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ABSTRACT 

The entomopathogenic fungus Beauveria bassiana and the bacterium Bacillus thuringiensis var. 

israelensis (Bti) have been widely studied for their role in biocontrol against many arthropods 

and extensively exploited for insect pest control. The purpose of this study was to evaluate the 

effect of four B. bassiana and two Bti formulations and their respective combinations, for the 

biological control of the common house fly, Musca domestica L., a major pest in poultry 

facilities.  

 

In vitro screening was undertaken to select the best B. bassiana isolates from 34 B. bassiana 

isolates and two Paecilomyces isolates. All the isolates of B. bassiana were found to be effective 

against adult house flies, but were marginally effective in controlling fly larvae. The 

Paecilomyces isolates were non-pathogenic towards both adult house flies and larvae. The best 

four isolates R444, 7320, 7569 and 7771 caused >90% mortality within 2d and were subjected to 

dose-mortality bioassays. Microscopic studies using light and scanning electron microscopy 

indicated the different durations of the lifecycle of B. bassiana development on the house fly. 

High temperature was found to delay conidial germination. Spore germination and mycelial 

growth were also inhibited by high adjuvant concentrations. 

 

Laboratory baseline bioassay data established, a dose-time response relationship using a water-

dispersible granules (WDG) Bti formulation that demonstrated that the susceptibility of M. 

domestica larvae to a given concentration of Bti increased as the duration of exposure increased. 

In the laboratory studies, the LC50 and LC90 values of Bti for the larvae ranged between 65 - 77.4 

and 185.1 - 225.9µg ml
-1

, respectively. LT50 and LT90 values were 5.5 and 10.3d respectively. In 

the field, a concentration of 10g Bti kg
-1

 (bran formulation) of feed resulted in 90% reduction of 

larvae for 4wk post-treatment. A higher concentration (2g L
-1

) of Bti in spray (WDG) 

applications was not significantly more effective than the lower concentration of 1g L
-1

. Thus, 

adding Bti to chicken feed has potential for the management and control of house flies in caged-

poultry facilities.  

 

The impact of oral feed applications of a bran formulation of Bti and a commercial chemical 

larvicide, Larvadex
®
, were compared with respect to their efficacy on the control of house fly 



3 

 

larval populations in poultry manure. The sublethal effects were manifested in terms of 

decreasing emergence of adult house flies. Although Larvadex
®
 reduced larval density and 

caused significant reductions in emergence of adult house flies, it generally exhibited weaker 

lethal effects than Bti. The reduction levels achieved as a result of feeding 250mg Bti kg
-1

 at 5wk 

were similar to those achieved as a result of feeding twice the amount of Larvadex
®

 at 4wk to the 

layers.  

 

From both an efficiency and economic perspective, comparisons to assess the impact of 

combining different concentrations of the two Bti formulations were carried out to evaluate their 

success in controlling house fly larvae and adults in poultry houses. The percentage mortality of 

larvae accomplished as a result of using a combination of 250mg kg
-1

 Bti in feed and 2g L
-1

 spray 

applications was equivalent to that obtained as a result of combining 500mg kg
-1

 Bti in feed and 

1g L
-1

 spray application. The cost-benefit analysis (expressed in terms of mortality of larvae) 

indicated that the most effective combination for control of house fly larvae and fly emergence 

was the 500mg kg
-1

 in feed and 2g L
-1

 spray application combination that resulted in 67% larval 

mortality and 74% inhibition of adult house fly emergence. This study presents commercial users 

with possible combinations of applications of the two Bti formulations. 

 

Comparisons of larval mortalities and house fly emergence resulting from the Bti - B. bassiana 

treatments with those from Larvadex
®
 - B. bassiana treatments, showed better control levels 

compared to any of the individual agents alone. The Bti treatments were more effective at 

controlling larval populations and inhibiting the emergence of house flies than  Larvadex
®
,
  
even 

when Larvadex
®
 was applied together with B. bassiana. The effects of the Bti - B. bassiana and 

the Larvadex® - B. bassiana interactions were additive. These trials suggest that the efficacy of 

Bti in the control of house fly larvae may be improved with frequent applications of B. bassiana.   
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INTRODUCTION 

 

The house fly, Musca domestica (L.), is the major pest in poultry facilities (Scott et al., 2000). 

Concerns about animal health, public health and potential litigation all result from house fly 

activity. Furthermore, house flies have developed resistance to virtually every insecticide applied 

against them (Scott et al., 2000), which has made efforts to control flies using biological control 

agents (BCAs) increasingly important. 

 

Most arthropod pests of veterinary importance are largely controlled through spray and dip 

applications of chemical pesticides, but the development of resistance and the possibility of 

contaminating milk and meat are issues associated with most broad-spectrum pesticides.  With 

increasing concerns over levels of insecticide residues in meat and other animal products, the 

agricultural industry is under increased market pressure to reduce its chemical use. There is a 

clear incentive for alternative biological control strategies to be developed. 

 

The fungus Beauveria bassiana, the bacterium Bacillus thurigiensis var. israelensis (Bti) and the 

entomopathogenic nematodes (EPN), Heterorhabditis and Steinernema spp, have been used 

widely to control insects that affect crops or are vectors of human diseases. However there have 

been investigations into the effects of BCAs on insect pests of livestock and poultry. 

 

Entomopathogenic microbes can serve as alternatives to broad-spectrum chemical insecticides. 

Numerous advantages can be found in the utilisation of entomopathogens, in addition to efficacy. 

Advantages include: safety for humans and other non-target organisms, reduction of pesticide 

residues in food, preservation of other natural enemies and increased biodiversity in managed 

ecosystems. However, many factors still limit the acceptance of entomopathogenic microbes by 

commercial users. In order to increase their utilisation, studies need to concentrate on: (a) 

pathogen virulence and speed of kill, (b) pathogen performance under challenging environmental 

conditions such as high temperatures, (c) ease of use and efficiency in existing production 

process, (d) improved formulations that enable ease of application, increased environmental 

persistence and longer shelf-life, (e) integration into managed ecosystems and interaction with the 

environment and other integrated pest management (IPM) components (Lacey et al., 2001). 
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The aims of this study were to: - 

 

a. Review the available literature on the use of entomopathogenic bacteria, fungi and nematodes 

for biological control of flies that affect chicken, dairy and pigs, with special reference to Bti, B. 

bassiana, and the EPNs Heterorhabditis and Steinernema spp. 

 

b. Screen Bti, B. bassiana, and Heterorhabditis sp. for biological control against larvae and adult 

house flies. 

 

c. Describe the external development of B. bassiana on the adult house fly using scanning 

electron and light microscopy. 

 

d. Compare the larvicidal effects of a bran-formulated Bti and a commercial larvicide, Larvadex
®
, 

as feed additives for controlling house flies in caged chicken layers. 

 

e. Compare the effectiveness of combined bran feed and water-dispersible granule (WDG) Bti 

formulations for control of house fly larvae and adults in poultry houses.  

 

f. Combine the best Bti and B. bassiana treatments for the integrated biological control of house 

flies in poultry houses and compare their effects with those of B. bassiana-Larvadex
®
 

combinations. 

 

h. Screen the effects of adjuvants and temperature on three selected Beauveria isolates (7320, 

7569 and 7771). 

 

References 

 

Lacey, L.A., R. Frutos, H.K. Kaya and P. Vail. 2001. Insect pathogens as biological control 

agents: Do they have a future? Biol. Control 21: 230-248. 

 

Scott, J.G., T.G. Alefantis, P.E. Kaufman and D.A. Rutz. 2000. Insecticide resistance in house 

flies from caged-layer poultry facilities. Pest Manag. Sci. 56: 147-153. 

 



18 

 

Chapter 1 LITERATURE REVIEW 

 

1.1 Flies in agriculture 

 

In livestock and poultry production systems, one important component is the management of 

arthropod pests. Insects, ticks, and mites attacking animals cause substantial direct economic 

losses. Many animal pathogens are vectored, or at least maintained, by arthropods, which 

necessitates suppression of these arthropod populations in order to reduce the incidence of 

livestock diseases and the corresponding economic losses.  Furthermore, in many cases the 

arthropods affecting animal production also affect humans, either directly by annoyance and/or 

biting or by fostering the maintenance and spread of human diseases (Axtell, 1986). Public health 

economic losses cannot be accurately estimated but may be substantial. Concentrated animal 

production often increases the populations of arthropod pests affecting livestock and humans in 

an area. This is evident in the case of synanthropic filth flies (e.g., house flies, Musca domestica 

L.) (Axtell, 1986). This cosmopolitan fly is often the most abundant insect where livestock, 

poultry or companion animals are housed. Adults occur in almost all substrates surrounding the 

animals, including feed, faeces, vegetation, and the walls and ceilings of buildings.  Adults also 

occur directly on animals where they feed on available blood, sweat, tears, and other body fluids.  

Throughout their ranges, these flies have adapted to a broad range of environmental conditions 

and cultural practices. Livestock and poultry production practices vary widely, and some 

practices enhance the development of large populations of house flies. 

 

The nature of the arthropod pest problems is related to the three categories of livestock and 

poultry production systems, generally classified as: (1) pasture or range, (2) outdoor confined, 

and (3) indoor confined (Axtell 1986).  In pasture systems, the discrete dung pats of beef and 

dairy cattle are the breeding habitats for horn flies (Haematobia spp.), face flies (M. autumnalis) 

and bush flies (Musca sorbens complex) (Axtell 1986). The flies lay their eggs on the very fresh 

dung and larval development is rapid, with pupation being in the drier fringes of the dung or 

adjacent soil. Destruction of the fly eggs and/or larvae by predation, parasitism, or alteration of 

the dung naturally tends to suppress the fly population (Axtell 1986).  
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In the outdoor confined production system, the high density of the cattle results in the dung being 

concentrated in areas of little or no vegetation. The manure accumulations along fences and 

manure-feed mixture around the feeders in the lots are conditions for the production of large 

numbers of house flies (M. domestica), biting stable flies (Stomoxys spp.) and assortment of other 

minor species of Muscidae and Calliphoridae (blow flies) (Axtell 1986). 

 

Indoor confined systems are systems where problems of manure handling and disposal become 

intense.  In these high-density confined systems, arthropod pest population can explode (Axtell, 

1986). With the indoor confined systems for dairy, swine, and poultry, the fly problem 

intensifies, with the most abundant pest species being the house fly.  Stable flies can also be 

major pests in situations where there is an accumulation of manure mixed with feed and/or 

bedding materials, such as in dairy calf pens. Therefore, efforts to control flies in this 

environment are increasingly important. The house fly, M. domestica L., and the stable fly, 

Stomoxys calcitrans (L.) readily exploit soiled bedding for oviposition and larval development 

(Schmidtmann, 1988). Additional frequently abundant manure-breeding flies in these systems are 

the false stable fly (Muscina stabulans), garbage flies (Ophyra spp.), little house flies (Fannia 

spp.), sphaerocerid dung flies (Coproica, Leptocera), and a variety of calliphorid blowflies 

(Phaenicia, Calliphora, Phormia). In highly automated systems with daily manure removal, 

levels of fly breeding are low. Manure from such systems may be flushed into a lagoon, which is 

commonly an ideal environment for the proliferation of Culex mosquitoes (Rutz and Axtell, 

1978).   

 

Among the confined animal production systems, poultry houses offer a highly managed system 

and often tremendous populations of muscoid filth flies build up, mostly M. domestica (Axtell, 

1999), together with the lesser house fly, F. canicularis (L.) (Achiano and Giliomee, 2005).  

Farmers in poultry systems have to deal with the problem of manure handling, disposal and the 

concurrent problem of fly control (Wilhout et al., 1991). These systems, especially caged layer 

houses, have been studied extensively (Geden, 1984; Rutz and Scoles, 1989; Axtell and Arends, 

1990; Axtell, 1999; Scott et al., 2000; Kaufman et al., 2002).  
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To date, the primary BCAs used against muscoid flies in poultry houses have been the mites 

Macrocheles muscaedomesticae, Fuscuropoda vegetans and Poecilochirus sp., the beetle 

Carcinops pumilio (Geden 1984), and the hymenopterous parasites Spalangia endues, S. 

cameroni, S. nigroaenea, and Muscidifurax raptor (Axtell, 1986).   

 

1.2 Economic impact of flies 

 

Muscoid flies are universal pests of humans and livestock, on virtually every inhabited landmass 

on earth. Four species of muscoid flies, house fly, horn fly, face fly and stable fly are associated 

with livestock and poultry production, causing several billions of dollars per year in damage and 

control costs for livestock producers. Although they do not feed on blood, house flies are 

transmitters of pathogenic organisms of both humans and animals (Axtell and Arends, 1990; 

Kettle, 1995).  

 

The common house fly, M. domestica, is actually a companion animal of livestock and humans 

and is not actually an ectoparasite, but it is far more important economically in many instances 

than any of the flies associated with livestock and poultry. The house fly becomes economically 

important to confined livestock by virtue of its biotic potential and synanthropic behaviour.  

These factors, coupled with the ability of house flies to exploit different developmental habitats 

on feedlots and dairies, have made this pest economically important (Barson et al., 1994). 

 

In cattle units, flies are attracted to cows' eyes, teats and open wounds. In addition to the diseases 

they transmit, extreme discomfort caused by constant fly attack can result in reduced weight gain 

and lower milk yield in cattle. Milk quality also suffers from the presence of excessive numbers 

of flies and production can be downgraded in the absence of adequate fly control (Lancaster and 

Meisch, 1986). Fly treatment has been shown to result in a significant increase in milk yield 

(Morgan and Bailie, 1980) and in meat production (Stork, 1979). 

 

On poultry farms, heavy fly infestations can mean more time spent cleaning eggs to remove 

flyspecks, and possibly downgrading egg quality. Fly maggots have a negative impact on poultry 

manure quality due to liquefaction, which also fosters the release of ammonia, which is 
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responsible for increased chronic respiratory diseases (CRD), increased corrosion and increased 

ventilation costs. Fly treatment has been shown to result in a marked improvement in egg 

production (Abrams, 1976). 

 

The major diseases transmitted by flies to humans and domestic animals are enteric diseases and 

eye infections. Flies also play an important role in the epidemiology of mastitis in cattle 

(Hillerton and Bramley, 1985). Various other infections and several parasitic diseases can also be 

carried and spread by flies. Flies are important vectors of several enteric infections affecting 

humans and domestic animals including Salmonella, Shigella, Campylobacter, Escherischia coli, 

Klebsiella, Enterobacter, Chlamydia, Helicobacter, Klebsiella, anthrax, parasitic worms, 

mastitis, pinkeye, amoebic dysentery, tuberculosis, cholera and Newcastle disease (Graczyk et 

al., 2001).  

 

In cattle, the principal ophthalmic infection is infectious keratoconjunctivitis or pink eye 

(Greenberg, 1973; Stork, 1979). The causative agent here is Moraxella bovis and the major vector 

is the face fly, Musca autumnalis (Gerhardt et al., 1982). Flies are implicated as vectors of 

various organisms causing both chronic and acute mastitis in cattle. Summer mastitis, due to 

Corynebacterium pyogenes, which is mainly spread by the head fly Hydrotaea irritans and the 

face fly Musca autumnalis (Hillerton and Bramley, 1985). Flies are also involved in the 

spreading and transmission of other forms of mastitis, due to other species of Corynebacterium, 

staphylococcal and possibly streptococcal infections (Braverman et al., 1999; Yeruham et al., 

1999). Heifers from herds using fly control usually have a lower prevalence of mastitis than herds 

without fly control (Nickerson et al., 1995). 

 

 Flies are frequent carriers of helminthes. Several nematodes, such as Parafilaria bovicola, 

Thelazia spp. and Heterotylenchus automnalis, are found in various fly species and especially in 

the face fly (Bech-Nielsen et al., 1982; Geden and Stoffolano, 1982; O'Hara and Kennedy, 1989; 

Chirico, 1994). Thelaziosis, an eyeworm infection affecting cattle, sheep, horses and goats, is 

mainly transmitted by the face fly Musca automnalis (Greenberg, 1973; Stork, 1979; Lancaster 

and Meisch, 1986; O'Hara and Kennedy, 1991). Several fly species have also been found 
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carrying eggs of Ascaris, Trichuris and Ancylostoma and may therefore play a role in the 

transmission of helminthiasis (Dipeolu, 1982; Oyerinde, 1976; Umeche and Mandah, 1989). 

 

The house fly is a vector of cestodosis in poultry (Abrams, 1976). In poultry, flies can transmit 

coccidiosis as well, although this is not the major way of spreading of the disease (Greenberg, 

1973; Milushev, 1978).  

 

Other human and animal diseases for which nuisance flies can also be considered as possible or 

potential vectors, although their role in the dissemination of these pathogens is usually not a 

major one include: Helicobacter pylori in humans (Grubel et al., 1997), Aujesky's disease in pigs 

and sheep (Medveczky et al., 1988), Cryptosporidium parvum in cattle (Grazyk et al., 1999), 

foot-and-mouth disease in ungulates (Greenberg, 1973), mycobacterial infections in cattle and 

pigs (Fischer et al., 2001), anthrax (Turell and Knudson, 1987), and bovine rhinotracheitis in 

cattle (Lancaster and Meisch, 1986). This list is far from being exhaustive. For several diseases, 

the role of flies as vectors is well established and well documented. For some others, flies may 

only play a minor role in transmission. However, given the huge size of fly populations, their 

role cannot be neglected from an epidemiological point of view.  

 

In addition to their direct impact on livestock and poultry production, flies are frequently 

considered nuisances in urban and recreational environments. Because of the threat of disease 

and the nuisance impact of these flies, their control is mandated by law and overseen by local 

regulatory agencies responsible for assuring citizen health. Litigation due to house flies 

associated with livestock and poultry production has become a major issue in many parts of the 

country. Whenever fly populations reach plague proportions in locations close to human 

habitation, they represent a serious health and environmental hazard - not just to the farmer, but 

also to neighbours and local communities.  

 

Fly problems have resulted in lawsuits in several instances and in severe legal limitations being 

placed upon agricultural producers. In a list of prioritized needs created in 2005 by the DAEA 

(KZN) and DoH (KZN) report of the intergovernmental fly task team, were 

• changes to the way manure is managed; 
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• implementation of an effective and sustainable chemical fly control programme; 

and, 

• implementation of a biological control programme.  

Adequate fly control is therefore justified both from a public health and an economic point of 

view. 

 

1.3 Potential for biological control of house flies 

 

The development of pesticide resistance by the house fly (Scott et al., 2000; Kaufman et al., 

2001b) has increased the willingness of producers to seek alternative methods for fly 

management. In light of existing problems with chemical control of house flies, research over the 

last two decades has been centred on the more highly destructive parasitoid and predatory 

species.  For example, the encyrtid Tachnaephagus zealandicus Ashmead, five species of the 

pteromalid genus Muscidifurax, and Spalangia sp. were evaluated for their capabilities of 

attacking dipterous larvae and pupae in various breeding sources.   They are believed to be 

capable of successful fly suppression, if the right species and strains are applied in the right 

locality (Legner and Brydon, 1966; Legner and Dietrick 1972; 1974; Morgan et al., 1975, 1977; 

Olton and Legner, 1975; Pickens et al., 1975; Morgan and Patterson, 1977; Rutz and Axtell, 

1979; Gold and Dahlsten, 1981; Propp and Morgan, 1985; Axtell and Rutz, 1986; Legner, 1988b; 

Mandeville et al., 1988; Pawson and Petersen, 1988).   

 

Although partially successful, none of these strategies have become the leading method for fly 

control, and the wrong choice of a parasitoid strain may have detrimental results (Legner, 1988b).  

Instead, the focus is on integrated controls including other methods such as cultural practices, 

adult baiting, and aerosol treatments with short residual insecticides.  However, it is generally 

agreed that existing predatory complexes exert great influences on fly densities (Legner et al., 

1975b; Geden, 1984; Geden et al., 1987, 1988; Geden and Axtell, 1988), that many biological 

control agents of endophilous flies have not been thoroughly surveyed, and that their potential 

has not been thoroughly surveyed and adequately assessed (Mullens, 1986). 
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Bacillus thuringiensis serovar israelensis has been found to be toxic to the house fly (Indrasith et 

al., 1992; Hodgman et al., 1993; Zhong et al., 2000). Several other isolates of B. thuringiensis 

which are active against house fly larvae have also been found (Johnson et al., 1998). 

Thuringiensin-containing preparations have been used to control larvae of M. domestica (Mullens 

and Rodriguez, 1988; Mullens et al., 1988a). It was also been reported that by Carlberg et al. 

(1991) that nuisance flies in cattle sheds, slaughter houses and latrines could be successfully 

controlled by applying Bt var thuringiensis to larval breeding sites.  

 

Few fungi have been evaluated for control of house flies. To date, few field studies have 

evaluated entomopathogenic fungi, other than Entomophthora muscae (Cohn) Fresenius, for 

control of the house fly (Geden et al., 1993; Mullens et al., 1987; Watson and Petersen, 1993). 

Under laboratory conditions E. muscae (Cohn) Fresenius readily infected house flies (Kramer and 

Steinkraus, 1981).  Occassionally, E. muscae epizootics devastate fly populations (Mullens et al., 

1987; Watson and Petersen, 1993; Steinkraus et al., 1993), and laboratory-infected house flies 

have been used to induce epizootics in the field (Kramer and Steinkraus, 1987; Geden et al., 

1993; Steinkraus et al., 1993). However, the potential of E. muscae for house fly suppression is 

limited by short-lived conidia, intolerance to high temperatures, by the apparent requirement for 

large populations of flies to sustain epizootics (Geden et al., 1995) and by the fact that it is 

difficult to grow artificially. Few other studies are available documenting the use of B. bassiana 

in controlling the house fly. Steinkraus et al. (1990) first reported the natural occurrence of B. 

bassiana (Balsamo) Vuillemin on the house fly. The entomopathogenic fungus B. bassiana 

(Balsamo) Vuillemin has potential as a biological control component of an integrated fly 

management program. Irrespective of its extensive host range, few reports of fly-derived B. 

bassiana strains exist (Humber, 1992). Steinkraus et al. (1990) reported that B. bassiana infected 

1% of house fly adults under natural conditions in central New York. Despite the low prevalence 

of disease, strains collected by Steinkraus were virulent in subsequent laboratory studies (Watson 

et al., 1995). One strain (P89), when formulated in water and a surfactant, induced 99% mortality 

in house flies (dose 1x10
8
 conidia per cm

2
) within 6d of exposure.  

 

Paecilomyces lilacinus is a soil saprophytic hyphomycete with a broad-based distribution 

(Samson, 1974). The efficacy of the fungus P. lilacinus has been widely demonstrated against 
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root knot nematodes, cyst nematodes and other important plant and animal parasitic nematodes. 

This fungus has also been reported as a human pathogen (Takayasu et al., 1977). Until recently, 

there were no reports of the use of the nematophagous fungus P. lilacinus in the control of insect 

pests (Fielder and Sosnowska, 2007). 

 

Nematodes of the genera Heterorhabditis Poinar and Steinernema Travassos, in conjuction with 

their symbiotic bacteria species are pathogenic on many insect pests. Several studies have 

addressed the efficacy of entomopathogenic nematodes against the house fly, M. domestica L., in 

the laboratory and in confined poultry environments (Renn et al. 1985; Geden et al. 1986; Belton 

et al. 1987; Mullens et al. 1987a, b; Renn and Wright, 2000). 

 

1.4 Bacillus thuringiensis, Beauveria bassiana and entomopathogenic nematodes as BCAs of 

livestock pests.  

 

1.4.1. Bacillus thuringiensis Berliner 

 

The species Bacillus thuringiensis Berliner (Bt) is a Gram-positive, aerobic, endospore-forming 

bacterium.  Although Bt can be isolated from many environmental sources and that it is typically 

referred to as a ‘soil bacterium’, it has several features indicating that its principal ecological 

niche is insects (Meadows, 1993).  The species Bt was first isolated from diseased larvae of the 

silkworm, Bombyx mori, in Japan by Ishiwata in 1901.  It was not officially described, however, 

until it was re-isolated by Berliner in 1915 from diseased larvae of the Mediterranean flour moth, 

Anagasta kuehniella, in Thurungia, Germany, hence the derivation of the name thuringiensis. He 

was able to show that the bacterium was toxic when the spores were fed to insects. This 

suggested that the bacterium could be used to control insects. 

  

Though commonly referred to as Bt, the species B. thuringiensis as currently recognized as a 

complex of subspecies, all of which are recognized by the production a parasporal body during 

sporulation.  The parasporal body is the principal characteristic used to differentiate this species 

from closely related species, such as B. cereus and other bacilli. The parasporal body contains 

one or more proteins, typically as crystalline inclusions, and most of these are highly toxic to one 
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or more species of insects. The inclusions are composed of crystal (Cry) proteins that are toxic to 

a wide variety of insect species.  In the insecticidal isolates, the toxins are known as endotoxins 

and often occur in the parasporal body as protoxins that after ingestion dissolve and are converted 

to active toxins through by proteolytic enzymes in the host gut. Crystal proteins have been 

classified as CryI to CryVI (Table 1.1), depending on host specificity (Höfte and Whiteley, 1989; 

Tailor et al., 1992). These are located on large conjugative plasmids (Carlton and Gonzalez 

1985), hence providing a mechanism for the transfer of the genes between and within different 

subspecies (Cooper, 1994). It is common for individual Bt strains to synthesize more than one 

toxin, but each acts specifically on susceptible insects (Höfte and Whiteley, 1989; Dulmage et al., 

1990). 

 

In addition to the crystal—associated toxic proteins linked to sporulation, some Bt isolates 

synthesise other unrelated proteins during vegetative growth. These proteins, termed vegetative 

insecticidal proteins (or Vips), have demonstrated insecticidal activity against a wide spectrum of 

lepidopteran insects (Estruch et al., 1996; Schnepf et al., 1998). Another secretory product, 

nonproteinaceous β-exotoxin, known to be particularly active against dipteran species (Pinnock, 

1994), is not insect specific. The β-exotoxin is an adenine nucleotide analogue and because it 

interferes with protein synthesis, it is considered harmful to mammals and is therefore unlikely to 

be approved for registration (Glare and O’Callaghan, 2000). An interesting aspect of Bt general 

biology is that, unlike most other insect pathogens, it rarely causes natural epizootics in insect 

populations (Federici, 1999).  

 

 
 

 

Table 1.1 Host specificy of Cry protoxins
1
 

Homology group Host specificity Variations in host specificity 

CryI Lepidoptera CryIA(b)2 and CryIC3 may confer toxicity against Diptera, 

CryIB4 may confer toxicity against Coleoptera 

CryII Lepidoptera and Coleoptera CryIIA – Lepidoptera and Diptera 

CryIIB and IIC – only Lepidoptera 

CryIII Coleoptera  

CryIV Diptera  

CryV Lepidoptera  

CryVI Nematodes  
1
Lereclus et al., 1993; 

2
Haider et al., 1987; 

3
Smith et al., 1996; 

4
Bradley et al., 1995. 
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1.4.1.1 Mechanism of action of Bacillus thuringiensis 

 

The bacterium B. thuringiensis produces a heterogenous range of insecticidal, nematocidal and 

acaricidal toxins, most notably the crystal (δ-endotoxin) proteins and thuringiensin (β-exotoxin) 

nucleotide. The B. thuringiensis toxins, other than the δ-endotoxins, are generally less host 

specific. The most notable of these toxins, thuringiensin, is highly toxic to dipteran insects and in 

particular, the house fly, M.  domestica (Bond et al., 1971).  The host spectrum of these toxins 

varies considerably according to their different modes of action. The insect, usually the larval 

stage, must ingest the crystal protoxin for them to be effective (Schnepf et al., 1998). The 

protoxins are converted to toxins that exert their effect on the host by causing lysis of midgut 

epithelial cells, which leads to gut paralysis, cessation of feeding and eventual death of the host. 

Upon ingestion, the crystals are solubilized by the alkaline pH of the midgut and the protein 

protoxins are processed by midgut proteases to release the active toxins (Lecadet and Dedonder, 

1967). Binding of activated protein toxins to specific cell surface receptors on the midgut 

epithelia leads to formation of pores in the apical membranes, leading to an influx of ions and 

water, causing gut lysis and insect death (Gill et al., 1992; Theunis et al., 1998) within a day or 

two.   

 

1.4.1.2 Bacillus thuringiensis as a BCA 

 

Most studies have concentrated on the effect of Bt on insects that affect crops or are vectors of 

human diseases. Preparations containing Bt are widely used in the forestry and horticultural 

industries (Kellar and Langenfruch, 1993; Navon, 1993; Rajakulendran, 1993; Teakle, 1994). 

Pesticide formulations containing Bt subsp. israelensis are used for control of medically 

important dipteran pests of the suborder Nematocera (mosquitoes and blackflies) (Mulla, 1990; 

Becker and Margalit, 1993; Becker, 1997). However, few have investigated the toxic effects of Bt 

on insect pests of livestock (Gough et al., 2005) (Table 1.3). Interest in this research area has 

been brought about by the high economic importance of these pests and by the concern over their 

increasing resistance to chemical insecticides. For many of these pests, Bt has shown great 

potential for development as a control agent (Pinnock, 1994), and research on the toxins and their 

mode of action against livestock pests is in progress in many countries.  Strains with activity 
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against the sheep louse (Drummond and Pinnock, 1992; Pinnock, 1994), the sheep blowfly 

(Pinnock, 1994), and hornfly (Gingrich and Haufler, 1978; Temeyer, 1984, 1990, 1994) have also 

been reported. To date, no commercial preparation of Bt has been released for the control of 

insect pests of livestock (Gough et al., 2005). One of the limiting factors has been the availability 

of specific strains with high toxicity to insect pests of sheep and cattle (Gough et al., 2002; Brar 

et al., 2006). 
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Table 1.3 Bacillus thuringiensis in use as a microbial agent of pests of livestock and poultry 

Strain of Bacillus 

thuringiensis 

Target organism Method of 

application 

Comments Reference(s) 

 Bt subsp. kurstaki strain 

WB3S16 

Bovicola ovis, 
(sheep biting louse) 

Feeding assays Paralysis and death of B. ovis occurred between 8-12 h postfeeding. Hill and Pinnock, 1998. 

Bt  strain 4412 , HD-1 and 

HD-2, 

Bt subsp. tenebrionis, 

Bt subsp. israelensis 

Lucilia cuprina  

Chrysomya albiceps 

(tropical  blowflies)  

M. domestica  

Feeding assays The addition of spores to the δ-endotoxin was, however, essential to 

inducing significant mortality in larvae of Chrysomya albiceps 

(Weid.) and enhanced mortality in the other species tested.  

Johnson et al., 1998 

Bt strain YBT-226 

  

M.  domestica, 

Chrysomela scripta 

cottonwood leaf beetle),  

Manduca sexta (tobacco 

hornworm). 

Feeding assays Bioassays resulted in significant mortality at low to moderate 

concentrations to larvae of the house fly (M. domestica, Diptera), 

cottonwood leaf beetle (Chrysomela scripta, Coleoptera), and 

tobacco hornworm (Manduca sexta, Lepidoptera). 
 

Zhong et al., 2000 

96 Bt strains – 19 of which 

with known activity against 

Diptera 

L. cuprina (Weidemann) 

(sheep Blowfly); Bovicola 

ovis (Schrank) (sheep 

louse); Haematobia 

irritans exigua (de 

Meijere) (buffalo fly)  

Feeding assays 

 
Some Bt isolates were found to have toxic activity against larvae of 

the two fly species and moderate activity against the sheep louse. 

 

Gough et al., 2002 

Several strains of Bacillus 

thuringiensis 

L. cuprina Wiedemann.   Bt isolates producing Cry1Ba were toxic to L. cuprina larvae and 

provided protection against flystrike for up to 6 weeks. 

Heath et al., 2004 

A series of 410 Bt isolates 

 

Haemonchus contortus, 

Trichostrongylus 

colubriformis and 

Ostertagia circumcincta 

(Livestock parasitic 

nematodes) 

Growth medium Two strains inhibited larval development of H. contortus, T. 

colubriformis and O. circumcincta. Adult H. contortus and O. 

circumcincta showed complete cessation of movement within 2 and 

4 days, respectively. 

 

Kotze et al., 2005 

Several isolates of Bt 
 

L. cuprina (Wieldmann) Feeding assays These isolates were highly toxic to feeding larvae in both in vitro 

bioassays and in vivo on sheep. 
Gough et al., 2005 

Bt strain L366 Haemonchus contortus In vitro larval 

development and 

migration assays 

Significantly more toxicity in migration assays than development 

assays, some fully developed Bt-exposed larvae were less able to 

migrate than controls, and hence compromised in their ability to 

infect sheep. 

O’Grady et al., 2007 
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Table 1.4 Beauveria bassiana use as a microbial agent of pests of livestock and poultry 

Strain of B. 

bassiana 

Target organism Method of Application Comments Reference(s) 

B. bassiana 

(HF88) 
M. domestica L. B. bassiana conidia formulated as a 

dust or aqueous solution were 

applied to plywood surfaces, to 

which adult lies were exposed. 

Starch dust formulations were more effective than aqueous 

suspensions. Adult flies were susceptible (94-100% mortality) 

when conidia applied to boards was 107 conidia /cm2. 

Geden et al., 1995 

B.  bassiana (P89, 

L90) 

 

M. domestica L. 

Stomoxys calcitrans L. 

(stable fly) 

B. bassiana conidia formulated as a 

dust or aqueous suspension  were 

applied to plywood surfaces, to 

which adult flies were exposed. 

Adult house fly mortality was dose dependent, with ≥90% dying 

at 1x108 conidia/cm2 for Strains P80 and L90 formulated as dusts.  

A dose of 1x108 conidia/cm2 killed only 70 and 84% of adult 

stable flies. Aqueous formulations were less effective for 

controlling both species of adult flies. B. bassiana was most 

effective against the house fly larvae at 1x1010 conidia/cm3, at 

which 56 and 48% died following treatment with Strains L90 and 

P89 respectively. 

Watson et al., 1995 

B.  bassiana 

(Balsamo) 

Vuillemin 
  

M. domestica L. Conidial spray formulations were 

applied to the inside of 

hutch walls. 

 
 

The prevalence of B. bassiana in the adult fly population was 

significantly greater in hutches sprayed with conidia than in 

untreated control hutches. Maximum weekly recovery of B. 

bassiana was 43 and 47% of the collected fly populations at two 

treatment farms.  

Watson et al., 1996 

B. bassiana 

(HF88, HF89, 

WV, NC) 

Alphitobius 

diaperinus Panzer), 

(The lesser 

mealworm) 

Forced-contact bioassays with 

either 1 ml of aqueous or 0.1 g of 

starch dust inoculum. 

Starch dust formulations were more effective than aqueous 

suspensions. Young larvae were more susceptible than adult 

beetles. 

Geden et al., 1998 

B.  bassiana 

(90517) 

Ambylomma 

americanum Linnaeus 

(the lone star tick), A.. 

maculatum Koch 

Ticks were submerged for 30 s in 

spore suspensions (ranging from 

104 to 108 cells/ml)  

Fungal suspensions of conidia harvested from potato dextrose 

plates containing 108 conidia /ml caused greater than 90% 

mortality in adult A. maculatum but less than 10% mortality in 

adult A. americanum over a 28 day time course. 

Kirkland et al., 2004 

B.  bassiana 

product, balEnce 

  

M. domestica L. Applications were made using 

backpack mistblowers calibrated to 

allow a coarse fog of 40 µm or 

larger.  

Adult house fly populations were lower in B. bassiana-treated 

facilities during the spray and post-spray periods. The numbers of 

house fly larvae recovered in B. bassiana-treated facilities were 

less than one-half that of the pyrethrin-treated facilities. 

Kaufman et al., 2005 

B. bassiana  

(IHEM 18747) 

Psoroptes ovis Hering 

(parasitic mite) 

Adult females immersed into 

increasing concentrations of conidia 

(104– 109 conidia ml−1). 

Egg laying was not reduced by the fungal infection but both the 

hatchability of the eggs and the life span of the emerging larvae 

were significantly reduced. 

One hundred percent of healthy mites exposed to infected 

cadavers or surfaces acquired the infection. 

Lekimme et al., 2006 
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1.4.2 Beauveria bassiana (Balsamo) Vuillemin 

 

White muscardine, B. bassiana (Balsamo) Vuillemin (Hyphomycetes), is a ubiquitous fungus 

occurring naturally in many areas of the world (Roberts et al., 1981; Feng et al., 1994, Humber, 

1996). Isolated from over 700 species of insects from nine orders, it most commonly infects 

Lepidopteran and Coleopteran hosts (Fargues and Remaudiere, 1977; Li, 1988). Beauveria 

bassiana was the first reported insect pathogen, originally isolated from the silkworm, Bombyx 

mori L. (Lepidoptera Bombycidae), by Agostino Bassi in 1834 (Feng et al., 1994), and has 

subsequently become the most extensively studied and exploited entomopathogen (Glare and 

Milner, 1991; Hajek and St. Leger, 1994). Beauveria bassiana is now exploited in greenhouse 

and outdoor crops as a tool for the control of many agricultural pest arthropods including 

whiteflies, aphids, thrips, psyllids, weevils and mealybugs (Shah and Goettel, 1999). 

 

1.4.2.1 Mechanism of action of Beauveria bassiana  

 

Pathogenesis of insect hosts due to B. bassiana occurs mainly through infection via the 

integument, though it may also enter through the respiratory system (Feng et al., 1994). 

Penetration through the host cuticle is the mode of entry for most entomopathogenic fungi 

(Charnley, 1989). Host infection by most entomogenous fungi including B. bassiana, consists of 

conidial attachment to the cuticle (Boucias and Pendland, 1991), followed by germination and 

infection of the target insects, the penetration of hyphae through the activity of cuticle lytic 

enzymes produced by the fungus, proliferation inside the hemocoel and host death due to 

toxaemia (Khachatourians, 1991). Under favourable conditions, the fungus emerges and produces 

aerial conidia over the host cuticle (Feng et al., 1994; Gupta et al., 1995) and sporulation takes 

place approximately 4-6d after initial infection (B. bassiana) (Pell et al., 2001). 

 

The virulence of B. bassiana is attributed to the production of toxins including beauvericin, 

bassianolide and oosporein (Gupta et al., 1995).  Some toxins are proteases of high molecular 

weights, and they either directly damage the principal functions of the hemolymph or cause 

damage indirectly by producing a toxic by-product in the insect (Kučera and Samšiňáková, 

1968).   
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1.4.2.2 Beauveria bassiana as a BCA 

 

Several pests (Table 1.4) of livestock and poultry that have been targeted with the use of B. 

bassiana, include the lesser mealworm, Alphitobious diaperinus (Panzer) and the hide beetle, 

Dermestes maculates DeGeer (Crawford et al. 1998; Geden et al. 1998; Geden and Steinkraus 

2003), and the stable fly, Stomyxys calcitrans L. (Watson et al., 1995).  Recent studies by Watson 

et al. (1995; 1996) and Kaufman et al. (2005) demonstrated that B. bassiana has potential for 

house fly control, even though the practical use of B. bassiana isolates as biological control 

agents was dependent on dosage and formulation (Watson et al., 1995). 

 

1.4.3 Entomopathogenic nematodes 

 

Entomopathogenic nematodes (EPN) are small (less than 1-3mm) parasitic roundworms that 

occur most commonly in nature as parasites of soil-inhabiting insects. They have relatively 

simple and typical life cycles that, aside from the egg include four larval stages and one adult 

stage. Although known as EPN, but also referred to as beneficial or insecticidal nematodes, these 

nematodes are species in the genera Steinernema (family: Steinernematidae) and Heterorhabditis 

(family: Heterorhabditidae) of the Phylum Nematoda.   

 

These nematodes are unusual, however, in that they have established a mutualistic relationship 

with bacteria that they harbour within their alimentary tracts, and these bacteria kill the insects 

rather quickly after the nematode invades the insect body.  The bacteria have evolved specific 

relationships with individual species of nematodes (Ciche et al., 2006).  For example, the 

bacterial species Xenorhabdis nematophilis is associated with steinernematid Steinernema 

carpocapsae whereas Photorhabdis luminescens is associated with Heterorhabditis 

bacteriophora (Kaya and Gaugler, 1993).  Both bacterial genera belong to Enterobacteriaceae.  

The nematodes employ the bacteria to help overcome the humoral and cellular defenses of insect 

hosts, to protect the insect cadaver against saprophytic microorganisms, bacteriovorous 

nematodes and scavenging insects, and as a substrate for growth and reproduction (Ciche et al., 

2006). The bacteria utilize the nematode vector for delivery into the insect hemocoel and to 

persist outside the insect host (Ciche et al., 2006). Moreover, nematodes devoid of symbiotic 

bacteria usually fail to cause insect death, or if death occurs, they fail to grow and reproduce 

(Poinar et al., 1977; Han and Ehlers, 1998).  



33 

 

Bacterial symbionts multiply rapidly within the host and produce a variety of anti-microbial 

compounds to suppress the growth of contaminants or competing pathogens (McInerney et al., 

1991a; 1991b). In addition, these nematodes also produce an unusual quasi-resistant larval stage, 

called ‘dauer larva’ – the infective juvenile (IJ), the insect infective stage of these nematodes, 

which is actually the third-instar juvenile surrounded by the molted cuticle of the second stage.  

In the life cycle of these nematodes, the dauer larva seeks out and infects an insect.  Infective 

juveniles, small size, lack of appendages, limited sensory modalities and capabilities, and the 

size/mobility discrepancy between parasite and host constrain the host-seeking ability of 

entomopathogenic nematodes (Lewis, 2006). 

 

1.4.3.1 Mechanism of action of entomopathogenic nematodes 

 

Depending on the host and the nematode species, different routes of penetration are taken. One 

route of entry is through the mouth opening or the anus. Using the anus as an entry site represents 

the main route for infection of house fly maggots and leafminers (Renn, 1998). In grubs and 

sawfly larvae invasion is more successful via the mouth than via the anus (Georgis and Hague, 

1981; Cui et al., 1993). Alternatively, entomopathogenic nematodes may enter the tracheal 

system via the spiracles. In sawfly larvae, the spiracles are the most important route of entry by S. 

carpocapsae (Georgis and Hague, 1981).  

 

Another site of penetration by entomopathogenic nematodes is the integument or the 

intersegmental membranes of an insect. Penetration through the integument was shown to be the 

main route of entry for S. feltiae into leatherjackets (Peters and Ehlers, 1994). Another port of 

entry to adult arthropods is the gonad openings. This is the main entry port for nematodes into 

ticks (Samish and Glazer, 1992).  

 

Once within the hemocoel, the IJ nematodes begin to feed on hemolymph; while doing so they 

defacate, releasing the symbiotic bacteria (Ciche and Ensign, 2003; Martens et al., 2004). These 

quickly colonize the insect, killing it within 1 to 3 days.  The nematodes feed on the bacteria and 

tissues of the dead larva, maturing and undergoing from two to three generations within the dead 

insect’s body over a period of 1 to 2 weeks.  The final generation results in the formation of 

thousands of dauer larvae that leave the cadaver in search of a new host (Ciche et al., 2006). 
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When penetrating into the insect’s hemocoel, the IJ encounters the non-self response by the 

immune system of the host. Nematodes can be trapped in cellular or noncellular capsules. 

Encapsulation of entomopathogenic nematodes has been reported in Orthoptera, Coleoptera, 

Diptera, and Lepidoptera (Dowds and Peters, 2002). Nematodes may resist encapsulation in 

insects by either avoidance of being recognized (evasion), by overwhelming the immune system 

by multiple infections and disrupting encapsulation (tolerance), or by actively suppressing the 

encapsulation response (suppression) (Dowds and Peters, 2002). Nematodes themselves may also 

release an immune-depressive factor (Götz et al., 1981).  

 

The nematode-bacterium complex kills insects so rapidly that the nematodes do not form an 

intimate host-parasite relationship.  This rapid mortality permits the nematodes to exploit a range 

of hosts that spans nearly all-insect orders (Grewal and Georgis, 1999). However, behavioural 

barriers restrict nematode efficacy to a few selected hosts (Gaugler, 1988) in the field. 

 

1.4.3.2 Entomopathogenic nematodes as BCA 

 

EPN are found under diverse ecological conditions including cultivated fields, forests, grasslands, 

deserts, and ocean beaches (Hominick et al., 1996).  They can be excellent biological control 

agents for soil-dwelling stages of many insect pests and are fast acting, killing target insect pests 

in 24-48h (Kaya and Koppenhöfer, 1999).  In comparison, many other biological control agents 

take days or weeks to kill the target insect pest. EPN are safe to most non-target organisms and 

the environment, are easy to apply, and are compatible with most agricultural chemicals (Kaya 

and Gaugler, 1993).  They also have a broad host range, ability to search for pests, and a potential 

to reproduce after application (Kaya and Gaugler, 1993). Table 1.5 shows some examples of the 

use of EPN’s use as microbial control agents of insects. 
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Table 1.5 Some examples of Steinernematid and Heterorhabditid EPNs in use as a microbial agent of pests of livestock and poultry 

 

Strain Target Method of Application Comments Reference 

S. felitae (=bibionis), H. 

megidis 

M. domestica L. Diet medium S. feltiae (=bibionis) killed 94% of house fly eggs and 90% of first instar 

larvae and 100% by D6. 

By D2, in the same medium, 1 000 000 encapsulated H. megidis had 

killed 71.4% of eggs and 90% of first instar larvae. This increased 

significantly (P 0.01) by D6, to 99.2% and 100% respectively. 

Renn, 1995 

S. felitae, H. megidis M.  domestica L. Baits 

sprays 

Significantly fewer flies were counted in houses baited with either S. 

feltiae or H. megdis. 

Significantly fewer flies were counted after spraying with S. feltiae. 

Renn, 1998 

Heterorhabditis Poinar  

Steinernema Travassos 
 

M. domestica L. 

 

Filter paper assays 

 
None of the 22 strains of Heterorhabditis infecting maggots caused 

significant levels of mortality in filter paper assay but produced 

significant fly mortality in the manure substrate. 

 

10 strains of Steinernema infected maggots, of which 7 strains (4 S. 

carpocapsae (Weiser), 2 S. feltiae (Filipjev), and 1 S. scapterisci Nguyen 

& Smart) caused significant mortality. 

 

Taylor et al., 1998 

13 spp of Steinernema 

and Heterorhabditis 

Ixodes scapularis (black-

legged tick)  

Feeding assays S. riobravis (355) and H. megidis (M145) killed ticks most rapidly, with 

mean day of death postinfection of 2.5 and 3.5 days, respectively 

Hill, 1998 

Heterorhabditis sp Boophilus annulatus 

Hyalomma excavatum 

Rhipicephalus bursa, 

R. sanguineus 

Feeding assays Ticks seem to be less susceptible to nematodes when feeding on a host. 

Preimaginal tick stages were less susceptible to nematodes than adult 

ticks. The mortality rate of unfed females was highest, followed by unfed 

males, and engorged females. 

Samish et al., 2000 

H.  bacteriophora     

S. intermedia, NC513 

strain of S. glaserii, S. 

anomali, S. riobrave, 

Steinernema sp. and 5 

strains of S. feltiae 

 

Lucilia sericata Meigen, 

1826) (Sheep blowfly) 

 None of the examined EPN species or strains showed larvicidal efficacy 

at 37oC. 

 
At lower temperatures (20oC and 25oC) only strains of S. feltiae were 

found to be active. 

Tóth et al., 2005 
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1.5 Formulations and application methods 

 

The development of a suitable formulation is a critical component in helping a BCA to germinate 

and infect the host (Brar et al., 2006). Additionally, commercial biopesticides must be economic 

to produce, have high residual activity, be easy to handle, stable in storage, mix and apply and be 

consistently effective in controlling the target pest (reviewed by Brar et al., 2006).  

 

B. thuringiensis based biopesticides are formulated as concentrated liquids, oil-based flowables, 

wettable powders, water dispersible granules, and dusts (Boyetchko et al., 1999). The principal 

mode of action of Bt biopesticides is based on target insect ingestion of the δ-endotoxin protein, 

which causes feeding inhibition and eventual toxemia to the mig-gut of susceptible larva 

(Boyetchko, 1999). Only a few species of insects in the families Lepidoptera, Coleoptera and 

Diptera are susceptible to the Bt proteins. Thus, these biopesticides have a relatively narrow 

insecticidal spectrum (Boyetchko et al., 1999). 

 

Encapsulations are recent advances in bioinsecticidal formulations and provide protection from 

extreme environmental conditions (UV radiation, rain, etc.) and enhanced residual stability due to 

slow release of formulations (sustained delivery) (Brar et al., 2006). Microbial propagules are 

encapsulated in a coating (capsule) made of gelatin, starch, cellulose and other polymers and 

even microbial cells (Barnes and Cummings, 1987; 1987b; Barnes and Edwards, 1989; Bok et 

al., 1993). 

 

A recent advance in encapsulations is the production of hydrocapsules that are of a shellcore type 

(water based), consisting of a polymer membrane surrounding a liquid center. These shells are 

produced by using UV radiation initiated free-radical copolymerization of functionalized 

prepolymers (silicones, urethanes, epoxys, polyesters, etc.) and/or vinyl monomers such as 

acrylates for better dispersion and UV radiation protection (Lelchelt-Kunze et al., 2000; Toreki et 

al., 2004). 

 

Wastewater/wastewater sludge (WW/WWS) has been successfully used as a raw material for Bt 

biopesticide production with lower process costs (Sachdeva et al., 2000; Tirado-Montiel et al., 

2001; 2003; Lachhab et al., 2001; Tyagi et al., 2001; Vidyarthi et al., 2000; 2001; 2002; Yezza et 

al., 2004a, 2004b). The WW/WWS based Bt biopesticides encompass advantages and drawbacks 
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over commercial biopesticides. Two principal problems associated with the use of wastewater 

sludge are the presence of toxic heavy metals and human pathogens (Brar et al., 2006). 

 

Different formulations of Bt registered in Canada/ North America are listed in Table 1.6. This list 

is not exhaustive as there are numerous unregistered formulations Bt formulations worldwide, 

especially in developing countries.  

 

The three developmental stages of B. bassiana are conidia, blastospores and mycelia (Feng et al., 

1994).  All the three developmental stages are formulated with several objectives in mind. 

Ingredients selected should improve spray coverage, including microsite targeting, rainfastness; 

increase safety (e.g. reduce dust inhalation, eye irritation); improve and simplify handling; 

improve storage stability (especially at moderate to high temperatures); improve field stability 

(especially under ultraviolet radiation); and improve efficacy (especially reduce ambient 

temperature requirements) (Feng et al., 1994; Wraight and Carruthers, 1999). 

 

Fungal pathogens possess a purely contact mode of action. Infectious propagules must be 

inoculated onto the target pest or onto substrates in the habitat from which secondary inoculation 

can be effected via pest movement or feeding (Faria and Wraight, 2001). The fungi may be 

applied directly to the insect as wettable powders, emulsions or dusts, with conventional 

equipment used for the application of synthetic chemical insecticides, amended into baits or traps, 

or added to soil (Feng et al., 1994).  

 

Various formulations of B. bassiana are listed in Table 1.7. So far dry, formulations are the forms 

that have been used for B. bassiana conidia, although oil- and water-based formulations are being 

tried in field experimental trials (Feng et al., 1994). Oil diluents have contributed to multiple 

formulation objectives, thus offering several advantages.  Oils are highly compatible with 

lipophilic conidia, as well as with the insect cuticle (Wraight and Carruthers, 1999).  This 

compatibility reduces and eliminates the need wetting, sticking, or spreading agents (Prior et al., 

1988). Oils are also more effective carriers for low-volume applications than water that rapidly 

evaporates when applied as small droplets (Wraight and Carruthers, 1999). Moreover, Jarosnki 

(1997) reported that use of oil formulants significantly enhanced the high temperature stability of 

B. bassiana conidia. Formulation in oil has also been reported to reduce irritation to eyes of test 
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animals (Goettel and Jarosinki, 1997) and improve handling safety (Wraight and Carruthers, 

1999). 

 

Nematode formulations are developed with two main objectives: a means of delivery of live 

nematodes to the consumer and a means of extended product storage. During the past decade, 

significant progress was been made in developing nematode formulations with improved shelf 

stability, scalability, and ease of use (Table 1.8). Most of these formulations were based on the 

one fundamental principle of conseving IJ nematodes; limited stored energy reserves by either 

restricting their movement or reducing their oxygen consumption by inducing a state of partial 

anhydrobiosis (Grewal and Georgis, 1999). The first such formulations used activated charcoal to 

restrict nematode movement (Yukawa and Pitt, 1985).  Kaya and Nelsen (1985) were the first to 

report on the encapsulation of EPN with calcium alginate.  

 

Nematodes have also been successfully formulated in gel-forming polyacrylamides (Georgis, 

1990), flowable gels (Georgis and Manweiler, 1994), wheat flour and attapulgite clay chips 

(Bedding, 1988). 

 

A significant advancement was made with the advent of a water-dispersible granule (WDG) in 

which IJs are encased in 10-20mm diameter granule consisting of various types of silica, clays, 

cellulose, lignin and starches (Silver et al., 1995). The development of WDG formulations has 

offered several advantages over existing formulations. For instance, it extended the nematode 

storage stability to several months at room temperature; enhanced nematode tolerance to 

temperature extremes and improved the ease of applications of nematodes (Grewal and Georgis, 

1999). 
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Table 1.6 Bacillus thuringiensis products (formulations) registered for commercial use in Canada/ North America 
Industry/ Company Product Active ingredient(s) Target pest)s) 

Valent Biosciences Corporation Dipel (Wettable Powder)  Spruce budworm; gypsy moth; spring and fall cankerworms and 

cabbagelooper 

Thuricide 48LV (Liquid suspension) B. thuringiensis Berliner ssp kurstaki Bagworm; elm spanworm; fall spanworm; gypsy moth; spring and fall 

cankerworm; spruce budworm; jack pine budworm 

Vectobac-200G Larvicide (Granules)   

Teknar Granules Larvicide  Mosquitoes 

Vectobac 200g (Granules) B. thuringiensis ssp. israelensis  

Vectobac 600L (aqueous suspension)  Fungus gnats 

Teknar HP-D Larvicide (aqueous suspension)  Mosquitoes and Black flies 

Novodor Flowable Concentrate B. thuringiensis ssp tenebrionis  

Foray 48B  Spruce budworm (Eastern and Western); gypsy moth; jackpine 

budworm; eastern hemlock looper; whitemarked tussock moth and 

forest tent. 

Foray 48B low volume   

Foray 76B (aqueous concentrate)   

Foray 96B   

Dipel 2X DF (Dry Flowable)(Wettable 

Granules) 

B. thuringiensis Berliner ssp. kurstaki Spruce budworm; gypsy moth; bagworm; spring and fall cankerworm; 

fall webworms; elm spanworm; tent caterpillar; cabbage looper; 

leafroller and diamondback moth 

Certis USA LLC Thuricide-HPC High Potency Aqueous 

Concentrate 

 Spruce budworm; gypsy moth; bagworm; spring and fall cankerworms 

and cabbage looper 

AFA Environment Inc. Aquabac II XT (Liquid suspension) B. thuringiensis ssp. israelensis 

(B. thuringiensis serotype H-14) 

 

Aquabac 200G (10/14) (Granules)  Mosquitoes 

Aquabac 200G (10/14) (5/8)   

AFA Environment Inc. Aquabac XT B. thuringiensis ssp. israelensis Mosquitoes and black flies 

Abbott Laboratories Ltd. Dipel 176 (Emulsifiable suspension)  Forest tent caterpillars; gypsy moth;  spruce buworms; hemlock looper 

Woodstream Canada Corporation Safer’s BTK (Liquid concentrate) B. thuringiensis Berliner ssp. kurstaki Gypsy moth; tent caterpillar and cabbage looper 

AEF Global Inc. Bioprotec  Aqueous Biological (aqueous 

suspension) 

 Gypsy moth; eastern spruce budworm; western spruce budworm; jack 

pine budworm; forest tent caterpillar; eastern hemlock looper; bagworm; 

elm spanworm; fall spanworm; spring and fall cankerworm; satin moth 

and white marked tussock moth 

 Bioprotec CAF   

 Aqueous Bioprotec HP   

 Bioprotec ECO   

Source: Brar et al., 2006
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Table 1.7   Summary of the storage stabilities of Beauveria bassiana formulations. 

Stage Formulation Shelf life (viability after time at 
0
C) 

Reference 

Conidia Dry attapulgite clay 78% after 12 mo at 260C Ward and Roberts, 1981 

Conidia Dry attapulgite clay No viability loss after 12 mo at 260C Chen et al., 1990 

Conidia Dry, unformulated 70% after 12mo at 250C Jarosnki, 1997 

Conidia Paraffinic oil 93% after 9 mo at 250C Jarosnki, 1997 

Blastospores Dry xanthan/carob gel 100% after 12mo at 280C Jung and Mugnier, 1989 

Mycelium Dry alginate pellets 100% after 5 mo at 220C Knudsen et al., 1990 

 Source: Wraight and Carruthers, 1999) 

 

 

 

Table 1.8 Some commercially available formulations containing Steinernema and Heterorhabditis nematodes with 

expected shelf life 

 Shelf life (m) 

Formulation Nematode species Room Temp Refrigerated 
Alginate gelsa S. carpocapsae 

S. feltiae 

3.0 - 4.0 

0.5 - 1.0 

6.0 - 9.0 

4.0 - 5.0 

Flowable gelsa S. carpocapsae 1.0 - 1.5 3.0 - 5.0 

Attapulginite clay chipsb H. bacteriophora 

S. feltiae 

S. carpocapsae 

1.5 - 2.0 

1.0 - 1.5 

1.0 - 1.5 

0 

4.0 - 6.0 

3.0 - 4.0 

Water-dispersible granulesa S. carpocapae 

S. feltiae 

S. riobravis 

4.0 - 5.0 

1.5 - 2.0 

2.0 – 3.0 

9.0 - 12.0 

5.0 -  7.0 

4.0 – 5.0 
a
 P.S. Grewal and R. Georgis (unpublished data) 

b
 Bedding 1984. 

Source: Grewal and Georgis (1999) 

 

 

1.6 Commercialization 

 

Most Bt-based bio-insecticide products are produced using naturally occurring strains of Bt, and 

utilize only a small fraction of the known Cry proteins. In agriculture, Bt products have been used 

successfully in the vegetable, cotton, and especially fruit crop markets and almost exclusively for 

the control of foliar-feeding lepidopteran pests (Baum et al., 1999). Table 1.9 provides a listing of 

some better-known Bt-based insecticide products. 
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Table 1.9 Registered Bacillus thuringiensis based bioinsecticide products for agricultural use. 

Product Company Strain background Target insect 

Order 

Able Thermo Triology kurstaki L 

Agree Thermo Triology aizawai L 

Biobit Abbott HD1 kurstaki L 

Bactospeine Abbott kurstaki L 

Condor Ecogen kurstaki L 

Costar Thermo Triology kurstaki L 

CRYMAX Ecogen kurstaki L 

Cutlass Ecogen kurstaki L 

Design Thermo Triology aizawai L 

Dipel Abbott HD1 kurstaki L 

Foil Ecogen kurstaki L/C 

Foray Abbott HD1 kurstaki L 

Florbac Abbott aizawai L 

Futura Abbott kurstaki L 

Javelin Thermo Triology HD1 kurstaki L 

Lepinox Ecogen kurstaki L 

MATTCH Mycogen Pseudomonas L 

MTRAK Mycogen Pseudomonas C 

MVP Mycogen Pseudomonas L 

Novodor Abbott tenebrionisa C 

Raven Ecogen kurstaki L/C 

Steward Thermo Triology HD1 kurstaki L 

Thuricide Thermo Triology HD1 kurstaki L 

Trident Thermo Triology tenebrionis C 

Vault Thermo Triology HD1 kurstaki L 

Xentari Abbott aizawai L 
a
tenebrionis = subspecies morrisoni 

L, lepidopteran-toxic, C, coleopteran-toxic 

Source : Baum et al., 1999 

 

 

 
Table 1.10.Beauveria bassiana in production and registered or submitted for registration in the United States 

Product name Company Formulation Active 

ingedient 

Principal market 

bMycotrol Mycotech ES 

WP 

OF 

Conidia 

Conidia 

Conidia 

Field crops 

Field crops 

Rangeland 
bBotaniGard Mycotech ES 

WP 

Conidia 

Conidia 

Greenhouse 

Greenhouse 
bNaturalis Troy BioSciences ES Conidia Field and greenhouse 
bConidia Hoechst Schering AgrEvo WDG  Field crops 
bBea-Sin Agrobiológicos del Noroeste   Field and Greenhouse 
cAgo Biocontrol Beauveria Ago Biocontrol   Field and Greenhouse 
cBoveril PM Itaforte Bioprodutos   Greenhouse 
aEmulsifiable oil suspension (ES); wettable powder (WP); oil flowable (OF); water-dispersible granule (WDG); aqueous 

suspension (AS). 

Source: bWraight and Carruthers, 1999. cFaria and Wraight, 2001 
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Commercial preparations of fungi that can be applied using conventional spray equipment and 

baits have been successfully developed for the control of cockroaches, grasshoppers (for field 

crops) and whiteflies, aphids and mites (in greenhouses). However, formulations for fly control in 

livestock and poultry production are only available on a limited basis (Kaufman et al., 2005). 

 

Several B. bassiana strains have been studied as potential biocontrol agents of insects. However, 

the strains available target whiteflies, locusts and beetle (Faria and Wraight, 2001) and none of 

the B. bassiana products currently available worldwide (Table 1.10) target livestock pests.  

 

 

Table 1.11 Some available commercial products containing Steinernema and Heterorhabditis nematodes 

Product name Nematode 

species 

Company Formulation 

Mioplant S. carpocapsae Norvatis, Vienna, Austria Alginate gel 

Boden-Nutzlinge S. carpocapsae Rhone-Poulenc, Celaflor, Germany Alginate gel 

BioSafe S. carpocapsae SDS Biotech, Minato-Ku, Tokyo, Japan Flowable gel 

Exhibit S. feltiae Norvatis Basel, Switzerland Flowable gel 

Stealth S. feltiae Norvatis, Macclesfield, Chester, UK Flowable gel 

Nemasys-H H. megdis MicroBio, Cambridge, UK Flowable gel 

LarvaNem H. megdis Koppert B.V., Berkel en Rodenrigs, Netherlands Clay 

Nemasys S. feltiae MicroBio Clay 

Entonem S. feltiae Koppert B.V. Clay 

Proactant Ss S. scapterisci BioControl, Gainesville, FL Clay 

Biosafe S. carpocapsae ThermoTrilogy, Columbia, MD Water-dispersible granules 

Biosafe-N S. carpocapsae ThermoTrilogy Water-dispersible granules 

BioVector S. carpocapsae ThermoTrilogy Water-dispersible granules 

Vector TL S. carpocapsae Lesco, Lansing, MI Water-dispersible granules 

Helix S. carpocapsae Norvatis, Mississauga, Canada Water-dispersible granules 

X-GNAT S. feltiae E.C. Geiger, Harleysville, PA Water-dispersible granules 

Magnet S. feltiae Amycel-Spawn Mate, Watsonville, CA Water-dispersible granules 

BioVector S. riobravis Thermotrilogy Water-dispersible granules 

Vector MC S. riobravis Lesco Water-dispersible granules 

Source: Grewal and Georgis, 1999 

 

 

 

Mass production of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis 

has been greatly facilitated by the ease with which the symbiotic bacteria and nematodes can be 

grown on a variety of artificial media in vitro (Georgis, 2002).  Table 1.11 provides a listing of 

examples of some better-known commercially available products containing Steinernema and 

Heterorhabditis nematodes. 
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Abstract 

The house fly, Musca domestica L., is a major pest in poultry facilities. It has been implicated as 

a mechanical vector of a wide range of enteric pathogens among animals and humans. Among 

potential microbial biocontrol agents, entomopathogenic fungi, bacteria and nematodes are the 

most promising candidates. Thirty-four fungal isolates of Beauveria bassiana (Balsamo) 

Vuillemin (Deuteromycetes) and two isolates of Paecilomyces lilacinus and a nematode 

Heterorhabditis spp. were evaluated in vitro for their entomopathogenic activity against the 

larvae and adults of the common house fly, M. domestica. In the first laboratory experiment, 

different isolates of B. bassiana and P. lilacinus were tested by infecting larvae and adults with 

conidial suspensions of 10
8 

ml
-1

 concentration. Flies and larvae were exposed to fungi for at least 

6d in the dark at a temperature of 25±1
o
C. The B. bassiana isolates were pathogenic to the adult 

flies, causing mortality levels of 30-100% within 6d. The P. lilacinus isolates were non-

pathogenic towards adult flies. All the fungal isolates were marginally effective in controlling 

house fly larvae. All the B. bassiana isolates sporulated on flies and 30-100% of the flies ended 

up being covered with mycelium. The best four B. bassiana isolates, that caused mortality of 

90% or more within 2d, were subjected to dose-response mortality bioassays. These showed a 

dose-related pathogenicity on adult flies. The lethal concentration of B. bassiana isolates that 

caused 50% mortality (LC50) ranged between 10
3
-10

5
 conidia ml

-1
. The lethal time to 50% 

mortality (LT50) values ranged between 0.44-1.3d. In order to evaluate the potential of 

entomopathogenic nematodes, isolates of Heterorhabditis spp were screened on fly larvae using a 

filter paper bioassay and in fresh bovine manure substrate. The highest mortalities observed were 

85.5% and 5.4% on filter paper and manure respectively. The present results suggest that the B. 

bassiana Isolates 7320, 7569 and 7771 have excellent potential for the biological control of adult 

M. domestica. 
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2.1 Introduction 

 

The house fly, Musca domestica (L.), is the major insect pest in poultry facilities (Scott et al., 

2000) and intensive animal units (Barson et al., 1994). Large populations of flies create problems 

for animal and public health. Furthermore, house flies have developed resistance to most 

insecticides used against them (Scott et al., 2000). Hence, efforts to control flies using biological 

control agents (BCAs) are increasingly important. 

 

Most research on fly pathogens has concentrated on the fungal pathogen Entomophthora muscae 

(Cohn) Fresenius (Mullens et al., 1987b; Geden et al., 1993; Steinkraus et al., 1993). However, 

the potential of E. muscae for fly suppression is limited by short-lived conidia, intolerance of 

high temperatures, and by the requirement for large populations of flies to sustain epizootics 

(Geden et al., 1995). The broad host range of B. bassiana predicates the potential of this 

pathogenic fungus as a biological control agent (Humber, 1992). Discoveries in recent years of 

natural infections of house flies (Steinkraus et al., 1990) with the entomopathogenic fungus 

Beauveria bassiana (Balsamo) Vuillemin suggest that this pathogen is compatible with 

environmental conditions in animal agriculture production systems (Geden et al., 1995) and that 

Beauveria bassiana has potential for fly control (Steinkraus et al., 1990; Geden and Rutz, 1992; 

Watson et al., 1995; 1996; Kaufman et al., 2005). The entomopathogenic fungus B. bassiana is 

an attractive candidate for biological control of the house fly because the fungus is easily and 

economically produced and the conidia have a long storage life, and can be formulated and 

applied in a variety of ways (Feng et al., 1994). Furthermore, unlike E. muscae, the 

entomopathogenic fungus B. bassiana can be cultured on artificial media (Bell, 1974).  

 

Paecilomyces lilacinus is a soil saprophytic hyphomycete with a broad-based distribution 

(Samson, 1974). The efficacy of the fungus P. lilacinus has been widely demonstrated against 

root knot, cyst nematodes and other important groups of plant and animal parasitic nematodes. 

This fungus has also been reported as a human pathogen (Takayasu et al., 1977). Until recently, 

there were no reports of the use of the nematophagous fungus P. lilacinus in the control of insect 

pests (Fielder and Sosnowska, 2007). 
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Nematodes of the genera Heterorhabditis Poinar and Steinernema Travassos, in conjunction with 

their symbiotic bacteria, Photorhabdus spp. and Xenorhabdus spp., are pathogenic to many insect 

pests (Poinar, 1979) and may be effective biological control agents for soil-associated insects 

(Klein 1990). Several studies have addressed the efficacy of entomopathogenic nematodes 

against the housefly, M. domestica L., in the laboratory and in confined poultry environments 

(Renn et al. 1985; Geden et al. 1986; Belton et al. 1987; Mullens et al. 1987a, 1987b).  

 

The objectives of this study were: (1) To evaluate the effectiveness of 34 isolates of B. bassiana 

and 2 strains of P. lilacinus against laboratory-reared larvae and adults of M. domestica in the 

laboratory; (2) To select highly virulent strains that could be used in the development of a 

mycoinsecticide against M. domestica; (3) To compare B. bassiana isolates for relative virulence 

against adult house flies; (4) To determine the susceptibility of house fly larvae to 

Heterorhabditis. 

 

2.2 Materials and methods 

2.2.1 Fungi 

 

A sample of 34 isolates of B. bassiana and two strains of P. lilacinus from plants of diverse 

orders and from diverse geographical origins (Table 2.1) was bioassayed against larvae and adult 

house flies. The investigations were also performed with two commercial strains of B. bassiana 

(R444 and 1174) and cultures of P. lilacinus. Isolates of B. bassiana and P. lilacinus were 

provided by ARC Plant Pathology Research Institute PPRI)
1 

Pretoria. Commercial strains of B. 

bassiana were from Plant Health Products (PHP)
2
 (Pty)

 
Ltd. 

 

Beauveria bassiana cultures were grown on potato-dextrose agar. Sporulating cultures (3 – 4 wk-

old) were harvested by brushing the dry conidia from surface of the agar plate into sterile vials. 

Conidia were counted with aid of a haemocytometer to calibrate a dose of 10
8
conidia ml

-1
. An 

aqueous formulation was prepared by a surfactant (0.1% dilution of Tween 80) and 1 x10
8
 

conidia ml
-1

. 

                                                 
1
 Agricultural Research Council, 1134 Park Street, P.O. Box 8783 Hatfield, Pretoria 0001 

2
 Plant Health Products (Pty) Ltd. P.O. Box 207, Nottingham Road, South Africa 
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Table 2.1 Origin of fungal strains of Beauveria sp. used to study their toxinogenic activity 

Strain Host 

B. bassiana 7274 Garden plots 

B. bassiana 7284 Orchard 

B. bassiana 7288 Wheat 

B. bassiana 7291 Rooibos 

B. bassiana 7292 Apricot 

B. bassiana 7293 Oranges 

B. bassiana 7296 Oats 

B. bassiana 7297 Vineyard 

B. bassiana 7299 Maize 

B. bassiana 7309 Fallow land 

B. bassiana 7311 Tea 

B. bassiana 7313 Peaches 

B. bassiana 7317 Tea 

B. bassiana 7320 Fallow land 

B. bassiana 7569 Disturbed soil 

B. bassiana 7573 Vineyards 

B. bassiana 7581 Below waterfall 

B. bassiana 7586 Soil under tree 

B. bassiana 7587 Soil, cane field 

B. bassiana 7600 Tea 

B. bassiana 7618 Tea 

B. bassiana 7647 Soil, treated field 

B. bassiana 7762 Lawn 

B. bassiana 7768 Oats 

B. bassiana 7771 Disturbed soil 

B. bassiana 7772 Sugarcane rows 

B. bassiana 7775 Disturbed soil 

B. bassiana 7781 Vineyards 

B. bassiana 7791 Rooibos field 

B. bassiana 7853 Canefields 

B. bassiana 7864 Field 

B. bassiana 7872 Banana 

B. bassiana  R444 - 

B. bassiana 1174 - 

P. lilacinus 7865 Field 

P. lilacinus 7896 Banana 

 

 

 

 

2.2.2 Nematodes 

 

The entomopathogenic nematodes used were isolates of Heterorhabditis spp., supplied as 

infective juveniles (IJs) by PHP (Pty) Ltd. 
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2.2.3 Insect rearing 

 

House flies were maintained at 28
o
C, 68% RH, with a 12:12 L:D photoperiod.  Flies were given a 

maintenance diet of ad lib sugar, milk powder and water and were offered chicken liver as an 

oviposition medium on a twice weekly basis from the third week of postemergence. Larvae for 

replacement colonies were reared on a diet comprising 50g active dried yeast (DCL), 8g agar 

(Oxoid Bacteriological), 250ml distilled water, and 750ml UHT full cream milk, prepared by 

microwaving the milk to its boiling point (Johnson et al., 1998). 

 

2.2.4 Laboratory evaluations of Beauveria bassiana against house fly larvae and adults 

 

2.2.4.1 Bioassays  

 

The first screening was conducted by spraying 30 cold-anesthetized house flies on Petri dishes. 

Treated flies were placed in cages provisioned with food and water, and held for observation for 

7d. The cages with the treated insects were arranged in a controlled environmental chamber (25 ± 

1
o
C, RH 80% and L:D 8:16h). The bioassays were set up in a completely randomized design with 

three replicates for each treatment. The controls were treated with an equal amount of water and 

0.1% Tween 80. The dead flies were examined for red abdominal colouration, which is indicative 

of B. bassiana mycosis (Steinkraus et al., 1990). The cause of death was confirmed by placing all 

dead insects on moist filter papers to facilitate fungal sporulation. The number of insects that 

expressed mycoses was noted. The bioassay was repeated twice.  

 

Batches of approximately 300 M. domestica eggs were placed on moist black paper within Petri 

dishes (90mm in diameter) and incubated at 25
o
C in darkness for 72h. Groups of approximately 

150 neonate larvae were then transferred to 50g of a semisynthetic rearing diet within 250ml 

polyethylene pots with push fit lids containing a mesh insert for aeration. Larvae were reared at 

20
o
C in darkness for 5d and then transferred for 2d to a preservative-free diet. Batches of 30 

larvae were treated by immersion for 10s in 10ml of conidia suspension and then removed. 

Controls were sprayed with a dilution of 0.1% Tween in distilled water. Each batch of larvae was 

transferred to damp filter paper within a Petri dish on the laboratory bench for 1h and then 
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transferred to 15g of preservative-free diet in a 25ml polyethylene pot with a push fit lid (lid 

pierced with a dissecting needle for aeration). 

 

The pots were placed within a polystyrene sandwich box (280 by 160 by 90mm), on damp paper 

towels to prevent the medium from drying out. Incubation was at 20
o
C in darkness. Numbers of 

living and dead larvae (no movement when probed with a dissecting needle) were counted 5d 

post inoculations, and thereafter once every 24h for a total of 7d. Each batch of larvae was 

transferred to a pot of fresh food every 2-3d. Any dead larvae were removed daily and incubated 

on damp filter paper within Petri dishes (20±1
o
C) for 7d and inspected for the presence of 

mycelium on the cadavers. 

 

2.2.4.2 LC50 and LT50 assessment with selected strains 

 

Four doses (10
5
, 10

6
, 10

7
 and 10

8
) of conidia from the four most promising fungal isolates were 

used in the bioassay. Conidia of sub-cultured slants were inoculated into 50ml of SMY liquid 

media in a 250ml-Erlenmeyer flask and incubated for 2-3d at 25
o
C with rotary shaking of 

200rpm. Ten milliliters of the culture were put into plates containing SMY solid medium and 

incubated for 10-15d at 25
o
C. The conidia which developed in the flask were suspended in 15ml 

of a solution containing 0.2% Tween80 and 0.89% NaCl, and then the conidial suspension was 

filtered through a 2-layered-paper filter to remove mycelial fragments and aggregated conidia. 

The concentration of conidia was determined by using haemocytometer. Thirty flies were 

inoculated by spraying. The number of dead flies was checked every 24h. Each treatment was 

replicated three times. Lethal concentrations required to kill one-half of the adults was estimated 

using LC50 Probit analysis according to Finney (1971). 

 

2.2.5 Laboratory evaluation of Heterorhabditis against house fly larvae 

 

The virulence of Heterorhabditis spp. towards house fly larvae and adults was tested using a 

filter paper assay. Thirty third-instar larvae were placed in a 90mm Petri dish lined with a wet 

filter paper disk (70mm diameter) containing a nematode-water suspension (approximately 20, 40 

and 100 nematodes per larva).  The Petri dish was covered, sealed with parafilm, and incubated in 
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the dark at 25°C.  Water was used as the control treatment. Larval mortality was observed after 

24h. Heterorhabditis spp. was tested for pathogenicity towards fly larvae in fresh chicken 

manure. Manure samples (150g) collected from poultry houses at University Research Station at 

Ukulinga, were mixed and placed in plastic containers (100 x 120 x 12.5mm deep) with lids. 

Three replicates of 30 third-instars were inoculated with 600, 1200 and 3000 (approximately 20, 

40 and 100 nematodes per larva) nematodes per container. Dead larvae were counted after every 

24h up to 5d.  

2.2.6 Statistical analysis 

 

The cumulative insect mortality in each treatment was corrected for control mortality (Abbott, 

1925). The number of insects with mycosis was estimated as percent proportion of dead insects. 

The mortality and mycosis values were arcsine-transformed to normalize the data (Gomez and 

Gomez, 1984) before analysis. The mean and standard error of all the replicates for mortality 

after 48h and mycosis were calculated and presented in tables as untransformed data. Mortality 

data are presented as percentage mortality, although actual mortality was used for statistical tests.  

 

Logit transformation (Probit analysis GENSTAT) was used to estimate the lethal time to 50% 

mortality (LT50) and the lethal concentration causing 50% mortality (LC50) for the selected 

isolates. Percent mortality were arcsine-transformed and analyzed using a repeated measures 

model (GENSTAT) with isolate, dosage and time as main factors and isolate by dosage, isolate 

by day, dosage by day and isolate by dosage by time interactions. Least Significant Differences 

were used to compare the means of mortalities of adult flies caused by the four B. bassiana 

isolates.  

 

For the nematode bioassays, mortalities of larvae grown on the filter paper and on manure were 

corrected for control mortality (Abbott, 1925). Mortalities of the larvae were arcsine transformed 

and analyzed using repeated measures ANOVA (GENSTAT) with number of nematodes per host 

and time as the main factors, and number of nematodes by time as the interaction. Probit analysis 

(GENSTAT) was used to estimate LC50 and LT50 for nematodes on filter paper and on manure. 
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2.3 Results 

 

2.3.1 Screening bioassays against house fly adults and larvae 

 

There were significant differences among fungal isolates in their virulence towards adult flies 

(F=544.61; P<0.001) and exposure time (F=2643.45; P<0.001). The interaction between fungal 

isolates and exposure time (F=32.27; P<0.001) was also significant. All 34 isolates of Beauveria 

were pathogenic to adult house flies and caused a mortality of 100% within 6d (Table 2.2), and 

30-100% after 24h of exposure.  

 

Significant differences were observed among fungal isolates in their virulence towards fly larvae 

(F=7.83; P<0.001) and exposure time (F=7.83; P<0.001). The interaction between fungal isolates 

and exposure time (F=3.43; P<0.001) was also significant. However, none of the fungal isolates 

were very effective in controlling house fly larvae (Table 2.3), and no fungus was observed 

growing on dead larvae. Percent mortality ranged between 0-36.7%. Isolate 7771 caused the 

highest larval mortality in 4d. None of the P. lilacinus isolates were pathogenic on adult flies or 

larvae.  

 

Fungi were classified into four groups (Table 2.2) according to the number of days required to 

cause 90% or more fly mortality: Class I (2d or less), Class II (3-4 days), Class III (5-6d) and 

Class IV (>6 days). Fungi in Class I, which had four B. bassiana isolates, were selected as high 

pathogenicity isolates. Class IV contained the isolates non-pathogenic on the house fly. The two 

strains of P. lilacinus were placed in this class. Two isolates of B. bassiana caused mortality of 

90% or more in 1d or less while two isolates caused similar mortality in 2d or less. Twenty-four 

isolates of B. bassiana caused 90% mortality in 3d and three isolates of B. bassiana killed 90% or 

more flies in 4d. Three isolates of B. bassiana killed 90% or more flies in 5 – 6d. High mortality 

rates were observed as a result of a formulated strain of Beauveria R444 and Isolates 7320, 7569 

and 7771 (Table 2.3). No significance differences in infectivity were found among these three 

isolates of Beauveria (Table 2.3). These four isolates produced mortality rates that exceeded 90% 

within 2d or less and were submitted to dose response bioassays.  
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Table 2.2. Number of Beauveria bassiana isolates and Paecilomyces lilacinus classified by days required to kill 

more than 90% of house flies in bioassay. 

Genus Total Class I 

(2d or less) 

Class II 

(3-4d) 

Class III 

(5-6d) 

Class IV 

(> 6d) 

B. bassiana 34 4 27 3 0 

P. lilacinus 2 0 0 0 2 

 

 

 

The entomopathogenic activity of B. bassiana was confirmed by the presence of fungal hyphae 

on the body of flies. Approximately 2d after death, saprophytic growth of mycelium was 

observed from intersegmental parts and subsequently, the fungus emerged from all parts of the 

integument (Fig. 2.1a). Adult flies treated with B. bassiana displayed a reddish coloration upon 

death, probably as a consequence of oosporein production (Fig. 2.1b).  

 

Percent mycosis in the dead insects was significant (F=110.39; P<0.001) among the fungal 

isolates, with Isolate 7771 showing the highest percent mycosis (100%) (Table 3.2). Five B. 

bassiana isolates caused mycosis in 90% or more of the dead insects. Six isolates induced less 

than 50% mycosis in the dead insects. The two P. lilacinus isolates were found to be non-mycotic 

to adult flies. 
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Table 2.3 Percent mortality and mycosis values of larvae and adult Musca domestica 4d and 48h respectively, 

following exposure to 34 isolates of Beauveria bassiana and two strains of Paecilomyces lilicanus at a concentration 

of 10
8
 conidia ml

-1
. 

Isolate Spray 

assay
♠♦

 

Percent mortality of 

larvae after 4d ± se 

Percent mortality of 

adults after 48h ± se 

Percent mycosis of 

adult flies ± se 

B. bassiana 7274 3 10.00 ± 0.58 
bcde 

84.44 ± 0.33 
gh 

73.67 ± 1.86 
hij 

B. bassiana 7284 3 7.78 ± 0.33 
abc

 82.22 ± 0.58 
fg

 21 ± 0.58 
b
 

B. bassiana 7288 3 8.89 ± 0.67
 abcd 

85.56 ± 0.67 
h
 72 ± 1.53 

hij 

B. bassiana 7291 3 7.78 ± 0.33 
abc 

85.56 ± 0.88 
hi
 97.67 ± 1.45 

m 

B. bassiana 7292 3 8.89 ± 0.67 
bcdef 

85.56 ± 0.33 
ef
 34.33 ± 2.33 

cd
 

B. bassiana 7293 3 8.89 ± 0.33 
abcd 

68.89 ± 0.33 
b
 53 ± 1.15 

fg 

B. bassiana 7296 5 6.67± 0.58 
a 

70.00 ± 0.58 
b
 57.33 ± 1.45 

g 

B. bassiana 7297 3 8.89 ± 0.33 
abcd 

84.44 ± 2.19 
gh

 47.67 ± 1.45 
ef 

B. bassiana 7299 3 12.22 ± 0.33 
bcdefg 

74.44 ± 1.86 
c 

72 ± 1.53 
hij 

B. bassiana 7309 3 13.33 ± 0.58 
bcdefgh 

75.56 ± 0.88 
c
 69 ± 0.58 

hi 

B. bassiana 7311 3 11.11 ± 1.15 
bcde 

80 ± 0.58 
b 

29 ± 0.58 
bcd 

B. bassiana 7313 4 12.22 ± 0.88 
bcdefg 

76.67 ± 0.58 
cd 

67 ± 2.08 
h 

B. bassiana 7317 6 12.22 ± 1.20 
bcdefg 

22.22 ± 1.20 
b 

24.33 ± 2.85 
bc 

B. bassiana 7320 2 24.44 ± 2.03 
ij 

97.78 ± 0.33 
k 

84 ± 2.08 
l 

B. bassiana 7569 1 22.22 ± 1.45 
hij 

96.67 ± 0.58 
k 

81.33 ± 2.40 
kl 

B. bassiana 7573 3 15.56 ± 0.88 
bcdefgh 

84.44 ± 0.88 
gh 

51.33 ± 1.86 
fg 

B. bassiana 7581 3 23.33 ± 1.15 
ij 

76.67 ± 0.58 
cd 

99 ± 1.0 
mn 

B. bassiana 7586 4 18.89 ± 0.88 
efghi 

36.67 ± 0.58 
b 

25 ± 2.52 
bc 

B. bassiana 7587 3 20.00 ± 1.73 
efghi 

85.56 ± 1.20 
hi 

73.67 ± 0.88 
hij 

B. bassiana 7600 5 16.67 ± 1.53 
cdefghi 

57.78 ± 0.33 
b 

39 ± 1.53 
de 

B. bassiana 7618 4 17.78 ± 2.03 
defghi 

67.78 ± 0.33 
b 

52.67 ± 2.67 
fg 

B. bassiana 7647 3 8.89 ± 0.33 
abcd 

87.78 ± 0.33 
i 

98.33 ± 1.67 
mn 

B. bassiana 7762 3 10.00 ± 0.00 
bcde 

76.67 ± 0.58 
cd

 73.33 ± 1.20 
hij 

B. bassiana 7768 3 22.22 ± 1.86 
hij 

88.89 ± 0.33 
j 

77.67 ± 1.86 
jk 

B. bassiana 7771 1 36.67 ± 1.73 
k 

96.67 ± 0.58 
k 

100.00 ± 0 
n 

B. bassiana 7772 3 17.78 ± 2.85 
defghi 

78.89 ± 1.20 
de 

71.33 ± 1.86 
hij 

B. bassiana 7775 3 16.67 ± 2.00 
cdefghi 

87.78 ± 0.33 
ij 

81.33 ± 0.88 
kl 

B. bassiana 7781 3 16.67 ± 2.00 
cdefghi 

80 ± 0.58 
ef 

51.33 ± 1.33 
fg 

B. bassiana 7791 3 10.00 ± 0.00 
cde 

87.78 ± 0.67 
ij 

51.67 ± 0.88 
fg 

B. bassiana 7853 3 16.67 ± 2.00 
cdefghi 

76.67 ± 0.58 
cd 

76 ± 0.58 
ijk 

B. bassiana 7864 3 12.22 ± 0.67 
bcdefg 

85.56 ± 0.33 
k 

71.67 ± 2.85 
hij 

B. bassiana 7872 3 18.89 ± 0.88 
efghij 

84.4 ± 1.20 
gh 

45.67 ± 2.19 
ef 

B. bassiana 1174 3 21.11 ± 1.67 
ghij 

78.89± 0.33 
de 

75 ± 2.65 
ijk 

B. bassiana R444 2 28.89 ± 0.88 
jk 

95.56 ± 0.88 
k 

98.67 ± 1.33 
mn 

P. lilacinus 7865 >6 0.00 
a
 0.00 

a
 0.00 

a
 

P. lilacinus 7896 >6 0.00 
a
 0.00 

a
 0.00 

a 

F-ratio 

P value 

% CV 

LSD 

3.43 

<0.001 

45.7 

0.027 

32.27 

<0.001 

3.3 

0.008 

110.39 

<0.001 

9.1 

0.108 

F and P values after arcsine transformation 

Means followed by the same letter within the same column are not significantly different
 

♠
Days required to kill more than 90% of the adult house flies 
♦
 Conidial suspension of 1x108 conidia ml-1 was used to spray adult flies. 
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Fig 2.1a and 2.1b. Light microscope micrographs of; 3.1a) mycelial growth of Beauveria bassiana (Isolate 7771) on 

infected adult house flies; (C = Control; Inf = Infected) 3.1b) arrow showing detail of red abdominal colouration 

typical of B. bassiana infection. 

 

C 

C 

Inf 

2.1b 

Inf 

Inf 

C 

C 

2.1a 
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2.3.2 LC50 assessment with selected strains of Beauveria bassiana 

 

Three main effects caused significant differences in house fly mortality, namely isolates (F= 

16.23; P<0.001), doses (F= 30.14; P<0.001) and time (F= 180.29; P<0.001) 4d post infection. 

The interaction effects between isolate and time (F= 3.27; P<0.004), dose and time (F= 6.41; 

P<0.001) and isolate and dose and time (F= 1.79; P<0.032) were also significant. However, no 

significant interaction effects were found between isolate and dose (F= 0.35; P< 0.951). 

 

Adults of M. domestica were susceptible to all tested isolates of B. bassiana. This susceptibility 

was dose-dependent (Fig. 2.2, Table 2.4). The best of the four B. bassiana isolates killed 100% of 

target flies at a dose of 10
6
 conidia ml

-1
, by D4 after exposure.  

 

Isolate 7569 killed over 80% of the adult flies by D2 after flies were exposed to a conidial 

concentration of 10
5
 (Table 2.2). No significant differences were observed in fly mortality 

between Isolates 7771 and 7569 at all conidia concentrations (Table 2.4).   The dose-mortality 

relationship curves of Isolates 7771 and 7569 were also similar (Fig. 2.2). However, significant 

differences were observed in fly mortality between Isolates 7771 and 7320 and between Isolates 

7569 and 7320 at 10
5
, 10

6 
and 10

7
 conidia ml

-1
. One hundred percent mortalities of flies caused 

by Isolates 7771 and 7569 were attained at the dose of 10
5
 conidia ml

-1
 (D4) (Fig. 2.2, Table 2.4). 

Of the remaining isolates, 100% mortality was attained at the dose of 10
6
 conidia ml

-1
 on D4. 

There were no significant differences in fly mortality between the four best isolates of B. 

bassiana at 10
6
, 10

7
 and 10

8
 conidia ml

-1
 on D4. 

  

LC50 as determined by Probit analysis, were from 10
3
-10

4
 (Table 2.5). The LC50 value of Isolate 

B. bassiana 7771 was lower than those of the other isolates, followed by Isolates 7569, 7320 and 

finally R444 (Table 2.5). There were no significant differences in mortalities caused by Isolates 

7771 and 7569. Thus, B. bassiana Isolates 7771 and 7569 had the highest pathogenicity among 

the isolates tested. The three most virulent isolates were Isolate 7771 (Log (LC50=3.58) (95% CI 

= 2.02-4.31), slope = 0.817±0.11), Isolate 7569 (Log (LC50=3.62) (95% CI = 2.25-4.27), slope= 

(0.94±0.14) and Isolate 7320 (Log (LC50=4.31) (95% CI=3.15-4.90), slope= (0.82-0.08), which 

were selected for further study. In addition to being highly virulent, the three isolates all have 
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♦ y = 52.23ln(x) + 21.83; R² = 0.985

○ y = 51.60ln(x) + 37.33; R² = 0.899
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desirable colony growth characteristics. They produce fast-growing cultures with a compact, 

dense mycelial mat and produce high yields of conidia that are easily harvested from the surface 

of the culture. 

 

The speed with which the insects were killed, as indicated by LT50, increased with increasing 

dose up to a concentration of 10
8
 (Fig 2.2). Beauveria bassiana Isolate 7569 achieved the shortest 

time to attain 50% mortality (LT50=0.45d) (95% CI = 0.15-0.74). This was followed by Isolates 

7771 (LT50=0.64d (95% CI = 0.23-0.92), R444 (LT50=1.29d (95% CI = 0.96-1.54) and 7320 

(LT50=1.30d) (95% CI = 1.06-1.49). 
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Fig. 2.2 Mean percent mortality of adult flies (Musca domestica) infected with (a) 10
5
, (b) 10

6
, (c) 10

7
 and (d) 10

8
 

conidia ml
-1

 of four strains (♦ 7320, o 7569, ▲ 7771, ■ R444 and ● Control) of Beauveria bassiana for 4 days.   
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Table 2.4  Mean percent mortality of adult Musca domestica after infection with four isolates of Beauveria bassiana  
 

Time (days) 

 

Isolate 

Mortality  4d after exposure to conidial concentration
♠
 (Log dose) 

5 6 7 8 
 

1 

 

7320 

7569 

7771 

R444 

 

23.33 ± 1.2 
ab

 30.0 ± 0 
abc

 33.33 ± 2.4 
abcde

 73.33 ± 0.67 
fghijk

 

30.0 ± 1.73 
abcd

 73.3 ± 1.2 
fghijk

 76.67 ± 0.88 
fghijkl

 100.0 ± 0 
p
 

23.33 ± 1.33 
ab

 60.0 ± 2.52 
efghi

 66.67 ± 0.33 
efghi

 93.33 ± 0.67 
nop

 

3.33 ± 0.33
a
 30.0 ± 1.15 

abcd
 60.0 ± 0 

cdefgh
 73.33 ± 0.33 

fghijk
 

2 7320 

7569 

7771 

R444 

53.33 ± 1.2 
bcdef

 60.0 ± 0.58 
cdefgh

 73.33 ± 1.76 
ghijklm

 100.0 ± 0 
p
 

86.67± 0.33 
ijklmno

 90.0 ± 0.58 
klmnop

 93.33 ± 0.67 
nop

 100.0 ± 0 
p
 

80.0 ± 1.0 
ijklmno

 90.0 ± 1.0 
mnop

 93.33 ± 0.33 
mnop

 100.0 ± 0 
p
 

56.67 ± 0.33 
bcdefg

 63.33 ± 0.33 
defghi

 70.0 ± 0 
fghij

 90.0 ± 5.77 
klmnop

 

3 7320 

7569 

7771 

R444 

83.33 ± 0.67 
hijklmn

 86.67 ±  1.33 
lmnop

 100.0 ± 0 
p
 100.0 ± 0 

p
 

96.67 ± 0.33 
p
 100.0 ± 0 

p
 100.0 ± 0 

p
 100.0 ± 0 

p
 

90.0 ± 0.58 
klmnop

 90.0 ±  0.58 
klmnop

 100.0 ± 0 
p
 100.0 ± 0 

p
 

66.67 ± 0.33 
efghi

 80.0 ± 0
fghijklm

 86.67 ± 0.67 
jklmno

 100.0 ± 0 
p
 

4 7320 

7569 

7771 

R444 

93.36 ± 0.67 
nop

 100.0 ± 0 
p
 100.0 ± 0 

p
 100.0 ± 0 

p
 

100.0± 0 
p
 100.0 ± 0 

p
 100.0 ± 0 

p
 100.0 ± 0 

p
 

100.0 ± 0 
p
 100.0 ± 0 

p
 100.0 ±0 

p
 100.0 ± 0 

p
 

83.33 ± 0.33 
hijklmn

 100.0 ± 0 
p
 100.0 ± 0 

p
 100.0 ± 0 

p
 

 
♠
Values are means of three replicates of assays each containing 30 adult flies ± se. Number of spores mixed with water and 0.02% Tween and 0.89%NaCl 

Means followed by the same letter are not significantly different (P > 0.05) according to the LSD test (LSD = 0.38; CV% = 17.2). 
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Table 2.5 Lethal concentration (LC50), lethal time (LT50) and respective Confidential Intervals (95% C.I.) and slopes 

(± standard error) demonstrated as conidia ml
-1

 and days after infection with four strains of Beauveria bassiana 

towards on house fly (Musca domestica) for four days. 

Isolate LC50 (95%CI) 

Log (conidia ml
-1

) 

LT50 (95%CI) 

(Days) 

Slope ± SE 

7320 

7569 

7771 

R444 

4.31 (3.15 - 4.90) 

3.62 (2.25 - 4.27) 

3.58 (2.02 - 4.31) 

4.89 (4.26 - 5.29) 

1.30 (1.06 - 1.49) 

0.45 (0.15 - 0.74) 

0.65 (0.23 - 0.92) 

1.29 (0.96 - 1.54) 

0.82 ± 0.08 

0.94 ± 0.14 

0.82 ± 0.11 

0.62 ± 0.07 

 

 

2.3.3 Laboratory evaluation of Heterorhabditis against house fly larvae 

 

Overall, significant differences were observed in the number of Heterorhabditis spp. per larvae 

required to cause mortality of fly larvae in the filter paper assay (F= 16.81; P<0.001) and in days 

of exposure of larvae to nematodes (F= 137.49; P<0.001). The interaction between number of IJs 

per larvae x days of exposure of larvae to the nematodes was also significant (F= 2.96; P=0.041). 

Mortality generally increased with time of exposure and number of IJs per larvae (Table 2.6; Fig. 

2.3a). After 2d of exposure, there were no significant differences observed in larval mortality, 

irrespective of number of the nematodes per larvae. The highest mortalities were 64, 70 and 85% 

for 20, 40 and 100 nematodes per larvae, respectively, after 4d of exposure (Table 2.6).  

 

In the manure bioassays, significant differences were observed in the number of IJs infecting fly 

larvae (F= 240.71; P<0.001) and time of exposure of maggots to nematodes (F= 185.39; 

P<0.001). However, the interaction between number of IJ nematodes per larvae x time of 

exposure to nematodes was not significant (F= 2.68; P=0.068). Heterorhabditis spp. failed to 

infect maggots in the manure. Furthermore, the highest mortalities attained were 2.5, 3.7 and 

5.4% for 20, 40 and 100 nematodes per larvae after 4d of exposure (Table 2.6, Fig. 2.3b). 
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Table 2.6. Mean percent mortality house fly (Musca domestica) larvae infected with Heterorhabditis infective juveniles on filter paper and in manure bioassays 

Mean percent mortality 
♠
 

Number of 

nematodes per 

larvae 

Filter paper bioassay Manure bioassay 

 

1d 

 

2d 

 

3d 

 

4d 

 

1d 

 

2d 

 

3d 

 

4d 

20 

 

24.75 ± 4.39 
a
 

 

40 ± 2.55 
bc

 

 

54.75 ± 2.69 
d
 

 

64.75 ± 3.64 
ef
 0.13 ± 0.09 

a
 1.33 ± 0.09 

a
 1.8 ± 0.13 

a
 2.48 ± 0.19 

a
 

40 

 

26.5 ± 3.38 
a
 

 

40.5 ± 2.06 
bc

 

 

57.75 ± 4.89 
de

 

 

70.5 ± 1.71 
fg

 0.9 ± 0.15 
a
 2.25 ± 0.06 

a
 2.58 ± 0.15 

a
 3.7 ± 0.25 

a
 

100 

 

34.75 ± 3.12 
a
 

 

49.25 ± 5.86 
cd

 

 

76.75 ± 2.56 
g
 

 

85.5 ± 1.71 
h
 2.05 ± 0.16 

a
 3.55 ± 0.06 

a
 4.48 ± 0.09 

a
 5.4 ± 0.25 

a
 

♠
Values are means of three replicates of assays each containing 30 larvae ± se.  

Statistical analysis of ANOVA at the 0.05 significance level of the of interaction effect between number of Heterorhabditis infective juveniles per larvae and time 

on mortality.  
Means followed by the same letter within the same bioassay are not significantly different at P < 0.05 

(Filter paper bioassay: P=0.041; LSD = 0.126; %CV = 12.7)  

(Manure bioassay: P=0.068; LSD = 0.005; %CV = 11.8) 
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Fig.2.3a and 2.3b. Percent mortality of Musca domestica larvae after application of (■) 0,  (▲) 20, (□) 40 and (♦) 

100 Heterorhabditis infective juveniles per larvae on (a.) filter paper and (b.) in manure. 

 

 

 

 

 

 

 

2.3a. 

2.3b. 
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Table 2.7 Lethal concentration (LC50), lethal time (LT50) and respective Confidence Intervals (95% C.I.) and slopes 

(± standard error) demonstrated as conidia ml
-1

 and days, after infection of house fly larvae with Heterorhabditis 

infective juveniles for four days. 

 

Assay LC50 (95%CI)
 ♣

 

 

LT50 (95%CI) 

(days) 

Slope±SE 

Filter paper 

Manure 

42.3 (25.7 – 55) 

449.9 (239.1 – 1995) 

2.35 (2.18 – 2.52) 

12.33 (8.05 – 54.69) 

0.67 ± 0.052 

0.38 ± 0.158 

♣
 Number of infective juveniles per larva 

 

The LC50 values for Heterorhabditis spp. in the manure bioassay were higher than those on the 

filter paper. Moreover, the LC50 values Heterorhabditis spp. on the filter paper bioassay (42.3 

nematodes per larva) (Table 2.7), was about one-tenth (449.9 nematodes per larvae) of the value 

observed in manure.  

 

The time taken (LT50) for Heterorhabditis spp. to kill 50% of the larvae in the manure (12.33d) 

was about six times the time taken to kill the same percentage of larvae on filter paper (2.35d). 

 

2.4 Discussion 

 

Entomopathogenic fungi such as B. bassiana, as well as entomopathogenic nematodes such as 

Heterorhabditis spp., are two groups of naturally occurring biological control agents. However, 

few studies have been reported on the use of these organisms for biological control of house flies. 

The present study evaluated the pathogenicity of 36 fungal isolates and one nematode species 

against M. domestica larvae and adults. Despite the variability in virulence, the experiments 

clearly demonstrate that Beauveria can be an effective biocontrol agent against M. domestica.  

 

In the bioassay to evaluate the pathogenicity of 36 isolates of entomopathogenic fungi, including 

B. bassiana and Paecilomyces spp, from different hosts and sources, the virulence of the fungi 

towards larvae and adult flies varied greatly. All Beauveria isolates tested were able to infect 

adult flies in the laboratory, but there were differences between the isolates. This agrees with 

previous studies that showed a similar pattern of differences in insect pathogenicity between 
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different fungal species and strains (Geden et al., 1995; Watson et al., 1995; Lecuona et al., 

2005). Flies infected with B. bassiana died within 6d of exposure.  Comparable studies by Geden 

et al., (1995) reported that adult flies infected by B. bassiana died within 5d of exposure, while 

Watson et al. (1995) reported fly mortality occurring within 7d.  

 

None of the studied isolates of P. lilacinus were pathogenic to adult flies. These results suggest 

that M. domestica is not a susceptible host for P. lilacinus.  

 

The entomopathogenic activity of B. bassiana was confirmed by the presence of fungal hyphae 

on the body of flies. Fungal growth was evident as early as 2d after exposure to 10
8
 conidia ml

-1
. 

The flies exhibited signs of infection such as post-emergence of the fungus followed by 

conidiation on the surface of the cadavers, if adequate humidity was present, making it possible 

to initiate epizootics.  

 

Beauveria bassiana Isolates R444, 7320, 7569 and 7771 were identified as the most pathogenic 

isolates to adult flies, causing mortalities of 90% or more within 2d, at a conidial concentration of 

10
8
ml

-1
. Three of these isolates (7320, 7569 and 7771) were isolated from the soil. In contrast, no 

pathogenic effects were noted on fly larvae. None of the fungal isolates were very effective in 

controlling house fly larvae, despite maximization of fungus-host contact by immersion of larvae 

in a conidial suspension. Steinkraus et al. (1990) reported 52-73% mortality in third instars 

infected by B. bassiana. Similarly, Watson et al. (1995) reported mortality rates between 48-56% 

in second instars with high doses (10
10

 ml
-1

). In the present study, none of the fungal isolates was 

pathogenic towards fly larvae. Likewise, Geden et al. (1995), Watson et al. (1995) and Lecuona 

et al. (2005) reported that B. bassiana failed to infect larvae. These differences in outcomes may 

be the result of differences in strain virulence (Lecuona et al., 1996; Lecuona et al., 2005), in 

assay methods, conidial doses or culture methods (Lecuona et al., 2005). Furthermore, the insect 

cuticle acts as a barrier for fungal penetration and its thickness increases with every moulting so 

that differences in the susceptibility of larvae to entomopathogenic fungi can be explained by 

their cuticular properties (Boucias and Pendland, 1991). 
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Dose-mortality bioassays showed that mortality rates of M. domestica adults were a function of 

conidial concentration. Mortality responses observed were proportional to concentrations of 

conidial suspensions. Initially, a certain threshold of conidial concentration has to be exceeded to 

induce mortality (Butt and Goettel, 2000). In our experiments, low mortalities were observed at 

conidial concentrations below 10
5
 conidia ml

-1
. For Isolates 7569 and 7771 the theoretical 

maximum of 100% mortality was induced at the dose of 10
5
 conidia ml

-1
 at 4d and therefore, no 

further increase was possible with time. With the isolate 7569, the maximum 100% mortality 

leveled off at 3d at a conidial concentration of 10
6
 conidia   ml

-1
. Dose-dependent mortality was 

demonstrated previously by Watson et al. (1995) using two strains of B. bassiana (P80 and L90) 

formulated as a dust. This dose effect of B. bassiana conidia concentrations on infection levels 

and rates may have several reasons. First, it is possible that only certain conidia are able to infect 

the host (Butt and Goettel, 2000). Alternatively, it is possible that a certain minimal number of 

attached conidia are needed before the fly cuticle can be penetrated. Such positive correlations 

between the number of infective spores and mortality have been obtained when using B. bassiana 

against other arthropods (Kaaya and Munyinyi, 1995; Devi and Rao, 2006; Lekimme et al., 2006; 

Santoro et al., 2008).  

 

Four of previously assayed strains were selected for further bioassays.  These strains were 

Isolates 7320, 7569, 7771 and R444, which caused the greatest levels of mortality among adult 

flies. Subsequent bioassays indicated that Isolates 7771 and 7569 had the lowest LC50 values; 

Isolate 7569 had the lowest LT50 value and the greatest slope. These findings were consistent 

with earlier assays that indicated that Isolates 7569 and 7771 were the most virulent strains. 

 

The use of B. bassiana as a BCA against house flies would be attractive for several reasons. First, 

it would provide an alternative to chemical management of the adult stage of the fly. Second, use 

of B. bassiana as a BCA on flies is attractive because the user can achieve 100% control. This is 

not the case when a traditional insecticides program is followed and producers are often faced 

with repeated application of insecticides to suppress house flies, but without achieving complete 

control. Furthermore, there is little chance of flies developing resistance to B. bassiana. 
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Evaluation of Heterorhabditis nematodes against fly larvae revealed that fly larvae were highly 

susceptible to nematodes when hosts were confined in Petri dishes containing nematode-treated 

filter paper. However, the maggots were not susceptible to Heterorhabditis in manure media. 

When the fly larvae were exposed to 100 nematode IJs per host on filter paper, Heterorhabditis 

caused far higher mortality (85%) than in the manure media (5.4%). Although moderate levels of 

mortality were observed on Petri dish filter paper assays with lower nematode numbers per host, 

virulence was greatly reduced when house fly larvae were exposed inside chicken manure 

substrates. Other studies have documented the pathogenicity of several strains of 

entomopathogenic nematodes toward house fly larvae on filter paper assays (Renn et al., 1985; 

Geden et al., 1986; Belton et al., 1987; Georgis et al., 1987; Mullens et al., 1987a) and likewise 

the inability of the nematodes to survive in chicken manure.  Georgis et al. (1987) demonstrated 

that nematodes were severely hampered by poultry manure and exposure of IJs of H. 

bacteriophora to manure resulted in a high nematode mortality (70 – 100%) within 18h. 

Nematodes exposed to manure for more than 6h had drastically reduced efficacy against maggots 

of M. domestica. In contrast, Taylor et al. (1998) found that none of the 22 strains of 

Heterorhabditis nematodes screened caused significant mortalities of house fly maggots on filter 

paper, but they produced significant fly mortality in a manure substrate. Despite these 

differences, few species of nematodes have been screened against houseflies, and conflicting 

results have been obtained for some of the nematode species, possibly because of differences in 

strain pathogenicity (Gaugler, 1988). Furthermore, treatment of chicken manure with calcium 

alginate-encapsulated H. megdis nematodes resulted in 35-98% reduction in adult house fly 

emergence (Renn, 1995). These results indicate that use of advanced formulation that are able to 

protect the EPNs from toxins, such as ammonia, in chicken manure may enhance the efficiency 

of Heterorhabditis spp. against house fly larvae in poultry houses.  
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Abstract 

Infestations of house flies, Musca domestica L., are a continual problem around poultry 

establishments. The high levels of resistance developed by flies toward organochlorine and 

organophosphorous compounds have made the efforts to control flies using biological control 

agents (BCAs) increasingly important. Prior to conducting field evaluations, laboratory baseline 

bioassay data were established on a dose-time response relationship, closely simulating poultry 

house conditions in the laboratory. Acute toxicity of two Bacillus thuringiensis var. israelensis 

(Bti) formulations (water-dispersible granules (WDG) and bran formulation) was evaluated 

against larvae in the laboratory, and against natural populations of M. domestica larvae in the 

field, applied in oral feed to chickens and as topical applications in the poultry houses. Baseline 

bioassay data demonstrated that susceptibility of M. domestica larvae increased to a given 

concentration of Bti as the duration of exposure increased. In the laboratory studies, the LC50 and 

LC90 values of Bti for the larvae ranged between 65 - 77.4 and 185.1 - 225.9µg ml
-1

 respectively. 

LT50 and LT90 values were 5.5 and 10.3d respectively. In the field, a concentration of 10g Bti kg
-1

 

of feed resulted in 90% reduction of larvae for 4wk post-treatment. Furthermore, as the exposure 

duration increased, the level of Bti required to cause a significant mortality decreased. A higher 

concentration (2g L
-1

) of Bti in spray applications was not significantly more effective than the 

lower concentration of 1g L
-1

. Adding Bti to chicken feed is potentially an efficient measure for 

the management and control of house flies in caged-poultry facilities.  
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3.1 Introduction 

 

Infestations of house fly, Musca domestica L., are a continual problem around poultry 

establishments where caged laying hens are maintained. Accumulation of undisturbed droppings 

beneath the cages for lengthy periods of time provides an excellent breeding medium for house 

fly larvae (Thomas and Skoda, 1993). The house fly is ubiquitous and rapidly infests newly 

accumulating poultry manure, often reaching enormous numbers. The behaviour of this pest is 

typically synanthropic and, because of its high reproductive rate and ability to prosper in a wide 

range of environments, it possesses a high capacity for dissemination of metaxenic and other 

types of important diseases, therefore posing a potentially serious health problem. 

 

Besides being costly, insecticidal control of the house fly has many serious drawbacks. If not 

used properly, insecticides can be toxic to animals and humans, contaminate feed and water, and 

destroy the biological control agents (BCAs) of flies. Furthermore, house fly populations have 

developed a high level of resistance toward organochlorine and organophosphorous compounds 

(Scott et al., 2000), prompting a need for more effective solutions. Larviciding and source 

reduction have a major advantage in that they control flies before they disperse and transmit 

disease. 

 

Preparations of Bacillus thuringiensis (Bt) are widely considered as safe and effective pesticides 

in horticulture and forestry (Kellar and Langenfruch, 1993; Navon, 1993; Rajakulendran, 1993; 

Teakle, 1994) and to control mosquitoes and blackflies (Mulla, 1990; Becker and Margalit, 1993; 

Ritchie, 1993; Hershey et al., 1995; Becker, 1997; Brown et al., 1998a, 1999, 2002). However, to 

date, no commercial preparation of Bt has been released for the control of insect pests of 

livestock (Gough et al., 2005; Brar et al., 2006).  

 

Bacillus thuringiensis var. israelensis (Bti) is a Gram-positive, spore-forming bacterium with 

entomopathogenic properties. During sporulation it produces protein crystals (δ- endotoxins) with 

insecticidal activity (Höfte and Whiteley, 1989). Its mode of action involves ingestion and 

solubilization of crystals in the gut of the target insect, followed by the cleavage of protoxins, 

activation of toxins and interaction with the cells of the midgut epithelium of susceptible larvae 
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(Gill et al., 1992). These toxins act synergistically to produce full toxicity, thereby making it 

difficult for insect populations to develop resistance to this entomopathogen. These toxins are 

highly specific to their target insect, are safe to humans, vertebrates and plants, and are 

completely biodegradable. Therefore, Bti is a viable alternative for the control of insect pests in 

agriculture and important vectors of human disease (Bravo et al., 2005, 2007). 

 

Safety studies have so far shown no harmful effects on bees, vertebrates including man, and most 

beneficial insects are unharmed even at enormous doses (de Barjac, 1978; WHO, 1979). In a 

number of studies, the acute toxicity and pathogenicity of commercial Bt formulations have been 

evaluated on young bobwhite quail (Colinus virginianus) (Beavers et al, 1989a; Lattin et al., 

1990a, 1990b; Beavers, 1991b) and young mallards (Anas platyrhynchus) (Beavers et al., 1989b; 

Lattin et al., 1990c,d; Beavers, 1991a), when administered orally daily at high dosages. The Bt-

treated birds showed no apparent toxic or pathogenic effects by the Bt. In those studies that also 

evaluated feed consumption and weight gain, the Bt-treated birds showed no effect when 

compared with the non-treated controls. 

 

The present study reports on the evaluation of two formulations of Bti for M. domestica larvae 

control under laboratory and field conditions. In the field Bti was evaluated for control of house 

fly larvae in two ways: as a feed-through larvicide to broiler chickens and as a spray application 

over the manure in poultry houses. 

 

3.2 Materials and methods 

3.2.1 Bacterial strains 

 

Two Bti formulations (water-dispersible-granules (WDG) and a bran formulation) were obtained 

from Plant Health Products (PHP)
1
 (Pty) Ltd. 

 

 

 

 

                                                 
1
 Plant Health Products (Pty) Ltd. P.O. Box 207, Nottingham Road, South Africa 
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3.2.2 Insect rearing 

 

Adult house flies were maintained at 28
o
C, 68% RH, with a 12:12 L: D photoperiod. Flies were 

given a maintenance diet of ad lib sugar, milk powder and water and were offered chicken liver 

as an oviposition medium on a twice weekly basis from the third week of postemergence. Larvae 

for replacement colonies were reared on a diet comprising 50g active dried yeast (DCL), 8g agar 

(Oxoid), 250ml distilled water, and 750ml UHT full cream milk, prepared by microwaving to 

boiling point (Johnson et al., 1998). 

 

3.2.3 Laboratory bioassay for Bti toxicity against house fly (Musca domestica) larvae 

 

3.2.3.1 Viable spores quantification and preparation of spore-crystal suspension 
 

The concentrations of viable spores of WDG and bran formulations were estimated. A sample of 

1g of the WDG Bti formulation was suspended in 9ml sterile water and shaken for 30min. The 

bacterial suspension was subjected to thermal shock (80
o
C for 12min) to kill vegetative cells. 

After being sequentially diluted, 100µl samples were plated on Petri dishes containing nutrient 

agar and incubated at 28
o
C for 24h. The colonies formed were counted and expressed as colony 

forming units (c.f.u.) ml
-1

. For microscopic observation of morphological features of spores and 

parasporal bodies, 1ml samples of Bti obtained from 3-4d old cultures were incubated in a flask 

containing 50ml TSB medium at 30±1
o
C for 72h and then stained according to Ammons et al. 

(2002). 

 

Approximately 1ml of the bacterial culture obtained from the plates was inoculated into 50ml 

nutrient broth (Biolab) supplemented at 1ml l
-1

 with mineral salts (Stewart et al., 1981) to aid 

sporulation in 250ml flasks. Liquid cultures were incubated in an orbital shaker at 30
o 

±1
o
C and 

200rpm for 72h. The crystals were harvested by centrifugation at 4000rpm for 15min at 4
o
C 

(Beckam Coulter Avanti J-E, SW32 rotor). The pellet was washed twice with cold 0.1M NaCl 

and twice with cold water before being resuspending in deionized water to give final 

concentration of 1µg, 10µg, 50µg and 100µg ml
-1

. These preparations were stored in small 

aliquots at –20
o
C for use in the toxicity assays. 
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3.2.3.2 Toxicity assays 

 

Chicken manure was collected from poultry houses from the Ukulinga University Research Farm. 

Three replicates of 50g manure for each treatment were placed into plastic lunch boxes (120 x 

100 x 100mm) with screened holes in the lids. Aliquots of 1ml of Bti stock solution were pipetted 

evenly over the surface of the manure. Homogenous groups of thirty 2
nd

 instar larvae were 

exposed to four different concentrations of the product in triplicates. Three lunch boxes remained 

untreated for control purposes. The lunch boxes were incubated at 28
o
C and 60%RH. Larval 

mortality was quantified by counting live larvae remaining every 24h. Larvae that failed to react 

to gentle prodding with a glass pipette were considered to be dead (Brown et al., 1998b). The 

larvae were allowed to feed on the compost mixture for 7d. Larvae in control boxes developed to 

the third instar and pupal stages. 

 

Mortality of the larvae in the treated boxes was corrected against control mortality (Abbott, 

1925). The corrected mortality was subjected to Logit Probit regression analysis and median 

lethal concentration (LC50) and 90% lethal concentration (LC90) and associated 95% confidence 

intervals were calculated using the GENSTAT program.  

 

All percentage mortality data were square root-arcsine percent transformed. The data was 

analyzed using repeated measures ANOVA. The (LSD) method was used to separate and 

compare means within the treatments.  

 

3.2.4 Field trials 

 

3.2.4.1 Spray trials 

 

The poultry houses at Ukulinga were used for spray application trials. A few days before 

beginning the spray trial, the manure beneath the poultry houses was completely removed. 

Selected areas were 7m x 1.25m (8.75m
2
) and supported 40 broiler chickens housed in cages (300 

x 400 x 500mm). Similar unsprayed sites were run as controls for comparison. WDG-formulated 

Bti was applied at 0.11 g m
-2

 and 0.23 g m
-2

. To prepare the solution for spraying, 1g and 2g of 
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Bti powder was suspended in 1L of water to cover the 8.75 m
2
 of floor surface (114 ml m

-2
). The 

Bti formulation was applied using hydraulic hand sprayers.  

 

Post-treatment populations of house fly larvae were monitored after every 7d. The Bti application 

were carried out every 7d. Data were analyzed to measure reduction in the fly larvae numbers in 

comparison with untreated controls. The trial was run for 6wk. 

 

3.2.4.2 Feed trials 

 

For field evaluation experiments, forty-eight x 72wk old commercial broilers (Hyaline Brown) 

were obtained from the University Research Farm, Ukulinga.  Broilers were evaluated upon 

receipt for signs of disease or other complications that could affect the outcome of the study. 

Following examination, broilers were randomly allocated into 48 hanging pens (440 x 420 x 

610mm) in parallel back-to-back rows of twelve pens per row. Pens were separated by wire-mesh 

on all sides. Each pen was equipped with a removable feed trough and a nipple drinker. Each pen 

had a removable tray for individual manure collection. Broilers were housed in an 

environmentally controlled shed fitted with fans and 16:8h (L: D) at the University Research 

Farm at Ukulinga. 

 

3.2.4.3 Diet preparation for broilers and administration 
 

Bacillus thuringiensis var. israelensis-formulated bran was mixed into the broiler mash in 

varying quantities (0.1g, 0.5g, 1.0g, 5.0g and 10g per kg of broiler mash). The control did not 

contain any Bti-formulated bran. The rations were stored in trash cans lined with plastic bags 

until fed to the chickens. There were eight broilers per treatment.  Feed and drinking water were 

provided ad libitum. Broilers were fed their respective dietary treatments for 5wk.  

 

3.2.5 Arthropod sampling  

 

For the feed trials, excreta from each bird was collected every 7d. Sampling of arthropods was 

started a week after the administration of the different feeds in order to give the broilers time to 

adjust to the different treatments. House fly larvae were monitored using a gardeners bulb planter 

(400ml) to collect two manure cores from each tray/bird/diet. Larvae was extracted using Berlese 
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funnels and enumerated. For the spray trials, ten samples of 400ml were taken every 7d during 

the trial. 

 

3.2.6 Statistical analysis 

 

Percentage mortality of larvae in the treated trays was calculated and corrected to the reduction, if 

any, in controls using the formula of (Mulla et al., 1971) as given below: 

 

% Reduction = [C1 – C2] x 100 

      C1   

 

where;  C1, number of larvae in untreated manure;  

C2, number of larvae in treated manure. 

 

The percentage values were normalized by square root-arcsine transformation. An analysis of 

variance (repeated measures) was performed by taking the percent reduction (square root arcsine 

values) as the dependent variable and dose as the factor. The LSD method was used to find 

significant differences between means. 

 

3.3 Results 

 

3.3.1 Evaluation of toxic activity and concentration of viable spores 

 

The presence of Bti spores and parasporal bodies was evident in stained specimens taken from the 

WDG and bran formulations (Fig. 3.1a and 3.1b). 

 

 

 

 

 

 

 

 



 94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1a and 3.1b. Light microscopy images of (a) WDG and (b) bran formulations of Bacillus thuringiensis var. 

israelensis stained with Coomassie Blue stain (0.133% in 50% acetic acid). (S = Spore; P = Parasporal body). 

 

 

 

 

 

 

Table 3.1. Probit analysis of Bacillus thuringiensis var. israelensis evaluated in a bioassay against 2
nd

 instar larvae of 

Musca domestica larvae and corresponding viable spore concentration 

LC50
a
 (µg ml

-1
)   

Average ± se
c
 (95% CI) 

LC90 
b
 (µg ml

-1
)   

Average ± se (95% CI) 

Slope Viable spores 

(c.f.u. ml 
-1

)
 d

 

70.70 ± 3.17  

(65 – 77.4) 

203.1 ± 10.42  

(185.1 – 225.9) 

0.4640±  0.02 6.23 x 10
9
 

a 
LC50 = concentration lethal for 50% larvae 

b 
LC90 = concentration lethal for 90% larvae

 

c 
Average of three bioassays ± standard error 

d 
c.f.u. ml

-1
 = colony forming units per millilitre 

 

 

 

The LC50 and LC90 values of Bti against M. domestica larvae are shown in Table 1. The analysis 

of the confidence intervals (95%) indicated LC50 and LC90 values were 65-77.4 and 185.1- 

225.9µg ml
-1

 respectively. The concentration of viable spores, as estimated by the number of 

colonies, was 6.23 x 10
9
 spores g

-1
. 

 

Laboratory bioassays with the WDG formulation of Bti against second instar larvae of M. 

domestica showed that after 24h of exposure, poor control was recorded and no mortality was 

3.1a 

P 

S 

3.1b 

P 

S 
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observed as a result of any of the treatments (Table 3.2; Fig. 3.2). After 4d of treatment, there was 

a sharp decline in M. domestica larval densities in all the treatments. At D4 post-treatment, the 

mortality of M. domestica larvae was moderate in all five treatments (Fig. 3.2) and there was at 

least 50% mortality in three of the dosages (10, 50 and 100µg Bti ml
-1

); the 1µg Bti ml
-1

 produced 

36% mortality. While the minimum mortality observed was 42% (1µg Bti ml
-1

) at D5 post-

treatment, the rest of the dosages; 10, 50 and 100 µg ml
-1 

produced 58, 67 and 76% larval 

mortalities respectively. At D7 post-treatment, the highest larval mortality observed was 86%, 

while 10 and 50µg Bti ml
-1

 produced 66 and 74% mortality respectively and the mortality 

produced by 1µg Bti ml
-1

 was just below 50%. (Table 3.2; Fig. 3.2). 

 

Table 3.2.  Mortality (%) of house fly (Musca domestica) larvae in manure treated with different concentrations of 

Bacillus thuringiensis var.  israelensis for 7d. 

Dose 

µg ml
-1

 

 

 

Mean larval mortality (%) 
♣
 

1d 2d 3d 4d 5d 6d 7d 

 

1 0(0) 0(0)a 26.67(0.54)a 36.67(0.65)a 42.22(0.71)a 44.44(0.73)a 46.67(0.75)a 

10 0(0) 10(0.32)b 43.33(0.72)b 50.00(0.79)b 58.89(0.87)b 61.11(0.90)b 66.67(0.96)b 

50 0(0) 20(0.46)c 45.56(0.74)b 60.00(0.89)c 67.78(0.97)c 71.11(1.01)c 74.44(1.04)b 

100 0(0) 30(0.58)d 56.67(0.85)c 66.67(0.96)c 76.67(1.07)d 82.22(1.14)d 86.67(1.20)c 

 

F-Ratio 

P-Level 

LSD 

CV% 

Effect 

 72.22 

<0.001 

0.096 

15.1 

** 

20.22 

<0.001 

0.093 

6.9 

** 

 

17.77 

<0.001 

0.103 

6.7 

** 

36.30 

<0.001 

0.0823 

4.9 

** 

29.79 

<0.001 

0.103 

5.8 

** 

27.64 

<0.001 

0.116 

6.3 

** 

♣ 
Values are means of three replicates of assays each containing 30 larvae. Values in parenthesis are square root-

arcsine transformed values of means.  

Means followed by the same letter within the same day are not significantly different at P < 0.05  

** Significant at P≤ 0.001 

 

 

 

There were significant differences in mortality levels of M. domestica larvae between the Bti 

concentrations (F= 58.0; P <0.001), the time of exposure (F= 1072; P<0.001) and the interaction 

effects between dosages and days (F=12.05; P <0.001), indicating a change in the level of larval 
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reduction on post-treatment days with a change in the dosage. Significant differences between the 

treatments were apparent after D3 post-treatment (Table 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.  Mean percent mortality of Musca domestica larvae treated with four (1, 10, 50 and 100µg ml
-1

) 

concentrations of formulated Bacillus thuringiensis var. israelensis  for 7d. 
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Fig. 3.3 LT50 and LT90 of Musca domestica larvae infected with different concentrations of Bacillus thuringiensis 

var. israelensis.  
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There was a dose-dependent relationship in the mortality of larvae (Table 3.2; Fig. 3.2). This was 

confirmed by Probit analysis. Comparisons between LT50 and LT90 values showed that the 

mortality of larvae exposed to 1-100µg Bti ml
-1

 differed significantly from the control (P<0.001). 

The lowest LT50 was obtained with the 100µg Bti ml
-1 

dose. Indeed, at the 100µg ml
-1

 dose, Bti 

killed 50% of the larvae in 3.42d and 90% of the larvae in 6.51d while 50% of the controls 

survived for 12.7d and 90% for 17.68d (Fig. 3.3).  

 

3.3.2 Spray trials 

 

The mean number of house fly larvae collected from the manure core samples in the poultry 

houses during the 6wk sampling period are presented in Fig. 4. After 2-4wk of spraying, the 

density of larvae in the manure was reduced by at least 20% in both the 1g L
-1

 and 2g L
-1

dosages 

(Fig. 3.5). After 4wk, there was a sharp decline in larval densities at both dosages. Whereas there 

was a 50% reduction in larvae by 2g L
-1

 after 5wk, a larval reduction of just below 50% reduction 

was obtained with 1g L
-1 

only after 6wk. At 6wks post-treatment, 2g L
-1

 produced 52% mortality, 

while the reduction of larvae by the 1g L
-1

 treatment was 47% (Fig. 3.5; Table 3.3). 

 

 

 

Fig. 3.4. Weekly mean number of house fly larvae in the manure of broilers sprayed for six weeks with two 

concentrations (1 and 2g L
-1

) of a WDG formulation of Bacillus thuringiensis var. israelensis. 
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♦ y = 5.15x + 15.06; R2 = 0.904

■ y = 6.45x + 14.41; R2 = 0.943
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Fig. 3.5 Percent mortality of house fly (Musca  domestica) larvae in the manure of broilers sprayed for six weeks 

with two concentrations (1 and 2g L
-1

) of a WDG formulation of Bacillus thuringiensis var. israelensis. 

 

 

 

 

 

 

Table 3.3. Percent mortality of house fly (Musca. domestica) larvae in manure of broilers sprayed for 6wk with two 

concentrations (1 and 2g L
-1

) of a WDG formulation of Bacillus thuringiensis var. israelensis. 

 

Bti g L
-1

 

Percent reduction in number of larvae  

Weeks 

1 2 3 4 5 6 

 

1 

 

 

22.03 (0.48)a 

 

 

24.89 (0.52)a 

 

 

31.17 (0.59)a 

 

 

29.68 (0.57)a 

 

 

43.62 (0.72)a 

 

 

47.16 (0.76)a 

2 22.03 (0.48)a 26.18 (0.53)a 35.50 (0.63)a 35.16 (0.63)a 50.21 (0.79)a 52.84 (0.81)a 

       

F ratio  

P  Level                      

LSD  

CV% 

Effect 

0.01 

0.94 

0.09 

19.5 

NS 

0.19 

0.67 

0.09 

18.7 

NS 

0.56 

0.46 

0.12 

20.4 

NS 

1.09 

0.31 

0.12 

21.8 

NS 

2.32 

0.15 

0.09 

13.1 

NS 

3.27 

0.09 

0.07 

9.0 

NS 

Values in parenthesis are square root-arcsine transformed values of means.  

Means followed by the same letter within the same week are not significantly different at P <0.05 

F and P values after square root-arcsine transformation 

NS = not significant 
 

 

 

While the two dosages (1 and 2g L
-1

) caused significant reductions in the number of larvae 

(P<0.05), they did not differ significantly in reducing the number of larvae (F = 2.27; P = 0.149).  

1g L
-1 

2g L
-1 

 



 99

Although there was a significant effect of weeks (F = 33.24; P <0.001), the interaction effect of 

dosages and week was not significant (F = 0.43; P = 0.752) indicating that a change in the level 

of larval reduction on post-treatment days did not change with a change in dosage. No significant 

differences were observed between the two dosages (1 and 2g L
-1

) in their reduction of larvae 

during the study period (Table 3.3). 

 

3.3.3 Feed trials 

 

Following the continuous feeding of Bti in the broiler mash, the house fly larvae declined rapidly 

in the manure as a result of the five doses (Fig. 3.6). After 1wk of feeding chickens with Bti feed, 

the larval reduction, as a result of the 0.1, 0.5 and 1.0g Bti kg
-1

 feeds, was at least 20%, while the 

larval reduction as a result of the 5 and 10g Bti kg
-1

 feed was approximately 40% (Table 3.4).  

After 1wk of feeding broilers with bran-formulated Bti, larval populations were reduced by at 

least 25% as a result of all the dosages (Table 3.4). Percent reduction in larval numbers was 

almost doubled after 2wk of feeding with three dosages (0.1, 0.5 and 1.0g kg
-1

). After 2wk of 

using Bti as a feed additive, the number of larvae was reduced by at least 50% as a result of four 

of the five dosages. By Wk3 of feeding, the reduction was at least 70% as a result of the 5 and 

10g Bti kg
-1

 doses, whereas at 0.5 and 1.0g Bti kg
-1

, the reduction was about 60%. After 4wk of 

treatment, the percent reduction of maggots was 91% at 10g Bti kg
-1

. In the case of other dosages: 

0.1, 0.5, 1.0 and 5g Bti kg
-1

, the reductions were 62, 75, 78 and 88%, respectively (Table 3.4).  

 

The two main effects, dose and time, were significant [(F=13.26; P<0.001), (F=73.05; P<0.001) 

respectively]. However, the interaction effect between them was not significant (F=0.38; 

P=0.959). The level of reduction of larvae as a result of dose did not differ significantly in the 

first week of feeding formulated Bti to chickens (Table 3.4), but significant differences were 

apparent between the dosages in subsequent weeks of feeding (Table 3.4). 
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Fig. 3.6. Weekly mean number of house fly (Musca domestica) larvae in the manure of broilers fed for four weeks 

with five concentrations (g kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis. 
 

 

 

 
 

Table  3.4. Percentage mortality in number of house fly (Musca  domestica) larvae in the manure of broilers fed for 

4wks with five concentrations (g kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis. 
 

Bti (g kg
-1

) 

Percent reduction of number of larvae 

Weeks 

1 2 3 4 

 

0.1 

 

21.95 (0.43)
a 

 

41.62 (0.71)
a 

 

52.17 (0.82)
a 

 

62.42 (0.92)
a 

0.5 20.04 (0.44)
a 

53.15 (0.83)
ab 

57.64 (0.92)
ab 

74.81 (1.06)
ab 

1 26.95 (0.52)
ab 

50.29 (0.76)
ab 

65.62 (0.96)
abc 

78.09 (1.12)
bc 

5 38.53 (0.66)
ab 

65.78 (0.96)
b 

70.94 (1.03)
bc 

88.40 (1.25)
cd 

10 42.15 (0.70)
b 

68.68 (0.98)
b 

78.38 (1.11)
c 

91.56 (1.36)
d 

F  ratio 

P  level                    

LSD  

CV% 

Effect 

2.37 

0.07 

0.24 

41.9 

NS 

4.31 

0.01 

0.17 

19.3 

* 

3.52 

0.02 

0.17 

17.5 

* 

7.0 

<0.001 

0.18 

15.8 

** 

Values in parenthesis are square root-arcsine transformed values of means.  

Means followed by the same letter within the same week are not significantly different at P < 0.05 

F and P values after square root-arcsine transformation 

* Significant at P< 0.05 

** Significant at P≤0.001 

NS = not significant 
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3.4 Discussion 

 

Baseline bioassay data demonstrated that M. domestica larvae exposed to different concentrations 

(1, 10, 50 and 100 µg ml
-1

) of Bti were susceptible to the bacterial toxins. Indeed, 86% of fly 

larvae exposed to a concentration of 100µg of Bti formulation ml
-1

 (10
8
 spores ml

-1
 of Bti), were 

dead within 7d.  These results are comparable to those of Lonc et al. (1991). These authors 

reported a 70% mortality of house fly larvae as a result of a Bti spore concentrations of 2 x 10
9
 

ml
-1

. However, since there is not always a correlation between spore concentration and the 

toxicity of a formulation (Skovmand et al., 2000; de Araújo et al., 2007), the toxicity of the Bti 

formulation in this study was not based on spore concentration. It is difficult to directly compare 

the results of this study with other publications on other Bti formulations, because application 

rates are expressed in many different ways (de Barjac, 1990) and the potencies of various test 

formulations are different. 

 

In the laboratory, all the four test dosages produced significant effects towards controlling larval 

numbers. Mean LT50 and LT90 values for the WDG formulation showed increased susceptibility 

of M. domestica larvae to a given concentration of Bti as the duration of exposure increased. 

However, as the exposure duration increased, the amount of Bti required to cause significant 

mortality decreased, with the sharpest decline of larval numbers occurring after 4-5d exposure 

period. A lower mean LT50 value indicates that a particular dose is effective at shorter periods of 

time, which indicates that the larvae are more susceptible to the treatment. The lowest LT50 was 

obtained with the 100µg Bti ml
-1 

concentration (3.4d). Hence, the highest dosage, 100µg Bti ml
-1 

(with respect to active ingredient), could be used to calculate the dose of the choice for field 

application, since 90% control of larvae was achieved in 7d.  

 

Spray treatment in the chicken houses of 1g L
-1

 once a week was suggested. Considering that 

LC50 values observed in the laboratory are often not enough to effect larvicidal activities in the 

field (de Araújo et al., 2007), a higher dose of 2g L
-1

 was the second choice for field application 

and treatment at this dosage once a week was necessary to cause >90% reduction of fly larvae. 

The time of exposure to treatment and the interaction effects of dosages by days after exposure 

were significant, indicating a change in the level of larval densities on post-treatment days with a 
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change in the dosage. The fact that time of exposure was significant suggests that repeated 

applications would be more effective in controlling the larval density. However, application of 

any larvicide twice a week in an operational programme may not be feasible nor cost-effective.  

 

Results from the field spray trials with Bti WDG showed that a higher concentration of 2g L
-1

 

applications was not significantly more effective than the lower concentration of 1g L
-1

 in 

causing larval mortalities. Indeed, significant differences between the two dosages were only 

observed in the first two weeks of application. Such low application dosages offer the possibility 

of keeping operational costs low. Moreover, both Bti concentrations were equally effective at 

lowering larval densities in the manure and a reduction of about 50% was achieved after 6wk 

post-spraying.  

 

Results further showed that under laboratory conditions, M. domestica larvae were more 

susceptible to Bti WDG formulation than in the field. These results indicated that under static 

laboratory conditions, it is possible to overestimate the longevity of Bti spores in the fluctuating 

field environment (Yousten et al., 1992). The results also suggest that the potency of a product 

may not be an accurate indicator of its performance in the field, so far as the persistence of the 

larvicidal activity is concerned (Vilarinhos and Monnerat, 2004; de Araújo et al., 2007). This 

lack of persistence of Bti in the field has been observed in other arthropods (Karch et al., 1991; 

Gelernter and Schwab 1993; Kroeger et al., 1995; Fillinger et al., 2003; Russell et al., 2003).  

 

Several environmental factors may influence Bti formulations effectiveness in the field (Ignoffo 

et al., 1981; Mulla et al., 1990; Becker et al., 1992), including solar radiation (Pusztai et al., 

1991; Obeta, 1996; Nayar et al., 1999; Thiéry et al., 1999; Melo-Santos et al., 2001; Vilarinhos 

and Monnerat, 2004), high temperature (Ignoffo, 1992) and high larval densities outside of the 

bioassay rings (Yousten et al., 1992; Glare and O’Callaghan, 2000). Exposure of spores to 

prolonged periods of high temperatures has been reported to result in decreased activity of Bt 

products, especially in the tropics, where temperatures frequently exceed 30
o
C (Morris, 1983). In 

addition to possible inactivation of the Bt toxins, high temperatures also reduce feeding by some 

insects (Han and Bauce, 2000).  
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Reduced persistence of Bti in the field may also be attributed to the existence of compounds in 

chicken litter that may inhibit the growth of some microorganisms (Himejima et al., 1992; 

Asukabe et al., 1994; Kim et al., 1995; Amaral et al., 1998; Adams et al., 2002). Moreover, the 

alkaline pH of chicken manure favours solubility of crystals, making protoxins more prone to 

degradation (de Araújo et al., 2007). The association of such factors would contribute to reducing 

the larvicidal activity of Bti products (de Araújo et al., 2007).  

 

On the contrary, the prolonged larval control observed in the feeding trials with the bran 

formulation of Bti suggests that feeding Bti to the chickens might compensate for the partial loss 

of toxic crystals caused by UV and other factors. Furthermore, >90% reductions of M. domestica 

larvae were observed with a dose rate of 10g of bran formulation kg
-1

 of standard broiler mash. 

The bran formulation was approximately two and a half times as effective as the WDG 

formulation, achieving approximately 80% mortality at 4wk with 1g kg 
–1

 and 30% mortality 

with 1g L
-1

, respectively. Such variation in product efficacy has been reported previously (Brown 

et al., 2001; Fillinger et al., 2003; Russell et al., 2003) and may be related to formulation 

characteristics. 

 

These observations were similar to those observed by Labib and Rady (2001), who found that 

adding Bti to chicken food significantly reduced maggot numbers. In large-scale programmes, for 

any formulation to be considered for incorporation, it should have residual activity so that the 

application and thereby operational costs can be minimized. In the present study, the bran 

formulation was shown to be the most effective formulation for use in controlling M. domestica 

larvae in poultry houses. Specifically, it is easily applied, and lasted for long periods without a 

reduction in the levels of activity.  

 

The results of our studies on the evaluation of Bti against M. domestica indicate that biological 

control of M. domestica larvae in poultry facilities may be possible. The highest mortality 

obtained with the bran formulation of Bti was 91% after 4wk of feeding 10g of the formulation 

per kg of basal diet to chickens. Successful results were also obtained with the WDG Bti 

formulation, causing M. domestica larvae mortality levels of 53% with 0.23g m
-2

 and 47% with 
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0.11g Bti formulation m
-2

. Adding Bti to chicken feed is an effective measure for the management 

and control of house flies in caged-poultry facilities. 
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Abstract 

 

Light and scanning electron microscopy (SEM) were used to view the external development, 

mode of penetration and to establish comparisons between three isolates (Isolates 7320, 7569 and 

7771) of the entomopathogenic fungus Beauveria bassiana (Balsamo) on the surface of the 

common house fly (Musca domestica L.). The host was sprayed with a conidial suspension of B. 

bassiana (10
8
 conidia ml

-1
). The specimens used in the SEM investigation were collected at 

particular periods after spraying and prepared for viewing using standard methods. Beauveria 

bassiana conidia attached to the host cuticle after 6h and germination tubes developed 12-48h 

after applying B. bassiana conidia to the host. Densities of B. bassiana conidia varied 

considerably on the body regions of the host, with the highest densities occurring on the 

intersegmental regions, the legs and the base of setae, with observable lower densities of conidia 

on body regions without setae. Penetration of the cuticle was effected after formation of 

appressori. Extensive growth of mycelium on the surface of the insect’s integument followed 

colonization of the host. After 72-120h, post colonization, the first sporulation was observed on 

the cuticle. After 144h, post- spraying with B. bassiana, the cuticle of the host had completely 

degraded. Although all three B. bassiana isolates killed the flies within 24h, Isolate 7771 

colonized the cadavers faster than Isolates 7320 and 7569. 
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4.1 Introduction 

 

House flies are among the most important pests in poultry and other confined animal operations 

where they breed in the manure, animal feed, and other organic materials (Axtell, 1986). In 

addition to the direct damage these flies inflict upon poultry, their presence in confined poultry 

operations is generally a nuisance, especially when the flies enter the vicinity of human 

habitations and urban environments. House flies have been implicated as mechanical vectors of a 

wide range of pathogens of animals and humans (Greenberg, 1973; Graczyk et al., 2001). In 

poultry production, house flies transmit Salmonella among flocks; and spot eggs with ‘fly 

specks’, reducing the eggs’ market value. The fact that house flies have developed resistance to 

most insecticides applied against them (Scott et al., 2000), has made efforts to control flies using 

biological control agents (BCAs) increasingly important. 

 

Entomopathogenic fungi are unique compared to other disease-causing microorganisms because 

they infect their hosts through the insect cuticle and do not need to be ingested, therefore showing 

great potential for controlling insect pests. The entomopathogenic fungus Beauveria bassiana 

(Balsamo) Vuillemin is one of the most widely researched and promising species of pathogenic 

fungi used for insect control, and is pathogenic on more than 200 species of insects (Feng et al., 

1994; Hajek and St.Leger, 1994). Furthermore, several studies (Steinkraus et al., 1990; Geden 

and Rutz, 1992; Watson et al., 1995; 1996; Kaufman et al., 2005) have reported on the potential 

of B. bassiana for house fly control.  

 

In order to develop entomopathogenic fungi as biocontrol agents, it is crucial to understand their 

mode of action on their insect pest target. Scanning electron microscopy has been widely used for 

this purpose (Lopez-Llorca et al., 1999, 2002).  Asexually produced fungal spores or conidia of 

entomopathogenic Hyphomycetes are generally responsible for infection and are dispersed 

throughout the environment in which the insect hosts are present. Penetration through the host 

cuticle is the mode of entry for most entomopathogenic fungi (Charnley, 1989). However, prior 

to penetration, conidial attachment to the cuticle must take place (Boucias and Pendland, 1991), 

followed by germination and infection of the target insect. 
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The insect cuticle is the first barrier that the fungus must overcome. There are a number of 

discrete stages leading to breaching the cuticle by insect entomopathogens, including spore 

attachment, spore germination, spore differentiation and then penetration of the cuticle by 

enzymatic and mechanical means (St. Leger et al., 1991). Infection by entomopathogenic fungi 

such as Beauveria spp. results from direct penetration of the cuticle, using a combination of 

enzymatic and physical mechanisms, without any requirement for ingestion.  

 

The invasion of a host is determined by a few aspects of insect host surface and fungal structure 

and behaviour (Charnley, 1989). For instance, surface structure and the chemical composition of 

the host cuticle are believed to affect the adhesion of fungal propagules to the cuticle. Chemical 

components of the cuticle can also affect conidial development after adhesion by either causing 

production of non-penetrant germ tubes or by inhibiting germination altogether (Boucias and 

Pendland, 1991). Conidial distribution on the host cuticle can be region specific (Sosa-Gomez et 

al., 1997); surface topography has also been shown to influence growth of deuteromycetes after 

adhesion (Boucias and Pendland, 1991). Orientation of germ tubes and attachment to epicuticle 

may determine the relative virulence of entomopathogenic fungi (St. Leger, 1993; Clarkson and 

Charnley, 1996). Highly pathogenic strains of B. bassiana germinate very quickly and can 

orientate on the cuticle (Charnley and St. Leger, 1991).  

 

Studies related to the duration of the different phases of fungal development on insects are 

relatively rare. These studies can be conducted using bioassays and observation of the different 

phases of fungal infection, through scanning electron microscopy (SEM) (Neves et al., 1996).  

 

The objective of this work was to describe the external development cycle of B. bassiana on M. 

domestica using SEM, and to determine the duration of the different phases of fungal infection.  
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4.2 Materials and methods 

 

4.2.1 Fungi 

 

Three isolates of B. bassiana (Isolates 7320, 7569 and 7771) were used in this study. Strains of B. 

bassiana were provided by Plant Pathology Research Institute
1
 (PPRI). Beauveria bassiana 

cultures were grown on potato-dextrose agar. Sporulating cultures (3-4 wk-old) were harvested 

by brushing the dry conidia from surface of the agar plate into sterile vials. Conidia were counted 

with the aid of a haemocytometer to calibrate a dose of 1x10
8
conidia ml

-1
. An aqueous spore 

suspension was prepared with a surfactant (0.1% dilution of Tween 80) and 1x10
8
 conidia ml

-1
. 

 

4.2.2 Insect rearing 

 

Musca domestica were maintained at 28
o
C, 68% RH, with a 12:12 L: D photoperiod. Adult flies 

were given a maintenance diet of ad lib sugar, milk powder and water and were offered chicken 

liver as an oviposition medium on a twice weekly basis from the third week of postemergence. 

Larvae for replacement colonies were reared on a diet comprising 50g active dried yeast (DCL), 

8g agar (Oxoid Bacteriological), 250ml distilled water, and 750ml UHT full cream milk, 

prepared by microwaving it to boiling point (Johnson et al., 1998). 

 

4.2.3 Infection bioassay 

 

Ten cold-anesthetized house flies were transferred to plastic petri plates (90mm), lined with filter 

paper. The flies were inoculated by spraying with a suspension (1 x 10
8 

conidia ml
-1

) of B. 

bassiana isolates. Ten plates with 10 insects/ plate were used for each one of the fungal isolates, 

maintained at 25 ± 1
o
C and 70±10% RH. Five insects were removed from the plates 0, 6, 12, 24, 

48, 72, 96, 120 and 144 hours after inoculation. The insects were killed in petri dishes with ethyl 

ether and mounted on SEM stubs. Five insects were prepared for each sampling time and fixation 

in glutaraldehyde/OsO4/Sodium cacodilate buffer. 

 

                                                 
1
 Agricultural Research Council, 1134 Park Street, P.O. Box 8783 Hatfield, Pretoria 0001 



 115

4.2.4 Scanning electron microscopy preparation 

 

For fixation in glutaraldehyde/OsO4/Sodium cacodilate buffer, the insects were fixed by 

immersion for 6 hours in 4% glutaraldehyde with a 0.2M pH 7.2 sodium cacodilate buffer. 

Specimens were then fixed in 1% OsO4 in a 0.1M pH 7.2 sodium cacodilate buffer for 1 hour. 

Fixation and dehydration were performed in plastic Eppendorff tubes. After fixation, specimens 

were dehydrated in a 10, 20, 30, 50, 70, 90, and 100% acetone series. The insects were finally 

washed three times in a 100% acetone solution. They were then critical point dried using CO2. 

The insects were then mounted on stubs and coated with gold-palladium. Five insects were 

prepared for each sampling time. The insects were observed with a Phillips, XL30 ESEM. 

Durations of the different phases of the infection process were estimated from SEM observations 

and compared for the three fungal isolates. 

 

4.3 Results 

 

4.3.1 Conidial adhesion and germination 

 

The conidia of B. bassiana adhered to the insect integument within 0-6h (Fig. 4.1a, b) after 

application. Densities of conidia by body region varied considerably after inoculation. The 

highest conidial densities occurred in the intersegmental regions, the legs (Fig 4.1a), the eyes 

(Fig. 4.1c), and the base of the setae (Fig. 4.1d), with observably lower densities on the segmental 

areas without setae. Conidial germination took place after 12-48h (Fig. 4.1e). Little variation in 

the timing was observed for the conidial germination phase between B. bassiana Isolates 7569 

and 7771. In the case of both Isolates 7569 and 7771, germination occurred 12-24h after 

inoculation. However, with Isolate 7320, germination of conidia was only observed after 12-48h. 

Insect death occurred within 24h of inoculation with all the isolates.  

 

4.3.2 Penetration of the cuticle 

 

Penetration occurred 36-72h post infection. The primary penetration sites for B. bassiana were at 

the base of the setae in different regions of the fly body, but mainly on the head, thorax, 
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abdomen, legs and wings (Fig. 4.1f). A thickening of the extremity of the germ tube was 

observed to precede penetration by B. bassiana (Fig. 4.1f).  

 

4.3.3 Fungal emergence and conidiogenesis 

 

Fungal emergence occurred between 72-96h after inoculation. During this period mycelium grew 

out through the base of setae (Fig. 4.2a, b) or from natural openings. Isolate 7771 colonized the 

dead insects faster than Isolates 7320 and 7569 (72-96h). Dead insects had a reddish colouration 

(Fig. 4.2c) that is characteristic of oosporein activity, which is typical of insects killed by B. 

bassiana. 

 

Conidiogenesis was initiated between 72-96h (Isolate 7771) after inoculation (Fig. 4.2d) and 

intensified between 96-120h (Fig. 4.2e, f) and reached a peak 120-144h after inoculation (Fig. 

4.3a, b). After 144h, the whole insect body was completely covered by B. bassiana conidia (Fig. 

4.3c) and B. bassiana sporulated abundantly all over the dead insect’s body (Fig. 4.3d).  Cuticle 

degradation occurred subsequently along the whole body of the insect (Fig. 4.3e, f). Observation 

of the development of the three isolates of B. bassiana showed that Isolate 7771 colonized the fly 

cadavers faster than Isolates 7320 and 7569 (Fig. 4.4). Although conidial adhesion happened 

within 6h with all the three isolates, germination of conidia took place earlier in Isolates 7569 and 

7771 (12-24h). There was little variation in timing of the process of penetration of the germtube 

into the insect cuticle.With all the three isolates, penetration occurred within 36-72h after 

application of B. bassiana (Fig.4.4). 
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Fig. 4.1. Scanning electron microscope micrographs of the development of Beauveria bassiana on adult 

house flies (Musca domestica). A) A conidium adhering to an insect cuticle (1500X, 0h after inoculation; 

B) Close-up of a conidium (6500X); C) Conidia adhered to the eyes of a fly (8000X); D) Conidia adhering 

to the base of seta (800X, 24h); E) Germinating conidia and possible penetration at base of setae (1200X, 

36h); and F) Penetration of a germ tube at the base of a setae  (2500X, 48h).  
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Fig. 4.2. Scanning electron micrographs of the development of B. bassiana on M. domestica. A and B)  

extrusion of mycelia from the base of  setae and details of mycelial  development  (650X, 72h and 1200X, 

96h, respectively); C) Reddish colouration typical of B. bassiana infection on the abdomen of dead insect; 

D and E) Conidiogenesis  (5000X, 72h and 650X, 96h, respectively). F) Production of conidiophores and 

conidia (1500X, 96h). 
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Fig. 4.3. Scanning electron micrographs of the development of B. bassiana on M. domestica. A) 

Conidiogenesis (200X, 120-144h). B) Detail of conidia chain (2000X, 120-144h); C) Mummified cadaver 

of M. domestica (144h); D) Massive sporulation of conidia (144h, 1500X).  E and F ) Cuticle degradation 

(1200X, 144h and 1000X, 144h respectively). 
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A. Beauveria bassiana 7320 

 Time After Inoculation (h) 

Disease Phase 0 6 12 24 36 48 72 96 120 144 

Conidial adhesion    
Germination       
Penetration       
Colonization     
Conidiogenesis    

 

 

 

 

 

B. Beauveria bassiana 7569 
 Time After Inoculation (h) 

Disease Phase 0 6 12 24 36 48 72 96 120 144 

Conidial adhesion    
Germination     
Penetration       
Colonization     
Conidiogenesis    

 

 

 

 

 

C. Beauveria bassiana 7771 

 Time After Inoculation (h) 

Disease Phase 0 6 12 24 36 48 72 96 120 144 

Conidial adhesion    
Germination     
Penetration       
Colonization     
Conidiogenesis      
 

Fig.  4.4  Duration of different developmental phases of three Beauveria bassiana isolates on adult house fly (Musca 

domestica). 
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4.4 Discussion 

 

The present study describes the infection process of the common house fly M. domestica by three 

strains of B. bassiana. The following sequence of events in the infection of M. domestica adults 

by B. bassiana isolates:   

• Attachment of B. bassiana conidia to the host,  

• conidial germination and formation of germ tube,  

• penetration and growth of the pathogen on the host, 

• sporulation on the surface of the host’s body.  

These events are consistent with the commonly described sequence of events characterizing other 

entomopathogenic fungal infections (Charnley, 1989). They complement the detailed electron 

microscopical studies of other authors (Moino Jr. et al., 2002; Neves and Alves, 2004), who 

examined the ultrastructural aspects of the interaction between B. bassiana and insect hosts. The 

results of this study further demonstrate that insect death between germination and penetration of 

conidia.  

 

During this study it was expected that conidia would be evenly deposited over the bodies of flies 

after application. On the contrary, individual conidia were found adhering particularly to the 

intersegmental regions, legs, eyes and base of setae, although equivalent numbers of conidia must 

have fallen over all cuticular zones. These results are consistent with results from previous 

studies with entomopathogenic hyphomycetes that also reported higher conidial densities in areas 

of the cuticle with spines (Boucias et al., 1988) or setae (Pekrul and Grula, 1979; Sosa-Gomez et 

al., 1997; Vestergaard et al., 1999; Hajek et al., 2002; Hajek and Eastburn, 2003). It has been 

suggested that conidia stick to their hosts in these areas. It is easier to dislodge condia from areas 

without setae (Hajek and Eastburn, 2003).  

 

It was anticipated that the abundant, long setae of M. domestica should have protected the flies to 

some extent from conidia landing on the cuticle, yet they seemed to increase the surface area for 

attachment of B. bassiana conidia. The effectiveness of setae in preventing infections has been 

questioned with respect to other species of Entomophthorales (Wraight et al., 1990; Hajek and 

Eastburn, 2003). On M. domestica, B. bassiana conidia were frequently found on the setae but 

this did not prevent conidia from germinating. 
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Germination of conidia occurred 12-24h after application. Rapid germination on hosts has also 

been documented for B. bassiana on termites (Boucias et al., 1996; Moino Jr. et al., 2002; Neves 

and Alves, 2004), Entomophaga maimaiga Humber on gypsy moth (Hajek et al., 2002), Erynia 

conica (Nowakowski) Remaudière and Hennebert on black flies (Nadeau et al., 1996a),  

Zoophthora (= Erynia) radicans (Brefeld) Batko on leafhoppers (Wraight et al., 1990) and 

Lecanicillium muscarium (Petch) Zare and W. Gams on aphids (Askary and Yarmand, 2007). 

Rapid conidial germination and mycelial development of B. bassiana on M. domestica can be 

explained by the presence of stimulatory components in the chitin barrier of the hosts (Askary et 

al., 1997, 1999). 

 

Entomopathogenic fungi have been reported to invade the host cuticle shortly after germination 

or after limited hyphal growth (Wraight et al., 1990; St. Leger et al., 1991). This may take 24-48h 

under ideal conditions (Wraight et al., 1990). In this study penetration pegs were observed 36-

72h after infection. Most often, pathogens produce penetration pegs from appresoria but 

occasionally hyphae may penetrate the cuticle directly (Schreiter et al., 1994).  There was no 

evidence of direct penetration of adult M. domestica by B. bassiana.  

 

Not all areas of the insect cuticle are equally vulnerable to penetration by propagules of 

entomopathogenic fungi. The penetration pegs of B. bassiana were observed at the base of setae, 

which are covered by a thin cuticle and thus constitute zones of weakness (Davies, 1988). 

Penetration was accompanied with the formation of structures similar to appressoria. These 

structures occurred early in the developmental cycle of B. bassiana and may be the reason for the 

high virulence of the three B. bassiana isolates against the house fly. Moreover, most insects died 

within 24h of inoculation. Although a rapid germination rate has been recognized as an important 

determinant of virulence and pathology (Pekrul and Grula, 1979; Hassan et al., 1989; Yokohama 

et al., 1993), early penetration of the fungus into the host may also be associated with these traits 

(Neves and Alves, 2004). Furthermore, the production of penetration structures early in the 

developmental cycle of B. bassiana on the insect host may be an important trait for selection of 

isolates for use as a BCA. 
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Although all three B. bassiana isolates killed flies within 24h, Isolate 7771 colonized the 

cadavers faster than Isolates 7320 and 7569. The rates of conidial germination and penetration of 

the insect integument have been shown to be related to the virulence of the fungi (Pekrula and 

Grula, 1979; Fargues, 1984). Isolate 7771 may therefore have more potential as a BCA for the 

control of adult flies than Isolates 7320 and 7569. 
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Abstract 

 

A field study was carried out over 6wk to compare the efficiency of two different larvicides for 

the control of house flies in poultry houses. The impact of oral feed applications of a bran 

formulation of Bacillus thuringiensis var. israelensis (Bti) and a commercial chemical larvicide, 

Larvadex
®
, were studied with respect to their efficacy on control of house fly (Musca domestica) 

larval populations in poultry manure. The sublethal effects of the larvicides were also assessed. 

The 500mg kg
-1

 concentration had no advantage over the 250mg kg
-1

 oral feed application in 

causing mortality of house fly larvae. Although Larvadex
®
 reduced larval density and caused 

significant reductions in emergence of adult house flies, it generally exhibited weaker lethal 

effects than Bti. The reduction levels achieved as a result of feeding 250mg Bti kg
-1

 at 5wk were 

similar to those achieved as a result of feeding twice the amount of Larvadex
®
 at 4wk to the 

layers. Both Bti and Larvadex
®
 had significant effects on the emergence of adult houseflies. The 

sublethal effects were manifested in terms of decreasing emergence of adult house flies. In the 

exposed larvae, the percentage of larvae that survived and succeeded to complete their life cycle 

decreased with the increase in the toxin concentration. By the end of the 6wk of study, the 

percent inhibitions of adult house flies caused by 250mg and 500mg kg
-1

 of Bti and Larvadex
®

 

were 56 and 66% for Bti and 57 and 67% for Larvadex
®
 respectively. 
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5.1 Introduction 

 

The accumulation of large quantities of organic wastes in poultry production systems provides an 

excellent breeding medium for house fly (Musca domestica) larvae and consequently adult fly 

production (Axtell 1986, 1999; Thomas and Skoda, 1993). House fly control is a major concern 

in poultry production (Axtell, 1986; Axtell and Arends, 1990) because these flies have an 

important role as vectors of many metaxenic pathogens. The house fly is typically synanthropic 

and, because of its high reproductive potential, feeding habits and ability to prosper in a wide 

range of environments, it breeds throughout the entire year. 

Normally, chemical larvicides and adulticides are the primary means of nuisance fly control 

employed by poultry producers. Improper use of those products combined, with the house fly's 

short life cycle (Larsen and Thomsen, 1940) and high biotic potential produce conditions 

conducive to the development of resistance to insecticides. This has increased awareness of the 

need for effective of biological control agents (BCAs) to replace or complement existing house 

fly insecticides used by the poultry industry. 

Bacillus thuringiensis is a Gram positive and soil inhabiting bacterium, which is environmentally 

safe and effective for the control of insects. The bacterium B. thuringiensis owes its insecticidal 

activity to the presence of parasporal crystalline proteinaceous δ-endotoxins. Bacillus 

thuringiensis has been found to be toxic to the house fly (Hodgman et al., 1993). Several other 

isolates of B. thuringiensis have also been found which are active against larvae of the house fly 

(Johnson et al., 1998) and thuringiensin-containing preparations have been used to control larvae 

of house flies (Mullens and Rodriguez, 1988; Mullens et al., 1988a). Use of these biological 

control agents is safer than using chemical larvicides since they are species-specific and 

environmentally safe (WHO, 1999). 

 

For Bti to be effective against flies, usually the larval stage must ingest the crystals, to be 

effective (Schnepf et al., 1998). The crystals proteins exert their effect on the host by causing 

lysis of midgut epithelial cells, which leads to gut paralysis, cessation of feeding and eventual 

death of the host. Upon ingestion, the crystals are solubilized by the alkaline pH of the midgut 

and the protein pro-toxins are processed by midgut proteases to release the active toxins (Lecadet 



 130

and Dedonder, 1967). Binding by activated protein toxins to specific cell surface receptors on the 

midgut epithelia leads to formation of pores in the apical membranes, leading to an influx of ions 

and water, causing gut lysis and insect death (Gill et al., 1992; Theunis et al., 1998) within a day 

or two. 

 

Insect growth regulators (IGRs) are a diverse group of insecticides, with a range of effects on 

insect specific phenomena, disrupting the growth and development of insects and other 

arthropods. They mainly affect the development of immature stages, and disrupt metamorphosis 

and reproduction (Graf, 1993; Retnakaran et al., 1985) and are becoming important in the 

management of insect pests (Grenier and Grenier, 1993). IGRs include various chemical 

categories including: juvenile hormones, chitin synthesis inhibitors, and triazine derivatives 

(Retnakaran et. al. 1985) with different modes of action. 

 

Cyromazine (CGA 72662, N-cyclopropyl-1, 3, 5-triazine-2, 4, 6-triamine) represents a new class 

of IGRs derived from aziodotriazine herbicides (Shen and Plapp, 1990) and is commonly used to 

control immature house flies on poultry farms (Hogsette, 1979; Miller and Corley 1980; Miller et 

al., 1981, Awad and Mulla, 1984). It was discovered by Ciba-Giegy Ltd. in the mid 1970s and 

originally developed under the trade name of ‘Vetrazine’, a blowfly control agent. In poultry 

farms it has been used for the control of manure-breeding flies, (especially house flies M. 

domestica L.) in two ways: as a feed-through larvicide or as a spray applied over the manure. For 

topical application Cyromazine is formulated as a water-soluble granule and a soluble powder 

(50%) (‘Neporex’).  A pre-mix (1%) Larvadex
®

 is added to poultry food as a feed-through in 

poultry (Graf, 1993; Moreno-Mari et al., 1996).  

 

Larvadex
®
 does not kill fly maggots outright. It produces irreversible morphophysiological 

changes, which culminate in the death of the insects (Awad and Mulla, 1984). The effect varies 

according to the developmental stage of the insects. When housefly larvae are exposed to 

Larvadex
®
, deformations may be observed in the pupal stage, which result from interference with 

chitin digestion and synthesis. When applied at the prepupal stage, Larvadex
®
 produces 

morphogenic aberrations in the adults, like absence of wings and underdevelopment of the 

genitalia in both males and females (Cerf and Georghiou, 1974). 
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This study was conducted to compare the effects of feeding chicken with bran-formulated Bti and 

Larvadex
®
 on the populations of house fly larvae in poultry manure. 

 

5.2 Materials and methods 

 

5.2.1 Larvicides 

 

The Bti formulation (a bran formulation) was obtained from Plant Health Products (PHP)
1
 (Pty) 

Ltd. Larvadex
® 

was obtained from the University Research Farm at Ukulinga. 

 

5.2.2 Layers and housing 

 

For field evaluation experiments, thirty-six x 26wk old commercial layers (Hyaline Brown) were 

obtained from the University Research Farm, Ukulinga.  Layers were evaluated upon receipt for 

signs of disease or other complications that could affect the outcome of the study. Following 

examination, layers were randomly allocated into 36 hanging pens (44 x 42 x 61cm) in parallel 

back-to-back rows of 12 pens per row. Pens were separated by wire-mesh on all sides. Each pen 

was equipped with a removable feed trough and a nipple drinker. Each pen had a removable tray 

for individual manure collection. Layer chickens were housed in an environmentally controlled 

shed fitted with fans and 16:8h (L: D) at the University Research Farm at Ukulinga. 

 

5.2.3 Diet preparation for layers and administration 
 

The larvicides; Larvadex
®
 and Bacillus thuringiensis var. israelensis-formulated bran were 

mixed into the layer mash in varying quantities (250 and 500mg kg
-1

 of layer mash). The control 

did not contain any Larvadex
®
 or Bti-formulated bran. The rations were stored in trash cans lined 

with plastic bags until fed to the chickens. There were six birds per treatment.  Feed and drinking 

water were provided ad libitum. Layers were fed their respective dietary treatments for 7wk, 

although house fly larvae sampling was started 2wk after treatment commenced to the layers time 

to adjust to their various feeds. 

 

                                                 
1
 Plant Health Products (Pty) Ltd. P.O. Box 207, Nottingham Road, South Africa 
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Post-treatment larval densities were monitored after every 7d. Application was carried out every 

7d. Data were analyzed to measure reduction in the fly larvae in comparison with untreated 

controls. 

 

5.2.4 Fly larvae sampling  

 

For the feed trials, excreta from each bird were collected every seven days. Sampling of fly 

larvae began one week after the administering the different feed in order to give the layers time to 

adjust to the different treatments. Housefly larvae were monitored using a bulb planter (400ml) to 

collect two manure cores from each tray/bird/diet. Larvae was extracted in Berlese funnels and 

enumerated.  

 

Larvae were maintained at 25
o
C in the treated manure until adult house fly emergence and 

numbers were recorded. Adult house fly emergence rate was then calculated taking into account 

the number of exposed larvae. 

 

5.2.5 Statistical analysis 

 

Percentage mortality of larvae in the treated trays was calculated and corrected to the reduction, if 

any, in controls using the formula of Mulla et al. (1971) as given below: 

 

% Mortality = [C1 – C2] x 100 

      C1   

 

where;  C1, abundance of larvae in untreated manure;  

C2, abundance of larvae in treated manure. 

 

 

Adult house fly emergence inhibition was calculated using the following formula, on the basis of 

determining adult house fly emergence from the number of larvae that were obtained: 

 

% Mortality = [C – T] x 100 

          C 
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where;  C = percentage of adult house flies emerging from the control manure and  

T = percentage of adult house flies emerging treated manure. 

 

The percentage values were normalized by square-root arcsine transformation. Analysis of 

variance test (repeated measures) was performed by taking the percent reduction (square root 

arcsine values) as the dependent variable and dose as the factor. The LSD method was used 

compare the effects of the treatments. 

 

5.3 Results 

 

Following continuous feeding of Bti and Larvadex
®
 in the layer mash, the house fly larvae 

populations declined rapidly. The results of the study (Fig. 5.1) showed that when either Bti or 

Larvadex
®
 was added to the poultry feed at 250 or 500mg kg

-1
, few house fly maggots were 

present in the poultry manure at the end of the trial. After 6wk of using both feed additives, the 

number of house fly larvae was significantly reduced in the manure (Fig. 5.1).  

 

Overall the two dosages of Bti (250 and 500mg kg
-1

) caused significant mortality of larvae among 

treatments and controls (P<0.05). No significant differences were however evident between the 

two dosages of Bti on the reduction of fly larvae in the manure during the entire study period 

(Table 5.1) (F=4.32; P=0.064), except on one occasion at 2wk. While there was no significant 

interaction effect of dosages and time (F=0.37; P=0.783), the effect of time was significant 

(F=169.12; P<0.001). 

 

The 500g Bti kg
-1

 feed additive had a marked effect on the larval stages of the house fly 

especially after the first 3wk of feeding.  After 3wk of feeding chickens with Bti feed, the 

reduction in larval numbers as a result of the 250 and 500 mg Bti kg
-1

 feeds was at least 10% 

(Table 5.1), while the reduction in larval numbers as a result of 250 and 500mg kg
-1

 of Larvadex
®
 

in the feed was 6.5 and 11.2%, respectively (Table 5.3).  Thereafter, the manure of the birds that 

were on 250 and 500 mg Bti kg
-1

 contained progressively fewer the house fly maggots. The 

number of larvae in the manure was reduced by at least 20% at 4wk. By Wk5 of feeding, the 

percent mortality of larvae was 29.9 and 33.8% as a result of the 250 and 500g Bti kg
-1

 doses 
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respectively, whereas the percent reduction of larvae from layers fed 250 and 500mg Larvadex
®
 

kg
-1

 was approximately 25.4 and 35.1% respectively. The reduction levels (29.9%) achieved as a 

result of feeding 250mg Bti kg
-1

 at 5wk were comparable to those achieved (30.1%) as a result of 

feeding layers to twice that amount of Larvadex
®
 at 4wk (Table 5.1, 5.3).  

 

Data on the emergence of adult house flies from larvae in manure obtained from layers fed with 

Bti are presented in Table 5.2. At both dosages, the total number of adult house flies was lower 

than for the control. The number of emerged house fly adults as a result of the two Bti dosages 

(250 and 500mg kg
-1

) was significantly reduced (P<0.05) (59 and 66% respectively). The 

percentage emergence of adult houseflies as a result of the 250mg kg
-1

 and 500mg kg
-1

 Bti 

differed significantly throughout the study except Wk1 (Table 5.2). 

 

The difference between the two dosages of Larvadex
®
 was significant (F = 29.64; P<0.001). 

There were significant effects of time and interaction between treatment and time [(F = 309.78; 

P<0.001), (F = 5.8; P = 0.004) respectively]. The main effects for Larvadex
®
, dose, time and the 

interaction between dosages and time, were significant [(F=47.71; P<0.001), (F=152.18; 

P<0.001), (F=2.25; P<0.001) respectively]. The level of reduction of larvae as a result of the two 

dosages differed significantly in all except the last week of the study (Table 5.3). There was a 

dose-dependent relationship in the rate of mortality with Larvadex
®
. When lower levels of 

Larvadex
®
 were added to the feed, control of the house fly larvae was reduced. However, percent 

mortality of larvae as a result of the 250 and 500mg kg
-1

 of Larvadex
®
 were lower than those 

achieved by formulated Bti. 

 

The dose of Larvadex
®
 added to layer feed had a significant effect on the emergence of adult 

house flies (P<0.05) and there were significant differences between the two concentrations of 

Larvadex
®
 (F = 10.33; P = 0.009). Similarly, time had a significant effect (F = 134.44; P = 

0.001) on adult house fly emergence, while the interaction between treatment and time (F = 2.49; 

P = 0.085) was not significant (Table 5.4).  

 

 

 



 135

A. 

 

□ y = -0.96x + 52.2; R
2
 = 0.989 

∆ y = -4.64x + 50.8; R
2
 = 0.932 

○ y = -4.7x + 46.8; R
2
 = 0.954 

■ y = -0.48x + 50.7; R
2
 = 0.918 

▲ y = -4.6x + 49.3; R
2
 = 0.977 

● y = -4.59x + 45.8; R
2
 = 0.98 

 

 

 

B. 

 

 

□ y = -0.96x + 52.2; R
2
 = 0.90 

∆ y= -4.3x + 55; R
2
 = 0.985 

○ y= -4.38x + 54.1; R
2
 = 0.989 

■ y= -0.96x + 52.2; R
2
 = 0.898 

▲ y= -3.54x + 54.2; R
2
 = 0.952 

● y= -4.04x + 52.8; R
2
 = 0.938 

 

 

 

Fig. 5.1. Mean number of house fly (Musca domestica) A. adults  and B. larvae in manure of layer chickens fed with 

two concentrations (250 and 500mg kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis (Bti) and 

Larvadex
®
 (Lv) for 6wk. 

 

 

 

 

Bti 0mg kg-1     

Bti 250mg kg-1
  

Bti 500mg kg-1  

Lv 0mg kg-1         

Lv 250mg kg-1   

Lv 500mg kg-1    
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Table 5.1. Percentage mortality in number of house fly (Musca domestica) larvae in manure of layer chickens fed for 

6wk with two concentrations (250 and 500mg kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis. 

Percentage mortality of  house fly larvae 

Weeks 

Bti mg kg
-1

 1 2 3 4 5 6 

 

250 5.11(0.22)
 a 

6.04(0.24)
 a 

10.24(0.32)
 a 

21.11(0.48)
 a 

29.93(0.58)
 a 

39.01(0.67)
 a 

500 6.07(0.24)
 a 

9.06(0.31)
 b 

13.31(0.37)
 a 

22.84(0.50)
 a 

33.80(0.62)
 a 

41.13(0.70)
 a 

 

F-Ratio 0.47 6.46 1.07 0.73 1.97 0.85 

P-level 0.51 0.03 0.33 0.41 0.19 0.38 

LSD 0.07 0.05 0.10 0.06 0.07 0.05 

CV% 21.8 15.1 23.4 9.2 8.7 5.9 

Effect NS * NS NS NS NS 
 
Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter in the same column are not significantly different at P < 0.05 

NS – Not significant  

 

 

Table 5.2. Emergence of adult house fly (Musca domestica) adults from larvae in manure of layer chickens fed for 

6wk with two concentrations (250 and 500mg kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis. 

Percentage emergence of house fly adults 

Weeks 

Bti mg kg
-1

 1 2 3 4 5 6 

 

250 16.61(0.42)
a 

16.44(0.42)
a 

17.41(0.48)
a 

29.41(0.57)
a 

41.90(0.70)
a 

56.03(0.85)
a 

500 19.81(0.46)
a 

28.86(0.56)
b 

30.72(0.59)
b 

37.72(0.66)
b 

47.54(0.76)
b 

65.96(0.95)
b 

 

F-Ratio 1.85 35.12 29.21 10.16 10.48 30.13 

P-level 0.204 <0.001 <0.001 0.01 0.009 <0.001 

LSD 0.072 0.057 0.06 0.063 0.039 0.042 

CV% 12.7 9.0 10.1 7.9 4.2 3.6 

Effect NS ** ** * * ** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter in the same column are not significantly different at P < 0.05 

* Significant at P< 0.05 

** Significant at P< 0.001 

NS – Not significant  
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Table 5.3. Percentage mortality in number of house fly (Musca domestica) larvae in manure of layer chickens fed for 

6wk with two concentration (250 and 500mg kg
-1

) of  Larvadex
®
 in standard chicken feed. 

Percent mortality of housse fly larvae 

Larvadex
®
                                                                  Weeks 

mg kg
-1

  

  

1 2 3 4 5 6 

 

250 2.98(0.17)
a 

4.04(0.20)
a 

6.46(0.25)
a 

16.27(0.41)
a 

25.35(0.53)
a
 33.10(0.61)

a 

500 5.30(0.23)
b
 8.08(0.29)

b 
11.22(0.34)

b 
30.17(0.58)

b 
35.07(0.63)

b 
37.63(0.66)

a
 

 

F-Ratio 9.96 18.52 5.13 18.93 9.28 3.03 

P-level 0.01 0.002 0.047 0.001 0.012 0.112 

LSD 0.04 0.04 0.08 0.089 0.079 0.061 

CV% 15.6 14.1 21.1 13.9 10.6 7.4 

Effect * * * ** * NS 

Values in parenthesis are square-root arcsine transformed values  

Means followed by the same letter in the same column are not significantly different  at P < 0.05 

* Significant at P< 0.05 

** Significant at P< 0.001 

NS – Not significant  

 

 

 

 

 

Table 5.4. Emergence of house fly (Musca domestica) adults from larvae in manure of layer chickens fed for 6wk 

with two concentrations (250 and 500mg kg
-1

) of Larvadex
®

 in standard chicken feed. 

Percentage emergence of house fly adults 

Larvadex
®
                                                                  Weeks 

mg kg
-1

  

  

1 2 3 4 5 6 

 

250 12.58(0.35)
a 

15.82(0.39)
a 

24.49(0.51)
a 

35.59(0.64)
a 

43.75(0.72)
a
 57.14(0.86)

a 

500 16.23(0.41)
a
 29.63(0.58)

b 
35.37(0.64)

b 
40.68(0.69)

b 
52.08(0.81)

b 
67.07(0.92)

a
 

 

F-Ratio 1.97 9.7 5.61 6.56 11.99 3.6 

P-level 0.19 0.011 0.04 0.03 0.01 0.09 

LSD 0.10 0.13 0.12 0.05 0.05 0.07 

CV% 20 20.8 16.4 5.4 5.5 6.3 

Effect NS * * * * NS 

Values in parenthesis are square-root arcsine transformed.  

Means followed by the same letter in the same column are not significantly different at P< 0.05 

* Significant at P< 0.05 

NS – Not significant  
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5.4 Discussion 

 

The results of the present study reveal that both larvicides had significant effects on the mortality 

of house fly larvae and emergence of adult house flies. Although Larvadex
®
 exhibited weaker 

lethal effects than Bti with respect to mortality of larvae and emergence of adult house flies, 

reasonable house fly control (>50%) was achieved after using both larvicides as feed additives.  

 

The difference between the 250mg and 500mg kg
-1

 of the Bti formulation was statistically non-

significant in inducing mortality of larvae. These observations confirm results from our earlier 

studies that the 500mg kg
-1

 concentration had no advantage over the 250mg kg
-1

 feed application 

in causing mortality of larvae. It is known that the potential of Bti might be limited due to its 

short persistence (Navon, 2000). Although Bti spores may not be involved in the toxicity 

(Skovmand et al., 2000), their continuous viability is an important factor. The persistence of Bti 

spores depends much on the characteristics of its own formulation as well as the environmental 

conditions of the breeding site (de Araújo et al., 2007). Several factors have been reported to 

influence the persistence of Bti including solar radiation and high temperature.  

 

The reduction levels achieved as a result of feeding 250mg Bti kg
-1

 at 5wk were comparable to 

those achieved as a result of feeding twice the amount of Larvadex
®

 to the layers after 4wk.  For 

instance, a Bti formulation concentration of 250mg kg
-1

 was sufficient to achieve 29.9% mortality 

of house fly larvae at 5wks. This was equivalent to the 30.1% mortality obtained using 500mg kg
-

1
 of Larvadex

®
 at 4wks post-treatment.  Similarly the 39% decrease in adult house fly emergence 

as a result of the 250mg kg
-1

 Bti was more than the 37.6% achieved using 500mg kg
-1

 Larvadex
®
 

at 6wk. The fact that a weekly application Bti yielded far better results than a double dose 

application of Larvadex
®
 illustrates that there would be a need for a twice weekly application of 

Larvadex
®
 in order to achieve similar mortality results as Bti.  

 

Whereas the effects of sublethal amounts of B. thuringiensis on surviving individuals are not well 

understood (Kaelin et al., 1999), our results indicated that the larvae that survived exposure to Bti 

and completed their life cycle was significantly lower than in the controls. Furthermore, there 

were significant differences in mean number of emerged house fly adults as a result of the two Bti 
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dosages (250 and 500mg kg
-1

). This suggests that some adverse biological effects were induced 

in house fly larvae by sublethal amounts of Bti. Limited data exist for comparing susceptibility of 

field populations of house fly larvae and adults to formulated Bti fed orally to chickens. However, 

authors (Labib and Rady, 2001) reported significant effects of concentration on reduction of 

maggot numbers and emergence inhibition of adult house flies when Bti was incorporated into 

chicken feed. Several other authors have also reported on the sublethal effects of B. thuringiensis 

on other arthropods (Salama et al., 1981; Keever et al., 1994; Staple et al., 1997; Adamczyk et 

al., 1998; Kaelin et al., 1999; Liu et al., 2001, 2005a, 2005b).  Reduced feeding rates and partial 

starvation are consistent with B. thuringiensis toxicity (Gill et al., 1992) and may have 

contributed to these effects. By inducing many adverse biological effects in M. domestica, 

sublethal levels of B. thuringiensis can reduce house fly activity. 

 

Larvadex
®
 added to layer feed had significant effects on the emergence of adult house flies. 

Brake et al. (1991) observed mortality rates of 75.7% at 250ppm and 86.5% at 1000ppm. The 

authors observed that hens grown on 1000ppm produced manure that still caused more than 50% 

fly mortality 20wk after removal of feed additive. Several authors have also reported retention of 

larvicidal activity of manure from hens fed with Larvadex
®
 after feeding the birds doses of 50 

(Crespo et al., 2002) or 200 times (Brake et al., 1991) greater than the maximum recommended 

levels. These data demonstrated the dose-mortality response also exhibited in the present study 

and also by Tomberlin et al. (2002).  

 

Although both Larvadex
®
 and Bti caused significant inhibitions of adult house fly emergence, the 

effects of Larvadex
®

 have been reported to result in deformations that are observable in the pupal 

stage, as a result from interference with chitin digestion and synthesis. When applied at the 

prepupal stage, cyromazine produces morphogenic aberrations in the adults, like absence of 

wings and underdevelopment of the genitalia in both males and females (Cerf and Georghiou, 

1974). On the other hand, house fly larvae exposed to Bti are mostly affected in the larval stage 

as a result of the interaction of the bacterial toxin with the cells of the midgut (Gill et al., 1992). 

For these reasons, feeding the layer chickens with Bti reduced the development time of the house 

fly at the larval stage and, consequently, the adult house fly emergence rate as well. On the 

contrary, the observed reductions in adult house fly emergence rate in the manure of layers fed a 



 140

diet treated with Larvadex
®
 may be as a result of a decrease in the reproductive potential of the 

house fly.  
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Abstract 

 

A field study was carried out for 6wk to assess the efficiency of the combined effect of feeding 

and topical application strategies for larvae and adult house fly control in poultry houses using 

two formulations of Bacillus thuringiensis var. israelensis (Bti).  

 

The objectives of this study were to compare, from both an efficiency and economic perspective, 

the impact of combining different concentrations of the two Bti formulations and to evaluate their 

individual and integrated success in controlling house fly (Musca domestica L) larvae and adults. 

There was no significant difference between the 1g and 2g L
-1

 spray applications of Bti. In the 

absence of spray applications, no significant differences in larval mortalities were observed 

between the 250mg and 500mg kg
-1

 feed applications. The percentage mortality of larvae 

accomplished as a result of using a combination of 250mg kg
-1

 Bti and 2g L
-1

 spray applications 

was equivalent to that obtained as a result of combining 500mg kg
-1

 Bti and 1g L
-1

 spray 

application. When only spray applications were used, house fly larval populations were reduced 

by 43%. When 250mg kg
-1

 feed application was used in conjunction with 2g L
-1

 spray application 

larval populations were reduced to 59%. A 500 mg kg
-1

 feed application used together with 1g L
-1

 

spray application reduced larval populations by 57%. Treatment with Bti caused significant 

reductions in the emergence (up to 74%) of house fly adults compared to the control. The fact 

that the emergence of adult house flies was affected by Bti treatments implies that Bti has 

sublethal effects on house fly larvae. The cost-benefit analysis (expressed in terms of mortality of 

larvae breeding) indicated that the most effective combination for house fly larvae and adult 

house fly emergence control was the 500mg kg
-1

 of feed and 2g L
-1

 spray application 

combination that resulted in 67% larval mortality and 74% decrease in adult house fly 

emergence. This study presents commercial users with various alternatives for possible 

combinations of the two Bti formulations. 
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6.1 Introduction 

 

The house fly, Musca domestica L., is a pest of medical and veterinary importance and a disease 

vector of significance for humans and animals (Moon, 2002). Organic wastes from intensive 

animal production provide excellent habitats for the growth and development of this insect 

(Thomas and Skoda, 1993). Currently, use of chemicals against larvae and adults is the major 

approach used to control or eliminate house flies employed by poultry producers. However, the 

widespread use of chemical insecticides reduces the impact of parasites and promotes the 

development of insecticide resistance in house flies (Scott et al., 2000). Therefore, it is desirable 

to look for strategies that are innovative, cost-effective and have a low environmental impact. For 

these reasons, alternative fly control methods, such as biological control, are of increasing 

importance. For instance, the use of biological control agents (BCAs) such as Bacillus 

thuringiensis could be employed in the management strategies for house fly control. 

 
 

Bacillus thuringiensis Berliner is a spore forming bacterium, characterized by its ability to 

produce parasporal bodies (crystals), which contain specific insecticidal endotoxins.  Among 

entomopathogenic bacteria, it is the most studied species. It is also the most widely used 

biopesticide in the world (Glare and O’Callaghan, 2000). The efficacy of some B. thuringiensis 

isolates against the house fly has been widely demonstrated (Indrasith et al., 1992; Hodgman et 

al., 1993; Johnson et al., 1998; Zhong et al., 2000).  

 

Our prior research, however, identified a lack of persistence by a water-dispersal granule 

formulation (WDG) of Bti for the control house fly larvae in poultry houses. This observation has 

been reported by other authors working with other arthropods (Karch et al., 1991; Gelernter and 

Schwab 1993; Kroeger et al., 1995; Fillinger et al., 2003; Russell et al., 2003).   

 

Moreover, results from our field spray trials with a WDG formulation of Bti, showed that 

applications of a higher concentration of 2g L
-1

 was not significantly more effective than the 

lower concentration of 1g L
-1

 in causing larval mortalities. Additionally, both Bti concentrations 

were equally effective at lowering larval densities in the manure and a reduction of about 50% 



 147

was achieved after 6wk of regular spraying. Such low application dosages have the advantage of 

keeping operational costs low.   

 

Several environmental factors may influence Bti formulations effectiveness in the field (Ignoffo 

et al., 1981; Mulla et al., 1990; Becker et al., 1992). These include solar radiation (Pusztai et al., 

1991; Obeta, 1996; Nayar et al., 1999; Thiéry et al., 1999; Melo-Santos et al., 2001; Vilarinhos 

and Monnerat, 2004), high temperature (Ignoffo, 1992) and high larval densities outside of the 

bioassay rings (Yousten et al., 1992; Glare and O’Callaghan, 2000). Exposure of spores to 

prolonged periods of high temperatures has also been reported to result in decreased activity of Bt 

products, especially in the tropics where temperatures frequently exceed 30
o
C (Morris, 1983). In 

addition to possible inactivation of the toxin, high temperatures also reduce feeding by some 

insects (Han and Bauce, 2000). Reduced persistence of Bti in the field may also be attributed to 

the existence of compounds in chicken litter that may inhibit the growth of some microorganisms 

(Himejima et al., 1992; Kim et al., 1995; Amaral et al., 1998; Adams et al., 2002). Moreover, the 

pH of chicken manure favours solubility of Bti protein crystals, making protoxins more prone to 

degradation (de Araújo et al., 2007). The association of such factors would contribute to reducing 

the larvicidal activity of the product (de Araújo et al., 2007).  

 

On the contrary, the prolonged larval control observed in the feeding trials with the bran 

formulation of Bti suggests that feeding Bti to the chickens might compensate for the partial loss 

of toxic crystals caused by UV and other factors. Furthermore, in our previous studies, >90% 

reductions of M. domestica larvae were observed with a dose rate of 10g of bran formulation kg
-1

 

of standard broiler chicken mash. The bran formulation was approximately two and a half times 

as effective as the WDG formulation, achieving approximately 80% mortality at 4wk with 1g kg 

–1
 and 30% mortality with 1g L

-1
 respectively. Such variation in product efficacy has been 

reported previously (Brown et al., 2001; Fillinger et al., 2003; Russell et al., 2003) and may be 

related to formulation characteristics. 

 

Conceivably, combining a bran feed-through formulation of Bti with a spray application of the 

WDG formulation Bti would result in synergistic or additive interactions that would enhance the 

potential for biological control of house fly adults and larvae. 
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This field study was carried out over 6wk, to compare the effectiveness of combined bran feed 

and WDG spray formulations of Bti for the control of house fly larvae and adults in poultry 

houses. 

 

6.2 Materials and methods 

 

6.2.1 Bacterial formulations 

 

Two Bti formulations (water-dispersible-granules (WDG) and a bran formulation) were obtained 

from Plant Health Products (PHP)
1
 (Pty) Ltd. 

 

6.2.2 Field trials 

 

For field evaluation experiments, fifty-four x 26wk old commercial chicken layers were obtained 

from the University Research Farm, Ukulinga.  Layers were evaluated upon receipt for signs of 

disease or other complications that could affect the outcome of the study. Following examination, 

layers were randomly allocated into 54 hanging pens (440 x 420 x 610mm) in parallel back-to-

back rows of 12 pens per row. Pens were separated by wire-mesh on all sides. Each pen was 

equipped with a removable feed trough and a nipple drinker. Each pen had a removable tray for 

individual manure collection. Layers were housed in an environmentally controlled shed fitted 

with fans and 16:8h (L:D) at the Poultry section, University Research Farm at Ukulinga. 

 

6.2.3 Treatments preparation and administration 

 

Bacillus thuringiensis var. israelensis-formulated bran was mixed into the layer mash in varying 

quantities (250 and 500mg per kg of layer mash). The control did not contain any Bti-formulated 

bran. The rations were stored in trash cans lined with plastic bags until fed to the chickens. Feed 

and drinking water were provided ad libitum. Layers were fed their respective dietary treatments 

for 7wk.  

 

                                                 
1
 Plant Health Products (Pty) Ltd. P.O. Box 207, Nottingham Road, South Africa 
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WDG-formulated Bti was applied at the rate of 1g and 2g L
-1

. To prepare the solution for 

spraying, 1g and 2g of Bti powder was suspended in 1L of water. The Bti formulation was 

applied using hydraulic hand sprayers.  

 

The bran and WDG formulation application rates that were used in the field experiments are 

summarized in Table 6.1. In all the experiments, treatments consisted of either one concentration 

of bran formulation and /or WDG formulation. Treatments were arranged in a completely 

randomized design. The bran formulation was given as an oral feed while the WDG formulation 

was applied as a topical spray. Control layer hens were not offered any Bti in their feed and/ or 

their manure was not sprayed with Bti. There were six layers per treatment.   

 

Post-treatment populations of house fly larvae were monitored after every 7d. Application was 

carried out every 7d. Data were analyzed to measure reductions in the fly larvae numbers in 

comparison with the untreated controls.  

 

 

 
Table 6.1 Summary of combinations of treatments used field  experiments testing efficacy of  two (bran and a water-dispersible 

granule) formulations of Bacillus thuringiensis var israelensis  (Bti) 
Treatment Bran Formulation mg kg

-1
 WDG Formulation g L

-1
 

1 0 0 

1 

2 
2 

3 

4 250 0 

1 

2 
5 

6 

7 500 0 

1 

0 

8 

9 

 

 

 

6.2.4 Fly larvae sampling  

 

Excreta from each bird were collected every 7d. Sampling of house fly larvae began a week after 

the administration of the different feeds in order to give the layers time to adjust to the different 

treatments. House fly larvae were monitored using a gardener’s bulb planter (400ml) to collect 
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two manure cores from each tray/bird/diet. Larvae were extracted using Berlese funnels and 

enumerated.  

 

Larvae were maintained at 25
o
C in the treated manure until adult house fly emergence. The 

numbers of emerged adults were recorded. Adult house fly emergence rate was then calculated 

taking into account the number of exposed larvae. 

 

6.2.5 Statistical analysis 

 

Percentage mortality of larvae in the treated trays was calculated and corrected to the reduction 

(Abbott, 1925), if any, in controls using the formula of Mulla et al. (1971) as given below: 

 

% Mortality = [C1 – C2] x 100 

      C1   

 

where;  C1, number of larvae in untreated manure;  

C2, number of larvae in treated manure. 

 

Percent reduction in adult house fly emergence was calculated using the following formula, on 

the basis of determining adult house fly emergence from the number of larvae that were obtained: 

 

% Reduction in adult house fly emergence = [C – T] x 100 

                     C 

 

where; C = percentage of  house flies emerging from the control manure and  

T = percentage of house flies emerging treated manure. 

 

This experiment was a factorial design with three main factors (Bti feed treatment with three 

levels, Bti spray treatment with three levels and time) and six replicates. A three-way ANOVA on 

larval mortality and emergence of adult house flies was performed using GENSTAT statistical 

package after transforming the percent mortality by Arcsin √(%100) to normalize the data 

distribution and homogeneity of variances. The LSD method was used to find significant 

differences between means. 
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6.3 Results 

 

Larval mortality was significantly affected by the Bti formulations (Feed (F=1298; P<0.001), 

Spray (Bti WDG) (F=1048; P<0.001) and interactions between formulations and Time (F=432, 

P<0.001) factors. There were also significant interactions between the Feed and Spray 

formulations (F=287; P<0.001), Feed and Week (F=3.68; P<0.001) and Feed and Spray and 

Time (F=22.37; P<0.001).  However, no significant effects on the mortality of larvae were 

observed between Spray and Time interaction (F=1.15; P=0.327). These results are shown in 

Table 6.2. 

 

The interaction between the Feed and Spray formulations consisted of additive effects in most 

instances. A larval population from the manure of birds treated with a combination of 250mg kg-

1 and 1g L
-1

 was numerically lower than the population from birds fed with 250mg kg
-1

 alone, 

and was not significantly different from the population obtained as a result of using 1g L
-1

 spray 

treatment alone (Table 6.2). 

 

Larval mortality within the same Bti feed formulation increased over time, irrespective of the 

concentration of the Bti in the feed (Fig. 6.1a, b, c). This effect was more pronounced after 2wk 

of feeding for all the concentrations of Bti feed. Larval mortality was higher as a result of 500mg 

kg
-1

 than with 250mg kg
-1

 for all the Bti spray concentrations (Fig. 6.1b, c).  

 

There were no significant differences in larval mortalities between the 1g and 2g L
-1

 treatments 

when the layers were not given any Bti in their feed (0mg kg
-1

) in the six weeks of study (Table 

6.2). Likewise, no differences were observed between the larval population obtained as a result of 

the combined treatment of 250mg kg
-1

 with either 0g and 1g L
-1

 spray treatments. However, there 

were significant differences in larval mortalities when 250mg kg
-1

 was combined with either 1g 

or 2g L
-1

 manure treatments. These differences were evident throughout the study.  By the end of 

6wk, the percentage mortalities as a result of the 250g kg
-1

 feed using the 1 and 2g L
-1

 manure 

treatments were 46 and 59% respectively (Table 6.2).  
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Quite the reverse occurred when layers were fed with 500mg kg
-1

. Significant differences with 

respect to larval mortalities were observed between of 0 and 1g L
-1

 spray treatments when 

combined with 500mg kg
-1 

oral feed, but no differences in larval mortalities were observed when 

the 500mg kg
-1

 was combined with 1g and 2g L
-1 

manure treatment, except at Wk6. At the end of 

6wk of treatment, the larval mortalities as a result of combining 500mg kg
-1

 with the 0, 1 and 2g 

L
-1

 spray application were 50, 57 and 67% respectively (Table 6.2). 

 

Likewise, no significant differences in larval mortalities were observed between the treatments 

250 and 500mg kg
-1

 when the manure was either not sprayed (0mg L
-1

) or treated with 2g L
-1

 Bti 

(Table 2). However, there were differences between the treatments (250 and 500mg kg
-1

) in 

larval mortalities when combined with the 1g L
-1 

spray application. Furthermore, the percent 

mortality of larvae accomplished by using a combination of 500mg kg
-1

 Bti and 1g L
-1

 was as 

good as that achieved using a combination of 250mg kg
-1

 and 2g L
-1

 Bti topical spray. For 

instance, at Wk2, Wk3, Wk4, Wk5 and Wk6, the percentage larval mortalities achieved as a 

result of a combination of the 250g kg
-1

 Bti in the layer feed and 2g L
-1

 Bti topical treatment were 

36.4, 43, 46.2, 52.3 and 59% respectively. For the same period of time, the percent larval 

mortalities attained as a result of a combination of the 500g kg
-1

 Bti feed and 1g L
-1

 Bti topical 

treatment were 35.5, 42.6, 46.2, 51.9 and 57% respectively (Table 6.2). 

 

The main factors: Bti Feed formulation, Bti Spray formulation and Time, all significantly affected 

the percent emergence of adult house flies [(F=814.58; P<0.001), (F=686.11; P<0.001), 

(F=327.69, P<0.001)]. There were also significant interactions between the Feed and Spray 

formulations (F=204.74; P<0.001), Feed formulation and Time (F=6.39; P<0.001), Spray 

formulation and Time (F=1.95; P=0.039) and Feed and Spray formulations and Time (F=11.42; 

P<0.001). 

 

Percentage reduction in the emergence of adult house flies increased over time, as a result of all 

the treatments (Fig. 6.1d, e, and f). Although there were instances where there were no significant 

differences between the 1g and 2g L
-1

 Bti topical applications, generally, the reduction of adult 

house fly emergence was higher in the manure treated with the 2g L
-1

 than for manure treated 

with the 1g L
-1

 spray application (Fig 6.1d, e, f). 
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Although both the 1g and 2g L
-1

 treatments significantly affected the emergence of adult house 

flies when the layers were not given any Bti (0mg kg
-1

) in their feed, no significant differences 

were observed with respect to emergence of adult house flies between the two treatments (Table 

6.3). At the end of 6wk, percent inhibition in emergence of adult house flies as a result of the 1g 

and 2g L
-1

 (0mg kg
-1

) were 40.5 and 41.4%, respectively. 

 

When layers were fed with 250mg kg
-1

 Bti, no significant differences were observed in adult 

house fly emergence as affected by manure sprays of the 0 and 1g L
-1

; however, the 1g and 2g L
-1

 

treatments resulted in significant differences. As such, the percent decline in adult house fly 

emergence achieved by the two spray treatments (1g and 2g L
-1

) and a feed of 250mg kg
-1

 were 

44.1 and 55.9%, respectively (Table 6.3). 

 

Differences in emergence of adult house flies were evident between the layers fed with 500mg 

kg
-1

 Bti combined with either non-spray (0g L
-1

) or sprayed with 1g L
-1 

Bti.  These differences 

were observed throughout the study. This difference was not evident with manure of layers fed 

with 500mg kg
-1

 and treated with 1g L
-1

 and 2g L
-1

. The percent reduction in adult of house flies 

as a result of the two combinations (250mg kg
-1

- 1g L
-1

 and 500mg kg
-1

 - 2g L
-1

) were 58.1% and 

74.3% respectively (Table 6.3).  
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● y = 0

■ y = 20.88ln(x) + 5.432; R² = 0.984

∆ y = 20.30ln(x) + 7.511; R² = 0.971
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Weeks post-dosing      Weeks post-dosing     Weeks post-dosing 

 

Fig. 6.1 Percent mortality of larvae (A, B, C) and percent emergence of adult house flies (D, E, F) in manure of layers sprayed with three concentrations (0 (●), 

1(■) and 2(∆) g L
-1

) of a water-dispersal granules formulation of Bacillus thuringiensis var. israelensis (Bti) and fed with; A.and D. 0mg kg
-1

 B.and E. 250mg kg
-

1
 C.and F. 500mg kg

-1
 bran formulation of Bti for 6wk. 

 

D E F 0mg kg
-1

 250mg kg
-1

 500mg kg
-1

 

A B C 
0mg kg

-1
 250mg kg

-1
 500mg kg

-1
 

∆ 2g L-1 

■ 1 g L-1 

● 0g L-1 

∆ 2g L-1 

■ 1 g L-1 

● 0g L-1 
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Table 6.2 Percentage mortality of house fly (Musca  domestica) larvae in manure of layers fed with three concentrations (0, 250 and 500mg kg
-1

) of a bran 

formulation of Bacillus thuringiensis var. israelensis (Bti) and treated with three concentrations (0, 1 and 2g L
-1

) of a Bti water dispersible granule (WDG) 

formulation in standard chicken feed for 6wk. 
 

 

Bti(Feed) 

mg kg
-1

 

 

 

Bti(Spray) 

g L
-1

 

Percent mortality of larvae 

Weeks 

1 2 3 4 5 6 

0 0 0  (0)
a 

0 (0)
a 

0 (0)
a
 0 (0)

a
 0 (0)

a
 0(0)

a
 

1 4.71 (0.19)
bc 

21.93 (0.53)
b 

28.32 (0.56)
b
 31.54 (0.60)

b
 40.49 (0.69)

b
 43.0 (0.71)

b
 

2 6.16 (0.25)
c 

24.56 (0.52)
b 

29.75 (0.58)
bc

 32.62 (0.61)
bc

 42.56 (0.71)
bc

 43.0 (0.71)
bc

 

250 0 1.81 (0.11)
b 

25.44 (0.57)
bc 

34.41 (0.63)
cd

 37.28 (0.66)
d
 47.41 (0.76)

de
 48.67 (0.77)

de
 

1 20.65 (0.47)
d 

26.32 (0.61)
c 

37.63 (0.66)
d
 39.07 (0.68)

d
 44.99 (0.74)

cd
 46.33 (0.75)

bcd
 

2 23.55 (0.51)
d 

36.40 (0.70)
d 

43.01 (0.72)
e
 46.24 (0.75)

e
 52.25 (0.81)

f
 59.0 (0.88)

f
 

500 0 5.80 (0.23)
c 

24.56 (0.54)
b 

30.11 (0.58)
bc

 36.2 (0.65)
cd

 46.72 (0.75)
cd

 49.67 (0.78)
de

 

1 25.0 (0.52)
d 

35.53 (0.69)
d 

42.65 (0.72)
e
 46.24 (0.75)

e
 51.91 (0.80)

ef
 57.33 (0.86)

f
 

2 23.51 (0.50)
d 

39.91 (0.73)
d 

46.95 (0.75)
e
 50.54 (0.79)

e
 54.33 (0.83)

f
 66.67 (0.96)

h
 

F-Ratio 

P value 

LSD 

CV% 

Effect 

 3.06 

0.03 

0.08 

23.4 

* 

46.55 

<0.001 

0.06 

9 

** 

63.93 

<0.001 

0.06 

8.3 

** 

107.58 

<0.001 

0.05 

6.7 

** 

215.36 

<0.001 

0.04 

5.5 

** 

 

112.05 

<0.001 

0.06 

7.0 

** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter within the same column are not significantly different at P<0.05 
*
Significant at P<0.05 

** Significant at P<0.001 
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Table 6.3 Percentage reduction in emergence of adult house fly (Musca  domestica) from manure of layers fed with three concentrations (0, 250 and 500mg kg
-1

) 

of a bran formulation of Bacillus thuringiensis var. israelensis (Bti) and treated with three concentrations (0, 1 and 2g L
-1

) of a Bti water dispersible granule 

(WDG) formulation in standard chicken feed for 6wk. 
 

 

Feed 

mg kg
-1

 

 

 

Spray 

g L
-1

 

Percent inhibition of emergence of  adult house flies 

Weeks 

1 2 3 4 5 6 

0 0 0 (0)
a
 0 (0)

a
 0 (0)

a
 0 (0)

a
 0 (0)

a
 0 (0)

a
 

1 5.86 (0.22)
b
 21.93 (0.48)

b
 28.14 (0.56)

b
 30.57 (0.59)

b
 36.21 (0.65)

b
 40.54 (0.69)

b
 

2 5.86 (0.20)
b
 24.56 (0.52)

b
 28.57 (0.56)

b
 30.57 (0.59)

b
 38.37 (0.67)

bc
 41.44 (0.70)

bc
 

250 0 4.95 (0.20)
b
 25.44 (0.53)

b
 29.87 (0.58)

bc
 32.32 (0.60)

b
 42.25 (0.71)

c
 48.20 (0.77)

cd
 

1 14.86 (0.39)
c
 26.32 (0.54)

b
 33.77 (0.62)

c
 34.5 (0.63)

b
 39.23 (0.68)

bc
 44.14 (0.73)

bcd
 

2 18.02 (0.44)
c
 36.40 (0.65)

c
 39.83 (0.68)

de
 44.98 (0.74)

c
 47.42 (0.76)

d
 55.85 (0.84)

de
 

500 0 4.50 (0.17)
b
 28.67 (0.52)

b
 28.57 (0.56)

b
 31.88 (0.60)

b
 41.38 (0.70)

c
 49.10 (0.78)

d
 

1 19.37 (0.45)
c
 35.53 (0.64)

c
 38.96 (0.67)

d
 42.36 (0.71)

c
 47.85 (0.76)

d
 58.11 (0.87)

e
 

2 20.27 (0.46)
c
 39.91 (0.68)

c
 43.72 (0.72)

e
 46.73 (0.75)

c
 50.44 (0.79)

d
 74.32 (1.04)

f
 

F-Ratio 

P value 

LSD 

CV% 

Effect 

 0.55 

0.70 

0.12 

35.4 

NS 

40.59 

<0.001 

0.06 

10.3 

** 

86.75 

<0.001 

0.05 

7.4 

** 

102.03 

<0.001 

0.05 

6.9 

** 

141.23 

<0.001 

0.05 

6.7 

** 

 

70.5 

<0.001 

0.07 

8.5 

** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter within the same column are not significantly different at P<0.05 

** Significant at P<0.001 

NS – Not significant 
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The cost-benefit analyses of using a combination of three concentrations (0, 250 and 500mg 

kg
-1

) of a bran formulation of Bti in chicken feed and three concentrations of a WDG 

formulation to control house fly larvae and adult house fly emergence for 6wk are given in 

Tables 6.4 and 6.5. Bacillus thuringiensis var. israelensis bran formulation retails at 

approximately ZAR200 kg
-1

, while the WDG formulation retails at ZAR300 kg
-1

. In our trial 

period (6wk), the cost was ZAR1.8 and ZAR3.6 for the 250mg kg
-1

 and 500 mg kg
-1

 doses 

respectively, while ZAR1.8 and ZAR3.6 were the costs for the 1g L
-1

 and 2g L
-1

 WDG 

applications (Table 6.4). Thus in the 6wks, ZAR0.04 and ZAR0.07 was spent to reduce larvae 

breeding by 1% using 250 and 500mg kg
-1

 alone respectively, compared to ZAR0.04 and 

ZAR0.08 for the WDG formulation (1g and 2g L
-1

) to achieve the same unit of larvae 

breeding reduction. However, in terms of percent mortality of larvae, there was no significant 

difference between the 1g and 2g L
-1

, even though it costs twice was much (ZAR0.008) to use 

the 2g L
-1

 to accomplish the same reduction as the 1g L
-1 

(Table 6.4). 

 

 

Table 6.4 Comparison of cost-benefit analysis of larviciding on house fly larval mortality using a combination of 

three concentrations (0, 250 and 500mg kg
-1

) of a bran formulation of Bacillus thuringiensis var. israelensis (Bti) 

and three concentrations (0, 1 and 2g L
-1

) of a Bti water dispersible granule (WDG) formulation in layer feed for 

6wk. 
Feed  

concentration 

mg kg
-1

 

Spray 

concentration g 

L
-1

 

Bti bran 

formulation 

consumed 

(6wk by 6 

layers) (g) 

Bti WDG 

formulation 

applied (6wk) 

(g) 

Total 

cost 

(ZAR) 

 

Percent 

mortality 

of larvae 

Cost per dead 

larva(ZAR)  

0 0 0 0 0  0a 0  

 1 0 6 1.8 43.0
b
 0.04 

 2 0 12 3.6 43.0
bc

 0.08 

250 0 9 0 1.8 48.67
de

 0.04 

 1 9 6 3.6 46.33bcd 0.08 

 2 9 12 5.4 59.0
f
 0.09 

500 0 18 0 3.6 49.67
de

 0.07 

 1 18 6 5.4 57.33
f
 0.09 

 2 18 12 7.6 66.67h 0.11 

Percent mortality means followed by the same letter are not significantly different at P<0.05 

 
 
 
 

Similarly, there was no significance difference in larval mortalities when either the 250mg kg
-

1
 or the 500mg kg

-1
 Bti were used alone, although using 500mg kg

-1
 would cost twice 

(ZAR0.07) as much to accomplish what would achieved using a lower dose of 250mg kg
-1 

(ZAR0.04). 
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Likewise, the 500mg kg
-1

 bran formulation and 1g L
-1

 spray application combination costs the 

same (ZAR0.09) as the 250mg kg
-1

 feed treatment and 2g L
-1

 spray treatment combination 

(ZAR0.09), and there were significant differences between the two combinations with respect 

to larval mortality (Table 6.4). 

 

A combination of 500mg kg
-1

 feed formulation and 2g L
-1

 spray treatment resulted in a 66.7% 

larval mortality at a cost of ZAR0.11.  In the absence of a spray application, the 500mg kg
-1

 

feed alone cost ZAR0.09 (49.7% control). With the 1g L
-1

 spray application, the cost was 

ZAR0.07 (57.3% control) (Table 6.4). 

 

 

Table 6.5 Comparison of cost-benefit analysis of larviciding on reduction of adult house fly emergence using a 

combination of three concentrations (0, 250 and 500mg kg
-1

) of a bran formulation of Bacillus thuringiensis var. 

israelensis (Bti) and three concentrations (0, 1 and 2g L-1) of a Bti water dispersible granule (WDG) formulation 

in layer feed for 6wk. 
Feed  

concentration 

mg kg
-1

 

Spray 

concentration g 

L
-1

 

Bti bran 

formulation 

consumed 

(6wk by 6 

layers) (g) 

Bti WDG 

formulation 

applied (6wk) 

(g) 

Total 

cost 

(ZAR) 

 

Percent 

inhibition 

of adult 

flies 

Cost per fly 

inhibited 

(ZAR)  

0 0 0 0 0  0
a
 0  

 1 0 6 1.8 40.54b 0.04 

 2 0 12 3.6 41.44
bc

 0.09 

250 0 9 0 1.8 48.20
cd

 0.04 

 1 9 6 3.6 44.14
bcd

 0.08 

 2 9 12 5.4 55.85de 0.10 

500 0 18 0 3.6 49.10
d
 0.07 

 1 18 6 5.4 58.11
e
 0.09 

 2 18 12 7.6 74.32
f
 0.10 

 

 

Trends similar to those observed with larval mortality were observed with the emergence of 

house fly adults. Moreover, there were no significant differences with respect to adult house 

fly emergence between the 1g L
-1

 and 2g L
-1

 spray applications in the absence of feeding Bti 

to the layers, although spraying 2g L
-1

 cost twice (ZAR0.09) as much as the 1g L
-1

 spray 

(ZAR0.04) application.(Table 6.5). 

 

Likewise, the 500mg kg
-1 

feed treatment-1g L
-1

 spray application combination (ZAR0.09) and 

the 250mg kg
-1

feed treatment-2g L
-1

 spray application combination (ZAR0.10) resulted in 

similar inhibition of adult fly emergence (Table 6.5).  
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The 500mg kg
-1 

feed treatment-2g L
-1

 spray application combination and the 250mg kg
-1 

feed 

treatment-2g L
-1

 spray application combination cost the same (ZAR0.10) in terms of 

inhibition of adult house fly emergence. However, the 500mg kg
-1 

feed treatment-2g L
-1

 

resulted in a significantly higher inhibition of adult house fly emergence (74.32%) compared 

to the 250mg kg
-1

feed treatment-2g L
-1

 spray application combination (55.85%) (Table 6.5) 

 

6.4 Discussion 

 

Our results show that compared to the effects caused by the formulations alone, combinations 

of feed and spray treatments did not always have an additive effect. Even so, elevated levels 

of control of house fly larvae and adults could be obtained by combining feed and spray 

treatments.  For instance, no significant differences were observed in larval mortalities when 

layers were fed 250mg kg
-1

 feed formulation in the absence of Bti spray applications, and 

when the feed application was combined with a spray treatment of 1g L
-1

. Similar 

observations were made with the emergence of adult house flies.  

 

Although not statistically significantly different with respect to percentage reduction of adult 

flies, a feed concentration of 250mg kg
-1

 resulted in a 4% higher percentage inhibition of 

adult flies than when combined with a spray treatment of 1g L
-1

. It can be inferred from the 

study results that using either the 250mg kg
-1

 feed application is sufficient to control house fly 

larval breeding and is in fact more effective than combining the feed treatment with 1g L
-1

 

spray application.  

 

Our results also suggested that when spraying Bti application alone, a Bti concentration of 

1mg L
-1

 achieved 43% mortality for house fly larvae, which was similar to that achieved by 

2g L
-1

.  Similar results were obtained during our earlier studies using broilers instead of 

layers, where the percent mortality of house flies caused by the 1g and 2g L
-1 

spray treatments 

were 47 and 52.8% respectively. In the present study, there was evidence that a concentration 

of 1g L
-1 

Bti spray treatment applied weekly resulted in an almost immediate drop in larval 

density, a trend similar to that shown by the spray of 2g L
-1

, which was maintained throughout 

the study period.  

 

There was little difference in the impact of the 1g L
-1

 or the 2g L
-1 

spray applications. A 

comparison of the cost-benefit analysis of using 2g L
-1

 spray application over 1g L
-1

 indicates 
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that although they achieve the same larval control, the 2g L
-1

 spray would cost twice as much 

(expressed in terms of each percentage reduction of larvae breeding) (ZAR0.08) as the lower 

dose (1g L
-1

). Our findings confirm the observation that WDG Bti has a short persistence 

(Karch et al., 1991; Gelernter and Schwab, 1993; Kroeger et al., 1995; Fillinger et al., 2003; 

Russell et al., 2003) and we can therefore conclude that a dose of 2g L
-1

 as a topical spray 

application does not have any advantage over 1g L
-1

. The bran formulation, on the other hand 

is expected to provide a greater residual larvicidal activity because of the longer persistence of 

the spores in the environment and their recycling potential in the gut of the larvae after dying 

(Becker et al., 1995).  

 

Although not statistically significantly different, the addition of 250mg kg
-1

 to the 1g L
-1

 

spray reduced larval breeding by approximately a further 3% (46.3%), but would cost 

approximately x2 more (ZAR0.08). However, using the 250mg kg
-1

 and 2g L
-1

 combination 

achieved higher mortalities (59%) at a cost ZAR0.09.  A combination of 500mg kg
-1

 

combined with a 1g L
-1

 spray treatment cost the same (ZAR0.09) but did not offer better 

control (57.3%).  

 

The 500mg kg
-1

 feed and a 2g L
-1

 spray application provided the best control of larvae 

(66.7%). The cost–benefit analysis (expressed in terms cost per dead larva) showed that a 

combination of these two treatments cost ZAR0.11, which was the most expensive treatment, 

and was the least cost effective. 

 

In the present study it had been hoped that simultaneous use of Bti formulations (bran and 

WDG formulations) could increase the efficiency of the bacterial pathogenic agents and, 

therefore allow a lower dose of their combination to be used for the control house fly larvae. 

Although the single use of either treatment was not always significantly different to the 

combined use of both Bti formulations, the highest combined applications of the two 

formulations resulted in higher levels of control of larval numbers and inhibition of adult 

house fly emergence. The combined applications of either 250mg kg
-1

 or 500mg kg
-1

 

combined with a spray application of 2gL
-1

 were not always more cost-effective than the 

combinations of the two formulations applied at lower concentrations.  

 

In terms of larval mortalities, the lowest level of control (43%) was as a result of using either 

the 1g L
-1

 (ZAR0.04) or the 2gL
-1

 spray application at twice the cost (ZAR0.08). Likewise, 
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there was no significant difference in terms of larval mortalities when using either the 250mg 

kg
-1

 feed or 500mg kg
-1

 feed applications. However, the higher dosage is almost twice as 

expensive (ZAR0.07) as the lower dosage (0.04). In these two cases, the user would opt for 

the same control at a lower cost. Similar trends were observed with adult house fly 

emergence. The highest control in terms of larval mortality (67%) was as a result of the 

500mg kg
-1

 feed and 2gL
-1

 spray application. This was the most expensive treatment 

combination. However, in terms of fly inhibition, 500mg kg
-1

 feed and 2gL
-1

 spray application 

combination resulted in the highest control (74%), but at the same cost as the 250mg kg
-1

 feed 

and 2gL
-1

 spray application that resulted in a lower control (56%) of adult house fly 

emergence. 

 

This study therefore presents commercial users with various possible combinations of 

application of the two Bti formulations. For instance, if there are a few flies about, no major 

disease outbreak and the chickens flock is stable, then the 250mg kg
-1

 feed treatment would 

be suitable and moderate control would be achieved at a low cost. In the mid summer, when 

flies are breeding fast and there are threats of chicken diseases, then the chicken farmer could 

go for a higher level of control provided by the 500mg kg
-1

 feed combined the 1gL
-1

 spray 

application or even the 2gL
-1

 spray application. 
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Abstract 

 

Field trials were carried out in the poultry houses to determine if a spray formulation of 

Beauveria bassiana (Balsamo) Vuillemin Isolate R444 would enhance the control potential of 

Bacillus thuringiensis var. israelensis (Bti) applied in chicken feed as a larvicide against 

house fly larvae and the emergence of adult house flies. The trials compared larval mortalities 

and adult house fly emergence that resulted from the Bti plus B. bassiana treatments with 

those resulting from a commercial larvicide, Larvadex
®

 plus B. bassiana treatments. All 

treatments significantly reduced the house fly larval densities and adult house fly emergence 

compared to any of the agents acting alone. After 6wk of application, house fly larvae 

decreased by 11% as a result of B. bassiana treatment alone, 41% for 250mg kg
-1

 Bti alone 

and 42% for 500mg kg
-1

 Bti alone. Larval mortalities as a result of the combination treatments 

were 45% and 52% as a result of 250mg kg
-1

 Bti plus B. bassiana and 500mg kg
-1

 Bti plus B. 

bassiana, treatments respectively. House fly larval mortalities as a result of Larvadex
®

 and B. 

bassiana were 30% for Larvadex
®

 alone and 38% as a result of Larvadex
®

 plus B. bassiana. 

The Bti treatments were more effective at inhibiting the emergence of adult house flies than  

Larvadex
®
,
  

even when Larvadex
®

 was applied together with B. bassiana. The interaction 

effects of Bti plus B. bassiana and Larvadex
®

 plus B. bassiana were additive. These trials 

suggested that in the control of house fly larvae, the efficacy of Bti, applied as a larvicide may 

be improved with frequent spray applications of B. bassiana to the chicken manure.  
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7.1 Introduction 

 

The house fly, Musca domestica L., is a key pest of poultry facilities and a vector of many 

metaxenic pathogens and can cause serious sanitary problems because of its high reproductive 

potential, feeding habits and ability to disperse. Organic wastes from intensive poultry farms 

provide excellent habitats for the growth and development of this insect (Thomas and Skoda 

1993). Control recommendations for the house fly are currently limited to use of chemical 

insecticides to kill the house flies adults and larvae.  Due to the problems associated with the 

development of pesticide resistance by the house fly (Scott et al., 2000; Kaufman et al., 

2001b), as well as other environmental and regulatory concerns, research toward developing 

alternative control strategies is warranted. Beauveria bassiana (Balsamo) Vuillemin and 

Bacillus thuringiensis Berliner (Bt), which occur naturally as pathogens of M. domestica, are 

some of the potential alternatives. 

 

Bacillus thuringiensis has been found to be toxic to the house fly (Hodgman et al., 1993). 

Several natural isolates of Bt have also been found which are active against larvae of the 

house fly (Johnson et al., 1998). Thuringiensin-containing preparations have been used to 

control larvae of M. domestica (Mullens and Rodriguez, 1988; Mullens et al., 1988a). It has 

also been reported by Carlberg et al. (1991) that nuisance flies in cattle sheds, slaughter 

houses and latrines could be successfully controlled by applying Bt var thuringiensis to larval 

breeding sites.  

 

The entomopathogenic fungus, B. bassiana, is a ubiquitous and important entomopathogen of 

several insect pests (Feng et al., 1994; Inglis et al., 2001; Lacey et al., 2001) and can be used 

effectively to suppress house fly populations. One approach to controlling house flies with B. 

bassiana would be to target the adult house flies as they fly around the poultry houses or rest 

on the walls. Steinkraus et al. (1990) reported that B. bassiana infected 1% of house fly adults 

under natural conditions in poultry houses. Despite the low prevalence of disease, strains 

collected by Steinkraus were virulent in subsequent laboratory studies (Watson et al., 1995). 

One strain (P89), when formulated in water and a surfactant, induced 99% mortality in house 

flies (dose 1x10
8
 conidia/cm

2
) within 6d of exposure.  

 

Prior research, however, does not indicate great potential for B. bassiana to control the larval 

stage of house flies (Geden et al., 1995; Watson et al., 1995; Lecuona et al., 2005).  
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Furthermore, Geden et al. (1995), Watson et al. (1995), and Lecuona et al. (2005) found the 

virulence of B. bassiana to be relatively poor against M. domestica. Combining B. bassiana 

with other entomopathogens might result in synergistic interactions that would enhance the 

potential for biological control of M. domestica larvae. 

 

Despite the importance of mixed infections there has been little investigation on interactions 

between diverse strains of Bt and entomopathogenic fungi (Navon, 2000; Wraight and Ramos, 

2005). However, the use of mixtures of different control agents has a long history in insect 

control. Mixtures can provide improved pest control (Tompkins et al., 1986; Koppenhöfer 

and Kaya, 1997; Shapiro, 2000; Mendez et al., 2002; Wraight and Ramos, 2005; Oestergaard 

et al., 2006; Raymond et al., 2007) or may be used as a pesticide resistance management 

strategy (Tabashnik, 1989; Curtis et al., 1993; Roush, 1993; Corbel et al., 2002; Raymond et 

al., 2007b). Mixed infections lead to diverse interactions among natural enemies. 

 

In studies targeting other insect pests, synergistic interactions have been observed from 

certain combinations of B. bassiana and Bt (Wraight and Ramos, 2005), independent (Lewis 

and Bing, 1991) or antagonistic (Ma et al., 2008).  

 

Cyromazine (N-cyclopropyl-1, 3, 5-triazine-2, 4, 6- triamine) is an insect growth regulator 

commonly used to control immature house flies on poultry farms (Hogsette, 1979; Miller and 

Corley, 1980; Miller et al., 1981, Awad and Mulla 1984). Cyromazine is formulated as 1% 

pre-mix (Larvadex
®
), which is added to poultry food. Moderate to high levels resistance to 

cyromazine have been found to develop if the selection pressure is strong enough, as in the 

case of feed-through treatments (Keiding, 1999). Furthermore several authors (Bloomcamp et 

al., 1987; Sheppard et al., 1992) reported resistance in flies from poultry farms where 

Larvadex
®
 was used as a feed-through treatment. Combining Larvadex

®
 with an 

entomopathogen such as B. bassiana may have the advantage of delaying or avoiding 

resistance, which extendthe life of this larvicide as a useful tool for house fly control. 

 

A first objective of this study was to determine whether applications of B. bassiana combined 

with Bti enhanced the efficacy of Bti against M. domestica. A second objective was to 

evaluate the impact of B. bassiana combined with Larvadex
®

.  
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7.2 Materials and Methods 

 

7.2.1 Biopesticides 

 

The Bti bran and B. bassiana R444 formulations were obtained from Plant Health Products 

(PHP)
1
 (Pty) Ltd. The Larvadex

®
- treated commercial feed was obtained from the University 

Research Farm at Ukulinga. 

 

7.2.2 Layers and housing 

 

For field evaluation experiments, sixty x 51wk old commercial-type layers (Hyaline Brown) 

were obtained from the University Research Farm, Ukulinga.  Layers were evaluated upon 

receipt for signs of disease or other complications that could affect the outcome of the study. 

Following examination, the layers were randomly allocated into 80 hanging pens (440 x 420 x 

610mm) in six chambers. Four chambers had 10 birds each while two chambers had 20 birds 

each. Pens were separated by wire-mesh on all sides. Each pen was equipped with a 

removable feed trough and a nipple drinker. Each pen had a removable tray for individual 

manure collection. Layers were housed in environmentally friendly chambers fitted with fans 

and 16:8h (light: dark) at the Poultry section, University Research Farm at Ukulinga. 

 

7.2.3 Diet preparation for layers and administration 

 

The Bti-formulated bran was mixed into the layer mash in varying quantities of 250 and 

500mg kg
-1

 of layer mash. Larvadex
®

 - treated feed contained 0.5% of Larvadex
®

 kg
-1

 of 

layer mash. The control did not contain any Larvadex
®

 or Bti-formulated bran. The rations 

were stored in trashcans lined with plastic bags until fed to the chickens. There were 10 birds 

per treatment.  Feed and drinking water were provided ad libitum. Layers were fed their 

respective dietary treatments for 6wk. 

Additionally, three chambers were treated with a wettable-powder formulation of B. bassiana 

R444 Isolate (1g powder (10
10

) in 1L of water) at a rate of 250ml per chamber (27m
3
) once a 

week.  Applications were made using a Dyna-Fog


 Cyclone
 TM

 Ultra-Flex ULV sprayer. The 

treatments that were used in the field experiments are summarized in Table 7.1. 

 

                                                 
1 Plant Health Products (Pty) Ltd, P.O. Box 207, Nottingham Road, South Africa 
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Post-treatment larval densities were monitored after every 7d. Data were analyzed to measure 

reduction in the house fly larvae in comparison with the untreated controls. 

 

 

Table 7.1 Summary of combinations of Bacillus thuringiensis var. israelensis, Beauveria bassiana and Larvadex® for 

control house flies in poultry houses.  

Chamber Components of treatment 

1 None 

2 B. bassiana 

3 Larvadex
®
 

4 Larvadex
®
 and B. bassiana 

5 Bti (250 and 500mg kg
-1

) 

6 Bti  (250 and 500mg kg-1) and B. bassiana 

 

 

7.2.4 Fly larvae sampling  

 

Excreta from each bird was collected every seven days. Sampling of house fly larvae began 

one week after the administering the different feed in order to give the layers time to adjust to 

the different treatments. House fly larvae were monitored using a bulb planter (400ml) to 

collect two manure cores from each tray/bird/diet. Larvae was extracted in Berlese funnels 

and enumerated.  

 

Larvae were maintained at 25
o
C in the treated manure until adult house fly emergence and 

numbers were recorded. Adult house fly emergence rate was then calculated taking into 

account the number of exposed larvae. 

 

7.2.5 Statistical analysis 

 

Percentage mortality of larvae in the treated trays was calculated and corrected to the 

reduction, if any, in the control plots using the formula of (Mulla et al., 1971) as given below: 

 

% Mortality = [C1 – C2] x 100 

      C1   

 

where;  C1, abundance of larvae in untreated manure;  

C2, abundance of larvae in treated manure. 
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Adult house fly emergence inhibition was calculated using the following formula, on the basis 

of determining adult house fly emergence from the number of larvae that were obtained: 

 

% Inhibition of adult house fly emergence = [C – T] x 100 

                  C 

 

where;  C = percentage of adult house flies emerging from the control manure and  

T = percentage of adult house flies emerging treated manure. 

 

The percentage values were normalized by square-root arcsine transformation. Repeated 

measures ANOVAs were conducted using GENSTAT statistical package. Analyses included 

nominal variables representing application or no application of Bti and B. bassiana or 

Larvadex
®
 and B. bassiana applications. The LSD method was used to find significant 

differences between the means of the treatments. 

 

In order to determine the effects of Bti - B. bassiana and Larvadex
®

- B. bassiana treatments, 

the observed mortality rates were compared to the expected mortality rates under the 

assumptions of an independent effect. The expected mortality (BBE) for the Bti -B. bassiana 

treatment was calculated as follows: 

 

BBE = BT + BB (1 – BT) 

 

Where BT and BB are the observed proportional mortalities caused by Bti and B. bassiana 

alone, respectively. 

 

Similarly, the expected mortality BLE for the Larvadex
®

 plus B. bassiana combinations was 

calculated by:  

 

 BLE = BL + BB (1 – BL) 

  

Where BL and BB are the observed proportional mortalities caused by Larvadex
®

 and B. 

bassiana alone, respectively. 

 

Results from a χ2
 test, were compared to the χ2

 table values (df = 1, P≤0.05).  
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χ2
 = (O - E)

 2
 / E  

 

where O is the observed mortality for either of the Bti doses plus B. bassiana or Larvadex
®

 

plus B. bassiana treatments and E is the expected mortality for either of the Bti doses plus B. 

bassiana or Larvadex
®
 plus Beauveria treatments. Additivity would be indicated if χ2 

< 3.84. 

If χ2
 > 3.84, there would be reason to suspect that the interaction was non-additive, i.e. 

synergistic or antagonistic between the two agents (Finney, 1964). If O < E, the interaction 

would be considered antagonistic. Synergism would be indicated if O > E. 

 

7.3 Results 

 

Larval mortalities were significantly affected by the applications of Bti and B. bassiana 

Treatments (F= 48.99; P<0.001), Time (F= 45.37; P<0.001) and the Treatment x Time (F= 

13.71; P<0.001). The three factors, Treatment (F = 84.88; P<0.001), Time (F = 278.38; P < 

0.001) and Time x Treatment (F = 21.91; P <0.001), were also significant when Larvadex
®

 

plus B. bassiana were applied. 

 

 
Table 7.2 Effects of combining two concentrations (250mg kg

-1
 and 500mg kg

-1
) of Bacillus thuringiensis var. 

israelensis formulated feeds and spray applications of Beauveria bassiana on Musca domestica larval mortality 

 Percent mortality of larvae 

 Weeks 

Treatment 1 2 3 4 5 6 

 

Control +Bb 10.17 (0.31)a 16.08 (0.40)a 11.06 (0.32)a 12.85 (0.35)a 11.33 (0.33)a 10.99 (0.32)a 

Bt1 10.48 (0.32)a 12.99 (0.36)a 15.25 (0.39)b 25.16 (0.52)b 33.78 (0.62)b 41.21 (0.70)b 

Bt1 + Bb 12.74 (0.34)a 21.87 (0.47)b 24.17 (0.51)c 33.40 (0.62)c 41.22 (0.70)c 44.64 (0.73)b 

Bt2 12.05 (0.35)a 14.38 (0.38)a 15.09 (0.40)b 26.45 (0.54)b 37.67 (0.66)bc 42.09 (0.71)b 

Bt2 + Bb 11.84 (0.34)a 22.47 (0.49)b 26.96 (0.54)c 37.47 (0.66)c 46.56 (0.75)d 51.54 (0.80)c 

F – ratio 

P value 

% CV 

LSD 

Effect 

0.83 

0.51 

25.5 

0.05 

NS 

7.67 

<0.001 

22.5 

0.06 

** 

17.34 

<0.001 

23 

0.06 

** 

46.20 

<0.001 

14.2 

0.05 

** 

115.2 

<0.001 

11.3 

0.04 

** 

162.53 

<0.001 

10.2 

0.04 

** 

Values in parenthesis are square-root arcsine transformed  

Means followed by the same letter within the same column are not significantly different at P<0.05 

* Significant at P<0.05 

** Significant at P<0.001 

Bb = B. bassiana; Bt1 = 250mg kg
-1

 Bti; Bt2 = 500mg kg-1 Bti 
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The effects of applying Bti alone and when applied together with B. bassiana spray 

applications are shown in Table 7.2. Combinations of the two treatments resulted in higher 

larval control than either of the two treatments applied individually. However, there was no 

significant difference between the 250mg kg
-1

 and 500mg kg
-1 

feed when these were used 

alone. These resulted in 41% and 42% larval mortality, respectively.  Similarly, no significant 

differences were observed between the 250mg kg
-1

 plus B. bassiana and 500mg kg
-1

 plus B. 

bassiana treatments, except in the last two weeks when the 500mg kg
-1 

plus B. bassiana 

treatment combination resulted in a significantly higher larval mortality than the 250mg kg
-1 

plus B. bassiana treatment (Table 7.2). Larval mortalities as a result of the combined 

applications of 250mg kg
-1

 plus B. bassiana and 500mg kg
-1

 plus B. bassiana treatments were 

45% and 52%, respectively (Table 7.2). Use of B. bassiana alone resulted in low levels (11%) 

of larval control after 6wk. 

 

 

 
Table 7.3 Effect of combining Larvadex

®
 formulated feeds with spray applications of Beauveria bassiana on 

Musca domestica larval mortality 

 Percent mortality of larvae 
 Weeks 
Treatment 1 2 3 4 5 6 

 

Control +Bb 10.17 ( 0.31)a 16.08 (0.40)ab 11.06 (0.32)a 12.85 (0.35)a 11.33 (0.33)a 10.99 (0.32)a 

Lv 9.96 ( 0.31)a 12.14 (0.34)a 13.67 (0.36)a 20.66 (0.47)b 24.11 (0.51)b 30.33 (0.58)b 

Lv + Bb 10.48 (0.32)a 20.34 (0.46)b 18.69 (0.44)b 28.37 (0.56)c 31.44 (0.59)c 37.91 (0.66)c 

F – ratio 

P value 

% CV 

LSD 

Effect 

0.11 

0.90 

31.2 

0.06 

NS 

6.43 

0.003 

26.8 

0.07 

* 

4.92 

0.01 

33.2 

0.08 

* 

26.59 

<0.001 

19.4 

0.06 

** 

68.32 

<0.001 

15.5 

0.05 

** 

103.56 

<0.001 

15.0 

0.05 

** 

Values in parenthesis are square-root arcsine transformed  

Means followed by the same letter within the same column are not significantly different at P<0.05 

* Significant at P<0.05 

** Significant at P<0.001 

NS – Not significant 

Bb = B. bassiana; Lv = Larvadex
®
 

 

 

 

Application of Larvadex
®
 together with B. bassiana spray applications resulted in 

significantly higher larval mortalities than either of the two treatments individually (Table 

7.3). After 6wk of application, Larvadex
®

 plus Beauveria treatments resulted in >15% more 

larval mortality than Beauveria alone and 7% more than Larvadex
®

 alone (Table 7.3). 
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Regression lines of mortalities of larvae obtained as a result of the Bti, B. bassiana and 

Larvadex
®
 treatments applied individually or in combination are presented in Fig 7.1a. Larval 

mortalities as a result of the Bti treatments plus B. bassiana achieved better control than 

mortalities obtained as a result of Larvadex
®

 alone or when integrated with B. bassiana (Fig. 

7.1). Larval mortalities obtained as a result of using B. bassiana alone were the lowest. The 

250mg kg
-1

 and 500mg kg
-1

 Bti feed treatments were more effective (in terms of larval 

mortalities) than the Larvadex
®
 treatment integrated with B. bassiana spray applications (Fig 

7.1). 

 

 

 

 

● Control+Bb: y= -

2.39x+12.9: R
2
= 0.043 

■ Lv: y = 4.14x + 3.99 ; 

 R
2
 = 0.956 

□ Lv + Bb : y = 5.15x + 6.53;  

R
2
 = 0.945 

▲ Bt1: y = 6.45x + 0.56;  

R
2
 = 0.948 

∆ Bt1 + Bb: y = 6.7x +5.87;  

R
2
 = 0.984 

♦ Bt2: y = 6.59x + 1.7;  

R
2
 = 0.929 

◊ Bt2 + Bb: y= 8.04x + 4.68; 

R2 = 0.989 

 
 

Fig. 7.1 Percent mortality of larvae in manure sprayed with or without B. bassiana (Bb) and layers fed with 

Larvadex (Lv), 250mg kg-1 Bti (Bt1) or 500mg kg-1 Bti (Bt2). 
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Table 7.4 Effect of combining Bacillus thuringiensis var. israelensis and Larvadex
®
 formulated feeds integrated 

with spray applications of Beauveria bassiana on the mortality of Musca domestica larvae 

Treatments Week Observed % Expected% χχχχ
2
 Interaction 

Bt1 and B. bassiana 1 

2 

3 

4 

5 

6 

12.74 

21.87 

24.17 

33.40 

41.22 

44.64 

19.86 

26.98 

24.62 

34.78 

41.28 

47.67 

0.025 

0.009 

0.008 

0.001 

0.001 

0.193 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

Bt2 and B. bassiana 1 

2 

3 

4 

5 

6 

11.84 

22.47 

26.96 

37.47 

46.56 

51.54 

20.99 

28.15 

24.48 

35.90 

44.73 

48.45 

0.04 

0.01 

0.04 

0.02 

0.001 

0.197 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

Larvadex
®
 and B. 

bassiana 

 

1 

2 

3 

4 

5 

6 

10.48 

20.34 

18.69 

28.37 

31.44 

37.91 

19.11 

26.27 

23.22 

30.86 

32.71 

37.99 

0.04 

0.01 

0.007 

0.003 

0.003 

1.68 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

 

 

 

Although addition of B. bassiana to both Bti and Larvadex
®

 resulted in significantly higher 

larval control than any of the agents acting alone, the interaction between Bti and B. bassiana 

and between Larvadex
®

 and B. bassiana was additive and were based on the three agents 

acting independently for the entire 6wk trial (Table 7.4). 

 

The emergence of house flies was significantly affected by Bti and B. bassiana Treatments (F 

= 194.39; P < 0.001), Time (F = 193.87, P< 0.001) and Treatment x Time (F = 5.34; P< 

0.001). The three factors Treatment (F= 102.13; P< 0.001), Time (F= 64.93; P< 0.001) and 

Treatment x Time interaction (F= 4.40; P< 0.001) had significant effects on the emergence of 

adult house flies when Larvadex
®
 and B. bassiana were applied together or singly. 

 

The effects of applying Bti alone and when applied together with B. bassiana are shown in 

Table 7.5. The Bti treatments whether applied individually or together with B. bassiana 

significantly inhibited the emergence of adult house flies (Table 7.5). Application of B. 

bassiana alone inhibited the emergence of adult house flies by 24% after 6wk of application. 
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Table 7.5 Effect of combining two concentrations (250mg kg
-1

 and 500mg kg
-1

) of Bacillus thuringiensis var. 

israelensis formulated feeds with applications of Beauveria bassiana on the emergence of house fly adults  

 Percent inhibition of adult house fly emergence 

 Weeks 

Treatment 1 2 3 4 5 6 

 

Control +Bb 11.22 ( 0.33) a 13.74 (0.39) a 18.37 (0.43) a 20.45 (0.46) a 18.22 (0.43) a 24.0 (0.51) a 

Bt1 21.70 (0.48) b 27.37 (0.55) b 28.14 (0.56) b 28.48 (0.56) b 35.44 (0.64) b 46.33 (0.75) b 

Bt1 + Bb 22.75 (0.50) bc 28.54 (0.56) b 32.55 (0.61) bc 37.04 (0.65) c 46.89 (0.75) c 52.11 (0.81) c 

Bt2 26.52 (0.54) c 27.37 (0.55) b 29.11 (0.57) b 29.66 (0.58) b 39.22 (0.68) b 54.89 (0.84) cd 

Bt2 + Bb 28.72 (0.56) c 31.10 (0.59) b 33.94 (0.62) c 39.40 (0.68) c 48.56 (0.77) c 59.33 (0.88) d 

F - ratio 

P - value 

% CV 

LSD 

Effect 

32.60 

<0.001 

14.9 

0.05 

** 

31.28 

<0.001 

13.9 

0.05 

** 

19.49 

<0.001 

14.1 

0.05 

** 

31.63 

<0.001 

11.5 

0.04 

** 

68.81 

<0.001 

11.3 

0.05 

** 

83.33 

<0.001 

9.5 

0.05 

** 

Values in parenthesis are square-root arcsine transformed  

Means followed by the same letter within the same column are not significantly different at P<0.05 

** Significant at P<0.001 

Bb = B. bassiana; Bt1 = 250mg kg
-1

 Bti; Bt2 = 500mg kg-1 Bti 

 

 

 

There were no significant differences as a result of the 250mg kg
-1

 and 500mg kg
-1

 feed 

treatments on the emergence of adult house flies with or without B. bassiana spray 

application (Table 7.5). 

 

Combining 250mg Bti plus B. bassiana inhibited the emergence of adult house flies by 

approximately 30% more than B. bassiana alone and 6% more than Bti alone. The 500mg kg 

Bti feed application reduced the emergence of adult house flies by 55%. This was 4% less 

than when the 500mg kg
-1

 feed treatment was combined with B. bassiana spray application 

(Table 7.5) 

 

No significant differences were observed between the 250mg kg
-1

 Bti feed application and 

250mg kg
-1

 plus B. bassiana treatment with respect to reducing adult house fly emergence for 

the first 3wk of application. Similar observations were made between the 500mg kg
-1

 Bti feed 

application and 500mg kg
-1

 Bti plus B. bassiana spray application in the first 2wk of 

application (Table 7.5). However, significant differences were observed thereafter between 

the treatments. 
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Use Larvadex
®
 alone produced no significant reduction in adult house fly emergence during 

the first 3wk of the study. However, Larvadex
®
 applied together with B. bassiana reduced 

adult house fly emergence by 48% after 6wk (Table 7.6), 10% more than Larvadex
®

 alone.   

 

 

Table 7.6 Effect of combining Larvadex
®
 formulated feeds with applications of Beauveria bassiana on the 

emergence of adult house flies  

 Percent inhibition of adult house fly emergence 
 Weeks 
Treatment 1 2 3 4 5 6 

 

Control +Bb 11.22 ( 0.33)a 13.74 (0.39)a 18.37 (0.43)a 20.45 (0.46)a 18.22 (0.43)a 24.0 (0.51)a 

Lv 17.3 ( 0.42)b 17.15 (0.41)a 22.45 (0.49)a 26.98 (0.54)b 31.44 (0.59)b 37.11 (0.65)b 

Lv + Bb 15.83 (0.40)ab 26.94 (0.54)b 28.57 (0.56)b 35.12 (0.63)c 42.0 (0.70)c 47.89 (0.76)c 

F – ratio 

P value 

% CV 

LSD 

Effect 

3.79 

0.029 

27.9 

0.07 

NS 

10.02 

<0.001 

24.2 

0.07 

** 

10.11 

<0.001 

19.6 

0.06 

** 

22.06 

<0.001 

13.7 

0.05 

** 

52.39 

<0.001 

14.8 

0.05 

** 

84.55 

<0.001 

9.7 

0.04 

** 

Values in parenthesis are square-root arcsine transformed  

Means followed by the same letter within the same column are not significantly different at P<0.05 

** Significant at P<0.001 

NS – Not significant 

Bb = B. bassiana; Lv = Larvadex® 

 

 

 

● Control+Bb: y = 2.27x+9.72;  

R2 = 0.853 

■ Lv: y = 4.19x + 10.75;  

R
2
 = 0.962 

□ Lv + Bb: y = 6.02x + 11.44;  

R2 = 0.97 

▲ Bt1: y = 4.22x + 16.47;  

R
2
 = 0.85 

∆ Bt1+ Bb: y = 5.89x + 16.01;  

R2 = 0.981 

♦ Bt2: y = 5.08x + 16.67;  

R
2
 = 0.748 

◊ Bt2 + Bb: y = 6.03x + 19.09;  

R2 = 0.92 

 
Fig. 7.1 Percent inhibition of adult house fly emergence in manure sprayed with or without Beauveria and layers 

fed with either Larvadex
®
 (Lv), 250mg kg

-1
 Bti (Bt1) or 500mg kg

-1
 Bti (Bt2). 
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The B. bassiana formulation applied alone had the lowest impact on the emergence of adult 

house flies (Fig. 7.1). The Bti treatments were more effective than  Larvadex
®  

even when 

Larvadex
®
 was applied together with spray applications of B. bassiana. The most effective 

combinations were Bti combined with B. bassiana spray applications (Fig. 7.1). 

 

The interactions between Bti and B. bassiana and between Larvadex
®

 and B. bassiana were 

additive effects during the entire study period (Table 7.7). 

 

 

Table 7.7 Effect of combining Bacillus thuringiensis var. israelensis and Larvadex
®
 formulated feeds with spray 

applications of Beauveria bassiana on the emergence of Musca domestica adult flies 

Treatments Week Observed % Expected% χχχχ2 Interaction 

Bt1 and B. bassiana 1 

2 

3 

4 

5 

6 

22.75 

28.54 

32.55 

37.04 

46.89 

52.11 

31.42 

36.87 

40.22 

49.92 

56.57 

63.60 

2.39 

1.88 

1.46 

3.32 

1.66 

2.08 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

Bt2 and B. bassiana 1 

2 

3 

4 

5 

6 

28.72 

31.10 

33.94 

39.40 

48.56 

59.33 

36.72 

38.94 

41.45 

51.79 

57.93 

69.09 

1.74 

1.58 

1.36 

2.96 

1.52 

1.38 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

Larvadex
®
 and B. 

bassiana 

 

1 

2 

3 

4 

5 

6 

15.83 

26.94 

28.57 

35.12 

42.0 

47.89 

25.27 

35.57 

36.69 

41.91 

52.57 

60.40 

3.53 

2.09 

1.80 

1.10 

2.13 

2.59 

Additive 

Additive 

Additive 

Additive 

Additive 

Additive 

 

 

 

7.4 Discussion 

 

Addition of B. bassiana spray applications to Bti or Larvadex
®

 feed treatments offered some 

advantage to both agents in terms of larval mortality and inhibition of adult house fly 

emergence. Moreover, throughout the study, integrations of B. bassiana spray applications 

with either Bti or Larvadex
®
 feed treatments resulted in better larval control than either Bti or 

Larvadex
®
 acting individually. Furthermore, there was no evidence of antagonistic interaction 

between B. bassiana with Bti or Larvadex
®

. On the hand, B. bassiana on its own was not very 

effective in controlling larval populations or inhibiting adult house fly emergence. Our results 

confirm observations that weekly applications of B. bassiana are inadequate to achieve 
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effective insect larval control in the field (Galaini, 1984; Wraight and Ramos, 2002; 2005). 

Moreover, the fact that time of exposure was a significant factor suggests that repeated 

applications would be more effective in controlling larval densities.  

 

A few studies (Johnson et al., 1992; Lobo-Lima et al., 1992; Johnson and Goettel, 1993; 

Inglis et al., 1996a) have also reported inconsistent results of B. bassiana with some insect 

hosts in the field, despite good control being obtained in the laboratory. In our earlier studies, 

B. bassiana Isolate R444 sprays resulted in >90% fly mortality within 2d in the laboratory.  

 

The potential of B. bassiana in the field may be limited by high temperatures (Roberts and 

Campbell, 1977; Carruthers et al., 1985; Benz, 1987; Ferron et al., 1991; Fargues et al., 1992; 

Vestergaard et al., 1995; Ekesi et al., 1999). Also sunlight is known to rapidly inactivate B. 

bassiana conidia (Inglis et al., 1997a), and house flies are known to thermoregulate, raising 

their body temperatures above ambient level (Watson et al., 1993), which may enable them to 

rid themselves of infection by basking in sunlight (Inglis et al., 1997a).   

 

The efficacy of B. bassiana could be enhanced by making applications in the evening 

(Delgado et al., 1999) because B. bassiana has been reported to achieve better control in cool 

temperatures (Inglis et al., 1997b), owing to the prolonged life of exposed conidia, 

conceivably leading to germination and cuticle penetration by a greater number of conidia per 

insect and a higher effective inoculum (Delgado et al., 1999). Late evening applications of B. 

bassiana would allow more time for house flies to become exposed to fungal conidia through 

feeding on and/or contact with treated shed walls. 

 

There have been numerous studies on the effect of combinations of microbial agents for insect 

control. Although the mechanism is not clearly understood, infections by more than one agent 

usually lead to an increase in mortality of the host population, especially when the two 

infections are spatially separated (Jacques and Morris, 1981). Our findings of an additive 

interaction between B. bassiana and Bti confirm the results of Sandner and Cichy (1967), 

Lewis and Bing (1991), Costa et al. (2001) and Ma et al. (2008). This interaction may be the 

result of the different routes of infection by the two pathogens (Ma et al., 2008). In our study, 

B. bassiana was sprayed in the chicken houses to reduce the number of breeding adult flies, 

while Bti was ingested by the larvae through the chicken manure. 
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A few authors have reported synergistic interactions between Bt and B. bassiana. For 

instance, Lewis et al. (1996) reported that application of Bt to maize enhanced the suppression 

of European corn borer by B. bassiana and Wright and Ramos (2005) reported synergistic 

interactions between B. bassiana strain GHA and Bt tenebrionis when applied in combination 

against larval populations of the Colorado potato beetle. The results of Lewis et al. (1996) and 

Wright and Ramos (2005) may have been as a result of Bt prolonging of the interval of time 

between molts, therefore providing B. bassiana more time to penetrate the cuticle before 

being shed off (Wright and Ramos, 2005). Also larvae feeding on B. bassiana may acquire 

infection via the gut (Ma et al., 2008).  Miranpuri and Khachatourians (1991) found 

germinated B. bassiana conidia in the gut of larvae of the mosquito Aedes aegyptii 24-48h 

after exposure. 

 

On the other hand, a study by Furlong and Groden, (2003) suggested that starvation might 

increase the susceptibility of larvae to B. bassiana infection, by prolonging the inter-molt 

period. This has been the suspected mechanism that would explain the increase in impact of 

Bt plus B. bassiana mixed treatments. However, it was also found that the insect growth 

regulator Larvadex
®
 increased inter-molt period without significantly affecting susceptibility 

to the fungus (Furlong and Groden, 2001) and it was concluded that some unknown effect of 

starvation on host physiology was responsible for the change in susceptibility. 

 

Despite not being able to understand the exact mechanism of Bti and B. bassiana interaction, 

this study has shown that enhancement of Bti efficacy by B. bassiana is possible and warrants 

further study in order to understand the effect of combining various dosage levels of each 

pathogen. Furthermore, microbial pesticides are costly and any strategies allowing for the 

reductions in the dosage levels make them attractive to large-scale users. B. bassiana is 

affected by environmental factors, and takes a long time to act. However, with frequent 

evening applications, B. bassiana might accumulate in the manure or even infect enough 

house flies to start an epizootic. This would result in long-term control, while the short 

residual Bti would provide rapid short-term control of larvae (Wraight and Ramos, 2005). 
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Abstract 

 

In previous studies, a number of Beauveria bassiana isolates that showed high levels of 

virulence to adult house flies were identified. These isolates were tested for their 

compatibility with three adjuvants: Tween20, Tween80 and Breakthru
®

. These adjuvants were 

screened for their effects on spore germination and mycelial growth rates and for their 

influence on spore germination at various temperatures. Higher spore concentrations resulted 

in greater germination. Although Tween20 and Tween80 were compatible with all the B. 

bassiana isolates in the germination studies, they inhibited germination at higher adjuvant 

concentrations, irrespective of the conidial concentrations. Breakthru
®

 had an inhibitory effect 

on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The 

effects of the adjuvants on spore germination did not fully correspond with their effects on 

colony growth. However, there were few exceptions in which the adjuvants caused non-

significant increases in the mycelial growth rate. Conidial viability within the same 

formulation declined significantly with increases in temperature, irrespective of the adjuvant. 

Over 90% of conidia of all isolates germinated after 48h. The optimal temperature for conidial 

germination of B. bassiana isolates was approximately 25°C with an upper limit at 30°C. 

Isolate 7320 was identified as the least affected by the different adjuvants. This isolate was 

able to germinate rapidly in a broad temperature range of 25-30°C after 24h, this 

characteristic being an essential factor in controlling house fly populations in poultry houses. 
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8.1 Introduction 

 

House flies (Musca domestica L.) are major pests of poultry production systems in tropical 

and subtropical countries. Up to now, control strategies have been dependent on the use of 

synthetic chemical insecticides. However, recognition of associated problems such as non-

target effects, environmental pollution as well as the high economic costs involved, have 

prompted the development of alternative control strategies. Beauveria bassiana (Balsama) 

Vuillemin is one of the most ubiquitous and extensively studied entomopathogenic fungi 

(Feng et al., 1994; Hajek and St Leger, 1994). This entomopathogenic fungus has also been 

intensively studied with the aim of development of commercial mycopesticides for the 

management of insect pests (Burges, 1998; Butt et al., 2001).  

 

During the course of our research, a number of B. bassiana isolates that showed high 

virulence to adult house flies were identified, but a range of factors need to be considered 

before selecting the isolates for further use. Prolonged conidial survival in the field would 

help to maximize mortality of target insects. However, prolonged exposure to high 

temperatures limits the survival of entomopathogenic fungi in the field (Roberts and 

Campbell, 1977; Carruthers et al., 1985; Benz, 1987; Ferron et al., 1991; Fargues et al., 1992; 

Vestergaard et al., 1995; Ekesi et al., 1999). The thermal constraints are not only as a result of 

ambient conditions, but also those achieved through host thermoregulation. For instance, 

some insects elevate their body temperature through basking in the sun (Chappell and 

Whitman, 1990) and such activity has been shown to reduce disease incidence of 

Entomophthora muscae (Cohn) Fres. in house flies (Watson et al., 1993), Entomophaga grylli 

(Fres.) Batko (Carruthers et al., 1992), B. bassiana (Bals.) Vuill. (Inglis et al., 1996a) and 

Metarhizium flavoviride Gams and Rozsypal (Fargues et al., 1997; Inglis et al., 1997a) in 

acridids. 

 

The adjuvant used is also recognized as a critical component in assisting conidia of a 

pathogen to germinate and infect the target organism. The term adjuvant includes a wide 

range of compounds such as surfactants, stickers, inert carriers, antifreeze compounds, 

humectants, sunscreen agents, anti-evaporation agents and micronutrients (Prasad, 1993). 

Adjuvants can have a range of effects on fungal spore germination and mycelial growth. 

Therefore there is need for careful evaluation for compatibility of adjuvants with conidia prior 

to their use in formulations (Daoust et al., 1983). 
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The objective of this study was to screen three B. bassiana isolates (7320, 7569 and 7771) 

formulated in different adjuvants, at three different temperatures. 

 

8.2 Materials and methods 

 

8.2.1 Fungal isolates 

 

Three isolates of B. bassiana (Isolates 7320, 7569, 7771), selected in a previous study, were 

used in this study.  These isolates were originally obtained from the PPRI
1
, Pretoria. 

 

 8.2.2 Fungal cultures 

  

The fungi were grown on Sabourand Dextrose Agar (SDA) in Petri dishes and incubated for 

10d for fungal growth and conidial production. For viability tests, conidia were removed 

using a brush and then suspended in distilled water and different adjuvants, vortexed for 2min 

to produce a homogenous suspension. Conidia were mixed with adjuvants prior to addition of 

water to obtain homogenous suspensions. The stock formulation of each concentration was 

filtered using a sterile muslin cloth. All conidial formulations had the dose adjusted to 10
4
, 

10
5
, 10

6
, 10

7
 and 10

8
 conidia ml

-1
 using a Neubauer’s chamber. 

 

8.2.3 Adjuvants 

 

Three adjuvants (Tween20, Tween80 and Breakthru
®

) were used to measure conidial 

germination and mycelial growth. For controls, water was used. 

 

8.2.4 Effects of different adjuvants on B. bassiana conidial viability 

 

A factorial design was set up consisting of three fungal isolates (Isolates 7320, 7569, and 

7771), four conidial densities (10
5
, 10

6
, 10

7
 and 10

8
 conidia ml

-1
), three adjuvants (Tween20, 

Tween80, Breakthru
®
) and water for a control, with five adjuvant concentrations (0, 0.1, 0.5, 

1 and 5% v/v or w/v). The effects of adjuvants on conidial germination was evaluated by 

incorporating adjuvants directly into 1.5% water agar at 0, 0.1, 0.5, 1 and 5% (v/v or w/v). 

                                                 
1 Agricultural Research Council, 1134 Park Street, P.O. Box 8783 Hatfield, Pretoria 0001 
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Agar discs (16mm diameter) were then cut with a cork borer and placed onto supporting 

slides. Drops (10µl) of each conidial suspension were placed on the discs and spread evenly 

on the surface. The glass slides supporting the agar discs were placed in Petri dishes and 

incubated at approximately 21
o
C. After 24h of incubation, 12.5µl of lactophenol-cotton blue 

were placed on the agar discs to arrest germination of conidia. A conidium was considered to 

have germinated when the length of the germ-tube was greater than its width, or when a 

sessile appressorium was produced. Several randomly selected fields of view were examined 

using a compound microscope until a total of 300 conidia per replicate had been assessed.  

 

8.2.5 Effects of different adjuvants on B. bassiana mycelial growth 

 

To measure mycelial growth, Petri dishes containing 20ml PDA were amended with the same 

adjuvant concentrations. Each dish was inoculated with a 6mm diameter mycelial-agar plug 

obtained from the margin of a 7d-old culture. Dishes of each treatment were incubated for 10d 

at constant dark at 21±1
o
C and were removed at 48h intervals for assessment of mycelial 

growth. Colony growth was recorded as mean perpendicular radius minus the diameter of the 

inoculum plug (6mm).  

 

8.2.6 Effect of temperature on conidial germination 

 

To investigate the effect of temperature on conidial viability, a conidial suspension (1ml) of 

each isolate (10
8
 conidia ml

-1
) was mixed with the adjuvant and plated onto Petri dishes 

containing 20ml PDA that were amended with the same adjuvant. Plates were incubated in the 

dark at 25, 30 and 35 ± 1
o
C. Conidial viability tests were carried out with readings after 24h, 

and 48h of incubation at 21
o
C to allow time for conidia recovery from any adverse effects 

caused by temperature. Conidia were observed at 400x magnification and germination was 

recorded when the germ tube was visible. A minimum of 300 conidia per plate were 

evaluated.  

 

8.2.7 Statistical analysis 

 

The viability experiments had factorial designs with four factors. Analysis of variance 

(ANOVA) on conidial viability data was performed using GENSTAT, after transforming the 
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percent germination data to Arcsin √ (%/100) for normal distribution and homogeneity of 

variances. Means were compared using Least Significant Difference (LSD). The results are 

presented both as untransformed and transformed data. 

 

 The mycelial growth rate (Kr) was calculated in mm per 24h using simple linear regression 

and was used as the main parameter to evaluate the influence of temperature on fungal growth 

(Fargues et al., 1992). ANOVA was performed on the growth rates and means were compared 

using LSD. 

8.3 Results 

8.3.1 Effects of different adjuvants on B. bassiana conidial viability 

 

Conidial concentration, adjuvants, adjuvant concentration and the interaction of these factors 

affected germination of conidia (P<0.001) of isolates of B. bassiana. The analysis of variance 

summary is shown in Table 8.1.  

 

Table 8.1. Analysis of variance summary for conidial germination by isolates of Beauveria bassiana 

Source of variation F-ratio P - value Effect 

Isolate (I) 6500.77 < .001 ** 

Conidial concentration (CC) 2718.13 < .001 ** 
Adjuvant (A) 2515.15 < .001 ** 
Adjuvant concentration (AC) 5045.72 < .001 ** 
I x CC 144.70 < .001 ** 
I x A 256.98 < .001 ** 
I x AC 274.23 < .001 ** 
CC x A 43.35 < .001 ** 
CC x AC 26.04 < .001 ** 
A x AC 182.30 < .001 ** 
I x CC x A 12.32 < .001 ** 
I x CC x AC 7.80 < .001 ** 
I x A x AC 182.41 < .001 ** 
CC x A x AC 14.22 < .001 ** 
I x CC x A x AC 8.57 < .001 ** 

** Significant at P≤ 0.001 

 

 

The germination of conidia of three B. bassiana isolates in response to the three adjuvants 

(Tween20, Tween80 and Breakthru
®

), adjuvant concentration and conidial densities are 

shown in Fig 8.1. The adjuvants generally inhibited germination at higher adjuvant 

concentrations and at all conidial concentrations for all the three isolates of Beauveria (Fig. 

8.1). Tween20 showed varied effects on the three Beauveria isolates. For Isolate 7320, 

conidial germination remained fairly constant initially, declining gently by at least 30% as the 
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concentration of Tween20 increased up to 1%, after which there was a more obvious decrease 

and germination dropped to 66, 56, 49 and 42% in 10
5
, 10

6
, 10

7
 and 10

8
 conidia ml

-1
 

concentrations respectively. 

  

For Isolate 7569, the addition of Tween20 did not stimulate conidial germination, even at low 

concentrations of 0.1%. Instead, the addition of Tween20 resulted in an immediate rapid 

decline in germination. For example, at low conidial concentrations of 10
5
, 10

6 
and 10

7
conidia 

ml
-1

, germination was reduced by 40 - 50%, while at a higher conidial concentration of 10
8
, 

germination was reduced by approximately 20% with a concentration of 0.1% Tween20..   

Increases of Tween20 concentrations beyond 0.1% resulted to a gradual decline in 

germination (Fig. 8.1). In the case of Isolate 7771, Tween20 stimulated conidial germination 

at 0.1% concentration, but inhibited conidial germination at higher concentrations (Fig. 8.1). 

 

Tween80 inhibited germination of Isolate 7320 at 0.1% concentration, but stimulated 

germination at 0.5 and 1.0% concentrations. For example, at conidial concentrations of 10
6
, 

10
7
 and 10

8
, Tween80 had a stimulatory effect on germination, increasing by approximately 

10% for 10
7
 and 10

8
 and 30% for 10

6
 conidial concentrations.  The same adjuvant 

concentrations had no effect on the 10
5
 conidial concentrations. Conidial germination dropped 

sharply with a 1.0% Tween80 concentration, for all concentrations of conidia. Addition of 

0.1% Tween80 had a slight stimulatory effect on germination of Isolate 7569 conidia, but 

concentrations between 0.1-0.5% had substantial inhibitory effects on germination. Tween80 

concentrations higher than 0.5% had slight (5-12%) stimulatory effects on germination. For 

the Isolate 7771, 0.1% concentration of Tween80 stimulated germination; however, adjuvant 

concentrations higher than 0.1% had inhibitory effects on conidial germination (Fig. 8.1). 

 

Breakthru
®
 had an inhibitory effect on all the B. bassiana isolates at all concentrations. For 

Isolate 7320, although the 0.1% concentration caused a slight inhibition on germination, a 

significant decline of conidial germination was observed as Breakthru
®

 concentration was 

increased, resulting in approximately 70% inhibition of germination with the 5% Breakthru
®

 

concentration. Although addition of Breakthru
®

 inhibited conidial germination of Isolates 

7569 and 7771, the trends differed from that observed with 7320. For both Isolates 7569 and 

7771, addition of Breakthru
®
 at a low concentration of 0.1% resulted in an immediate rapid 

drop of >40% of conidial germination (Fig. 8.1). 
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Fig 8.1. Effects of Tween20, Tween80 and Breakthru
®
 at various concentrations (0, 0.1, 0.5, 1 and 5%) on the germination of conidia of three isolates of Beauveria bassiana 

at four conidial densities (10
5 (♦), 10

6
 (▀), 10

7
 (▲) and 10

8
 (○) conidia ml

-1
). 
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Table 8.2 Effect of three adjuvants at various concentrations on the germination of conidia of Isolate 7320  

 

Adjuvant 

 

Adjuvant 

concentration 

Mean germination of conidia (%) 

Log concentration of conidia 

5 6 7 8 

Tween20 0 99.4 (1.52)
l
 99.0 (1.48)

j
 99.6 (1.53)

l
 99.8 (1.55)

j
 

 0.1 92.2 (1.29)
j
 97.2 (1.43)

j
 98.4 (1.46)

jk
 99.0 (1.48)

j
 

 0.5 85.4 (1.18)
i
 92.0 (1.29)

h
 97.8 (1.42)

j
 98.8 (1.47)

i
 

 1.0 72.4 (1.02)gh 85.8 (1.19)f 96.4 (1.38)i 98.0 (1.45)i 

 5.0 66.2 (0.95)
g
 56.4 (0.85)

de
 48.8 (0.77)

bc
 42.0 (0.70)

ab
 

Tween80 0 99.4 (1.52)
l
 99.0 (1.48)

j
 99.6 (1.53)

l
 99.8 (1.55)

l
 

 0.1 51.8 (0.80)de 55.0(0.84)d 72.4 (1.02)e 85.6 (1.18)f 

 0.5 52.2 (0.81)
de

 86.0 (1.19)
f
 85.6 (1.18)

f
 93.8 (1.32)

g
 

 1.0 55.2 (0.84)
ef
 87.4 (1.21)

fg
 87.4 (1.21)

fg
 91.6 (1.28)

g
 

 5.0 5.8 (0.22)
a
 27.8 (0.56)

ab
 46.0 (0.75)

b
 66.6 (0.96)

d
 

Breakthru
®

 0 99.4 (1.52)
l
 99.0 (1.48)

j
 99.6 (1.53)

l
 99.8 (1.55)

j
 

 0.1 92.6 (1.30)
jk
 92.8 (1.30)

hi
 94.0(1.33)

h
 94.8 (1.35)

gh
 

 0.5 44.8 (0.73)
d
 52.2 (0.81)

d
 66.2 (0.95)

d
 72.4 (1.02)

de
 

 1.0 36.4 (0.65)c 42.4 (0.71)c 47.0 (0.76)b 52.4 (0.81)c 

 5.0 22.6 (0.49)
b
 26.0 (0.54)

a
 26.8 (0.54)

a
 35.0 (0.63)

a
 

F-ratio 

P- value 

LSD 

%CV 

Effect 

 50.12 

<0.001 

0.076 

6 

** 

89.22 

<0.001 

0.062 

4.5 

** 

82.57 

<0.001 

0.054 

3.7 

** 

48.63 

<0.001 

0.072 

4.6 

** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter within the same column (conidial concentration) are not significantly 

different at P < 0.05  

** Significant at P≤ 0.001 

 
 

There were significant differences among concentrations of the similar adjuvants within the 

same conidial concentration for Isolate 7320 (Fig. 8.2). Although germination in water was 

significantly higher than in the three adjuvants, in the higher conidial concentrations of 10
6
 

and 10
8
, germination in 0.1% Tween20 were not significantly lower than germination in 

water. 

 

There were no significant differences in germination using 0.5 and 1.0% concentrations of 

Tween80.  In addition, these two Tween80 concentrations stimulated germination. Conidial 

germination using Breakthru
®
 as an adjuvant presented significantly lower levels than with 

either Tween20 or Tween80 (Fig. 8.2). 
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Table 8.3  Effect of three adjuvants at various concentrations on the germination of conidia of Isolate 7569 

 

Adjuvant 

 

Adjuvant 

concentration 

Mean germination of conidia (%)  

Log concentration of conidia 

5 6 7 8 

Tween20 0 71.6 (1.09)
i
 81.4 (1.13)

a
 87.2 (1.21)

i
 97.4 (1.43)

i
 

 0.1 20.0 (0.46)
gh

 33.4 (0.62)
bc

 47.4 (0.76)
gh

 75.4 (1.05)
gh

 

 0.5 16.8 (0.42)
fg

 29.2 (0.57)
de

 43.8 (0.72)
fg

 72.6 (1.02)
fg

 

 1.0 14.4 (0.39)f 27.0 (0.54)f 43.8 (0.72)fg 68.4 (0.97)efg 

 5.0 12.4 (0.36)
f
 24.4 (0.52)

h
 40.6 (0.69)

f
 64.0 (0.93)

de
 

Tween80 0 71.6 (1.01)
i
 81.4 (1.13)

ab
 87.2 (1.21)

i
 97.4 (1.43)

i
 

 0.1 72.0 (1.01)i 83.2 (1.15)d 88.2 (1.22)i 98.0 (1.45)i 

 0.5 6.8 (0.26)
cd

 26.6 (0.54)
def

 33.8 (0.62)
de

 66.0 (0.95)
def

 

 1.0 7.6 (0.28)
de

 30.6 (0.58)
fg

 42.2 (0.71)
f
 61.2 (0.90)

de
 

 5.0 14.2 (0.38)
f
 33.8 (0.62)

h
 45.0 (0.74)

fg
 66.6 (0.95)

def
 

Breakthru
®

 0 71.6 (1.01)
i
 81.4 (1.13)

ab
 87.2 (1.21)

i
 97.4 (1.43)

i
 

 0.1 5.2 (0.23)
bcd

 7.6 (0.28)
de

 29.4 (0.57)
d
 60.0 (0.89)

d
 

 0.5 4.0 (0.19)
bc

 7.0 (0.27)
ef
 9.4 (0.31)

a
 43.0 (0.71)

c
 

 1.0 3.4 (0.16)ab 5.2 (0.23)h 18.4 (0.44)b 28.0 (0.56)ab 

 5.0 2.2 (0.11)
a
 4.8 (0.22)

h
 22.4 (0.49)

bc
 23.8 (0.51)

a
 

F-Ratio 

P value 

LSD 

%CV 

Effect 

 52.22 

<0.001 

0.07 

11.4 

** 

72.45 

<0.001 

0.056 

7 

** 

66.53 

<0.001 

0.05 

5.1 

** 

22.22 

<0.001 

0.083 

6.5 

** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter within the same column (conidial concentration) are not significantly 

different  at P < 0.05  

F and P values after square root-arcsine transformation 

** Significant at P≤ 0.001 

 

 

Increases in adjuvant concentration generally lowered the conidial germination of the Isolate 

7569, except in the case of Tween80. Among the three adjuvants tested, use of Tween80 

resulted in the highest germination rates. Although germination was stimulated by low 

concentrations (0.1%) of Tween80, this germination was not significantly higher than 

germination in water (Fig. 8.3).  

 

Tween20 caused more significant differences in conidial germination than the other two 

adjuvants while Breakthru
®
 caused significantly lower levels of germination compared to 

germination in to water for Isolate 7569 (Fig. 8.3). 
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Table 8.4 Effect of three adjuvants at various concentrations on the germination of conidia of Isolate 7771 

 

Adjuvant 

 

Adjuvant  

concentration 

 

Mean germination of conidia (%)  

Log concentration of conidia 

5 6 7 8 

Tween20 0 48.2 (0.77)
h
 59.4 (0.88)

j
 75.6 (1.06)

h
 87.2 (1.21)

k
 

 0.1 71.4 (1.01)
j
 77.2 (1.07)

l
 86.8 (1.20)

j
 91.0 (1.26)

m
 

 0.5 16.4 (0.41)fg 27.4 (0.55)fg 42.6 (0.71)f 71.6 (1.01)ij 

 1.0 15.8 (0.41)
f
 26.4 (0.54)

fg
 43.8 (0.72)

f
 68.8 (0.98)

hi
 

 5.0 12.2 (0.36)
f
 24.0 (0.51)

f
 40.2 (0.69)

f
 63.2 (0.92)

gh
 

Tween80 0 48.2 (0.77)
h
 59.4 (0.88)

j
 75.6 (1.06)

h
 87.2 (1.21)

k
 

 0.1 70.2 (0.99)
j
 82.0 (1.13)

m
 86.4 (1.19)

j
 96.8 (1.39)

m
 

 0.5 5.0 (0.22)cd 29.0 (0.57)gh 41.4 (0.70)f 60.4 (0.89)g 

 1.0 6.6 (0.26)
de

 32.6 (0.61)
hi
 45.4 (0.74)

fg
 54.4 (0.83)

ef
 

 5.0 3.0 (0.15)
b
 11.8 (0.35)

d
 31.2 (0.59)

d
 50.8 (0.79)

e
 

Breakthru
®

 0 48.2 (0.77)hi 59.4 (0.88)jk 75.6 (1.06)hi 87.2 (1.21)kl 

 0.1 6.6 (0.26)
d
 14.6 (0.39)

de
 32.4 (0.60)

de
 42.2 (0.71)

cd
 

 0.5 3.6 (0.18)bc 6.8 (0.26)b 9.0 (0.29)ab 41.0 (0.69)c 

 1.0 3.4 (0.17)
bc

 8.2 (0.29)
bc

 15.6 (0.40)
c
 31.0 (0.59)

b
 

 5.0 0.8 (0.07)
a
 1.2 (0.08)

a
 6.0 (0.25)

a
 17.8 (0.44)

a
 

F-ratio 

P value 

LSD 

%CV 

Effect 

 55.28 

<0.001 

0.07 

11.5 

** 

67.15 

<0.001 

0.053 

7 

** 

34.23 

<0.001 

0.06 

6.5 

** 

46.86 

<0.001 

0.06 

5.0 

** 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same letter within the same day are not significantly different (P > 0.05)  

F and P values after square root-arcsine transformation 

** Significant at P≤ 0.001 

 

 

Adjuvant concentration of 0.1% of both Tween20 and Tween80 stimulated germination. 

Furthermore, no significant differences were observed between germination caused by the 

two adjuvants at this concentration. While higher concentrations of both adjuvants reduced 

germination significantly of the Isolate 7771, no differences in germination were observed 

between the higher concentrations (0.5, 1.0 and 5.0%) of Tween20 (Fig. 8.4). 

 

Like Isolates 7320 and 7569, percentage germination as a result of using Breakthru
®
 for 

Isolate 7771 were of significantly lower levels than the control (Fig. 8.4). 
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8.3.2 Effects of different adjuvants on B. bassiana mycelial growth rate 

 

The analysis of variance summary on the effect of adjuvants and adjuvant concentration and 

their interaction on radial mycelial growth (Kr) of isolates of B. bassiana are shown in Table 

8.5.  

 

 

Table 8.5. Analysis of variance summary for mycelial growth by isolates of Beauveria bassiana 

Source of variation F - ratio P- value Effect 

Isolate (I) 20.07 < .001 ** 

Adjuvant (A) 4.82 0.01 * 
Adjuvant concentration (AC) 20.40 < .001 ** 
I x A 4.74 0.002 ** 
I x AC 2.60 0.013 * 
A x AC 2.06 0.048 * 

I x A x AC 1.20 0.281 NS 

* Significant at P< 0.05 

** Significant at P≤ 0.001 

NS – Not significant 

 

 

Tween20 caused a non-significant mycelial growth reduction at 0.1% concentration in 7320 

and a significant inhibition after 0.1% concentration that remained fairly constant at higher 

concentrations (Fig. 8.2, Table 8.6). While an increase in concentration of Tween20 presented 

significant reductions in Isolate 7569, fewer differences were observed in Isolate 7771 (Fig. 

8.2, Table 8.6).  

 

The effect of Tween80 on the Kr of the B. bassiana isolates was similar to that of conidial 

germination. The growth of Isolate 7320 was inhibited by 0.1% concentration of Tween80, 

stimulated at 0.5 and 1.0% concentrations and inhibited at concentrations higher than 1.0%. 

Tween80 inhibited growth of Isolate 7569 at 0.1% concentration and non-significant 

reductions at higher concentrations (Fig. 8.2, Table 8.6). Growth of Isolate 7771 was not 

affected by Tween80 concentrations of up to 1% (Fig. 8.2). 

 

For all the B. bassiana isolates, moderate reductions in mycelial growths were observed as a 

result of increasing concentrations of Breakthru
®
. However, fewer differences were observed 

for Isolate 7771 compared to Isolates 7320 and 7569 (Fig. 8.2, Table 8.6). 
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Fig. 8.2 Effects of Tween20, Tween80 and Breakthru

®
 at various concentrations on the radial growth of 

mycelium of three isolates (7320, 7569 and 7771) of Beauveria bassiana.  
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Table 8.6. Effects of five concentrations of three adjuvants (Tween20, Tween80 and Breakthru

®
) on the radial 

growth rate (Kr) of three isolates (7320, 7569 and 7771) of  Beauveria bassiana. 

Adjuvant Adjuvant 

concentration (%) 

Radial mycelial growth rate (Kr in mm day 
-1

) ± se 

 

  Isolates 

 

  7320 7569 

 

7771 

Tween20 0 1.08 ± 0.08 
f
 1.46 ± 0.06 

f
 1.13 ± 0.08 

b
 

 0.1 1.02 ±0.07 
def

 1.17 ± 0.1 
de

 1.54 ± 0.3 
c
 

 0.5  0.8 ± 0.09 ab 1.22 ± 0.17 e 1.11 ± 0.09 b 

 1  0.9 ± 0.09 bcd 1.08 ± 0.13 cd 1.13 ± 0.09 b 

 5 0.8 ± 0.09 
ab

 0.88 ± 0.09 
b
 1.10 ± 0.11

 b 

 

Tween80 0 1.08 ± 0.08f 1.46 ± 0.06 f 1.13 ± 0.08 b 

 0.1 0.96 ± 0.1cdef 1.07 ± 0.13 c 1.07 ± 0.09 ab 

 0.5 1.04 ± 0.12
def

 1.12 ± 0.07
cd

 1.05 ± 0.07 
ab

 

 1 1.06 ± 0.12
ef
 1.13 ± 0.1 

cd
 1.11 ± 0.09 

a
 

 5 0.87± 0.1
bc

 1.12 ± 0.13 
cd

 0.86 ± 0.15 
ab 

 

Breakthru
®
 0 1.08 ± 0.08

f
 1.46 ± 0.06 

f
 1.13 ± 0.08 

b
 

 0.1 0.96 ± 0.12
cdef

 1.26 ± 0.14 
e
 1.01 ± 0.09 

ab
 

 0.5 1.04 ± 0.13def 1.11 ± 0.13 cd 0.86 ± 0.1ab 

 1 0.92 ± 0.14bcde 1.13 ± 0.13 cd 0.84 ± 0.08 ab 

 5 0.69 ± 0.09
a
 0.72 ± 0.1 

a
 0.68 ± 0.06 

a
 

F-ratio 

P value 

LSD 

%CV 

Effect 

 55.28 

<0.001 

0.07 

11.5 

** 

67.15 

<0.001 

0.053 

7 

** 

34.23 

<0.001 

0.06 

6.5 

** 

Means followed by the same letter within the same day are not significantly different (P > 0.05)  

F and P values after square root-arcsine transformation 

** Significant at P≤ 0.001 

 

 

 

8.3.3 Effect of temperature of germination 

 

The effects of adjuvant, temperature, incubation time and the interaction of these factors on 

the conidial germination of the various isolates of B. bassiana were examined, and the results 

are shown in Table 8.7.  

 

Comparisons of the mean conidial germination levels between at each temperature within 

each adjuvant and between the isolates within each exposure time, 24 and 48h after incubation 

are shown in Table 8.8. Factorial analysis of variance revealed more significant differences 

among adjuvants at 24h than 48h. Conidial viability within the same formulation declined 

significantly with increases in temperature, irrespective of formulation. This effect was more 

pronounced for Isolate 7771 and less prominent for Isolate 7320 (Table 8.8). 
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Table 8.7. Analysis of variance summary for the effect of temperature conidial germination by isolates of B. 

bassiana 

Source of variation F- ratio P - value Effect 

Isolate (I) 2853.79 < .001 ** 

Adjuvant (A) 33.63 < .001 ** 
Temperature (T) 2514.48 < .001 ** 
Incubation Time (IT) 19813.20 < .001 ** 
I x A 17.33 < .001 ** 
I x T 148.93 < .001 ** 
I x IT 521.81 < .001 ** 
A x T 15.30 < .001 ** 
A x IT 19.01 < .001 ** 
T x IT 2128.80 < .001 ** 
I x A x T 13.85 < .001 ** 
I x A x IT 10.18 < .001 ** 
I x T x IT 175.15 < .001 ** 
A x T x IT 

I x Ax T x IT 

14.33 

14.48 

< .001 

<.001 
** 

** 

** Significant at P≤ 0.001    

 

 

 

All the isolates showed more than 90% germination after 48h at all temperatures. At a 

temperature of 30±1°C, <40% conidial germination was observed in all adjuvants for the 

tested isolates, except Isolate 7320. With this isolate >75% germination was observed at 30
o
C 

with all the adjuvants (Table 8.8). No delay in germination was observed at this temperature 

compared to germination at 25
o
C. At a temperature of 35 °C, all the isolates showed a 

significant delay or decrease in relative percentage germination after 24h but reached >90% 

after 48h. At a temperature of 35°C, all B. bassiana isolates failed to germinate within 24h. 

Only Isolate 7320 germinated, but the levels of germination were 0.18, 0.04 and 0.04% in 

water, Tween20 and Tween80, respectively. 

 

The effect of water on germination can be separated into different responses with increasing 

temperature. While high germination levels were obtained with Isolate 7320 at 25
o
C, Isolates 

7569 and 7771 exhibited moderate germination levels. Temperature of 30
o
C reduced conidial 

germination of Isolates 7320 and 7771 by 20%, and even less for Isolate 7569.  

 

Tween20 and Tween80 stimulated germination of Isolate 7320 at 25
o
C, but inhibited 

germination of Isolates 7569 and 7771 at the same temperature. Breakthru
®

 showed a similar 

trend to Tween20 and Tween80 on Isolate 7320. However, Breakthru
®

 caused severe 

inhibition (<30% germination) of Isolates 7569 and 7771, even at a temperature of 25
o
C. 
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Table 8.8. Conidial viability (% ±se) of three isolates of Beauveria bassiana in different adjuvants, 24h and 48h after incubation at three temperatures (25, 30 and 35
o
C) 

  Mean germination of conidia (%)  

                                                                    

                                                     Isolates 
    

 

 

 

 

 

7320                      7569                  7771 
 

 

Adjuvant Temperature  24h 48h 24h 48h 24h 48h 

 

Water 25 

30 

35 

98.4 ±0.51 (1.46)
e
 

77.2 ±0.86 (1.07)
d 

0.18 ±0.09 (0.04)
a
 

99.2±0.37 (1.50)
a
 

98.4 ±0.51 (1.46)
a
 

98.4 ±0.40 (1.46)
a
 

61.0 ±3.32 (0.90)
e
 

0.80 ±0.12 (0.09)
d
 

0 ± 0 (0)
a
 

98.6±0.51 (1.47)de 

98±0.32 (1.43)
bcde 

95.4±1.44 (1.36)
abc

 

63.8±3.46 (0.93)
g 

48.4±1.08 (0.77)
d
 

0 ± 0 (0)
a
 

98.6±0.51 (1.47)
bc

 

98.4±0.51 (1.46)
ab

 

98.4±0.51 (1.46)
a
 

 

Tween20 25 

30 

35 

98.4 ±0.51 (1.46)
e
 

86.8 ± 1.07 (1.20)
cd 

0.04 ± 0.02 (0.01)
a
 

98.6 ±0.40 (1.47)
a
 

98.2 ±0.37 (1.44)
a
 

98.6 ±0.40 (1.47)
a
 

34.6 ±1.86 (0.63)
d
 

27.8 ±1.39 (0.55)
de

 

0 ± 0 (0)
a
 

98±0.32 (1.43)
cde

 

97.4±0.68 (1.41)
abc

 

95.2±1.39 (1.36)
ab

 

57.2±3.65 (0.86)
i
 

38.6±2.73 (0.67)
de

 

0 ± 0 (0)
a
 

96.8±1.77 (1.42)
bc

 

95.6±1.5 (1.37)
c
 

92.4±2.18 (1.30)
c
 

 

Tween80 25 

30 

35 

98.0 ± 0.95 (1.46)
e 

83.0 ± 3.30 (1.15)
bc

 

0.04 ± 0.02 (0.01)
ab

 

98.8 ±0.37 (1.47)
a
 

98.2 ±0.20 (1.44)
a
 

98.2 ±0.37 (1.44)
a
 

29.4 ±3.14 (0.57)
f
 

31.2 ±1.85 (0.59)
b
 

0 ± 0 (0)
a
 

97.8±0.37 (1.42)
e
 

95.2±1.39 (1.36)
de

 

95±1.3 (1.35)
abcd

 

75.2±1.59 (1.05)
h
 

40±3.54 (0.68)
f 

0 ± 0 (0)
a
 

98±0.55 (1.44)
c 

98.8±0.37 (1.47)
bc

 

98.8±0.37 (1.47)
bc

 

 

Breakthru
®

 25 

30 

35 

97.2 ± 0.86 (1.42)
e
 

87.4 ± 2.50 (1.22)
bc

 

0 ± 0 (0)
ab

 

 

98.6 ±0.60 (1.48)
a 

98.4 ±0.51 (1.46)
a
 

98.0 ±0.32 (1.43)
a
 

29.8 ±1.77 (0.58)
de

 

7.0 ±0.95 (0.27)
c
 

0 ± 0 (0)
a
 

97.0±0.32 (1.4)
bcd

 

95.0 ±1.38 (1.35)
ab

 

93.8 ±1.02 (1.32)
a
 

21.6±2.09 (0.48)
c
 

15±1.92 (0.39)
b
 

0 ± 0 (0)
a
 

95.8±1.59 (1.38)
ab

 

98.2±0.37 (1.44)
bc

 

97.2±0.73 (1.41)
bc

 

F-ratio 

P- value 

LSD 

%CV 

Effect 

 2.52 

0.034 

0.081 

7.2 

* 

0.29 

0.941 

0.072 

3.9 

NS 

104.68 

<0.001 

0.053 

12 

** 

0.41 

0.868 

0.068 

3.8 

** 

30.15 

<0.001 

0.067 

10 

** 

1.35 

0.255 

0.093 

5.1 

NS 

Values in parenthesis are square-root arcsine transformed 

Means followed by the same small letter within the same column are not significantly different at P<0.05. 

* Significant at P< 0.05  

** Significant at P≤ 0.001 

NS - Not significant 
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8.4 Discussion 

 

While it is well documented that conidia of entomopathogenic fungi can germinate in 

adjuvants, the viability of conidia may also be influenced by adjuvant type (Boucias and 

Pendland, 1991; Milner et al., 1991; Prasad, 1994; Boyette et al., 1996). This study has shown 

that not only was conidial germination affected by the adjuvant but also by the adjuvant 

concentration and conidial concentration. The three adjuvants tested had different effects on 

the viability of conidia and mycelial growth. However, in both studies, there were enough 

exceptions to conclude that the concentration should be checked for individual adjuvants and 

individual isolates. 

 

Our study generally showed that it is better to use low or moderate concentrations of 

adjuvants than high concentrations in order to avoid reduced conidial germination. In no case 

did the use of the three selected adjuvants result in improved germination in comparison to 

applying B. bassiana in water. The greatest germination occurred at the lowest adjuvant 

concentrations. Similar observations were noted by Zhang et al. (2003). For example, 

Tween20, which is commonly used for initial screening different fungi (Boyette et al., 1996), 

promoted germination at low adjuvant concentration of <1% in Isolate 7320, inhibited 

germination of 7569 at all concentrations tested and lowered germination at concentrations 

higher than 0.1% for Isolate 7771. Furthermore, it did not stimulate mycelial growth of any of 

the B. bassiana isolates except for Isolate 7771 at 0.1% concentration. Germination of Isolate 

7320 was unaffected by Tween80 up to a concentration of 1% and then decreased 

significantly in higher concentrations. Isolates 7569 and 7771 were more sensitive to 

Tween80. Not all of the adjuvants were compatible with B. bassiana isolates in vitro. The 

Breakthru
®
 series were inhibitory to all the isolates at all concentrations, confirming results of 

Milner et al. (1991), who described toxic effects for various wetting agents. 

 

Tween20 increased mycelial growth of Isolate 7771 at 0.1%, while it decreased mycelial 

growth of all the other isolates. Tween80 and Breakthru
®

 failed to stimulate mycelial growth 

of any of the B. bassiana isolates.   

 

Greater germination was achieved with higher conidial concentrations. This relationship was 

checked because with similar fungi such as Colletotrichum spp., spore germination can be 

inhibited by high spore densities (Zhang et al. 2003). The observations of higher germination 
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rates with higher conidial densities in this study were consistent with our earlier observations 

and with other reports related to dose-mortality related studies of B. bassiana (Kaaya and 

Munyinyi, 1995; Watson et al., 1995; Lekimme et al., 2006; Devi and Rao, 2006; Santoro et 

al., 2008). In the field and poultry houses, inoculum at high densities are sprayed to target 

house flies and high germination rates of the inoculum may increase the overall effectiveness 

of the biocontrol agent.  

 

Although this study only examined the effect of single adjuvants on germination and growth, 

there could be value in determining whether some of these adjuvants have a synergistic effect 

when combined into simple, invert or water emulsions (Auld et al., 2003; Hynes and 

Boyetchko 2006). Moreover, B. bassiana proved to be an effective biocontrol agent of house 

flies in our previous studies. By adding adjuvants at low concentrations or combining the 

adjuvants, the efficacy of B. bassiana could be increased, resulting in improved reliability. 

 

The optimal temperature for conidial germination of B. bassiana isolates was approximately 

25°C, with an upper limit at 30°C. A temperature of 25°C was reported to be optimal for B. 

bassiana by Fargues et al. (1992). In our study, all isolates showed >90% conidial 

germination after 24h of incubation at 21°C. Previous studies have shown that Beauveria 

bassiana is mesophilic, capable of growth at a wide temperature range (8-35
o
C) with a 

maximum thermal threshold for growth at 37
o
C (Fargues et al., 1997). High temperatures 

retarded the conidial germination process in B. bassiana. Similar delays were found in the 

same B. bassiana isolates (Luz and Fargues, 1997; Devi et al., 2005). This delay is possibly 

associated with the need to repair damages before germination occurs, as was previously 

demonstrated in Bacillus spores (reviewed by Nicholson et al., 2000). 

 

Isolate 7320 was identified as the fungal strain that would be most suitable to formulate as a 

commercial product. Apart from being least affected by the different adjuvants, this isolate 

was able to germinate rapidly in a broad temperature range of 25–30°C after 24h, and this 

characteristic would be a crucial factor in suppressing house flies in poultry houses, where 

temperatures fluctuate markedly during the day and night. Also house flies multiply rapidly 

during the hot summer season; hence, higher germination and growth rates of B. bassiana at 

higher temperatures would be beneficial for house fly control. In addition, studies have also 

shown that entomopathogenic fungi may experience elevated temperatures through host 

thermoregulation (Olesen, 1985; Watson et al., 1993; Kalsbeek et al., 2001).  The authors 
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reported that infected house flies were capable of elevating their body temperatures through 

habitat selection or basking in the sun within the first few days of infection and, if the 

temperatures were high for a sufficiently long period, infected flies would be able to cure 

themselves from disease (Olesen, 1985; Watson et al., 1993; Kalsbeek et al., 2001). 

 

Our investigation was a laboratory study determining the influences of adjuvants upon the 

first two stages, germination, and mycelial growth, which had some limitations. For example, 

conidial behaviour was only studied on agar plates, whereas ultimately infection occurs on an 

insect cuticle where texture, exudates, and microflora have a role in the pre-infection stages.  

Also, some adjuvants may stimulate host defense responses and thereby reduce disease 

development in the host (Colson-Hanks and Deverall, 2000). Therefore, studies are 

recommended to evaluate the effect of these adjuvants on pre-infection stages and post- 

infection disease development on the host house flies. 
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CHAPTER 9 GENERAL OVERVIEW 

 

The entomopathogenic fungus Beauveria bassiana and the bacterium Bacillus thuringiensis 

var. israelensis (Bti) have been widely studied for their role in biocontrol against many 

arthropods and extensively exploited for insect control (Lacey et al., 2001). The studies of 

these two entomopathogens range from control of insects that affect crops to those that are 

vectors of human diseases. Additionally formulated products of these two species have been 

commercialized.  However, although B. thuringiensis (Bt) was developed for commercial pest 

control and registered in 1961 (Glare and O’Callaghan, 2000), to date no commercial 

preparation of Bt has been released for the control of insect pests of livestock (Gough et al., 

2005). The effectiveness of B. bassiana against arthropods was described over 100 years ago, 

but to date commercial preparations of this fungus have focused only on insect pests of 

greenhouse and field crops (Shah and Goettel, 1999). 

 

House fly populations have developed resistance to most synthetic organic insecticides (Scott 

et al., 2000; Kaufman et al., 2001b). Consequently the need of biological alternatives has 

increased in the last years.  

 

Entomopathogens can serve as alternatives to broad-spectrum chemical insecticides. Efficacy 

and cost are usually the primary perspectives when comparing microbial control agents with 

conventional chemical pesticides. Numerous advantages can be found in the utilization of 

entomopathogens in addition to efficacy. Advantages include safety for humans and other 

non-target organisms, reduction of pesticide residues in food and conservation of other natural 

enemies (Lacey et al., 2001). However, many factors still limit the acceptance of 

entomopathogens by growers and general public, including pathogen virulence and speed of 

kill, pathogen performance under extreme environmental conditions, ease of application and 

lack of persistence in the environment and the integration into managed ecosystems and 

interaction with the environment and other integrated pest management (IPM) components 

(Lacey et al., 2001). The aim of this thesis was to select pathogens that optimize the control of 

house fly larvae and adults and which can be applied with ease and integrated into the poultry 

environment.  
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The findings of this thesis resulted from the evaluation of 34 isolates of B. bassiana, two 

isolates of Paecilomyces lilacinus, two formulations of Bti and one isolate of Heterorhabditis 

sp. and the combinations of the most virulent entomopathogens for the biological control of 

house fly larvae and adults. Screening of the entomopathogens was carried out in the 

laboratory and experimental trials were conducted under controlled conditions in poultry 

houses at the University Research Farm at Ukulinga. 

 

It was found that: - 

 

- In the laboratory, B. bassiana isolates provided high levels of control of house flies but 

failed to control the larvae. Germination of B. bassiana conidia was delayed at high 

temperatures. 

-  Bti was effective in controlling house fly larvae. Addition of a Bti formulated bran 

formulation to chicken layer feed was more effective than spraying a water dispersible 

granular (WDG) formulation to manure for the control of house fly larvae in chicken 

manure.  

-  Dual applications of the two formulations of Bti resulted in higher levels of larval control 

than either of the two formulations alone. 

- The larval mortality levels achieved as a result of feeding 250mg Bti kg
-1

 at 5wk were 

similar to those achieved as a result of feeding twice the amount of Larvadex
®

 at 4wk to 

the layers. The sublethal effects of Bti and Larvadex
®

 were manifested in terms of a 

decreasing emergence of adult house flies. 

- Application B. bassiana as spray applications enhanced the efficacy of Bti feed treatments 

in controlling house fly larvae in manure. 

- The interaction effect between applications of Bti as a feed treatment and B. bassiana as a 

spray application was additive. 

 

Since Bti targets the larval stages of the house fly before they disperse, emphasis was given to 

the use of Bti formulations for house fly larval control. Formulations are stable, easy to handle 

and also to apply. Our initial screening results in the laboratory showed that the potency of Bti 

was not an accurate indicator of its performance in the field, so far as the persistence of the 

larvicidal activity is concerned (Vilarinhos and Monnerat, 2004; de Araújo et al., 2007) and 

therefore there is a high possibility of overestimating the longevity of Bti spores in the field 

environment (Yousten et al., 1992). A problem that needs to be addressed is the short 
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persistence observed in Bti formulations in the field. Reduced persistence of Bti formulations 

in the field has been attributed to several environmental factors (Ignoffo et al., 1981; Mulla et 

al., 1990; Becker et al., 1992), including high temperature (Ignoffo, 1992), solar radiation 

(Pusztai et al., 1991; Obeta, 1996; Nayar et al., 1999; Thiéry et al., 1999; Melo-Santos et al., 

2001; Vilarinhos and Monnerat, 2004) and the presence of inhibitory substances in chicken 

litter (Himejima et al., 1992; Asukabe et al., 1994; Kim et al., 1995; Amaral et al., 1998; 

Adams et al., 2002). This lack of persistence of Bti in the field has been observed with other 

arthropods (Karch et al., 1991; Gelernter and Schwab, 1993; Kroeger et al., 1995; Fillinger et 

al., 2003; Russell et al., 2003).  

 

Several ways to enhance the control of the Bti formulations towards house fly populations 

were pursued. Hence, the ability of dual applications of the two Bti formulations was to 

improve inoculum targeting, as well as to enhance their persistence in the chicken manure was 

evaluated. Our results showed that improved control of house fly larval populations resulted 

from the use of the two formulations of Bti. Several alternatives, with varying costs, were 

presented for large scale users that ranged from moderate to high levels of control of larvae 

and emergence of adult house flies. The most effective control was the use 500mg Bti kg
-1

 and 

2g L
-1

 in spray applications. 

   

The potential of B. bassiana to improve the efficacy of Bti in the control of house fly in 

poultry houses was investigated. Although the mechanism has not been plainly understood 

(Furlong and Groden, 2001) but positive interactions between entomopathogens has been 

used to improve pest control (Tompkins et al., 1986; Koppenhöfer and Kaya, 1997; Shapiro, 

2000; Mendez et al., 2002; Wraight and Ramos, 2005; Oestergaard et al., 2006; Raymond et 

al., 2007). However, in as much as this mechanism is important, there has been little 

investigation on interactions between diverse strains of Bt and entomopathogenic fungi 

(Navon, 2000; Wraight and Ramos, 2005). In this study, the interaction between Bti and B. 

bassiana was additive, with both agents acting independently. However, some studies have 

reported synergistic (Wraight and Ramos, 2005), antagonistic (Ma et al., 2008) or even 

independent (Lewis and Bing, 1991) interactions between B. bassiana and B. thuringiensis in 

mixed reactions involving the two pathogens. 

 

The observation that B. bassiana improved the efficacy of Bti against house fly larvae in 

poultry houses indicates that these two organisms have the potential to be used together for 
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control of house fly larvae in poultry houses. One problem of entomopathogenic fungi is a 

decreasing efficacy when exposed to high temperatures, low humidity and UV-light (Ignoffo, 

1992). Spores lose their viability and therefore the ability to infect insect larvae. Hence, the 

effect of different adjuvants on the germination and vegetative growth of B. bassiana spores 

was evaluated.  The performance of differently formulated conidia under high temperatures 

was also investigated. Results indicated that spore germination was inhibited by high adjuvant 

concentrations and high temperatures. 

 

Furthermore, the compatibility of B. bassiana with the insect growth regulator Larvadex
®
 and 

the potential of a combined treatment were investigated in order to examine the possibility of 

integration microbial control agents with chemical control strategies.  The larval control levels 

obtained with this combination were significantly higher than using either agent individually 

but were less effective than those obtained with the Bti plus B. bassiana treatments. 

 

Quo Vadis (The way forward…) 

The success of biological control with Bti partially depends on the persistence of Bti toxins in 

the environment. Interaction studies enhanced the control levels of Bti against house fly 

populations in poultry environment. What remains to be resolved is a way to enhance the 

residual ability of the Bti toxic proteins. Brar et al. (2006) suggested improvement of Bti 

using encapsulation of the Bti spores or toxins. This mechanism has the advantage in that it 

would provide protection from extreme environmental conditions consequently enhancing the 

residual stability due to sustained releases of the bacterium (Brar et al., 2006). When 

combined with frequent applications of B. bassiana to target adult breeding flies, this would 

provide long term control of house flies in poultry houses. 
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