primary phase 

The primary stage of infection is considered to be from the time of virus exposure until 

seroconversion (76). The first cells to be infected with the virus are primarily CD4
+
 CCR5

+
 

memory T cells (44) as well as other cell types including Langerhans (mucosal dendritic cells 

[DCs]) and macrophages (68, 145). Following transmission there is an initial period in which 

infection is established at the site of exposure but diffusion in the systemic circulation is not 

detectable (35) and this period is termed the eclipse phase (Figure 1.2).  
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Figure 1.2. HIV-1 pathogenesis (based on original from Pantaleo et al. (132)) 

The graph depicts the various stages of HIV-1 infection (primary [eclipse and acute], chronic and 

AIDS) and the approximate corresponding time periods associated with each stage. In addition, 

the CD4
+
 T lymphocyte count and HIV plasma viral load level associated with each stage of 

infection is shown.  
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It has been demonstrated that a reservoir of latently infected cells (CD4
+ 

T cells, DCs and 

macrophages) is established during this phase (157). This early establishment allows for lifelong 

persistence of HIV-1 as latent cells are not recognised by the immune system and are infectious 

upon cell re-activation (50). 

 

Following the eclipse phase (approximately 10 days in duration) is the acute phase (Figure 1.2) 

during which the virus enters systemic circulation and infects a greater number of CD4
+
 T cells 

in lymphoid tissue, including the lymph node (44) as well as bone marrow (35). Establishment of 

infection in the lymphoid tissues leads to the virus replicating rapidly (68). A threshold of 

replication is reached within 21-28 days post-infection, corresponding to peak plasma viraemia 

(154) (Figure 1.2). The peak viraemia may be one to 10 million HIV-1 RNA copies/ml plasma 

and is accompanied by a steep decline in the number of CD4 T cells (68). Furthermore, during 

this stage of infection 50 to 90 percent of individuals display ailments common to other illnesses, 

such as fever, rash, malaise, sore throat and joint pain (30, 68). During this time frame, the 

patient is highly infectious (44).  

 

1.5.2 Chronic phase 

There is an unstable interplay between HIV-1 replication and the host immune responses during 

the chronic phase of infection (44). During chronic infection, a state of chronic immune 

activation is reached due to the constant viral replication (44) and as a result of many stimuli 

including direct activation of T cells via viral constituents Nef (described in Section 1.5.4.1.2) 

and gp120, virally stimulated production of circulating pro-inflammatory cytokines and bacterial 
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translocation across the mucosal barrier (15, 117). In addition to HIV-1 infection induced CD4+ 

T cell decline, immune activation adds to the gradual loss in the number of CD4+ T cells via 

activation-induced cell death (44, 48). Since CD4
+ 

T cells play a vital role in the immune system 

(101), their decline leads to a lowered immune response. Progressive immune degradation 

reduces the immune system’s ability to replenish depleted CD4
+ 

T cells (48).  HIV-1, however, 

remains persistent and continuously drives the proliferation and depletion of CD8
+ 

T cells which 

in turn leads to further depletion of CD4
+ 

T cells (24). Viral replication increases progressively, 

slowly reaching the end of the chronic phase of infection, which, on average, lasts for a duration 

of seven to 10 years (70). 

 

1.5.3 AIDS 

Once a hosts CD4
+ 

T cells decline below the threshold of approximately 200 cells/mm
3
, the host 

becomes immune-deficient and susceptible to opportunistic illnesses which ultimately results in 

death as the immune system eventually collapses (154). Pulmonary parenchymal complications 

are the main cause of illness and death in patients with AIDS and include pneumonias, 

tuberculosis and non-tuberculous mycobacteria (31). Other leading causes of death in AIDS 

patients include esophageal candidiasis and cervical cancer (20).   

 

1.5.4 Host immune responses: role of Nef in immune evasion 

Several innate and adaptive responses are elicited by the host immune system to control and 

eliminate HIV-1 infection. However, elimination of the virus through these immune responses is 

generally unsuccessful due to the virus’s ability to evade these responses or use them to drive 
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disease progression. Each of these responses are outlined below and the significant contribution 

of Nef to immune evasion is discussed. 

 

1.5.4.1 Innate immunity 

The innate immune system constitutes the first line of defense against invading pathogens, 

including HIV-1 and involves the action of host restriction factors and cells such as 

macrophages, dendritic cells and natural killer cells (117).   

 

1.5.4.1.1 Host restriction factors 

Host restriction factors interfere with different stages of the viral life cycle: apolipoprotein B 

mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC3G) induces lethal 

hypermutations of newly synthesised HIV-1 DNA; tripartite motif-containing protein 5 alpha 

(TRIM5α) restricts the incoming retroviral capsid; and tetherin restricts budding of virions from 

infected cells (75, 102). HIV-1 proteins Vif and Vpu counteract APOBEC3G and tetherin, 

respectively (102). A role for HIV-1 Nef in counteracting these host restriction factors has not 

been described. 

 

1.5.4.1.2 Macrophages and dendritic cells 

One of the first cell types to recognise pathogens are macrophages, which consequently ingest 

these pathogens and elicit a T cell immune response through cytokine signalling and antigen 

presentation (87). Dendritic cells are also among the first immune cells to encounter HIV 



20 
 

following infection and they, like macrophages, are involved in T cell activation (87, 113). 

Macrophages and dendritic cells present HIV-1 peptides, via the HLA-II pathway, to CD4
+ 

T 

cells thereby triggering CD4
+
 T helper responses that are required for anti-HIV antibody and 

cytotoxic T lymphocyte (CTL) immune responses (82, 119).   

 

HIV-1, however, infects macrophages and dendritic cells and has evolved mechanisms to counter 

their responses as well as utilise and manipulate these cells to assist  HIV-1 disease progression 

(82, 119). For example, HIV-1 Nef  prolongs the life span of infected macrophages and, 

stimulates macrophages to secrete factors that permit the infection of resting T cells, actions 

which increase the latent reservoir (59, 82, 147). Nef also shifts macrophages from an anti-

inflammatory to an active pro-inflammatory phenotype and this contributes to chronic immune 

activation (27).   

 

Furthermore, Nef impairs antigen presentation by disrupting HLA-II surface expression thereby 

reducing the presentation of foreign peptides to CD4 cells which would otherwise be activated 

(41).   

 

1.5.4.1.3 Natural killer (NK) cells 

NK cell antiviral capability is due to their production of cytokines, immunoregulatory effects on 

cells or by cytolytic activity (131). During HIV-1 infection, NK cells release macrophage 

inflammatory proteins (such as MIP-1-α) and other chemokines which suppress replication of R5 
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strains of HIV by competing with HIV for CCR5 (111). NK cell cytolytic activity is under the 

control of activating and inhibiting killer immunoglobulin (Ig)-like receptors (KIRs) which, upon 

binding of specific HLA molecules, will determine inhibition or activation of cytolysis (131). 

The binding of HLA-C and HLA-E molecules by KIRs, for example, inhibits NK cell-mediated 

killing (26). Nef mediates evasion of NK cell-mediated killing of infected cells through selective 

down-modulation of HLA-A and HLA-B molecules, but not HLA-C and HLA-E molecules, 

from the surface of infected cells (33). The mechanism of Nef-mediated down-modulation of 

HLA molecules as well as Nef’s involvement in evasion of CTL responses will be subsequently 

discussed (Section 1.5.4.2.3).  

 

1.5.4.2 Adaptive immunity 

 

1.5.4.2.1 CD4
+ 

T cells 

CD4
+ 

T cells play a central role in immune control by helping both CD8
+
 T cells and B cells in 

infection eradication through stimulating the differentiation and proliferation of these cells once 

they have encountered an antigen (101). As described earlier (Section 1.5.4.1.2), antigen-

presenting cells present anti-HIV peptides to CD4
+ 

T cells which results in their activation, 

however Nef has the ability to disrupt antigen presentation thus contributing to the impairment of 

CD4
+
 T cell responses. HIV-1 also infects and destroys CD4

+ 
T cells, thereby weakening the 

overall effect of the immune system (66). Nef makes a significant contribution to this depletion 

of CD4
+
 T cells:  indeed,  it has been shown, in the SCID-hu mouse model, that infection with 

HIVNL4-3 mutants with defective nef did not result in/or resulted in minor depletion of CD4
+ 

T 

cells (74). Nef increases the expression of the Fas ligand (CD95L) on infected cells, which in 
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turn increases Fas-mediated apoptosis upon bystander Fas (CD95) binding thereby indirectly 

destroying bystander T cells (6, 41). Additionally, Nef triggers apoptosis by inducing the release 

of exosomes from T cells, used for the transport of extracellular Nef, which causes activation 

induced cell death in these bystander cells (90). 

 

Since CD4
+
 T cells are involved in the differentiation and proliferation of B cells and CD8

+ 
T 

cells, their depletion indirectly impairs B cell and CD8
+
 T cell immune responses. 

 

1.5.4.2.2 B cells 

B cells are activated upon exposure to an antigen and consequently secrete specific antibodies 

(140). Non-neutralising antibodies are present in large amounts throughout viral infection but 

this has only a small effect on HIV-1 infectivity (159). Neutralising antibodies (Nab) develop 

slowly and may have an effect on HIV-1 infectivity, however, Nab responses may be ineffective 

against the rapidly mutating virus (mutations arise as a result of error prone RT) (140). The Nab 

responses exerts a selective pressure that drives continuous evolution of neutralisation escape 

mutants to which new Nab responses must be generated, thus the Nab response lags behind virus 

evolution (155). HIV may also directly impair the B cell response. For example, it has been 

shown that in infected macrophages, Nef induces the formation of specific channels to mediate 

its own transfer to neighboring B cells which results in impaired antibody responses in these 

cells (80). 
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1.5.4.2.3 CD8
+
 T cells 

The suppression of HIV-1 during early infection, which culminates the primary stage of HIV-1 

infection, is due to CD8
+
 T cell or CTL-mediated selective pressure (83, 135). During primary 

infection, there is a simultaneous decline in viremia and increase in CTL-induced anti-HIV 

responses (135). CTLs recognise HIV-1 epitopes presented by HLA-I molecules on the surface 

of infected cells (33). The infected cells are subsequently killed through CTL insertion of 

perforin pores in the cell membrane which allows for the entry of enzymes (granzymes) that in 

turn activate a death program leading to apoptosis of the cell (12).   

 

CTL induced apoptosis of HIV-1 infected cells is not however enough to eliminate the virus (12, 

83). This is due to the virus’s ability to escape CTL recognition through the development of 

escape mutations in epitopes (which may disrupt HLA-I binding or TCR recognition) or adjacent 

to viral epitopes (which may affect antigen presentation) (93). These viral variants undergo 

selective pressure that leads to CTL response driven HIV evolution (93) as the escape variants 

are deemed the most fit ‘population’ and their prevalence hence increases.   

 

HIV-1 may also evade CTL responses through Nef-mediated selective HLA-I down-modulation 

(33, 91). Studies have shown that HIV-1 infected cells expressing Nef have reduced 

susceptibility to lysis by CTLs in vitro, and that in these cells HLA-I is internalised and 

ultimately degraded (91, 133). HLA-I (specifically HLA-A and HLA-B) down-modulation is 

initiated through the binding of Nef (EEEE motif, amino acids 62 – 65) with the phosphofurin 

acidic cluster-sorting signal 1 (PACS1) protein (134) (Table 1). PACS1 is detached when the 



24 
 

Nef/PACS1 complex localises to the trans golgi network (TGN) (134). Subsequently, Nef binds 

to a src family kinase (SFK) which in turn binds to and phosphorylates ZAP70/Syk on tyrosine 

(51, 64). ZAP70/Syk is phosphorylated in order to bind to the SH2 domain of 

phosphatidylinositide-3-kinase (PI3K) (51). PI3K activates ADP ribosylation factor 6 (ARF6) 

GTPase by triggering the transport of surface HLA-I to the TGN through the ARF6 compartment 

where it is ultimately degraded by accelerated HLA-A and -B endocytosis (64, 141). 

 

1.6 Evidence for the role of Nef in HIV disease progression 

The various activities of Nef which enhance HIV replication and contribute to 

evasion/subversion of immune responses as detailed above, suggests that Nef significantly 

enhances HIV pathogenesis. In this section, the evidence for the importance of Nef in HIV 

disease progression is discussed. 

 

Progression to AIDS occurs on average within approximately 10 years of HIV-1 infection, 

however the time may differ significantly among individuals (81). Some individuals may 

progress to AIDS within 3 years or less of infection and are termed rapid progressors (143). On 

the other hand, a minority of HIV-1 infected people remain symptom free for prolonged periods 

(> 10 years in the absence of treatment) and may maintain stable levels of CD4
+
 T cells in the 

normal or near-normal range (57). Such individuals are known as long-term non-progressors 

(LTNPs) (57, 81). An even lower number of HIV-1 infected individuals (< 1%) naturally 

suppress plasma viral loads to undetectable levels in the absence of treatment and are known as 

elite controllers (ECs) (123).   
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There is evidence that impairment of Nef function may contribute to slower disease progression 

in HIV infected individuals, as well as in SIV-infected macaques. Nef was shown to be an 

essential factor for the development of an AIDS-like disease in rhesus macaques and  Nef-

attenuated HIV strains have been isolated from LTNPs implicating Nef as a critical virulence 

factor for AIDS (81). Furthermore, Nef clones derived from ECs are functional but display 

significantly lower Nef-mediated activities (HLA-I and CD4 down-modulation, HLA-II invariant 

chain (CD74) up-modulation, viral infectivity enhancement and stimulated viral replication) 

compared to chronic progressors (123).   

 

1.7 Treatment and preventive measures 

 

1.7.1 Antiretroviral therapy (ART) 

Since the introduction of combination antiretroviral therapy (cART) the number of AIDS related 

deaths has decreased (95). There are 25 antiretroviral (ARV) agents which constitute six 

categories of drugs that are licensed and available for the treatment of HIV-1 infection: seven 

nucleoside reverse transcriptase inhibitors (NRTIs), one nucleotide reverse transcriptase inhibitor 

(NtRTIs), four non-nucleoside reverse transcriptase inhibitors (NNRTIs), 10 protease inhibitors 

(PIs), cell entry inhibitors (one fusion inhibitor [FI] and one CC chemokine receptor 5 [CCR5] 

antagonist) and one integrase inhibitor (INIs) (34, 42, 144). Initial/first line therapy is based on a 

combination of two NRTIs and one potent agent from another drug class (148). Each component 

of a regimen is dependent on the specific situation of the individual who requires treatment 

(148).   
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Through the use of combination therapy plasma viremia is reduced thus increasing the life span 

of infected individuals, however the virus is not completely eliminated as the latent pool of HIV 

persists (34). Furthermore, ART is a life-long treatment, therefore there is a high risk for the 

development of drug resistance (34). In addition, a life time drug requirement results in a high 

cost factor. Even though life expectancy of HIV-1 infected people are increased with ART, the 

full life expectancy of these individuals remains diminished as these individuals have an 

increased risk of cardiovascular disease, metabolic disorders, neurocognitive abnormalities and 

frailty (95) to name a few. 

 

Due to the limitations of ART outlined above, preventative measures are also required to fight 

the HIV epidemic. Examples of such preventative approaches in development include 

behavioural intervention (counselling), sexually transmitted infections (STIs) treatment, male 

circumcision and topical microbicides as pre/post-exposure prophylaxis (69). However, a HIV-1 

vaccine would ultimately be the most cost effective and efficient way to control this global 

epidemic. 

 

1.7.2 HIV vaccines 

Despite the progress in understanding the interplay between HIV-1 and the human immune 

system, an effective vaccine against HIV-1 has not been developed (85). A successful vaccine 

has not been developed due to the major challenges in vaccine design (10, 85). Major challenges 

include the ability of the virus to integrate its genome into target cells as well as replicate and 

mutate rapidly: the rapid integration results in establishment of the viral latent reservoir which 
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narrows the window of opportunity where the virus could be eradicated by immune responses; 

while its rapid mutation rate enables the virus to evade human immune responses (116).   

 

Thus far, there have been approximately 200 Phase I and II trials of vaccine candidates; more 

than 50 have gone to clinical human trial and only five Phase IIb and III efficacy trials have been 

performed (69, 112). The most recent Phase IIb and III trials have been the STEP study and the 

Thai trial (10, 69, 112). The vaccine group did not display a significant reduction in HIV-1 

acquisition rates in any vaccine trials to date with the exception of the Thai trial (112) and no 

trials have shown slower disease progression in vaccinated individuals with break-through 

infections. 

 

Briefly, the STEP trial tested a T cell based vaccine regimen containing an adenovirus serotype 5 

(Ad5) vector and the HIV-1 clade B gag, pol, and nef genes (10). This vaccine was expected to 

better control viremia in individuals already exposed to the virus, rather than prevent new 

infections (10, 112). Even though the vaccine could elicit CTL responses, it failed to lower viral 

set-point (10, 112). The reason for lack of efficacy displayed by the vaccine remains unclear 

although it has been suggested that the failure may be associated with the range and specificity of 

CTL responses (112). 

 

The Thai trial (RV144) on the other hand showed modest efficacy in protection from infection 

(69). In this trial, recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) and 
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recombinant gp120 subunit vaccine booster injections (AIDSVAX B/E) was tested (137). This 

prime-boost vaccine resulted in 31% reduction in HIV incidence (69, 85) with CD4
+
 T cell 

lymphoproliferation, antibody directed cell-mediated cytotoxicity (ADCC), antibodies binding to 

HIV-1 gp120 and neutralising antibody activities being the most common immune responses 

(112). However, a study showed that neutralising antibodies were only effective against several 

tier 1 viruses and not against tier 2 viruses (118). Therefore, the modest protection seen in the 

trial was attributed to alternate immune responses either acting alone or in combination with 

neutralising antibodies (69, 118). There is ongoing experimental testing of the RV144 vaccine to 

determine which component of the vaccine rendered it modestly effective (69). Even though 31 

% efficacy is not sufficient, this trial shows that vaccine development is significantly closer since 

this is the first vaccine to partially block the acquisition of HIV-1 (112).  

 

The ideal goal is to develop a vaccine that would prevent the establishment of HIV infection. It 

has been shown that several monoclonal antibodies (mAbs) have the capacity to neutralise a 

broad array of HIV-1 isolates and these have the potential to prevent HIV-1 infection, however, 

such antibodies have proven to be difficult to induce by vaccination, and the development of 

immunogens that elicit broadly reactive NAbs remains an important unsolved problem in HIV-1 

vaccine development (10). Perhaps a more realistic goal might be a vaccine that does not 

completely eradicate the virus but suppresses viral load to low levels following infection and 

thereby slows disease progression (that is similar to EC or LTNP); such a vaccine could still 

have sufficient health impact (29). One such approach is to identify the most vulnerable regions 

of the virus and then target these with a vaccine immunogen, in order to limit immune escape or 

severely reduce fitness of the virus, thereby slowing disease progression (29). 
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1.8 Novel vaccine approach for rational immunogen design 

1.8.1 Targeting vulnerable regions strategy: escape, fitness and disease progression 

Fitness is a measure of an organism’s adaptation to a given environment and is directly 

dependent on its ability to compete with other quasispecies (136). In a study which compared the 

fitness between a control group (expressing moderate ex vivo fitness), HIV-1 isolates from 

LTNPs and HIV-1 isolates from patients with accelerated progression to AIDS, LTNPs isolates 

were outcompeted by both the control as well as the accelerated progressor strains (136). As 

described previously (Section 1.6) Nef-attenuated strains results in slower progression to AIDS 

(81). Both studies provide evidence that viral fitness is a factor which significantly contributes to 

HIV-1 disease progression. Furthermore, several studies have shown that viral escape mutations 

within highly conserved Gag capsid protein epitopes and which are also associated with 

protective HLA alleles significantly reduce viral replicative capacity (17, 39, 109). Troyer et al. 

(2009) also show that mutations in highly conserved regions are more likely to result in a viral 

fitness cost than those in more variable regions (149). 

 

Therefore, continuous immune pressure on the wild-type virus favouring the outgrowth of escape 

variants with diminished fitness is a suggested vaccine strategy (7, 29). Although promising, this 

strategy poses a challenge because HIV-1 develops compensatory mutations that restore or 

partially restore its reduced fitness (17, 29, 39). Recently, computational models have been 

designed that attempt to address these challenges, a discussion of which follows. 
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1.8.2 Computational models  

 

1.8.2.1 Sectors 

A study by Dahirel et. al (2007) sought to address the challenge of immune escape and ease of 

compensation for loss of fitness, by identifying higher order constraints on the development of 

HIV mutations (40). They developed a computational model using statistical physics to identify 

groups of co-evolving amino acids in the HIV Gag protein that evolved independently from other 

groups and termed such groups ‘sectors’ (40). Five Gag sectors were identified and correlations 

between multiple mutations at sites that comprise each collectively evolving sector were 

determined (40). A negative correlation between sites implies that the simultaneous mutations at 

these sites are observed less frequently (and therefore expected to result in less fit virus) than if 

the individual mutations were to arise independently (40). Thus, it is expected that the greater the 

proportion of negative correlations in a sector, the more difficult it would be for the virus to 

escape the CTL pressure and maintain virus fitness should multiple sites within the sector be 

targeted by CTLs (leading to maintained immune pressure) (40). Such an immunologically 

vulnerable sector (termed sector 3) was identified in which escape and compensatory pathways 

are expected to be restricted and supporting these hypotheses, elite controllers preferentially 

target this sector (40). 

 

1.8.2.2 Fitness landscape 

However, the sector model does not provide information about the fitness of strains with specific 

mutations in combination and cannot identify viable escape pathways that remain after targeting 

the vulnerable sector (49). This model was therefore extended by the development of a model 
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that can predict fitness landscape of any viral strain as a function of its amino acid sequence (49). 

Multiple sequence alignments (MSA, biological alignment of subtype B sequences) extracted 

from infected hosts, captured in the Los Alamos National Laboratory HIV Database 

[http://www.hiv.lanl.gov], were downloaded, processed and then used to generate the model. The 

model is based on the Ising spin glass model from statistical physics (49). The presence of 

mutations or the wild-type amino acid at each codon within each sequence in the MSA was 

defined using a binary approximation. The wild-type amino acid was denoted by zero and a 

mutant amino acid was denoted by one. This code therefore does not consider the identity of the 

mutant amino acid, however it is a good approximation for highly conserved proteins.  

 

The model assigns an ‘energy’ (E) value to each viral strain. This E value is related to the 

probability of observation of the strain within the population and is predicted to be inversely 

related to replicative fitness (49). The model thus provides comprehensive information on viral 

fitness landscape and may potentially be used to predict replicative fitness of various mutant 

strains, viable escape pathways that remain after targeting vulnerable regions and how to restrict 

viable immune escape, hence serving as a potential tool for HIV-1 immunogen design (49). The 

model however, requires validation with in vitro experiments and experiments using animal 

models (49). 

 

Thus far, the fitness landscape model for the highly conserved Gag protein as been tested (49). 

For the in vitro experiments, 19 different mutations (16 single and 3 paired mutations) in Gag 

p24 were introduced in HIV-1 clade B NL4-3 backbone (49). The replication capacity of each 
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mutant was measured and plotted against the energies of the same mutants predicted by the 

model (49). A strong negative correlation was observed between the two plotted variables which 

showed that the in vitro data supported model predictions (49).   

 

More recently, the fitness landscape model for Gag was computationally advanced and further 

tested by measuring the in vitro replication capacities of HIV strains containing multiple 

mutations – 43 different mutants were tested in total (105). As previously, in vitro data correlated 

well with model predictions. Model advancements included the introduction of Bayesian 

regularisation:  previously, strains containing pairs of mutations not present in the MSA database 

were inferred as having a zero probability. However, this may have been due to a limitation of 

the sample size, which is corrected for in newer models by Bayesian regularisation. The resulting 

regularised model predicts non-zero values for sequences containing mutations not observed in 

the sequence database. Further, an advanced modelling approach, the Potts model, was 

developed to address a major drawback of the Ising model: it cannot predict the fitness 

differences between strains containing different mutations at a particular position.  This may in 

particular pose a disadvantage for predicting the fitness consequences of mutations in highly 

variable proteins such as Env and Nef. The Potts model takes specific amino acid mutations into 

account rather than using the binary approximation (as detailed above).   

 

1.9 The present study 

Despite the growing epidemic and research efforts there still exists limitations of ART and a 

vaccine against HIV-1 remains elusive, mainly due to high mutability of the virus and its 
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consequent immune evasion (Section 1.7). Computational models predicting the viral fitness 

landscape are a novel and promising approach to rational, rather than empirical, vaccine design 

that have the potential to overcome the challenge of HIV-1 immune evasion (Section 1.8). These 

models however require validation by in vitro and animal model experimental procedure 

(Section 1.8). As mentioned previously, the fitness landscape model for the highly conserved 

Gag protein has been tested, and the in vitro data strongly supports the fitness model predictions 

(Section 1.8). In such a highly conserved protein, escape mutations would likely result in a 

fitness cost to the virus, however, it is not expected that mutations in variable proteins such as 

Nef would result in a fitness cost (Section 1.8). However, Nef may be a desirable vaccine target 

since it plays an essential role in increasing HIV virulence and pathogenicity and enhancing viral 

replication (Sections 1.4 - 1.6). Furthermore, Nef is highly immunogenic with many HLA-

associated mutations potentially conferring escape from CTL responses (19). Nef was included 

in the unsuccessful STEP trial vaccine (21), however there is little evidence for or against its 

inclusion in vaccine strategies.   

 

The fitness landscape model of Nef has not yet been tested, but could potentially reveal 

vulnerable regions of Nef and indicate suitability for inclusion of specific Nef epitopes in a 

vaccine. The present study is in collaboration with the developers of the fitness landscape model. 

Collaborators have applied modelling approaches to the Nef protein, and the present study will 

test various combinations of mutations in Nef (spanning a wide range of predicted E values) 

predicted to be either harmful or not harmful to HIV-1 replication. The performance of the Potts 

and Ising models for Nef will be compared to determine whether the Potts model can better 

predict the effect of different combinations of mutations in the highly variable HIV-1 Nef protein 
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than the Ising model, as is expected to be the case (Section 1.8.2.2). We will measure the fitness 

of the various Nef mutants in peripheral blood mononuclear cells (PBMCs) as previously 

described (123) because the presence of Nef is not essential for viral replication in many 

immortalised T cell lines (100). In addition to measured viral fitness, two well-described and 

pathogenic functions of Nef: CD4 down-modulation (which enhances HIV-1 infectivity and 

replication) and HLA-I down-modulation (which enhances immune evasion) (51) will be 

measured, since HLA down-modulation potentially does not directly influence HIV replication 

in vitro, yet may still play a significant role in HIV-1 pathogenesis. Specific aims and objectives 

of the present study are outlined below. 

 

1.9.1 Aim 

To evaluate and compare the accuracy of the Ising and Potts models in predicting the fitness 

consequences of mutations in HIV-1 Nef through directly testing in vitro the effect of various 

mutations and mutation combinations on HIV-1 replication ability and Nef functions. 

 

1.9.2 Objectives  

- Introduce combinations of mutations into the consensus B nef gene, cloned into an HIV-1      

NL4-3 plasmid, by site directed mutagenesis and confirm the presence of mutations by 

sequencing. 

- Generate stocks of mutant viruses by electroporation of a green fluorescent protein 

(GFP)-reporter T cell line with mutant plasmids. 

- Assay in vitro replication capacities of mutant viruses in PBMCs using ELISA. 
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- Clone the mutant nef  sequences into a GFP-expressing plasmid, transfect cells with 

clones and measure cell-surface expression of CD4 and HLA-I in transfected cells by 

flow cytometry to determine the Nef-mediated CD4 and HLA-I down-modulation 

capacities of the mutant viruses. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1 Ethical considerations 

The proposed study was approved as and forms part of a study protocol (Investigation of the 

viral fitness landscape in and around multi-dimensionally conserved regions of HIV-1) for which 

ethical approval has been obtained from the Biomedical Ethics Research Committee of the 

Nelson R Mandela School of Medicine (University of KwaZulu-Natal) (Ref: BE166/11).  

 

2.2 Mutation selection 

To evaluate and compare the ability of the Ising and the Potts models in predicting the fitness 

consequences of mutations in HIV-1 Nef, by in vitro experimental procedures, several mutations 

and mutation combinations were selected for testing based on their predicted energies. As 

mentioned previously, the models assign an energy (E) value to each viral strain which is 

predicted to be inversely related to the replicative fitness of the strain (49). 

 

Mutants were selected so that they covered a range of E values. We included mutations in known 

functional motifs involved in CD4 and HLA down-modulation for comparison to what has been 

documented in literature. We also included HLA-associated mutations (likely to be CTL escape 

mutations) or known CTL escape mutations that covered a range of E values, since it would be 

desirable to identify CTL escape mutations with functional costs. Mutations with differential E at 

the same codon were also chosen to test the ability of the Potts model to distinguish between and 

account for different substitutions at the same codon. All mutations, as well as their E values 

predicted by the Ising and Potts models and the reasons for their selection are summarised in 

Table 2.1. 
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Table 2.1.  Energies, predicted by the Ising and Potts models, of the selected mutants 

Category Mutant
a
  Ising E

a
 Potts E

b 

 

 

    Previously shown to be required for  down modulation of: 

Known 

functional 

motifs 

17K19K 10.15 10.60 HLA and to a lesser extent CD4 (141) 

57G 6.60 6.73 CD4 (60, 67, 104) 

57R 6.60 5.16 CD4 (60, 67, 104) 

57R58P 10.70 9.67 CD4 (60, 67, 104) 

72L75L 12.85 13.92 HLA (52, 104) 

123G 5.95 7.48 HLA and CD4  (52, 60) 

    Associated with HLA-
c 

HLA 

associated/ 

known CTL 

escape 

mutants/ 

Mutant-- 

pairs 

28E -0.20 1.43 C*08:02  

33A 1.11 1.89 A*68:01. 33V known escape mutant (62) 

43L 1.45 4.16 43V associated with C*03 

71K 1.60 1.48 C*07:02 and 71T with B*07:02. 71T and 71R are known escape mutants (98, 122, 

150)  

76V 3.72 4.95 B*81 and C*18:01. 76V, 76T, 76I are known escape mutants (92) 

80D 3.74 6.07 B*35:01 and C*07:02  

80N 3.74 4.52 B*07:02 

88G 3 8.94 Known escape mutant (28) 

102H 

102W 

-0.60 

-0.60 

0.98 

4.28 

B*44:03 and C*08 

  

133T -0.97 0.8 B*35:01, 133I with B*38:01 and B*57 

135F 0.92 2.23 A*23:01 and A*24. A known escape mutant (56) 

143Y 3.57 2.88 A*23:01 

188H 1.55 2.72 A*31:01, 188R with B*58:01 and 188S with A*30:01. 188N known escape mutant (62) 

192R 0.99 2.47 192K associated with A*74. A known escape mutant (77) 

28E102H 0.43 2.60  

28E102W 0.43 6.10  

33A43L 1.47 2.87  

43L88G 5.40 13.29  

71K76V 6.53 6.57  

76V80N 8.16 9.62  

133T135F -1.22 0.58  

135F143Y 7.56 6.28  

188H192R 1.74 2.61  

     
Variable 

amino acids 

at same 

codon  

21E -0.34 5.31 Chosen to test the ability of the Potts model to distinguish between, and assign E 
values accordingly, for different mutations at the same codon 

21K -0.34 0.58 

57Gd 6.60 6.73 

57Rd 6.60 5.16 

80Dd 3.74 6.07 

80Nd 3.74 4.52 

102Hd -0.60 0.98 

102Wd -0.60 4.28 

28E102H 0.43 2.60 

28E102W 0.43 6.10 
aAll mutants chosen represent the most common mutation at the corresponding residue with the exception of the additional mutations chosen to test the 

ability of the Potts model to distinguish between different amino acids at the same codon 

bThe energies were computed for the mutations in the consensus B sequence background, where any sequence differences from the MSA consensus 

sequence were considered as additional mutations 

cLists of HLA-associated polymorphisms in Nef were derived from (22, 23) 

d Mutants repeatedly listed in the table i.e. mutants which fall into more than one category 
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2.3 Preparation of the LANL consensus B nef NL4-3 plasmid 

The mutations listed in Table 2.1 were introduced into the consensus B nef sequence (2004 

consensus sequence available from the Los Alamos Sequence database [LANL]), kindly donated 

by Dr. Mark Brockman (Simon Fraser University, Canada, formerly of the Ragon Institute of 

Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard 

University). The LANL consensus B nef sequence was chosen since it differed by only nine 

amino acids from the Nef MSA (multiple sequence alignment) consensus sequence. The LANL 

consensus B nef sequence was provided in the background of the pselect plasmid (Invivogen, 

San Diego, USA). Prior to performing site-directed mutagenesis, this LANL consensus B nef 

sequence was cloned into an ampicillin-resistant HIV-1 subtype B NL4-3 plasmid using 

restriction enzymes. A modified NL4-3 plasmid containing NcoI and NotI restriction enzyme 

sites on either side of the nef gene, respectively, was kindly donated by Dr. Takamasa Ueno 

(Kumamoto AIDS Research Centre, Kumamoto, Japan). The cloning of LANL consensus B nef 

into NL4-3 is described below and illustrated in Figure 2.1.  

 

 

2.3.1 PCR amplification of LANL consensus B nef to introduce NcoI and NotI restriction 

sites   

 

A 50 µl PCR reaction was performed to introduce NcoI and NotI sites on either side of the 

LANL consensus B nef gene using the Expand High Fidelity PCR System (Roche Applied 

Science, Mannheim, Germany).  
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Figure 2.1. Cloning LANL consensus B nef into NL4-3 

The LANL consensus B nef sequence was amplified by PCR from the LANL consensus B nef 

pselect plasmid and both the amplified product as well as the NL4-3 plasmid were digested with 

NcoI and NotI enzymes. The products were then ligated using T4 DNA ligase and transformed 

into E. coli cells. The transformed cells were then plated on LB agar plates which contained 

ampicillin to select for cells transformed with the ampicillin-resistant NL4-3 plasmid. The 

presence of the LANL consensus B nef sequence was confirmed by sequencing and a colony that 

contained this sequence was purified by a maxiprep procedure.  
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The reaction comprised 0.75 μl Roche enzyme, 5 μl Buffer 2, 2 μl Buffer 4, 4 μl of 2.5 mM 

deoxyribonucleotide triphosphate (dNTPs, TaKaRa Ex Taq HS enzyme kit [Takara, Shiga, 

Japan]), 1 μl of 10 μM forward primer (5' CTTTGAARCAGCTTTGCTATAAACCATGGG 3', 

NcoI site in bold), 1 μl of 10μM reverse primer (5' AAAGTCCCAGGCGGAAAGTCC 

GCGGCCGCTCAGCAG 3', NotI site in bold), and 2 μl of 25 ng/μl LANL consensus B nef 

pselect plasmid. The PCR was run on a thermocycler with an initial denaturation at 94 °C for 2 

minutes, 35 cycles of denaturation at 94 °C for 15 seconds, annealing at 55 °C for 30 seconds, 

extension at 72 °C for 2 minutes with a 5 second increment after every cycle; and a final 

extension step at 72 °C for 7 minutes.  5 μl of the PCR product was mixed with 2 μl loading dye 

containing GelRed, electrophoresed on an agarose gel (1 % [weight of agarose to volume of 

buffer]) using Tris Borate EDTA (TBE) buffer and visualised using a G:BOX.  The remainder of 

the product was purified using the QIAquick PCR purification kit (Qiagen, Valencia, USA) 

according to the manufacturer’s protocol.  

 

2.3.2 Digestion of LANL consensus B nef PCR product and modified NL4-3 plasmid 

containing NcoI and NotI sites 

Purified LANL consensus B nef PCR product (5 µg) and NL4-3 plasmid (5 µg) were both 

digested with restriction enzymes NotI (10 U) and NcoI (10U) (New England Biolabs, Hitchin, 

UK) in the presence of Buffer 3.1 (1 ×) and water (to a final volume of 50 µl). The reaction was 

incubated at 37 °C for 1 hour and the enzyme inactivated at 65 °C for 20 minutes. Digested 

products were electrophoresed in the presence of Tris Acetate EDTA (TAE) buffer. The digested 

products were then excised from the gel (avoiding exposure to UV light, as this degrades DNA) 
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and purified using the GeneJET Gel Extraction Kit (Thermo Scientific) according to the 

manufacturer’s protocol.  

 

2.3.3 Ligation of digested LANL consensus B nef and NL4-3 

Gel purified digested LANL consensus B (30 ng) and NL4-3 (186 ng) were ligated using 3U of 

T4 DNA ligase (Promega, Madison, USA) in a final reaction volume of 20 µl. The reaction was 

incubated at 22 °C overnight, followed by an inactivation of the enzyme at 65 °C for 10 minutes.  

1 µl ligation product was transformed by heat shock into 33 µl E.cloni cells (Lucigen, Middleton, 

USA) and plated on Luria-Bertani (LB) ampicillin agar plates (100 µg ampicillin per 1 ml broth), 

according to manufacturer’s instructions. 

 

2.3.4 Verification of the LANL consensus B nef NL4-3 clone by colony PCR and sequencing    

 

2.3.4.1 Colony PCR   

PCR, followed by gel electrophoresis, was used to determine the presence of nef-containing 

plasmid in colonies as follows: colonies were picked from the transformation plate, touched on 

another LB-ampicillin agar plate to keep a record of the colonies, and dissolved in 10 µl PCR 

water. This suspension was briefly vortexed and boiled in a thermocycler at 98 °C for 10 

minutes. The 10 µl PCR reaction was performed using the TaKaRa Ex Taq HS enzyme kit 

(Takara, Shiga, Japan) and utilised 6.6 µl PCR water (Bioline, Taunton, USA), 0.08 µl Ex Taq 

DNA polymerase, 0.8 µl dNTPs, 1 µl Ex Taq buffer, 0.25 µl each of 10 µM Nef-specific primers 

(forward primer: 5' ACATACCTASAAGAATAAGACAGG 3', and reverse primer: 5' 
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GTCCCCAGCGGAAAGTCCCTTGT 3'), and 1 µl boiled colony. The PCR was run for 35 

cycles: denaturation at 94 °C for 15 seconds, annealing at 55 °C for 30 seconds and extension at 

72 °C for 1 minute and 30 seconds with an initial denaturation at 94 °C for 2 minutes and a final 

extension step at 72 °C for 7 minutes. The nef-containing colonies were then sequenced to verify 

the LANL consensus B nef sequence.   

 

2.3.4.2 Sequencing of the colony PCR product 

Sequencing was performed using the ABI Prism Big Dye Termination V 3.1 cycling sequencing 

kit (Applied Biosystems, Foster City, USA) in a 96-well plate (Applied Biosystems). Each 10 µl 

reaction comprised 4 µl PCR water (Bioline), 2 µl sequencing buffer, 0.4 µl BigDye mix, 2.6 µl 

Nef-specific primer: 5' GTGGAAAGTCCCAGGCGGAAAG 3' (2 µM) and 1 µl diluted 

template DNA (1 µl colony PCR product diluted in 14 µl PCR water [Bioline]). The following 

cycling conditions were used: initial denaturation at 96 °C for 1 minute with 25 cycles of 

denaturation at 96 °C for 10 seconds, annealing at 50 °C for 5 seconds and extension at 60 °C for 

4 minutes. A sequencing plate clean-up was then performed on the fresh sequencing products. 1 

µl of 125 mM ethylenediaminetetraacetic acid (EDTA) plus a mix of 1 µl sodium acetate at 3 M 

with 1 µl absolute ethanol were added to each product. The plate was then covered with foil and 

the reactions were mixed by vortex for 5 seconds which was followed by centrifugation at 3000 

rpm for 20 minutes. The supernatant was removed by inverting the plate on tissue paper and 

centrifuging at 180 rpm for 1 minute. The pellets were washed with 35 µl ethanol (70 %) and 

centrifuged at 3000 rpm for 5 minutes. Again, the supernatant was removed by inverting the 

plate on tissue paper and centrifugation at 180 rpm for 1 minute. The products were then dried in 

a thermocycler at 50 °C for 5 minutes and stored at - 20 °C until further use.  
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These products were re-suspended in 10 l formamide and vortexed. The plate was then 

incubated in a thermocycler at 95 °C for 3 minutes and at 4 °C for 3 minutes. The sequences 

were then compiled using the ABI 3130xl Genetic Analyzer (Applied Biosystems). Sequences 

were compared to the LANL consensus B nef sequence using Sequencher 5.0 (Gene Codes 

Corporation, Ann Arbor, USA).   

 

The colony verified to contain the correct LANL consensus B nef sequence was then inoculated 

into 3 ml LB-ampicillin broth (100µg ampicillin per 1 ml broth) followed by incubation at 37 °C 

and 250 rpm for 2 hours. This culture was then used to inoculate 100 ml of fresh LB-ampicillin 

broth, at the same concentration, which was incubated overnight at 37 °C and 250 rpm. The 

LANL consensus B nef NL4-3 plasmid was then purified from these bacterial cells by a maxi-

prep procedure (Qiagen) according to manufacturer’s instructions.  

 

2.4 Site-directed mutagenesis of the LANL consensus B nef NL4-3 plasmid 

Mutations (Table 2.2) were introduced into the LANL consensus B nef NL4-3 plasmid using the 

QuikChange II XL Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA) according to 

manufacturer’s indications. Briefly the procedure involved the generation of mutants (containing 

staggered nicks) through PCR amplification of the desired template with mutagenic primers, 

listed in Table 2.2. This was followed by selective removal of the original unmutated plasmid by 

digestion of the PCR product with DpnI, which specifically recognises and cleaves methylated 

DNA that is present only in the original plasmid. The nicked mutant plasmid was then 

transformed into XL10-Gold Ultracompetent cells for nick repair.  



46 
 

Table 2.2. Primers used in site-directed mutagenesis to induce the desired mutations 

 

Mutant
a
  Primer sequence

b 

17K19K GGATGGCCTACTGTAAAGGAAAAAATGAGACGAGCTGAGCC 

21E CCTACTGTAAGGGAAAGAATGGAACGAGCTGAGCCAGCAGCAG 

21K CCTACTGTAAGGGAAAGAATGAAACGAGCTGAGCCAGCAGCAG 

28E CGAGCTGAGCCAGCAGCAGAAGGGGTGGGAGCAGTATC 

33A GCAGATGGGGTGGGAGCAGCATCTCGAGACCTGGAAAAAC 

43L CCTGGAAAAACATGGAGCACTCACAAGTAGCAATACAGCAGC 

57G GCTAACAATGCTGATTGTGCCGGGCTAGAAGCACAAGAGGAGG 

57R                   GCTAACAATGCTGATTGTGCCCGGCTAGAAGCACAAGAGGAGG  

57R58P GCTGATTGTGCCCGGCCAGAAGCACAAGAGG 

71K GGAGGAGGAGGTGGGTTTTCCAGTCAAACCTCAGGTACCT 

72L75L GGGTTTTCCAGTCAGACTTCAGGTACTTTTAAGACCAATGAC 

76V CCTCAGGTACCTGTAAGACCAATGACTTACAAGGG 

80N CAGGTACCTTTAAGACCAATGAATTACAAGGGAGCTTTAGATC 

76V80N GACCTCAGGTACCTGTAAGACCAATGAATTACAAGGG 

80D CAGGTACCTTTAAGACCAATGGATTACAAGGGAGCTTTAGATC 

88G CAAGGGAGCTTTAGATCTTGGCCACTTTTTAAAAGAAAAGGGGGG 

102H GGGGGGACTGGAAGGGCTAATTCACTCCCAAAAAAGACAAG 

102W GGGGGGACTGGAAGGGCTAATTTGGTCCCAAAAAAGACAAG 

123G CACACAAGGCTACTTCCCTGGATGGCAGAACTACACACCAGGG 

133T CACACCAGGGCCAGGGACCAGATATCCACTGACCTTTGG 

135F CCAGGGCCAGGGATCAGATTTCCACTGACCTTTGGATGG 

133T135F CACACCAGGGCCAGGGACCAGATTTCCACTGACCTTTGGAT 

143Y CCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCC 

188H GTGTGGAAGTTTGACAGCCACCTAGCATTTCATCACATGGCC 

192R GACAGCCGCCTAGCATTTCGTCACATGGCCCGAGAGC 

188H192R GTTTGACAGCCACCTAGCATTTCGTCACATGGCCCGAGAGC 

aIn order to create the mutation combinations 28E102H, 28E102W, 33A43L, 43L88G, 71K76V and 135F143Y, 

independent primers were not utilised, instead primers designed to create the single mutants were used in 
combination in the site-directed mutagenesis reaction as these primers did not overlap with each other. 

bThe table contains the forward primer sequences (5’ – 3’ direction) and the reverse primer sequences are the 

reverse complements of the forward primers. The mutated codon in each primer is underlined and the 

nucleotide change is highlighted. 
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To determine transformation success, a PCR was performed on colonies as described in Section 

2.3.4.1. In addition, sequencing (described in Section 2.3.4.2) was performed to confirm the 

presence of the correct mutation in nef-containing colonies. Plasmid DNA was then purified 

from the colonies confirmed to contain the correct mutant sequence by the Qiagen maxi-prep 

procedure. The site-directed mutagenesis procedure is depicted in Figure 2.2.  

 

Since the HIV-1 Nef sequence partially overlaps with the 3' LTR sequence (Figure 2.3), the 

primers for mutations in the overlapping region after codon 96 will bind to both the Nef 

sequence and the 5' LTR sequence present in the LANL consensus B nef NL4-3 plasmid. 

Therefore, for these specific mutations, the LANL consensus B Nef sequence was cloned into the 

TOPO vector using the TOPO TA Cloning kit pCR 2.1 (Invitrogen, Carlsbad, USA) prior to 

mutagenesis. Following confirmation of the presence of the correct mutations, the mutated Nef 

sequence was cloned back into NL4-3 as described in Section 2.3.   

 

2.5 Generation of mutant virus stocks 

In order to generate the mutant viruses, a CEM-derived T cell line, CEM-GXR25 (GXR; donated 

by Dr. Mark Brockman) was transfected with the mutant plasmids, as described previously (160) 

and briefly in Section 2.5.2. These CXCR4
+
 and CCR5

+
 GXR cells encode GFP which is Tat-

dependent and driven by HIV-1 LTR. GFP is produced following HIV-1 infection which allows 

for the detection of infected cells by flow cytometry (18). This procedure is demonstrated in 

Figure 2.4. 
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Figure 2.2. Site-directed mutagenesis  

The NL4-3 plasmid was PCR amplified with mutagenic primers to induce the desired mutations, 

followed by digestion with DpnI to selectively remove the original plasmid since this enzyme 

specifically recognises and cleaves methylated DNA present in the original, yet not the modified, 

plasmid. Following mutagenesis, plasmids were transformed by heat shock into competent 

bacterial cells which were then plated on LB-ampicillin agar plates to allow for specific 

reproduction of the cells transformed with the ampicillin-resistant plasmid. Plasmid DNA was 

purified from the bacterial cells by a maxi-prep procedure and the presence of the desired 

mutations confirmed by sequencing.  



49 
 

Dpn I digestion  

  
 

HIV-1 NL4-3 plasmid 

ampicillin  

resistance 

gene 

   
 

PCR amplified with mutagenic 

primers 

  
 

    original plasmid      modified plasmid 

  
 

  

  
E.coli cells transformed with the modified/mutant 

plasmid 

heat shock 

Transformed E.coli cells are cultured 

incubated  

overnight 

  
 

Plasmid DNA purified by a 

maxi-prep procedure 

 

Transformed cells are plated on (LB)-ampicillin 

Incubated:  24 hours 

 G   T  A   C 

Plasmid DNA sequenced to confirm  

the presence of mutations 



50 
 

Figure 2.3. HIV-1 genome organization (from http://www.hiv.lanl.gov/) (1) 

HIV-1 genes and gene products are represented as rectangles and are numbered relative to HIV-1 

HXB2. In addition, the DNA sequence flanking the genome (Long terminal repeat (LTR) region) 

is depicted. HIV-1 Nef overlaps with the 3̍ LTR region from codon 96 to codon 206. 

http://www.hiv.lanl.gov/
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Figure 2.4. Generation of virus stocks from mutant plasmids 

GXR cells were transfected with the mutant plasmids via electroporation at 250 V and 950 µF. 

The cells were maintained in R10 medium and incubated at 37 °C and 5 % CO2. Virus growth 

was monitored by flow cytometry and when approximately 30 % of the cells were infected, the 

culture was centrifuged at 4 °C and 1700 rpm for 5 minutes. The viral supernatant was aliquoted 

and stored at – 80 ᵒC until further use in virus titration and replication capacity assays. 
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2.5.1. Culturing of GXR cells 

GXR cells were stored in a liquid nitrogen freezer (Custom Biogenics Systems, Romeo, USA) at 

5 million cells in 1ml R10 medium (RPMI-1640 [Sigma, St Louis, USA] supplemented with 

10% foetal bovine serum (FBS) [Gibco, New York, USA], 2 mM L-glutamine [Sigma], 10 mM 

N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) [Gibco], and 50 U per ml 

penicillin-streptomycin [Gibco]) containing 10 % dimethylsulfoxide (DMSO). Frozen GXR cells 

were thawed in a water bath at 37 °C.  The thawed aliquot was then added into a T25 flask 

(Corning-Costar, New York, USA) containing 4 ml pre-warmed R10 medium and incubated at 

37 °C and 5 % CO2.  The following day, to remove DMSO, the 5 ml cell culture was centrifuged 

at 1500 rpm for 10 minutes and the supernatant discarded. The pelleted cells were then re-

suspended in 10 ml pre-warmed R10 medium and again incubated at 37 °C and 5% CO2. Once 

cells had recovered and proliferated (as indicated by a change in colour of the R10 medium from 

red to yellow, due to the presence of phenol red indicator in the medium), the GXR stock culture 

was thereafter maintained in a T75 flask (Corning-Costar). 

 

2.5.2 Transfection of GXR cells with mutant plasmids 

 

The number of cells present in the GXR stock culture was counted using the TC10 automated 

cell counter (Biorad, Hercules, USA).  Briefly, 10 µl of the stock culture was mixed with 10 µl 

of trypan blue (0.4 %) and 10 µl of the mixture added into the chamber of the disposable slide 

(Biorad), which was then inserted into the cell counter. The trypan blue allows distinction 

between live and dead cells. The required number of live GXR cells (five million cells per 

sample: four million electroporated and one million unelectroporated) were pelleted by 
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centrifugation at 1500 rpm for 10 minutes.  The four million cells (per sample) that were pelleted 

for electroporation were re-suspended in 300 µl R10 medium and transferred to a 0.4 cm 

electroporation cuvette (Biorad), while the 1 million cells (per sample) that were not to be 

electroporated were re-suspended in 1ml R10 medium supplemented with 4 µl of polybrene (10 

mg/ml, Millipore) and added to 9 ml R10 medium in a T25 flask. Each mutant plasmid (10 µg, 

Section 2.5.) was added to the 4 million GXR cells in the electroporation cuvette and mixed by 

pipette. This mixture was subjected to electroporation in a Gene Pulser II (Biorad) at 250 V and 

950 µF.  The electroporated cells were rested for 5 minutes and transferred into the T25 flask 

containing the non-electroporated cells. Five days after transfection, 5 ml R10 medium was 

added to each flask, and virus growth was thereafter monitored by flow cytometry as described 

next.  

 

2.5.3 Measurement of virus growth by flow cytometry 

Six days after transfection, 1 ml of the cell culture was removed (followed by replacement with 

fresh R10 medium) and pelleted by centrifugation at 1500 rpm for 10 minutes in a cluster tube 

(Corning).  The supernatant was discarded and the tubes vortexed to re-suspend the cell pellet in 

the remaining supernatant.  The cells were fixed with 200 µl of 2% paraformaldehyde (PFA).  

These cells were then measured for GFP expression by flow cytometry on a FACSCalibur (BD 

Biosciences, San Jose, USA) to determine the percentage of infected cells (GFP-positive cells).  

The culture was monitored every 2 days until harvesting. 
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2.5.4 Harvesting virus stocks 

When approximately 30 % of the cells were infected, the culture supernatant was harvested.  

This was done by centrifuging the culture at 4 °C and 1700 rpm for 5 minutes and storing 1 ml 

aliquots of the virus containing supernatant at – 80 ᵒC.   

 

2.6 Titration   

The virus stocks were diluted 4000 × in R10 medium and levels of p24 in these viruses were 

quantified by ELISA using the Retro-trek HIV-1 p24 Antigen ELISA 2.0 kit (ZeptoMetrix 

corporation, New York, USA) according to manufacturer’s indications. All wash steps were 

performed using the ELx50 auto strip washer (BioTek, USA). The optical densities of each 

virus-containing well was read at 450nm using the modulus microplate multimode reader 

(Turner Biosystems, New York, USA).  

 

For some of the mutant viruses, levels of p24 could not be detected at the abovementioned 

dilution, therefore the dilutions were adjusted accordingly and measurement of p24 repeated. The 

concentration of p24 levels in the mutant viruses were calculated using the standard curve. The 

curve was a plot of the concentration of the HIV-1 p24 Antigen standard (x axis), which was 

included in every assay, against the optical densities for each standard.  
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2.7 Replication capacity assay 

The replication capacity assay was performed as previously described (151). The assay was 

performed twice independently using two different donor PBMCs. The PBMCs were previously 

obtained from South African National Blood Services and cryopreserved at HPP. A negative 

(ΔNef) and positive control (SF2 Nef) was included in every assay.   

 

2.7.1 Thawing of PBMCs  

PBMCs were thawed one day before infection by removing a vial of cells from storage in liquid 

nitrogen and immediately suspending the vial in a 37 °C waterbath. Once thawed, the cells were 

made up to 20 ml with R10 (RPMI 1640 [Sigma] with L-glutamine [Invitrogen], 1 % MEM non-

essential AA [Gibco], 1 % of 100 mM sodium pyruvate [Gibco], 10 % FBS [Gibco]) and 

centrifuged at 1500 rpm for 5 minutes. The supernatant was removed and the cells re-suspended 

in 10 ml of R10 and again centrifuged at 1500 rpm for 5 minutes. The cells were once again re-

suspended in 10 ml of R10 and the cells were cultured at 37 °C and 5% CO2 until infection the 

next day.   

 

2.7.2 Infection of PBMCs 

A cell count was performed using a hemocytometer by mixing 10 µl of the PBMC culture with 

10 µl of trypan blue (0.4 %) and loading 10 µl of the mixture into the chamber of a 

hemocytometer. The cells were then viewed and counted using the microscope. Only the live 

cells were counted. Live cells were differentiated by the uptake of the blue dye by dead cells.  
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The calculated volume of culture, i.e. the volume which contained one million PBMCs, was 

dispensed into 15 ml tubes and the cells pelleted by centrifugation at 1500 rpm for 10 minutes. 

The supernatant was removed and the cells re-suspended by gently pipetting in the appropriate 

volume of R10 such that the added volume of media and virus was 800 µl. The correct volume of 

virus, which contained 7.5 ng p24 antigens, was added to the cell suspension. This was then 

mixed four times by pipette and spinoculated (centrifugation at 1000 rpm and 4 °C for 30 

minutes) to enhance infection (127, 130). When complete, this was very gently mixed by 

pipetting and was incubated at 37 °C and 5% CO2 for 7 hours. Upon completion of the 

incubation, 10ml of warm R10 was added to each sample tube and centrifuged at 22 °C and 1500 

rpm for 5 minutes. The supernatant was discarded and the pellet re-suspended in 400 µl R10. 

This was equally divided into 4 wells of a 96 well plate. The same tube was then washed with 

another 400 µl of R10 and again divided equally into the same wells. At the end, for each 

sample, 4 wells each contained 200 µl of medium which in turn contained 250000 cells with 

infected virus. The plate was incubated at 37 °C and 5 % CO2 for 12 days.  

 

2.7.3 Activation of infected PBMCs 

Cell proliferation was stimulated on day 3 of incubation with phytohaemagglutinin (PHA; 

[Sigma]). Firstly, 100 ul of the viral supernatant was removed from the culture plate and 

discarded. Next, PHA was diluted with R10 to 10 µg/ml and 100 µl of PHA-containing media 

was added into each of the sample wells such that the final concentration of PHA within each 

well was 5µg/ml. On day 6 and every 3 days following, 100 µl of the viral supernatant was 

removed from the culture plate and stored in 96 well plates at -80 °C. Following the removal of 

viral supernatant, the cells were stimulated with 100 µl of R10 containing interleukin-2 (IL-2, 
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Roche, USA) at a concentration of 20 U/ml IL-2, in the same way as described for PHA above 

(resulting in a final concentration of 10 U/ml IL-2 in each well). 

 

Viral replication ability was determined by measuring the p24 levels of the day 12 viral 

supernatants by ELISA as described in Section 2.6. Day 12 was the optimal time to measure 

replication as all the viruses had detectable replication but none of the viruses had passed peak 

replication. 

 

2.8 Cloning of the mutant nef sequences into pselect plasmid 

Prior to measuring the Nef-mediated CD4 and HLA-I down-modulation capacities of the 

mutated Nef proteins in a T cell line, the mutant nef sequences were cloned, as previously 

described (106), into a zeocin-resistant GFP-expressing plasmid (pselect) as this allowed 

detection by flow cytometry of cells transfected with Nef clones. The pselect plasmid 

(Invivogen) was modified by insertion of a linker region containing AscI and SacII restriction 

enzyme sites and kindly donated by Dr. Mark Brockman. The cloning process is described below 

and illustrated in Figure 2.5.   

 

2.8.1 PCR amplification of mutant nef sequences 

The mutated nef sequences (generated by mutagenesis (Section 2.4.) were amplified using the 

Roche Expand High Fidelity PCR system (Roche) as described in Section 2.3.1.   
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Figure 2.5. CD4 and HLA down-modulation assay 

The mutant nef gene was amplified with forward and reverse primers containing AscI and SacII 

restriction sites, respectively.  The amplified mutant nef and a plasmid modified to contain AscI 

and SacII restriction sites were digested with AscI and SacII restriction enzymes. These products 

were then ligated using T4 DNA ligase. The plasmid was then transformed into E. Cloni cells 

and plated on LB-zeocin plates to select for cells transformed with zeocin-resistant plasmids.  

Plasmid DNA was purified from a single colony using a mini-prep procedure. A restriction 

digest which was gel electrophoresed as well as sequencing were performed to confirm the 

presence of the nef insert. 

 

The Nef clones were transfected into GXR cells modified to express high levels of HLA-A*02.  

Following a 20-hour incubation, the cells were stained with fluorochrome-conjugated antibodies 

which bind to CD4 (APC-labelled anti-CD4 antibody) and HLA-I (PE-labelled HLA-A*02 

antibody) molecules to allow for measurement of these molecules by flow cytometry. 
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The forward (5’ AGAGCACCGGCGCGCCTCCACATACCTASAAGAATMAGACARG 

3’,AscI site in bold) and reverse (5’ GCCTCCGCGGATCGATCAGGCCACRCCTCCCTGGA 

AASKCCC 3’, SacII site in bold) primers used contained AscI and SacII restriction sites, 

respectively.  The mutated nef amplicons were PCR purified as described in Section 2.3.2.3. 

 

 

2.8.2 Digestion of mutated nef amplicons and pselect plasmid 

 

Purified mutated nef amplicons (500 ng) and pselect plasmid (5 µg) were both digested with 

restriction enzymes Asc-I (5 U) and Sac-II (5 U) (New England Biolabs) in the presence of 

Buffer 4 (1 ×) and water added to a final volume of 20 µl.  The reaction was incubated at 37 °C 

for 1 hour and the enzyme inactivated at 65 °C for 20 minutes.  The digested pselect plasmid was 

electrophoresed in the presence of TAE buffer, excised from the gel and purified as described in 

Section 2.3.2 

 

2.8.3 Ligation of digested nef amplicons and pselect plasmid 

The ligation of digested nef amplicons (90 ng) and pselect plasmid (100 ng) was performed as 

described in Section 2.3.3.  Thereafter, ligated products were transformed into E.cloni cells and 

amplified by colony PCR to determine the presence of Nef in the plasmid clone (as described in 

Sections 2.3.4.1).  The nef-containing colonies were then sequenced (Section 2.3.4.2) to verify 

the presence of the correct sequence. The colonies containing the clone with the correct sequence 

were cultured in 3 ml LB-zeocin broth (25 µg zeocin per ml LB broth) at 37 °C and 250 rpm for 

2 hours. The culture was then split in half, supplemented with 1 ml LB-zeocin broth and 
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similarly incubated overnight. The plasmid DNA was purified using the GeneJET plasmid 

Miniprep kit (Thermo Scientific, USA) according to manufacturer’s indications. 

   

2.9 CD4 and HLA-I down-modulation assays 

Nef-mediated CD4 and HLA-I down-modulation was performed as previously described (106) in 

a GXR cell line which expresses high levels of CD4 and was modified to express high levels of 

HLA-A*02 (donated by Dr. Mark Brockman). Previous measurements of Nef-mediated HLA-

A*02 and HLA-B*07 down-modulation for 21 Nef clones were highly correlated (r=0.82 and 

p<0.0001) (106). It is therefore likely that Nef’s ability to down-modulate HLA-A*02 is a 

general representative of Nef’s ability to down-modulate both HLA-A and HLA-B molecules.  

 

The cells were counted as described in Section 2.5.2 and 600000 cells per sample were pelleted 

by centrifugation at 1500 rpm for 10 minutes. The cells were re-suspended in MegaCell medium 

(RPMI 1640medium without L-glutamine [Sigma]) and 250 µl media which contained 600000 

cells was transferred into electroporation cuvettes. To this, 8 µg of the mini-prepped Nef clone 

(Section 2.8.3.), diluted in 150 µl MegaCell media, was added and mixed by gentle pipetting.  

Thereafter, electroporation was carried out at 250 V and 950 µF.  The transfected cells were 

rested for 10 minutes after electroporation and supplemented with 500 µl R10 medium. The 

cuvette contents were then evenly distributed between two cluster tubes which contained 250 µl 

of R10 medium. The samples were incubated in a cluster tube box, sealed ajar, at 37 °C and 5 % 

CO2 for 20 hours. 
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The samples were then centrifuged at 1500 rpm for 10 minutes and the supernatant discarded.  

Each sample was stained with 2 µl APC-labelled anti-CD4 antibody (BD Biosciences, San Jose, 

USA)) and 3 µl PE-labelled HLA-A*02 (BD Biosciences, San Jose, USA) antibody, stabilised in 

phosphate buffered saline solution (PBS [Gibco]). The antibody stained samples were incubated 

at 4 °C for 10 minutes before being washed with the addition of 750 µl PBS and centrifugation at 

1500 rpm for 10 minutes. The supernatant was again removed by pipette and the cells fixed by 

the addition of 300 µl of 2 % PFA.  The mixture was vortexed for 15 seconds and incubated at 4 

°C for 10 minutes. This was followed by incubation at room temperature for 45 minutes and 

measurement of Nef mediated CD4 and HLA-I down-modulation of each mutant viral strain was 

performed by flow cytometry (Figure 2.5) 

 

To determine the relative CD4/HLA down-modulation capacities of each mutant Nef, the mean 

fluorescence intensity (MFI) of CD4 and HLA expression were normalised to the MFI for the 

negative (ΔNef clone) and positive (SF2 Nef plasmid clone) controls, included in every assay, 

such that normalised MFI values of 0 % and 100 % represented no down-modulation activity and 

down-modulation activity equivalent to the positive control, respectively. This was done using 

the following equation: (negative control – mutant Nef) ÷ (negative control – positive control).  

Assays were performed in two independent experiments with duplicate measurements in each 

experiment. The duplicate results were averaged.   
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2.10 Data analysis 

The relationship between the predicted fitness costs of the mutant viruses (expressed as E values) 

and the measured replication capacities of the mutant viruses were evaluated using Pearson’s 

correlation or Spearman’s rank correlation for normally distributed and skewed data, 

respectively.  In addition, the relationship between the predicted fitness costs and the measured 

Nef-mediated CD4 and HLA-I down-modulation capacities were similarly evaluated. A 

significance level of p<0.05 was used for all statistical analyses.  
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CHAPTER 3 

RESULTS 
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3.1 Introduction 

Nef is an important factor in HIV-1 pathogenesis as well as host immune evasion (19, 39, 53, 

78). Although Nef is known to be an important HIV-1 virulence factor; and was included in the 

unsuccessful STEP trial, there is little evidence for or against its inclusion in vaccine strategies 

(21). Computational models, namely Ising and Potts, have been developed with the ability to 

predict the viral fitness landscape of different HIV-1 proteins and in so doing could reveal 

vulnerabilities within the Nef protein and indicate suitability of its inclusion in an HIV vaccine 

(49). However, these models need to be validated by in vitro experiments and experiments using 

animal models (49).  

 

This study aimed to evaluate and compare the accuracy of the Ising and Potts models in 

predicting the fitness consequences of mutations in HIV-1 Nef. In order to do so, we performed 

in vitro measurements of the Nef-driven replication capacities as well as CD4 and HLA down-

modulation capacities of 32 mutants (data in Table 3.1), which were selected based on their 

energies (E) predicted by the models.  
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Table 3.1. In vitro measurements of the replication capacities, CD4 down-modulation capacities and HLA down-modulation 

capacities of the 32 selected mutants  

Category Mutant  Ising E Potts E  Replication 

capacity (%) 

CD4 down- 

modulation (%) 

HLA down-

modulation (%) 

    Previously shown to be required for  down modulation of:    

Known 

functional 

motifs 

17K19K 10.15 10.60 HLA and to a lesser extent CD4 (141) 26.10 101.3 94.40 

57G 6.60 6.73 CD4 (60, 67, 104) 0.90 13.80 100.3 

57R 6.60 5.16 CD4 (60, 67, 104) 0.80 51.10 101.7 

57R58P 10.70 9.67 CD4 (60, 67, 104) 0.10 22.20 102.6 

72L75L 12.85 13.92 HLA (52, 104) 7.50 65.30 54.0 

123G 5.95 7.48 HLA and CD4 (52, 60) 6.40 28.70 32.0 

        

HLA 

associated/ 

CTL escape 

mutants and 

mutant pairs 

28E -0.20 1.43  85.10 99.10 97.70 

33A 1.11 1.89  129.3 100.2 100.5 

43L 1.45 4.16  69.40 97.20 103.8 

71K 1.60 1.48  85.40 100.2 97.20 

76V 3.72 4.95  84.30 100.6 93.10 

80D 3.74 6.07  18.60 90.0 96.60 

80N 3.74 4.52  83.20 96.50 1.006 

88G 3 8.94  87.0 99.70 94.10 

102H -0.60 0.98  46.60 97.0 88.70 

102W -0.60 4.28  75.40 100.8 80.40 

133T -0.97 0.8  59.90 99.40 90.70 

135F 0.92 2.23  114.3 100.3 97.40 

143Y 3.57 2.88  94.10 97.80 99.0 

188H 1.55 2.72  68.90 0.989 97.0 

192R 0.99 2.47  No resultb 100.8 98.5 

28E102H 0.43 2.60  139.4 No resultb No resultb 

28E102W 0.43 6.10  82.90 100.2 98.60 

33A43L 1.47 2.87  88.10 98.0 98.20 

43L88G 5.40 13.29  91.60 94.70 96.40 

71K76V 6.53 6.57  106.5 102.6 93.70 

76V80N 8.16 9.62  53.10 96.60 86.80 

133T135F -1.22 0.58  146.3 100.3 96.70 

135F143Y 7.56 6.28  103.4 97.30 96.10 

188H192R 1.74 2.61  56.0 99.50 96.80 
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Variable 

amino acids 

at same 

codon  

 

21E -0.34 5.31  146.4 101.7 97.70 

21K -0.34 0.58 51.50 101.4 96.10 

57Ga 6.60 6.73 0.90 13.80 100.3 

57Ra 6.60 5.16 0.80 51.10 101.7 

80Da 3.74 6.07 18.60 90.0 96.60 

80Na 3.74 4.52 83.20 96.50 100.6 

102Ha -0.60 0.98 46.60 97.0 88.70 

102Wa -0.60 4.28 75.40 100.8 80.40 

28E102Ha 0.43 2.60 139.4 No resultb No resultb 

28E102Wa 0.43 6.10 

 

82.90 100.2 98.60 

 
a
Mutants repeatedly listed in the Table i.e. mutants which fall into more than one category 

b
These results were unobtainable due to unsuccessful cloning of mutants 192R into the NL4-3 plasmid and 28E102H into the pselect 

plasmid (Section 3.2 and 3.3)
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3.2 Measurement of the replication capacities of mutant viruses 

 

Mutations were introduced by site-directed mutagenesis into the consensus B nef gene (which 

was cloned into a HIV-1 NL4-3 plasmid), and the presence of mutations were confirmed by 

sequencing. The cloning of mutant 192R into the NL4-3 plasmid was unsuccessful, thus the 

replication capacity of this mutant was not determined. Although several attempts were made to 

clone 192R into the NL4-3 plasmid, spontaneous mutations were observed each time, which is a 

challenge associated with the cloning process (96). In addition, it is possible that in vivo, this 

mutant is only found in combination with other specific mutations in or outside nef or that it is 

inherently unstable in the bacterial cloning system. Further studies to verify these hypotheses 

may be required. Due to the uncertain time frame of generating this clone and experimental 

constraints (functional/replication assays should ideally be performed in a batch alongside the 

wild-type Nef), this clone was excluded from further replication analysis. For the rest of the 

mutants, virus stocks were generated by electroporation of a GFP-reporter T cell line with 

mutant plasmids. The replication capacities of the mutant viruses were then determined by 

infection of PBMCs and by the measurement of p24 levels by ELISA. The replication capacities 

of the mutant viruses were normalised to that of the wild-type virus and are shown in Table 3.1. 

 

3.2.1 Reproducibility of results 

 

The experiments were performed in duplicate using PBMCs from two different donors and the 

mean of the results are presented in Table 3.1. The replicates of this experiment were in good 

concordance (Pearson r = 0.7780, p = <0.0001) (Figure 3.1). 
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Figure 3.1. Graph depicting the relationship between the replicates of the replication 

capacity assay 

 

A Pearson’s correlation was performed and yielded r = 0.7780 and p = <0.0001 which indicated 

a strong significant correlation between replicate measurements of the replication assay 

performed in peripheral blood mononuclear cells (PBMCs) from two different donors.  

RC - In vitro replication capacities of the mutant viruses normalised to that of the wild-type virus (100 %) 
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3.2.2 Relationships between E values predicted by the Ising and Potts models and 

replication capacities of mutant viruses 

 

Correlations were performed to evaluate and compare the accuracy of the Ising and Potts models 

in predicting the fitness consequences of mutations. To evaluate the accuracy of the Ising model, 

a correlation was performed between the E values predicted by the Ising model and replication 

capacities (Figure 3.2A).  The Potts model was similarly evaluated (Figure 3.2B). The data was 

normally distributed in both data sets; therefore Pearson’s correlations were done.  

 

There was a significant negative correlation (r = ‒0.5793, p = 0.0006) between the E values 

predicted by the Ising model and the mutant replication capacities (Figure 3.2A). There was also 

a significant negative correlation (r = ‒0.4118, p = 0.0213) between the E values predicted by the 

Potts model and the replication capacities (Figure 3.2B). It was shown that the correlation was 

stronger between the Ising predicted E values and replication capacities than that between the 

Potts predicted E values and replication capacities (r = ‒0.5793 vs. r = ‒0.4118, respectively).  
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Figure 3.2. Relationship between in vitro replication capacities of mutant viruses and 

predicted fitness costs (expressed as E values) 

 

(A) Graph showing a negative correlation (r = ‒0.5793, p = 0.0006) between replication 

capacities of mutant viruses and fitness costs predicted by the Ising model. 

(B) Graph showing a negative correlation (r = ‒0.4118, p = 0.0213) between replication 

capacities of mutant viruses and fitness costs predicted by the Potts model.  

RC – In vitro replication capacities of the mutant viruses normalised to that of the wild-type virus (100 %)  
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3.3 Measurement of the ability of Nef mutants to down-modulate CD4 and HLA 

 

Nef may enhance HIV-1 pathogenesis through activities such as CD4 down-modulation which 

improves HIV-1 infectivity and replication. In addition, Nef may also enhance HIV-1 

pathogenesis through CD4-independent mechanisms, such as HLA-I down-modulation which 

increases immune evasion (53). Therefore we also tested the effect of Nef mutations on these 

two well-studied functions of Nef. 

 

The mutant nef sequences were cloned into a GFP-expressing pselect plasmid. The presence of 

all mutations was confirmed by sequencing except for mutant 28E102H. As was the case for 

192R, several attempts at cloning were made but spontaneous mutations were being introduced 

(96), and this clone was therefore excluded from down-stream analysis. GXR cells expressing 

high levels of HLA-A*02 were transfected with the 31 clones (all mutant Nef clones except the 

28E102H mutant) and cell surface expression of CD4 and HLA-A*02 in transfected cells was 

measured by flow cytometry. The down-modulation capacities of the mutant Nef clones were 

indicated by median fluorescence intensity relative to that of the positive and negative controls. 

This value was then normalised to that of the wild-type Nef and these measurements are 

presented in Table 3.1.  Representative flow cytometry plots are illustrated in Figure 3.3.   
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Figure 3.3. Representation of the flow cytometric measurements of Nef-mediated CD4 and 

HLA down-modulation 

 

Graphs show the HLA-A*02 and CD4 cell surface expression on the Y axis and green 

fluorescent protein (GFP) expression is indicated on the X axis of graphs. GFP-positive cells 

represent cells successfully transfected with the Nef clones. HLA-A*02 and CD4 cell surface 

expression was measured in GFP-positive cells. 

 

(A) and (B) Graphs representing HLA-A*02  down-modulation (A) and CD4 down-modulation 

(B), respectively, of the negative control (ΔNef). The negative control represents no down-

modulation ability. 

(C) and (D) Graphs representing HLA-A*02  down-modulation (C) and CD4 down-modulation 

(D), respectively, of the positive control (SF2 Nef). The positive control represents 100% down-

modulation ability.  

(E) and (F) Graphs depicting intermediate HLA down-modulation capacity (E) and CD4 down-

modulation capacity (F) by mutant 72L75L. It is shown that this mutant down-modulated HLA 

54% and CD4 65.3% relative to the positive and negative controls.  
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3.3.1 Reproducibility of results 

 

All the experiments were performed in duplicate and the mean of the results are presented in 

Table 3.1. The replicates of these experiments were in agreement (Spearman: r = 0.7780, p = 

<0.0001 and r = 0.4609, p = 0.0091) (Figure 3.4). 
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Figure 3.4. Graphs depicting the relationships between the replicates of CD4 and HLA 

down-modulation measurements  

 

Spearman’s correlations were performed between replicates for both CD4 down-modulation 

(Figure 3.4A) and HLA-A*02 down-modulation (Figure 3.4B). These yielded r = 0.7809, p = 

<0.0001 and r = 0.4609, p = 0.0091, respectively, which indicated a significant correlation 

between replicate measurements of the assays performed. 
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3.3.2 Relationships between the E values predicted by the Ising and Potts models and the 

CD4/HLA down-modulation capacities of mutant Nef clones 

 

Correlations were performed between the mutant E predicted by the Ising model and the CD4 

and HLA-A*02 down-modulation capacities (Figure 3.5A and -B, respectively). Similar 

correlations were performed for predictions made by the Potts model (Figure 3.5C and -D). The 

data was skewed in all data sets; therefore a Spearman’s rank correlation was done in each 

instance.  

 

There was a significant negative correlation between the CD4 down-modulation capacities and 

the E values predicted by the Ising model (r = ‒0.5266, p = 0.0023, Figure 3.5A) as well as the E 

values predicted by the Potts model (r = ‒0.3781, p = 0.0360, Figure 3.5C). However, the 

correlation was stronger with the Ising model than with the Potts model (r = ‒0.5266 with Ising 

and r = ‒0.3781 with Potts).  For both models, substantial reductions in CD4 down-modulation 

are only observed at E values >5. The mutants with E>5 which display reduced CD4 down-

modulation are: 57G, 57R, 57R58P, 72L75L and 123G. Interestingly, 57G, 57R, 57R58P and 

123G are in motifs known to affect CD4 down-modulation (Table 3.1).  

 

There was no correlation between the HLA down-modulation capacities and the E values 

predicted by the Ising model (r = ‒0.03469, p = 0.8530) as well as the E values predicted by the 

Potts model (r = ‒0.1676, p = 0.3676) (Figure 3.5B and -D). It should be noted, however, that 

only two mutants displayed reduced HLA-A*02 down-modulation, namely 72L75L and 123G. 
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Figure 3.5. Relationships between in vitro Nef-mediated CD4 and HLA down-modulation 

capacities of mutant Nef clones and predicted fitness costs (expressed as E values) 

 

(A) Graph showing a significant negative correlation (r = ‒0.5266, p = 0.0023) between CD4 

down-modulation capacities of mutant Nef clones and fitness costs predicted by the Ising model. 

(B) Graph showing no correlation (r = ‒0.03469, p = 0.8530) between HLA down-modulation 

capacities of mutant Nef clones and fitness costs predicted by the Ising model. 

 (C) Graph showing a significant negative correlation (r = ‒0.3781, p = 0.0360) between CD4 

down-modulation capacities of mutant Nef clones and fitness costs predicted by the Potts model. 

 (D) Graph showing no correlation (r = ‒0.1676, p = 0.3676) between HLA down-modulation 

capacities of mutant Nef clones and fitness costs predicted by the Potts model. 

Nef-mediated CD4 and HLA down-modulation capacities of the mutant Nef clones were normalised to 

that of the wild-type Nef (100 %) 
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3.4 Relationships between replication capacities and CD4/HLA down-modulation 

capacities 

 

The relationships between the replication capacities and the CD4/HLA down-modulation 

capacities were explored by performing correlations. The data sets, in both cases, were not 

normally distributed; therefore Spearman’s rank correlations were conducted. These correlations 

excluded mutants 192R and 28E102H for reasons mentioned in Section 3.2 and Section 3.3, 

respectively.  

 

As shown in Figure 3.6, there was a significant positive correlation (r = 0.5778 and p = 0.0008) 

between the replication capacities and the Nef-mediated CD4 down-modulation capacities (A). 

However, there was no correlation between the replication capacities and Nef-mediated HLA 

down-modulation capacities (r = 0.2076 and p = 0.2711) (B). 
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Figure 3.6. Relationships between in vitro replication capacities and Nef-mediated 

CD4/HLA down-modulation capacities 

 

(A) Graph showing a significant positive correlation (r = 0.5778 and p = 0.0008) between 

replication capacities and CD4 down-modulation capacities. 

(B) Graph showing no correlation (r = 0.2076 and p = 0.2711) between replication capacities and 

HLA down-modulation capacities. 

In vitro replication capacities (RC) as well as Nef-mediated CD4 and HLA down-modulation capacities 

of the Nef mutants were normalised to that of the wild-type Nef (100 %) 

  

  



87 
 

 

0 50 100 150 200
0

50

100

150

RC

C
D

4

d
o

w
n

-m
o

d
u

la
ti

o
n

  

 

0 50 100 150 200
0

50

100

150

RC

H
L

A
-A

*0
2
 d

o
w

n
-m

o
d

u
la

ti
o

n

 

r = 0.5778 

p = 0.0008 

r = 0.2076 

p = 0.2711 

A 

Rela

tions

hip 

betw

een 

in 

vitro 

meas

ured 

Nef-

medi

ated 

dow

n-

mod

ulati

on of 

CD4 

and 

HLA 

with 

pred

icted 

fitne

ss 

B 

R

el

a

ti

o

n

s

h

i

p 

b

e

t

w

e

e

n 



88 
 

3.5 Overview of data by category 

The data was additionally analysed according to the categories of mutants listed in Table 3.1.  

 

3.5.1 Known functional motifs 

 

Mutants under this category were selected for their known ability to affect one or more functions 

of Nef (Table 3.1). Under the category of known functional motifs, all mutants had a 

substantially reduced replication capacity relative to the wild-type, ranging between 0.1 and 26.1 

% (Table 3.1 and Figure 3.7). Also, all these mutants, with the exception of 17K19K, displayed 

an impaired ability to down-modulate CD4: the ability of the other mutants (57G, 57R, 57R58P, 

72L75L and 123G) to down-modulate CD4 was 13.8 – 65.3 % of wild-type levels.  These 

mutants, with the exception of 72L75L, were previously noted in the literature to be important 

for CD4 down-modulation activity (Table 2.1 and 3.1).  Also consistent with the literature, 

mutants 57G, 57R and 57R58P retained the ability to down-modulate HLA (100 - 102% of wild-

type levels) while CD4 down-modulation activity was lessened, and 123G was impaired for both 

CD4 and HLA down-modulation (28.7 % and 32 %, respectively). Mutations in motifs 

previously shown to be required for HLA down-modulation (Table 2.1 and 3.1) also showed 

reduced HLA down-modulation relative to the wild-type virus, although for mutant 17K19K, 

HLA down-modulation was only slightly reduced. Mutants 17K19K, 72L75L and 123G 

displayed a 94.4 %, 54 % and 32 % ability to down-modulate HLA, respectively.   
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Figure 3.7.  Replication capacities as well as Nef-mediated CD4 and HLA down-modulation 

abilities of mutants which fall into the category of known functional motifs 

 

The bars displayed in the graph are representative of the mean of replicates for the mutants 

replication capacities (blue) as well as CD4 down-modulation (grey) and HLA-A*02 down-

modulation capacities (red). Previously, it was shown that following mutants were required for 

the down-modulation of: HLA and to a lesser extent CD4 (17K19K); CD4 (57G, 57R and 

57R58P); HLA (72L75L); HLA and CD4 (123G). 

In vitro replication capacities (RC) as well as Nef-mediated CD4 and HLA down-modulation capacities 

of the Nef mutants were normalised to that of the wild-type Nef (100 %) 
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3.5.2 HLA associated/escape mutants and mutation pairs 

 

HLA-associated mutations (likely cytotoxic T cell escape mutants) or known escape mutants, as 

well as pairs of these mutations, were selected that covered a range of E values.  Only one of the 

mutants in this category displayed a marked reduction in replication capacity, namely 80D (18.6 

% of wild-type levels), while the rest ranged from 46.6 – 146.3 % of wild-type levels (median of 

85.1%) (Table 3.1 and Figure 3.8A). Overall, CD4 and HLA down-modulation capacities of 

mutants in this category were largely similar to wild-type (Table 3.1 and Figure 3.8B).  The CD4 

down-modulation capacities ranged from 90 to 102.6 % of wild-type levels (median of 99.4 %) 

and HLA down-modulation capacities from 80.4 – 103.8 % of wild-type levels (median of 96.8 

%).  
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Figure 3.8. Replication capacities as well as CD4 and HLA down-modulation capacities of 

mutants which fall into the category of HLA associated/escape mutants (A) and mutant 

pairs (B) 

 

The bars displayed in the graph are representative of the mean of replicates for the mutants 

replication capacities (blue) as well as CD4 down-modulation (grey) and HLA-A*02 down-

modulation capacities (red).  

In vitro replication capacities (RC) as well as Nef-mediated CD4 and HLA down-modulation capacities 

of the Nef mutants were normalised to that of the wild-type Nef (100 %) 

The asterisk indicates missing data.   
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3.5.3 Variable amino acids at same codon  

 

Mutants in this category were selected to test the ability of the Potts model to distinguish 

between, and assign E values accordingly, for different mutations at the same codon.  The Potts 

model predicted higher fitness costs for 21E than 21K.  However, the CD4 and HLA down-

modulation capacities were highly similar for these two mutants and in fact, the replication 

capacity was lower for 21K which is not consistent with the Potts model predictions (Table 3.1 

and Figure 3.9).  The Potts model predicted a slightly higher energy cost for 57G compared to 

57R (Table 3.1 and Figure 3.9).  The CD4 down-modulation capacity of 57G was lower than that 

for 57R, which is consistent with the Potts model prediction; however the HLA down-

modulation capacities and replication capacities of the two mutants were very similar (Table 3.1 

and Figure 3.9). The Potts model predicted a higher energy cost for 80D than 80N. Consistent 

with this, the replication, CD4 and HLA down-modulation capacities of 80D were lower than 

that of 80N (Table 3.1 and Figure 3.9). The Potts model predicted higher fitness costs for 102W 

than 102H.  However, the CD4 and HLA down-modulation capacities of these two mutants were 

similar and the replication capacity was actually lower for 102H which is not consistent with the 

Potts model predictions (Table 3.1 and Figure 3.9). The Potts model predicted higher fitness 

costs for 28E102W than 28E102H and in line with this, the replication capacity of 28E102W was 

lower compared to 28E102H (Table 3.1 and Figure 3.9). It should be noted that no statistics were 

performed on comparisons of mutants as repeated measurements of the same mutant or the wild-

type and are not considered independent observations from a statistical perspective (161).   

In summary, in three out of five instances the Potts model predictions were consistent with 

fitness/functional differences of different amino acid variants at the same codon. 
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Figure 3.9. Replication capacities as well as CD4 and HLA down-modulation capacities of 

mutants which fall into the category of variable amino acids at the same codon 

 

The bars displayed in the graph are representative of the mean of replicates for the mutants 

replication capacities (blue) as well as CD4 down-modulation (grey) and HLA-A*02 down-

modulation capacities (red).  

In vitro replication capacities (RC) as well as Nef-mediated CD4 and HLA down-modulation capacities 

of the Nef mutants were normalised to that of the wild-type Nef (100 %) 

The asterisk indicates missing data.   
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3.5.4 Entropy versus models 

Entropy has been used as a surrogate measure of viral fitness (98).  It is expected that at residues 

with low entropy (high conservation), mutations will result in fitness costs. Therefore, we wanted 

to investigate whether the E values of the computational models were better predictors of viral 

fitness costs than the entropy of the residues at which the mutations occurred. The entropy of the 

relevant residues was calculated using published Nef sequences (107) and the entropy tool on the 

Los Alamos HIV sequence database (http://www.hiv.lanl.gov/content/sequence/ENTROP 

Y/entropy.html). Considering only the single mutants (n = 19 for replication data and n = 20 for 

CD4 data), there was no correlation between the entropy of the residues at which the mutations 

occurred and replication capacity (Figure 3.10A, p = 0.3888) or CD4 down-modulation (Figure 

3.10B, p = 0.0717), while Ising E values (but not Potts E values; data not shown) correlated 

significantly with replication capacity (Figure 3.10C, p = 0.0087) and CD4 down-modulation 

(Figure 3.10D, p = 0.0018) (Figure 3.10). As was the case for the model predictions (Section 

3.3.2), entropy did not correlate with HLA-A*02 down-regulation ability (p = 0.0651) (data not 

shown). 

http://www.hiv.lanl.gov/content/sequence/ENTROP%20Y/entropy.html
http://www.hiv.lanl.gov/content/sequence/ENTROP%20Y/entropy.html
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Figure 3.10. Relationships between in vitro Nef-mediated replication capacities and CD4 

down-modulation capacities of mutant Nef clones and entropy/Ising predicted E 

 

(A) Graph showing no correlation (r = 0.2097, p = 0.3888) between replication capacities of 

mutant Nef clones and entropy. 

(B) Graph showing no correlation (r = 0.4111, p = 0.0717) between CD4 down-modulation 

capacities of mutant Nef clones and entropy. 

 (C) Graph showing a significant negative correlation (r = ‒0.5836, p = 0.0087) between 

replication capacities of mutant Nef clones and E values predicted by the Ising model. 

 (D) Graph showing a significant negative correlation (r = ‒0.6521, p = 0.0018) between CD4 

down-modulation capacities of mutant Nef clones and E values predicted by the Ising model. 

In vitro replication capacities (RC) as well as Nef-mediated CD4 down-modulation capacities of the Nef 

mutants were normalised to that of the wild-type Nef (100 %) 
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Due to the higkh mutability and constant immune evasion of the HIV-1 virus, an effective 

vaccine against the virus remains elusive (5, 85, 164). The HIV-1 Nef protein has been shown to 

contribute to HIV-1 pathogenesis and immune evasion (19, 39, 53, 78). Ising and Potts 

computational models have been designed with the ability of predicting the viral fitness 

landscape of the HIV- 1 Nef protein (49). These models, if validated, could potentially be used to 

identify vulnerable regions of Nef suitable for inclusion in a vaccine (49). The present study 

aimed to evaluate the accuracy of these computational models in predicting the fitness 

consequences of mutations in HIV-1 Nef, by measuring the Nef-driven replication capacities as 

well as CD4 and HLA down-modulation capacities of 32 different Nef mutants. 

 

The E values (predicted fitness costs) predicted by both the Ising and Potts models correlated 

significantly with Nef-driven replication capacities and CD4 down-modulation capacities, but 

not HLA-A*02 down-modulation capacities, of the various Nef mutants. Mutations with higher 

E values tended to show lower Nef-driven replication as well as costs to CD4 down-modulation 

capacity. Thus the experimental data are in significant agreement with model predictions, 

indicating that the model was able to significantly predict fitness costs in the Nef protein. It is 

also important to note that the functional experimental outcomes for mutations within known 

functional motifs shown to affect CD4 and/or HLA down-modulation (Table 3.1) were 

consistent with what was previously documented in literature (Section 3.5.1) thus supporting the 

validity of our functional measurements. Furthermore, we determined that the Ising model of Nef 

fitness landscape is a better predictor of fitness costs in the Nef protein than simple entropy 

information.  
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The present study also aimed to compare the relative ability of the Ising and Potts models to 

predict the Nef fitness landscape.  It was expected that the Potts model would be more reliable 

than the Ising model in predicting the fitness costs of mutations in highly mutable proteins such 

as Nef.  The Ising model does not consider the identity of the mutant amino acid but defines the 

presence of mutations or the wild-type amino acid at each codon within each sequence in the 

MSA using a binary approximation:  mutant amino acids are denoted as one and the wild-type 

amino acid is denoted as zero (49). While this is a good approximation for highly conserved 

proteins, such as Gag, it was expected that this may not be sufficient for highly variable proteins.  

The Potts model was developed to take specific amino acid mutations into account and assign E 

values according to the identified amino acid, rather than using the binary approximation (49).  

In the present study, it was observed that while the E values of both models correlated 

significantly with replication capacity and CD4 down-modulation, the correlations were stronger 

for Ising than Potts (Nef-driven replication capacity: r = ‒0.5793, p = 0.0006 for Ising and r = ‒

0.4118, p = 0.0213 for Potts; CD4 down-modulation: r = ‒0.5266, p = 0.0023 for Ising and r = ‒

0.3781, p = 0.0360 for Potts). This indicated that the Ising model was better at predicting fitness 

consequences of the selected mutations in HIV-1 Nef than the Potts model.  A factor contributing 

to the better performance of the Ising model may be that in most cases the most common 

mutation at a particular codon was tested. The binary approximation of the Ising model is 

expected to be more representative of the most common mutations rather than rare ones.  The 

difference between the expected and experimental outcomes might also be due to the Potts model 

allowing more amino acids per codon (for the ability to assign specific independent E values 

based on the particular amino acid at a specific codon) which could negatively interfere with the 

reliability of the model to infer interactions between different codons because pairs of rare 
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mutations are extremely infrequent. Essentially, considering multiple amino acids (while 

providing more information) may have negatively affected the performance and predictive 

ability of the model.    

 

We selected mutants with variant amino acids to test the ability of the Potts model to accurately 

distinguish between, and assign E values accordingly, for different mutations at the same codon. 

It was observed that in three out of five instances the Potts model predictions were consistent 

with fitness/functional differences of different amino acid variants at the same codon. This 

indicates that the predictive ability of the Potts in this regard was not consistent. This could be 

further investigated by testing more mutants with variable amino acids at the same codon. 

 

Previously, Ising and Potts computational models predicting the HIV-1 Gag fitness landscape 

were evaluated by measuring the replication capacities of 43 Gag mutants in vitro (105). The 

experimental data strongly correlated with predictions made by the Ising and Potts models for the  

Gag mutants (r = ‒0.83, p = 3.76×10
-12

 and r = ‒0.73, p = 9.7×10
-9

, respectively) (105). The 

correlations between predictions of both models and the replication capacities of Gag mutants 

were stronger than the correlations between model predictions and Nef-driven replication 

capacity (r = ‒0.5793, p = 0.0006 for Ising and r = ‒0.4118, p = 0.0213 for Potts) as well as 

between model predictions and Nef-mediated CD4 down-modulation (r = ‒0.5266, p = 0.0023 

for Ising and r = ‒0.3781, p = 0.0360 for Potts).  This indicated that both the Ising and the Potts 

models were more precise at predicting fitness consequences of mutations and mutation 

combinations in the highly conserved Gag protein than the variable Nef protein. 
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While the previous study testing the models of the HIV-1 Gag fitness landscape identified 

several pairs of HLA-associated mutations (likely CTL escape mutations) with high E values and 

substantial fitness costs, we did not identify HLA-associated mutations in Nef with substantial 

fitness costs in the present study.  Only one HLA-associated mutant (80D) showed a notable 

reduction in replication capacity, and to our knowledge this mutation has not previously been 

associated with a fitness cost. The CD4 and HLA-A*02 down-modulation capacities of all the 

HLA-associated mutants were similar to that of the wild-type. This was despite the fact that the 

HLA-associated mutations and mutation pairs selected covered a range of E values, with 4 pairs 

having Ising E values > 5 as well as 2 single mutations and 5 mutation pairs having Potts E 

values > 5. (It was observed that substantial reductions in Nef-mediated CD4 down-regulation 

only occurred at E values >5). Our results indicate that it may be more difficult to identify 

observed escape mutations with a fitness cost in a highly variable protein such as Nef compared 

to the conserved Gag protein, which may suggest that to achieve significant functional impact in 

the Nef protein the virus will have to be forced down mutational escape pathways not commonly 

observed in vivo. Previous studies have shown that the fitness costs of escape mutations at 

conserved residues in Gag are greater than that in the more variable Env protein (149).  

Furthermore, another study showed that mutations in the conserved Gag p24 region tend to have 

greater fitness costs than mutations within the gp120 Env region even when only highly 

conserved amino acid sites are considered (99). However, there is some evidence that certain 

escape mutations in Nef could carry costs to viral fitness: HLA-B*35 associated mutations 

within a conserved region of Nef were shown to negatively affect virus replication and HLA-I 

down-modulation capacities (151). In another study which included 44 HLA-associated 

polymorphisms within Nef, it was reported that more than 50 % of the polymorphisms would 
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revert to the consensus following transmission to a HLA-mismatched recipient; which suggested 

that these polymorphisms come with fitness costs (2). Lastly, the number of HLA-associated 

polymorphisms (that were previously described to revert following transmission to a HLA-

mismatched recipient (2)) was shown to correlate negatively with in vitro HLA down-

modulation, indicating that that these polymorphisms do come with fitness costs (107). 

 

We observed that the E values of both the Ising and Potts models correlated with replication 

capacity and CD4 down-modulation capacity but not HLA down-modulation capacity. This 

suggests that Nef-driven replication capacity and CD4 down-modulation may be more important 

functions in vivo than HLA down-modulation. In fact, previous studies suggest that CD4 down-

modulation may be a more essential function of Nef in vivo than HLA down-modulation: it was 

previously shown that virus with eliminated HLA-down-modulation ability was still virulent 

(146), however when a Nef motif essential for CD4 down-modulation was disrupted (yet HLA 

down-regulation function was intact) SIV replication was greatly reduced (73). However, 

another possible reason for no correlation observed between E values and HLA-A*02 down-

modulation capacities of the selected mutants could be that only two mutants displayed reduced 

HLA-A*02 down-modulation capacities. This likely reduced the ability to determine correlation 

between this parameter and the other parameters, i.e. E values and replication capacity, and could 

be further investigated in future studies by including more mutants that affect HLA-I down-

modulation ability.  
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In the present study we observed that replication capacities of the Nef mutants correlated with 

CD4 down-modulation capacities but did not correlate with HLA-A*02 down-modulation 

capacities. The correlation between replication capacity and CD4 down-modulation was 

expected since Nef-mediated CD4 down-modulation directly enhances viral replication (Section 

1.4.1) through an increase in the release of viral particles, as high levels of surface CD4 have 

been shown to interfere with the budding of virions (64, 139). When CD4 is down-modulated, 

Env sequestration into a CD4/Env complex which would result in impaired virion infectivity is 

avoided (125, 139).  It was also expected that replication capacity would not correlate with HLA-

A*02 down-modulation since HLA down-modulation enhances HIV-1 pathogenesis indirectly 

through immune evasion (53), and thus while it may indirectly enhance viral replication in vivo, 

it is unlikely to directly affect in vitro replicative ability. 

 

There were some study limitations: the down-modulation of only HLA-A*02 was measured, 

however, in a previous study Nef-mediated HLA-A*02 down-modulation was highly correlated 

with HLA-B*07 down-modulation (r=0.82, p<0.0001) (106). Additionally, HLA down-

modulation occurs through a sequence shared by the cytoplasmic tail of HLA-A and HLA-B 

molecules (89). Therefore, the ability of Nef to down-modulate HLA-A and HLA-B molecules 

may be generally represented by its ability to down-modulate HLA-A*02. The second limitation 

was that even though Nef is involved in many cellular functions (52), we focused only on 

replication capacity, CD4 down-modulation and HLA-I down-modulation. However, it was 

shown that these functions are important in vivo and do influence clinical outcome (73, 107, 124, 

146). Lastly, we utilised PBMCs, since the presence of Nef is not essential for viral replication in 

many immortalized T cell lines (100), but PBMCs are highly variable between donors (18). 
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Nevertheless, we measured Nef-driven replication capacities using two different donors in this 

study and the measurements of the two donors were in good agreement (r = 0.7780, p = <0.0001; 

Section 3.2.1). 

 

In conclusion, the experimental data was in significant agreement with both the Ising and the 

Potts models predictions of the fitness consequences of mutations in the Nef protein, and this 

was more accurate for the Ising model.  However, the model predictions for Nef were not as 

accurate as for the highly conserved Gag protein.  Nevertheless, the experimental data presented 

here support that computational modelling is a valid approach to rational immunogen design. 

The computational modelling approach is capable of identifying regions in the HIV-1 proteome 

which if targeted could force the virus down an undesirable pathway, which would lead to a 

substantial fitness cost to the virus, or could inhibit it from escaping immune responses due to 

the consequent fitness cost (49). It is also important to note that upon validation, the 

computational modelling approach is not restricted to HIV but could predict the fitness 

landscapes of other viruses and possibly cancers (49). The approach could therefore be used to 

direct immunogen design for a wide range of pathogens (49). Future studies are required to 

further validate models by identifying and designing HIV-1 vaccine immunogens to be tested in 

animal models. 
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