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PREFACE 

This thesis is divided into eight chapters, including this one: 

Chapter 1: 

This is an introductory chapter that addresses the background, rationale and relevance of the study as 

well as the proposed aim and objectives. The general outline and structure of the thesis concludes this 

chapter.  

Chapter 2:  

This chapter provides a comprehensive literature review on the ZIKV epidemic and the urgent 

research currently underway toward the development of FDA approved inhibitors of the virus. 

Included in this chapter is the epidemiology, historical background, life cycle, viral diagnostics, 

modes of transmission, ZIKV-linked neurological diseases, viral characteristics (mechanistic and 

structural), viral/host drug targets, specifically the NS5 and NS3 protein and the design of potential 

inhibitors in ZIKV rational drug design and discovery. 

 

Chapter 3:  

This chapter conceptualizes computer-aided drug design by discussing a various molecular modeling 

and molecular dynamic techniques and applications. The computational tools needed to investigate 

comparative enzymatic structural/conformational characteristics as well as methods used to analyze 

binding affinity are elucidated upon.  

 

Chapter 4:  (Published work- this chapter is presented in the required format of the journal and 

is the final version of the accepted manuscript) 

This chapter demonstrates a unique route map entitled  “Zika virus drug targets: a missing link in 

drug design and discovery – a route map to fill the gap”, demonstrating potential drug targets, 

strategies for design and computational software available to design a homology model. Also 

presented is a 3D homology model of the ideal ZIKV target, the non-structural protein 5 in which the 

active binding sites of each domain of the protein were identified and structure-based virtual 

screening allowed for the identification of possible NS5 RdRp small molecule inhibitors. This article 

has been published in RSC Advances (IF = 3.289). It should be noted that the publication was 

completed prior to the release of the 3D crystal structure of the NS5 methyltransferase and RNA-

dependent RNA-polymerase. 
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Chapter 5: (Published work- this chapter is presented in the required format of the journal and 

is the final version of the submitted manuscript) 

This chapter investigates the second objective of the thesis and is entitled “Zika Virus NS5 Protein 

Potential Inhibitors: An Enhanced In silico Approach in Drug Discovery.” The study implements an 

optimized and proven screening technique in the discovery of two potential small molecule inhibitors 

of ZIKV MTase and RdRp. This in silico “per-residue energy decomposition pharmacophore” virtual 

screening approach will be critical in aiding scientists in the discovery of effective inhibitors of ZIKV 

targets. This article has been published in Journal of Biomolecular Structure and Dynamics (IF = 2.3). 

 

Chapter 6: (Published work- this chapter is presented in the required format of the journal and 

is the final version of the submitted manuscript) 

This chapter, “Delving into Zika Virus Structural Dynamics- A Closer look at NS3 Helicase Loop 

flexibility and its Role in Drug Discovery”, assesses the third objective of the thesis: to identify the 

structural properties of the ZIKV NS3 Helicase when bound to ATP-competitive inhibitor, NITD008. 

In this study, comparative molecular dynamic simulations were employed for Apo and bound protein 

to demonstrate the molecular mechanism of the Helicase, thus assisting in the design of effective 

inhibitors against this detrimental viral target. The article has been published in RSC Advances (IF = 

3.289). 

 

Chapter 7:  (Published work- this chapter is presented in the required format of the journal and 

is the final version of the submitted manuscript) 

This chapter is entitled “Characterizing the Conformational Features and Ligand Binding Landscape 

of Zika NS3 Helicase- Promising Lead Compounds as Potential Inhibitors”, elucidates on binding 

landscape of the ATPase and ssRNA site by demonstrating the chemical characteristics of potent 

flavivirus lead compounds, Lapachol, HMC-HO1α and Ivermectin at the respective NS3 Helicase 

binding site. This article has been published in Future Virology (IF = 0.886). 

 

Chapter 8:  

This is the final chapter that proposes future work and concluding remarks. 
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ABSTRACT 

The re-emerging Zika virus has evolved into a catastrophic epidemic during the past year, with an 

estimated 1.5 million reported cases of Zika infections worldwide, since the 2015 outbreak in Brazil. 

The virus has received considerable attention during 2016 with a flood of new discoveries, from 

evolving modes of viral transmission to viral-linked neurological disorders, unique specificity to host 

cells and increasing mutation rates. However, prior to the devastating 2015 outbreak in Brazil, the 

virus was classified as a neglected pathogen similar to Dengue and the West Nile virus.  

 

Despite the wide-scale research initiative, there is still no cure for the virus. There are currently 

vaccine clinical trials that are on-going but there has not been a breakthrough with regard to small 

molecule inhibitors. A lot of experimental resources have been allocated to repuposing FDA-approved 

drugs as possible inhibitors, however, even some of the most potent flavivirus inhibitors have adverse 

toxic effects. The first crystal structure of the zika virus was released in May 2016 and since then, six 

viral protein structures have been made available. Due to this lack in structural information, there is 

little known regarding the structural dynamics, active binding sites and the mechanism of inhibition of 

ZIKV enzymes.  

 

This study delves into the structural characteristics of three of the most crucial enzymatic targets of 

the zika virus, the NS5 RNA-dependent RNA polymerase and Methyltransferase as well as the NS3 

Helicase. With emerging diseases, such as ZIKV, computational techniques including molecular 

modeling and docking, virtual screening and molecular dynamic simulations have allowed chemists to 

screen millions of compounds and thus funnel out possible lead drugs. These in silico approaches 

have warranted Computer-Aided Drug Design as a cost-effective strategy to fast track the drug 

discovery process. 

 

The above techniques, amongst numerous other computational tools were employed in this study to 

provide insights into conformational changes that elucidate potential inhibitory mechanisms, active 

site identification and characterization and pharmacophoric features leading to promising small 

molecule inhibitor cadidates.  

 

The first study (Chapter 4), provided a comprehensive review on potential host/viral targets as well as 

provided a concise route map depicting the steps taken toward identifying potential inhibitors of drug 
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targets when no crystal structure is available. A homology model case study, of the NS5 viral protein, 

was also demonstrated. 

 

The second study (Chapter 5) used the validated NS5 homology model to investigate the active sites 

at both the RNA-dependent RNA polymerase and Methyltransferase domains and subsequently 

employ a generated pharmacophore model to screen for potential inhibitors.  

 

Chapter 6 reports the third study, which investigates the structural dynamics and in turn, the possible 

mechanism of inhibition of the ZIKV NS3 Helicase enzyme when bound to ATP-competitive 

inhibitor, NITD008. The study also provides insight on the binding mode at the ATPase active site, 

thus assisting in the design of effective inhibitors against this detrimental viral target. 

 

Chapter 7 maps out the binding landscape of the ATPase and ssRNA site by demonstrating the 

chemical characteristics of potent flavivirus lead compounds, Lapachol, HMC-HO1α and Ivermectin 

at the respective NS3 Helicase binding sites.  

 

This study offers a comprehensive in silico perspective to fill the gap in drug design research against 

the Zika virus, thus giving insights toward the structural characteristics of pivotal targets and 

describing promising drug candidates. To this end, the work presented in this study is considered to be 

a fundamental platform in the advancements of research toward targeted drug design/delivery against 

ZIKV. 
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CHAPTER 1 

1 Introduction 

 

1.1 Background and Rational 

 

The re-emerging Zika virus (ZIKV) has evolved into a catastrophic epidemic during the past year, 

with an estimated 1.5 million reported cases of ZIKV infections worldwide, since the 2015 

outbreak in Brazil (Kollman et al. 2016). The arthropod-borne virus, together with Dengue, 

Japanese Encephalitis and West Nile virus, form part of the flavivirus genus, predominately found 

in the tropics. However, recent reports have evidenced new modes of transmission of ZIKV, 

including congenital, perinatal and sexual transmission, thus sanctioning the rapid spread of the 

virus on a global scale (Turmel et al. 2016; Tilak et al. 2016 Singh et al. 2016; Incicco et al. 

2013; Gourinat et al. 2015; D’Ortenzio et al. 2016; Foy et al. 2011).  

 

During ZIKV replication, the structural proteins (Capsid, membrane, pre-membrane and envelope 

protein) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of the 

virus prove to be imperative for the replication of the RNA genome, virion assembly and invasion 

of the innate immune system (Noble et al. 2010; Mahfuz et al. 2014; Zanluca et al. 2016). By 

developing inhibitors against ZIKV-specific proteins, viral replication may be terminated with 

minimal adverse effects to the host. Of the ZIKV proteins, the NS3 and NS5 play a central role in 

viral RNA replication and maturation (Bollati et al. 2010). The NS3 protein is made up of two 

functional domains being the protease that is responsible for posttranslational cleavage of the 

nonstructural proteins at five sites on the protein chain and the helicase at the C-terminal being 

responsible for RNA binding and ATP hydrolysis (Chen et al. 2010; Murray et al. 2009; Kwong 

et al. 2005). The largest non-structural protein being the NS5 protein is made up of an N-terminal 

methyltransferase and a C-terminal RNA-dependent RNA polymerase that allow for 5’UTR 

capping and RNA synthesis, respectively (Murray et al. 2009; Bollati et al. 2010; Perera et al. 

2008; Medin & Rothman 2016).  

 

As of March 2016, International health associations announced ZIKV as a public health 

emergency based on growing evidence of the virus being linked to congenital neurological 
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diseases such as Guillain-Barŕe, cranial nerve dysfunction and Microcephaly (Broxmeyer & 

Kanjhan 2016; WHO 2016; Palomo 2016; Rasmussen et al. 2016). In response to the devastating 

consequences of antenatal infection, the scientific community invested significant research 

toward preventative and curative strategies, including vaccine and chemotherapeutic 

development. Although preventative clinical trials are under way, there are still no FDA approved 

small molecule inhibitors against the virus (Cohen 2016; Malone et al. 2016).  

 

One of the most problematic tasks researchers have had to overcome is the ability of the virus to 

target neuronal cells, as inhibitors will not only need to be target-specific, effective and have 

minimal toxicity, but it will also have to pass through the blood-brain-barrier (Plourde & Bloch 

2016; Anaya et al. 2016; Bayless et al. 2016; Olagnier et al. 2016; Brault et al. 2016; Li et al. 

2016; Nowakowski et al. 2016). Novel drug discovery and development, from design to the 

market, may take from anything between 10-20 years. With minimal literature available 

evidencing ZIKV’s mechanism of action on host cells and evolving mutations of the virus, 

developing a novel drug that meets all the requirements of a ZIKV inhibitor may be laborious and 

costly.  

 

Computer-Aided Drug Design is a cost-effective strategy to fast track the drug discovery process. 

Computational methods and resources may be implemented in most stages of drug discovery 

from identifying targets, to drug optimization and preclinical testing (Lu et al. 2012; Huang et al. 

2010; Song et al. 2009; Anderson 2003). With emerging diseases, such as ZIKV, computational 

techniques including molecular modeling and docking, virtual screening, identification of 

pharmacophoric hot spots and molecular dynamic simulations allow chemists to screen millions 

of compounds to funnel out possible lead drugs which may then be validated experimentally. This 

strategy overcomes the concept of “shooting in the dark” with experimental screening, thus 

reducing the drug discovery time-line. 

 

In this study, due to the lack of fundamental research in the previously neglected tropical disease, 

we have utilized key computational techniques to fill the gap in drug design research against 

ZIKV, thus giving insights toward viral drug targets and designing potential inhibitors against 

this new epidemic.  
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1.2 Aim and Objectives 

 

The primary purpose of this thesis is to identify and characterize the principal target proteins of 

ZIKV and subsequently utilize Computer-Aided Drug Design techniques to investigate potential 

small molecule inhibitors against these proteins. 

To accomplish this, the following objectives were outlined:  

1. To create a concise route map depicting the steps taken toward identifying potential inhibitors 

of drug targets with no 3D crystal structure by: 

 

1.1. Providing a comprehensive review on ZIKV including potential viral/host targets. 

1.2. Creating a homology model and classifying the active sites of the essential ZIKV NS5 

protein (prior to the release of the 3D crystal structure). 

1.3. Identification of potential inhibitors against the NS5 RNA-Dependent RNA polymerase 

from commercially chemical databases by performing structure-based virtual screening. 

 

 

2. To utilize the in silico “Per-residue Energy Decomposition Pharmacophore” virtual screening 

technique to propose potential NS5 Methyltransferase (MTase) and RNA-Dependent RNA 

polymerase (RdRp) inhibitors. This may be achieved by: 

 

2.1. Performing molecular dynamic simulations to create molecular dynamic ensembles of 

potent flavivirus inhibitors in complex with Mtase and RdRp. 

2.2. Quantifying individual amino acid interactions towards total binding free energy based 

on the MM/GBSA approach, thus designing a pharmacophore model of each complex 

established from ligand-enzyme interactions. 

2.3. To subject the pharmacophore-based leads and search the Zinc Database for structure-

based scaffolds against the respective enzyme to estimate their binding affinities. 

2.4. Validating the most favorable ligands by assessing the stability and binding free energy 

of each system following exposure to molecular dynamic simulations. 

2.5. Computing the physicochemical descriptors as well as predicting the pharmacokinetic 

properties and drug-like nature of the most favorable ligands. 
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3. To investigate the structural dynamics and in turn, the mechanism of inhibition of the ZIKV 

NS3 Helicase enzyme when bound to ATP-competitive inhibitor, NITD008. This will 

provide insight on the binding mode at the ATPase active site, thus assisting in the design of 

effective inhibitors against this detrimental viral target. These objectives are achieved by: 

 

3.1. Combining molecular docking with classical comparative molecular dynamic 

simulations of 100 ns for the free enzyme state as well as a NITD008-bound complex. 

3.2. Utilizing a wide variety of post-molecular dynamic analysis techniques to characterize 

the binding landscape of the enzyme and to demonstrate any structural alterations in 

ZIKV NS3 Helicase loop flexibility subsequent to NITD008 binding. 

 

 

4. To map out the binding landscape of the ATPase and ssRNA site by demonstrating the 

chemical characteristics of potent flavivirus lead compounds, Lapachol, HMC-HO1α and 

Ivermectin at the respective NS3 Helicase binding sites. Insights into the structural and 

binding features of the ATPase and ssRNA site may be established by: 

 

4.1. Implementing molecular docking to identify structurally favorable molecules from a 

library of flavivirus lead compounds. 

4.2. Utilizing the enhanced technique of Accelerated molecular dynamic simulations to 

validate molecular docking and to assess free-binding energy of the systems by 

employing the MM/GBSA and per residue decomposition analysis.  

 

1.3 Novelty and Significance of Study 

 

The ZIKV has received considerable attention during 2016. However, prior to the devastating 

2015 outbreak in Brazil, the virus was classified as a neglected pathogen similar to Dengue and 

the West Nile virus (Brasil et al. 2016).  In recent months, there has been a flood of new 

discoveries regarding the virus, from evolving modes of viral transmission to viral-linked 

neurological disorders, unique specificity to host cells and increasing mutation rates (Sironi et al. 

2016; Cox et al. 2016; Pylro et al. 2016; Plourde & Bloch 2016; Passi et al. 2017; Li et al. 2016; 

Olagnier et al. 2016; Bayless et al. 2016; Anaya et al. 2016).   
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Fundamental structural and molecular research into the viral targets of ZIKV came into effect in 

the last year, with the first crystal structure being released in May 2016 (Song et al. 2016).  The 

lack in literature regarding the structural dynamics, active binding sites and the minimal 

understanding of the mechanism of inhibition of ZIKV enzymes prompted us to design a 

technical route-map toward the design and discovery of potential inhibitors against ZIKV. The 

study also reported a homology model of the ZIKV NS5 protein, identifying possible binding 

sites at the MTase and RdRp domains. This was the first account of structure-based virtual 

screening against the RdRp enzyme, thus assisting scientists from different research domains in 

designing potential small molecule inhibitors against the viral target. 

The scientific community have taken large strides toward developing a effective inhibitor against 

ZIKV, with preventative clinical trials underway (Marston et al. 2016). However, there is still no 

available FDA approved inhibitor against the virus. We chose to provide insights into the 

structural dynamics and binding affinities of crucial ZIKV drug targets, being the NS5 MTase 

and RdRp, as well as the NS3 Helicase. By characterizing the active sites’ structural and 

functional composition, potential small molecule inhibitors may be developed. With the use of 

CADD techniques, a comprehensive in silico perspective is offered to shed light on possible 

structural characteristics that allow for the inhibition of these enzymes as well as amino acid 

residues implicated in enzyme activity. Defining the binding landscape will offer prospective 

design of selective and unique inhibitors with critical pharmacophoric features that will aid in 

developing targeted and effective small molecule inhibitors.  

To this end, the work presented in this thesis is considered to be a fundamental platform in the 

advancements of research toward targeted drug design/delivery against ZIKV. 
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CHAPTER 2 

2. Background on the Zika Virus 

2.1 Introduction 

 

The World Health Organization, during 2016, declared ZIKV as a public health emergency due to 

the virus spreading explosively on a global scale (WHO, 2016). The Zika virus is characterized as 

an arthropod-borne virus from the flavivirus genus and is closely related to the other mosquito-

borne viruses including Dengue, Yellow fever and West Nile. As with other flaviviruses, the 

primary vector is the aedes Aegypti mosquito found in tropical and sub-tropical areas. The initial 

symptoms of ZIKV infection in adults were mild influenza-like symptoms that lasted 

approximately a week. However, as with most viral infections, mutations are eminent, leading to 

the escalation in virulence and transmission. Scientific communities are in a race to characterize 

and understand this previously neglected pathogen due to increasing evidence of its responsibility 

in fetal neurological disorders including microcephaly and Gullian-Barrè syndrome (Ramharack 

& Soliman 2016).  

 

This chapter contextualizes the ongoing ZIKV research, including the previous outbreaks and the 

pathogenesis and life cycle of the virus. The structural characteristics of ZIKV will also be 

reviewed, thus distinguishing possible viral targets in the design of effective and non-toxic 

therapeutics.   

 

2.2 Epidemiology and Transmission 

The Zika virus was first isolated from a pyrexial rhesus monkey in 1947 in Entebbe, Uganda. In 

1948, a second isolation was made from the same forest on a group of Australopithecus africanus 

mosquitoes. Due to both these isolations being from the same Zika forest, the virus was labeled as 

the Zika virus (Dick et al. 1952). Although isolations of the virus were analyzed, researchers only 

detected the virus in humans in 1952 when neutralizing antibodies were picked up in infected 

sera. Scientists Boorman and Porterfield subsequently studied the transmission of viruses from 

mosquito to primates and based on further isolations from both mosquito and monkey concluded 

that mosquitoes acted as vectors for ZIKV (Boorman & Porterfield 1956). 
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From the 1950s to 2006, ZIKV infection reports were minimal, with sporadic cases in Asian and 

African countries including Malaysia, Indonesia, Thailand, Pakistan, Nigeria, Senegal, Cameroon 

and Uganda (Passi et al. 2017). The first infectious occurrence of ZIKV was in 2007 in the Yap 

Islands, Micronesia. Although 80% of the population reported ZIKV symptoms, the virulence 

was not fatal and there were no hospitalizations (Faye et al. 2014; Singh et al. 2016; Boeuf et al. 

2016; Duffy et al. 2009). In 2010, a handful of confirmed ZIKV cases were reported in 

Cambodia, with similar clinical characteristics to the outbreak in the Yap islands (Heang et al. 

2012).  In October 2013, a ZIKV strain analogous to that detected in Cambodia, emerged in 

French Polynesia with an estimated 19 000 ZIKV infections identified over a two month period 

(Chen & Hamer 2016; Singh et al. 2016). 

 

In May 2015, the ZIKV containing its most virulent strain yet, began its rampage in Brazil. To 

date, there are close to 1 million cases of ZIKV infection and a third of microcephaly reports in 

Brazil are linked to perinatal ZIKV transmission (Boeuf et al. 2016; Bogoch et al. 2016; Lissauer 

et al. 2016). By March 2016, the WHO declared the virus as a public health emergency due to the 

rapid transmission of the virus to non-endemic regions (WHO 2016a). By November 2016, the 

virus spread to over 66 countries globally, including Florida, Miami, Singapore, Tonga, Fiji and 

Cape Verde (Centers for Disease Control 2016).  
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Figure 2.1: Time-line demonstrating the historical outbreaks of ZIKV and the increase in 
virulence with each strain (Image prepared by author). 

!
The rapid spread of the virus across continents is primarily due to vector transmission via the 

Aedes aegypti or Aedes albopictus mosquito. These Vectors are endemic to tropical and sub-

tropical, however, due to evolving climates, the mosquitoes have expanded their habitat, thus 

increasing the number of mosquitoes as vectors of flaviviruses (Centers for Disease Control 2016; 

Shapshak et al. 2016). Another reason for the continental dissemination of the virus is the 

identification of new modes of viral transmission. Recent studies have evidenced ZIKV to be 

transmitted in a similar fashion to that of the detrimental Human Immunodeficiency Virus (HIV), 

that is, from mother to fetus via perinatal transmission, blood transfusion and sexual transmission 

(Hamel et al. 2015; Petersen et al. 2016).  

 

2.3 Characterizing ZIKV 

To date, since the re-emergence of ZIKV and its association with microcephaly and Gullian-Barrè 

syndrome, remarkable efforts have been made in order to provide a better understanding into the 
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major physiological and molecular mechanisms underlying this infectious disease (WHO 2016b). 

Fundamental knowledge on the ZIKV structure and life cycle is crucial in designing anti-ZIKV 

therapeutics as well as exploring the structural implications of ZIKV drug resistance mutations. It 

is evident by the adverse implications of the Brazilian strain, that the ZIKV is highly mutable, 

fortifying the challenge of designing efficient inhibitors against the virus.  The virus is broadly 

classified into an East/West African and Asian/Brazilian strains based on sequence resemblance 

and symptomatic characteristics (Cox et al. 2016). 

 

2.3.1 Life Cycle of ZIKV 

 

Subsequent to viral entry into host, the Zika virion attaches to the surface of target cells by 

interactions between the envelope protein and the host cell surface receptors. The host cell 

receptors that have been evidenced to mediate virion endocytosis include phosphotydylserine 

receptor, AXL, as well as DC-SIGN, TIM-1 and Tyro3. Virions undergo this receptor-mediated 

endocytosis and are internalized to the cell cytoplasm. The viral envelope is then uncoated and 

the viral RNA is released into the cell cytoplasm. The viral RNA is then translated produce a 

large polyprotein at the endoplasmic reticulum and is subsequently cleaved into the individual 

viral proteins, leading to the replication of the viral genome. The viral RNA as well as the 

structural and non-structural proteins, and some host proteins are involved in the packaging of the 

viral complex into vesicles and assemble by budding into the endoplasmic reticulum, whereas 

immature viral particles utilize the host secretory pathway, where virion maturation occurs 

followed by release from the cell (T. Naga Ravikiran , T. Nagamounika 2016; Brasil et al. 2016; 

Gerold et al. 2017; Nugent et al. 2016; White 1977; Medin & Rothman 2016). The ZIKV has 

been evidenced to target a variety of cell types including dendritic cells, human dermal 

fibroblasts, epidermal keratinocytes and neuronal progenitor cells (Galán-Huerta et al. 2016; 

Boeuf et al. 2016). 
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Figure 2.2: Zika Virus Life cycle from vector to host transmission and replication (Adapted from 
(Screaton et al. 2015)). 

 

2.3.2 Structural Characteristics of ZIKV  

The ZIKV is an enveloped icosahedral virus that is made up of a single-stranded, positive-sense 

genome.  The enveloped virion comprises of an 11 kilobase genome consisting of 10,794 

nucleotides encoding 3,419 amino acids (Hayes 2009). The open reading frame (ORF) of the 5’ 

and 3’ untranslated region (UTR) encodes a polyprotein that is cleaved into three structural 

proteins being the capsid, precursor membrane, and envelope. Seven non-structural (NS) proteins 

are also found in this assembly, namely, NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5 (largest 

viral protein) (Haddow et al. 2012; Boeuf et al. 2016), in which the genomic protein organization 

is 5’-C-prM-E-NS1-NS2a-NS2b-NS3-NS4a-NS4b-NS5-3’ (White et al. 2016). The genomic 

RNA of ZIKV contains an m7gpppAmpN2 at the 5’ end and lacks a poly-A tail at the 3’ end 

(White et al. 2016; Cox et al. 2016). There is also a highly conserved 90-120-nucleotide strand 

near the 3’end that develops into a hairpin loop that is crucial for replication (Passi et al. 2017; 

Mumtaz et al. 2016). Of the non-structural proteins, NS1, NS3 and NS5 are highly conserved 
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whereas the NS2a, NS2b, NS4a and NS4b are small and hydrophobic (Galán-Huerta et al. 2016). 

Of critical importance is the proteolytic cleavage of prM to give the pr and M protein, which is 

produced by furin-like protease located in the trans-Golgi network during the egress of the 

particles and promote the maturation of the virions (Saiz et al. 2016). 

 

 

 

Figure 2.3: Cleaved ZIKV polyprotein demonstrating available protein crystal structures (PDB 
codes: 5IY3, 5JHM, 5JMT, 5T1V, 5KQR, 5U04) (Prepared by Author). 

!
2.3.3 ZIKV Pathogenesis and Clinical Features 

Although isolated in the early 1900s, many of the distinguishing clinical and pathogenic features 

have only been discovered in recent years. Initially, the clinical characteristics of the virus were 

minor, consisting of flu-like symptoms including swollen lymph nodes, maculopapular skin 

rashes and joint pains (Mahfuz et al. 2015; Singh et al. 2016; Plourde & Bloch 2016). Current 

research has now associated the virus with multiple-organ failure and thrombocytopenic purpura 

(Miner & Diamond 2016). The virus has also been evidenced to cause uveitis, a inflammatory eye 

disease in adults (Furtando et al., 2016) and conjunctivitis in approximately 15% of patients 

(Miner & Diamond 2016). The most detrimental complication surrounding ZIKV infection is its 

ability to target neural progenitor cells, thus leading to fetal central nervous system disorders such 
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as microcephaly and cerebral calcification as well as Gullian-Barrè syndrome which as been 

described in adult infection.  

 

After the local replication in host cells, ZIKV is distributed to the heart, muscle and central 

nervous system, as well as across the placental barrier to the fetus (Singh et al. 2016). Once in the 

amniotic fluid, ZIKV has been shown to infect neural progenitor cells, thus triggering apoptosis 

(programmed cell death) of the host cell (Tang et al. 2016). This could be of the potential 

mechanisms by which ZIKV causes fetal microcephaly (El Costa et al. 2016; Huang et al. 2016; 

Ghouzzi et al. 2017; White et al. 2016). Gullian-Barrè is caused by the demyelination of nerves 

leading to muscle weakness, tingling in arms and legs and in severe cases, paralysis. The ZIKV 

may be able to infect myelin directly or via autoimmune-mediated targeting of neurons and glial 

cells (Miner & Diamond 2016).  

 

A study by Grant et al., 2016, demonstrated the degradation of STAT2 by ZIKV NS5 protein, 

thus inhibiting immune-response cells IFN-1 and the innate immune response. The characteristic 

features of ZIKV, being its ability to pass through the blood-brain-barrier and placental barrier, as 

well as target neuronal cells and dampen the host immune response, allow for its persistence and 

replication in the human host (Grant et al. 2016). Targeting specific key proteins of the virus as 

well as possibly targeting invaded host machinery will allow for the inhibition of the virus, 

halting the progression of any downstream complications.  

 

2.4 Rationale of ZIKV Enzymes as Potential Therapeutic Targets 

Hughes et al. (2010) stated that the potential of a protein as a therapeutic target and its 

effectiveness in drug design is essential for determining the biological utility of the protein 

(Hughes et al. 2011). ZIKV contains a plethora of viral proteins that may act as targets in drug 

design. To identify inhibitors that specifically halt essential steps in the ZIKV life cycle, 

fundamental characteristics of each protein need to be established and essential proteins need to 

be identified.  

 

The ZIKV is composed of an inner shell formed by interacting subunits of the capsid (C) which is 

able to interact with genomic RNA, an intermediate shell composed of the membrane (M) and an 
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outer shell containing the viral glycoproteins (E and prM). Disruption of the structural proteins by 

antibodies or small molecule inhibitors may interfere with structural protein interactions thereby 

inhibiting virion assembly and capsid dimerization (Cox et al. 2016; Ekins et al. 2016; Sironi et 

al. 2016).  

 

Replication of viral RNA requires the activities of several non-structural proteins as well as 

utilization of specific host proteins. The NS1 and NS2a proteins have shown to evade the innate 

immune system by acting as antagonists against Toll-like receptor-3 (TLR3) and interferon (IFN) 

α/β, thus providing a biochemical pathway as a starting point in the design of antivirals against 

these NS proteins (Geiss et al. 2010). The NS4a/b proteins also prove to be potential targets for 

therapeutic intervention as a study by Liang et al (2016) has evidenced the NS proteins to inhibit 

the AKT/mTOR pathway, thus halting neurogenesis and inducing autophagy (Liang et al. 2016). 

Of the non-structural proteins however, the NS3 and NS5 proteins are considered as prime targets 

for antiviral development due to their essential roles in ZIKV RNA replication: 

 

2.4.1 NS5 Protein 

The largest non-structural protein translated from the ZIKV genome, with a molecular weight of 

approximately 103 kDa, is the NS5 protein (Figure 2.4) (Cox et al. 2016). It is comprised of a 

Methyltransferase (MTase) N-terminal RNA capping domain and a C-terminal domain with 

RNA-dependent RNA polymerase (RdRp) enzymatic activity. The ZIKV genome sustains a 

5’cap that is methylated to facilitate stability and evasion of host immune responses. The RdRp 

domain of the NS5 is crucial for RNA replication as it initiates RNA synthesis by generating 

negative-sense RNA from a positive-strand template. The synthesized strand then facilitates the 

generation of a positive-stranded RNA during viral replication (Alshiraihi et al. 2016). The 5’ end 

of the viral RNA molecule includes a methylated cap comprising of a guanine nucleotide tethered 

to the first nucleotide of the RNA. Like all polymerases, the structure of ZIKV RdRp portrays a 

right hand with characteristic fingers, palm, and thumb subdomains. There are two cavities 

located in the thumb subdomain; however, there is no biological relevance of the cavities to date  

(Alshiraihi et al. 2016; Malet et al. 2008 Zou et al. 2011) As mentioned above, there are two 

strains of ZIKV, being the African and Asian/Brazilian Strains, The substitutions between 

African and Asian strains occur mostly on the surface of the RdRp domain. The K/R280N, 
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H449Q, and G587K ZIKV mutations occur in the finger region and two mutations are found in 

the thumb domain (A784S and D867N) (Cox et al. 2016).  

 

The MTase domain of NS5 is a 33 kDa protein comprising of 1-260 amino acids. There are 

multiple active-binding sites, including a positively charged RNA binding site, a site for the 

methyl donor S-Adenosyl Methione (SAM), and a Guanine Triphosphate (GTP) cap-binding 

pocket (Alshiraihi et al. 2016; De Oliveira et al. 2014). The core domain contains four α-helices 

surrounding a seven-stranded β-sheet. The N-terminal segment comprises a helix-turn-helix motif 

followed by a β-strand and an α-helix. The C-terminal region consists of an α-helix and two β-

strands. The functional domain of the MTase is found at the N-terminal region of the protein and 

allows for the methylation of both the N-7 position of the 5’ guanine cap as well as the ribose 2’-

OH position of the first transcribed nucleotide. SAM methionine interacts with S56, D146, G86 

and W87, whereas, D146 is integral to a motif that is essential for N7 and 2′O methylation 

(Bollati et al. 2010; Sampath & Padmanabhan 2009; Cox et al. 2016; Zou et al. 2011). 

 

Figure 2.4: Crystal structure of ZIKV NS5 protein. The protein comprises of three domains, the 
N-terminal Mtase domain (residues 1-262) (red), the C-terminal RdRp domain (residues 273-907) 
(green) and linker domain (residues 263-272) (blue), (PDB code: 5TFR) (Prepared by Author). 
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!
2.4.2 NS3 Protein 

The NS3 protein consists of 618 amino acids and a serine-protease domain at its N-terminal and 

an ATP-driven Helicase domain and RNA triphosphate at its C-terminal. The protein is also 

involved in viral assembly independently of the known enzymatic activity mentioned (Lescar et 

al. 2008). During the ZIKV life cycle, the NS3 protein directly interacts with the NS5 polymerase 

to effectively multiply the viral genome. Studies have shown that impairment of either domain on 

either protein lead to non-infectious production of the viral particles.  

 

The catalytic triad, Ser135-His51-Asp7, NS2b/NS3 protease is 375 kDA protein that is dependent 

on the association of the 14 kDA, 40 amino acid NS2b cofactor, for its activity (Bollati et al. 

2010). The two NS proteins are covalently linked via a Gly4-Ser-Gly4 sequence, displaying strong 

peptidolytic activity (Lei et al. 2016). One unique feature of the ZIKV protease is its quasi-

twofold dimer symmetry. In the dimer, the substrate-binding sites of the two monomers along 

with the bound inhibitor face each other. The dimer has an opening on both sides that allows for 

the substrate to be accessed from both active sites (Lei et al. 2016).  The protease functions by 

cleaving the polypeptide chain between bonds NS2a-NS2b, NS2b-NS3, NS3-NS4a and NS4b-

NS5. This cleavage is essential for viral replication as the activities of the NS proteins are 

dependent on their cleavage at precise amino acids (Chen et al. 2016; White et al. 2016). 

 

The ZIKV helicase comes from the superfamily helicases, SF2 and is found at the C-terminal of 

the NS3 protein and requires an ATP-driven molecular motor. The structural characteristics of the 

ZIKV NS3 helicase consists of three domains of approximately 440-450 residues: domain I 

(residues 182-327), domain II (residues 328-480) and domain III (residues 481-617), as well as a 

P-Loop (residues 196-203) which is located at the ATP-binding site of domain I (Jain et al. 2016; 

Hongliang Tian et al. 2016) (Figure 2.5).The stimulation by RNA allows the helicase domain to 

exhibit intrinsic nucleoside triphosphatase activity, which then allows for the unwinding of viral 

RNA to facilitate replication of the viral genome with the NS5 RdRp (H Tian et al. 2016). The 

inhibition of either one of the binding sites, the RNA-binding groove or the ATP-binding site, 

leads to insufficient viral replication and maturation (Sampath & Padmanabhan 2009). 
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Figure 2.5: Crystal structure of ZIKV NS3 Helicase Protein (PDB code: 5GJC) depicting the 
three domains and two-active binding regions (blue) that form hydrophobic pockets for ATP and 
ssRNA binding (Prepared by Author). 

 

2.4.3 Three-dimensional structures of  ZIKV NS5 and NS3 proteins 

 

Prior to 2016, there were no available crystal structures of any of the ZIKV proteins. However, 

there has been a flood of scientific knowledge released in the past two years regarding the 

fundamental characteristics of ZIKV and the basis for ZIKV rational drug design. This has 

allowed for the release of crystal structures of ZIKV proteins, providing new insights on the 

structural features of these targets. Table 1 summarizes the currently available PDB-deposited 

crystal structures of ZIKV NS5 and NS3 proteins.  
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Table 2.1: Overview of the currently PDB-deposited Crystal Structures of ZIKV NS5 and NS3 

Proteins. 

NS Protein Resolution 
(Å) 

Ligand/ 

Inhibitor 
PDB 

Entry 
Reference, Date of 

Publication 

Zika Virus NS5 RNA-dependent RNA 
polymerase 2.31 ZN 5TIT Godoy et al (To be 

Published) 

Zika Virus NS5 RNA-dependent RNA 
polymerase 1.9 PO4, ZN 5UO4 Godoy et al (To be 

Published) 

Structure of Zika virus NS5 3.28 GOL, SAH, S
O4, ZN 

5TM
H 

Wang et al (To be 
Published) 

Zika virus NS5 methyltransferase 2.01 CL, GOL, 
SAM, SO4 5M5B Coutard et al (March 

2017)  

Zika virus NS5 Methyltransferase in 
complex with GTP and SAH 2.05 

GTP, PO4, 
POP, SAH, 

SIN 
5GOZ Zhang et al (November 

2016) 

Zika virus NS5 Methyltransferase in 
complex with GTP and SAH 2.44 GTA, NI, 

SAH, SO4 5GP1 Zhang et al (November 
2016) 

Zika Virus NS5 Protein 3.05 SAH, ZN 5TFR Longnecker et al (To be 
Published) 

NS5 methyltransferase from Zika virus 
bound to S-adenosylmethionine 1.33 CL, PO4, 

SAM 5KQR Coloma et al 
(September 2016) 

Zika virus bound to S-
adenosylmethionine and 7-

methylguanosine-5’-diphosphate 
1.5 

ACT, GOL, 
M7G, PO4, 

SAM 
5KQS Coloma et al 

(September 2016) 

     

Zika NS3 helicase:RNA complex 1.6 ACT, FLC 5MF
X 

Jenkins et al (To be 
Published) 

Unlinked NS2b-NS3 Protease from 
Zika Virus and its complex with a 

Reverse Peptide Inhibitor 
1.58 - 5GPI Zhang et al (December 

2016) 

Unlinked NS2b-NS3 Protease from 
Zika Virus in complex with a 

compound fragment 
2.0 7HQ, ACT 5H4I Zhang et al (December 

2016) 

Zika virus NS3 helicase 2.05 K, TRS 5TXG Nocadello et al (To be 
Published) 

Apo structure 1.4 EDO 5JWH Cao et al (To be 
Published) 

Apo structure 1.69 ATP, CL, 
MN 5K8I Cao et al (To be 

Published) 
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2.5 Targeting Host Proteins in ZIKV Therapy 

During the ZIKV replication cycle, host cell machinery is imperative in the translation of viral 

RNA and maturation of the replicated virus, thus targeting host proteins and pathways may be 

key to effective inhibition of viral replication. 

 

One of the most researched host proteins in flavivirus infection is the endoplasmic reticulum 

glucosidase. These proteins allow for the cleavage of the terminal glucose from the glycan found 

at the glycosylation-site of the prM and envelope protein, thus leading to its maturation of the 

envelope protein (Stahla-Beek et al. 2012). Studies have shown that many flaviviruses, including 

ZIKV, have a N-glycosylation at Asn154 (Ekins et al. 2016; Sirohi et al. 2016).  

Castanospermine (CST) and deoxynojirimycin (DNJ) have been established as potent inhibitors 

of alpha-glucosidases, thus preventing the early stages of glycosylation (Courageot et al. 2000).  

 

Apo structure 1.75 CL, EDO, 
GSP, MPD 5K8L Cao et al (To be 

Published) 

ZIKV NS3 helicase in complex with 
GTP-gamma S and a magnesium ion 1.85 CL, GSP, 

MG 5K8T Cao et al (To be 
Published) 

Apo structure 1.6 ADP, CL, 
EDO, MN 5K8U Cao et al (To be 

Published) 

NS2b-NS3 Protease from Zika Virus 
caught after self-cleavage 1.84 CL 5GJ4 Phoo et al (November 

2016) 

Zika virus NS2b-NS3 protease in Apo 
form 3.1 - 5T1V Nocadello et al (To be 

Published) 

Zika virus NS3 helicase in complex 
with ssRNA 1.7 - 5GJB Tian et al (August 

2016) 

Zika virus NS3 helicase in complex 
with ATP 2.2 ATP, MN 5GJC Tian et al (August 

2016) 

NS3 Helicase from the French 
Polynesia strain of the Zika virus 1.62 ACT, POP 5JRZ Jain et al (August 2016) 

Zika virus NS2b-NS3 protease in 
complex with a boronate inhibitor 2.7 6T8 5LC0 Lei et al (July 2016) 

Zika virus NS3 helicase 1.8 - 5JMT Tian et al (June 2016) 
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Hamel et al (2015) described the importance of dendritic cell-specific intracellular adhesion 

molecule 3- grabbing non-integrin (DC-SIGN), TIM-1 and TAM receptors in the attachment and 

entry of ZIKV into the host cell before replication can occur (Hamel et al. 2015). Small 

interfering RNA (siRNA) was also shown to completely inhibit the expression of the above 

proteins after 48 hours. Other informative publications on siRNA inhibition of flavivirus host 

machinery include a review by Hirsch (2010), an in silico based experimental study on Dengue 

virus by Noppakunmongkolchai et al (2016) and the silencing of the 3’ UTR of ZIKV genome by 

Shawan et al (2015) (Mahfuz et al. 2015; Noppakunmongkolchai et al. 2016; Hirsch 2010). 

 

A recent study published in June, 20016 by Nature identified host endoplasmic reticulum-

associated signal peptidase complex (SPCS) to be necessary for the proper cleavage of ZIKV prM 

and envelope proteins. The authors also demonstrated that the loss of SPCS signaling leads to a 

dramatic decrease in Dengue, Yellow fever, West Nile, JEV and Hepatitis C viruses (R. Zhang et 

al. 2016). Nowakowski et al (2016) also found membrane receptor AXL to have potential as a 

host target as it facilitates the entry of ZIKV into the host cell (Nowakowski et al. 2016). Wells et 

al (2016) however rejected this theory as he demonstrated AXL-knockout to still allow for ZIKV 

entry. He proposed an attachment factor, TYRO3 to be a possible host target (Wells et al. 2016).  
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2.6 The Scientific Advancements of ZIKV Anti-viral Therapy 

The Asian/Brazilian strain of ZIKV has already been associated with irreversible chronic central 

nervous system (CNS) conditions as mentioned above. The concerns of the scientific and clinical 

community are the consequences of Zika viral mutations, thus suggesting the urgent need for 

viral inhibitors. There have been large strides in vaccine development against the virus but there 

are still no licensed treatments available. Rapid rational drug design and discovery research is 

fundamental in the production of potent inhibitors against the virus that will not just mask the 

virus, but destroy it completely. Recent research has found that one of the characteristic features 

of ZIKV is that it targets neuronal cells (Millichap 2016; Miner & Diamond 2016; Mlakar et al. 

2016; Tang et al. 2016). Consequently, any new drugs that may be discovered will have to pass 

through the blood-brain-barrier. Currently, there are number of promising prevention therapies 

and potential treatment options including small molecules (some of which have previously been 

approved by FDA to treat other diseases), vaccine candidates, and neutralizing purified antibodies 

still being tested. Below are an overview of such experimental therapies: 

 

2.6.1 Preventative Antibodies and Vaccines 

“Prevention is better than cure”, a quote that is true to its meaning. Vaccination is one of the most 

effective forms of protection against a viral infection. Immunization with an inactivated vaccine 

will be the most secure route with ZIKV infection as it will be safe to use by pregnant woman 

(Cohen 2016).  Marston et al., 2016, recently published a set of considerations for developing a 

ZIKV vaccine that will allow for safe and effective control of the virus based on focused planning 

and evaluation (Marston et al. 2016). Mahfuz et al., 2014, began the design of epitope-based 

vaccines against ZIKV envelope glycoprotein; however, this was an introductory approach and 

was not validated in subsequent studies (Mahfuz et al. 2014). In July 2016, a study was done on 

repurposing Dengue virus antibodies as inhibitors of ZIKV at different pH levels. Results showed 

CryoEM structures of potent flavivirus antibody C10 bound to ZIKV envelope protein at pH 6.5 

and pH5.0, suggesting a new candidate in ZIKV vaccine therapeutics (S. Zhang et al. 2016).  

Another monoclonal antibody was identified to bind to the glycan loop of the envelope protein, 

thus potentially inhibiting the binding of ZIKV to host cell receptors (Barba-Spaeth et al. 2016). 

Abbink et al., 2016, showed promising results of a purified inactivated viral vaccine, which 

induced ZIKV-specific neutralizing antibodies and immunized a test group of Rhesus monkeys.  
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A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector 

expressing ZIKV prM-E also produced neutralizing antibodies and completely protected monkeys 

against ZIKV infection. These results are promising and clinical trials are currently underway 

with hopes of a FDA approved vaccine (Abbink et al. 2016; Larocca et al. 2016).  

 

2.6.2 Small Molecule inhibitors 

Antibodies and vaccines are often expensive and require specific conditions for the transport and 

storage of the vaccines. This proves to be problematic in developing countries where funds and 

facilities are limited. Development of small molecule inhibitors cost less, are produced faster, 

they are stored large quantities and are generally more accessible. Due to the rapid spread of 

ZIKV infection on a global scale and the detrimental long-term complications, the scientific 

community has turned to, rather than designing and synthesizing new drugs, to ‘repurpose’ 

flavivirus FDA approved drugs for ZIKV (Mumtaz et al. 2016; Wahid et al. 2016). Table 2 

summarizes the ZIKV drug candidates based on related viral inhibitors.  

 

 

Table 2.2: Most Popular Repurposed Drugs as ZIKV Inhibitors 

DRUG 
MECHANISM OF 

ACTION 
STRUCTURE 

2-C- 

methyladenosine 

Inhibition of RdRp (Eyer 

et al. 2016). 

 

Chloroquine 

Endocytosis blocking 

agent (Delvecchio et al. 

2016). 

 

Sofosbuvir 

Hepatitis C RdRp 

inhibitor (Kryger et al. 

2013). 
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Amodiaquine 

 

Antimalarial drug 

(Hinton et al. 2016). 

 

Ribavirin 
Inhibition of RdRp 

(Kryger et al. 2013). 

 

Pyrimethamine 

Dihydrofolate reductase 

antagonist (Barrows et al. 

2016). 

 

Mycophenolic Acid 

Inosie- 5’- 

monophosphate 

dehydrogenase inhibitor 

(Barrows et al. 2016). 

 

Ivermectin 

Inhibition of RNA-

binding (Barrows et al. 

2016). 

 

Mefloquine HCl 

Autophagy/ disrupts 

lysosomal pH (Barrows et 

al. 2016). 

 

Saliphenylhalamide 

Viral RNA production 

inhibitors (Kuivanam 

2016) 

 

Nanchangmycin 
Viral entry inhibitor 

(Bausch) 
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CHAPTER 3 

 

3. Molecular Modeling and Computational Approaches to Biomolecular Structure and 

Drug Design 

 

3.1 Introduction 

 

Molecular modeling is one of the most rapid developing scientific fields, as it comprises of a 

wide range of theoretical and computational tools used to model and simulate small chemical and 

biological systems with the purpose of understanding their behavior at an atomistic level (Kore et 

al. 2012).  

 

While experimental techniques can significantly demonstrate the mechanism of action of a 

biological system, the extensive labor, time reservations and financial shortfalls have led research 

communities toward enhanced computational alternatives (Cramer 2004; Lu et al. 2012). The 

discipline of computational chemistry forms part of the nucleus of molecular modeling, allowing 

for significant medical breakthroughs due to immense improvements in computer hardware and 

software over recent decades (Jensen 2007). Starting in the 1960s and progressing rapidly since 

the late 1980s, these computational techniques have provided a robust platform for biomolecular 

structure analysis and drug discovery (Leach 2001; Song et al. 2009).  

 

Rational drug design is based on the fundamental knowledge that the activity of a drug is 

obtained from the binding of the compound to a molecular pocket of the biological target. The 

drug’s chemical and geometric stability at the molecular pocket is complementary to successful 

activity. The computational methods used in rational drug design and structure analysis include: 

protein modeling (homology modeling), sequence diversity analysis, virtual screening and 

molecular docking (Kore et al. 2012; Huang et al. 2010).  

 

There are two essential molecular modeling principles (Figure 3.1) that may be used to establish 

the energetics and conformational changes to the drug-target system: 
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– Quantum Mechanics and 

– Molecular Mechanics.  

 

By combining the above molecular modeling principles with molecular dynamic simulations, the 

target’s flexibility and inhibitor binding landscape may be analyzed (Lewars 2003).  

 

Figure 3.1: The scientific domains in which Applications of Quantum and Molecular Mechanics 
fit into (Prepared by Author).   

 

In this chapter, quantum mechanics, molecular mechanics and molecular dynamic simulations 

will be elaborated on, thus providing insight into the rationale behind the chosen energy 

descriptors for this study. The principle behind each of the computational tools employed in the 

study will also be further explained.  
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3.2 The Principle of Quantum Mechanics 

 

Quantum mechanics (QM) is one of the most successful branches of physics. The Principles of 

QM were developed during the early 20th century, where 2 types of QM were established. The 

initial development of Matrix mechanics was by German scientists: Planck, Born, Jordan and 

Heisenberg as well English-borne Dirac. Later, in 1926, Erwin Schrödinger developed wave 

mechanics, which now plays a fundamental role in the understanding of quantum phenomena 

(Trabesinger 2009).  

 

The Quantum theory explains the behavioral characteristics of sub-atomic particles, such as 

electrons, at a nano-scopic level (Jensen 2007; Atkins & Friedman 2011). The phenomena of QM 

play important roles in biological processes of molecular biology such as bond forming/breaking, 

atomic transfer and electron excitation. Theoretically, QM calculations can predict any property 

of an individual system in a 3D- space. Electrons are mapped using the continuous electron 

density method and the energetics of the system is calculated using Schrödinger’s wave function 

theory. For larger systems, electron density may be calculated using the earlier released Born-

Oppenheimer approximation theory (Shen et al. 2016; Jakobsson 2001).   

 

Provided below is the basic principle of Schrödinger’s wave function and Born-Oppenheimer 

approximation theory: 

 

3.2.1 The Schrödinger Wave Function 

 

In January 1926, Austrian physicist, Erwin Schrödinger proposed the quantum mechanical model 

of the atom. Expanding on the Bohr atom model, which proposes that electrons are arranged in 

concentric circular orbits around a nucleus, Schrödinger utilized mathematical equations to 

describe the probability of locating an electron on an exact path. The model is portrayed as a 

nucleus that is surrounded by an electron cloud of high and low densities. According to quantum 

mechanics, all particles are described as a wave function with no defined position or momentum 

until they are observed. The probability of each possible observation may be determined by the 

wave function (Leach 2001; Atkins & Friedman 2011).   
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The Schrödinger equation forms the fundamental core of QM, as Schrödinger himself found that 

by adding the properties of an atom, being the mass and charge, to the equation, he was able to 

predict a series of shapes showing the wave pattern of electrons in an atom (Bahrami et al. 2014).  

 
 

Figure 3.2: The Bohr Model demonstrated the atom to have a positively charged nucleus that was 
orbited by negatively charged electrons. This model was corrected by the equation, which 
evidenced electrons to have wave functions dependent on mass and charge of the atom. The two 
models are the fundamentals of what we now know as Quantum mechanics (Prepared by Author). 

 

The Schrödinger wave equation:  

 

!" = !"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.2.1) 

Where H is called the Hamiltonian operator (contains derivatives with respect to atom location), 

E is the energy eigenvalues of the system and ψ is the wave function. In order to replicate a 

relevant physical model of Schrödinger’s equation, the wave function must be continuous, single 

valued, normalized and anti-symmetric. The molecular Hamiltonian operator is the sum of the 

atom’s total potential energy (V) and kinetic energy (T): 

! = ! + !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.2.2) 
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Where H is defined as follows:  

 

! = − !!
!"!

!
!!!

!!
!"! +

!!
!"! +

!!
!"! + !!!!

!!"
!!!!!!!!!!!!!(Eq!3.2.3)!!!!!!!!!!!!!!    

 

The Schrödinger equation is highly complex, thus proving to be in-executable when solving for 

molecular systems, as it may contain thousands of atoms (Nakatsuji 2004; Barde et al. 2015; 

Bahrami et al. 2014). However, another QM theory, The Born-Oppenheimer Approximation, 

compensates for molecular rather than atomic structure.  

 

3.2.2 The Born- Oppenheimer Approximation Theory 

 

In 1927, physicists Max Born and J. Robert Oppenheimer proposed the Born-Oppenheimer 

approximation, which describes the uncoupling of the nuclei wave function to that of the 

electrons (Born & Oppenheimer 1927). Electrons are taken to be of lighter weight than that of 

nuclei, thus having increased velocity and move instantaneously to nuclei movement. Electron 

distribution within a molecule is therefore defined by the location of the nuclei (Liehr 1957; 

Ochkur 1965). This allows for the Schrödinger equation to be solved for the kinetic energy of the 

electrons alone, as the kinetic energy for the nuclei will remain constant.  

 

The difference in velocities of the nuclei and electrons allow for the Born-Oppenheimer 

approximation to be applied, minimizing the complexity of the wave function of the Hamiltonian 

equation (Huang & Yi 2009). The simplified wave function: 

! !!"!# = !! !!"!# !(! !!"#$ !!!!!!!!!!!!!!!!!!(Eq!3.2.3) 

 

Eq 3.2.1 is converted:  

 

!!"! !!"!# = !!!"! !!"!# !!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.2.4)! 
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Where HEN denotes a difference between terms based activity to fixed nuclear positions (VNN) or 

their activity to the non-fixed electron positions. Eq. 3.2.5 shows EEN, which is derived from 2 

sources being the fluctuating electron co-ordinates and fixed nuclear co-ordinates.  

 

!!" + !!! !! !!" = !!!"! !!" !!!!!!!        (Eq!3.2.5)! 

 

We use the electronic Schrödinger equation to describe electronic motion within a molecule. The 

Approximation is seen to be more accurate when applied to ground electronic states. Once the 

equation has been solved, fixed positions of interest of the equilibrated conformation may be 

assessed and the potential energy surface and curve may be constructed (Matsika 2010; Woolley 

1991; Jecko 2014; Lewars 2003).   

 

3.2.3 Potential Energy Surface as an Application of Quantum Mechanics 

 

The potential energy surface is an effective mathematical/graphical representation between 

molecular vibrational motions of a molecule, its geometry as well as its nuclear probability 

distribution by solving the time-dependent Schrödinger equation. The concept of potential energy 

surface arises from the Born- Oppenheimer approximation as explained above, whereby electrons 

vary according to the positional states of the nuclei so that the potential energy surface is taken as 

the potential of an atoms motion to collide with each other in a molecule (Atkins & Friedman 

2011; Woolley 1991; Lewars 2003; Levitt et al. 1995). A potential energy surface displays high 

potential energy regions, indicating high-energy nuclear arrangements or molecular 

conformations and low energy regions indicating low nuclear energy conformations (Figure 3.3). 

This may be utilized in computational chemistry to identify the lowest energy state and the 

positional geometry of a molecule at this state (Jakobsson 2001; Jensen 2007).  
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Figure 3.3: Graphical representation of a two-dimensional potential energy surface (PES) 
(University of California n.d.).  
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3.3 The Principle of Molecular Mechanics  

One of the main difficulties in chemistry is to be able to understand the chemical characteristics 

of a compound, that is, its reactivity, solubility and stability. To measure these features, 

quantifiable dynamics need to be observed and analyzed from predicted molecular models 

(Boeyens & Comba 2001). 

  

Molecular Mechanics (MM) may be defined as a set of models that utilize an empirical, 

algebraic, atomistic energy function for chemical systems. Also known as molecular force field 

methods, MM have become successful when dealing with large molecules that require multiple 

molecular dynamic calculations such as in biochemistry (Maseras & Morokuma 1995). It utilizes 

classical Newtonian mechanics to describe a large variety of molecular systems, from low 

molecular weight systems such as hydrocarbons, to large biomolecular complexes consisting of 

thousands of atoms such as proteins or membrane fragments (Vanommeslaeghe et al. 2014).  

 

In Molecular mechanics, simple algebraic terms are used to express the total energy of a 

compound without needing to compute wave function or electron density as with quantum 

mechanics (Tsai 2002).  Numerous techniques are utilized in rational drug design that identifies 

potentially desirable compounds prior to experimental testing. Molecular Mechanic simulations 

also allow for the construction of atomistic models based on favorable energy calculations (Poltev 

2015).   

 

3.3.1 Potential Energy Function 

 

As mentioned above, atoms are classified as the “building blocks” in force field methods and 

electrons are not considered to be individual particles. This means that rather than solving the 

Schrödinger equation, explicit bonding information must be provided. In force field methods, 

molecules are described by a “ball and spring” model, with atoms of different sizes and bonds of 

different lengths. It was observed that different molecules might have structural similarity due to 

the atoms they are made up of. The concept was coined “atom types” and is dependent on the 

atomic number and chemical bonding holding it in place (Jensen 2007).  
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The potential energy function (PEF)/ force field energy of a molecular system may be classified 

in terms of a set of force field energy equations that are fundamentally based on classical 

Newtonian physics. These equations are able to calculate not only the energy of a system, but the 

“atom types” that make up the molecule as well (Jensen 2007; Tsai 2002).  

 

The total potential energy comprises of the extended sum of all individual potential intra/inter 

molecular components, including: 

1. Bond stretching (between directly bonded atoms) 

!!! = !∑!! ! − !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.3.1.1) 
 

2. Angle bending (atoms bounded to same central atoms) 

                 !! = !∑!! ! − !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.3.1.2) 
 

3. Bond torsion 

!!!!!!!!!!!!!!!!!!!!!!!!! = !∑!![! + !"#(!" − !!)]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.3.1.3)!!!!!!!! 

4. Non-bonded interactions  (van der Waals and electrostatic) 

!!!!!!!!!!!!!!!!!" = ∑ !!"
!!!"!"

− !!"
!!"!

! + ! ∑ !!!!
!"!"

! !!!!!!!!!!!!!!!!(Eq!3.3.1.4) 

 

Where: Kr, Kθ, Kϕ are force constants for bond, angle, and dihedral angle and ro, θo, ϕo are the 

equilibrium distance, angle and phase angle. Parameter rij is distance, while Aij and Bij are van der 

Waal parameters. D is the molecular dielectric constant; qi and qj are charge points.  

 

In molecular mechanics, atoms are typically treated as spheres and bonds as springs. It is 

important to note that the properties mentioned above are easiest to describe mathematically 

when atoms are taken as spheres with characteristics radii. The final potential energy function 

equation is therefore: 

!!!!!!!!!!!!!!!!!!!!!!!!!"!#$ = !!! + !! + !! + !!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq. 3.3.2) 
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Figure 3.4: Diagramatic representation of the total potential energy function of a molecule, as 
mentioned above (Prepared by Author). 

 

There are many different force fields currently in use; however, they differ by the functional form 

of each energy term, the number of cross terms and the type of information used for fitting the 

parameters. Two general trends may be noted when designing the force fields: 

1. Force fields used on large systems such as DNA or protein, have a relatively simple 

functional forms with no cross terms and use the Lennard-Jones potential as van der 

Waals energy. These are called harmonic/diagonal force fields. 

2. Force fields used on small to medium size molecules have to maintain a high degree of 

accuracy. These have a number of cross terms and an exponential-type potential for van 

der Waals energy. These are called “Class II” force fields. 

 

Examples of the most widely used and popular force fields are AMBER (Wang et al. 2004), 

GROMOS (Hermans et al. 1984), CHARMM (Brooks et al. 1983), OPLS-AA (Jorgensen et al., 

1996) and ENCAD (Levitt et al. 1995) (Monticelli et al. 2013). For the purpose of this study, the 

harmonic AMBER force field was utilized for the characterization of the molecular systems.  
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3.4 The Principle of Molecular Dynamics 

 

Molecular dynamics (MD) first emerged in the late 1950s where Alder, Wainwright and Rahman 

developed simulation methods for the dynamics of liquids. The computational chemistry domain 

has progressed since then and from the early 1970s, molecular dynamics has become the most 

widely used method to study structure and dynamics of macromolecules such as DNA or protein 

(Tsai 2002). There are two types of simulation techniques, classical MD and Monte Carlo (MC). 

In recent years, numerous hybrid techniques have also been released. One of the major 

advantages of MD over MC is its ability to allow for dynamical properties of a system such as 

rheological properties and time-dependent responses (Nair & Miners 2014). Molecular dynamics 

is especially valuable in biochemistry and molecular biology as it affords the opportunity to 

identify and categorize, on an atomic scale, the dynamic events that may impact a biological 

properties of a system (Jarosaw Meller 2001). 

 

Classical molecular dynamics incorporates Newton’s equations of motion into its computational 

algorithm. Based on this highly evolved mathematical and physical algorithm, MD simulations 

provide high probability real-time conformational and mechanistic observations of many 

chemical reactions on an atomistic level (González 2011). An MD simulation allows us to study 

interacting particles of a system throughout a desired time-period, by producing a dynamical 

trajectory that may be then analyzed. The overall purpose of this computational technique is to 

utilize Newton’s equations to solve and understand the energies and structural dynamics of a 

molecular network system. The following initial particle conditions are required: 

1. Positions and velocities of each particle 

2. A good force field to characterize the forces between atoms, e.g. AMBER or CHARMM 

3. Boundary conditions that need to be engaged 

 

The classical equation of motion may then be solved:  

!! = !!!
!!!!(!)
!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.4) 

Where ri(t) is the particle position vector, t is time-evolution, m is the mass of the particle and Fi 

depicts the interacting force on the particle.  
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Molecular dynamics, according to Jakobsson et al (2001), may be rationalized into four 

continuous technical steps that are repeated millions of times to generate a trajectory (Jakobsson 

2001). The steps are as follows: 

1. The fundamental requirements (states) of the biomolecular system are defined: 

- The co-ordinates of each atom 

- The bond characteristics between each atom 

- The accelerations of atoms 

2. Each atom’s potential energy is computed. 

3. The energies from step 2 are then utilized to solve the equations of motion.  

4. The new “state” of the system needs to be saved and the atoms co-ordinates changed and 

step forward in the simulation in taken. The cycle then starts back at step 1.  

Once the trajectory is fully generated, quantitative analysis of the system’s time- evolution can 

proceed.  

 

3.4.1 Molecular Dynamics Post-Analysis 
 

Molecular dynamic trajectories are created from the production run of the simulation. The 

trajectories can be defined as sequential snapshots that are characterized by both positional co-

ordinates and velocity vectors and detail the time evolution of the system in phase space 

(Likhachev et al. 2016; Jarosaw Meller 2001).   

When choosing analytical software, three requirements are essential: 

1. Qualitative visualization software that will not only display the trajectory’s video clips, 

but also generates high quality snapshots/images. 

2. The software should have prompt processors that will accommodate large volumes of 

data. 

3. A variety of analysis options should be available on the one program.  
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The selected post-dynamic techniques and calculations should be dependent on the nature of the 

MD study; however, critical quantitative evaluation is necessary to support any visual 

systemization. 

For the purpose of this study, the post dynamic analysis of the trajectories is critical to 

determining the:  

1. energetic and conformational stability of the biomolecular system.  

2. The characteristics of the system’s small molecule binding landscape and the 

thermodynamic energy fluctuations along the system’s clustered trajectory. 

3. dynamic conformational features or variability of the biomolecular system. 

 

3.4.1.1 System Stability 

Convergence: 

Convergence may be used to describe protein dynamics based on bond types and bond angle 

vibrations during the unfolding of a protein. This merging toward equilibrium and the 

representation of a final energetic and conformational plateau is essential for a MD trajectory to 

be accurate and reproducible (Amadei et al. 1999).  It is at this plateau that the protein-ligand 

system is shown to display energetically stable conformations.  

 

Root Mean Square Deviation (RMSD): 

The deviation of a complex may be measured by the spatial difference between two static 

structures of the same trajectory. The RMSD of a trajectory is defined as:  

!"#$ = ! (!! − !!!)!!
!

!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.5) 

Where: N is the total number of atoms in the complex, Ri is the vector position of the Cα atom of 

particle i in the reference conformation which is computed after aligning the structure to the 

initial conformation (O) using the least square fitting.  

The average RMSD may be calculated by taking the average over the number of frames in each 

trajectory and can be computed for the receptor, ligand and complex of a system (Kufareva & 

Abagyan 2012).  
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Radius of Gyration (RoG): 

The radius of gyration in a protein may be defined as the root mean square distance of the atoms 

from their common centroid/center of gravity. This allows for the estimation of compactness of a 

protein complex along a trajectory. The RoG of a complex may be based on the following 

reaction:  

 

!!!"# = ! ( !!
!
!!! (!! − !!)!)

!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.6) 

Where: ri is the position of the ith atom and r is the center weight of atom i.  

The average RoG may be calculated by taking the average over the number of frames in a 

trajectory (Lobanov et al. 2008).  

 

3.4.1.2 Thermodynamic Energy Calculations (Free Binding Energy) 

Binding free energy calculations is an important end point method that may elucidate on the 

mechanism of binding between a ligand and enzyme, including both enthalpic and enthropic 

contribution (Ylilauri & Pentikäinen 2013). Estimation of binding free energy leads to 

development of various algorithms and approaches including free energy perturbation, 

thermodynamic integration, linear interaction energy and molecular docking calculations, to 

mention a few. 

 

Of all the free energy calculations, the Molecular Mechanics/Generalized Born Surface Area 

(MM/GBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methods 

have proven to be the most accurate and efficient in estimating binding free energies for 

biological macromolecules. Contradictory to molecular docking, both MM/GBSA and 

MM/PBSA do not rely on a large training set to define different parameters in each energy term. 

The above methods make use of a combination of molecular mechanics terms and the implicit 

solvent model to estimate the absolute free binding energy that is averaged over the number of 

frames in the trajectory (Genheden & Ryde 2015). The free binding energy (ΔG) computed by 

these methods for a protein system (complex, ligand and receptor) can be represented as: 
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∆!!"#$ = !!"#$%&' − !!"#"$%&! − !!"#$%&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq!3.7.1  

∆!!"#$ = !!"# + !!"# − !"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq!3.7.2  

!!"# = !!"# + !!"# + !!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq!3.7.3  

!!"# = !!"/!" + !!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq!3.7.4  

!!" = !"#"#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Eq!3.7.5  

 

Where: Egas denotes the gas-phase energy, which consist of the internal energy Eint; Coulomb 

energy Eele and the van der Waals energies Evdw. The Egas was directly estimated from the 

FF14SB force field terms. Solvation free energy, Gsol, was estimated from the energy 

contribution from the polar states, GGB/PB and non-polar states, G. The non-polar solvation 

energy, SA. GSA, was determined from the solvent accessible surface area (SASA), using a water 

probe radius of 1.4 Å, whereas the polar solvation, GGB/PB, contribution was estimated by 

solving the GB/PB equation. S and T denote the total entropy of the solute and temperature 

respectively.  

The MM/GBSA and MM/PBSA algorithms postulate quantifiable analysis of the binding affinity 

of the ligand to the protein and therefore are able to rationalize molecular docked structures 

(Godschalk et al. 2013).  
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Figure 3.5: Diagramatic representation of thermodynamic cycle as justified in the equations 
above (Prepared by Author). 

 

3.4.1.3 Conformational Features of System 

Root Mean Fluctuation (RMSF) 

The root mean fluctuation (RMSF) of a protein measures residue’s Cα atom fluctuations based on 

the average protein structure along the system’s trajectory. This extends to postulate the 

flexibility of regions of a protein based on the computed RMSF (Bornot et al. 2011). To calculate 

the standardized RMSF, the following equation is applied:  

!"#$% = ! (!"#$! − !"#$)!!(!"#$) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(Eq!3.8) 

Where: RMSFi is the RMSF of the ith residue, from which the average RMSF is subtracted. This 

is then divided by the RMSF’s standard deviation to yield the resultant standardized RMSF.  
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The above method differs from RMSD and RoG as it is computed as the total residue fluctuation 

along the trajectory and is not analyzed at every frame in the trajectory.  

 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is defined as a covariance-matrix-based mathematical 

technique that is used to simplify the magnitude of the  data generated from a MD simulation to 

understand correlated motions. In MD simulations of biomolecular systems, the PCA technique 

may be applied when measuring the atomic displacement and the loop dynamics of the protein.  

 

The application of PCA in a MD simulation is known as “essential dynamics” as only 

fundamental motions of a data set are isolated from the millions of conformational snapshots. The 

conformational motions are then filtered from largest to smallest fluctuations and graphically 

depicted using a covariance matrix (Martinez & Kak 2001). The new set of defined co-ordinates 

are defined as the principal components of the data set and ordered such that the first 3-4 

principal components have similar fluctuations as observed in the trajectory (David & Jacobs 

2014). For the purpose of this study, the first 2 principal components were calculated and matrix 

covariance applied to evaluate the overall motion of the protein complexes. 

 

Dynamic Cross Correlation (DCCM) 

Dynamic cross correlation (DCCM) plots are used to quantify residue fluctuations either in or out 

of phase during a simulation.  The cross correlation coefficient varies from -1 (completely anti-

correlated motion) to +1 (completely correlated motion).  The formula used to describe dynamic 

cross correlation is given below: 

!!" = !
< !"#.!"! >

< !!!! >< !!!!! >
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(!"!3.9) 

The cross-correlation coefficient (Cij) varies within a range of −1 to +1 of which the upper and 

lower limits correspond to a fully correlated and anti-correlated motion during the simulation 
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process. Where, i and j stands for ith and jth residue respectively and Δri or Δrj represents 

displacement vectors correspond to ith and jth residue respectively.  

Dynamic cross correlation maps have become very successful in quantifying residue motions that 

arise from ligand binding or in the occurrence of protein mutations (Kasahara et al. 2014; Tiberti 

et al. 2015). 

 

3.5 Other Computer-Aided Drug Design Techniques Utilized in the Study  

3.5.1 Homology Modeling  
 

The initial step in molecular modeling and drug design is having a valid 3D structure, from X-ray 

crystallography, Nuclear Magnetic Resonance (NMR) or computational design using homology 

modeling (Soni & Madhusudhan 2017). The aim of homology modeling is to predict a three-

dimensional (3D) model of a biological structure from a template sequence based on the structure 

of one or more homologous viral proteins of which crystal assemblies have been reported 

(Ramharack & Soliman 2016).    

 

Homology modeling has played influential roles in many research areas and has aided in drug 

design by giving insights into spatial conformations and providing a structural template to 

construct novel drugs that are both specific and effective (Krieger et al. 2003).  

 

In order to generate a 3D model of a biological target, a general procedure is followed, with 

validation at each step (Ramharack & Soliman 2016): 

1. A target sequence needs to be identified and utilized to search (Blast) for homologous 

target sequences. 

2. Template structure/s should be selected based on alignment length, sequence identity and 

structural identity.  

3. Alignment between target and template sequences should be prepared. 

4. Homology model should then be built using preferred computational software. 

5. Validation of model may be verified using the predicted 3D structure and a 

Ramachandran plot.  
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The application of homology modeling may facilitate the design of low-resolution 3D structures 

that enable enhanced structural dynamic research of drug-target interactions on a molecular level 

(Hilbert et al. 1993).  

 

3.5.2 Molecular Docking  
 

One of the most popular tools utilized in computational drug design is molecular docking. The 

technique of molecular docking makes use of a multiple methods in the prediction of binding 

affinity and configuration of a complex. Ligand-receptor complexes exemplify the most general 

use of docking, although there are numerous studies that demonstrate protein-protein complex or 

drug delivery complexes such as nanoparticles or aptamers (Meng et al. 2011; Kroemer 2007).  

 

There are two main steps involved in docking: 

1. Sampling conformations of a ligand in the active site of protein- different algorithms may 

be used when sampling the numerous conformations of the docked complex: the “lock 

and key” model which describes the ligand and receptor as rigid structures, or the ligand 

may be flexible either through random or simulation-based methods. The latter algorithm 

is the most commonly used method as it allows for a more realistic fit of the ligand to the 

protein (Meng et al. 2011).  

2. Ranking the different conformations by scoring function- the scoring function may be 

based on statistically preferred contacts, MM force fields or pre-existing protein-ligand 

binding affinities (Meng et al. 2011). 

 

Over the past decade, there has been flood of molecular docking related publications and 

although these papers may add to the structural information about a biological target or new lead 

compound, there are still many inconsistencies that arise (Chen 2015). Frequent criticism 

associated with docking includes incorrect binding sites, choice of docked complex 

(conformational pose) and choice of small molecule (inhibitor or agonist) (Ferreira et al. 2015). 

Due to these concerns, all docked complexes in this study were verified with MD simulations 

were stability of the ligand at the active site was demonstrated.  
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3.5.3 Virtual Screening (VS)  

 

Virtual screening (VS) plays a fundamental role in the drug discovery and development pipeline 

as the technique is defined by the assessment of extensive small molecule libraries in search of a 

new compound on the basis of a biological target. The VS techniques approach allows for the 

filtering of millions of small molecules to a manageable number of compounds that have the 

greatest chance as a lead drug. The method utilizes a wide variety of filters to identify 

biologically active alternatives to current inhibitors based on the “similar property principle”, 

which states that structurally similar molecules tend to have similar properties (Lionta et al. 2014; 

Vyas et al. 2008). 

Virtual screening may be categorized into two approaches: 

1. Structure-based virtual screening (SBVS) identifies energetically advantageous binding 

affinities of ligands into a target’s active binding site. This allows for new insights on the 

nature of the active site and the protein-ligand interactions. The method identifies 

selective molecules from an extensive library of compounds to dock within a target’s 

active site (Kumalo & Soliman 2016).  

2. Ligand-based virtual screening generates libraries of compounds based on a known 

compound or compounds and its illustrative interactions with a particular target (Cele et 

al. 2016). 

Of the approaches, SBVS has been shown to have similar inconsistencies as molecular docking 

and prove to be difficult when designing drugs for emerging diseases (such as this study). The 

LBVS generates large libraries of compounds and thus identifying accurate lead compounds is 

still challenging (Anderson 2003). 

 

Pharmacophore based virtual screening (PBVS) has exhibited numerous benefits in 

computational hit identification and lead optimization. The approach uses pharmacophoric 

features based on a current inhibitor’s functional groups (hydrogen bond donors, hydrogen bond 

acceptors, cations, aromatics, hydrophobic areas). These pharmacophoric features are then 

established as the criteria when searching through extensive small molecule libraries to identify a 

handful of compounds that may be validated as lead compounds. In this study, PBVS has been 
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employed as it has been evidenced to be more reliable than SBVS and LBVS (Kim et al. 2010; 

Sliwoski et al. 2014; Drie 2007).  

Figure 3.6 summaries the computational tools carried utilized in this study.  

 

 

Figure 3.6: Summary of methods employed in this study (Prepared by Author).  



 55 

References 
 

Amadei, A., Ceruso, M.A. & Di Nola, A., 1999. On the convergence of the conformational 

coordinates basis set obtained by the Essential Dynamics analysis of proteins’ molecular 

dynamics simulations. Proteins: Structure, Function and Genetics, 36(4), pp.419–424. 

Anderson, A.., 2003. The process of Structure-Based Drug Design. Chemistry and Biology, 10, 

pp.787–797. 

Atkins, P.W. & Friedman, R., 2011. Molecular Quantum Mechanics, 5(2), pp.654-659. 

Bahrami, M. et al., 2014. The Schrodinger-Newton equation and its foundations. New Journal of 

Physics, 16, pp.1–17. 

Barde, N.P. et al., 2015. Deriving time dependent Schrödinger equation from Wave-Mechanics, 

Schrödinger time independent equation, classical and Hamilton-Jacobi equations. Leonardo 

Electronic Journal of Practices and Technologies, 14(26), pp.31–48. 

Boeyens, J.C.A. & Comba, P., 2001. Molecular mechanics: theoretical basis, rules, scope and 

limits. Coordination Chemistry Reviews, 212(1), pp.3–10.  

Born, M. & Oppenheimer, J.R., 1927. Born-Oppenheimer approximation. Annals of Physics, 84, 

p.457.  

Bornot, A., Etchebest, C. & De Brevern, A.G., 2011. Predicting protein flexibility through the 

prediction of local structures. Proteins: Structure, Function and Bioinformatics, 79(3), 

pp.839–852. 

Brooks, B.R. et al., 1983. CHARMM: A program for macromolecular energy, minimization, and 

dynamics calculations. Journal of Computational Chemistry, 4(2), pp.187–217. 

Cele, F.N., Muthusamy, R. & Soliman, M.E.S., 2016. Per-residue energy decomposition 

pharmacophore model to enhance virtual screening in drug discovery$: a study for 

identification of reverse transcriptase inhibitors as potential anti-HIV agents. Drug Design, 

Development and Therapy, 10, pp.1365–1377. 

Chen, Y.C., 2015. Beware of docking! Trends in Pharmacological Sciences, 36(2), pp.78–95.  

Cramer, C.J., 2004. Essentials of Computational Chemistry Theories and Models, Springer, pp.1-

547. 



 56 

David, C.C. & Jacobs, D.J., 2014. Principal Component Analysis: A Method for Determining the 

Essential Dynamics of Proteins. Methods Molecular Biology, 1084, pp.193–226.  

Drie, J.H., 2007. Computer-aided drug design: The next 20 years. Journal of Computer-Aided 

Molecular Design, 21(10–11), pp.591–601. 

Ferreira, L.G. et al., 2015. Molecular docking and structure-based drug design strategies, 

Molecules, 20(7), pp.13384-13421. 

Genheden, S. & Ryde, U., 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-

binding affinities. Expert opinion on drug discovery, 10(5), pp.449–61. 

Godschalk, F. et al., 2013. Comparison of MM/GBSA calculations based on explicit and implicit 

solvent simulations. Physical chemistry chemical physics": PCCP, 15(20), pp.7731–9. 

González, M.A., 2011. Force fields and molecular dynamics simulations. Collection SFN, 12, 

pp.169–200. 

Hermans, J. et al., 1984. A consistent empirical potential for water–protein interactions. 

Biopolymers, 23(8), pp.1513–1518. 

Hilbert, M., Bohm, G. & Jaenicke, R., 1993. Structural relationships of homologous proteins as a 

fundamental principle in homology modeling. Proteins: Structure, Function, and 

Bioinformatics, 17(2), pp.138–151. 

Huang, H.J. et al., 2010. Current developments of computer-aided drug design. Journal of the 

Taiwan Institute of Chemical Engineers, 41(6), pp.623–635.  

Huang, X.L. & Yi, X.X., 2009. Born-Oppenheimer approximation in open systems. Physical 

Review A - Atomic, Molecular, and Optical Physics, 80(3). 

Jakobsson, E., 2001. Computational Biochemistry and Biophysics Edited by Oren M. Becker (Tel 

Aviv University), Alexander D. MacKerell, Jr. (Uni-versity of Maryland), Benoît Roux 

(Cornell University), and Masa-katsu Watanabe (Wavefunction, Inc.). Marcel Dekker: New 

York and Ba,Journal of the American Chemical Society, 123(50), pp.12745-12745. 

Jarosaw Meller, 2001. Molecular Dynamics. Encyclopedia of Life Sciences, pp.1–8. 

Jecko, T., 2014. On the mathematical treatment of the born-Oppenheimer approximation. Journal 

of Mathematical Physics, 55(5). 

Jensen, F., 2007. Introduction to Computational Chemistry 2nd edition, John Wiley and Sons, 



 57 

England, pp.1-583. 

Kasahara, K., Fukuda, I. & Nakamura, H., 2014. A novel approach of dynamic cross correlation 

analysis on molecular dynamics simulations and its application to Ets1 dimer-DNA 

complex. PLoS ONE, 9(11). 

Kim, K., Kim, N.D. & Seong, B., 2010. Pharmacophore-based virtual screening$: a review of 

recent applications. Expert Opinion Drug Discovery, 5(3), pp.205–222. 

Kore, P.P. et al., 2012. Computer-Aided Drug Design: An Innovative Tool for Modeling. Open 

Journal of Medicinal Chemistry, 2(4), pp.139–148.  

Krieger, E., Nabuurs, S.B. & Vriend, G., 2003. Homology Modeling. Structural Bioinformatics, 

857, pp.507–508. 

Kroemer, R.T., 2007. Structure-based drug design: docking and scoring. Current protein & 

peptide science, 8(4), pp.312–328. 

Kufareva, I. & Abagyan, R., 2012. Homology Modeling. Methods Molecular Biology., 857, 

pp.231–257.  

Kumalo, H.M. & Soliman, M.E., 2016. Per-Residue Energy Footprints-Based Pharmacophore 

Modeling as an Enhanced In Silico Approach in Drug Discovery: A Case Study on the 

Identification of Novel$-Secretase1 (BACE1) Inhibitors as Anti-Alzheimer Agents. Cellular 

and Molecular Bioengineering, 9(1), pp.175–189. 

Leach, A.R., 2001. Molecular modelling: principles and applications 2nd Edition, Pearson 

Education, England, pp. 1-485. 

Levitt, M. et al., 1995. Potential energy function and parameters for simulations of the molecular 

dynamics of proteins and nucleic acids in solution. Computer Physics Communications, 

91(1–3), pp.215–231. 

Lewars, E., 2003. Computational Chemistry: Introduction to the Theory and Applications of 

Molecular and Quantum Mechanics 2nd Edition, Springer Science Business Media, Berlin, 

pp.1-584. 

Liehr, A.D., 1957. On the use of the Born-Oppenheimer approximation in molecular problems. 

Annals of Physics, 1(3), pp.221–232.  

Likhachev, I. V., Balabaev, N.K. & Galzitskaya, O. V., 2016. Available Instruments for 



 58 

Analyzing Molecular Dynamics Trajectories. The Open Biochemistry Journal, 10(1), pp.1–

11.  

Lionta, E. et al., 2014. Structure-based virtual screening for drug discovery: principles, 

applications and recent advances. Current topics in medicinal chemistry, 14(16), pp.1923–

38.  

Lobanov, M.Y., Bogatyreva, N.S. & Galzitskaya, O. V., 2008. Radius of gyration as an indicator 

of protein structure compactness. Molecular Biology, 42(4), pp.623–628.  

Lu, J. et al., 2012. Computational drug discovery. Acta Pharmacologica Sinica, 33, pp.1131–

1140.  

Martinez, A.M. & Kak, A.C., 2001. PCA versus LDA. Transactions on Pattern Analysis and 

Machine Intelligence, 23(2), pp.228–233. 

Maseras, F. & Morokuma, K., 1995. IMOMM: A new integratedab initio + molecular mechanics 

geometry optimization scheme of equilibrium structures and transition states. Journal of 

Computational Chemistry, 16(9), pp.1170–1179.  

Matsika, S., 2010. The Born-Oppenheimer approximation. The Journal of chemical physics, 

133(22), p.224103.  

Meng, X.-Y. et al., 2011. Molecular docking: a powerful approach for structure-based drug 

discovery. Current computer-aided drug design, 7(2), pp.146–57. 

Monticelli, L., National, F. & Monticelli, L., 2013. Force fields for classical molecular dynamics. 

Methods in molecular biology, 924, pp.197–213.  

Nair, P.C. & Miners, J.O., 2014. Molecular dynamics simulations: from structure function 

relationships to drug discovery. In Silico pharmacology, 2(4), pp.1–4. 

Nakatsuji, H., 2004. Scaled Schrodinger equation and the exact wave function. Physical Review 

Letters, 93(3), pp.30403–1. 

Ochkur, V.I., 1965. The Born-Oppenheimer method in the theory of atomic collisions. Soviet 

Physics JETP, 18(2), p.503. 

Poltev, V., 2015. Handbook of Computational Statistics, Springer, Germany, pp.1-563. 

Ramharack, P. & Soliman, M.E.S., 2016. Zika virus drug targets: a missing link in drug design 

and discovery – a route map to fill the gap. RSC Advances, 6(73), pp.68719–68731. 



 59 

Shen, L., Wu, J. & Yang, W., 2016. Multiscale Quantum Mechanics/Molecular Mechanics 

Simulations with Neural Networks. Journal of Chemical Theory and Computation, 12(10), 

pp.4934–4946. 

Sliwoski, G. et al., 2014. Computational methods in drug discovery. Pharmacological reviews, 

66(1), pp.334–95.  

Song, C.M., Lim, S.J. & Tong, J.C., 2009. Recent advances in computer-aided drug design. 

Briefings in Bioinformatics, 10(5), pp.579–591. 

Soni, N. & Madhusudhan, M.S., 2017. Computational modeling of protein assemblies. Current 

Opinion in Structural Biology, 44(June), pp.179–189.  

Tiberti, M., Invernizzi, G. & Papaleo, E., 2015. (Dis)similarity Index to Compare Correlated 

Motions in Molecular Simulations. Journal of Chemical Theory and Computation, 11(9), 

pp.4404–4414. 

Trabesinger, A., 2009. History of quantum theory: The short version. Nat Phys, 5(6), p.383.  

Tsai, C.S., 2002. Molecular modeling: molecular mechanics. In An introduction to computational 

biochemistry. pp. 285–314.  

Vanommeslaeghe, K. et al., 2014. Molecular mechanics. Current pharmaceutical design, 20(20), 

pp.3281–92.. 

Vyas, V. et al., 2008. Virtual screening: A fast tool for drug design. Scientia Pharmaceutica, 

76(3), pp.333–360. 

Wang, J. et al., 2004. Development and testing of a general Amber force field. Journal of 

Computational Chemistry, 25(9), pp.1157–1174. 

Woolley, R.G., 1991. Quantum chemistry beyond the Born-Oppenheimer approximation. Journal 

of Molecular Structure: THEOCHEM, 230(C), pp.17–46. 

Ylilauri, M. & Pentikäinen, O.T., 2013. MMGBSA as a tool to understand the binding affinities 

of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10), 

pp.2626–2633. 

 

  



 60 

CHAPTER 4 
 

 

Zika Virus Drug Targets: A Missing Link In Drug Design And Discovery – A Route 
Map To Fill The Gap  

 

Pritika Ramharack1 and Mahmoud E. S. Soliman1* 

 

1Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of 
KwaZulu-Natal, Westville Campus, Durban 4001, South Africa 

 

 

* Corresponding author: Mahmoud E.S. Soliman, email: soliman@ukzn.ac.za 

Telephone: +27 (0) 31 260 8048, Fax: +27 (0) 31 260 7872 

 

 

 

 

 

 

 

 

 

 



 61 

Abstract: 

Zika Virus is an emerging virus that has been defined by the World Health Organization as a 

serious global biological-threat. Zika virus is an arbovirus from the flavivirus genus that is linked 

to microcephaly after prenatal transmission from the infected mother and most recently Gullian-

Barrè Syndrome.  The need for innovative research methods is urgent due to the ambiguity 

surrounding Zika virus. The lack of experimental data regarding potential drug targets, strategies 

for design and drug resistance has prompted us to provide a comprehensive framework with 

structured theoretical and technical guidelines on potential drug targets, modeling and design of 

inhibitors against the virus, thus assisting and encouraging scientists from different research 

domains to fill the gap in this research area. We have also represented a 3D homology model of 

the ideal Zika viral target, the non-structural protein 5, identified the active binding sites of each 

domain of the protein and found potential compounds that may act as inhibitors. This report will 

be immensely beneficial toward the design of Zika virus drug inhibitors.  
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1. Introduction: 

Zika Virus (ZIKV) is a re-emerging arthropod-borne virus that is predominantly found in the 

tropics, however, rapidly evolving climate conditions coupled with increasing distribution of 

Aedes mosquito vectors and emerging modes of transmission of the virus have increased the 

potential to cause outbreaks in previously unaffected areas (1).  The virus is a member of the 

Spondweni sercocomplex of the genus flavivirus, family flaviviradae. Other arboviruses related 

to ZIKV include Dengue virus, Japanese encephalitis viruses and West Nile virus (2,3).  

 

The first cases of the ZIKV infection were reported in Nigera in the 1950’s. Since then, ZIKV has 

shown erratic cases in countries such as Uganda, Tanzania, Egypt, Gabon, and in parts of Asia 

including India and Indonesia, with the most devastating pandemic occurring in Brazil in 2015 

(4,5). Since the outbreak in Brazil, infection has spread rapidly throughout South America and 

Mexico, with Colombia being one of the most-affected countries with over 20,000 suspected 

cases (6). As of June 2016, thirteen countries have reported Central Nervous System (CNS) 

malformations such as microcephaly and Gullian-Barrè syndrome (GBS) which may potentially 

be linked to ZIKV; during the recent circulation of the virus, eight countries had reported cases of 

GBS, where laboratory testing confirmed ZIKV infection in a number of those cases (7). 

Globally, the prevalence of ZIKV infection may be greatly underestimated (Figure 4.1) due to the 

recently verified prenatal and sexual transmission in humans (8), as well as the abstruseness 

surrounding the pathogenicity and thus, in turn the search of inhibitors of this “neglected 

disease”. 
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Figure 4.1: Global reports of ZIKV transmission, infection and sporadic viral antibody reports 
prior to 2015, as of April 2016 (Adapted from Centers for Disease Control and Prevention).  

 

Most cases of ZIKV have reported febrile flu-like conditions that may be mistaken for other viral 

infections such as yellow fever. Other symptoms include swollen lymph nodes, maculopapular 

skin rashes and joint pains (5,9,10). Current research has raised concerns that the virus could 

cause dramatic increases in microcephaly in newborns after prenatal transmission (6,11–13). 

Complications associated with prenatal infection encompass fetal growth restriction, neurological 

and ocular abnormalities, intracranial calcification and in some cases perinatal death or stillbirth 

(10,14).  

 

The virus is transmitted via an Aedes mosquito vector, congenital and perinatal transmission, as 

well as sexual intercourse (8,11,14–17). Studies have also reported transmission via blood 

transfusion and laboratory exposure (8,18). Commercial assays have been utilized in the 

diagnosis of ZIKV infection, including Real Time Polymerase Chain Reaction (RT-PCR) kits and 

IgM-based Enzyme-Linked Immunosorbent Assay (ELISA) (10,19). Sample DNA and RNA for 
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these kits may be extracted from blood serum, semen, amniotic fluid, plasma, saliva and urine. In 

Dengue infection, NS1 protein may be detected in a host’s blood serum at the onset of clinical 

symptoms, this may prove to be another method by which ZIKV infection may be identified 

(16,20–22). 

 

Although recent publications have described the global spread, pathogenicity and bioinformatics 

of ZIKV and its comparison between other flaviviruses including Dengue, West Nile, Yellow 

fever and Japanese Encephalitis virus (1,3,8,10,13,19,20,23–30), fundamental research into ZIKV 

small molecule drug design will be key in developing inhibitors of target proteins of the virus. 

Ekins et al (2016) described possible drug discovery and potential homology models of multiple 

proteins of ZIKV, however, despite the execution of research methods, there are currently no 

known FDA approved drugs of ZIKV (31).  This prompted us to conduct a concise route map 

depicting the steps taken toward identifying potential inhibitors of drug targets with no 3D crystal 

structure and by following the guide to create a homology model of a non-structural protein of the 

virus, thus assisting scientists from different research domains. These in silico guidelines will be 

vastly beneficial in aiding and accelerating ZIKV experimental drug discovery. 

 

2. Overview of ZIKV protein assembly 

ZIKV is an enveloped virus comprising of an 11 kilobase, single-stranded positive sense RNA 

genome consisting of 10, 794 nucleotides encoding 3, 419 amino acids (25). The open reading 

frame (ORF) of the 5’ and 3’ untranslated region (UTR) encodes a polyprotein that is cleaved into 

three structural proteins being the capsid, precursor membrane, and envelope. Seven non-

structural (NS) proteins are also found in this assembly, namely, NS1, NS2A, NS2B, NS3, NS4A, 
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2K, NS4B, and NS5 (largest viral protein) (24). These viral assembly proteins may act as crucial 

molecules in drug discovery. 

 

3. Potential biological drug targets Against ZIKV 

3.1 Viral Drug Targets  

Hughes et al (2010) stated that the potential of a protein as a therapeutic target and its 

effectiveness in drug design is essential for determining the biological utility of the protein (32). 

ZIKV contains viral proteins that may act as targets in drug design (Table 1). 
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Table 4.1: Potential ZIKV target proteins  

*aa- amino acid 

The structural proteins of ZIKV, being the capsid, precursor membrane and envelope form the 

viral particle (33). The envelope (E) protein is the key surface protein as it is able to mediate 

various aspects, including binding and membrane fusion of the viral replication cycle, making it a 

significant target in drug design (5). 

 

PROTEIN NCBI REFERENCE 

SEQUENCE 

PDB 

CODE 

RESIDUE COUNT 

 Structural Proteins 

Capsid YP_009227206.1 5IZ7/5IRE 122aa 

Precursor Membrane YP_009227197.1 5IZ7/5IRE 168aa 

Envelope YP_009227198.1 5JHM/5JHL 500aa 

 Nonstructural Proteins 

NS1 YP_009227199.1 5IY3 352aa 

NS2A YP_009227200.1 Not available 226aa 

NS2B YP_009227201.1 Not available 130aa 

NS3 YP_009227202.1 5JMT 617aa 

NS4A YP_009227203.1 Not available 127aa 

2K YP_009227209.1 Not available 23aa 

NS4B YP_009227204.1 Not available 251aa 

NS5 YP_009227205.1 Not available 903aa 
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The nonstructural proteins participate in the replication of the RNA genome, virion assembly and 

invasion of the innate immune system. Of the nonstructural proteins, NS5, NS3 and NS1 have 

shown enzyme activity in other viruses of the flavivirus genus, creating ideal targets in inhibitor 

development (33). 

NS5 is a bifunctional enzyme with a methyltransferase domain at its N-terminal end and a RNA-

dependent RNA polymerase (RdRp) at its C- terminal end. Both N- and C-terminal domains 

contain an S-Adenosyl-methonine-dependent MTase core structure that folds into an α/β/α sheet 

cradled between the N- and C-terminal subdomains (34). The protein engages in virus-host 

interactions and actively interacts with the host environment (1).  To our knowledge, there is 

currently no available 3D crystal structure of the ZIKV NS5 protein. 

 

The NS3 protein is a multifunctional, viral replication protein. The protease comprises of the N-

terminal third of NS3 and nucleotide triphosphatase, the RNA triphosphatase, and finally the 

helicase components. NS3 can be considered a serine protease and contains a classical catalytic 

triad (His-51, Asp-75, Ser-135) (1,35). Agnihotri et al (2012) reported an in silico study in which 

a homology model of the flavivirus NS3 protein was created using 22 species of the flavivirus 

genus. This study is a critical tool in the understanding the flavivirus NS3 protein and thus the 

impact of the protein as a ZIKV target (36). The 3D-crystal structure of the NS3 Helicase protein 

has recently been reported in Protein and Cell where a conserved triphosphate pocket and a 

positively-charged tunnel were identified to be critical for the hydrolysis of nucleoside 

triphosphates and the accommodation of RNA respectively (37). 

 

The 3D crystal structure of the noteworthy NS1 glycoprotein viral target was released earlier this 

year and was classified as a major antigenic marker of ZIKV infection (38). The NS1 is 
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synthesized as a monomer and dimerizes after post-translation modification in the replication 

cycle (39). The mature NS1 protein has significant immune evasive functions on the surface of 

cells, in the extracellular space and in cells by directly regulating the translation of viral RNA. 

Recent studies on Dengue virus have also evidenced NS1 to be associated with vascular leak and 

shock due to the disruption of TLR3 signaling pathways (40). Song et al (2016) reported NS1 to 

display a loop-surface interface with divergent electrostatic potential that may result in unique 

interactions with host machinery compared to that of other flaviviruses (38). This makes ZIKV 

NS1 an ideal target for chemoinformatics studies.  

 

Inhibitors of these viral proteins may be designed using computer-aided drug design techniques to 

select structural molecules that may inhibit the replication of viruses such as ZIKV in a host.  

 

3.2 ZIKV Host Targets  

During the ZIKV replication cycle, host cell machinery is imperative in the translation of viral 

RNA and maturation of the replicated virus, thus targeting host proteins and pathways may be 

key to effective inhibition of viral replication. 

 

One of the most researched host proteins in flavivirus infection is the endoplasmic reticulum 

glucosidase. These proteins allow for the cleavage of the terminal glucose from the glycan found 

at the glycosylation-site of the prM and envelope protein, thus leading to its maturation of the 

envelope protein (41). Studies have shown that many flaviviruses, including ZIKV, have a N-

glycosylation at Asn154 (31,42).  Castanospermine (CST) and deoxynojirimycin (DNJ) have 



 69 

been established as potent inhibitors of alpha-glucosidases, thus preventing the early stages of 

glycosylation (43).  

 

 Hamel et al (2015) described the importance of dendritic cell-specific intracellular adhesion 

molecule 3- grabbing non-integrin (DC-SIGN), TIM and TAM receptors in the attachment and 

entry of ZIKV into the host cell before replication can occur (44). Small interfering RNA 

(siRNA) was also shown to completely inhibit the expression of the above proteins after 48 hours. 

Other informative publications on siRNA inhibition of flavivirus host machinery include a review 

by Hirsch (2010), an in silico based experimental study on Dengue virus by 

Noppakunmongkolchai et al (2016) and the silencing of the 3’ UTR of ZIKV genome by Shawan 

et al (2015) (5,45,46). 

 

A recent study published in June by Nature identified host endoplasmic reticulum-associated 

signal peptidase complex (SPCS) to be necessary for the proper cleavage of ZIKV prM and 

envelope proteins. The authors also demonstrated that the loss of SPCS signaling leads to a 

dramatic decrease in Dengue, Yellow fever, West Nile, JEV and Hepatitis C viruses. This study 

could be a critical cornerstone in targeting host proteins and pathways in ZIKV infection (47). 

 

4. In silico studies conducted on ZIKV  

Prior to 2016, only two in silico reports have been made toward the development of ZIKV 

inhibitors. Computational studies by Shawan et al (2014) showed the viral envelope glycoprotein 

to be the most immunogenic structural protein of the virus, thus, making it a candidate for vaccine 

development (5). Shawan et al (2015) also looked at small interfering RNA (siRNA) in gene 
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silencing of the 3’ UTR of ZIKV genome (48). Following the Brazil outbreak, an influx of 

research output has flooded the scientific community. There has been numerous computational 

studies regarding ZIKV target proteins; crystals structures of the NS1, NS3, envelope and the 2 

cryo-EM structures of the stable virus have been released (37,38,42,49,50). Ekins et al (2016) 

described in silico studies in both drug discovery and the homology models of both structural and 

nonstructural proteins (9,31). There have also been reports comparing the structural and sequence 

conformations of ZIKV to other flaviviruses including Dengue and West Nile viruses (51,52).  

 

5. In silico route map toward the design and discovery of ZIKV 
inhibitors 

 

Rational Drug Design may be classified into two groups, the first being the development of small 

molecules with the desired effects of the target, whose structural information is known and the 

second group being development of small molecules whose cell functions and structural 

information may not be known (53). 

To date, there is no available 3D crystal structure of the ZIKV NS5 protein. This prompted us to 

create a route map (Figure 4.2) describing the techniques of the second group, thereby benefiting 

scientists from different research domains by informing them of fundamental computational 

techniques in the design of novel small drug molecules, allowing for increased output of 

validatory experimentation. 

 

Computer-Aided Drug Design (CADD) represents computational methods and resources used in 

the design and discovery of new therapeutic solutions (54). Numerous bioinformatics tools and 

resources have been developed to advance the drug discovery process (55,56). The recent 
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improvements made in computational chemistry software, CADD and molecular dynamic 

simulations have led to innovative research methods in the pharmaceutical industry (57).  

 

Figure 4.2: Route map toward the in silico design of ZIKV inhibitors using the homology 
modeled viral NS5 protein. Details on how the homology model was created are described under 
section 5.1. 

 

The initial step of any modeling work is having a valid 3D structure, from X-ray crystallography, 

Nuclear Magnetic Resonance (NMR) or computational design using homology modeling. 

Homology modeling is used to predict and generate a plausible 3D structure of ZIKV’s biological 

target from a template sequence based on the structure of one or more homologous viral proteins 

of which crystal assemblies have been reported (Figure 4.3) (58). 
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Figure 4.3: Protocol for building a homology model in our laboratory. 

In order to create a ZIKV target 3D homology model, a typical procedure needs to be followed, 

with validation taking place at each step. Once the 3D structure has been generated and validated 

using 3D profiles and a Ramachandran plot (59), the predicted active binding site of the ZIKV 

target molecule may be identified. If the drug target is an enzyme, such as the NS3 or NS5 protein 

of the ZIKV viral assembly, designed chemical molecules may be able to fit within an active site 

pocket (56). The results establish the locality of possible binding pockets of the protein (60). 

After each pocket has been identified, we can identify the size of a pocket (volume, surface area 

and depth), possible interacting residues and surface atoms (61).  

 

-Identify target sequence 
- Blast for similar template sequences 

 
-Select template structure(s). 

Consideration should be given to alignment length, 
sequence identity, resolution of template structure, 

and consistency of secondary structure between 
target and templates.  

-Align target sequence to template 
sequence(s) 

- Build homology  model 

-Predict secondary 3D structure and verify against homology 
model 

-Plot a ramachandran plot to validate homology model 

Validate(



 73 

Subsequent to the ZIKV protein homology model and target site determination, several paths may 

be utilized in the development of inhibitors. Structure-based virtual screening will assist in 

searching through combinatorial chemistry libraries for molecules that may be potential inhibitors 

of the target protein and automatically dock these molecules into the 3D target’s active pocket at 

a rapid rate (62). Thousands of molecules may be able to match the active site of the target 

protein, thus, a scoring function is utilized to rank ligands based on the free binding energy 

calculated after each docking pose (63,64). Molecules with the lowest free binding energy 

subsequent to screening may be used as inhibitor candidates, which may then be employed in a 

series of validatory molecular dynamic simulations.  

 

Molecular dynamic simulations calculate the trajectory of a generated docking pose by utilizing 

Newtonian mechanics (65). It is an important tool of CADD as it avoids analytic intractability in 

complex systems (57).  Molecular dynamics is not essential in CADD but it can provide 

validation of docking results between a protein and its potential inhibitors (66).  

 

By implementing in silico studies in the design of ZIKV protein inhibitors, putative drug-like 

compounds may be identified and their potency verified using in vitro and in vivo testing.  

 

Studies report that in vitro testing of potential inhibitors may utilize cultured monkey cell lines 

such as LLC-MK2 and Vero (30). Delvichio et al (2016) also reported Choloroquine as potential 

ZIKV inhibitor in Vero, hBMEC, hNSC and mouse neurospheres. Dowall et al (2016) developed 

the first in vivo murine model, where adult female mice were subcutaneously inoculated with 

similar doses of ZIKV from natural infection of a mosquito bite (67,68). This model is a critical 

cornerstone in accelerated testing of new ZIKV inhibitors.  
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Larroca et al (2016) have made a significant contribution to the protection against the ZIKV virus 

by creating the first full-length prM-envelope DNA vaccine. The vaccine is currently undergoing 

clinical trials after the success in an in vivo study using infected mice. This vaccine may be the 

potential ‘holy-grail’ in ZIKV prevention (69). 

 

5.1 A homology model for ZIKV NS5 

In order for CADD of ZIKV to occur, a 3D crystal structure of a target protein is needed. Figure 

4.4 shows the first account of a homology model for the ZIKV NS5 protein, which was created 

and validated as described in our previous publications (Figure 4.4) (60,70). The PDB coordinates 

of the homology model are provided as  

 

Figure 4.4: Homology model of ZIKV NS5 protein. The protein comprises of three domains, the 
N-terminal, methyltrasferase domain (residues 1-262) (green), the inter-domain region (residues 
263-272) (blue) and the C-terminal, RdRp domain (residues 273-903) (yellow). 
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5.2 Active site identification 

Active site residues need to be identified for the docking of potential inhibitors to the active site 

pocket. The active site residues were determined using Chimera Multi-align Viewer and validated 

using the Site-Hound web program (71). Figure 4.5 highlights the best active sites and active site 

residue numbers of the NS5 protein (Figure 4.5). 

 

Figure 4.5: The potential binding sites, identified by Site-hound (71), of ZIKV NS5 protein. (A) 
Site 1 (Methyltrasferase active binding site) (red) and Site 2 (RdRp active binding site) 
(magenta), (B) active binding site residues of the NS5 protein at Site 1 and Site 2. 
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This homology model will be implemented in the design of small molecules that may act as 

inhibitors of the NS5 protein, thus inhibiting the translation of viral RNA. Experimental drug 

therapy on other flaviviruses (41,72,73) may be used as a guide toward the identification of new 

specified small molecules that inhibit ZIKV replication.  

 

5.3 Possible small molecule inhibitors of NS5 RdRp 

Of the ZIKV target proteins, NS5 RdRp is one of the most favorable for drug discovery due to its 

role in viral replication (1). A study by Eyer et al (2016) looked at an in vitro study of nucleoside 

inhibitors against ZIKV and found one particular molecule, 2-C-Methyladenosine, to show 

promising inhibition of RdRp (74). The purine and hydroxymethyl structural features of 2-C-

Methyladenosine were screened through ZINC database, criteria was imposed to ensure the 

inclusion of the maximum number of compounds, such that compounds had to have an xlog P 

between -4 and 5, a net charge 0, rotatable bonds between 0 and 8, a polar surface area of 

between 0 and 150, have hydrogen bond donors/acceptors between 0 and 10, and polar 

desolvation between 0 and 1 kcal/mol whereas compounds must have an apolar desolvation 

between -100 and 40 kcal/mol. Thereafter, the 4113 hits were downloaded and docked together 

with 2-C-Methyladenosine (Figure 4.6) at the RdRp active site and the nine best docked poses 

comprising the highest binding affinities were reported in Table 2. Table 3 shows the physical 

representation of the compounds. These compounds may be a basis for further validation and 

experimental verification. 
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Table 4.2: Representation of top ten compounds docking to NS5 RdRp  
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Table 2 continued... 
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Table 4.3: Physical Representation of top ten compounds displaying Molecular weight, xlogP, H-

Bond Donors/Acceptors and Rotatable Bonds 

 

 

 

Figure 4.6: Docked Conformation of 2’-C-Methyladenosine with ZIKV NS5 RdRp (Binding 
affinity: -6.3kcal/mol) 
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Further information, including extensive procedures, can be found in our previous publications on 

structure-based enzymatic drug design (58,75). We believe that the robust computational tools 

implemented in the route map will provide a fundamental platform in the development of 

inhibitors against multiple ZIKV target molecules. 

 

6. Proposed computational software that can be used in ZIKV drug 
design and discovery 

 

The software available for techniques used in drug design have simplified the development of 

inhibitors allowing for specific binding to a target molecule, thus, decreasing its biological 

adverse effects (76).  There are various types of software available in structure-based drug design, 

allowing for faster and more comprehensive research into ZIKV inhibitors (Table 4).  

 

 

 

 

 

 

 

 

 

 



 81 

Table 4.4: Proposed computational software used in ZIKV drug design 

 

COMPUTATIONAL 
METHOD SOFTWARE AVAILABLE 

SOFTWARE TO BE 
UTILIZED IN STUDY 

 

Homology Modeling 

 

Sequence alignment- 

Insight, Prime, Profit, LOOK, ICM, 

Sybyl, CLUSTALW 

Model construction- 

DS Modeller, Prime, LOOK, ICM, 

Sybyl, MODELLER, MOE, SWISS-

MODEL, RaptorX, LOMETS, 

Phyre, I-Tasser 

Sequence alignment- 

CLUSTALW (77) 

 

Model construction- 

MODELLER (78) 

Active Binding Site 

Determination 

CASTp, POOL, PASS, Pocket-

Finder, 3DLigandSite, LIGSITE, 

metaPocket, FINDSITE, Site-Hound 

metaPocket (79) 

POOL (80) 

Site-Hound(71) 

Molecular Graphic systems 

 

Avogadro, Chemlab, Athena, 

Maestro, Jmol, PyMOL, UCSF 

chimera, VMD, Vimol, Webmol, 

Zeus 

UCSF chimera (12) 

 

Virtual Screening databases 

 

PubChem, MMsINC, ZINC, 

ZincPharmer, 4SC discovery, 

Therapeutic target database, Drug 

Bank, ChemSpider, ChEMBL 

 

ZINC (81) 

ZincPharmer (82) 

 

Docking Software 

 

PyRx, Autodock Vina, Dock Blaster, 

Vis3d, Schrodinger, GOLD, 

Libdock, FlexX, Glide, Fred, ICM 

Autodock Vina (83) 
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7. Conclusion 

The Future of the ZIKV pandemic is uncertain and thus new, accelerated techniques are 

necessary to assist the medical and scientific community in the identification and validation of 

inhibitors to this global threat.  The chemoinformatics discussed in this paper will not only in the 

identification and design of potential ZIKV inhibitors but also in parallel, but may assist in the 

early analysis of potential biological mutations that may occur due to the rapid international 

transmission of this flavivirus.  
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Molecular dynamic simulation 

software 

 

Gromacs, Amber, CHARM, 

Gromos, ADF, Desmond, NWChem 

Amber (84) 
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Abstract 

The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive 

potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito 

vector, however, evolving modes of transmission has allowed the spread of the disease over 

continents. The virus has already been linked to irreversible chronic central nervous system 

conditions. The concerns of the scientific and clinical community are the consequences of Zika 

viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides 

in vaccine development against the virus but there are still no FDA approved drugs available. 

Rapid rational drug design and discovery research is fundamental in the production of potent 

inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico 

drug design allows for this prompt screening of potential leads, thus decreasing the consumption 

of precious time and resources. This study demonstrates an optimized and proven screening 

technique in the discovery of two potential small molecule inhibitors of Zika virus 

Methyltransferase and RNA dependent RNA polymerase. This in silico “per-residue energy 

decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in 

the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-

viral agents.  

 

Keywords:  

Zika virus per-residue decomposition based pharmacophore, virtual screening, NS5 protein 

potential inhibitors, binding free energy, molecular dynamic simulations. 
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Introduction: 

Zika virus (ZIKV) is an arthropod-borne virus that has been described to have potential as a 

worldwide pandemic (Troncoso, 2016). The virus is a member of the spodweni sercocomplex of 

the flavivirus genus and was first discovered in 1947 by its isolation from the Rhesus 766 monkey 

in Uganda (Faye et al., 2014; Haddow et al., 2012). Sporadic cases of the virus have been 

reported in countries such as Uganda, Tanzania, Egypt, Gabon, and in parts of Asia including 

India and Indonesia, with the most devastating epidemic occurring in Brazil in 2015 (Campos, 

Bandeira, & Sardi, 2015; Mahfuz et al., 2015). As of June 2016, eleven countries had reported 

Central Nervous System (CNS) malformations potentially linked to ZIKV. During 2015 and early 

2016, eight countries had reported cases of Gullian-Barrè syndrome (GBS), where laboratory 

testing confirmed ZIKV infection was found in a number of GBS cases (WHO, 2016). 

 

Transmission of the virus was thought to be only via the Aedes mosquito vector but studies 

during 2016, have evidenced congenital, perinatal and sexual transmission (Singh et al., 2016; 

Turmel, Hubert, Maquart, Guillou-Guillemette, & Leparc-Goff, 2016). The virus triggers febrile 

like influenza-conditions in the host, including swollen lymph nodes, skin rashes and joint pains 

(Brito, 2016; Ekins et al., 2016; Shapshak, Sinnott, Somboonwit, & Kuhn, 2015). The concerns 

of the scientific community involve the dramatic increase in ZIKV-related central nervous system 

(CNS) disorders including neonatal-microcephaly and Gullian-Barrè Syndrome (Lissauer, Smit, 

& Kilby, 2016; Panchaud, Stojanov, Ammerdorffer, & Vouga, 2016; Roa, 2016). Complications 

associated with prenatal infection encompass fetal growth restriction, neurological and ocular 

abnormalities, intracranial calcification and in some cases perinatal death or stillbirth (Chibueze, 

Tirado, & Olukunmi, 2016; Singh et al., 2016). 
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The virus is able to enter a host via receptor-mediated endocytosis, followed by fusion from 

within the endosomal cell compartment (Mahfuz et al., 2014). The enveloped virus comprises of 

an 11 kilo base, single-stranded positive sense RNA genome which consists of 10,794 nucleotides 

encoding 3,419 amino acids (Hayes, 2009). The open reading frame (ORF) of the 5’ and 3’ 

untranslated region encodes a polyprotein cleaved into three structural proteins being the capsid, 

premembrane/membrane, and envelope. Seven non-structural proteins may also be found in this 

assembly, namely, NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B, and NS5 (largest viral protein) 

(Haddow et al., 2012).  

 

Being the largest and most imperative protein in the genome replication and RNA capping of 

ZIKV, NS5 presents as a novel antiviral target (Tambunan, Zahroh, Utomo, & Parikesit, 2014). 

The protein consists of three domains: a Methyltransferase (MTase) domain at residues 1-262 of 

its N-terminal, an RNA dependent RNA polymerase (RdRp) at residues 273-903 of its C-terminal 

and an inter-domain region at residues 263-272 (Zou et al., 2014).  

 

The MTase domain belongs to the family of S-Adenosyl Methionine (SAM)- dependent enzymes, 

containing a SAM-dependent MTase fold comprising of an α/β/α structure (Zou et al., 2014). The 

MTase domain is one of the key targets in drug design as the enzyme performs nucleoside-2’O 

and N-7 methylation of the viral RNA cap which is essential in the replication of the virus 

(Egloff, Benarroch, Selisko, Romette, & Canard, 2002). Upon the completion of methylation, 

SAM is converted to S-Adenosyl Homocysteine (SAH) and gets released from the MTase domain 

(Brecher et al., 2015). Inhibition of MTase will be detrimental to the progression of ZIKV.  

 

The conserved RdRp domain allows for the initiation of RNA synthesis, generating both plus and 
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minus strand RNAs. As with most polymerases, the structure of the enzyme resembles a shape 

analogous to a right hand with a finger, thumb and palm region (Papageorgiou et al., 2014; 

Shanmugam, Velmurugan, & Gromiha, 2015). The human body does not contain an RdRp 

enzyme or analogues of it, thus inhibitors may not cause severe toxic effects, making it an 

optimal target in drug design (Shanmugam et al., 2015). 

To date, no anti-ZIKV drugs are clinically available, thus, new research methods are being 

developed with the purpose of identifying target molecules. Recent research has found that ZIKV 

targets neuronal cells (Millichap, 2016; Miner & Diamond, 2016; Mlakar et al., 2016; Tang et al., 

2016). Consequently, any new drugs that may be discovered will have to pass through the blood-

brain-barrier. Molecular modeling and computational methods are important tools in the 

development of novel inhibitors of ZIKV (Ekins et al., 2016; Ramharack & Soliman, 2016). A 

number of inhibitors of the flavivirus NS5 protein have been discovered via virtual screening and 

computational analysis (Brecher et al., 2015; Idrus, Tambunan, & Zubaidi, 2012; Lim & Shi, 

2013). Structure-based virtual screening (SBVS) identifies energetically advantageous binding 

affinities of ligands into a target’s active binding site. This allows for new insights on the nature 

of the active site and the protein-ligand interactions (Kumalo & Soliman, 2015). The method 

identifies selective molecules from an extensive library of compounds to dock within a target’s 

active site. Although scoring techniques are used when molecules are docked to the target, 

literature shows that a large number of final hits are generated, as the compounds docked may be 

in various geometric poses (Kroemer, 2007). Ligand-based virtual screening generates libraries of 

compounds based on a known compound or compounds and its illustrative interactions with a 

particular target (Cele, Muthusamy, & Soliman, 2016).  

 

In an attempt to develop pharmacophore based modeling, we previously presented a Per Residue 

Energy Decomposition (PRED) protocol where candidates for SBVS were chosen on the position 
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of 3D moieties with an experimentally known compound, thus creating a pharmacophore model 

based on highly contributing amino acid residues to the bound inhibitor. This approach is based 

on interactions that occur at a molecular level, including charge, hydrophobic interactions and 

hydrogen bonding (Cele et al., 2016). The highly contributing residues are identified based on 

free energy footprints from molecular dynamic and thermodynamic calculations (Cele et al., 

2016; Kumalo & Soliman, 2015; Soliman, 2013). This proves to be an incredibly concise method, 

rather than “shooting in the dark” with millions of available small molecules.  

In our previous work, we created a possible homology model of the NS5 protein containing both 

MTase and RdRp domains (Ramharack & Soliman, 2016). Due to the indeterminateness 

surrounding the ZIKV NS5 protein and potential inhibitors, we will compare our top hits against 

known inhibitors of the flavivirus NS5 protein.  

 

This study will implement the above-mentioned PRED pharmacophore technique in the discovery 

of potential ZIKV NS5 protein inhibitors, thus aiding medicinal chemists in the synthesis of 

possible drug candidates.  
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2. Computational Methods 

A route map to PRED-based pharmacophore virtual screening approach is depicted in Figure 5.1. 

 

Figure 5.1: A per residue energy decomposition-based approach outline applied in the study.  
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2.1 Homology Modeling and Identification of active binding sites of NS5 

 

In our previous article and during the current study, due to the absence of a crystal structure of 

ZIKV NS5 protein, a homology model was created using the protein sequence obtained from 

NCBI (Accession number: YP_009227205) (Ramharack & Soliman, 2016). The templates for 

sequence alignment were identified from NCBI using BLASTp (accessed on 05 March 2016)  

(Madden, Tatusov, & Zhang, 1996) to find suitable templates, from RCSB protein databank 

(Berman et al., 2002), for homology modeling. Based on the criteria of identity score, e-value and 

query cover accuracy (Table 1), the NS5 protein was modeled by using four crystal structures of 

flavivirus enzymes as templates: Chain A of full-length Japanese Encephalitis Virus NS5 (PDB 

Code: 4K6M_A); Chain A of full-length NS5 from Dengue virus Type 3 (PDB Code: 5CCV_A); 

Chain A of RNA Dependent RNA polymerase domain from Nile West Virus (PDB Code: 

2HFZ_A); and Chain A of Dengue Serotype 3 RNA-dependent RNA polymerase bound to Nitd-

107 (PDB Code: 3VWS_A).  

Table 5.1: Criteria summary of chosen templates used in Building the ZIKV NS5 homology 

model.  

 

 

Template PDB 

Code: 
Query Cover (%) Structural Identity (%) E-Value 

4K6M_A 97 69 0 

5CCV_A 98 67 0 

2HFZ_A 67 72 0 

3VWS_A 68 69 0 
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Homology modeling was performed using the Modeller Software version 9.1 (Eswar et al., 2006) 

add-on in chimera (Yang et al., 2012), in which all three templates were selected to build the 

model. Multiple sequence alignment was performed using the CLUSTALW server (Sievers et al., 

2011), where Chain A of the full-length Japanese Encephalitis Virus NS5 was evidenced to have 

the best template with the highest identity score (Figure S1). The sequence of the target protein 

was uploaded to PSIPRED V3.3 (Buchan, Minneci, Nugent, Bryson, & Jones, 2013) in order to 

obtain a predicted 2D secondary structure of the enzyme. Comparing the homolog to the 

predicted 2D structure and assessment of the bond angles and torsional strain validated the 

homology model. A Ramachandran plot for the analyses of bond angles and torsional strain was 

generated using Maestro (Schrodinger). MolProbity (Chen et al., 2010) results showed 97.2% of 

all residues were in the favored regions and 99.2% of all residues were in the allowed regions, 

which left a list of 7 outliers. The active-site residues were determined using Chimera Multi-align 

Viewer and validated using the SiteHound-web program (Hernandez, Ghersi, & Sanchez, 2009). 

The list shows that none of the active-site residues are part of these outliers. All results can be 

found in our previous article and supplementary material (Figure S5) (Ramharack & Soliman, 

2016). After completion of the study, the crystal structure of the ZIKV NS5 protein was released. 

To validate the homology model of the NS5, it was superimposed with the newly released crystal 

structure (PDB code: 5TFR), showing their structural similarity and validating the model’s use 

for subsequent analysis (Figure 5.2). 

2.2 System Preparation 

 

The NS5 modeled structure was separated into two domains, being the Methyltransferase of the 

C-terminal and the RNA-Dependent RNA polymerase of the N-terminal. Experimental drug 

inhibitors of flaviviruses were chosen to dock within each domain’s active site.  
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2.3 Molecular Docking of Experimental Flaviviruses 

 

Docking of the compounds were conducted using the AutoDock Vina (Trott & Olson, 2010) 

software. The procedure was run using the software default settings. The grid box used to define 

the screening site was elucidated using the AutoDock Vina functionality built into Chimera (Eric 

F. Pettersen et al., 2004). The gridbox size and center parameters for the MTase were x(54,-

63.23), y(80,56.72) and z(54,10.22), respectively and the RdRp gridbox dimensions were x(40, -

9.69), y(38, 20.41), z(40,16.50). AutoDock Vina generated results in the pdbqt format and the 

optimal geometric conformation having the best binding energy was selected from the ViewDock 

feature and saved in complex with the reference enzyme.  The enzyme and ligand for each system 

was prepared using Chimera (Yang et al., 2012) and MMV molecular modeling suites 

(Kusumaningrum et al., 2014) and subsequently subjected to molecular dynamic simulations. 

 

2.4 Molecular Dynamic (MD) Simulations 

 

The MD simulation was performed using the GPU version of the PMEMD engine provided with 

the Amber 14 package. The FF14SB force field of the Amber package (Nair & Miners, 2014) was 

used to describe the complex. 

ANTECHAMBER (Wang, Wang, Kollman, & Case, 2006) was used to generate atomic partial 

charges for the ligands by utilizing the Restrained Electrostatic Potential (RESP) and the General 

Amber Force Field (GAFF) procedures. The Leap module of Amber 14 allowed for addition of 

hydrogen atoms to the systems as well as Na+ and Cl
- counter ions for neutralization.  

The system was suspended implicitly within an orthorhombic box of TIP3P water molecules such 
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that all atoms were within 8 Å of any box edge. 

An initial minimization of 2000 steps was carried out with an applied restraint potential of 500 

kcal/mol Å2 for both complexes. An additional full minimization of 1000 steps was further carried 

out by conjugate gradients algorithm without restrain. 

A gradual heating MD simulation from 0 K to 300 K was executed for 50 ps, such that the system 

maintained a fixed number of atoms and fixed volume, i.e., a canonical ensemble (NVT). The 

solutes within the system are imposed with a potential harmonic restraint of 10 kcal/mol Å 2 and 

collision frequency of 1.0 ps-1. Following heating, an equilibration estimating 500 ps of the each 

system was conducted, the operating temperature was kept constant at 300 K. Additional features 

such as a number of atoms and pressure where also kept constant mimicking an isobaric-

isothermal ensemble (NPT). The systems pressure was maintained at 1 bar using the Berendsen 

barostat.  

The total time for the MD simulation conducted was 5 ns. In each simulation the SHAKE 

algorithm was employed to constrict the bonds of hydrogen atoms. The time step of each 

simulation was 2 fs and an SPFP precision model was used. The simulations coincided with 

isobaric-isothermal ensemble (NPT), with randomized seeding, constant pressure of 1 bar 

maintained by the Berendsen barostat, a pressure-coupling constant of 2 ps, a temperature of 300 

K and Langevin thermostat with collision frequency of 1.0 ps-1.  

Coordinates were saved every 1 ps and the trajectories were analyzed every 1 ps using the PTRAJ 

module employed in Amber14. 

2.5 Binding Free energy Calculations 

 

To estimate the binding affinities of each system, the binding free energies were calculated using 
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the Molecular Mechanics/GB Surface Area method (MM/GBSA) (Genheden & Ryde, 2015). 

Binding free energies were averaged over 5000 snapshots extracted from the 5 ns trajectory. The 

free binding energy (ΔG) computed by this method for each molecular species (complex, ligand 

and receptor) can be represented as: 

1 !∆G!"#$ = G!"#$%&' − G!"#"$%&! − G!"#$%&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

2 !∆G!"#$ = E!"# + G!"# − TS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

3 !E!"# = E!"# + E!"# + E!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

4 !G!"# = G!" + G!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

5 !G!" = γSASA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

The term Egas denotes the gas-phase energy, which consist of the internal energy Eint; Coulomb 

energy Eele, and the van der Waals energies Evdw. The Egas was directly estimated from the 

FF14SB force field terms. Solvation free energy, Gsol, was estimated from the energy 

contribution from the polar states, GGB and non-polar states, G. The non-polar solvation energy, 

SA. 

GSA, was determined from the solvent accessible surface area (SASA), using a water probe 

radius of 1.4 Å, whereas the polar solvation, GGB, contribution was estimated by solving the GB 

equation. S and T denote the total entropy of the solute and temperature respectively. 

To obtain the contribution of each residue to the total binding free energy profile between the 

inhibitors Ribavirin and BG323 with RdRp and MTase respectively, per-residue free energy 
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decomposition was carried out at the atomic level for imperative residues using the MM/GBSA 

method in Amber 14. 

 

2.6 Pharmacophore Model Creation and Library Generation 

 

The inhibitors Ribavirin and BG323 were first simulated at the active site of RdRp and MTase 

respectively, for 5 ns, to create the bound conformation of the ligands. Both these compounds 

have experimentally exhibited ZIKV inhibition in in vitro and in vivo models (Mumtaz, van 

Kampen, Reusken, Boucher, & Koopmans, 2016; Sweeney et al., 2015; Zmurko et al., 2016). 

Per-residue energy decomposition analysis was used to determine the amino acids that contribute 

the most towards ligand binding. The pharmacophoric moieties that interacted with the highly 

contributing residues were then chosen to construct our model. The model was then added to 

ZincPharmer (Koes & Carlos, 2012), with specific selection criteria (molecular weight of <500 

Da, rotatable bonds <6, hydrogen bond donors<5 and hydrogen bond acceptors<10), to screen the 

ZINC database (Irwin & Shoichet, 2005). Lipinski’s rule of five and toxicity (ADMET) 

properties were used as filters to remove nondrug-like hits (Lipinski, Lombardo, Dominy, & 

Feeney, 2012).  

2.7 Structure-based Virtual Screening 

 

The drug-like hits identified using our protocol were subjected to structure-based virtual 

screening. Docking was carried out to differentiate between ligands based on the molecules’ 

geometric characteristics that allow it to bind to the enzyme’s active site (Forli et al., 2016). The 

Docking calculations were performed using Autodock Vina (Trott & Olson, 2010). During 

docking, Gasteiger partial chargers were assigned and the Autodock atom types were defined 

using the Autodock Graphical user interface supplied by MGL tools (Sanner, Olson, & Spehner, 
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1996). The docked conformations were generated using the Lamarckian Genetic Algorithm 

(Morris & Huey, 2009). The Raccoon software was used to convert the files into a compatible 

pdbqt format required for docking. The gridbox was defined using Autodock Vina. The 

calculation reports for each ligand conformation in its respective complex were analyzed to 

obtain affinity energy (kcal/mol). During the docking process, a maximum of 50 conformers was 

considered for each compound. After screening, molecular docking and filtering, the ligand with 

the highest affinity towards the agonist was selected from the library. 

 

2.8 Validation of Docking Approach 

 

Previous experiences have verified that docking may result in the best geometric conformation of 

the docked complex, however, short molecular dynamic simulations may not be able to maintain 

the stability of the complex and thus lead to the molecules being disorientated. Thus, to validate 

the approach applied in this study, the most favorable Mtase and RdRp complex was subjected to 

further molecular dynamics studies (20 ns). The procedure for Molecular dynamics simulation 

was the same as in ‘‘Molecular Dynamics (MD) Simulations’’ Section and thermodynamic 

calculations as ‘‘Binding Free Energy Calculations ’’Section.  

2.9 Assessment of drug likeness 

The online software SwissADME was used to compute the physicochemical descriptors as well 

as predict the pharmacokinetic properties and drug-like nature of the screened compounds 

compared to that of BG323 and Ribavirin. to (Bultet et al., 2016; Daina, Michielin, & Zoete, 

2014). SwissADME utilizes the “Brain Or Intestinal Estimated permeation, (BOILED-Egg)” 

method which computes the lipophilicity and polarity of small molecules (Daina & Zoete, 2016). 
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3. Results and Discussion 

 

3.1 Homology Model and Active Binding Site Determination: 

Due to the absence of a crystal structure for the Zika NS5 enzyme, a homology model, having a 

zDope score of -0.76 was generated, and validated using a ramachandran plot. The active site 

residues were determined for both the MTase and RdRp region (Figure S1-3). The comprehensive 

set of results are presented in our previous publication (Ramharack & Soliman, 2016). To further 

validate both the MTase and RdRp, the homology model was superimposed to the newly released 

crystal structure of the Zika NS5 (Figure 5.2), using Chimera (E F Pettersen et al., 2004). 

 

Figure 5.2: Superimposition of homology model (yellow) with the newly released crystal 
structure (green- PDB code: 5TFR), showing their structural similarity and validating the model’s 
use for subsequent analysis. 

 

3.2 PRED Pharmacophore Model: 

In this study, a pharmacophore hypothesis was adopted by utilizing per residue decomposition 

energy-based approach. The structural features of a protein as well as the chemical characteristics 
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of a ligand are employed in the construction of a pharmacophore model. To generate the 

pharmacophore model, a 5ns molecular dynamic simulation was run on complexes (MTase-

BG323) and (RdRp-Ribavirin), followed by PRED computed from MM/GBSA calculations. The 

MM/GBSA approach has proven to be, in principle, accurate in both scoring function and binding 

free energy results (Genheden & Ryde, 2015; Hayes, 2009). This allows for improved 

pharmacophore modeling and thus the generation of a concise library of small molecules.  The 

MTase-BG323 complex showed His104 (-2.176 kcal/mol), Glu143 (-1.846 kcal/mol), Thr210 (-

1.192 kcal/mol), and Lys176 (-1.061 kcal/mol) to be the highest contributing residues to interact 

with the ligand. Strong hydrophobic interactions were formed between Glu143 and the benzene 

ring of BG323, while, energetically favorable residue, Asp140, formed hydrogen bonds with the 

terminal hydroxyl groups of the ligand (Figure 5.3). 

 

 

Figure 5.3: The steps taken toward creating the pharmacophore model from the MTase-BG323 

complex. The yellow circles spotlight the pharmacophoric moieties that were chosen for the 

model, based on the highest contributing residues, depicted in the binding affinity graph.  
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Hydrogen bonds between the RdRp-Ribavirin complex included residues Asn444 (-1.296 

kcal/mol) and His460 (-0.956 kcal/mol), while the contributing residues; namely, GLU573 (-

1.521 kcal/mol), TRP576 (-1.744 kcal/mol) and Cys577 (-2.202 kcal/mol) were involved in 

hydrophobic interactions with the ligand. The features from each complex were used as a query 

on ZINCpharmer (Koes & Carlos, 2012) to create the PRED-based pharmacophore (Figure 5.4). 

Results revealed 18 hits obtained from the MTase-BG323 pharmacophore and 23 hits from the 

RdRp-Ribavirin pharmacophore.  

 

Figure 5.4: RdRp-Ribavirin complex ligplot analysis- creating the pharmacophore model to 
virtually screen for new RdRp potential lead compounds. The yellow circles spotlight the 
pharmacophoric moieties that were chosen for the model based on the highest contributing 
residues, depicted in the binding affinity graph.  
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3.3 Molecular Docking 

To further refine and reduce false positives retrieved from the hit compounds, the hits for each 

complex were subjected to molecular docking within the actives sites of MTase (18 hits) and 

RdRp (23 hits). This assessed their geometric feasibility at each domain, leading to only three top 

ranked compounds (Table 2).  Based on the interactions and binding affinities of the respective 

three top ranked compounds to MTase and RdRp, ZINC64717952 and ZINC39563464 were 

chosen as respective top hits. Each complex was subsequently subjected to molecular dynamic 

studies to elucidate on the enzyme-ligand interactions of the two potential inhibitors under virtual 

conditions. 

Table 5.2: Representation of the top three compounds bound to MTase and RdRp. The 

compounds, ZINC64717952 and ZINC39563464 showed the best binding affinity to MTase and 

RdRp respectively. 
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3.4 Molecular Dynamic Simulations and Binding Free Energy Analysis 

The MTase-ZINC64717952 and RdRp-ZINC39563464 complexes were subjected to a 20 ns MD 

simulation in order to check the convergence dynamic stability and to analyze the energetics of 

each complex.  The RMSD profiles of the MTase-complex and RdRp-complex indicate that both 

systems were stable during the simulation (Figure 5.6C and 5.7C).  

MTase-ZINC64717952 Complex: 

The docked MTase-ZINC64717952 complex showed ionic interactions involving seven residues 

common to MTase-BG323 (Glu143, Arg207, Lys176, Thr210, Ile141, Asp140 and Gly142). 

Interestingly, however, a hydrogen bond was noted between the nitrogen of Arg35 and the 

aromatic ring of ZINC64717952, this was peculiar, as Arg35 was not involved in any ionic 

interactions of the MTase-BG323 complex. The MTase-ZINC64717952 complex used Asp140 as 

a hydrogen bond acceptor, whereas, the MTase-BG323 complex depicted hydrophobic 

interactions between Asp140 and the benzene ring of BG323. These ionic bond deviations 

between systems may be due to the size of ZINC64717952 in comparison to BG323. 

ZINC64717952 was significantly reduced in size, containing predominantly the heterocyclic 

rings from the pharmacophore model. Due to the size of ZINC64717952, the nitrogen of aromatic 

ring was allowed to form a hydrogen bond with the amine group (Arg35) further into the 

hydrophobic pocket of MTase. Docking results showed the same binding affinity in both 

complexes, however, receptor residue stability showed increased fluctuations in the 

ZINC64717952-MTase complex compared to the experimental complex (Figure 5.5). The overall 

compactness of the receptor was measured by the radius of gyration (around the Cα atoms) and 

was indicative of greater fluctuations of the MTase-ZINC64717952 complex compared to the 

experimental complex (Figure S6), verifying the RMSF fluctuations seen in Figure 5.5. Although 

ZINC64717952 docked in a structurally favorable manner, MM/GBSA analysis showed free 
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binding energy of the MTase-BG323 complex (-28.70 kcal/mol) to be higher in magnitude than 

that of MTase-ZINC64717952 (-26.50 kcal/mol).  

 

Figure 5.5: The Cα root mean square fluctuations (RMSF) of MTase-BG323 and MTase-
ZINC64717952 during the molecular dynamic simulation. 

 

The tetrazole aromatic ring in ZINC64717952 contains highly active nitrogen atoms, increasing 

electronegativity and steric hindrance (Ostrovskii, Trifonov, & Popova, 2012). The Generalized 

Borne (GB) method is used to calculate the molecular electrostatic forces in solvent. Table 3 

shows ZINC64717952 to have elevated columbic energy, thus leading to increased gas-phase 

energy, validating the free energy analysis (Figure 5.6A) (Genheden & Ryde, 2015). This, 

however, does not rule-out the possibility of ZINC64717952 as a potential inhibitor of the MTase 

enzyme as the intermolecular forces between the receptor and ligand were favorable. This study 
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will have to be evaluated in vitro, where the further analysis may reveal the inhibitory potential of 

the compound.  

 

 

5. 5.6: MTase-ZINC64717952 complex interactions (A) Per-residue decomposition analysis 
showing Arg51 and Glu105 to have the greatest bond fluctuations (B) Ligplot depiction of 
hydrophobic and hydrogen bond interactions in the complex which was validated by (C) The time 
evolution of RMSD of the C-alpha atom backbone of the MTase-ZINC64717952 complex. 
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 Table 5.3: The comparison of MTase’s binding affinity with BG323 and ZINC64717952. 

 

 

RdRp-ZINC39563464 Complex: 

The docked RdRp-ZINC39563464 complex showed ZINC39563464 to interact with nitrogen 

atoms of two residues; Asn444 and His460. Notably, the nitrogen atoms from the same residues 

form hydrogen bonds with the terminal oxygen of the Ribavirin, showing consistent residue 

interactions of the experimental ligand and ZINC39563464. These hydrogen interactions are 

formed from non-covalent bonding of the hydrogen donor (Asn444 and His460) with the 

acceptors (oxygen and nitrogen) of the ligand. This articulates the directionality and specificity of 

the active site’s β-strand recognition of both Ribavirin and ZINC39563464. The complex 

exhibiting a relatively stable RMSD profile during the simulation further validated this (Figure 

5.7C). The pharmacophoric hot spot residue, His442, formed hydrophobic bonds with the 

aromatic rings of both Ribavirin and ZINC39563464. It is noteworthy that four other 

hydrophobic-interacting residues; Cys577, Tryp576, Glu573 and Glu435 were common to both 

ligands, thus stabilizing both energetically favorable ligands in the available hydrophobic pocket. 

Table 4 depicts the analysis of binding free energy by the use of MM/GBSA of the RdRp-

ZINC39563464  

Energy Components (kcal/mol)  

Compound Δ EvdW ΔEelec ΔGgas ΔGsolv ΔGbind 

 

BG323 

 

-33.32 ± 

1.82 

 

-11.84 ± 

1.68 

 

-49.16 ± 

1.86 

 

20.83 ± 1.80 

 

-28.33 ± 

1.87 

ZINC64717952 
-35.77 ± 

2.66 

-10.47 ± 

2.68 

-46.24 ± 

3.97 
19.74 ± 2.14 

-26.50 ± 

3.14 
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complex was used to support the docking results.  

Table 5.4: The comparison of RdRp’s binding affinity with Ribavirin and ZINC39563464. 

 

The predicted binding free energy for the complex was -25.04 kcal/mol, which is considerably 

higher in magnitude than that achieved by the RdRp-Ribavirin complex (-16.53kcal/mol), thus 

confirming the docking results and indicating a stronger binding of ZINC39563464 to RdRp 

compared to the experimental ligand (Figure 5.7A and 5.7B). The relatively large size of the 

ligand could explain the increased number of residues encompassing apparent hydrophobic 

interactions with ZINC39563464, and could substantiate the exhibition of stable RdRp residues 

by RMSF profiling (Figure 5.8). As an additional check, the radius of gyration (RoG of the Cα 

atoms) was compared in both simulations to provide a measure of overall compactness of the 

protein (Figure S6).  The fluctuations of RoG stayed with 1 Å in both simulations indicative of a 

stable protein complex with both experimental and screened compound.  

Energy Components (kcal/mol)  

Compound Δ EvdW ΔEelec ΔGgas ΔGsolv ΔGbind 

 

Ribavirin 

 

-23.20 ± 

3.13 

 

-40.92 ± 

13.03 

 

-64.12 ± 

13.34 

 

47.59 ± 

9.93 

 

-16.53 ± 

4.84 

ZINC39563464 
-38.17 ± 

5.39 

-17.32 ± 

5.99 

-55.49 ± 

8.85 

30.45 ± 

4.85 

-25.04 ± 

5.35 
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Figure 5.7: RdRp-ZINC39563464 complex interactions (A) Per-residue decomposition analysis 
showing Arg459 and Glu435 to have the greatest bond fluctuations, (B) Ligplot depiction of 
hydrophobic and hydrogen bond interactions in the complex which was validated by (C) The time 
evolution of RMSD of the C-alpha atom backbone of the MTase-ZINC39563464 complex. 
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Figure 5.8: The stable Cα root mean square fluctuations (RMSF) of RdRp-Ribavirin and RdRp-
ZINC39563464 during the molecular dynamic simulation. 

 

3.4 Assessment of drug likeness 

Ribavirin has a plethora of side effects including thrombocytopenia, myalgia, leucopoenia and 

cognitive impairment (Hinton et al., 2016; Kryger, Wohl, Smith, & Zelikin, 2013; Munir et al., 

2010). This proves to be a challenge when trying to inhibit a virus that already causing these 

symptoms. BG323 is a new compound that has been proven to have potent effects on flavivirus 

NS5 proteins, however, the compound is unable to pass the blood-brain barrier, making it 

difficult to act on ZIKV-targeted neuronal cells (Miner & Diamond, 2016; Tang et al., 2016). The 

possible pro-drugs of ribavirin and BG323, being, ZINC39563464 and ZINC64717952 

respectively, can be described as potential lead compounds after assessment through SwissADME 

(Table 5) (Bultet et al., 2016). 



 114 

 

Table 5.5: The comparison of drug likeness of the screened compounds compared to that of the 

experimental drugs against ZIKV. 

 

 4. Conclusion 

ZIKV is a rapidly evolving virus that has had detrimental long-term effects over a very short 

period of time. This study proposes two new compounds that have shown promising 

physicochemical properties and strong interactions with ZIKV MTase and RdRp, thus validating 

the PRED model as an effective strategy to enhance typical virtual screening methods for the 

rapid identification of potential lead compounds as inhibitors against pathogenic biological 

targets such as ZIKV. This strategic in silico technique will serve as a beneficial tool to enhance 

drug discovery and decrease excessive wastage of financial and experimental resources by 

synthesizing large numbers of compounds that may not be beneficial in the inhibition of target 

enzymes. The lead compounds, ZINC64717952 and ZINC39563464, have shown substantial 

stability in complex with the target enzymes and thus further experimental analysis is necessary 

for efficacy and toxicity validation.  
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Abstract 

The Zika virus has emerged as a pathogen of major health concern. The rapid spread of the virus 

has led to an uproar in the medical domain as scientists frantically race to develop effective 

vaccines and small molecules to inhibit the virus. In the past year, there has been a flood of Zika 

knowledge published including its characteristics, transmission routes and its role in disease 

conditions such as Microcephaly and Gullian-Barŕe syndrome. Targeted therapy against specific 

viral maturation proteins is necessary in halting the replication of the virus in the human host, 

thus decreasing host-host transmission. This prompted us to investigate the structural properties 

of the Zika NS3 Helicase when bound to ATP-competitive inhibitor, NITD008. In this study, 

comparative molecular dynamic simulations were employed for Apo and bound protein to 

demonstrate the molecular mechanism of the Helicase. Results clearly revealed that NITD008-

binding caused significant residue fluctuations at the P-loop compared to the rigid nature of the 

Apo conformation. The NITD008-helicase complex also revealed residues 339-348 to transition 

from a 310-Helix to a stable α-helix. These protein fluctuations were verified by investigation of 

dynamic cross correlation and principal component analysis. The fundamental dynamic analyses 

presented in this report is crucial in understanding Zika NS3 Helicase function, thereby giving 

insights toward an inhibition mechanism. The information reported on the binding mode at the 

ATPase active site may also assist in designing of effective inhibitors against this detrimental 

viral target. 

 

Keywords: 

Zika NS3 Helicase, ATPase active site, Molecular dynamic simulations, P-Loop Flexibility,  
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Introduction 

The re-emerging Zika virus (ZIKV) has evolved into a catastrophic epidemic over the past year, 

with scientific community announcing that the long-term effects associated with the virus will 

have to be dealt with in the decades to follow 1. The virus was declared an international public 

health emergency by the World Health Organization 2, based on growing evidence of the virus 

being linked with congenital neurological diseases such as Guillain-Barŕe, cranial nerve 

dysfunction and Microcephaly 3,4. The ZIKV made its devastating re-appearance in Brazil and has 

now spread on a global scale, with an estimated 75 countries with reported mosquito-borne ZIKV 

transmission as of December 2016 5. 

 

Zika virus is an arthropod-borne flavivirus initially discovered in the Zika forest area of Uganda 

in 1947 6. Of the flavivirus genera, ZIKV is most closely related to the Spodweni virus from the 

Spodweni group; however, ZIKV shares structural similarities with other flaviviruses, including 

Dengue virus and West Nile virus 7. The ZIKV genome is made up of structural proteins, being 

the capsid, precursor membrane and envelope form the viral particle and seven non-structural 

proteins, being NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5, which participate in the 

replication of the RNA genome, virion assembly and invasion of the innate immune system 8–10. 

In our previous review, we explicated on the key viral target proteins, including the 

multifunctional viral replication NS3 helicase protein11. The ZIKV helicase comes from the 

superfamily helicases, SF2 12, with the inhibition of either one of the binding sites, the RNA-

binding groove or the ATP-binding site (Figure 6.1), leading to the virus becoming incapable of 

sufficient maturation and replication. The structural characteristics of the ZIKV NS3 protein 

includes three domains: domain I (residues 182-327), domain II (residues 328-480) and domain 
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III (residues 481-617), as well as a P-Loop (residues 196-203) which is located at the ATP-

binding site of domain I 12,13.  

The co-crystallization of MnATP-2 and RNA with ZIKV helicase, reported by Tian et al (2016) 

and Cao et al (2016), have paved the way to understanding the mechanism by which these 

substrates bind to the enzyme, initiating viral RNA replication 14,15. Despite the flood of 

integrated knowledge on ZIKV over the past year, the molecular and structural mechanism for 

helicase inhibition is yet to be established 12.  
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Figure 6.1: Cartoon and surface representation of the three domains of the ZIKV helicase and the 
two active-binding regions (yellow) that form profound hydrophobic cavities in the electrostatic 
surface area, allowing ATP and ssRNA to bind.  

 

Another battle being fought by researchers is the discovery of new modes of transmission of the 

virus, from initially being transmitted from vector to host, to now being inclusive of blood 

transfers from host to host as well as secondary sexual transmission 16–18. This has allowed for 
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rapid diffusion of the virus between continents. In the plethora of strategic characteristics of the 

virus, its ability to target neuronal cells has been one of the most problematic tasks that 

pharmaceutical chemists have had to overcome 19–24. The design of ZIKV inhibitors will not only 

need to be target-specific, effective and have minimal toxicity, but it will also have to pass 

through the blood-brain-barrier 25. 

  

Although there are currently vaccine clinical trials under way, there are still no FDA approved 

small molecule inhibitors against the virus 26–30. This may be due to a number of reasons 

including time-consuming experimental testing of large libraries of compounds or minimal 

literature available on the functionality of the virus in host cells. These possible barriers have 

prompted us to utilize computational drug design tools, such as molecular dynamic (MD) 

simulations to explore the conformational landscape of this biological system’s ATP-binding 

region. The crystallographic structures have revealed evidence of residue mobility, including the 

rotation of motor domains, however, the precise structural characteristics of the helicase upon 

small molecule binding, is yet to be determined 12,31–36.  

 

In this study we investigate the conformational changes at the ATP-binding region after a 130   

MD simulation of the free enzyme state as well as a NITD008-bound complex 37. This study will 

be critical in understanding how the ZIKV NS3 helicase functions structurally, thus aiding in the 

design of effective, target-specific inhibitors.  
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Computational Methods 

1.2 System Preparation  

The ZIKV NS3 helicase in complex with ATP and a magnesium ion (PDB code: 5GJC)14 was 

obtained from RSCB Protein Data Bank 38. The 3-D structure of the experimental ZIKV inhibitor, 

NITD008, was obtained from PubChem39 and prepared on Molegro Molecular Viewer (MMV) 40. 

In the ZIKV crystal structure of the ATP-bound helicase, residues A247-S253 were absent, thus 

the free enzyme (PDB code: 5JMT)13 was utilized in the docking of NITD008. Deng et al (2016) 

reported conclusive in vivo evidence of the inhibition of ZIKV by NITD008. The compound is 

classified as an adenosine nucleoside analog that competitively inhibits ATP, thus sharing an 

active site 37.  

 

1.3 Molecular Docking 

Molecular docking is a conventional method in computational chemistry which is utilized in the 

prediction optimized geometric conformations of a ligand within an appropriate binding site 41. 

The Molecular docking software utilized included Raccoon 42, Autodock Graphical user interface 

supplied by MGL tools 43 and AutoDockVina 44 with default docking parameters. Prior to 

docking, Gasteiger charges were added to NITD008 and the non-polar hydrogen atoms were 

merged to carbon atoms. Water molecules were removed and polar hydrogen was added to the 

crystal structure of the NS3 helicase. NITD008 was then docked into the ATPase binding pocket 

of the NS3 helicase (by defining the grid box with spacing of 1 Å and size of 32 × 26 × 30 

pointing in x, y and z directions). Due to the lack of experimental data describing ZIKV approved 

inhibitors, validation of molecular docking based on the lowest energy pose becomes unreliable 

45. To overcome any experimental bias, the five best conformational poses, based on binding 

affinities (kcal/mol), were subjected to MD simulations. 



 130 

1.4 Molecular Dynamic (MD) Simulations 

Molecular dynamic (MD) simulations provide a robust tool to explore the physical movements of 

atoms and molecules, thus providing insights on the dynamical evolution of biological systems. 

The MD simulation was performed using the GPU version of the PMEMD engine provided with 

the AMBER package, FF14SB variant of the AMBER force field 46 was used to describe the 

protein.  

ANTECHAMBER was used to generate atomic partial charges for the ligand by utilizing the 

Restrained Electrostatic Potential (RESP) and the General amber Force Field (GAFF) procedures. 

The Leap module of AMBER 14 allowed for addition of hydrogen atoms, as well as Na+ and Cl
- 

counter ions for neutralization to both the Apo- and Bound system.  

Both systems were then suspended implicitly within an orthorhombic box of TIP3P water 

molecules such that all atoms were within 10Å of any box edge. 

An initial minimization of 2000 steps was carried out with an applied restraint potential of 500 

kcal/mol Å2 for both solutes, were performed for 1000 steps using a steepest descent method 

followed by a 1000 steps of conjugate gradients. An additional full minimization of 1000 steps 

was further carried out by conjugate gradient algorithm without restrain. 

A gradual heating MD simulation from 0K to 300K was executed for 50 ps, such that the system 

maintained a fixed number of atoms and fixed volume, i.e., a canonical ensemble (NVT). The 

solutes within the system are imposed with a potential harmonic restraint of 10kcal/mol Å 2 and 

collision frequency of 1.0 ps-1. Following heating, an equilibration estimating 500ps of the each 

system was conducted; the operating temperature was kept constant at 300 K. Additional features 

such as a number of atoms and pressure where also kept constant mimicking an isobaric-

isothermal ensemble (NPT). The systems pressure was maintained at 1 bar using the Berendsen 
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barostat.  

The total time for the MD simulation conducted was 130 ns. In each simulation the SHAKE 

algorithm was employed to constrict the bonds of hydrogen atoms. The step size of each 

simulation was 2 fs and an SPFP precision model was used. The simulations coincided with 

isobaric-isothermal ensemble (NPT), with randomized seeding, constant pressure of 1 bar 

maintained by the Berendsen barostat, a pressure-coupling constant of 2 ps, a temperature of 

300K and Langevin thermostat with collision frequency of 1.0 ps-1.  

1.5 Post-Dynamic Analysis 

The coordinates of the free enzyme and NITD008 complex were each saved every 1 ps and the 

trajectories were analyzed every 1 ps using PTRAJ, followed by analysis of RMSD, RMSF and 

Radius of Gyration using the CPPTRAJ module employed in AMBER 14 suit. 

1.5.1 Binding Free Energy Calculations 

Binding free energy calculations is an important end point method that may elucidate on the 

mechanism of binding between a ligand and enzyme, including both enthalpic and enthropic 

contributions 47. To estimate the binding affinity of the docked systems, the free binding energy 

was calculated using the Molecular Mechanics/GB Surface Area method (MM/GBSA) 48. 

Binding free energy was averaged over 15000 snapshots extracted from the 130 ns trajectory. The 

free binding energy (ΔG) computed by this method for each molecular species (complex, ligand 

and receptor) can be represented as: 

∆G!"#$ = G!"#$%&' − G!"#"$%&! − G!"#$%&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1  

∆G!"#$ = E!"# + G!"# − TS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2  

E!"# = E!"# + E!"# + E!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3  

G!"# = G!" + G!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4  
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G!" = γSASA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 5  

 

The term Egas denotes the gas-phase energy, which consist of the internal energy Eint; Coulomb 

energy Eele and the van der Waals energies Evdw. The Egas was directly estimated from the 

FF14SB force field terms. Solvation free energy, Gsol, was estimated from the energy 

contribution from the polar states, GGB and non-polar states, G. The non-polar solvation energy, 

SA. GSA, was determined from the solvent accessible surface area (SASA), using a water probe 

radius of 1.4 Å, whereas the polar solvation, GGB, contribution was estimated by solving the GB 

equation. S and T denote the total entropy of the solute and temperature respectively.  

To obtain the contribution of each residue to the total binding free energy profile at the ATPase 

site, per-residue free energy decomposition was carried out at the atomic level for imperative 

residues using the MM/GBSA method in AMBER 14 suit.  

The system displaying the most favorable binding interaction and energy contributions were 

subjected to further analysis.  

1.5.2 Dynamic Cross-correlation Analysis (DCC) 

Dynamic cross correlation is a widespread method in MD simulations in which the correlation 

coefficients of motions between atoms of a protein may be quantified 49. The dynamic cross 

correlation between the residue-based fluctuations during simulation was calculated using the 

CPPTRAJ module incorporated in AMBER 14. The formula used to describe dynamic cross 

correlation is given below: 

!" = ! < Δri.Δrj >

< Δ!!! >< !Δ!!! >
!
!
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The cross-correlation coefficient (Cij) varies within a range of −1 to +1 of which the upper and 

lower limits correspond to a fully correlated and anti-correlated motion during the simulation 

process. Where, i and j stands for ith and jth residue respectively and Δri or Δrj represents 

displacement vectors correspond to ith and jth residue respectively. The generated dynamic cross 

correlation matrix was constructed in Origin software.  

 

1.5.3 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a covariance-matrix-based mathematical technique that is 

able to demonstrate atomic displacement and the loop dynamics of a protein 50. Prior to 

processing the MD trajectories for PCA, the trajectories of the free enzyme (Apo) and the 

NITD008-bound complex (Complex) were stripped of solvent and ions using the PTRAJ module 

in AMBER 14. The stripped trajectories were then aligned against their corresponding fully 

minimized structures. PCA was performed for C-α atoms on 900 snapshots each. Using in-house 

scripts, the first two principal components were calculated and the covariance matrices were 

generated. The first two principal components (PC1 and PC2) generated from each trajectory 

were averaged for both the free-enzyme and NITD008-complex. The first two principal 

components (PC1 and PC2) were computed and a 2 X 2 covariance matrix were generated using 

Cartesian coordinates of Cα atoms. PC1 and PC2 correspond to first two eigenvectors of 

covariant matrices. Origin software 51 was used to construct PCA plots. 
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Results and Discussion 

3.1 NITD008-NS3 Helicase Complex 

3.1.1 Binding of NITD008 with ZIKV Helicase 

Research into ZIKV inhibitors has been minimal before 2016. However, NITD008, a flavivirus 

adenosine analogue was evidenced, both in vitro and in vivo, to inhibit ZIKV replication. The 

adenosine nucleoside analogue competes with natural ATP substrates, which are incorporated 

into the growing RNA chain. By this substitution, NITD008 is incorporated into the RNA chain, 

thus terminating the RNA elongation and inhibiting ZIKV maturation 37.  

Molecular docking has become a major computational tool that is used to predict the orientation 

of a ligand at a binding site on the receptor. Results from docking often display multiple predicted 

orientations of the ligand within the active pocket 52.   

 

In this study, NITD008 docked at the ATP-binding site in 6 favorable conformations (Figures S2-

S6), with the highest binding-affinity being -8.2 kcal/mol. Scoring functions often attempt to 

reproduce experimental binding affinities, but most software do not always yield the best 

prediction. Validation of the docked structure with experimentally known drugs was also not 

possible due to the lack of FDA inhibitors against ZIKV 45,53,54.  

 

In an attempt to improve the binding affinity prediction of NITD008, all 6 predicted complexes 

were subjected to 130 ns molecular dynamic simulations, allowing for more realistic receptor 

flexibility in an implicit solvent. Each complex was then analyzed using the accurate, 

MM/GBSA, free binding energy calculation to determine the most favorable pose of NITD008 at 

the NS3 ATPase active site 47,55–57.  
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3.1.2 Free Energy calculations 

The total binding free energy for each of the 6 poses of the NITD008- NS3 helicase complex 

were calculated using the MM/GBSA approach to better understand the various energy 

contributions within the binding pocket and assess which binding pose would show the most 

favorable intermolecular interactions at the helicase active site. Per residue decomposition 

analysis was also assessed and the residue-ligand interaction network of each pose were depicted 

as “ligplot” maps (Figures S2-S6). Of the six systems, the pose with the highest docking score, -

8.2 kcal/mol, showed the most favorable free binding energy (-55.90 kcal/mol) supported the 

molecular docking score, indicating a favorable structural pose of NITD008 at the binding site.  

 

The thermodynamic energy contribution of NITD008 to the total binding free energy of the 

complex surmounts to the stability of NITD008 in the ATP binding pocket and thus the stability 

of the complex during the simulation. Table 1 summarizes the free binding energy of the system 

taking into account the energies of the NS3 helicase and NITD008.  
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 Table 6.1: Summary of free binding Energy contributions to the NITD008-NS3 Helicase system. 

 

 

Figure 6.2 represents the residue interaction plot of NITD008 within the active site. The active 

site residues Gly199, Lys200 and Glu286 formed stable hydrogen bonds with highly 

electronegative oxygen atoms of NITD008. The residues pocketing NITD008 within the active 

site included Gly197, Ala198, Gly199, Lys200, Thr201, Arg202, Glu288, Gly415, Asn417 and 

Arg456. 

 

It was also interesting to note that the most favorable NITD008-pose shared five active residues 

with the ATP-bound helicase reported by Tian et al (2016). The crystal structure of the ATP-

bound helicase showed Lys200 to stabilize the triphosphate of the ATP 14. The Lys200 of the 

NITD008-bound helicase showed a similar stabilizing hydrogen bond with the terminal hydroxyl 

group located on the ribose of NITD008.  
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Figure 6.2: Energy contributions of the highest interacting residues at the ATPase active site. The 
residue ligand interaction network illustrates stabilizing hydrophobic interactions pocketing 
NITD008 at the active site. The highest energy contribution was a hydrogen bond interaction 
shared between Glu286 and the 3rd oxygen of the ribose component of NITD008. 

 

Superimposition of NITD008-docked NS3 helicase with the ATP-NS3 helicase complex 

demonstrated both compounds to bind in a hydrophilic conformation despite the carbon and 

acetylene substitutions at N-7 of the purine and the 2’ position of the ribose, respectively (Figure 

6.3).  

 

The structural similarities between NITD008 and ATP, as well as the active site residue 

interactions and accurate free-binding energy prompted the further analysis of NITD008-

complex. 
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Figure 6.3: Superimposed conformation of structurally similar NITD008 and ATP docked at 
ATPase site of ZIKV NS3 Helicase. 

 

 

3.2 Systems Stability 

The length of a MD simulation is paramount when establishing insights into the structural 

dynamics of a biological system. With an extended simulation time, a system is able to reach 

convergence, thus becoming stable. To assure the equilibration of the simulation, the potential 

energy and temperature where monitored (Figure S1). The average potential energy (-145774 

kcal/mol) was measured at 300K, suggesting a stable conformation at this temperature.  
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3.2.1 Stability of NS3 Helicase Apo and Bound System  

The C-α backbone root mean square deviations (RMSD) were monitored throughout the 130 ns 

MD simulation for both the free (Apo) enzyme and the complex. Both systems reached 

convergence after 60 ns (RMSD deviation < 2 Å). It can be noted that the C-α backbone atoms in 

both systems stabilized after a 40 ns time period, although, fluctuations in rigidity did increase 

during the 47-52ns period in the NITD008 complex (Figure 6.4). This could possibly be due to 

the occurrence of conformational changes because of the bond interactions taking place between 

NITD008 and the active site residues as seen in the Per-residue energy decomposition.  

 

Figure 6.4: C-α backbone RMSD for NS3 Helicase Apo enzyme and NITD-complex 
conformation. The average C-α RMSD was calculated to be 3.62 Å and 3.77 Å, respectively. 
Increased fluctuations occurred at 47-52 ns in the NITD008-complex. 
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3.2.2 Conformational Fluctuations of the NS3 Helicase 

To better understand the structural changes that may be occurring upon ligand binding, the root 

mean square fluctuation (RMSF) of the C-α atoms of each residue in the Apo system and 

NITD008-complex were calculated. Figure 6.5 clearly demonstrates greater flexibility of residues 

of the NITD008-complex when compared to the Apo enzyme. Fluctuations take place between 

residues 198-204, which form distinct hydrophobic and hydrogen bond interactions with 

NIT008D at the active site. This region, the P-Loop, is found in all flavivirus helicases and has 

been shown to have flexibility during binding of ATP 14. The P-loop adopts structural 

modifications to accommodate the binding of ATP and Mn2+. This flexibility extends greatly in 

comparison to the Apo enzyme, thus verifying ZIKV P-loop flexibility upon ligand-binding. 

Other fluctuations occurred in domain II, and I around the ATP-active site, at residues 244-248 

and 325-348.  

 

Figure 6.5: The RMSF of Apo enzyme and NITD008-complex. The structural flexibility in 
domain I and II is highly attributed to the binding of NITD008 to the ATP-active site. This is 
substantiated by the average RMSF of the NITD008-complex (2.17 Å), which is significantly 
higher than that of the Apo enzyme (1.90 Å). 
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3.2.3 Distribution of Atoms around the NS3 Helicase Backbone 

The radius of gyration around the C-α atoms can measure the shape and folding of NS3 helicase 

before and after NITD008 binding. The radius of gyration measures the distribution of atoms 

from the center of mass (COM), thus indicating how compact a system is. Both the ApoA (22.05 

Å) and NITD008 (22.17 Å) showed very similar structural compactness, however, there was an 

atomic distribution in the NITD008-complex from 40-58ns (Figure 6.6). This correlates with the 

escalated instability of the complex at 47-52ns demonstrated in the RMSD plot.  

 

Figure 6.6: The radius of gyration (RoG) plot illustrating the difference in enzyme compactness 
of the NITD008-complex compared to the Apo enzyme. 

 

The flexibility calculated from the RMSD, RMSF and RoG encouraged us to explore the dynamic 

structural modifications of the NS3 Helicase after NITD008 binding.  
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3.3 Investigation of the Dynamic Structural features ATP-Active Binding Region  

3.3.1 Loop Flexibility and Distance metrics 

The ZIKV NS3 Helicase is made up of three known flexible loops that are common to all 

flaviviruses: The P-loop (residues 196-203), the RNA-binding loop (residues 244-255) and the β-

hairpin loop (residues 431-444). These loops may vary in size depending on the type of virus; 

however, they all have the same fundamental structural flexibility.  The RMSF plot demonstrated 

major fluctuations at the P-loop as well as the RNA-binding loop, the β-hairpin loop however, 

showed no significant conformational change compared to the Apo enzyme. The plot also 

illustrated a flexible “325-338” region. Figure 6.7 depicts three snapshots of the Apo enzyme and 

NITD008-complex, taking at different intervals along the trajectory. Clear conformational shifts 

are illustrated along the trajectory in both Apo and bound systems.  

 

To further investigate the conformational changes of the NS3 Helicase upon ligand binding, 

dynamic cross-correlation matrix (DCCM) analysis was performed at different conformational 

positions of the Cα backbone atoms of the free protein and ligand-bound complex. Highly 

correlated motions of residues are represented in the red to yellow regions, whereas, the 

negative/anti-correlated movements of residue Cα atoms are represented by blue-navy regions. It 

is evident from the correlation map that more globally correlated motion is observed in the case 

of the free protein, confirming conformational shifts after ligand binding. The latter residues of 

the NS3 Helicase, being residues 500-600, displayed anti-correlated movements in both the Apo 

and Bound complex, supporting the residue fluctuations in Figure 6.5. Figure 6.7 also depicts 

anti-correlation motions at residues “340-390”, which may be explained by the snapshots, in 

which, the flexible region in the NITD008-bound complex was converted from a 310-helix to a α-

helix. 
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Figure 6.7: Structural Flexibility of the P-Loop (196-203), RNA-binding loop (244-255), and the 
310 Helix (339-348) along the trajectory. The RNA-binding loop (orange) showed the loop 
shifting down in the Apo structure but an upward shift in the NITD008- Helicase complex. The 
P-Loop (Yellow) shifted away from the active site in the bound complex but closed in on the 
active site when no ligand was present. In the Apo structure, the helix-loop-helix stayed, with 
vibrational movement during the simulation, although, in the bound complex, the 310 Helix 
(Pink) was modified into a α-helix due to ligand motional shifts further into the hydrophobic 
pocket.. 
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The P-loop clearly illustrates that when NS3 Helicase is in its Apo form and exposed to a 130 ns 

simulation, the P-loop closes on the active site by uncoiling the α-helix at Arg203 to form part of 

the loop. The loop tip (Ala198) and the adjacent catalytic residue (Gly451) had an average 

distance of 9.71 Å compared to the NITD008-complex distance of 12.75Å, whereby, as NITD008 

becomes more stable at the active site and forms bond interactions, the P-loop is directed away 

from NITD008 and a larger catalytic space becomes available for the ligand as it forms stable 

hydrophobic interactions deeper within the hydrophobic pocket (Figure 6.8). 
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Figure 6.8: Residue fluctuations at the P-Loop region. The Apo enzyme illustrates closing of the 
loop at the active site due to a vacant hydrophobic pocket. Subsequent to ligand binding and the 
initiation of stabilizing hydrogen and hydrophobic bond interactions, the P-loop shifts down to 
accommodate the ligand, thus increasing the size of the hydrophobic pocket.  
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The “325-348” region demonstrates opposing conformational modifications between the Apo and 

complex systems compared to that of the P-loop. The Distance between the two catalytic residues 

from the loop tips; residue Ser324 and residue Asn448, measured for the Apo and NITD008-

complex was 6.34 Å and 8.34 Å, respectively (Figure 6.9). The NITD008-complex had a greater 

distance between the residues due to the unraveling of 2 β-sheets found in domain II. This led to a 

“325-338” loop shift behind the active site and the “339-348” region being modified from a 310 

Helix to a α-Helix (Figure 6.7). The 310 Helix conversion could be due to many reasons including 

changes in pH, interactions with other proteins and in this case, ligand binding. The ligand-

protein interactions lead to distances between nitrogen and oxygen atoms from the protein 

backbone to fluctuate and as NITD008 moved further into the hydrophobic pocket, these 

fluctuations and hydrogen bond conversions caused the 310 helix to convert to an α-helix. These 

changes are important in illustrated the conformational fluctuations upon ligand binding.  
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Figure 6.9: Residue fluctuations at the “325-348” region. The Apo enzyme illustrates widening 
of the loops of the Apo enzyme. The rear loop shifts down as the P-loop closes in on the active 
site. The largest fluctuation is seen after system stabilization at 40-60 ns.  The NITD008-Helicase 
enzyme shows instability in both loops throughout the simulations, although, there was no 
widening of the loops as the rear loop shifted back rather than downward movement seen in the 
Apo system. 
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3.3.2 Principal Component Analysis 

Conformational transitions of the free protein and NITD008-bound complex were characterized 

using PCA, a technique that has been widely employed to present experimentally detected 

conformational variations. Figure 6.10 highlights the motional shifts across two principle 

components in the case of NITD008-bound and unbound NS3 Helicase. It is evident that 

eigenvectors computed from the respective simulations varied immensely between the two 

systems, further elaborating on the dynamic conformational fluctuations from free to ligand-

bound protein. The unbound system shows restricted structural motions of residue Cα atoms, 

whereby the NITD008-bound system shows a larger spatial occupancy, thus substantiating the 

rigidity of the unbound system. This corresponds with the stability of the systems, illustrating 

greater distribution of the atoms around the center of mass and the system stability deviations for 

the NITD008-bound system. Correlation from analysis of both the free and bound protein 

demonstrates structural loop flexibility after binding of NITD008 to the ATPase active site.  
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Figure 6.10: Projection of Eigen values of the Cα backbone, during 130 ns simulation, for Apo 
and NITD008-bound conformations of NS3 Helicase along the first two principal components. 
The X- and Y- axis, PC1 and PC2, respectively, represent a covariance matrix after elimination of 
eigenvectors (rotational movements). Each point between the single-directional motions 
represents a unique conformation during the simulation, whereby, similar structural 
conformations overlap in the graph. 
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Conclusion 

The detailed MD analyses provided in this report demonstrate the structural alterations in ZIKV 

NS3 Helicase loop flexibility subsequent to binding of potent inhibitor, NITD008 37. Molecular 

simulations revealed profound motional shifts of the ZIKV P-Loop at the ATPase active site. This 

flexibility was revealed in the RMSF analysis and verified by graphical investigation of the loop 

at different time intervals during the simulation. Investigation into the dynamic cross-correlation 

of the unbound and bound systems as well as a plot of conformational poses along the first two 

principal components resulted in strongly significant structural flexibility of the NITD008-NS3 

Helicase system compared to the rigid unbound protein. The P-loop has demonstrates similar 

motional shifts in other flaviviruses as well as in ZIKV, when natural substrate, ATP binds at the 

active site. The competitive inhibitor, NITD008, has been proven to effectively constrain ZIKV 

replication both in vitro and in vivo. Complex stability measured through the 130 ns simulation 

showed consistency of NITD008 at the ATPase active site and binding free energy calculations 

and residue-ligand networks revealed strong stabilizing hydrophobic and hydrogen bond 

interactions pocketing NITD008 in the active site. Further conformational changes were 

illustrated by the “325-338” loop shift behind the active site and the “339-348” region being 

modified from a fluctuating 310 Helix to a more stable α-Helix.  

Crystallographic studies have identified the P-loop, specifically Lys200, to be critical in 

stabilizing the triphosphate moiety of an NTP, thus allowing flexibility upon ligand binding and 

activation 12–14. To augment these key findings, Lys200 showed strong hydrogen bonds with the 

NTP-analogue, NITD008. Other active-hotspot residues included P-loop residues: Gly197-

Arg202, Ala198, Glu286, Gly415, Asn417 and Arg456. The insights demonstrating the above 

binding landscape of the ZIKV NS3 Helicase will aid researchers in the identification of targeted-

small molecule inhibitors through structure based drug design and to utilize pharmacophore 

models in screening for effective drugs with minimal toxicity.   
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Future experimental analysis is needed to fully understand these loop shifts toward inhibition of 

the enzyme as well as investigations into possible mutational resistance as seen in other flavivirus 

Helicase NTPase sites. 
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Abstract 

Aim: This study aims to provide insight into the binding features of the ATPase and ssRNA sites 

of the NS3 helicase. Methods: Clinically approved flavivirus inhibitors were docked to the 

corresponding active sites of the protein and the three best compounds were validated with 

molecular dynamic simulations. Result: Binding of Ivermectin to ssRNA site and Lapachol and 

HMC-HO1α to the ATPase site allowed for conformational rigidity of the Zika NS3 helicase, 

thus stabilizing residue fluctuations and allowing for protein stability. Favorable free binding 

energies were also noted between compounds and the helicase, thus supporting the intermolecular 

forces at the helicase active site. Conclusion: The pharmacophoric characteristics found in 

Lapachol, HMC-HO1α and Ivermectin may be utilized in the design of a potent hybrid drug that 

is able to show efficient inhibition of a multitude of diseases including the detrimental co-

infection of ZIKV, Dengue and Chikungunya. 
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1. Introduction 

Zika virus (ZIKV) is a positive-sense, single stranded RNA arbovirus belonging to the genus 

flavivirus and family flaviviridae [1]. The virus was first discovered in a forest in Uganda called 

the Zika forest near lake victoria in 1947, thus coining the virus’s name [2,3]. The virus was then 

isolated in the blood of a sentinel Rhesus monkey during research on the Yellow fever virus [4], 

while a second isolation was done in 1948 at the same site [5]. ZIKV virus has a wide 

geographical distribution including Africa (Uganda, Egypt, Gabon), Asia (India, Malaysia, 

Vietnam, Thailand, Indonesia), and Micronesia [6]. This has been demonstrated through viral 

isolations and serologic studies [7,8]. Although isolations of the virus were analyzed, researchers 

only detected the virus in humans in 1952 when neutralizing antibodies were picked up in 

infected sera. Scientists Boorman and Porterfield subsequently studied the transmission of viruses 

from mosquito to primates and based on further isolations from both mosquito and monkey 

concluded that mosquitoes acted as vectors for ZIKV [1]. 

The rapid spread of the virus across continents is primarily due to vector transmission via the 

Aedes aegypti, Aedes albopictus and Aedes africanus mosquito [2]. These Vectors are endemic to 

tropical and sub-tropical areas. However, due to evolving climates, the mosquitoes have 

expanded their habitat, thus increasing the number of mosquitoes as vectors of flaviviruses [9–

11]. However, other routes of transmission have been reported, including, sexual transmission 

[10,12], perinatal transmission, and blood transfusion [13]. The symptoms following ZIKV viral 

infection are mild headache, maculopapular rash, fever, malaise, conjunctivitis and arthralgia. 

These symptoms are shared with other related flaviviruses, including Dengue virus, Yellow fever 

virus, West Nile, St. Louis encephalitis virus and Japanese Encephalitis virus [15,16]. The most 

recent and devastating outbreak of ZIKV occurred in Brazil, at the end of 2015. The virus has, to 

date, rampaged South America by being evidenced as a leading cause of microcephaly by 

prenatal transmission [17]. Increasing scientific evidence now shows that the virus is able to pass 
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through the blood-brain-barrier and infect neural cells, thus playing a role in diseases such as 

microcephaly and Gullian-Barré Syndrome [18]. 

 

The ZIKV genome contains 10.7kb single stranded RNA, which contains a large polyprotein, 

which cleaves into 3 structural proteins (envelope, E; membrane precursor, PrM; and capsid, C) 

and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), of which, 

the NS3 helicase plays a pivotal role in viral replication and RNA synthesis. Presently, 

researchers are focusing on the structural and non-structural viral proteins for the development of 

drugs [19], due to their crucial characteristics in viral replication [20]. The NS3 helicase (Figure 

7.1) has three domains and two binding sites, being the adenosine triphosphate (ATP) and single 

stranded ribonucleic acid (ssRNA) site [21,22]. Inhibiting both the ATP and ssRNA sites will be 

crucial in the inhibition of the NS3 helicase as studies have shown that each domain may act 

independently from the other [23]. However, the close proximity of the two binding sites can 

bring about the possibility of designing a single inhibitor that can span both sites [3]. 
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Figure 7.1: Structure of NS3 ZIKV Helicase (PBD 5JMT), [21]. Domain 1 (blue: residue 175-
332) and domain 2 (red: residue 333-481) are seen facing each other and domain 3 (green: residue 
482-617) lying above the other 2 domains. The ATP binding site is located in the cleft between 
domain 1 and domain 2 and the ssRNA binding site is located at the tunnel that separates domain 
3 from the other 2 domains [22]. 

 

Due to the rapid spread of the disease on a global scale and the detrimental long-term 

complications, researchers such as Barrows et al (2016) and Xu et al (2016) have turned to 

‘repurposing’ flavivirus FDA approved drugs rather than the lengthy process of designing and 

synthesizing new drugs [4,5]. One of the most widely used antihelminitic drugs, Ivermectin, has 

been evidenced to have potent inhibitory effects on flaviviruses by acting as a competitive 

inhibitor of viral ssRNA at the RNA binding site of the NS3 helicase [6,7]. Barrows et al (2016) 

validated Ivermectin as a potent ZIKV inhibitor in an in vitro screening study, alongside 17 other 
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FDA-approved flavivirus drugs as well as daptomycin, which had no previous anti-viral activity 

[4].  

Another potential drug candidate against ZIKV is the adenosine nucleoside analog, NITD008, 

which has been reported to have competitive inhibitory properties against adenosine substrates in 

vitro and in vivo [8]. However, other reports have also shown elevated toxicity levels in 

preclinical animal testing [9].  

One of the major challenges of ZIKV is its ability to co-infect the host. Multiple cases reporting 

Chikungunya, Dengue and Zika co-infection have been identified, leading to potentially 

exacerbated neurological effects on the host and fetus [10]. By this end, identifying potential 

inhibitors against ZIKV that have already been approved as a Dengue or Chikungunya treatment 

would be beneficial as it would be less toxic than administering multiple drugs to a patient [11].  

Although numerous studies have been released elucidating ZIKV drug discovery, no FDA 

approved drugs are presently available. There is also a lack in literature regarding the structural 

and conformational features of the protein, thus designing effective novel small drug molecule 

inhibitors may be challenging.  

 

In this study, we have utilized clinically approved flavivirus NS3 small molecule inhibitors to 

analyze the binding affinity and stability of the ZIKV NS3 domains via Molecular Dynamics 

(MD) simulations, thus mapping out binding hotspots and landscaping interactions of the 

complexes. 

In addition to this, we will employ Accelerated Molecular Dynamics (aMD) in order to run the 

simulation for a longer time frame to ensure sufficient conformational sampling and accurate 

physical force field. Accelerated MD is an enhanced sampling technique that operates by 
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modifying potential energy, reducing the height of local barriers and accelerating transition 

between different low energy states [25][26]. This will enable the sampling of distinct 

bimolecular conformations and rare barrier-crossing events that cannot be easily accessed in a 

conventional MD simulation, thereby improving the efficiency of convectional MD [27]. 
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2. Computational methodology 

2.1 Protein structure preparation 

The crystal structure of the Escherichia coli strain of Zika virus NS3 helicase was retrieved from 

protein data bank (PDB: 5JMT). It was then prepared for molecular docking by stripping it off of 

water molecules using UCSF CHIMERA [28] and adding the necessary hydrogen atoms using 

Molegro Molecular Viewer (MMV) [29]. 

2.2 Molecular docking 

Molecular docking was performed on 10 ligands: 6 Naphthoquinones (Lapachol, Atovaquone, 

Parvaquone, Buparvaquone, α-Lapachone, β-Lapachone)[30], 3 purine nucleoside analogues (1-

(2’-deoxy-α-D-ribofuranosyl)imidazo[4,5-d]pyridazine-4,7(5H,6H)dione)(HMC-HO1α), 1-(2’-O-

methyl- α-D-ribofuranosyl)imidazo[4,5-d]pyridazine- 4,7(5H,6H)-dione(HMC-HO4) and 1-(β-D-

ribofuranosyl)imidazo [4,5-d]pyridazine-4,7(5H,6H)-dione(HMC-HO5)) [31,32] and Ivermectin 

[33]. Each of the compounds were then downloaded from PubChem [34], converted to mol2 

format and assessed using MMV to ensure that they display the correct bond angle and 

hybridization state. The 2D structures of the ligands are given in the supplementary material 

(Figure S1). 

Docking was carried out with the Autodock Vina software [35]. Ivermectin was docked at the 

ssRNA binding site, while the rest were docked at the ATPase binding site. The grid box 

parameters for the 2 sites are given in Figure S2. Of the 10 ligands docked into the active site of 

NS3 protein structure, the best 3 complexes were chosen and subsequently subjected to 

accelerated-MD.  
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2.3 Molecular dynamic simulations 

Molecular Dynamic (MD) simulations were performed on the 3 complexes using the graphics 

processor unit (GPU) version of the PMEMD engine provided with the AMBER 14 package 

[36,37].  The Antechamber module was used to generate atomic partial charges for the ligands 

using GAFF force field [38]. The protein was described using the FF14SB of the Amber force 

field [39]. The LEAP module in AMBER 14 was used to generate topologies for the system by 

adding protons and counter ions to neutralize the system [36]. Subsequently, the complexes were 

then solvated in a TIP3P [40] octahedron water box with a distance of 8 Å away from the water 

box edge. The Periodic boundary conditions were employed and the particle-mesh Ewald method 

(PME) in AMBER 14 was used to treat the long-range electrostatic interactions with a non-

bonding cut-off distance of 10 Å. 

Minimization of the systems were performed with a restraint potential of 500 kcal/mol Å2 to treat 

the solute for 1000 steepest descent steps using the SANDER module of the AMBER 14 

program, followed by 1000 steps of conjugate gradient minimization. The systems were then 

minimized over 1000 steps with unrestrained conjugate gradient. Gradually, the systems were 

heated from 0 to 300 K for 50 ps, such that the system maintained a fixed number of atoms and a 

fixed volume, that is, a canonical (NVT) ensemble. 

 The entire system was then equilibrated at 300 K with a 2 fs time step in the NPT ensemble for 

500 ps, and Berendsen temperature coupling [39] was used to maintain a constant pressure at 1 

bar. The SHAKE algorithm [40] was employed on all atoms so as to constrain the bonds of all 

hydrogen atoms. With no restraints imposed, an initial production run was performed for 10 ns in 

an isothermal isobaric (NPT) ensemble using a Berendsen barostat with a target pressure of 1 bar 

and a pressure-coupling constant of 2 ps. The systems were subsequently subjected to 10 ns of 

accelerated MD using a set of parameters calculated from the potential energy of the converged 
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system (Table 1). Coordinates were saved every 1 ps and the trajectories were analyzed every 1 

ps using the PTRAJ module of AMBER 14. Each system was consequently subjected to post 

molecular dynamic analysis including root mean square fluctuation (RMSF), root mean square 

deviation (RMSD) and radius of gyration (RoG). Included in analysis was the ligand-residue 

profile [25]. Visualization of trajectories was conducted in Chimera [28], while the results were 

analyzed and plots were generated with aid of Origin software [41].  

 

Table 7.1: Calculated parameters for running accelerated molecular dynamics. 

 
ethreshP 

(kcal/mol) 

ethreshD 

(kcal/mol) 

alphaP 

(kcal/mol) 

alphaD 

(kcal/mol) 

Lapachol System -144728 9424.9 1404.4 355.2 

Ivermectin 

System 
-144600 9465.1 1425.2 355.2 

HMC-

HO1αSystem 
-144698 9455.3 1404.4 355.2 

 

2.4 Thermodynamic calculations 

Over the years, molecular mechanics/generalized-born surface area (MM/GBSA) method of 

binding free energy calculations have proved to be a practicable means of understanding the 

ligand-residue landscape binding in various biological macromolecules [42–45]. Therefore, 

MM/GBSA approach was employed to calculate the binding free energies of Ivermectin, 

Lapachol andHMC-HO1α bound to NS3 helicase protein. To achieve this, 1000 snapshots were 
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extracted from each of the 20 ns trajectories. The following equation describes the calculations of 

binding free energy. 

The term Egas denotes the gas-phase energy that consists of the internal energy Eint, Coulomb 

energy Eele, and the van der Waals energies Evdw. Egas was directly estimated from the FF14SB 

force field terms. The solvation free energy, Gsol, is estimated from the energy contribution from 

the polar states, GGB and non-polar states, GSA. The non-polar solvation energy, GSA, is 

determined from the SASA using a water probe radius of 1.4 Å, whereas the polar solvation, 

GGB, contribution is estimated by solving the GB equation. S and T denote the total entropy of 

the solute and temperature, respectively. 

2.5. Per-residue energy decomposition analysis 

Per-residue free energy decomposition was carried out in order to obtain the contribution of each 

residue to the total binding free energy profile between the inhibitors Ivermectin, Lapachol and 

HMC-HO1αwith the NS3 helicase protein. This was achieved using the MM/GBSA method in 

AMBER 14[25]. 
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3. Results and Discussion 

3.1 Docking result and validation 

Molecular docking is one of the routinely used methods in molecular modeling and drug design. 

It is used to predict the conformation of small molecule (ligand) within the appropriate binding 

site, making it an important tool in drug discovery [46,47]. Furthermore, molecular docking ranks 

docked compounds based on the binding affinity of the ligand to the receptor (Figure S3). 

In this study, 10 compounds were chosen to dock into the NS3 helicase based on their inhibitory 

characteristics at flavivirus ATPase/ ssRNA sites [30,31,33]. Of the 10 compounds, 3 were 

chosen for subsequent conformational and binding mode analysis. Lapachol and HMC-HO1α 

were chosen from the naphthoquinones and purine nucleoside analogues respectively because 

they portrayed the most optimal docked conformation from the molecular docking studies that 

were carried out. Ivermectin was docked into the ssRNA site due to its high potency as a 

flavivirus inhibitor [33,48]. 

Validation of molecular docking was done by superimposing each of the docked complexes with 

the PDB structures of their natural substrates for ssRNA and ATPase site (PDB code: 5GJB and 

5GJC). The results of the superimposition are shown in Table 2. (5JMT- green, 5GJB and 5GJC - 

magenta, ATP and RNA- red, Lapachol, HMC-HO1α and Ivermectin –blue). 
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Table 7.2: 2D structure, docked complexes and validation of the docked complexes.

 

3.2 Molecular dynamics simulation and post molecular dynamics analysis  

A frequently overlooked side of molecular docking is the flexibility of the binding target. The 

ligand and receptor usually undergo conformational changes before binding and sometimes the 

ligand fits in with little mobility. In order to ensure the stability of the complex, the 3 complexes 

were subjected to aMD [47,49,50]. 

 

3.2.1 Systems stability 

The stability of the systems was investigated by assessing the Root Mean Square Deviation 

(RMSD) with regard to the Cα-backbone atoms of the 3D structure during the simulation (Figure 
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7.2). Equilibrium was attained after 2000 ps and the overall average RMSD value for Lapachol, 

HMC-HO1α and Ivermectin measured 0.98Å, 0.97Å and 0.95Å respectively. The results at the 

ATPase site exhibited similar stability between the HMC-HO1α-ATPase system and the 

Lapachol-ATPase system, whereas, the Ivermectin-ssRNA complex demonstrated the lowest 

average RMSD from all three systems. This is indicative of a more stable complex, justifying 

Ivermectin as a potent flavivirus inhibitor. The RMSD plot further postulates that the binding of 

the three ligands at two different active sites of the protein still allowed for conformational 

rigidity compared to the unstable free protein, which yielded an elevated average of 1.76Å. It can 

therefore be deduced that all three ligands allowed for structural stability of the NS3 Helicase 

protein. 

 

Figure 7.2: C-alpha RMSD backbone Plot for NS3 Helicase free and ligand bound 
conformations. The ligands Lapachol, HMC-HO1α with Ivermectin are seen to stabilize the 
protein as compared to the fluctuating free protein. 
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3.2.2 Root Mean Square Fluctuations (RMSF) 

Root Mean Square of Fluctuations (RMSF) were analyzed to show the mobility of each of the 

residues found in the protein, thereby giving an insight into the flexibility of the protein [51]. 

Figure 7.3 depicts the RMSF of the residues for each system for the duration of the simulation. 

High fluctuations were observed at certain residues for each of the systems, with the free protein 

showing the greatest fluctuations during the simulation (1.61Å). All three ligand-bound systems 

showed C-α residue fluctuations at residues 72-79 and 409-411. The HMC-HO1α-ATPase system 

specifically showed flexibility at the “172-176” region, whereas the Ivermectin-ssRNA illustrated 

the lowest fluctuations of all four systems. This correlates with the RMSD stability of the 

systems, demonstrating the free protein to have highly unstable residues with large fluctuations 

compared to the ligand-bound systems. The RMSF of Ivermectin also correlated with the RMSD 

plot, illustrating a relatively stable system after ligand binding.   
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Figure 7.3: (A) RMSF Plot for Lapachol, HMC-HO1α and Ivermectin systems. Lapachol 
(0.88Å) showed a higher stability at the ATPase site compared to HMC-HO1α (0.90Å) and 
Ivermectin (0.85Å) showed the most favorable stability of all the systems, (B) NS3 Helicase 
residue fluctuations at regions: 1- the “72-79” loop (Navy), 2- the “172-176” helix (Gold) and 3- 
the “409-411” loop (Magenta). 
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3.3.3 Radius of Gyration 

To further validate the stability of the systems, the overall protein shape and folding was 

measured by analyzing the radius of gyration (RoG) of the protein. This gave an insight into the 

distribution of C-α atoms within the protein [51,52]. The plots for all the systems are shown in 

Figure 7.4. From the graph, a difference can be seen in the compactness of the three systems from 

the beginning of the simulation. Ivermectin shows a lower average RoG (22.23Å) when 

compared to HMC-HO1α (22.30Å) and Lapachol (22.33Å), indicating that Ivermectin exhibits a 

very good structural stability at the ssRNA site when it binds to the ZIKV NS3 helicase. Also at 

the ATPase site, the result indicates that HMC-HO1α is more compact and therefore exhibit more 

stability than Lapachol. The RoG of the Apo protein correlates with the RMSD and RMSF 

results, showing a wide distribution of C-α atoms for the duration of the simulation, thus 

indicating unstable fluctuations of the protein’s residues in the absence of a ligand.  
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Figure 7.4: Radius of gyration Plot for Lapachol, HMC-HO1α and Ivermectin systems when 
compared to the free protein. 

 

3.3.4 Free Energy Calculations and Residue-Ligand Interaction Network 

Studies have shown that free binding energies calculations are important parameters for the 

validation of ligand-protein binding [43]. Based on the Systems’ stability, we can deduce that 

during the simulation, binding of the three best-docked molecules, being, Lapachol, HMC-HO1α 

and Ivermectin, stabilized the fluctuating free Protein. This may be due to non-covalent 

interactions taking place between the ligands and the active site’s residues. To estimate the 

binding affinities of each of the ligands to the protein, the binding free energies were calculated 
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using the Molecular Mechanics/Generalized-Born Surface Area method (MM/GBSA)[54]. Table 

3 summarizes the binding free energy of HMC-HO1α-ATPase and Lapachol-ATPase systems to 

be -42.81 kcal/mol and -39.32kcal/mol respectively. The non-polar solvation (-103.51 kcal/mol) 

contributed greatly towards the total binding free energy of HMC-HO1α-NS3 helicase system 

while other favorable binding contributions also came from intermolecular electrostatic 

interactions (-62.53 kcal/mol) and van der Waals interactions (-40.98kcal/mol). Lapachol-NS3 

helicase system had its greatest binding contribution from non-polar solvation energy (-

65.96kcal/mol), followed by van der Waals interactions (-38.23kcal/mol) and then intermolecular 

electrostatic interactions (-27.73 kcal/mol). A polar solvation of 60.69 kcal/mol and 26.64 

kcal/mol for HMC-HO1α-NS3 helicase system and Lapachol-NS3 helicase system respectively 

were also observed. This indicates that HMC-HO1α has a preferable binding energy than 

Lapachol at the ATPase site. Ivermectin had a relatively higher binding energy (-84.56 kcal/mol) 

at the ssRNA site with the greater energy contribution from the non-polar solvation (-136.32 

kcal/mol) and van der Waals interactions (-104.36 kcal/mol). 

The active site residues of proteins are important for the protein’s functionality; therefore it is 

important to understand the interactions of these potential inhibitors with the amino acids residues 

in the protein [52]. In order to gain more insight into the contribution of each residue towards the 

binding of the ligand, per residue interaction energy decomposition analysis was carried out on 

the three systems.  
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Table 7.3: Binding free energy analysis (kcal/mol) for inhibitor- NS3 helicase complexes.  

 

 

Lapachol-ATPase System 

At the ATPase binding site, Lapachol illustrated a favorable energy contribution with residues 

Glu112 (-3.05kcal/mol), sharing the highest total energy, while other contributions came from 

residues Leu20 (-0.24 kcal/mol), Gly23 (-0.29 kcal/mol), Ala24 (-0.25 kcal/mol), Glu57 (-0.30 

kcal/mol), Ala43 (-0.32 kcal/mol), Asn243 (-0.89 kcal/mol) and Arg285 (-0.8 kcal/mol). 

However, Lys26 (0.45 kcal/mol) and Arg288 (0.8 kcal/mol) showed unfavorable energy 

contributions (Figure 7.5). 

 

Energy Components (kcal/mol) 

Compound ΔEvdW ΔEelec ΔGgas ΔGsolv ΔGbind 

Ivermectin -104.36±3.95 -32.26±7.87 -136.32±11.07 52.07± 5.34 -84.56±7.77 

HMC-HO1α -40.98±3.40 -62.53±10.17 -103.51±8.78 60.69± 7.39 -42.81±4.16 

Lapachol -38.23±2.99 -27.73±6.87 -65.96±5.71 26.64± 4.12 -39.32±3.52 
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Figure 7.5: Free energy decomposition and ligand-residue interaction network at the ATPase site 
of the Lapachol- NS3 Helicase system. 

HMC-HO1α-ATPase System 

As evident from Figure 7.5 and 7.6, HMC-HO1α and Lapachol interact with the ATPase active 

sites residues by forming a hydrogen bond with residue Arg285 and hydrophobic interactions 

with residues His21, Gly23, Glu112 and Ala143. In addition, HMC-HO1α exhibited hydrophobic 

interactions with residues Pro22, Lys26, Gly25, Arg28, and Asn243. Subsequent to HMC-HO1α 

binding at the ATPase site, significant energy contributions came from residues Leu20 (-

1.412kcal/mol), His21 (-1.24 kcal/mol), Pro22 (-1.75 kcal/mol), Gly25 (-1.55 kcal/mol), Lys26 (-

1.40 kcal/mol), and Thr27 (-2.87 kcal/mol), with the highest contribution coming from Glu112 (-
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4.08 kcal/mol), while the unfavorable energy contributions came from residue Arg285 (0.26 

kcal/mol). 

 

 

 

 

Figure 7.6: HMC-HO1α docked into the ATPase site of Zika NS3 helicase, illustrating ligand-
residue interactions and active-site residue energy contributions. 

 

The ligand-residue interaction network elucidates on the binding interactions between Ivermectin 

and the ssRNA active site residues, forming a hydrogen bond with Arg214 and hydrophobic 
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interactions with residues Ser94, Leu319, Asp117, Val369, Pro368, Thr235, Met240, Glu218, 

Lys215, Ala90 and Met362. The plot also reveals that residue Arg214 (-5.84 kcal/mol) had the 

highest total energy contribution to the binding of Ivermectin to the NS3 helicase protein at the 

ssRNA site. Other favorable energy contributions came from residues Ala90 (-1.48kcal/mol), 

Ser119 (-2.464 kcal/mol), Thr235 (-1.52 kcal/mol), Asp236 (-1.65 kcal/mol), Leu319 (-1.11 

kcal/mol), Met 362 (-1.87 kcal/mol), Pro368 (-1.14 kcal/mol) and Val369 (-1.32 kcal/mol) while 

the unfavorable energy contribution came from Asp117 (3.0 kcal/mol). 

 

Figure 7.7: Free energy decomposition and ligand-residue interaction network at the ssRNA site 
of the Ivermectin- NS3 Helicase system. 

4. Conclusions 

In this study, we report the binding analysis of three potential inhibitors of Zika NS3 helicase at 

the ATPase site (Lapachol and HMC-HO1α) and ssRNA site (Ivermectin).  Results showed that 
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the binding of Ivermectin to ssRNA site and Lapachol and HMC-HO1α to the ATPase site allows 

for conformational rigidity of the Zika NS3 helicase, thus stabilizing residue fluctuations. The 

interactions between the active site residues and ligands allowed for key structural flexibility at 

two loop regions of the NS3 helicase, thus allowing for protein stability and a possible structural 

mechanism of action for competitive inhibition of natural substrates.  

This study aims to contribute toward the repurposing of potent flavivirus inhibitors against the 

devastating ZIKV epidemic. This strategy overcomes the concept of “shooting the dark” with 

experimental screening as the compounds utilized in the study have already been synthesized, 

thus reducing the drug discovery time-line. These potential inhibitors have been pre-clinically 

tested against other arboviruses and have proven to be effective [6,12–14]. Drugs such as 

Ivermectin have multiple functions, including anti-parasitic and more recently anti-viral 

properties [7,11,15]. Lapachol and HMC-HO1α have been shown to have potent effects as 

flavivirus inhibitors including Dengue and Yellow fever virus[13].  

 

The findings of this study provide fundamental insights toward the structural dynamics of the two 

active site regions on the NS3 Helicase and the ligand-receptor interaction network. The 

pharmacophoric characteristics found in Lapachol, HMC-HO1α and Ivermectin may be utilized 

in the design of a potent hybrid drug that is able to show efficient inhibition of a multitude of 

diseases including the detrimental co-infection of ZIKV, Dengue and Chikungunya. 

 

 

5. Future Perspective  

To our knowledge, this is the first account of detailed computational investigations aimed to 
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provide an insight into the binding features of Lapachol, HMC-HO1α and Ivermectin to ZIKV 

NS3 helicase. Based on the structural dynamics of the two active site regions on the NS3 Helicase 

and the ligand-receptor interaction network, it may be noted that the chemical characteristics 

found in these flavivirus inhibitors play a fundamental role in releasing a potent multi-purpose 

inhibitor against arboviruses. This will allow for pregnant females in endemic areas to take the 

drug as a precautionary measure against arboviruses such as Dengue and ZIKV. By having a 

lower toxicity and higher efficiency, a multi-purpose drug will be safe to consume by pregnant 

females and may diminish the risk of drug resistance due to the multiple diseases it is effective 

against. Distribution on a global scale and at lower cost compared to a vaccine that may need 

optimal storage conditions.  
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CHAPTER 8 

8.1 Conclusion 

Since the outbreak of the epidemic in 2015, ZIKV has been evidenced to manifest in a calamitous 

manner. One of the most devastating effects of the disease is the onset of ZIKV-related 

microcephaly in neonates primarily through prenatal transmission from the infected mother. 

Finding a preventative cure or treatment regimen against this virus has thus become paramount. 

During 2016, a flood of previously unknown information regarding the disease was released, with 

researchers worldwide working tireless in the design of potential vaccines or small drug 

molecules as potential ZIKV inhibitors.  

 

This study sought to augment the structural and molecular characteristics of this previously 

neglected tropical disease by identifying the principal target proteins of ZIKV, being the NS3 

Helicase, NS5 MTase and NS5 RdRp, creating CADD route map to identify potential ZIKV 

inhibitors and finally, implementation of the route map to investigate potential inhibitors for all 

three viral targets.  

 

Upon commencement of the study, no crystal structures of ZIKV target proteins were available; 

therefore a homology modeling was implemented to generate a 3D model of the NS5 protein, 

proving to be an invaluable computational tool. Thereafter, the NS5 MTase and RdRp were 

subjected to “per-residue energy decomposition pharmacophore” virtual screening to identify 

favorable molecules that are more effective and less toxic than the experimentally tested 

inhibitors.  The most favorable inhibitors identified in this study for NS5 MTase and RdRp are 

BG323 and ZINC39563464, respectively.   

 

The NS3 Helicase was also investigated in this study as it plays a major role in viral replication. 

In this domain of the study, the structural characteristics of the ATPase active site were explored 

when bound to a competitive inhibitor. A clear ligand-dependent flexibility was noted in the 

active site/P-loop and a stabilizing α-Helix formed after ligand binding. These insights into the 

binding landscape will aid other researchers in finding a potent, yet effective inhibitor against 

ZIKV. To round up this study, potent Flavivrus inhibitors were selected based on ZIKV’s 

structural similarity to other Flaviviruses, including Dengue and West Nile (Jain et al. 2016; Tian 
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et al. 2016). These inhibitors were then assessed, based on their free binding energies at their 

respective ATPase or ssRNA active; HMC-HO1α and Ivermectin were reported as the most 

favorable compounds.   

 

Overall, this study has provided valuable insights into the design and development of ZIKV 

inhibitors through molecular modeling and CADD. 

 

8.2 Future Perspectives 

The potential inhibitors of the study have presented promising protein-ligand interactions and 

binding energies and therefore maybe utilized as the lead compounds. However, prospective 

biological testing of these compounds is still required to verify these in silico studies.  

 

The ramifications of ZIKV infection have led to a multitude of potential small molecule inhibitors 

and at least two vaccines that are currently in clinical trials. However, the virus has other 

challenging defense mechanisms that may render most drugs ineffective. Zika is able to penetrate 

the blood-brain-barrier (BBB) as evidenced by its downstream pathological effects on the nervous 

system (Huang et al. 2016; White et al. 2016; Anaya et al. 2016; Barrows et al. 2016). The BBB 

however, only allows entry to hydrophilic drugs due to their tight junctions that form as a point of 

entry. If drugs are not able to pass the BBB, the ability of the drug to inhibit the target protein in 

neuronal cells becomes unsuccessful. In order to overcome this obstruction, two approaches may 

be used: 

 

1. The design (in silico) and synthesis of potential compounds that adhere to the 

requirements for permittivity.  

2. The use of a drug delivery system to allow for the drug to pass through the BBB. This 

system may be in the form of a nanoparticle, polymer or aptmer.  

 

With regard to this investigative study, a purely computational perspective was used. However, to 

further the ZIKV drug design research toward targeted therapy, an experiment will need to be 

designed to analyze the efficacy of the two approaches mentioned above.  
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Zika virus drug targets: a missing link in drug design
and discovery – a route map to fill the gap†

Pritika Ramharack and Mahmoud E. S. Soliman*

Zika virus is an emerging virus that has been defined by the World Health Organization as a serious global

biological-threat. Zika virus is an arbovirus from the flavivirus genus that is linked to microcephaly after

prenatal transmission from the infected mother and most recently Guillain–Barrè Syndrome. The need

for innovative research methods is urgent due to the ambiguity surrounding Zika virus. The lack of

experimental data regarding potential drug targets, strategies for design and drug resistance has

prompted us to provide a comprehensive framework with structured theoretical and technical guidelines

on potential drug targets, modeling and design of inhibitors against the virus, thus assisting and

encouraging scientists from different research domains to fill the gap in this research area. We have also

presented a 3D homology model of the ideal Zika viral target, the non-structural protein 5, identified the

active binding sites of each domain of the protein and found potential compounds that may act as

inhibitors. This report will be immensely beneficial toward the design of Zika virus drug inhibitors.

1. Introduction
Zika virus (ZIKV) is a re-emerging arthropod-borne virus that is
predominantly found in the tropics. However, rapidly evolving
climate conditions coupled with increasing distribution of
Aedesmosquito vectors and emerging modes of transmission of
the virus have increased the potential to cause outbreaks in
previously unaffected areas.1 The virus is a member of the
Spondweni sercocomplex of the genus avivirus, family

aviviradae. Other arboviruses related to ZIKV include Dengue
virus, Japanese encephalitis viruses and West Nile virus.2,3

The rst cases of ZIKV infection were reported in Nigera in
the 1950's. Since then, ZIKV has shown erratic cases in coun-
tries such as Uganda, Tanzania, Egypt, Gabon, and in parts of
Asia including India and Indonesia, with the most devastating
pandemic occurring in Brazil in 2015.4,5 Since the outbreak in
Brazil, infection has spread rapidly throughout South America
and Mexico, with Colombia being one of the most-affected
countries with over 20 000 suspected cases.6 As of June 2016,
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thirteen countries have reported Central Nervous System (CNS)
malformations such as microcephaly and Guillain–Barrè
syndrome (GBS) which may potentially be linked to ZIKV;
during the recent circulation of the virus, eight countries had
reported cases of GBS, where laboratory testing conrmed ZIKV
infection in a number of those cases.7 Globally, the prevalence
of ZIKV infection may be greatly underestimated (Fig. 1) due to
the recently veried prenatal and sexual transmission in
humans,8 as well as the abstruseness surrounding the patho-
genicity and thus, in turn the search of inhibitors of this
“neglected disease”.

Most cases of ZIKV have reported febrile u-like conditions
that may be mistaken for other viral infections such as yellow
fever. Other symptoms include swollen lymph nodes, mac-
ulopapular skin rashes and joint pains.5,9,10 Current research
has raised concerns that the virus could cause dramatic
increases in microcephaly in newborns aer prenatal trans-
mission.6,11–13 Complications associated with prenatal infection
encompass fetal growth restriction, neurological and ocular
abnormalities, intracranial calcication and in some cases
perinatal death or stillbirth.10,14

The virus is transmitted via an Aedes mosquito vector,
congenital and perinatal transmission, as well as sexual inter-
course.8,11,14–17 Studies have also reported transmission via
blood transfusion and laboratory exposure.8,18 Commercial
assays have been utilized in the diagnosis of ZIKV infection,
including Real Time Polymerase Chain Reaction (RT-PCR) kits
and IgM-based enzyme-linked immunosorbent assay
(ELISA).10,19 Sample DNA and RNA for these kits may be
extracted from blood serum, semen, amniotic uid, plasma,
saliva and urine. In Dengue infection, NS1 protein may be
detected in a host's blood serum at the onset of clinical

symptoms, this may prove to be another method by which ZIKV
infection may be identied.16,20–22

Although recent publications have described the global
spread, pathogenicity and bioinformatics of ZIKV and its
comparison between other aviviruses including Dengue, West
Nile, Yellow fever and Japanese Encephalitis virus,1,3,8,10,13,19,20,23–30

fundamental research into ZIKV small molecule drug design will
be key in developing inhibitors of target proteins of the virus.
Ekins et al. (2016) described possible drug discovery and poten-
tial homology models of multiple proteins of ZIKV, however,
despite the execution of research methods, there are currently no
known FDA approved drugs of ZIKV.31 This prompted us to
conduct a concise route map depicting the steps taken toward
identifying potential inhibitors of drug targets with no 3D crystal
structure and by following the guide to create a homology model
of a non-structural protein of the virus, thus assisting scientists
fromdifferent research domains. These in silico guidelines will be
vastly benecial in aiding and accelerating ZIKV experimental
drug discovery.

2. Overview of ZIKV protein assembly
ZIKV is an enveloped virus comprising of an 11 kilobase, single-
stranded positive sense RNA genome consisting of 10, 794
nucleotides encoding 3, 419 amino acids.25 The open reading
frame (ORF) of the 50 and 30 untranslated region (UTR) encodes
a polyprotein that is cleaved into three structural proteins being
the capsid, precursor membrane, and envelope. Seven non-
structural (NS) proteins are also found in this assembly,
namely, NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B, and NS5
(largest viral protein).24 These viral assembly proteins may act as
crucial molecules in drug discovery.

Fig. 1 Global reports of ZIKV transmission, infection and sporadic viral antibody reports prior to 2015, as of April 2016 (adapted from Centers for
Disease Control and Prevention).
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3. Potential biological drug targets
against ZIKV
3.1 Viral drug targets

Hughes et al. (2010) stated that the potential of a protein as
a therapeutic target and its effectiveness in drug design is
essential for determining the biological utility of the protein.32

ZIKV contains viral proteins that may act as targets in drug
design (Table 1).

The structural proteins of ZIKV, being the capsid, precursor
membrane and envelope form the viral particle.33 The envelope
(E) protein is the key surface protein as it is able to mediate
various aspects, including binding and membrane fusion of the
viral replication cycle, making it a signicant target in drug
design.5

The nonstructural proteins participate in the replication of
the RNA genome, virion assembly and invasion of the innate
immune system. Of the nonstructural proteins, NS5, NS3 and
NS1 have shown enzyme activity in other viruses of the avivirus
genus, creating ideal targets in inhibitor development.33

NS5 is a bifunctional enzyme with a methyltransferase
domain at its N-terminal end and a RNA-dependent RNA poly-
merase (RdRp) at its C-terminal end. Both N- and C-terminal
domains contain an S-adenosyl-Methonine-dependent MTase
core structure that folds into an a/b/a sheet cradled between the
N- and C-terminal subdomains.34 The protein engages in virus–
host interactions and actively interacts with the host environ-
ment.1 To our knowledge, there is currently no available 3D
crystal structure of the ZIKV NS5 protein.

The NS3 protein is a multifunctional, viral replication
protein. The protease comprises of the N-terminal third of NS3
and nucleotide triphosphatase, the RNA triphosphatase, and
nally the helicase components. NS3 can be considered a serine
protease and contains a classical catalytic triad (His-51, Asp-75,
Ser-135).1,35 Agnihotri et al. (2012) reported an in silico study in
which a homology model of the avivirus NS3 protein was
created using 22 species of the avivirus genus. This study is

a critical tool in the understanding the avivirus NS3 protein
and thus the impact of the protein as a ZIKV target.36 The 3D-
crystal structure of the NS3 helicase protein has recently been
reported in Protein and Cell where a conserved triphosphate
pocket and a positively-charged tunnel were identied to be
critical for the hydrolysis of nucleoside triphosphates and the
accommodation of RNA respectively.37

The 3D crystal structure of the noteworthy NS1 glycoprotein
viral target was released earlier this year and was classied as
a major antigenic marker of ZIKV infection.38 The NS1 is
synthesized as a monomer and dimerizes aer post-translation
modication in the replication cycle.39 The mature NS1 protein
has signicant immune evasive functions on the surface of
cells, in the extracellular space and in cells by directly regulating
the translation of viral RNA. Recent studies on Dengue virus
have also evidenced NS1 to be associated with vascular leak and
shock due to the disruption of TLR3 signaling pathways.40 Song
et al. (2016) reported NS1 to display a loop-surface interface with
divergent electrostatic potential that may result in unique
interactions with host machinery compared to that of other
aviviruses.38 This makes ZIKV NS1 an ideal target for chemo-
informatics studies.

Inhibitors of these viral proteins may be designed using
computer-aided drug design techniques to select structural
molecules that may inhibit the replication of viruses such as
ZIKV in a host.

3.2 ZIKV host targets

During the ZIKV replication cycle, host cell machinery is
imperative in the translation of viral RNA and maturation of the
replicated virus, thus targeting host proteins and pathways may
be key to effective inhibition of viral replication.

One of the most researched host proteins in avivirus
infection is the endoplasmic reticulum glucosidase. These
proteins allow for the cleavage of the terminal glucose from the
glycan found at the glycosylation-site of the prM and envelope
protein, thus leading to its maturation of the envelope protein.41

Table 1 Potential ZIKV target proteinsa

Protein NCBI reference sequence PDB code Residue count

Structural proteins
Capsid YP_009227206.1 5IZ7/5IRE 122aa
Precursor membrane YP_009227197.1 5IZ7/5IRE 168aa
Envelope YP_009227198.1 5JHM/5JHL 500aa

Nonstructural proteins
NS1 YP_009227199.1 5IY3 352aa
NS2A YP_009227200.1 Not available 226aa
NS2B YP_009227201.1 Not available 130aa
NS3 YP_009227202.1 5JMT 617aa
NS4A YP_009227203.1 Not available 127aa
2K YP_009227209.1 Not available 23aa
NS4B YP_009227204.1 Not available 251aa
NS5 YP_009227205.1 Not available 903aa

a aa-amino acid.
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Studies have shown that many aviviruses, including ZIKV,
have a N-glycosylation at Asn154.31,42 Castanospermine (CST)
and deoxynojirimycin (DNJ) have been established as potent
inhibitors of alpha-glucosidases, thus preventing the early
stages of glycosylation.43

Hamel et al. (2015) described the importance of dendritic
cell-specic intracellular adhesion molecule 3-grabbing non-
integrin (DC-SIGN), TIM and TAM receptors in the attachment
and entry of ZIKV into the host cell before replication can
occur.44 Small interfering RNA (siRNA) was also shown to
completely inhibit the expression of the above proteins aer 48

hours. Other informative publications on siRNA inhibition of
avivirus host machinery include a review by Hirsch (2010), an
in silico based experimental study on Dengue virus by Noppa-
kunmongkolchai et al. (2016) and the silencing of the 30 UTR of
ZIKV genome by Shawan et al. (2015).5,45,46

A recent study published in June by Nature identied host
endoplasmic reticulum-associated signal peptidase complex
(SPCS) to be necessary for the proper cleavage of ZIKV prM and
envelope proteins. The authors also demonstrated that the loss
of SPCS signaling leads to a dramatic decrease in Dengue,
Yellow fever, West Nile, JEV and Hepatitis C viruses. This study

Fig. 3 Protocol for building a homology model in our laboratory.

Fig. 2 Route map toward the in silico design of ZIKV inhibitors using the homology modeled viral NS5 protein.
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could be a critical cornerstone in targeting host proteins and
pathways in ZIKV infection.47

4. In silico studies conducted on ZIKV
Prior to 2016, only two in silico reports have been made toward
the development of ZIKV inhibitors. Computational studies by
Shawan et al. (2014) showed the viral envelope glycoprotein to
be the most immunogenic structural protein of the virus, thus,
making it a candidate for vaccine development.5 Mahfuz et al.
(2015) also looked at small interfering RNA (siRNA) in gene
silencing of the 30 UTR of ZIKV genome.48 Following the Brazil
outbreak, an inux of research output has ooded the scientic
community. There has been numerous computational studies
regarding ZIKV target proteins; crystals structures of the NS1,
NS3, envelope and the 2 cryo-EM structures of the stable virus
have been released.37,38,42,49,50 Ekins et al. (2016) described in
silico studies in both drug discovery and the homology models
of both structural and nonstructural proteins.9,31 There have
also been reports comparing the structural and sequence
conformations of ZIKV to other aviviruses including Dengue
and West Nile viruses.51,52

5. In silico route map toward the
design and discovery of ZIKV inhibitors
Rational drug design may be classied into two groups, the rst
being the development of small molecules with the desired
effects of the target, whose structural information is known and
the second group being development of small molecules whose
cell functions and structural information may not be known.53

To date, there is no available 3D crystal structure of the ZIKV
NS5 protein. This prompted us to create a route map (Fig. 2)
describing the techniques of the second group, thereby
beneting scientists from different research domains by
informing them of fundamental computational techniques in
the design of novel small drugmolecules, allowing for increased
output of validatory experimentation.

Computer-Aided Drug Design (CADD) represents computa-
tional methods and resources used in the design and discovery
of new therapeutic solutions.54 Numerous bioinformatics tools
and resources have been developed to advance the drug
discovery process.55,56 The recent improvements made in
computational chemistry soware, CADD and molecular
dynamic simulations have led to innovative research methods
in the pharmaceutical industry.57

Details on how the homology model was created are
described under Section 5.1.

The initial step of any modeling work is having a valid 3D
structure, from X-ray crystallography, Nuclear Magnetic Reso-
nance (NMR) or computational design using homology
modeling. Homology modeling is used to predict and generate
a plausible 3D structure of ZIKV's biological target from
a template sequence based on the structure of one or more
homologous viral proteins of which crystal assemblies have
been reported (Fig. 3).58

In order to create a ZIKV target 3D homology model, a typical
procedure needs to be followed, with validation taking place at
each step. Once the 3D structure has been generated and vali-
dated using 3D proles and a Ramachandran plot,59 the pre-
dicted active binding site of the ZIKV target molecule may be
identied. If the drug target is an enzyme, such as the NS3 or
NS5 protein of the ZIKV viral assembly, designed chemical
molecules may be able to t within an active site pocket.56 The
results establish the locality of possible binding pockets of the
protein.60 Aer each pocket has been identied, we can identify
the size of a pocket (volume, surface area and depth), possible
interacting residues and surface atoms.61

Subsequent to the ZIKV protein homology model and target
site determination, several paths may be utilized in the

Fig. 5 The potential binding sites, identified by Site-hound,71 of ZIKV
NS5 protein. (A) Site 1 (methyltrasferase active binding site) (red) and
Site 2 (RdRp active binding site) (magenta), (B) active binding site
residues of the NS5 protein at Site 1 and Site 2.

Fig. 4 Homology model of ZIKV NS5 protein.
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development of inhibitors. Structure-based virtual screening will
assist in searching through combinatorial chemistry libraries for
molecules that may be potential inhibitors of the target protein
and automatically dock these molecules into the 3D target's
active pocket at a rapid rate.62 Thousands of molecules may be
able to match the active site of the target protein, thus, a scoring
function is utilized to rank ligands based on the free binding
energy calculated aer each docking pose.63,64 Molecules with the
lowest free binding energy subsequent to screening may be used
as inhibitor candidates, which may then be employed in a series
of validatory molecular dynamic simulations.

Molecular dynamic simulations calculate the trajectory of
a generated docking pose by utilizing Newtonian mechanics.65

It is an important tool of CADD as it avoids analytic intracta-
bility in complex systems.57 Molecular dynamics is not essential
in CADD but it can provide validation of docking results
between a protein and its potential inhibitors.66

By implementing in silico studies in the design of ZIKV
protein inhibitors, putative drug-like compounds may be
identied and their potency veried using in vitro and in vivo
testing.

Studies report that in vitro testing of potential inhibitors may
utilize cultured monkey cell lines such as LLC-MK2 and Vero.30

Delvichio et al. (2016) also reported choloroquine as potential
ZIKV inhibitor in Vero, hBMEC, hNSC and mouse neuro-
spheres. Dowall et al. (2016) developed the rst in vivo murine

Fig. 6 Docked conformation of 20-C-methyladenosine with ZIKV NS5 RdRp (binding affinity: !6.3 kcal mol!1).
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Table 2 Representation of top ten compounds docking to NS5 RdRpa
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Table 2 (Contd. )

a DG: binding affinity.
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model, where adult female mice were subcutaneously inocu-
lated with similar doses of ZIKV from natural infection of
a mosquito bite.67,68 This model is a critical cornerstone in
accelerated testing of new ZIKV inhibitors.

Larroca et al. (2016) have made a signicant contribution to
the protection against the ZIKV virus by creating the rst full-
length prM-envelope DNA vaccine. The vaccine is currently
undergoing clinical trials aer the success in an in vivo study
using infected mice. This vaccine may be the potential ‘holy-
grail’ in ZIKV prevention.69

5.1 A homology model for ZIKV NS5

In order for CADD of ZIKV to occur, a 3D crystal structure of
a target protein is needed. Fig. 4 shows the rst account of
a homology model for the ZIKV NS5 protein, which was created
and validated as described in our previous publications
(Fig. 4).60,70 The PDB coordinates of the homology model are
provided as.

The protein comprises of three domains, the N-terminal,
methyltrasferase domain (residues 1–262) (green), the inter-
domain region (residues 263–272) (blue) and the C-terminal,
RdRp domain (residues 273–903) (yellow).

5.2 Active site identication

Active site residues need to be identied for the docking of
potential inhibitors to the active site pocket. The active site
residues were determined using Chimera Multi-align Viewer
and validated using the Site-Hound web program.71 Fig. 5
highlights the best active sites and active site residue numbers
of the NS5 protein (Fig. 5).

This homology model will be implemented in the design of
small molecules that may act as inhibitors of the NS5 protein,
thus inhibiting the translation of viral RNA. Experimental drug
therapy on other aviviruses41,72,73 may be used as a guide
toward the identication of new specied small molecules that
inhibit ZIKV replication.

5.3 Possible small molecule inhibitors of NS5 RdRp

Of the ZIKV target proteins, NS5 RdRp is one of the most favor-
able for drug discovery due to its role in viral replication.1 A study
by Eyer et al. (2016) looked at an in vitro study of nucleoside
inhibitors against ZIKV and found one particular molecule, 2-C-
methyladenosine, to show promising inhibition of RdRp.74 The
purine and hydroxymethyl structural features of 2-C-

Table 3 Physical representation of top ten compounds displaying molecular weight, x log P, H-bond donors/acceptors and rotatable bonds

ZINC ID Molecular weight x log P Rotatable bonds H-Bond donors H-Bond acceptors

ZINC35325271 291.27 !0.70 0 2 7
ZINC14987423 277.243 0.95 0 3 7
ZINC35325268 291.27 2.67 0 2 7
ZINC00351019 287.231 !5.47 0 5 8
ZINC13633807 299.246 !0.86 0 3 9
ZINC40563785 288.263 0.83 3 4 8
ZINC40563886 290.279 !0.89 3 4 8
ZINC13121997 289.206 !0.40 2 3 9
ZINC00043707 283.247 !1.01 1 4 8

Table 4 Proposed computational software used in ZIKV drug design

Computational method Soware available Soware to be utilized in study

Homology modeling Sequence alignment-Insight, Prime, Prot,
LOOK, ICM, Sybyl, CLUSTALW Model
construction-DS Modeller, Prime, LOOK, ICM,
Sybyl, MODELLER, MOE, SWISS-MODEL,
RaptorX, LOMETS, Phyre, I-Tasser

Sequence alignment-CLUSTALW77

Model construction-MODELLER78

Active binding site determination CASTp, POOL, PASS, Pocket-Finder,
3DLigandSite, LIGSITE, metaPocket, FINDSITE,
Site-hound

metaPocket79

POOL80

Site-hound71

Molecular graphic systems Avogadro, Chemlab, Athena, Maestro, Jmol,
PyMOL, UCSF chimera, VMD, Vimol, Webmol,
Zeus

UCSF chimera12

Virtual screening databases PubChem, MMsINC, ZINC, ZincPharmer, 4SC
discovery, therapeutic target database, drug
Bank, ChemSpider, ChEMBL

ZINC81

ZincPharmer82

Docking soware PyRx, Autodock Vina, Dock Blaster, Vis3d,
Schrodinger, GOLD, Libdock, FlexX, Glide, Fred,
ICM

Autodock Vina83

Molecular dynamic simulation soware Gromacs, Amber, CHARM, Gromos, ADF,
Desmond, NWChem

Amber84
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methyladenosine were screened through ZINC database, criteria
was imposed to ensure the inclusion of the maximum number of
compounds, such that compounds had to have an x log P
between!4 and 5, a net charge 0, rotatable bonds between 0 and
8, a polar surface area of between 0 and 150, have hydrogen bond
donors/acceptors between 0 and 10, and polar desolvation
between 0 and 1 kcal mol!1 whereas compounds must have an
apolar desolvation between !100 and 40 kcal mol!1. Thereaer,
the 4113 hits were downloaded and docked together with 2-C-
methyladenosine (Fig. 6) at the RdRp active site and the nine best
docked poses comprising the highest binding affinities were re-
ported in Table 2. Table 3 shows the physical representation of
the compounds. These compounds may be a basis for further
validation and experimental verication.

Further information, including extensive procedures, can be
found in our previous publications on structure-based enzy-
matic drug design.58,75 We believe that the robust computational
tools implemented in the route map will provide a fundamental
platform in the development of inhibitors against multiple
ZIKV target molecules.

6. Proposed computational software
that can be used in ZIKV drug design
and discovery
The soware available for techniques used in drug design have
simplied the development of inhibitors allowing for specic
binding to a target molecule, thus, decreasing its biological
adverse effects.76 There are various types of soware available in
structure-based drug design, allowing for faster and more
comprehensive research into ZIKV inhibitors (Table 4).

7. Conclusion
The future of the ZIKV pandemic is uncertain and thus new,
accelerated techniques are necessary to assist the medical and
scientic community in the identication and validation of
inhibitors to this global threat. The chemoinformatics discussed
in this paper will not only in the identication and design of
potential ZIKV inhibitors but also in parallel, butmay assist in the
early analysis of potential biological mutations that may occur
due to the rapid international transmission of this avivirus.

Conflicts of interest
Authors declare no potential conicts of interest.

Acknowledgements
The authors acknowledge the College of Health Sciences, UKZN,
and the National Research Foundation for their nancial support.

References
1 O. Faye, C. C. M. Freire, A. Iamarino, O. Faye, J. V. C. de
Oliveira, M. Diallo, et al., Molecular Evolution of Zika Virus

during Its Emergence in the 20th Century, PLoS Neglected
Trop. Dis., 2014, 8(1), 1–10.

2 S. Bhakat, W. Karubiu, V. Jayaprakash and M. E. S. Soliman,
A perspective on targeting non-structural proteins to combat
neglected tropical diseases: Dengue, West Nile and
Chikungunya viruses, Eur. J. Med. Chem., 2014, 2014(87),
677–702.

3 L. H. Chen and D. H. Hamer, Zika Virus: Rapid Spread in the
Western Hemisphere, Ann. Intern. Med., 2016, 1–3.

4 G. S. Campos, A. C. Bandeira and S. I. Sardi, Zika virus
outbreak, Bahia, Brazil, Emerging Infect. Dis., 2015, 21(10),
1885–1886.

5 M. Mahfuz, A. Khan, M. H. Al, M. Hasan, A. Parvin,
N. Rahman, et al., Indian Journal of Pharmaceutical and
Biological Research (IJPBR) In Silico Modeling and
Immunoinformatics Probing Disclose the Epitope Based
PeptideVaccine Against Zika Virus Envelope Glycoprotein,
Indian J. Pharm. Biol. Res., 2014, 2(4), 44–57.

6 M. Roa, Zika virus outbreak: Reproductive health and rights
in Latin America, Lancet, 2016, 387(10021), 843.

7 WHO, Zika virus, Microcephaly and Guillain-Barré,
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structure of Zika virus, Science, 2016, 352(6284), 467–470.

43 M. Courageot, M. Frenkiel, S. D. Dos, V. Deubel, P. Desprès,
C. Duarte, et al., a -Glucosidase Inhibitors Reduce Dengue
Virus Production by Affecting the Initial Steps of Virion
Morphogenesis in the Endoplasmic Reticulum –
Glucosidase Inhibitors Reduce Dengue Virus Production by
Affecting the Initial Steps of Virion Morphogenesis in, J.
Virol., 2000, 74(1), 564–572.

44 R. Hamel, O. Dejarnac, S. Wichit, P. Ekchariyawat, A. Neyret,
N. Luplertlop, et al., Biology of Zika Virus Infection in
Human Skin Cells, J. Virol., 2015, 89(17), 8880–8896.

45 W. Noppakunmongkolchai, T. Poyomtip, T. Jittawuttipoka,
N. Luplertlop, A. Sakuntabhai, S. Chimnaronk, et al.,
Inhibition of protein kinase C promotes dengue virus
replication, Virol. J., 2016, 13(1), 35.

46 A. J. Hirsch, In Viral Replication, Future Med. Chem., 2010,
5(2), 303–311.

47 R. Zhang, J. J. Miner, M. J. Gorman, K. Rausch, H. Ramage,
J. P. White, et al., A CRISPR screen denes a signal peptide
processing pathway required by aviviruses [Internet],
Nature, 2016, 164–168.

48 M. Mahfuz, K. Ali, H. A. Mahmud, H. Mahmudul, A. Parvin,
R. Nazibur and S. M. Badier, Design and Prediction of
Potential RNAi (siRNA) Molecules for 30 UTR PTGS of
different strains of Zika Virus: A Computational Approach,
Nat. Sci., 2015, 1(2), 37–50.

49 V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah,
T.-S. Ng, J. S. G. Ooi, et al., Structure of the thermally
stable Zika virus, Nature, 2016, 533(7603), 425–428.

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 68719–68731 | 68729

Review RSC Advances



50 L. Dai, J. Song, X. Lu, Y.-Q. Deng, A. M. Musyoki, H. Cheng,
et al., Structures of the Zika Virus Envelope Protein and Its
Complex with a Flavivirus Broadly Protective Antibody, Cell
Host Microbe, 2016, 19(5), 696–704.

51 G. Barba-Spaeth, W. Dejnirattisai, A. Rouvinski, M.-C. Vaney,
I. Medits, A. Sharma, et al., Structural basis of potent Zika–
dengue virus antibody cross-neutralization, Nature, 2016,
1–23.

52 J. K. Weltman, Medical Microbiology & Diagnosis An
Immuno-Bioinformatic Analysis of Zika virus (ZIKV)
Envelope E Protein, J. Med. Microbiol. Diagn., 2016, 5(2), 1–2.

53 S. Mandal, M. Moudgil and S. K. Mandal, Rational drug
design, Eur. J. Pharmacol., 2009, 625(1–3), 90–100.

54 C. M. Song, S. J. Lim and J. C. Tong, Recent advances in
computer-aided drug design, Briengs Bioinf., 2009, 10(5),
579–591.

55 P. Bamborough and F. E. Cohen, Modeling protein-ligand
complexes, Curr. Opin. Struct. Biol., 1996, 6(2), 236–241.

56 A. C. Anderson, The Process of Structure-Based Drug Design,
Chem. Biol., 2003, 10(9), 787–797.

57 H. J. Huang, H. W. Yu, C. Y. Chen, C. H. Hsu, H. Y. Chen,
K. J. Lee, et al., Current developments of computer-aided
drug design, J. Taiwan Inst. Chem. Eng., 2010, 41(6), 623–635.

58 B. Honarparvar, T. Govender, G. E. M. Maguire,
M. E. S. Soliman and H. G. Kruger, Integrated Approach to
Structure-Based Enzymatic Drug Design: Molecular
Modeling, Spectroscopy, and Experimental Bioactivity,
Chem. Rev., 2014, 114, 493–537.

59 R. W. Hoo, C. Sander and G. Vriend, Objectively judging
the quality of a protein structure from a Ramachandran
plot, Computer Applications in the Biosciences, 1997, 13(4),
425–430.

60 S. Chetty and M. E. S. Soliman, Possible allosteric binding
site on Gyrase B, a key target for novel anti-TB drugs:
homology modelling and binding site identication using
molecular dynamics simulation and binding free energy
calculations, Med. Chem. Res., 2015, 2015(24), 2055–2074.

61 S. M. Saberi Fathi and J. a. Tuszynski, A simple method for
nding a protein's ligand-binding pockets, BMC Struct.
Biol., 2014, 14(18), 1–9.

62 E. Lionta, G. Spyrou, D. K. Vassilatis and Z. Cournia,
Structure-based virtual screening for drug discovery:
principles, applications and recent advances, Curr. Top.
Med. Chem., 2014, 14(16), 1923–1938.

63 M. Ramesh, S. B. Vepuri, F. Oosthuizen and M. E. Soliman,
Adenosine Monophosphate-Activated Protein Kinase
(AMPK) as a Diverse Therapeutic Target: A Computational
Perspective, Appl. Biochem. Biotechnol., 2015, 1–21.

64 S. S. Reddy, P. P. Pati, P. P. Kumar, H. Pradeep and
N. N. Sastry, Virtual screening in drug discovery –
a computational perspective, Curr. Protein Pept. Sci., 2007,
8(4), 329–351.

65 G. Sliwoski, S. Kothiwale, J. Meiler and E. W. Lowe,
Computational methods in drug discovery, Pharmacol.
Rev., 2014, 66(1), 334–395.

66 H. M. Kumalo and M. E. Soliman, Per-Residue Energy
Footprints-Based Pharmacophore Modeling as an

Enhanced In Silico Approach in Drug Discovery: A Case
Study on the Identication of Novel b-Secretase1 (BACE1)
Inhibitors as Anti-Alzheimer Agents, Cell. Mol. Bioeng.,
2015, 9(1), 175–189.

67 R. Delvecchio, L. M. Higa, P. Pezzuto, A. L. Valadao,
P. P. Garcez, F. L. Monteiro, et al., Chloroquine inhibits
Zika virus infection in different cellular models, bioRxiv,
Biochem., 2016, 051268.

68 S. D. Dowall, V. A. Graham, E. Rayner, B. Atkinson, G. Hall,
R. J. Watson, et al., A Susceptible Mouse Model for Zika
Virus Infection, PLoS Neglected Trop. Dis., 2016, 10(5),
e0004658.

69 R. A. Larocca, P. Abbink, J. P. S. Peron, P. M. A. Zanotto de,
M. J. Iampietro, A. Badamchi-Zadeh, et al., Vaccine
protection against Zika virus from Brazil, Nature, 2016, 1–8.

70 Y. Maharaj and M. E. S. Soliman, Identication of novel
gyrase b inhibitors as potential Anti-TB drugs: Homology
modelling, hybrid virtual screening and molecular
dynamics simulations, Chem. Biol. Drug Des., 2013, 82(2),
205–215.

71 M. Hernandez, D. Ghersi and R. Sanchez, SITEHOUND-web:
A server for ligand binding site identication in protein
structures, Nucleic Acids Res., 2009, 37(2), 413–416.

72 U. S. F. Tambunan, H. Zahroh, B. B. Utomo and
A. A. Parikesit, Screening of commercial cyclic peptide as
inhibitor NS5 methyltransferase of Dengue virus through
Molecular Docking and Molecular Dynamics Simulation,
Bioinformation, 2014, 10(1), 23–27.

73 P. Niyomrattanakit, Y. L. Chen, H. Dong, Z. Yin, M. Qing,
J. F. Glickman, et al., Inhibition of dengue virus
polymerase by blocking of the RNA tunnel, J. Virol., 2010,
84(11), 5678–5686.

74 L. Eyer, R. Nencka, I. Huvarova, M. Palus, M. Alves,
E. A. Gould, et al., Nucleoside inhibitors of Zika virus, J.
Infect. Dis., 2016, 27(May), 1–13.

75 S. Moonsamy, S. Bhakat and M. E. S. Soliman, Dynamic
features of apo and bound HIV-Nef protein reveal the anti-
HIV dimerization inhibition mechanism, J. Recept. Signal
Transduction, 2014, 9893, 1–11.

76 C. Liao, M. Sitzmann, A. Pugliese and M. C. Nicklaus,
Soware and resources for computational medicinal
chemistry, Future Med. Chem., 2011, 3(8), 1057–1085.

77 J. D. Thompson, T. J. Gibson and D. G. Higgins, Multiple
sequence alignment using ClustalW and ClustalX, Current
Protocols in Bioinformatics, 2002, 2(2.3), 1–22.

78 N. Eswar, B. Webb, M. a Marti-Renom, M. S. Madhusudhan,
D. Eramian, M. Y. Shen, et al., Comparative protein structure
modeling using Modeller [Internet], Current Protocols in
Bioinformatics, 2006, 1–47.

79 S. Somarowthu, H. Yang, D. G. C. Hildebrand and
M. J. Ondrechen, High-performance prediction of
functional residues in proteins with machine learning and
computed input features, Biopolymers, 2011, 95(6), 390–400.

80 B. Huang, MetaPocket: a meta approach to improve protein
ligand binding site prediction, OMICS, 2009, 13(4), 325–330.

68730 | RSC Adv., 2016, 6, 68719–68731 This journal is © The Royal Society of Chemistry 2016

RSC Advances Review



81 J. J. Irwin and B. K. Shoichet, ZINC – a free database of
commercially available compounds for virtual screening, J.
Chem. Inf. Model., 2005, 45(1), 177–182.

82 D. R. Koes and C. J. Camacho, ZINCPharmer:
Pharmacophore search of the ZINC database, Nucleic Acids
Res., 2012, 40(W1), 409–414.

83 O. Trott and A. J. Olson, AutoDock Vina, J. Comput. Chem.,
2010, 31, 445–461.

84 D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo,
K. M. Merz, et al., The Amber biomolecular simulation
programs, J. Comput. Chem., 2005, 1668–1688.

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 68719–68731 | 68731

Review RSC Advances



Zika Virus Drug Targets: A Missing Link In Drug Design 
And Discovery – A Route Map To Fill The Gap 

Pritika Ramharacka and Mahmoud E. S. Solimana*

Supplementary Material

1

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2016



Figure S1: The multiple sequence alignment
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Figure S2: Ramachandran plot for ZIKV NS5 protein
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Figure S3: Psipred predicted secondary structure

5



6



-����.�����/�+ 
��� ��0�!$$����! 
�����$! �(��0� 
�!�
�����		�����! 
0 �� ��$�	!$�� 	*�� !�1 0��!�� 2*�� !�+
�3�(�
��

��,	��
��.���4561�78)1.9�:-�;<#=5>5�6#.#>? �
�����@�#���������A�#����@���

����	
��������������
������������
	����	
����

�������������� �!"��	�#��$�%�� $&�!'	��	�#�����	
��(���)
*���(��)�++,,,-�
	���	��	�-���+���+�.�� �

/�0
�1�������$�)�����	�)���	��
���	(�.�������
	
�	(
	�����	��������
))��
�(��	����*������1���

"����0
�2
�(
�
�0�3�4
(�����5-�-������
	

6��������(���
�������������	
��
�
�
�	����
���������������
���������� �	
�!���"�#�$�%���&��
%��&���
�����'����"��
��&�
��&�����"������
%%��
��������(���"��!&�)*�+����
���,�-�����&���
�
��������&�
���.)�
���"*�./0�������1�2��34�����������3�3��$

6����	0�����(���
��������������		
��
����	�������	���������������������

������������� �!�"��!����!��

#$$����
�!�����%���� �����
� �� �����
&!�������
'�(�����
� �� ������#��������

)�(����"���!���$����������*�� !��

#���$���%��������

��������!��
�!���$����

�����+����!�,�
!�!

http://www.tandfonline.com/action/journalInformation?journalCode=tbsd20
http://www.tandfonline.com/loi/tbsd20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/07391102.2017.1313175
http://dx.doi.org/10.1080/07391102.2017.1313175
http://www.tandfonline.com/doi/suppl/10.1080/07391102.2017.1313175
http://www.tandfonline.com/doi/suppl/10.1080/07391102.2017.1313175
http://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/07391102.2017.1313175
http://www.tandfonline.com/doi/mlt/10.1080/07391102.2017.1313175
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2017.1313175&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2017.1313175&domain=pdf&date_stamp=2017-03-29


Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery

Pritika Ramharacka and Mahmoud E.S. Solimana,b,c,d*
aMolecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus,
Durban 4001, South Africa; bPharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa;
cFaculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Zagazig University, Zagazig, Egypt; dCollege of Pharmacy
and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU, Tallahassee, FL 32307, USA

Communicated by Ramaswamy H. Sarma

(Received 30 December 2016; accepted 22 March 2017)

The re-emerging Zika virus (ZIKV) is an arthropod-borne virus that has been described to have explosive potential as a
worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of
transmission has allowed the spread of the disease over continents. The virus has already been linked to irreversible
chronic central nervous system conditions. The concerns of the scientific and clinical community are the consequences
of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine
development against the virus but there are still no FDA approved drugs available. Rapid rational drug design and
discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the
virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing
the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique
in the discovery of two potential small molecule inhibitors of ZIKV Methyltransferase and RNA dependent RNA poly-
merase. This in silico ‘per-residue energy decomposition pharmacophore’ virtual screening approach will be critical in
aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral
agents.

Keywords: Zika virus per-residue decomposition based pharmacophore; virtual screening; NS5 protein potential
inhibitors; binding free energy; molecular dynamic simulations

1. Introduction

Zika virus (ZIKV) is an arthropod-borne virus that has
been described to have potential as a worldwide pandemic
(Troncoso, 2016). The virus is a member of the spodweni
sercocomplex of the flavivirus genus and was first
discovered in 1947 by its isolation from the Rhesus 766
monkey in Uganda (Faye et al., 2014; Haddow et al.,
2012). Sporadic cases of the virus have been reported in
countries such as Uganda, Tanzania, Egypt, Gabon, and in
parts of Asia including India and Indonesia, with the most
devastating epidemic occurring in Brazil in 2015
(Campos, Bandeira, & Sardi, 2015; Mahfuz et al., 2015).
As of June 2016, 11 countries had reported central nervous
system (CNS) malformations potentially linked to ZIKV.
During 2015 and early 2016, eight countries had reported
cases of Gullian–Barrè syndrome (GBS), where laboratory
testing confirmed ZIKV infection was found in a number
of GBS cases (WHO, 2016).

Transmission of the virus was thought to be only via
the Aedes mosquito vector but studies during 2016,
have evidenced congenital, perinatal, and sexual trans-
mission (Singh et al., 2016; Turmel, Hubert, Maquart,

Guillou-Guillemette, & Leparc-Goff, 2016). The virus
triggers febrile like influenza conditions in the host,
including swollen lymph nodes, skin rashes, and joint
pains (Brito, 2016; Ekins et al., 2016; Shapshak, Sinnott,
Somboonwit, & Kuhn, 2016). The concerns of the scien-
tific community involve the dramatic increase in ZIKV-
related CNS disorders including neonatal-microcephaly
and GBS (Lissauer, Smit, & Kilby, 2016; Panchaud,
Stojanov, Ammerdorffer, & Vouga, 2016; Roa, 2016).
Complications associated with prenatal infection encom-
pass fetal growth restriction, neurological and ocular
abnormalities, intracranial calcification and in some cases
perinatal death or stillbirth (Chibueze et al., 2017; Singh
et al., 2016).

The virus is able to enter a host via receptor-
mediated endocytosis, followed by fusion from within
the endosomal cell compartment (Mahfuz et al., 2014).
The enveloped virus comprises an 11 kilo base, single-
stranded positive sense RNA genome which consists of
10,794 nucleotides encoding 3419 amino acids (Hayes,
2009). The open reading frame of the 5′ and 3′ untrans-
lated region encodes a polyprotein cleaved into three
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structural proteins being the capsid, premembrane/mem-
brane, and envelope. Seven non-structural proteins may
also be found in this assembly, namely, NS1, NS2A,
NS2B, NS3, NS4A, 2K, NS4B, and NS5 (largest viral
protein) (Haddow et al., 2012).

Being the largest and most imperative protein in the
genome replication and RNA capping of ZIKV, NS5 pre-
sents as a novel antiviral target (Tambunan, Zahroh,
Utomo, & Parikesit, 2014). The protein consists of three
domains: a Methyltransferase (MTase) domain at resi-
dues 1–262 of its N-terminal, an RNA dependent RNA
polymerase (RdRp) at residues 273–903 of its C-terminal
and an inter-domain region at residues 263–272 (Zou
et al., 2014).

The MTase domain belongs to the family of
S-Adenosyl Methionine (SAM)-dependent enzymes, con-
taining a SAM-dependent MTase fold comprising of an
α/β/α structure (Zou et al., 2014). The MTase domain is
one of the key targets in drug design as the enzyme per-
forms nucleoside-2’O and N-7 methylation of the viral
RNA cap which is essential in the replication of the
virus (Egloff, Benarroch, Selisko, Romette, & Canard,
2002). Upon the completion of methylation, SAM is
converted to S-Adenosyl Homocysteine and gets released
from the MTase domain (Brecher et al., 2015). Inhibition
of MTase will be detrimental to the progression of
ZIKV.

The conserved RdRp domain allows for the initiation
of RNA synthesis, generating both plus and minus strand
RNAs. As with most polymerases, the structure of the
enzyme resembles a shape analogous to a right hand
with a finger, thumb, and palm region (Papageorgiou
et al., 2014; Shanmugam, Velmurugan, & Gromiha,
2016). The human body does not contain an RdRp
enzyme or analogs of it, thus inhibitors may not cause
severe toxic effects, making it an optimal target in drug
design (Shanmugam et al., 2016).

To date, no anti-ZIKV drugs are clinically available,
thus, new research methods are being developed with the
purpose of identifying target molecules. Recent research
has found that ZIKV targets neuronal cells (Millichap,
2016; Miner & Diamond, 2016; Mlakar et al., 2016;
Tang et al., 2016). Consequently, any new drugs that
may be discovered will have to pass through the blood–
brain barrier. Molecular modeling and computational
methods are important tools in the development of novel
inhibitors of ZIKV (Ekins et al., 2016; Ramharack &
Soliman, 2016). A number of inhibitors of the flavivirus
NS5 protein have been discovered via virtual screening
and computational analysis (Brecher et al., 2015; Idrus,
Tambunan, & Zubaidi, 2012; Lim & Shi, 2013). Struc-
ture-based virtual screening (SBVS) identifies energeti-
cally advantageous binding affinities of ligands into a
target’s active binding site. This allows for new insights
on the nature of the active site and the protein–ligand

interactions (Kumalo & Soliman, 2015). The method
identifies selective molecules from an extensive library
of compounds to dock within a target’s active site.
Although scoring techniques are used when molecules
are docked to the target, literature shows that a large
number of final hits are generated, as the compounds
docked may be in various geometric poses (Kroemer,
2007). Ligand-based virtual screening generates libraries
of compounds based on a known compound or com-
pounds and its illustrative interactions with a particular
target (Cele, Muthusamy, & Soliman, 2016).

In an attempt to develop pharmacophore-based mod-
eling, we previously presented a per residue energy
decomposition (PRED) protocol where candidates for
SBVS were chosen on the position of 3D moieties with
an experimentally known compound, thus creating a
pharmacophore model based on highly contributing
amino acid residues to the bound inhibitor. This
approach is based on interactions that occur at a molecu-
lar level, including charge, hydrophobic interactions and
hydrogen bonding (Cele et al., 2016). The highly con-
tributing residues are identified based on free energy
footprints from molecular dynamic (MD) and thermody-
namic calculations (Cele et al., 2016; Kumalo &
Soliman, 2015; Soliman, 2013). This proves to be an
incredibly concise method, rather than ‘shooting in the
dark’ with millions of available small molecules.

In our previous work, we created a possible homol-
ogy model of the NS5 protein containing both MTase
and RdRp domains (Ramharack & Soliman, 2016). Due
to the indeterminateness surrounding the ZIKV NS5 pro-
tein and potential inhibitors, we will compare our top
hits against known inhibitors of the flavivirus NS5
protein.

This study will implement the above-mentioned
PRED pharmacophore technique in the discovery of
potential ZIKV NS5 protein inhibitors, thus aiding
medicinal chemists in the synthesis of possible drug
candidates.

2. Computational methods

A route map to PRED-based pharmacophore virtual
screening approach is depicted in Figure 1.

2.1. Homology modeling and identification of active
binding sites of NS5

In our previous article and during the current study, due
to the absence of a crystal structure of ZIKV NS5 pro-
tein, a homology model was created using the protein
sequence obtained from NCBI (Accession number:
YP_009227205) (Ramharack & Soliman, 2016). The
templates for sequence alignment were identified from
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NCBI using BLASTp (accessed on 5 March 2016)
(Madden, Tatusov, & Zhang, 1996) to find suitable tem-
plates, from RCSB protein databank (Berman et al.,
2002), for homology modeling. Based on the criteria of
identity score, e-value and query cover accuracy
(Table 1), the NS5 protein was modeled by using four
crystal structures of flavivirus enzymes as templates:

Chain A of full-length Japanese Encephalitis Virus NS5
(PDB Code: 4K6M_A); Chain A of full-length NS5
from Dengue virus Type 3 (PDB Code: 5CCV_A);
Chain A of RNA Dependent RdRp domain from Nile
West Virus (PDB Code: 2HFZ_A); and Chain A of
Dengue Serotype 3 RNA-dependent RdRp bound to
Nitd-107 (PDB Code: 3VWS_A).

Figure 1. A PRED-based approach outline applied in the study.

Table 1. Criteria summary of chosen templates used in Building the ZIKV NS5 homology model.

Template PDB code Query cover (%) Structural identity (%) E-value

4K6M_A 97 69 0
5CCV_A 98 67 0
2HFZ_A 67 72 0
3VWS_A 68 69 0

Zika virus potential inhibitors 3



Homology modeling was performed using the Mod-
eller Software version 9.1 (Eswar et al., 2006) add-on in
chimera (Yang et al., 2012), in which all three templates
were selected to build the model. Multiple sequence
alignment was performed using the CLUSTALW server
(Sievers et al., 2011), where Chain A of the full-length
Japanese Encephalitis Virus NS5 was evidenced to have
the best template with the highest identity score (Fig-
ure S1). The sequence of the target protein was uploaded
to PSIPRED V3.3 (Buchan, Minneci, Nugent, Bryson, &
Jones, 2013) in order to obtain a predicted 2D secondary
structure of the enzyme. Comparing the homolog to the
predicted 2D structure and assessment of the bond angles
and torsional strain validated the homology model. A
Ramachandran plot for the analyses of bond angles and
torsional strain was generated using Maestro (Schrodin-
ger). MolProbity (Chen et al., 2010) results showed
97.2% of all residues were in the favored regions and
99.2% of all residues were in the allowed regions, which
left a list of 7 outliers. The active-site residues were
determined using Chimera Multi-align Viewer and vali-
dated using the SiteHound-web program (Hernandez,
Ghersi, & Sanchez, 2009). The list shows that none of
the active-site residues are part of these outliers. All
results can be found in our previous article and supple-
mentary material (Figure S5) (Ramharack & Soliman,
2016). After completion of the study, the crystal structure
of the ZIKV NS5 protein was released. To validate the
homology model of the NS5, it was superimposed with
the newly released crystal structure (PDB code: 5TFR),
showing their structural similarity and validating the
model’s use for subsequent analysis (Figure 2).

2.2. System preparation

The NS5 modeled structure was separated into two
domains, being the MTase of the C-terminal and the
RNA-Dependent RdRp of the N-terminal. Experimental
drug inhibitors of flaviviruses were chosen to dock
within each domain’s active site.

2.3. Molecular docking of experimental flaviviruses

The small molecules, BG323 and Ribavirin, potent inhi-
bitors of flavivirus NS5, were chosen to dock at the
MTase site and the RdRp site, respectively (Leyssen, De
Clercq, & Neyts, 2000; Lim & Shi, 2013; Tambunan
et al., 2014).

Docking of the compounds was conducted using the
AutoDock Vina (Trott & Olson, 2010) software. The
procedure was run using the software default settings.
The grid box used to define the screening site was eluci-
dated using the AutoDock Vina functionality built into
Chimera (Pettersen et al., 2004). The gridbox size and
center parameters for the MTase were x(54, −63.23), y
(80, 56.72), and z(54, 10.22), respectively, and the RdRp
gridbox dimensions were x(40, −9.69), y(38, 20.41), and
z(40, 16.50). AutoDock Vina generated results in the
pdbqt format and the optimal geometric conformation
having the best binding energy was selected from the
ViewDock feature and saved in complex with the refer-
ence enzyme. The enzyme and ligand for each system
was prepared using Chimera (Yang et al., 2012) and
MMV molecular modeling suites (Kusumaningrum,
Budianto, Kosela, Sumaryono, & Juniarti, 2014) and
subsequently subjected to MD simulations.

2.4. Molecular dynamic (MD) simulations

The MD simulation was performed using the GPU ver-
sion of the PMEMD engine provided with the Amber 14
package. The FF14SB force field of the Amber package
(Nair & Miners, 2014) was used to describe the
complex.

ANTECHAMBER (Wang, Wang, Kollman, & Case,
2006) was used to generate atomic partial charges for
the ligands by utilizing the Restrained Electrostatic
Potential (RESP) and the General Amber Force Field
(GAFF) procedures. The Leap module of Amber 14
allowed for addition of hydrogen atoms to the systems
as well as Na+ and Cl− counter ions for neutralization.

The system was suspended implicitly within an
orthorhombic box of TIP3P water molecules such that
all atoms were within 8 Å of any box edge.

An initial minimization of 2000 steps was carried out
with an applied restraint potential of 500 kcal/mol Å2 for
both complexes. An additional full minimization of 1000
steps was further carried out by conjugate gradients
algorithm without restrain.

Figure 2. Superimposition of homology model (yellow) with
the newly released crystal structure (green-PDB code: 5TFR),
showing their structural similarity and validating the model’s
use for subsequent analysis.

4 P. Ramharack and M.E.S. Soliman



A gradual heating MD simulation from 0–300 K was
executed for 50 ps, such that the system maintained a
fixed number of atoms and fixed volume, i.e. a canonical
ensemble (NVT). The solutes within the system are
imposed with a potential harmonic restraint of 10 kcal/-
mol Å2 and collision frequency of 1.0 ps−1. Following
heating, an equilibration estimating 500 ps of the each
system was conducted, the operating temperature was
kept constant at 300 K. Additional features such as a
number of atoms and pressure were also kept constant
mimicking an isobaric–isothermal ensemble (NPT). The
systems pressure was maintained at 1 bar using the
Berendsen barostat.

The total time for the MD simulation conducted was
5 ns. In each simulation the SHAKE algorithm was
employed to constrict the bonds of hydrogen atoms. The
time step of each simulation was 2 fs and an SPFP preci-
sion model was used. The simulations coincided with
isobaric–isothermal ensemble (NPT), with randomized

seeding, constant pressure of 1 bar maintained by the
Berendsen barostat, a pressure-coupling constant of 2 ps,
a temperature of 300 K, and Langevin thermostat with
collision frequency of 1.0 ps−2.

Coordinates were saved every 1 ps and the trajecto-
ries were analyzed every 1 ps using the PTRAJ module
employed in Amber14.

2.5. Binding free energy calculations

To estimate the binding affinities of each system,
the binding free energies were calculated using the
molecular mechanics/GB surface area method (MM/
GBSA) (Genheden & Ryde, 2015). Binding free energies
were averaged over 5000 snapshots extracted from the
5 ns trajectory. The free binding energy (ΔG) computed
by this method for each molecular species (complex,
ligand and receptor) can be represented as:

Figure 3. The steps taken toward creating the pharmacophore model from the MTase–BG323 complex. The yellow circles spotlight
the pharmacophoric moieties that were chosen for the model, based on the highest contributing residues, depicted in the binding
affinity graph.
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DGbind ¼ Gcomplex " Greceptor " Gligand (1)

DGbind ¼ Egas þ Gsol " TS (2)

Egas ¼ Eint þ Evdw þ Eele (3)

Gsol ¼ GGB þ GSA (4)

GSA ¼ c SASA (5)

The term Egas denotes the gas-phase energy, which con-
sist of the internal energy Eint; Coulomb energy Eele, and
the van der Waals energies Evdw. The Egas was directly
estimated from the FF14SB force field terms. Solvation
free energy, Gsol, was estimated from the energy contri-
bution from the polar states, GGB and non-polar states,
G. The non-polar solvation energy, SA.

GSA, was determined from the solvent accessible sur-
face area, using a water probe radius of 1.4 Å, whereas
the polar solvation, GGB, contribution was estimated by
solving the GB equation. S and T denote the total
entropy of the solute and temperature, respectively.

To obtain the contribution of each residue to the total
binding free energy profile between the inhibitors Riba-
virin and BG323 with RdRp and MTase, respectively,
per-residue free energy decomposition was carried out at
the atomic level for imperative residues using the MM/
GBSA method in Amber 14.

2.6. Pharmacophore model creation and library
generation

The inhibitors Ribavirin and BG323 were first simulated
at the active site of RdRp and MTase respectively, for
5 ns, to create the bound conformation of the ligands.
Both these compounds have experimentally exhibited
ZIKV inhibition in in vitro and in vivo models (Mumtaz,
van Kampen, Reusken, Boucher, & Koopmans, 2016;
Sweeney et al., 2015; Zmurko et al., 2016). Per-residue
energy decomposition analysis was used to determine the
amino acids that contribute the most towards ligand
binding. The pharmacophoric moieties that interacted
with the highly contributing residues were then chosen

Figure 4. RdRp–Ribavirin complex ligplot analysis – creating the pharmacophore model to virtually screen for new RdRp potential
lead compounds. The yellow circles spotlight the pharmacophoric moieties that were chosen for the model based on the highest
contributing residues, depicted in the binding affinity graph.
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Table 2. Representation of the top three compounds bound to MTase and RdRp. The compounds, ZINC64717952 and
ZINC39563464 showed the best binding affinity to MTase and RdRp, respectively.

MTase

Compound Docked structure

ZINC64717952  G= -6.1 kcal/mol

ZINC85652269
 G= -5.4 kcal/mol

ZINC09304524  G= -5.1 kcal/mol
(Continued)
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RdRp

Compound Docked structure

ZINC39563464 
 G= -9.1 kcal/mol

ZINC39588253  G= -7.9 kcal/mol

ZINC11758496 
 G= -7.5 kcal/mol

Table 2. (Continued ).
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to construct our model. The model was then added to
ZincPharmer (Koes & Camacho, 2012), with specific
selection criteria (molecular weight of <500 Da, rotatable
bonds <6, hydrogen bond donors <5, and hydrogen bond
acceptors <10), to screen the ZINC database (Irwin &
Shoichet, 2005). Lipinski’s rule of five and toxicity
(ADMET) properties were used as filters to remove non-
drug-like hits (Lipinski, Lombardo, Dominy, & Feeney,
2012).

2.7. Structure-based virtual screening

The drug-like hits identified using our protocol were sub-
jected to SBVS. Docking was carried out to differentiate
between ligands based on the molecules’ geometric char-
acteristics that allow it to bind to the enzyme’s active site
(Forli et al., 2016). The docking calculations were per-
formed using Autodock Vina (Trott & Olson, 2010).
During docking, Gasteiger partial chargers were assigned
and the Autodock atom types were defined using the
Autodock Graphical user interface supplied by MGL
tools (Sanner, Olson, & Spehner, 1996). The docked
conformations were generated using the Lamarckian
Genetic Algorithm (Morris & Huey, 2009). The Raccoon
software was used to convert the files into a compatible
pdbqt format required for docking. The gridbox was

defined using Autodock Vina. The calculation reports for
each ligand conformation in its respective complex were
analyzed to obtain affinity energy (kcal/mol). During the
docking process, a maximum of 50 conformers was con-
sidered for each compound. After screening, molecular
docking and filtering, the ligand with the highest affinity
towards the agonist was selected from the library.

2.8. Validation of docking approach

Previous experiences have verified that docking may
result in the best geometric conformation of the docked
complex, however, short MD simulations may not be
able to maintain the stability of the complex and thus
lead to the molecules being disorientated. Thus, to vali-
date the approach applied in this study, the most favor-
able Mtase and RdRp complex was subjected to further
MDs studies (20 ns). The procedure for MDs simulation
was the same as in ‘‘MD simulations’ section and
thermodynamic calculations as ‘Binding Free Energy
Calculations’ section.

2.9. Assessment of drug likeness

The online software SwissADME was used to compute
the physicochemical descriptors as well as predict the
pharmacokinetic properties and drug-like nature of the
screened compounds compared to that of BG323 and
Ribavirin. to (Bultet et al., 2016; Daina, Michielin, &
Zoete, 2014). SwissADME utilizes the ‘Brain Or Intesti-
nal Estimated permeation (BOILED-Egg)’ method which
computes the lipophilicity and polarity of small mole-
cules (Daina & Zoete, 2016).

3. Results and discussion

3.1. Homology model and active binding site
determination

Due to the absence of a crystal structure for the Zika
NS5 enzyme, a homology model, having a zDope score
of −0.76 was generated, and validated using a ramachan-
dran plot. The active site residues were determined for
both the MTase and RdRp region (Figure S1–S3). The
comprehensive set of results are presented in our previ-
ous publication (Ramharack & Soliman, 2016). To fur-
ther validate both the MTase and RdRp, the homology
model was superimposed to the newly released crystal
structure of the Zika NS5 (Figure 2), using Chimera
(Pettersen et al., 2004).

Figure 5. The Cα RMSF of MTase–BG323 and MTase–
ZINC64717952 during the molecular dynamic simulation.

Table 3. The comparison of MTase’s binding affinity with BG323 and ZINC64717952.

Energy components (kcal/mol)

Compound ΔEvdW ΔEelec ΔGgas ΔGsolv ΔGbind

BG323 −33.32 ± 1.82 −11.84 ± 1.68 −49.16 ± 1.86 20.83 ± 1.80 −28.33 ± 1.87
ZINC64717952 −35.77 ± 2.66 −10.47 ± 2.68 −46.24 ± 3.97 19.74 ± 2.14 −26.50 ± 3.14
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3.2. PRED pharmacophore model

In this study, a pharmacophore hypothesis was adopted
by utilizing per residue decomposition energy-based
approach. The structural features of a protein as well as
the chemical characteristics of a ligand are employed
in the construction of a pharmacophore model. To gener-
ate the pharmacophore model, a 5 ns MD simulation
was run on complexes (MTase–BG323) and (RdRp–
Ribavirin), followed by PRED computed from MM/
GBSA calculations. The MM/GBSA approach has
proven to be, in principle, accurate in both scoring
function and binding free energy results (Genheden &
Ryde, 2015; Hayes, 2009). This allows for improved
pharmacophore modeling and thus the generation of a
concise library of small molecules. The MTase–BG323
complex showed His104 (−2.176 kcal/mol), Glu143
(−1.846 kcal/mol), Thr210 (−1.192 kcal/mol), and

Lys176 (−1.061 kcal/mol) to be the highest contributing
residues to interact with the ligand. Strong hydrophobic
interactions were formed between Glu143 and the ben-
zene ring of BG323, while, energetically favorable resi-
due, Asp140, formed hydrogen bonds with the terminal
hydroxyl groups of the ligand (Figure 3).

Hydrogen bonds between the RdRp–Ribavirin com-
plex included residues Asn444 (−1.296 kcal/mol) and
His460 (−0.956 kcal/mol), while the contributing resi-
dues; namely, GLU573 (−1.521 kcal/mol), TRP576
(−1.744 kcal/mol) and Cys577 (−2.202 kcal/mol) were
involved in hydrophobic interactions with the ligand.
The features from each complex were used as a query
on ZINCpharmer (Koes & Camacho, 2012) to create the
PRED-based pharmacophore (Figure 4). Results revealed
18 hits obtained from the MTase–BG323 pharmacophore
and 23 hits from the RdRp–Ribavirin pharmacophore.

Figure 6. MTase–ZINC64717952 complex interactions (A) Per-residue decomposition analysis showing Arg51 and Glu105 to have
the greatest bond fluctuations (B) Ligplot depiction of hydrophobic and hydrogen bond interactions in the complex which was
validated by (C) The time evolution of RMSD of the C-alpha atom backbone of the MTase–ZINC64717952 complex.
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3.3. Molecular docking

To further refine and reduce false positives retrieved
from the hit compounds, the hits for each complex were
subjected to molecular docking within the actives sites
of MTase (18 hits) and RdRp (23 hits). This assessed
their geometric feasibility at each domain, leading to
only three top ranked compounds (Table 2). Based on
the interactions and binding affinities of the respective
three top-ranked compounds to MTase and RdRp,
ZINC64717952 and ZINC39563464 were chosen as
respective top hits. Each complex was subsequently sub-
jected to MD studies to elucidate on the enzyme–ligand

interactions of the two potential inhibitors under virtual
conditions.

3.4. MD simulations and binding free energy analysis

The MTase–ZINC64717952 and RdRp–ZINC39563464
complexes were subjected to a 20 ns MD simulation in
order to check the convergence dynamic stability and to
analyze the energetics of each complex. The RMSD pro-
files of the MTase-complex and RdRp-complex indicate
that both systems were stable during the simulation
(Figures 6(C) and 7(C)).

Figure 7. RdRp–ZINC39563464 complex interactions (A) Per-residue decomposition analysis showing Arg459 and Glu435 to have
the greatest bond fluctuations, (B) Ligplot depiction of hydrophobic and hydrogen bond interactions in the complex which was
validated by (C) The time evolution of RMSD of the C-alpha atom backbone of the MTase–ZINC39563464 complex.

Table 4. The comparison of RdRp’s binding affinity with Ribavirin and ZINC39563464.

Energy components (kcal/mol)

Compound ΔEvdW ΔEelec ΔGgas ΔGsolv ΔGbind

Ribavirin −23.20 ± 3.13 −40.92 ± 13.03 −64.12 ± 13.34 47.59 ± 9.93 −16.53 ± 4.84
ZINC39563464 −38.17 ± 5.39 −17.32 ± 5.99 −55.49 ± 8.85 30.45 ± 4.85 −25.04 ± 5.35
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3.4.1. MTase–ZINC64717952 Complex

The docked MTase–ZINC64717952 complex showed
ionic interactions involving seven residues common to
MTase–BG323 (Glu143, Arg207, Lys176, Thr210,
Ile141, Asp140, and Gly142). Interestingly, however, a
hydrogen bond was noted between the nitrogen of Arg35
and the aromatic ring of ZINC64717952, this was pecu-
liar, as Arg35 was not involved in any ionic interactions
of the MTase–BG323 complex. The MTase–
ZINC64717952 complex used Asp140 as a hydrogen
bond acceptor, whereas, the MTase–BG323 complex
depicted hydrophobic interactions between Asp140 and
the benzene ring of BG323. These ionic bond deviations
between systems may be due to the size of
ZINC64717952 in comparison to BG323.
ZINC64717952 was significantly reduced in size, con-
taining predominantly the heterocyclic rings from the
pharmacophore model. Due to the size of
ZINC64717952, the nitrogen of aromatic ring was
allowed to form a hydrogen bond with the amine group
(Arg35) further into the hydrophobic pocket of MTase.
Docking results showed the same binding affinity in both
complexes, however, receptor residue stability showed
increased fluctuations in the ZINC64717952–MTase
complex compared to the experimental complex
(Figure 5). The overall compactness of the receptor was
measured by the radius of gyration (around the Cα
atoms) and was indicative of greater fluctuations of the
MTase–ZINC64717952 complex compared to the experi-
mental complex (Figure S6), verifying the root mean
square fluctuations (RMSF) seen in Figure 5. Although
ZINC64717952 docked in a structurally favorable man-
ner, MM/GBSA analysis showed free binding energy of

the MTase–BG323 complex (−28.70 kcal/mol) to be
higher in magnitude than that of MTase–ZINC64717952
(−26.50 kcal/mol).

The tetrazole aromatic ring in ZINC64717952 contains
highly active nitrogen atoms, increasing electronegativity
and steric hindrance (Ostrovskii, Trifonov, & Popova,
2012). The Generalized Borne (GB) method is used to cal-
culate the molecular electrostatic forces in solvent. Table 3
shows ZINC64717952 to have elevated columbic energy,
thus leading to increased gas-phase energy, validating the
free energy analysis (Figure 6(A)) (Genheden & Ryde,
2015). This, however, does not rule-out the possibility of
ZINC64717952 as a potential inhibitor of the MTase
enzyme as the intermolecular forces between the receptor
and ligand were favorable. This study will have to be
evaluated in vitro, where the further analysis may reveal
the inhibitory potential of the compound.

3.4.2. RdRp–ZINC39563464 complex

The docked RdRp–ZINC39563464 complex showed
ZINC39563464 to interact with nitrogen atoms of two
residues; Asn444 and His460. Notably, the nitrogen
atoms from the same residues form hydrogen bonds with
the terminal oxygen of the Ribavirin, showing consistent
residue interactions of the experimental ligand and
ZINC39563464. These hydrogen interactions are formed
from non-covalent bonding of the hydrogen donor
(Asn444 and His460) with the acceptors (oxygen and
nitrogen) of the ligand. This articulates the directionality
and specificity of the active site’s β-strand recognition of
both Ribavirin and ZINC39563464. The complex
exhibiting a relatively stable RMSD profile during the
simulation further validated this (Figure 7(C)). The phar-
macophoric hot spot residue, His442, formed hydropho-
bic bonds with the aromatic rings of both Ribavirin and
ZINC39563464. It is noteworthy that four other
hydrophobic-interacting residues; Cys577, Tryp576,
Glu573 and Glu435 were common to both ligands, thus
stabilizing both energetically favorable ligands in the
available hydrophobic pocket. Table 4 depicts the analy-
sis of binding free energy by the use of MM/GBSA of
the RdRp–ZINC39563464 complex was used to support
the docking results.

The predicted binding free energy for the complex
was −25.04 kcal/mol, which is considerably higher in
magnitude than that achieved by the RdRp–Ribavirin
complex (−16.53 kcal/mol), thus confirming the docking
results and indicating a stronger binding of
ZINC39563464 to RdRp compared to the experimental
ligand (Figure 7(A) and (B)). The relatively large size of
the ligand could explain the increased number of resi-
dues encompassing apparent hydrophobic interactions
with ZINC39563464, and could substantiate the
exhibition of stable RdRp residues by RMSF profiling

Figure 8. The stable Cα RMSF of RdRp–Ribavirin
and RdRp–ZINC39563464 during the molecular dynamic
simulation.
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(Figure 8). As an additional check, the radius of gyration
(Rg of the Cα atoms) was compared in both simulations
to provide a measure of overall compactness of the pro-
tein (Figure S6). The fluctuations of Rg stayed with 1 Å
in both simulations indicative of a stable protein com-
plex with both experimental and screened compound.

3.4. Assessment of drug likeness

Ribavirin has a plethora of side effects including throm-
bocytopenia, myalgia, leucopoenia, and cognitive impair-
ment (Hinton et al., 2016; Kryger, Wohl, Smith, &
Zelikin, 2013; Munir et al., 2010). This proves to be a
challenge when trying to inhibit a virus that already
causing these symptoms. BG323 is a new compound that
has been proven to have potent effects on flavivirus NS5
proteins, however, the compound is unable to pass the
blood–brain barrier, making it difficult to act on ZIKV-
targeted neuronal cells (Miner & Diamond, 2016; Tang
et al., 2016). The possible pro-drugs of ribavirin and
BG323, being, ZINC39563464 and ZINC64717952,
respectively, can be described as potential lead com-
pounds after assessment through SwissADME (Table 5)
(Bultet et al., 2016).

4. Conclusion

ZIKV is a rapidly evolving virus that has had detrimental
long-term effects over a very short period of time. This
study proposes two new compounds that have shown
promising physicochemical properties and strong interac-
tions with ZIKV MTase and RdRp, thus validating the
PRED model as an effective strategy to enhance typical
virtual screening methods for the rapid identification of
potential lead compounds as inhibitors against patho-
genic biological targets such as ZIKV. This strategic in
silico technique will serve as a beneficial tool to enhance
drug discovery and decrease excessive wastage of finan-
cial and experimental resources by synthesizing large
numbers of compounds that may not be beneficial in the
inhibition of target enzymes. The lead compounds,
ZINC64717952 and ZINC39563464, have shown sub-
stantial stability in complex with the target enzymes and
thus further experimental analysis is necessary for effi-
cacy and toxicity validation.
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Delving into Zika virus structural dynamics –
a closer look at NS3 helicase loop flexibility
and its role in drug discovery†

Pritika Ramharack,a Sofiat Oguntadea and Mahmoud E. S. Soliman *abcd

The Zika virus has emerged as a pathogen of major health concern. The rapid spread of the virus has led to

uproar in themedical domain as scientists frantically race to develop effective vaccines and small molecules

to inhibit the virus. In the past year, there has been a flood of Zika knowledge published including its

characteristics, transmission routes and its role in disease conditions such as microcephaly and Gullian–

Barŕe syndrome. Targeted therapy against specific viral maturation proteins is necessary in halting the

replication of the virus in the human host, thus decreasing host–host transmission. This prompted us to

investigate the structural properties of the Zika NS3 helicase when bound to ATP-competitive inhibitor,

NITD008. In this study, comparative molecular dynamic simulations were employed for APO and bound

protein to demonstrate the molecular mechanism of the helicase. Results clearly revealed that

NITD008-binding caused significant residue fluctuations at the P-loop compared to the rigid nature of

the APO conformation. The NITD008-helicase complex also revealed residues 339–348 to transition

from a 310-helix to a stable a-helix. These protein fluctuations were verified by investigation of dynamic

cross correlation and principal component analysis. The fundamental dynamic analysis presented in this

report is crucial in understanding Zika NS3 helicase function, thereby giving insights toward an inhibition

mechanism. The information reported on the binding mode at the ATPase active site may also assist in

designing effective inhibitors against this detrimental viral target.

1 Introduction
The re-emerging Zika virus (ZIKV) has evolved into a cata-
strophic epidemic over the past year, with scientic community
announcing that the long-term effects associated with the virus
will have to be dealt with in the decades to follow.1 The virus was
declared an international public health emergency by the World
Health Organization,2 based on growing evidence of the virus
being linked with congenital neurological diseases such as
Guillain–Baŕre, cranial nerve dysfunction and microcephaly.3,4

The ZIKV made its devastating re-appearance in Brazil and has
now spread on a global scale, with an estimated 75 countries
with reported mosquito-borne ZIKV transmission as of
December 2016.5

Zika virus is an arthropod-borne Flavivirus initially discov-
ered in the Zika forest area of Uganda in 1947.6 Of the Flavivirus
genera, ZIKV is most closely related to the Spondweni virus
from the Spondweni group; however, ZIKV shares structural
similarities with other Flaviviruses, including Dengue virus and
West Nile virus.7 The ZIKV genome is made up of structural
proteins, being the capsid, precursor membrane and envelope
form the viral particle and seven non-structural proteins, being
NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5, which participate
in the replication of the RNA genome, virion assembly and
invasion of the innate immune system.8–10 In our previous
review, we explicated on the key viral target proteins, including
the multifunctional viral replication NS3 helicase protein.11 The
ZIKV helicase comes from the superfamily helicases, SF2,12 with
the inhibition of either one of the binding sites, the RNA-
binding groove or the ATP-binding site (Fig. 1), leading to the
virus becoming incapable of sufficient maturation and repli-
cation. The structural characteristics of the ZIKV NS3 protein
includes three domains: domain I (residues 182–327), domain
II (residues 328–480) and domain III (residues 481–617), as well
as a P-loop (residues 196–203) which is located at the ATP-
binding site of domain I.12,13

The co-crystallization of MnATP2! and RNA with ZIKV heli-
case, reported by Tian et al. (2016) and Cao et al. (2016), have
paved the way to understanding the mechanism by which these
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substrates bind to the enzyme, initiating viral RNA replica-
tion.14,15 Despite the ood of integrated knowledge on ZIKV over
the past year, the molecular and structural mechanism for
helicase inhibition is yet to be established.12

Another battle being fought by researchers is the discovery of
new modes of transmission of the virus, from initially being
transmitted from vector to host, to now being inclusive of blood
transfers from host to host as well as secondary sexual trans-
mission.16–18 This has allowed for rapid diffusion of the virus
between continents. In the plethora of strategic characteristics
of the virus, its ability to target neuronal cells has been one of
the most problematic tasks that pharmaceutical chemists have
had to overcome.19–24 The design of ZIKV inhibitors will not only
need to be target-specic, effective and have minimal toxicity,
but it will also have to pass through the blood-brain-barrier.25

Although there are currently vaccine clinical trials under
way, there are still no FDA approved small molecule inhibitors
against the virus.26–30 This may be due to a number of reasons
including time-consuming experimental testing of large
libraries of compounds or minimal literature available on the
functionality of the virus in host cells. These possible barriers
have prompted us to utilize computational drug design tools,
such as molecular dynamic (MD) simulations to explore the
conformational landscape of this biological system's ATP-
binding region. The crystallographic structures have revealed

evidence of residue mobility, including the rotation of motor
domains, however, the precise structural characteristics of the
helicase upon small molecule binding, is yet to be
determined.12,31–36

In this study we investigate the conformational changes at
the ATP-binding region aer a 130 ns MD simulation of the free
enzyme state as well as a NITD008-bound complex.37 This study
will be critical in understanding how the ZIKV NS3 helicase
functions structurally, thus aiding in the design of effective,
target-specic inhibitors.

2 Computational methods
2.1 System preparation

The ZIKV NS3 helicase in complex with ATP and a magnesium
ion (PDB code: 5GJC)14 was obtained from RSCB Protein Data
Bank.38 The 3-D structure of the experimental ZIKV inhibitor,
NITD008, was obtained from PubChem39 and prepared on
Molegro Molecular Viewer (MMV).40 In the ZIKV crystal struc-
ture of the ATP-bound helicase, residues A247-S253 were
absent, thus the free enzyme (PDB code: 5JMT)13 was utilized in
the docking of NITD008. Deng et al. (2016) reported conclusive
in vivo evidence of the inhibition of ZIKV by NITD008. The
compound is classied as an adenosine nucleoside analog that
competitively inhibits ATP, thus sharing an active site.37

Fig. 1 Cartoon and surface representation of the three domains of the ZIKV helicase and the two active-binding regions (yellow) that form
profound hydrophobic cavities in the electrostatic surface area, allowing ATP and ssRNA to bind.
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2.2 Molecular docking

Molecular docking is a conventional method in computational
chemistry which is utilized in the prediction optimized
geometric conformations of a ligand within an appropriate
binding site.41 The molecular docking soware utilized
included Raccoon,42 Autodock Graphical user interface
supplied by MGL tools43 and AutoDock Vina44 with default
docking parameters. Prior to docking, Gasteiger charges were
added to NITD008 and the non-polar hydrogen atoms were
merged to carbon atoms. Water molecules were removed and
polar hydrogen was added to the crystal structure of the NS3
helicase. NITD008 was then docked into the ATPase binding
pocket of the NS3 helicase (by dening the grid box with spacing
of 1 Å and size of 32 ! 26! 30 pointing in x, y and z directions).
Due to the lack of experimental data describing ZIKV approved
inhibitors, validation of molecular docking based on the lowest
energy pose becomes unreliable.45 To overcome any experi-
mental bias, the ve best conformational poses, based on
binding affinities (kcal mol"1), were subjected to MD
simulations.

2.3 Molecular dynamic (MD) simulations

Molecular dynamic (MD) simulations provide a robust tool to
explore the physical movements of atoms and molecules, thus
providing insights on the dynamical evolution of biological
systems. The MD simulation was performed using the GPU
version of the PMEMD engine provided with the AMBER
package, FF14SB variant of the AMBER force eld46 was used to
describe the protein.

ANTECHAMBER was used to generate atomic partial charges
for the ligand by utilizing the restrained electrostatic potential
(RESP) and the General Amber Force Field (GAFF) procedures.
The leap module of AMBER 14 allowed for addition of hydrogen
atoms, as well as Na+ and Cl" counter ions for neutralization to
both the APO- and bound system.

Both systems were then suspended implicitly within an
orthorhombic box of TIP3P water molecules such that all atoms
were within 10 Å of any box edge.

An initial minimization of 2000 steps was carried out with an
applied restraint potential of 500 kcal mol"1 Å"2 for both
solutes, were performed for 1000 steps using a steepest descent
method followed by a 1000 steps of conjugate gradients. An
additional full minimization of 1000 steps was further carried
out by conjugate gradient algorithm without restrain.

A gradual heating MD simulation from 0 K to 300 K was
executed for 50 ps, such that the system maintained a xed
number of atoms and xed volume, i.e., a canonical ensemble
(NVT). The solutes within the system are imposed with
a potential harmonic restraint of 10 kcal mol"1 Å"2 and colli-
sion frequency of 1.0 ps"1. Following heating, an equilibration
estimating 500 ps of the each system was conducted; the
operating temperature was kept constant at 300 K. Additional
features such as a number of atoms and pressure where also
kept constant mimicking an isobaric–isothermal ensemble
(NPT). The systems pressure was maintained at 1 bar using the
Berendsen barostat.

The total time for the MD simulation conducted was 130 ns.
In each simulation the SHAKE algorithm was employed to
constrict the bonds of hydrogen atoms. The step size of each
simulation was 2 fs and an SPFP precision model was used. The
simulations coincided with isobaric–isothermal ensemble
(NPT), with randomized seeding, constant pressure of 1 bar
maintained by the Berendsen barostat, a pressure-coupling
constant of 2 ps, a temperature of 300 K and Langevin ther-
mostat with collision frequency of 1.0 ps"2.

2.4 Post-dynamic analysis

The coordinates of the free enzyme and NITD008 complex were
each saved every 1 ps and the trajectories were analyzed every 1
ps using PTRAJ, followed by analysis of RMSD, RMSF and radius
of gyration using the CPPTRAJ module employed in AMBER 14
suit.

2.4.1 Binding free energy calculations. Binding free energy
calculations is an important end point method that may eluci-
date on the mechanism of binding between a ligand and
enzyme, including both enthalpic and enthropic contribu-
tions.47 To estimate the binding affinity of the docked systems,
the free binding energy was calculated using the Molecular
Mechanics/GB Surface Area method (MM/GBSA).48 Binding free
energy was averaged over 15 000 snapshots extracted from the
130 ns trajectory. The free binding energy (DG) computed by
this method for each molecular species (complex, ligand and
receptor) can be represented as:

DGbind ¼ Gcomplex " Greceptor " Gligand (1)

DGbind ¼ Egas + Gsol " TS (2)

Egas ¼ Eint + EvdW + Eele (3)

Gsol ¼ GGB + GSA (4)

GSA ¼ gSASA (5)

The term Egas denotes the gas-phase energy, which consist of
the internal energy Eint; Coulomb energy Eele and the van der
Waals energies EvdW. The Egas was directly estimated from the
FF14SB force eld terms. Solvation free energy, Gsol, was esti-
mated from the energy contribution from the polar states, GGB

and non-polar states, G. The non-polar solvation energy, SA.
GSA, was determined from the solvent accessible surface area
(SASA), using a water probe radius of 1.4 Å, whereas the polar
solvation, GGB, contribution was estimated by solving the GB
equation. S and T denote the total entropy of the solute and
temperature respectively.

To obtain the contribution of each residue to the total
binding free energy prole at the ATPase site, per-residue free
energy decomposition was carried out at the atomic level for
imperative residues using the MM/GBSA method in AMBER 14
suit.

The system displaying the most favorable binding interac-
tion and energy contributions were subjected to further
analysis.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 22133–22144 | 22135
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2.4.2 Dynamic cross-correlation analysis (DCC). Dynamic
cross correlation is a widespread method in MD simulations in
which the correlation coefficients of motions between atoms of
a protein may be quantied.49 The dynamic cross correlation
between the residue-based uctuations during simulation was
calculated using the CPPTRAJ module incorporated in AMBER
14. The formula used to describe dynamic cross correlation is
given below:

Cij ¼
!
DriDrj

"

#
hDri2i

!
Drj2

"$1
2

The cross-correlation coefficient (Cij) varies within a range of
"1 to +1 of which the upper and lower limits correspond to
a fully correlated and anti-correlated motion during the simu-
lation process. Where, i and j stands for ith and jth residue
respectively and Dri or Drj represents displacement vectors
correspond to ith and jth residue respectively. The generated
dynamic cross correlation matrix was constructed in Origin
soware.

2.4.3 Principal component analysis (PCA). Principal
component analysis (PCA) is a covariance-matrix-based mathe-
matical technique that is able to demonstrate atomic
displacement and the loop dynamics of a protein.50 Prior to
processing the MD trajectories for PCA, the trajectories of the
free enzyme (APO) and the NITD008-bound complex (complex)
were stripped of solvent and ions using the PTRAJ module in
AMBER 14. The stripped trajectories were then aligned against
their corresponding fully minimized structures. PCA was per-
formed for C-a atoms on 900 snapshots each. Using in-house
scripts, the rst two principal components were calculated
and the covariance matrices were generated. The rst two
principal components (PC1 and PC2) generated from each
trajectory were averaged for both the free-enzyme and NITD008-
complex. The rst two principal components (PC1 and PC2)
were computed and a 2 # 2 covariance matrix were generated
using Cartesian coordinates of Ca atoms. PC1 and PC2 corre-
spond to rst two eigenvectors of covariant matrices. Origin
soware51 was used to construct PCA plots.

3 Results and discussion
3.1 NITD008–NS3 helicase complex

3.1.1 Binding of NITD008 with ZIKV helicase. Research
into ZIKV inhibitors has been minimal before 2016. However,
NITD008, a Flavivirus adenosine analogue was evidenced, both

in vitro and in vivo, to inhibit ZIKV replication. The adenosine
nucleoside analogue competes with natural ATP substrates,
which are incorporated into the growing RNA chain. By this
substitution, NITD008 is incorporated into the RNA chain, thus
terminating the RNA elongation and inhibiting ZIKV
maturation.37

Molecular docking has become a major computational tool
that is used to predict the orientation of a ligand at a binding
site on the receptor. Results from docking oen display
multiple predicted orientations of the ligand within the active
pocket.52

In this study, NITD008 docked at the ATP-binding site in 6
favorable conformations (Fig. S2–S6†), with the highest
binding-affinity being "8.2 kcal mol"1. Scoring functions oen
attempt to reproduce experimental binding affinities, but most
soware do not always yield the best prediction. Validation of
the docked structure with experimentally known drugs was also
not possible due to the lack of FDA inhibitors against
ZIKV.45,53,54

In an attempt to improve the binding affinity prediction of
NITD008, all 6 predicted complexes were subjected to 130 ns
molecular dynamic simulations, allowing for more realistic
receptor exibility in an implicit solvent. Each complex was
then analyzed using the accurate, MM/GBSA, free binding
energy calculation to determine the most favorable pose of
NITD008 at the NS3 ATPase active site.47,55–57

3.1.2 Free energy calculations. The total binding free
energy for each of the 6 poses of the NITD008–NS3 helicase
complex were calculated using the MM/GBSA approach to better
understand the various energy contributions within the binding
pocket and assess which binding pose would show the most
favorable intermolecular interactions at the helicase active site.
Per residue decomposition analysis was also assessed and the
residue–ligand interaction network of each pose were depicted
as “ligplot”maps (Fig. S2–S6†). Of the six systems, the pose with
the highest docking score, "8.2 kcal mol"1, showed the most
favorable free binding energy ("55.90 kcal mol"1) supported
the molecular docking score, indicating a favorable structural
pose of NITD008 at the binding site.

The thermodynamic energy contribution of NITD008 to the
total binding free energy of the complex surmounts to the
stability of NITD008 in the ATP binding pocket and thus the
stability of the complex during the simulation. Table 1
summarizes the free binding energy of the system taking into
account the energies of the NS3 helicase and NITD008.

Fig. 2 represents the residue interaction plot of NITD008
within the active site. The active site residues Gly199, Lys200

Table 1 Summary of free binding energy contributions to the NITD008–NS3 helicase system

Energy components (kcal mol"1)

DEvdW DEelec DGgas DGsolv DGbind

ZIKV helicase "3429.35 $ 30.09 "28 758.51 $ 159.37 "32 187.86 $ 155.05 "5121.93 $ 115.09 "37 309.79 $ 71.27
NITD008 "4.69 $ 0.85 18.12 $ 5.27 13.43 $ 5.28 "221.12 $ 3.35 "207.68 $ 3.72
Complex "37.71 $ 4.12 "382.94 $ 28.72 "420.64 $ 28.59 364.75 $ 22.80 "55.90 $ 7.71
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and Glu286 formed stable hydrogen bonds with highly elec-
tronegative oxygen atoms of NITD008. The residues pocketing
NITD008 within the active site included Gly197, Ala198, Gly199,
Lys200, Thr201, Arg202, Glu288, Gly415, Asn417 and Arg456.

It was also interesting to note that the most favorable
NITD008-pose shared ve active residues with the ATP-bound
helicase reported by Tian et al. (2016). The crystal structure of
the ATP-bound helicase showed Lys200 to stabilize the

triphosphate of the ATP.14 The Lys200 of the NITD008-bound
helicase showed a similar stabilizing hydrogen bond with the
terminal hydroxyl group located on the ribose of NITD008.

Superimposition of NITD008-docked NS3 helicase with the
ATP–NS3 helicase complex demonstrated both compounds to
bind in a hydrophilic conformation despite the carbon and
acetylene substitutions at N-7 of the purine and the 20 position
of the ribose, respectively (Fig. 3).

Fig. 2 Energy contributions of the highest interacting residues at the ATPase active site. The residue ligand interaction network illustrates
stabilizing hydrophobic interactions pocketing NITD008 at the active site. The highest energy contribution was a hydrogen bond interaction
shared between Glu286 and the 3rd oxygen of the ribose component of NITD008.

Fig. 3 Superimposed conformation of structurally similar NITD008 and ATP docked at ATPase site of ZIKV NS3 helicase.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 22133–22144 | 22137
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The structural similarities between NITD008 and ATP, as
well as the active site residue interactions and accurate free-
binding energy prompted the further analysis of NITD008-
complex.

3.2 Systems stability

The length of a MD simulation is paramount when establishing
insights into the structural dynamics of a biological system.
With an extended simulation time, a system is able to reach
convergence, thus becoming stable. To assure the equilibration
of the simulation, the potential energy and temperature where
monitored (Fig. S1†). The average potential energy (!145 774
kcal mol!1) was measured at 300 K, suggesting a stable
conformation at this temperature.

3.2.1 Stability of NS3 helicase APO and bound system. The
C-a backbone root mean square deviations (RMSD) were
monitored throughout the 130 ns MD simulation for both the
free (APO) enzyme and the complex. Both systems reached
convergence aer 60 ns (RMSD deviation < 2 Å). It can be noted
that the C-a backbone atoms in both systems stabilized aer
a 40 ns time period, although, uctuations in rigidity did
increase during the 47–52 ns period in the NITD008 complex
(Fig. 4). This could possibly be due to the occurrence of
conformational changes because of the bond interactions
taking place between NITD008 and the active site residues as
seen in the per-residue energy decomposition.

3.2.2 Conformational uctuations of the NS3 helicase. To
better understand the structural changes that may be occurring
upon ligand binding, the root mean square uctuation (RMSF)
of the C-a atoms of each residue in the APO system and
NITD008-complex were calculated. Fig. 5 clearly demonstrates
greater exibility of residues of the NITD008-complex when
compared to the APO enzyme. Fluctuations take place between

residues 198–204, which form distinct hydrophobic and
hydrogen bond interactions with NIT008D at the active site.
This region, the P-loop, is found in all Flavivirus helicases and
has been shown to have exibility during binding of ATP.14 The
P-loop adopts structural modications to accommodate the
binding of ATP and Mn2+. This exibility extends greatly in
comparison to the APO enzyme, thus verifying ZIKV P-loop
exibility upon ligand-binding. Other uctuations occurred in
domain II, and I around the ATP-active site, at residues 244–248
and 325–348.

Fig. 4 C-a backbone RMSD for NS3 helicase APO enzyme and NITD-
complex conformation. The average C-a RMSD was calculated to be
3.62 Å and 3.77 Å, respectively. Increased fluctuations occurred at 47–
52 ns in the NITD008-complex.

Fig. 5 The RMSF of APO enzyme and NITD008-complex. The
structural flexibility in domain I and II is highly attributed to the binding
of NITD008 to the ATP-active site. This is substantiated by the average
RMSF of the NITD008-complex (2.17 Å), which is significantly higher
than that of the APO enzyme (1.90 Å).

Fig. 6 The radius of gyration (Rg) plot illustrating the difference in
enzyme compactness of the NITD008-complex compared to the APO
enzyme.
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3.2.3 Distribution of atoms around the NS3 helicase
backbone. The radius of gyration around the C-a atoms can
measure the shape and folding of NS3 helicase before and aer
NITD008 binding. The radius of gyration measures the distri-
bution of atoms from the center of mass (COM), thus indicating
how compact a system is. Both the APO (22.05 Å) and NITD008
(22.17 Å) showed very similar structural compactness, however,
there was an atomic distribution in the NITD008-complex from
40–58 ns (Fig. 6). This correlates with the escalated instability of
the complex at 47–52 ns demonstrated in the RMSD plot.

The exibility calculated from the RMSD, RMSF and Rg

encouraged us to explore the dynamic structural modications
of the NS3 helicase aer NITD008 binding.

3.3 Investigation of the dynamic structural features ATP-
active binding region

3.3.1 Loop exibility and distance metrics. The ZIKV NS3
helicase is made up of three known exible loops that are
common to all Flaviviruses: the P-loop (residues 196–203), the
RNA-binding loop (residues 244–255) and the b-hairpin loop
(residues 431–444). These loops may vary in size depending on
the type of virus; however, they all have the same fundamental
structural exibility. The RMSF plot demonstrated major uc-
tuations at the P-loop as well as the RNA-binding loop, the b-
hairpin loop however, showed no signicant conformational
change compared to the APO enzyme. The plot also illustrated
a exible “325–338” region. Fig. 7 depicts three snapshots of the

Fig. 7 Structural flexibility of the P-loop (196–203), RNA-binding loop (244–255), and the 310 helix (339–348) along the trajectory. The RNA-
binding loop (orange) showed the loop shifting down in the APO structure but an upward shift in the NITD008-helicase complex. The P-loop
(yellow) shifted away from the active site in the bound complex but closed in on the active site when no ligand was present. In the APO structure,
the helix-loop-helix stayed, with vibrational movement during the simulation, although, in the bound complex, the 310 helix (pink) was modified
into a a-helix due to ligand motional shifts further into the hydrophobic pocket.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 22133–22144 | 22139
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APO enzyme and NITD008-complex, taking at different intervals
along the trajectory. Clear conformational shis are illustrated
along the trajectory in both APO and bound systems.

To further investigate the conformational changes of the NS3
helicase upon ligand binding, dynamic cross-correlation matrix
(DCCM) analysis was performed at different conformational
positions of the Ca backbone atoms of the free protein and
ligand-bound complex. Highly correlated motions of residues
are represented in the red to yellow regions, whereas, the
negative/anti-correlated movements of residue Ca atoms are
represented by blue-navy regions. It is evident from the corre-
lation map that more globally correlated motion is observed in
the case of the free protein, conrming conformational shis
aer ligand binding. The latter residues of the NS3 helicase,

being residues 500–600, displayed anti-correlated movements
in both the APO and bound complex, supporting the residue
uctuations in Fig. 5. Fig. 7 also depicts anti-correlation
motions at residues “340–390”, which may be explained by
the snapshots, in which, the exible region in the NITD008-
bound complex was converted from a 310-helix to a a-helix.

The P-loop clearly illustrates that when NS3 helicase is in its
APO form and exposed to a 130 ns simulation, the P-loop closes
on the active site by uncoiling the a-helix at Arg203 to form part
of the loop. The loop tip (Ala198) and the adjacent catalytic
residue (Gly451) had an average distance of 9.71 Å compared to
the NITD008-complex distance of 12.75 Å, whereby, as NITD008
becomes more stable at the active site and forms bond inter-
actions, the P-loop is directed away from NITD008 and a larger

Fig. 8 Residue fluctuations at the P-loop region. The APO enzyme illustrates closing of the loop at the active site due to a vacant hydrophobic
pocket. Subsequent to ligand binding and the initiation of stabilizing hydrogen and hydrophobic bond interactions, the P-loop shifts down to
accommodate the ligand, thus increasing the size of the hydrophobic pocket.
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catalytic space becomes available for the ligand as it forms
stable hydrophobic interactions deeper within the hydrophobic
pocket (Fig. 8).

The “325–348” region demonstrates opposing conforma-
tional modications between the APO and complex systems
compared to that of the P-loop. The distance between the two
catalytic residues from the loop tips; residue Ser324 and residue
Asn448, measured for the APO and NITD008-complex was 6.34
Å and 8.34 Å, respectively (Fig. 9). The NITD008-complex had
a greater distance between the residues due to the unraveling of
2 b-sheets found in domain II. This led to a “325–338” loop shi
behind the active site and the “339–348” region being modied
from a 310 helix to a a-helix (Fig. 7). The 310 helix conversion
could be due to many reasons including changes in pH, inter-
actions with other proteins and in this case, ligand binding. The

ligand–protein interactions lead to distances between nitrogen
and oxygen atoms from the protein backbone to uctuate and
as NITD008 moved further into the hydrophobic pocket, these
uctuations and hydrogen bond conversions caused the 310
helix to convert to an a-helix. These changes are important in
illustrated the conformational uctuations upon ligand
binding.

3.3.2 Principal component analysis. Conformational tran-
sitions of the free protein and NITD008-bound complex were
characterized using PCA, a technique that has been widely
employed to present experimentally detected conformational
variations. Fig. 10 highlights the motional shis across two
principle components in the case of NITD008-bound and
unbound NS3 helicase. It is evident that eigenvectors computed
from the respective simulations varied immensely between the

Fig. 9 Residue fluctuations at the “325–348” region. The APO enzyme illustrates widening of the loops of the APO enzyme. The rear loop shifts
down as the P-loop closes in on the active site. The largest fluctuation is seen after system stabilization at 40–60 ns. The NITD008-helicase
enzyme shows instability in both loops throughout the simulations, although, there was no widening of the loops as the rear loop shifted back
rather than downward movement seen in the APO system.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 22133–22144 | 22141
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two systems, further elaborating on the dynamic conforma-
tional uctuations from free to ligand-bound protein. The
unbound system shows restricted structural motions of residue
Ca atoms, whereby the NITD008-bound system shows a larger
spatial occupancy, thus substantiating the rigidity of the
unbound system. This corresponds with the stability of the
systems, illustrating greater distribution of the atoms around
the center of mass and the system stability deviations for the
NITD008-bound system. Correlation from analysis of both the
free and bound protein demonstrates structural loop exibility
aer binding of NITD008 to the ATPase active site.

4 Conclusion
The detailed MD analyses provided in this report demonstrate
the structural alterations in ZIKV NS3 helicase loop exibility
subsequent to binding of potent inhibitor, NITD008.37 Molec-
ular simulations revealed profound motional shis of the ZIKV
P-loop at the ATPase active site. This exibility was revealed in
the RMSF analysis and veried by graphical investigation of the
loop at different time intervals during the simulation. Investi-
gation into the dynamic cross-correlation of the unbound and
bound systems as well as a plot of conformational poses along
the rst two principal components resulted in strongly signi-
cant structural exibility of the NITD008–NS3 helicase system
compared to the rigid unbound protein. The P-loop has
demonstrates similar motional shis in other Flaviviruses as
well as in ZIKV, when natural substrate, ATP binds at the active
site. The competitive inhibitor, NITD008, has been proven to
effectively constrain ZIKV replication both in vitro and in vivo.

Complex stability measured through the 130 ns simulation
showed consistency of NITD008 at the ATPase active site and
binding free energy calculations and residue–ligand networks
revealed strong stabilizing hydrophobic and hydrogen bond
interactions pocketing NITD008 in the active site. Further
conformational changes were illustrated by the “325–338” loop
shi behind the active site and the “339–348” region being
modied from a uctuating 310 helix to a more stable a-helix.

Crystallographic studies have identied the P-loop, speci-
cally Lys200, to be critical in stabilizing the triphosphate moiety
of an NTP, thus allowing exibility upon ligand binding and
activation.12–14 To augment these key ndings, Lys200 showed
strong hydrogen bonds with the NTP-analogue, NITD008. Other
active-hotspot residues included P-loop residues: Gly197–
Arg202, Ala198, Glu286, Gly415, Asn417 and Arg456. The
insights demonstrating the above binding landscape of the
ZIKV NS3 helicase will aid researchers in the identication of
targeted-small molecule inhibitors through structure based
drug design and to utilize pharmacophore models in screening
for effective drugs with minimal toxicity.

Future experimental analysis is needed to fully understand
these loop shis toward inhibition of the enzyme as well as
investigations into possible mutational resistance as seen in
other Flavivirus helicase NTPase sites.
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Figure S1: Potential Energy Fluctuations of the NITD008-NS3 Helicase System at varying 
temperatures during the 100ns simulation. The average temperature of the system was 300K and 
the average potential energy was -145774 kcal/mol. 



Figure S2: Complex of NITD008-NS3 Helicase with a Docking score of -7.7 kcal/mol. 

MM/GBSA calculations yielded a result of -30.00 kcal/mol. The ligand shifted further out of the 

hydrophobic pocket after 150ns of the simulation. This may possibly be due to the ligand not 

interacting with the stabilizing residues of the P-loop. 



Figure S3: Complex of NITD008-NS3 Helicase with a Docking score of -7.6 kcal/mol. 

MM/GBSA calculations yielded a result of -13.67 kcal/mol. The ligand docked out of the 

hydrophobic pocket and during the simulation, due to the lack of stabilizing interactions, the 

ligand moved further out of the active site and into the solvent. 



Figure S4: Complex of NITD008-NS3 Helicase with a Docking score of -7.1 kcal/mol. 

MM/GBSA calculations yielded a result of -11.86 kcal/mol. This ligand showed a similar pose to 

that of the -7.6 kcal/mol-docked pose, however, there was only one residue, Arg462, which 

showed stabilizing hydrogen bonds with the terminal oxygen located on the ribose group of 

NITD008. 



Figure S5: Complex of NITD008- NS3 Helicase with a Docking score of -7.1 kcal/mol. 

MM/GBSA calculations yielded a result of -23.99 kcal/mol. This pose showed the same docking 

score as the above ligand, however, three residues: Arg462, Asn417, and Glu231, were involved 

in stabilizing hydrogen bonds.



Figure S6: MM/GBSA calculations yielded a result of -5.90 kcal/mol, which was lower than that 

of the docking score of 6.9 kcal/mol. This was due to the ligand binding out of the active site of 

the enzyme, thus leading to minimal intermolecular forces at the hydrophobic pocket. 
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