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ABSTRACT 

 

Very little is known about the post-shedding seed behaviour and megagametophyte 

development of the cycads, the most primitive extant seed-bearing plants, which pre-date the 

dinosaurs. In the present investigation, seeds of Encephalartos natalensis Dyer and Verdoorn 

were shed with relatively high mean embryo (3.33 g g
-1

) and megagametophyte (1.25 ± 0.16 g g
-

1
) WCs, when the developing embryo consisted primarily of the coiled, elongated suspensor 

bearing a rudimentary sporophyte at its tip. It was not surprising that these seeds were revealed 

as desiccation sensitive in the present investigation, as the embryos continued to develop after 

seed-shed, reaching a germinable size (≥15 mm) only 4 – 6 months after seed abscission from 

the strobilus.  

 

Maintenance of the seeds in hydrated storage conditions was precluded by the proliferation of 

fungi, despite the application of the fungicide: Benlate
®
. Some seeds were also found to 

germinate in hydrated storage, despite the hard physical barrier to germination imposed by the 

enclosing sclerotesta. Seeds dusted with Benlate
®
 and placed in ‘open’ storage in loosely closed 

paper bags had a longer life-span than those placed in hydrated storage; however, seeds stored 

in open storage were also overcome by fungi, but only around 18 months after seed-shed. 

Therefore, while the vigour and viability of the seeds appeared to decline slowly in the months 

after the embryos reached a germinable size, the life-span of stored E. natalensis seeds devoid 

of fungi is yet to be determined and will be the subject of further research.  

 

The current investigation also combined ultrastructural and viability retention studies to observe 

the post-shedding behaviour of the storage tissue, the megagametophyte. The cells of the 

megagametophyte became progressively packed with starch and protein as the two main storage 

reserves, a limited number of discrete lipid bodies, and occasional mitochondria all of which 

appeared to be embedded in an homogeneous matrix. When the development of the 

megagametophyte cells was analysed ultrastructurally, it was found that the unusual matrix was 

present from the inception of megagametophyte cellularisation, and contained microtubules and 

numerous very faintly-visible vesicles. Newly-formed megagametophyte cells were thus not 

highly vacuolated as previously thought, but dominated by an homogeneous matrix. 

 

Enzyme-gold localisation was employed in an attempt to determine the organelles responsible 

for the deposition of cell wall components during cellularisation of the megagametophyte. It 

appeared that ER-derived vesicles (and not Golgi-derived vesicles) were the principal 
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contributors of the primary cell wall components, pectin and xylan. While cellularisation took 

place over approximately 1 - 2 weeks, subsequent development of the megagametophyte cells 

involved the accumulation of storage reserves, this phase lasting approximately 8 months - 

when the seeds were shed whether pollination/fertilisation had recently occurred, or not. 

 

At seed-shed, the cells of the megagametophyte were nucleated and contained a few 

mitochondria of a metabolically-active appearance. The occurrence of aerobic metabolism in 

these cells was confirmed by the tetrazolium (TTZ) test. Judging from the TTZ reactivity, the 

viability of the megagametophyte cells of fertilised seed appeared to decline slowly in the 

months after seed-shed, in parallel with extension growth of the embryo. The cell layer 

comprising the external surface of the megagametophyte showed marked ultrastructural 

differences from the inner cells, and may emerge as having an ‘aleurone-like’ function. It is, 

however, possible that the cells of the body of the gametophyte participate actively – at least in 

the earlier stages of post-shedding seed development – in mobilisation of stored reserves, which 

must support the development of the embryonic sporophyte.    
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1. I�TRODUCTIO� 

 

Cycads have been described as the “coelacanths of the plant world”, the “dinosaur plants”, and 

the “living fossils” (Giddy, 1984; Jones, 1993). These ancient plants have existed for at least 

250 million years and are said to be the most primitive extant spermatophytes (Jones, 1993). 

Allied to their primitive nature, cycads (Gymnospermeae) display many unusual and some 

unique features in their reproductive systems, cyanobacterial symbiosis and toxins (Osborne et 

al., 1988; Osborne, 1995) making them one of the most interesting plant groups for botanical 

research. 

 

1.1. The cycads 

 

The present day cycads are represented by three families - Cycadaceae, Stangeriaceae, and 

Zamiaceae - with approximately 289 species in 11 genera - Bowenia, Ceratozamia, Chigua, 

Cycas, Dioon, Encephalartos, Lepidozamia, Macrozamia, Microcycas, Stangeria, and Zamia 

(Whitelocke, 2002). However, the cycads of today comprise a diverse, modified remnant of a 

much larger group of plants which flourished in the Mesozoic Era (Osborne et al., 1988). 

 

1.1.1. Conservation status 

 

Despite representing only a small fraction of today’s plant diversity, cycads are a group of 

global conservation significance. The 1997 IUCN Red List of Threatened Plants documented 

12.5% of the world’s vascular plants in one of the threatened categories (Walter and Gillett, 

1998) while as many as 82% of the world’s cycad species were listed as threatened (Donaldson, 

2003). A publication in 2007, of a list of critically endangered, endangered, vulnerable and 

protected species in South Africa, revealed that 71% of the critically endangered plants are 

cycads (van Schalkwyk, 2007). Of the 38 cycad taxa represented in South Africa, 11 are 

critically endangered, six are endangered, two are vulnerable and 15 are protected (van 

Schalkwyk, 2007). This highlights the urgency for the conservation of these evolutionary 

important plants.  
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1.1.2. Reasons for decline 

 

Two main reasons have been cited for the decline in cycad numbers: 1) the removal of plants 

from habitat by traders, landscapers and collectors because of their monetary value and aesthetic 

appeal; and 2) the disturbance and destruction of habitat during human territorial expansion (i.e. 

the building of dams and roads, agricultural development and commercial forestation, as well as 

urban and rural housing development) [Osborne, 1995; Donaldson, 2003]. Collection of cycads 

by traditional healers for medicinal and reputed magical purposes has also been implicated in 

the diminishing cycad populations. Therefore, in order to avert the complete loss of these plants, 

the majority of cycads are protected by law (Giddy, 1995).     

 

1.1.3. Legislation 

 

In South Africa, cycads are protected under the �ational Environment: Biodiversity Act of 2004 

(van Schalkwyk, 2007). Internationally, the trade in cycads is monitored by the Convention in 

International Trade in Endangered Species of Flora and Fauna (CITES). Both Encephalartos 

and Stangeria are included in Appendix 1 of the CITES schedules, which means that no trade is 

permitted in wild-collected plants or seeds.  Trade is restricted to artificially propagated (i.e. 

nursery-grown) specimens. Although CITES permits trade in garden-produced Appendix 1 

seeds, The SA Management Authority has instructed the provinces of South Africa not to issue 

CITES export permits for Encephalartos and Stangeria seeds on the grounds that it is difficult 

to distinguish between seed of wild and garden origin (Giddy, 1995). Whilst protective 

legislation has been passed, surprisingly little research has been done on cycad seeds in light of 

the obvious need for cycad conservation (Vorster, 1995).  

 

1.1.4. Reasons for lack of research on cycad seeds 

 

Unavailability of cycad seeds in sufficient quantities for experimental purposes has been largely 

responsible for lack of research (Dehgan and Schutzman, 1989). In addition, more than one-

third of known species are subject to the most severe protective regulations, and the remaining, 

including their seeds, are governed by the second category of restrictions (Schlegel, 1991). 

 

It is also extremely difficult to ascertain whether the seeds of Encephalartos and other cycad 

genera are fertilised or not. In angiosperms, reserve deposition of the seed occurs following 

fertilisation, so, a developed angiosperm seed has the potential to germinate when conditions are 
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suitable. However, cycads are gymnosperms, where the ovule morphology may (depending on 

the species) differ very little, if at all, from that of the fertilised seed.  

 

In some gymnosperm species including the subject of the present study, Encephalartos 

natalensis Dyer and Verdoorn, all the reserves ultimately needed are laid down in the 

megagametophyte of the ovule prior to fertilisation, and the propagatory units do not always 

contain a developed embryo (personal observation). This presents a challenge in cycad seed 

research, in that unless hand pollination has been carried out, there is always variation in the 

actual seed number available, because fertilised seeds cannot be distinguished from ovules.  

 

Despite – or because – of the above-mentioned challenges which have hindered cycad seed 

investigations in the past, much research is required in order to preserve cycad germplasm and 

ultimately to restore natural cycad populations by improved propagation.   

 

1.2. Seeds  

 

The seed, however small, contains all the information needed to produce an entire plant of its 

species. Moreover, seeds afford invaluable intra-specific genetic variability, and are therefore 

the most significant propagatory unit of plants (Berjak and Pammenter, 2004). 

 

The seed consists of three major components: an embryonic axis, its nutritive tissue and the 

protective layers of the seed coat (Bewley and Black, 1994). The nutritive tissue in angiosperms 

is generally either the endosperm or cotyledon/s, while in gymnosperms it is the 

megagametophyte. This tissue provides nutrition in the form of lipids, carbohydrates and 

protein (Bewley and Black, 1994). Lipids are stored as lipid bodies, carbohydrates - as starch or 

thickened walls, while protein can be found as discrete protein bodies. These nutrients are 

ultimately utilised by the young plant during the transition from the seed-bound embryo, to a 

self-sufficient autotrophic organism during embryo development, germination and seedling 

establishment (Bewley and Black, 1994). 

 

1.2.1. Seed development 

 

Seeds of the majority of species seem to pass through three broad developmental phases. The 

first phase is characterised by rapid mitosis, cellularisation and histodifferentiation (Adams and 

Rinne, 1980). This phase is initiated by fertilisation, and in angiosperms, leads to the production 
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of an embryo and its nutritive tissue, while in some gymnosperm species, fertilisation is not a 

prerequisite for the formation of the nutritive tissue (outlined above).  In angiosperms, cell 

division ceases in the second phase, when there is a massive accumulation of reserves, which is 

mirrored by cell expansion and an increase in both the fresh and dry mass of the seed (Leprince 

et al., 1993). In orthodox seeds, the third developmental phase is characterised by the 

deceleration and ultimate cessation of dry mass accumulation, along with a marked decline in 

the fresh mass of the seed (Adams and Rinne, 1980). This phase is therefore known as 

maturation drying, where the seed can lose as much as 90% of its original water (Adams and 

Rinne, 1980). Maturation drying results in the decline of seed metabolic activity to low levels, 

with the seed passing into a state of quiescence or dormancy depending on the species. Seeds 

which undergo maturation drying are said to display ‘orthodox’ post-harvest behaviour (Roberts, 

1973).   

 

1.2.2. Orthodox seeds 

 

Storage of the majority of seeds has largely been facilitated because they show orthodox post-

harvest behaviour, i.e. they are dry and will survive predictable durations of storage under 

defined conditions of relative humidity (RH) and temperature. The storage longevity of 

orthodox seeds, within limits, is known to increase logarithmically with decreasing water 

content (Ellis and Roberts, 1980), although there apparently are lower thresholds below which 

there are no further beneficial effect and, in fact, damage may actually occur (Vertucci and 

Farrant, 1995; Walters et al., 2005). Orthodox seeds acquire desiccation tolerance relatively 

early in their pre-shedding development (Bewley and Black, 1994; Vertucci and Farrant, 1995), 

as a result of the presence and interaction of a suite of mechanisms and processes expressed 

during development (Pammenter and Berjak, 1999). These include minimisation of vacuolation, 

intracellular dedifferentiation and metabolic “switch-off”, the presence and optimal operation of 

antioxidant systems, the presence and operation of putatively protective molecules such as 

sucrose, and certain oligosaccharides or sugar alcohols, the possession of late embryogenic 

accumulating / abundant proteins (LEAs), as well as the ability for damage repair on 

rehydration (Berjak and Pammenter, 2004). It is believed that these mechanisms and processes 

act together ultimately to give rise to seed ‘orthodoxy’. 

 

However, not all seeds are orthodox. At the other end of the scale are highly recalcitrant seeds 

which cannot tolerate even a small proportion of loss of tissue water (e.g. Avicennia marina, 

Farrant et al., 1993). Such seeds are categorised as recalcitrant, a term originally introduced by 
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Roberts (1973) for seeds that cannot be stored at low water contents. Ellis and Hong (1990) 

defined an intermediate category, to include seeds that can be dried, but not to the same degree 

as orthodox types. Recalcitrant seeds, or non-orthodox seeds in general, are suggested to be 

subject to the malfunctioning or absence of one or more of the processes and mechanisms 

influencing the acquisition of desiccation tolerance (Berjak and Pammenter, 2004).  

 

1.2.3. �on-orthodox seeds 

 

Non-orthodox seeds are shed at high water contents and recalcitrant types remain metabolically 

active (Berjak and Pammenter, 2008). However, because non-orthodox seeds do not undergo 

much (if any) maturation drying, there are few clear indications of the maturation status of the 

seeds before germination commences (Berjak and Pammenter, 2004). Intra- and inter-seasonal 

variation also occurs within species, especially in those seeds of tropical provenance. For 

example, Berjak et al. (1996) found that the water content of embryonic axes of Camellia 

sinensis seeds varied inter-seasonally from 2.0 ± 0.3 to 4.4 ± 2.4 g H2O per g dry mass (g g-1). It 

has also been found that intra-seasonal differences occur in non-orthodox seeds (Chacko and 

Pillai, 1997), and provenance has been shown to have a marked effect on the degree of 

recalcitrance, within individual temperate species (Daws et al., 2004; 2006). The variation 

within non-orthodox seeds highlights the unpredictable nature of the responses of these seeds, 

which creates numerous difficulties with both experimentation and storage.  

 

Recalcitrant seeds, which must be maintained hydrated, cannot be stored in this condition in the 

long term (Pammenter et al., 1994). Furthermore, the unpredictable nature of non-orthodox 

seeds – and particularly recalcitrant seeds – has contributed greatly to the lack of successful 

storage, even in the medium term. Recalcitrance and true dormancy are seldom, if ever, 

coexistent, but if embryos are underdeveloped when seeds are shed, an interval of several 

months may elapse before they are germinable (Berjak and Pammenter, 2004).  

 

Since recalcitrant seeds are desiccation sensitive, storage conditions must be geared to avoid 

water loss, which requires virtually 100% relative humidity (RH). At the same time, 

germination (root protrusion) of these seeds in storage should be prevented since there is no 

exogenous water for germination to be carried out to completion, hence resulting in debilitating 

water stress (Pammenter et al., 1994). Proliferation of microorganisms, particularly fungi, is 

another cause for concern. Not only do fungi damage the seeds by degradation, but fungal 

respiration also produces metabolic water that tends to make the seeds even more metabolically 
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active (Berjak and Pammenter, 2004). Seed-associated fungi need to eliminated, or at least their 

activity minimised, if storage of non-orthodox seeds at high water contents is to be successful.  

 

To optimise the storage viability period of non-orthodox seeds – and particularly truly 

recalcitrant types – it is necessary to become familiar with the post-harvest behaviour of 

individual species (Berjak and Pammenter, 2004). This has become apparent through the 

growing list of species cited by those authors as producing varying degrees of recalcitrance. 

From the knowledge amassed to date, it is believed that the seed biology of many more species 

needs to be characterised in fine detail, in order to gain a better understanding the phenomenon 

of seed recalcitrance, and also of those non-orthodox types described as showing intermediate 

behaviour.  

 

Although there has not been a great deal of research on cycad seeds thus far, there was a general 

belief that they may be recalcitrant (Forsyth and van Staden, 1983; Dehgan and Schutzman, 

1989) mainly based on the fact that the seeds are ‘wet’. Woodenberg et al. (2007) have since 

shown that the seeds of Encephalartos natalensis and E. gratus are recalcitrant after the seeds 

lost viability when subjected to dehydration. However, more comprehensive assessments are 

needed to determine details and to develop effective storage protocols for cycad seeds and 

especially for the long-term germplasm conservation of individual species.   

 

Aside from the need for more research into cycad germplasm conservation, there is also a need 

to address the paucity of information on cycad embryogenesis and particularly 

megagametophyte development and reserve deposition at the cellular and ultrastructural levels. 

Most of the descriptive botany on the megagametophyte was done in the early 1900s (Lang, 

1900; Chamberlain, 1906; Smith, 1910; Reynolds, 1924; Sedgwick, 1924). This was before the 

advent of modern electron microscopes, thus many questions were necessarily left unanswered 

at the ultrastructural level. Additionally, later studies in the 1960s and ’70s (e.g. Maheshwari 

and Singh, 1967; Singh and Johri, 1972) preceded the common usage of sophisticated 

methodology, e.g. immunocytochemistry (ICC). The following is a general overview of the 

knowledge amassed to date on the megagametophyte development of cycads and other 

gymnosperms.    
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1.3. The megagametophyte 

 

The female gametophyte of angiosperms is primarily an eight-nucleate, microscopic structure, 

which bears a single functional gamete (Maheshwari and Singh, 1967). By comparison, the 

gymnosperm megagametophyte is a relatively large, haploid, multicellular organ, which serves 

the dual purpose of bearing the female gametes and providing nutrients for the developing 

sporophyte (the embryo). According to Maheshwari and Singh (1967), the early stages of 

megagametophyte development seem to follow a similar pattern in cycads, Ginkgo, conifers, 

and Ephedra.  

 

1.3.1. Gymnosperm megagametophyte development 

 

The megagametophyte is initiated as a single cell - the megaspore. The megaspore develops 

from within the nucellar tissue of the young ovule and gives rise to a linear tetrad that consists 

of three non-functional upper cells (which ultimately degenerate), and one functional megaspore 

at the chalazal end of the tetrad (Maheshwari and Singh, 1967). The functional megaspore 

undergoes a number of nuclear divisions with the nuclei lying in a thin, peripheral layer of 

cytomatrix that surrounds what has been termed the large central vacuole (Maheshwari and 

Singh, 1967). The number of free nuclei is reportedly characteristic for different species: e.g. 

Chamberlain (1906) recorded approximately 1000 nuclei for Dioon edule.      

 

Early wall formation during the transition from the free-nuclear (coenocytic) to the cellular 

megagametophyte of cycads was not recorded for Dioon edule (Chamberlain, 1906); Zamia 

floridana (Smith, 1910); Encephalartos spp. (Sedgwick, 1924) and Microcycas calocoma 

(Reynolds, 1924). This was mainly due to the difficulty of obtaining ovules from young cycad 

strobili - which are usually concealed by the bud scales of the parent plant. However, 

cellularisation of the megagametophyte has been observed in some cycads e.g. Cycas revoluta 

(Ikeno, 1898), Macrozamia reidlei (Light, 1924), M. spiralis (Brough and Taylor, 1940) and 

Encephalartos poggei (De Sloover, 1964) and other gymnosperms viz. Torreya californica 

(Robertson, 1904); Ginkgo biloba (Carothers, 1907) and Taxus baccata (Pennel and Bell, 1987). 

 

For the majority of gymnosperms, cellularisation of the megagametophyte seems to proceed as 

follows: At the end of the last nuclear division, secondary spindles develop such that every 

nucleus is connected to six neighbouring nuclei (Figs 1.1a,b). The spindles are arranged parallel 

with the surface of the megagametophyte, while anticlinal cell walls are laid down centripetally 
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between the nuclei. The laying down of the anticlinal walls gives the megagametophyte a 

honeycomb appearance (Fig. 1.1d). Each honeycomb cavity is known as an ‘alveolus’ 

(Sokolowa, 1890), which is sometimes also referred to as a primary prothallial cell (Maheshwari 

and Singh, 1967; Singh and Johri, 1972).  

 

The alveoli are open-ended toward the megagametophyte interior as they are not separated by 

periclinal walls from the central vacuole (Maheshwari and Singh, 1967). According to those 

authors, the alveoli, which appear hexagonal in cross-section (Fig. 1.1d), grow towards the 

centre of the megagametophyte, with the spindles still connecting adjacent nuclei at the open 

end (Figs 1.1c,e). Laying down of cell wall material appears to be directed by the persisting 

spindles. The circumference of the central vacuole decreases as the anticlinal walls of the 

alveoli encroach inwards. However, some alveoli may close before they reach the centre of the 

megagametophyte (Figs 1.1c,e,i) [Maheshwari and Singh, 1967].  

 

According to Singh and Johri (1972), an alveolus closes in the following manner (Figs 1.1f,g,h): 

When a nucleus lags behind, the spindles connecting it with its neighbouring nuclei bend such 

that the middle regions of the spindles and membranes which have developed on them approach 

each other. The approaching spindles join, and, therefore, the nuclei previously separated by the 

closing alveolus become connected by spindles fibres, while the membranes on the new spindle 

continue inward from the point of closure (Singh and Johri, 1972). Ultimately, the nucleus 

passes back slightly into the closed alveolus and is ready to initiate division that usually results 

in cellularisation of the tissue. This is how different alveoli become closed at variable distances 

from the centre of the gametophyte (Fig. 1.1i).  

 

Some alveoli, particularly at the micropylar and chalazal poles of the megagametophyte, close 

only a short distance from the megagametophyte periphery, and have been termed 

‘precociously’ closed alveoli (Maheshwari and Singh, 1967). According to those authors, while 

precociously closed alveoli may give rise to archegonial initials at the micropylar end of the 

megagametophyte, periclinal walls segment other alveoli such that the megagametophyte 

appears to have rows of radiating cells. As Chamberlain (1906) put it: “When an ovule [of 

Dioon edule] in which the gametophyte is still spherical is cut through the middle, the 

gametophyte, as seen with the naked eye, has a beautiful, radiating appearance, looking 

somewhat like a transverse section of a twig with very fine medullary rays.” The radiating 

conformation of the megagametophyte tissue is however, only a transient occurrence that may 
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be lost due to the laying down of irregular walls as the megagametophyte develops (Singh and 

Johri, 1972).    
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Figure 1.1: Diagrammatic representation of alveolation in the megagametophyte of most 

gymnosperms. a) arrangement of nuclei after the last free nuclear division; secondary 

spindles have been formed and each nucleus is connected with six neighbouring nuclei; b) 

cross section of alveoli; note their hexagonal outline; c) showing young alveoli; one of the 

alveoli is precociously closed; d) primary as well as secondary spindles connect the 

telophasic nuclei; e) young alveoli, one of which is precociously closed; f) a growing 

alveolus with spindles seen at the open end; g) and h) showing the lagging behind of the 

nucleus with the resultant closing of the alveolus; i) median longitudinal section of the 

megagametophyte in which alveolation has been just completed; there is a larger number 

of precociously closed alveoli at the two poles than on the sides; a few alveoli at the 

micropylar end (AT) are seen in cross section. AC = an alveolus that has reached the 

centre of the megagagametophyte; AT = an alveolus in cross section; MM = megaspore 

membrane; PA = precociously closed alveolus; PS = primary spindle; SF = spindle at the 

inner face of the alveolus; SS = secondary spindle. Diagram redrawn after Maheshwari 

and Singh (1967).  
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A few minor variations to the mode of megagametophyte development outlined above have 

been reported for Actinostrobus pyramidalis (Saxton, 1913), Athrotaxis spp. (Brennan and 

Doyle, 1956), Callitris spp. (Baird, 1953), and Sequoia spp. (Looby and Doyle, 1942). However, 

Gnetum gnemon (Sanwal, 1962), Welwitschia mirabilis (Martens, 1963) and Taxus baccata 

(Pennel and Bell, 1987) seem to employ a completely different mode of megagametophyte 

development. In G. gnemon, W. mirabilis and T. baccata, laying down of the cell walls seem to 

occur by free cell formation - where nuclei become enclosed directly by ingrowing cell walls. 

Therefore, it is important to note that the mode of development of the megagametophyte does 

not appear to be uniform across all gymnosperms.  

 

1.4.  Mode of development of the endosperm in angiosperm seeds 

 

This developmental event is introduced here, as it was envisaged that parallels might exist with 

gymnosperm megagametophyte ontogeny. Differences in the mode of development of the 

endosperm in angiosperms also exist, three main modes of early endosperm development being 

recognized: nuclear, cellular, and helobial (Lopes and Larkins, 1993; Friedman, 1994). Nuclear 

endosperm, which is the most common type, develops as follows: a large number of free nuclei 

are generated when the primary endosperm nucleus undergoes many mitotic waves without 

cytokinesis, with subsequent cellularisation proceeding from the periphery inwards, as 

described (above) for most gymnosperm species (Lopes and Larkins, 1993; Friedman, 1994). 

During cellular endosperm development, mitosis is accompanied by cytokinesis after the first 

division of the primary endosperm nucleus, followed by further repeated cell divisions (Lopes 

and Larkins, 1993; Friedman, 1994). Helobial endosperm on the other hand, is said to be formed 

by an intermediate and uncommon mode of development. The primary endosperm cell 

undergoes cell division to give rise to two cells of unequal size. One, or sometimes both, of the 

cells then undergo a series of mitotic divisions, with subsequent development following that of 

the nuclear-type (Lopes and Larkins, 1993).  

 

Different modes of development of both the gymnosperm megagametophyte and the endosperm 

of angiosperms thus exist, with a paucity of investigations on cycad megagametophyte ontogeny 

at the ultrastructural level.  
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1.5. The present study 

 

The present investigation can be divided into two main sections: one has applications in the 

conservation of cycad germplasm, while the other is ontogenetic in nature. The present study 

contributes to cycad germplasm conservation research in terms of a study of the post-shedding 

seed behaviour of Encephalartos natalensis Dyer and Verdoorn, while it also attempts to 

address the paucity of information in the literature on the ultrastructural development of the 

megagametophyte (which is functionally the nutrient reserve tissue) of E. natalensis seeds. 

 

Encephalartos natalensis is a relatively large cycad (Fig. 1.2) that is endemic to South Africa. It 

is widely distributed in the province of KwaZulu-Natal (Fig.1.3) from the southern districts of 

Portshepstone, Howick and Kranskop, to Vryheid in the North (Giddy, 1984).  Encephalartos 

natalensis usually has an erect trunk which can be up to 6 m in height and 400 mm diameter. It 

usually occurs as a solitary, single-stemmed plant, but may form clumps of up to 11 stems when 

offsets and basal suckers are produced (Giddy, 1984). The glossy, bright green leaves are 1.5 to 

3 m in length with a straight midrib. The median leaflets are 150 to 250 mm long and 25 to 40 

mm broad, with one to four teeth on one or both margins, and the leaflets are characteristically 

reduced to a series of prickles towards the base of the midrib (Giddy, 1984; Jones, 1993). Adult 

plants of E. natalensis may produce up to five deep golden-yellow strobili and as many as 250 

bright orange-red seeds per female strobilus (personal observation). While it is one of the more 

common South African cycad species, E. natalensis has been classified as protected (van 

Schalkwyk, 2007).     
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Figure 1.2: A mature Encephalartos natalensis plant growing outside the Elizabeth 

Sneddon Theatre at the University of KwaZulu-�atal, Durban, Howard College Campus; 

ruler = 500 mm; inset showing red sarcotesta-enclosed seeds surrounded by the orange 

strobili bracts; sarcotesta-enclosed seeds were approximately 25 mm wide and 45 mm long. 
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Figure 1.3: a) An illustration of the province of KwaZulu-�atal as a component of South 

Africa; b) the distribution of Encephalartos natalensis in KwaZulu-�atal and the Eastern 

Cape. (Mapping by S3 Technologies, Pietermaritzburg, KwaZulu-�atal, South Africa). 
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From the work of Woodenberg et al. (2007), it was evident that the seeds of E. natalensis 

seemed to lose both vigour and viability in the months following seed-shed. The present study 

aimed to determine the longevity of these seeds in storage, and to confirm whether the viability 

of the seeds decreases or not, in the months after seed-shed. Hence the germination capacity of 

the seeds was assessed once every 2 months from seed-shed for 18 months. 

 

The two potential reasons for loss of vigour and viability of these seeds have been identified as 

either a stress caused by the physical obstruction to germination imposed by the hard sclerotesta, 

or because of a stress caused by water limitation. One of the objectives of the present study was 

to determine the more likely situation by affording half of the E. natalensis seeds hydrated 

storage conditions, and comparing the water content, vigour and viability of these seeds with 

those kept in open storage.  

  

Since there is very little information in the literature on the post-shedding development of the 

cycad storage tissue, the megagametophyte, the present study combined investigations at the 

ultrastructural level and viability retention using transmission electron microscopy (TEM) and 

tetrazolium salts (TTZ) respectively. 

 

In addition, the present study also aimed at investigating the mode of development of the 

megagametophyte tissue including reserve deposition, in order to identify properly the 

organelles present in the cells, and to document the ultrastructural events leading up to the 

formation of this unique tissue.  
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2. MATERIALS A�D METHODS 

 

2.1. Seed post-harvest behaviour 

 

2.1.1. Plant material 

 

Seeds of Encephalartos natalensis Dyer and Verdoorn were collected from two different plants 

in Durban, South Africa. One batch of seed (batch A) was obtained from the grounds of the 

Howard College Campus of the University of KwaZulu-Natal in January 2006 soon after the 

strobili began seed-shed, while another seed batch (batch B) was obtained from a residential 

garden in Winston Park during March 2006, 4 months after they were shed from the parent plant. 

Batch A seeds were derived from strobili that were pollinated naturally – presumably by insect 

vectors, whilst batch B seeds came from a plant that was hand-pollinated. The collected, 

sarcotesta-enclosed seeds were transferred in large, black plastic bags to the laboratory, where 

they were cleaned and placed into storage.   

 

2.1.2. Treatment on arrival in the laboratory 

 

Cleaning the seeds entailed removal of the external sarcotesta layer and decontamination of the 

underlying surface. The sarcotesta is a relatively soft part of the outer integument of the seed 

that is prone to decomposition. It was scraped off using a scalpel blade and the seeds were 

rinsed clean with tap water prior to surface decontamination. The cleaned, sclerotesta-enclosed 

seeds were surface-decontaminated by soaking in a 2.5% (v/v) solution of sodium hypochlorite 

(NaOCl) for 10 min, followed by rinsing three times with distilled water. The seeds were then 

blotted dry using paper towel and a sample of freshly harvested seeds was taken immediately 

for water content (WC) and germination assessment. The remaining seeds were dusted with 

Benlate® (benzimidazole, 500 g kg-1) to minimise fungal contamination, packaged in brown 

paper bags (‘open’ storage) and kept at 16oC until further required.  

 

Four months after being placed into open storage, a subsample of seeds were transferred to 

hydrated storage conditions to assess the suitability of this storage method for E. natalensis 

seeds. In order to create hydrated storage conditions, seeds were placed in a layer, not more than 

two seeds deep, on plastic mesh suspended in scrupulously clean (decontaminated using 2.5% 

[v/v] NaOCl) buckets lined with wet paper towel. The buckets were opened every 3 weeks to 

prevent anoxia and the build-up of volatiles. 
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2.1.3. WC and dry mass (g) determination 

 

WC and dry mass of the whole megagametophyte tissue and whole embryo were determined 

gravimetrically (after drying to constant mass at 80οC for 48 h). The embryo and 

megagametophyte tissue of each seed was diced (c. 6 mm3 pieces) with a scalpel blade, placed 

in separate, small, aluminium-foil weighing boats and the fresh and dry mass of each 

determined using a Mettler MT5 6-place balance. The determination of WC and dry mass was 

done at bi-monthly intervals after the initial assessment at seed-shed (n = 10), and WC 

expressed on a dry mass basis (g H2O per g dry mass), g g-1. 

 

2.1.4. Germination assessment 

 

The ability of the seeds to germinate was determined at bi-monthly intervals (n = 10) from 

shedding to 18 months after seed-shed (MAS). Seeds were treated in the following manner prior 

to the assessment of their germinability: The thick, hard outer sclerotesta of each seed was 

removed by cracking, using a bench-vice and the thin, papery endotesta was peeled-off by hand. 

The testa-free seeds were then surface-decontaminated by soaking in a 2.5% (v/v) solution of 

NaOCl for 10 min, followed by rinsing (three times) with sterile, distilled water. The seeds were 

then aseptically plated onto 0.8% (w/v) water-agar in 100 ml glass jars. The jars were covered 

with cling-film, sealed with masking-tape, and placed in a growth room at 25oC and maintained 

under a 14/10 h light (65 µmol m-1 sec-1)/dark photo-period. Germination was monitored daily, 

and scored as positive upon radicle emergence from the hypocotyl. At the end of each 

germination assessment (30 d), ungerminated seeds were bisected to inspect for the presence of 

an embryo – i.e. to determine whether they had been fertilised or not. Germination percentage 

was calculated on the basis of the number of fertile seeds. 
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2.2. Viability status of the megagametophyte during post-harvest seed 

       development       

 

2.2.1. Ultrastructural investigations 

 

2.2.1.1. Transmission electron microscopy (TEM) processing and viewing 

 

A sharp scalpel blade was used to cut small segments (c. 2 mm3) from the megagametophyte 

tissue of two seeds per sampling interval. These segments were taken from the seeds shortly 

(days) after shedding, and 3 and 6 MAS.  

 

The samples were fixed overnight in 2.5% (v/v) glutaraldehyde buffered at pH 7.2 with 0.1 M 

phosphate buffer containing 0.5% (w/v) caffeine. They were then washed in 0.1 M phosphate 

buffer (3 × 5 min). Primary fixation was followed by post fixation in phosphate-buffered 0.5% 

(w/v) osmium tetroxide for 1 h, and then washed (3 × 5 min) in 0.1 M phosphate buffer before 

the commencement of dehydration. Samples were dehydrated in a graded series of ethanol (25, 

50, and 75% [v/v] - 2 changes each × 5 min), block stained with a saturated solution of uranyl 

acetate in 75% ethanol for 45 min, and then dehydrated further (2 × 5 min changes in 100% [v/v] 

ethanol) followed by 2 × 10 min changes in propylene oxide. The dehydrated samples were then 

placed in a 1:1 mixture of propylene oxide:resin (Spurr, 1969) in closed tubes on a vertical 

turntable for 4 h at room temperature, placed in full resin (Spurr, 1969) for 24 h and thereafter 

embedded in fresh resin for polymerisation at 80oC for 8 h.  

 

2.2.1.2. Microtomy and microscopy 

 

The resin-embedded samples of each seed sampled were sectioned using a Reichert-Jung 

Ultracut E microtome. Ultrathin sections were cut for TEM analysis, and stained with lead 

citrate (Reynolds, 1963) for 30 min. A maximum of five sections was viewed on each grid using 

a Jeol 1010 transmission electron microscope. The resultant micrographs were scrutinised 

qualitatively for the integrity of cells and their organelles. 
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2.2.2. Tetrazolium (TTZ) study 

 

The TTZ study was run in parallel with the TEM study. Five, randomly chosen seeds were 

taken at each TEM sampling interval (i.e. at shedding, 3 and 6 MAS). These seeds were 

bisected longitudinally with a sharp scalpel blade and submerged immediately in a 1% (w/v) 

solution of 2,3,5-triphenyltetrazolium chloride (TTZ) in the dark at room temperature for 24 h 

(method modified after Debeaujon et al., [2000]). Viability was assessed in terms of the 

presence and degree of red colouration on the cut surface of the seeds, where red colouration 

was an indication of aerobic respiration and concomitant viability. Images were captured using a 

Nikon Coolpix 4500 digital camera.   

 

2.3. Megagametophyte development 

 

2.3.1. Collection of material 

 

Ovules were collected from the developing strobilus of a garden-grown E. natalensis plant in 

the Glenwood area, Durban. The ovules were collected weekly, from the earliest sighting of the 

cone in January 2007, to seed-shed in October 2007. The collected, sarcotesta-enclosed ovules 

were transferred in small Ziploc® bags to the laboratory, where they were processed for 

microscopy.   

 

2.3.2. Tissue processing for microscopy 

 

In most cases, small cubes (1-2 mm3) were cut out of the E. natalensis megagametophyte using 

a sharp scalpel blade for TEM tissue processing as outlined previously. However, during the 

first sampling interval, the ovules had a watery consistency which obviated cutting the 

megagametophyte. The first ovules were therefore processed whole, with extended incubation 

times detailed below. A sharp scalpel blade was used to trim away the integumentary layers as 

close to the ovule as possible without inflicting any mechanical damage. In the early, but 

slightly later, phases of ovule development, where the megagametophyte tissue appeared gel-

like, a longitudinal disc was first cut out of the megagametophyte, and then cut into pie-like 

slices. This was done to minimise the considerable shrinkage or loss of the tissue that was 

observed during earlier TEM processing trial runs. The ‘pie-slices’ and whole ovules were also 

subjected to prolonged incubation and infiltration times as detailed below.   
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2.3.3. Prolonged TEM tissue processing protocol  

 

The samples were fixed overnight in 2.5% (v/v) glutaraldehyde buffered at pH 7.2 with 0.1 M 

phosphate buffer containing 1% (w/v) caffeine. They were then washed in 0.1 M phosphate 

buffer (3 × 5 min). Primary fixation was followed by post fixation in 0.5% (w/v) phosphate-

buffered osmium tetroxide for 2 h. The tissue segments were then washed (3 × 5 min) in 0.1 M 

phosphate buffer before the commencement of dehydration. Samples were dehydrated in a 

graded series of ethanol (25, 50, and 75% [v/v] - 2 × 10 min) and left in 75% ethanol overnight.  

The following day, the samples were block-stained with a saturated solution of uranyl acetate in 

75% ethanol for 45 min, and then dehydrated further (2 × 10 min changes in 100% [v/v] ethanol) 

followed by 2 × 10 min changes in propylene oxide. The dehydrated samples were then placed 

in a 1:1 mixture of propylene oxide:resin (Spurr, 1969) on a vertical turntable overnight at room 

temperature, placed in full resin (Spurr, 1969) for another 24 h and thereafter embedded in fresh 

resin for polymerisation at 80oC for 8 h.  

 

2.3.4. Microtomy and microscopy 

 

The resin-embedded samples were sectioned using a Reichert-Jung Ultracut E microtome. 

Sections, 1 µm thick, were placed on glass slides, stained with 1% (w/v) toluidine blue and 

viewed with a Nikon eclipse 80i light microscope equipped with NIS Elements F Package 

imaging software. While ultrathin (gold) sections were cut for TEM analysis and stained with 

lead citrate (Reynolds, 1963) for 30 min, or zinc iodide-osmium tetroxide (ZIO) [modified after 

Harris and Chrispeels, 1980] for 2 min. A maximum of five sections was viewed on each grid 

using a Jeol JEM 1010 transmission electron microscope and iTEM Soft Imaging System 

GmbH imaging software. The following stages were sectioned and viewed: The earliest 

developmental stage found (approximately 1 week after the strobilus first appeared from the 

crown of the parent plant [the coenocytic stage]); 1 week after this stage; and 1; 2; 3; 4; 6 and 8 

months after this stage (n = 3, replicated twice).  
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2.3.5. Scanning electron microscopy (SEM) 

 

Scanning electron microscopy was used to determine the presence or not of any substructure in 

the matrix of megagametophyte cells during the early stages of ovule development when the 

tissue appeared gel-like. The block face of sectioned, resin-embedded samples was first etched 

by placing the blocks face-down into a 6.675% solution of potassium methoxide (in a 2:1 

mixture of methanol:propylene oxide [Ferey et al., 1986]) for 2 min followed by rinsing for 30 

sec in methanol while sonicating. The dried specimens were then sputter-coated with gold in a 

Polaron E5300 SEM coating unit and viewed with a LEO 1450 scanning electron microscope (n 

= 3). 

 

2.3.6. Enzyme-gold localisation and immunocytochemistry 

 

2.3.6.1. Enzyme-gold localisation of xylan and pectin 

 

Ultrathin sections of the earliest gel-phase megagametophyte (c. 1 week after the first sighting 

of the strobilus) were cut using glass knives and collected on 200-mesh nickel grids. For each 

treatment about five sections were examined (n = 2). The ultrathin sections on nickel grids 

(hereon referred to as sections) were transferred to a drop of 0.05 M phosphate buffered saline 

(PBS) pH 7.4 for 5 min at room temperature. The sections were then incubated in blocking 

solution (PBS containing 10% [v/v] foetal bovine serum [FBS], 1% [w/v] bovine serum 

albumin [BSA], 0.05% [v/v] Tween-20® and 0.2% [w/v] sodium azide), before being transferred 

to a drop (40 µl) of enzyme-gold complex and maintained in a moist chamber for 30 min.  

 

The moist chamber was created by wetting the filter paper of the Petri dish inside which the 

sections were incubated. A rolled piece of moistened paper towel was also used to ensure the 

saturated atmosphere inside the Petri dish and ultimately to prevent precipitate formation during 

incubation.   

 

The appropriate concentrations of pectinase, from Rhizopus sp. (Sigma-Aldrich, Germany), and 

xylanase, from Trichoderma viride (Sigma-Aldrich, Germany), were determined by prior 

experimentation. The concentrations of the enzymes used were 0.6 mg ml-1 for xylanase and 0.8 

mg ml-1 for pectinase.  Controls were run in parallel with the sample. The controls included: (1) 

enzyme only without gold colloid; (2) gold colloid only without the enzyme; and (3) incubation 
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with the enzyme only first, for the same time as the enzyme-gold complex and then incubation 

of the same sections with the enzyme-gold complex.  

 

After these incubations, the sections were washed (3 × 5 min) in a drop of PBS, rinsed (3 × 10 

min) with sterile distilled water, counterstained with lead citrate for 30 min, and viewed with a 

JEOL JEM-1010 transmission electron microscope (TEM) at 100 kV.  

 

 

2.3.6.2. Immunocytochemistry of microtubules  

 

Ultrathin sections of the earliest gel-phase megagametophyte (c. 1 week after the first sighting 

of the strobilus) were cut using glass knives and collected on 200-mesh nickel grids. For each 

treatment about five sections were examined. The sections were first transferred to a drop of 

solution 1 (PBS [as prepared in 2.3.6.1.] containing 0.2% [w/v] polyethylene glycol 20 000 

[PEG 20 000®]) for 5 min at room temperature. The sections were then transferred to a drop of 

solution 2 (PBS containing 10% [v/v] foetal bovine serum, 1% [w/v] bovine serum albumin 

[BSA], 0.05% [v/v] Tween-20® and 0.2% [w/v] sodium azide), before an overnight incubation 

in a drop (40 µl) of anti-acetylated-tubulin mouse ascites fluid (Sigma-Aldrich, Germany) 

diluted 1:200 in solution 3 (PBS containing 1% [w/v] BSA) for 1 h in a moist chamber at 4oC 

(the control treatment remaining in solution 3).  

 

The next day, the sections were washed (3 × 5 min) in a drop of solution 4 (PBS containing 1% 

[w/v] BSA and 0.05% Tween-20®), transferred to a drop (40 µl) of secondary antibody (goat 

anti-mouse IgG conjugated with 10 nm gold colloid [Sigma-Aldrich, Germany] diluted 1:10 

with solution 5 [950 µl solution 4 + 50 µl FBS]) for 1 h at room temperature. The sections were 

then rinsed (3 × 5 min) in PBS, fixed in 1% gluteraldehyde for 2 min, and rinsed with double-

distilled water (3 × 10 min). Following this, the sections were counterstained with lead citrate 

for 30 min and viewed with a JEOL JEM-1010 transmission electron microscope at 100 kV.  
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2.3.7. Histochemistry of protein, carbohydrates and lipid 

 

Both wax- and resin-embedded sections were used for the histochemical localisation of protein, 

carbohydrates and lipid. While the resin-embedded samples were processed as outlined above, 

wax embedded samples were processed as follows: 

 

A central cube (c. 125 mm3) was cut out of the micropylar half of the megagametophyte using a 

blunt scalpel. These tissue segments were then incubated in a mixture of microtubule-stabilising 

buffer (MTSB) and dimethyl sulphoxide (DMSO) at room temperature for 15 min. This was 

followed by fixation with 4% (w/v) paraformaldehyde in MTSB-DMSO mixture for 1 h at room 

temperature. The tissue segments were then rinsed briefly in MTSB before dehydration. 

 

Dehydration was carried out in a graded ethanol series (30, 50, and 75% [v/v]) diluted in 

phosphate buffered saline (PBS) for 15 min each, 60 min in 100% ethanol and a further 24 h in 

fresh 100% ethanol. The tissue segments were then infiltrated in a 37oC oven with mixtures of 

absolute ethanol plus Steedman’s wax (a 9:1 [w/w] mixture of polyethylene glycol [PEG] 400 

distearate and 1-hexadecanol [Steedman, 1960]) made up in the proportions of 2:1 (v/v) 

overnight; 1:1 and 1:2 (v/v), 4 h for each step; followed by two changes of pure wax (30 min 

each) under vacuum. The tissue segments were then placed individually into fresh wax at 37oC 

in plastic moulds and infiltrated overnight under vacuum (in a vacuum desiccator) in order to 

remove the final traces of ethanol from the tissues. Finally the specimens were re-orientated and 

allowed to polymerise at room temperature.   

 

Sections, 20 µm thick were cut using an American Optical 8209 rotary microtome. The sections 

were then carefully placed onto Haupt’s adhesive-coated slides using a paintbrush before being 

subjected to histochemical staining.   

 

2.3.7.1. Protein histochemistry 

 

Protein histochemistry of wax-embedded sections 

 

Protein was identified by staining with eosin dye (BDH Chemicals, England) after James and 

Tas (1984). Sections were dewaxed by placing the slides on a hot tray until the wax was visibly 

melted, before rinsing briefly (c. 20 sec) in xylene. The sections were then brought to water via 

an ethanol series (100, 75, 50, and 25% [v/v], 3 min in each) and stained with 1 g l-1 eosin dye 
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for 5 min at room temperature. The slides were then rinsed in distilled water and differentiated 

(briefly) in 50% (v/v) ethanol, after which dehydration was then completed with the ethanol 

series, and the sections cleared in xylene, mounted in Permount® and viewed with a Nikon 

eclipse 80i light microscope equipped with NIS Elements F Package imaging software. Protein 

was identified by means of its staining bright pink-red. A control was set up where 0.1 g l-1 

protease from Streptomyces griseus Type XIV (Sigma-Aldrich, Germany) prepared in 

phosphate buffer pH 7.2 was applied to the sections for 2 min at room temperature before the 

application of eosin.  

 

 

Protein histochemistry of resin-embedded sections 

 

Before the application of eosin (1 g l-1, as above), 1 µm thick, resin-embedded sections were 

etched using a 6.675% potassium methoxide (in a 2:1 mixture of methanol:propylene oxide 

[Ferey, 1986]) for 30 sec, rinsed briefly (10 sec) in methanol and allowed to air-dry. The air-

dried slides were then placed on a hot tray at about 60oC, where eosin (20 drops per slide) was 

applied for approximately 5 min. The stained sections were then rinsed briefly in running tap 

water, air-dried, mounted in Permount® and viewed with a Nikon eclipse 80i light microscope 

using NIS Elements F Package imaging software. 

 

2.3.7.2. Carbohydrate histochemistry 

 

Carbohydrate histochemistry of wax-embedded sections 

 

Sections, 20 µm thick, were brought to water using the procedures described above, oxidised for 

10 min in a 1% (w/v) solution of periodic acid (Hotchkiss, 1948), and washed in running tap 

water for 5 min. The section-bearing slides were then immersed in a basic fuchsin (Sigma-

Aldrich, Germany) substitute for Schiff’s reagent (Horobin and Kevill-Davies, 1971) in the dark 

for 20 min at room temperature, washed in running tap water for 5 min, dehydrated in ethanol as 

described above, mounted in Permount® and viewed with a Nikon eclipse 80i light microscope 

equipped with NIS Elements F Package imaging software. Carbohydrates were identified by 

their staining maroon. 
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Carbohydrate histochemistry of resin-embedded sections 

 

Sections, 1 µm thick, were used. The sections were first etched as described previously for 

resin-embedded sections, oxidised for 10 min in a 1% (w/v) solution of periodic acid (Hotchkiss, 

1948), washed in running tap water for 5 min, immersed in the basic fuchsin substitute for 

Schiff’s reagent (Horobin and Kevill-Davies, 1971) in the dark for 20 min at room temperature, 

washed in running tap water for 5 min, mounted in Permount® and viewed with a Nikon eclipse 

80i light microscope equipped with NIS Elements F Package imaging software. Carbohydrates 

of resin-embedded sections were identified by their staining light pink. 

 

 

2.3.7.3. Lipid histochemistry 

 

Lipid histochemistry of wax-embedded sections 

 

The method used in this study to visualise lipid histochemically was adapted from the method of 

McManus (1946) for the staining of lipids in paraffin sections using Sudan Black B (Sigma-

Aldrich, Germany). Sections, 20 µm thick, were dewaxed by placing the slides on a hot tray 

until the wax was visibly melted, before rinsing briefly (c. 20 sec) in xylene. The sections were 

then brought to 70% (v/v) ethanol by immersion in 100% and then 70% (v/v) ethanol for 3 min 

each. The sections were stained subsequently for 30 min at room temperature in saturated Sudan 

Black B in 70% ethanol. The sections were then rinsed in 70% ethanol until the excess dye was 

removed, washed briefly in running tap water, mounted in a drop of water and viewed within 24 

h with a Nikon eclipse 80i light microscope equipped with NIS Elements F Package imaging 

software. Lipid was identified by means of its staining black. A control was set up where 

sections were delipidised by immersion in chloroform:methanol (2:1) for an hour at room 

temperature before the application of Sudan Black B.  

 

Lipid histochemistry of resin-embedded sections 

 

Lipid in resin-embedded sections was localised histochemically using the procedures outlined 

by Bronner (1975). Sections, 1 µm thick, were used without being etched as described 

previously for the protein and carbohydrate histochemistry of resin-embedded sections in this 

study. The slides with sections were placed in 70% (v/v) ethanol for 1 min, stained in a freshly 

filtered saturated solution of Sudan Black B at 60oC in an oven for 1 h, rinsed in 70% (v/v) 
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ethanol for 1 min, and washed briefly in running tap water. The sections were then mounted in 

Permount® and viewed with a Nikon eclipse 80i light microscope equipped with NIS Elements 

F Package imaging software. Lipid was identified on account of it staining dark brown-black.  

  

 

 

 

3. RESULTS 

 

3.1. Some aspects of the post-shedding seed behaviour of Encephalartos natalensis 

 

3.1.1. The change in embryo and megagametophyte water content in open-stored seeds  

 

Water contents (WCs) in this chapter are expressed as mean ± standard error (SE), on a dry 

mass basis – i.e. g H2O g-1 dry mass (g g-1). Where the standard error does not accompany the 

mean value of some embryos, it is because only one embryo was found per 10 seeds in batch A, 

at each sampling interval, except 2 months after shedding (MAS).  Many unfertilised, embryo-

less ovules were shed alongside seeds in batch A, and there was no way of telling them apart by 

superficial inspection. Thus, a sample of 10 ‘seeds’ in batch A did not yield a sample of 10 

embryos. Batch B seeds on the other hand, came from strobili that were rigorously hand-

pollinated, giving seed yields in excess of about 80% (results not shown).    

 

The WC of E. natalensis batch A seeds was assessed from seed-shed to 6 MAS (Fig. 3.1).  

Seeds were shed with relatively high embryo (3.33 g g-1) and megagametophyte (1.25 ± 0.16 g 

g-1) WCs (Fig. 3.1). The WC of the embryo declined markedly (P<0.05) during the first 2 

months after seed-shed (from 3.33 to 1.42 ± 0.07 g g-1), with a more gradual decline during the 

period from 2 to 6 MAS (from 1.42 ± 0.07 to 1.13 g g-1). Even though the embryo WC declined 

in the months from seed-shed, it was consistently higher (P<0.05) than that of the 

megagametophyte (Fig. 3.1).   

 

The change in WC of the megagametophyte from seed-shed to 6 MAS did not mirror that of the 

embryo (Fig. 3.1). The decline in megagametophyte WC from seed-shed to 2 MAS was gradual 

(from 1.25 ± 0.16 to 0.74 ± 0.10 g g-1) as opposed to the marked decline in embryo WC. The 

WC of the megagametophyte apparently increased from 2 to 4 MAS; and then decreased from 4 
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to 6 MAS (Fig. 3.1). However, the degree of uncertainty in the mean (as shown by the SE) at 

each sampling point suggested that the apparent fluctuation in megagametophyte WC (Fig. 3.1) 

might be due to a possible sampling error. There was however, an overall gradual decline 

(P<0.05) in megagametophyte WC from seed-shed to 6 MAS (from 1.25 ± 0.16 to 0.80 ± 0.10 g 

g-1).   

 
 
 
 
 
 
 
 
 

 
Figure 3.1: Embryo 

___
♦

___ 
and megagametophyte 

___
■

___
 WCs of E. natalensis batch A 

seeds assessed at shedding (0) and following open storage for 2, 4 and 6 months at 16
o
C.  n 

= 10; bars indicate standard error of the mean (SE). 
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The WC of E. natalensis batch B seeds was assessed from 4 to 18 MAS (Fig. 3.2).   The embryo 

WC appeared to decline gradually from 4 to 18 MAS (from 2.33 ± 0.22 to 1.17 ± 0.10 g g-1). 

There was a comparatively substantial degree of uncertainty in the mean of embryo WC at 4 

MAS, comparatively little uncertainty from 6 to 12 MAS; however there again appeared to be a 

greater degree of uncertainty in the mean embryo WC from 14 to 18 MAS (Fig. 3.2).  Despite 

the apparent gradual decline in embryo WC from 4 to 18 MAS, the WC of the embryo remained 

consistently higher than that of the megagametophyte (Fig. 3.2).  

 

The megagametophyte WC of E. natalensis batch B seeds declined slowly (compared with the 

embryo WC) from 4 to 18 MAS (from 0.79 ± 0.10 to 0.50 ± 0.01 g g-1 [Fig. 3.2]), although this 

decline was significant (P<0.05). There was relatively little uncertainty in the mean of 

megagametophyte WCs from 4 to 18 MAS, which suggested that the mean values were reliable 

estimates of the actual population from which the sample was taken (Fig. 3.2).  

 

3.1.2. Change in fresh and dry mass of the embryo and megagametophyte in open-stored 

seeds  

 

The change in fresh and dry mass of the megagametophyte tissue of open-stored E. natalensis 

batch A seeds from seed-shed to 6 MAS is shown in Figure 3.3a. Seeds were shed when the 

megagametophyte had a fresh mass of 4.74 ± 0.30 g and a dry mass of 2.28 ± 0.31 g. The fresh 

mass of the megagametophyte remained essentially constant over the period from seed-shed to 6 

MAS (from 4.74 ± 0.30 to 4.33 ± 0.28 g [P>0.05]), while the uncertainty of the mean at each 

sampling interval suggested that the slight fluctuation between neighbouring points was due to 

possible sampling error (Fig. 3.3a).  Similar fluctuation between neighbouring sampling points 

was seen in the dry mass of the megagametophyte (Fig. 3.3a). However, the dry mass of the 

megagametophyte did not seem to change significantly (P>0.05) from seed-shed to 6 MAS.    
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The change in fresh and dry mass of embryos of E. natalensis batch A seeds, from seed-shed to 

6 MAS, is shown in Figure 3.3b. There was an overall, significant increase (P<0.05) in both the 

fresh and dry mass of the embryo from seed-shed to 6 MAS. The increase in the dry mass of the 

embryo (80-fold) from seed-shed to 6 MAS, proved to be greater than that of the fresh mass 

(39-fold). At seed-shed, the fresh mass of the embryo was 0.0036 g while the dry mass was 

0.00083 g (Fig. 3.3b), the mass of the embryo being much less than that of the 

megagametophyte. The embryo fresh mass appeared to increase considerably from seed-shed to 

2 MAS (from 0.0036 to 0.10 ± 0.0069 g), and notwithstanding an apparent decrease from  

 
 
 
 
 
 
 
 

 
Figure 3.2: Embryo 

___
♦

___ 
and megagametophyte 

___
■

___
 WCs of E. natalensis batch B 

seeds assessed from 4 MAS and following open storage for 6, 8, 10, 12, 14, 16 and 18 

months at 16
o
C.  n = 20; bars indicate SE. 
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2 to 4 MAS (from 0.10 ± 0.0069 to 0.064 g), increased considerably from 4 to 6 MAS (from 

0.064 to 0.14 g). The single embryo found in the batch of 10 seeds sampled at 4 MAS was 

conspicuously under-developed compared with those at 2 and 6 MAS, which would account for 

the apparent, but considerable decrease in embryo fresh mass from 2 to 4 MAS (Fig. 3.3b).  

 

The change in dry mass of the embryo showed a similar trend to that of the fresh mass (Fig. 

3.3b). However, the differences in dry mass observed between neighbouring sampling points 

were comparatively less than that seen in fresh mass.  The embryo dry mass appeared to 

increase considerably from seed-shed to 2 MAS (from 0.00083 to 0.041 ± 0.0030 g); decrease 

somewhat from 2 to 4 MAS (from 0.041 ± 0.0030 to 0.028 g); and then increase considerably 

from 4 to 6 MAS (from 0.028 to 0.066 g) [Fig. 3.3b]. Despite the apparent fluctuation in the dry 

mass of the embryo from seed-shed to 6 MAS, there was an overall increase in dry mass from 

0.00083 to 0.066 g (Fig. 3.3b).    

 

The change in the fresh and dry mass of the megagametophyte of E. natalensis batch B seeds, 

from 4 to 18 MAS, is shown in Figure 3.4a. At 4 MAS, the fresh mass of the megagametophyte 

was 3.49 ± 0.11 g; while the dry mass was 2.00 ± 0.12 g. The fresh mass of the 

megagametophyte appeared to decline gradually over the period from 4 to 18 MAS (from 3.49 ± 

0.11 to 2.80 ± 0.08 g [P<0.05]), with a small and insignificant (P>0.05) decline in the dry mass 

of the megagametophyte over the same period (from 2.00 ± 0.12 to 1.86 ± 0.049 g) [Fig. 3.4a].        

 

Figure 3.4b depicts the change in fresh and dry mass of the embryo of E. natalensis batch B 

seeds, over the period from 4 to 18 MAS. At 4 MAS, the embryo had a fresh mass of 0.023 ± 

0.016 g and a dry mass of 0.0065 ± 0.0045 g. Over the 14-month period from 4 to 18 MAS, the 

fresh mass of the embryo increased significantly (P<0.05) by a factor of 5.7, from 0.023 ± 0.016 

to 0.13 ± 0.0093 g, while the dry mass of the embryo increased almost 10-fold, from 0.0065 ± 

0.0045 to 0.062 ± 0.0069 g (P<0.05). From Figure 3.4b, there was an apparently greater 

uncertainty in the mean (based on the size of the SE bars) at each sampling point of the embryo 

fresh mass relative to the dry mass; however, when SE was calculated as a percentage of the 

mean, the uncertainty of the mean of fresh and dry mass was similar (results not shown).  

 

When the results shown in Figs. 3.3a,b and Figs. 3.4a,b are compared with the WC data (Figs. 

3.1 and 3.2), it is evident that the decrease [P<0.05] in WC of the embryo in the months 

following seed-shed was not a consequence of decreasing embryo FM (i.e. water loss). This was 

evidenced by the overall increase in embryo FM [P<0.05] in the months after seed-shed for both 
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seed batches (Figs. 3.3b and 3.4b) [P<0.05]. The embryo WC of seed batches A and B declined 

in the months after seed-shed, probably due to the increase in DM [P<0.05] during the post 

seed-shed growth of the embryo. The increase in embryo fresh and dry mass would most likely 

come at the expense of the megagametophyte tissue; however, the DM of the megagametophyte 

did not change significantly [P>0.05] during the storage periods of either seed batch (Figs. 3.3a 

and 3.4a). This is probably due to the marked size difference of the embryo compared with the 

megagametophyte tissue, such that a significant change occurring in the embryo would not 

necessarily mean a similar significant change in the much larger megagametophyte tissue. 

Similarly, the observed significant decrease [P<0.05] in the megagametophyte WC in the 

months after seed-shed is most probably due to a loss of water to the surrounding environment, 

and, to a lesser extent, to the growing embryo.   

 

Overall, when batches A and B are compared, the WC, FM and DM changes are similar. 

However, the main differences lie in the WC, FM and DM at collection and the initial steep 

decline in WC of the embryo of seed batch A (Fig. 3.1). These main distinctions would largely 

be due to the difference in developmental stage at collection (0 and 4 MAS, respectively), as 

well as differences in the initial storage environments of the seed batches. Seed batch A was 

taken to the lab shortly after seed-shed and placed in open storage at 16oC, while seed batch B 

was obtained only 4 MAS  -  before which the seeds had been left outside with an ambient mean 

diurnal (summer) temperature of approximately 20 to 25oC.  
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Figure 3.3: a) Fresh mass (FM) 
___

■
___ 

and dry mass (DM) 
___

□
___

 of the megagametophyte 

of E. natalensis batch A seeds at seed-shed, and following open storage for 2, 4 and 6 

months at 16
o
C; b) FM  - - ♦ - -  and DM - - ◊ - - of the embryo of E. natalensis batch A 

seeds at seed-shed and following open storage for 2, 4, and 6 months at 16
o
C; n = 10; bars 

indicate SE. 

 

a 

b 
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3.1.3 Macroscopic observations on embryo development in the months after seed-shed 

 

The seeds of E. natalensis were found to be shed with an incompletely developed embryo that 

consisted primarily of the coiled, elongated suspensor bearing a rudimentary sporophyte at its 

tip (Fig. 3.5a).  The embryos continued to develop after seed-shed (Figs. 3.5b–d), reaching a 

germinable size (≥ 15 mm) only 4 to 6 MAS (Figs. 3.5c–d). The suspensor became less 

prominent with embryo development, being compressed at the micropylar end of the seed from 

4 MAS (Fig. 3.5c,d), while the coleorhiza tissue of the embryo developed a red-brown 

pigmentation at about 4 MAS (as shown in Fig. 3.5c).   

 

3.1.4. Vigour and viability of seeds at various times during open storage 

 

Since the vigour and viability of 4-month stored seeds was very similar for both batches (A and 

B), the data were combined to give a single graph (Fig. 3.6). At shedding, no germination was 

observed when the seeds (i.e. fertilised ovules) of E. natalensis batch A were set out to 

germinate (Fig. 3.6). Both germination rate and totality increased with increasing duration in 

open storage, from 2 to 6 MAS. At 2 MAS, c. 50% of the seeds were capable of germinating 

within 30 d after removal of the sclerotesta. Seeds stored for 2 months before being set out to 

germinate also took relatively long to initiate germination (c. 24 d), whereas seeds stored for 

longer periods initiated germination within 6 to 12 d (Fig. 3.6). Four-month stored seeds 

initiated germination earlier and displayed a more rapid germination rate and improved totality 

(c. 90%). All seeds (i.e. 100%) stored for 6 months germinated rapidly, while seeds stored for 8 

to 16 months showed a slight decline in viability. Germination totality (viability) of 8 to 16 

month stored seeds was found to be in the range of 60 to 80%, while that of 18 month stored 

seeds was reduced to 25% (Fig. 3.6).      

  

3.1.5. The change in embryo and megagametophyte WC of seeds placed in hydrated 

storage 6 months after seed-shed  

 

Figure 3.7 compares the WC of embryos and megagametophytes of E. natalensis batch B seeds 

that were placed in hydrated storage (after 6 months in open storage) with seeds of the same 

batch that were left in open storage.  The embryo WC was found to decline from 6 to 8 MAS in 

both open- and hydrated-stored seeds. The decline in embryo WC from 6 to 8 MAS in seeds 

stored under hydrated conditions (from 2.05 ± 0.038 to 1.75 ± 0.14 g g-1) was essentially similar 

(P>0.05) to that of seeds kept in open-storage (from 2.05 ± 0.038 to 1.73 ± 0.057 g g-1)  
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Figure 3.4: a) Fresh mass (FM) 
___

■
___ 

and dry mass (DM) 
___

□
___

 of the megagametophyte 

of E. natalensis batch B seeds following open storage for 4, 6, 8, 10, 12, 14, 16 and 18 

months at 16
o
C; b) FM  - - ♦ - -  and DM - - ◊ - - of the embryo of E. natalensis batch B 

seeds following open storage for 4, 6, 8, 10, 12, 14, 16 and 18 months at 16
o
C; n = 20; bars 

indicate SE. 

 
 
 

 

b 

a 
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Figure 3.5: Longitudinally bisected E. natalensis seeds at various times after seed-shed: a) 

at shedding, showing tightly coiled suspensor; b) at 2 MAS; c) at 4 MAS; and d) at 6 MAS, 

showing embryo of germinable size. Meg = megagametophyte; Emb = embryo; Sus = 

suspensor. 
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(Fig. 3.7). There was however, much greater uncertainty in the mean embryo WC at the 8th 

month sampling interval of hydrated-stored seeds compared with open-stored seeds (Fig. 3.7). 

While the embryo WC of open-stored seeds continued to decline from 8 to 10 MAS (from 1.73 

± 0.057 to 1.70 ± 0.053 g g-1), that of seeds placed in hydrated storage apparently increased 

(from 1.75 ± 0.14 to 1.85 ± 0.11 g g-1). However, the increase in embryo WC of seeds placed in 

hydrated storage proved to be insignificant (P>0.05) when compared with that of open-stored 

seeds (Fig. 3. 7).  

 

While the WC of the megagametophyte remained similar (P>0.05) in open storage from 6 to 8 

MAS (0.60 ± 0.005 and 0.61 ± 0.057 g g-1 respectively), that of seeds placed in hydrated storage 

increased (from 0.60 ± 0.005 to 0.71 ± 0.0052 g g-1 [P<0.05]). The megagametophyte WC of 

seeds 10 MAS in hydrated storage was also higher than that of open-stored seeds; however, it 

was not significantly different (P>0.05) from that of open-stored seeds (Fig. 3.7). 

 

3.1.6. Change in fresh and dry mass of the embryo and megagametophyte of seeds placed 

in hydrated storage 6 months after seed-shed 

 

Figure 3.8a shows the megagametophyte fresh and dry mass of E. natalensis batch B seeds 

placed in hydrated storage after 6 months of open-storage, relative to those seeds of the same 

batch that were left in open storage. While there was a gradual decrease in both fresh and dry 

mass of the megagametophyte when seeds were left in open storage, there was a significant 

increase (P<0.05) in both the fresh and dry mass of the megagametophyte 10 MAS of seeds 

placed in hydrated storage (Fig. 3.8a).  

 

The fresh mass of the megagametophyte of seeds placed in hydrated storage increased from 

3.54 ± 0.069 g at 6 MAS to 4.84 ± 0.11 g at 8 MAS and 4.94 ± 0.15 g at 10 MAS. In 

comparison, the fresh mass of the megagametophyte of open-stored seeds decreased from 3.54 

± 0.069 g at 6 MAS to 3.21 ± 0.11 g at 8 MAS and 3.18 ± 0.13 g at 10 MAS (Fig. 3.8a). The SE 

bars showed that there was little uncertainty in the mean fresh mass of the megagametophyte at 

sampling points 6, 8 and 10 months for both open and hydrated storage (Fig. 3.8a), which 

indicates that the mean of the sample is a reliable estimate of the mean of the actual population 

from which the sample was taken.    
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Figure 3.6: Germination of E. natalensis seeds assessed at shedding (0 months) and 

following storage for 2, 4, 6, 8, 10, 12, 14, 16 and 18 months. 
___
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Figure 3.7: Embryo 

___
◊

___
 and megagametophyte 

___
□

___ 
WC of E. natalensis batch B seeds 

placed in hydrated storage after open storage for 6 months (timing indicated by arrow), 

relative to embryo - - ♦ - - and megagametophyte 
 _   _  

■  
_   _  

WC of seeds kept in open 

storage.  n = 10; bars indicate SE. 
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Similarly, while the megagametophyte dry mass of open-stored seeds appeared to decrease from 

4 to 10 MAS, the dry mass of the megagametophyte of seeds placed in hydrated storage 

increased from 2.20 ± 0.041 g at 6 MAS to 2.84 ± 0.064 g at 8 MAS, with a further slight 

increase to 2.85 ± 0.081 g at 10 MAS (Fig. 3.8a). The SE bars showed that there was little 

uncertainty in the mean dry mass of the megagametophyte at sampling points 6, 8 and 10 

months for both open and hydrated storage, which indicates that the mean of the sample is a 

reliable estimate of the mean of the actual population from which the sample was taken (Fig. 

3.8a).    

 
Figure 3.8b shows the embryo fresh and dry mass of E. natalensis batch B seeds that were 

placed in hydrated storage 6 MAS, relative to those seeds of the same batch that were left in 

open storage. While there was a gradual increase in both fresh and dry mass of the embryo of 

seeds left in open storage during the period from 4 to 10 MAS, there was a non-significant 

increase (P>0.05) in both these parameters of the embryo of seeds placed in hydrated storage 6 

MAS (Fig. 3.8b). 

 

The fresh mass of the embryo of seeds placed in hydrated storage increased from 0.07 ± 0.010 g 

at 6 MAS to 0.11 ± 0.015 g at 8 MAS and 0.15 ± 0.03 g at 10 MAS. In comparison, the fresh 

mass of the embryo of open-stored seeds increased only slightly from 0.07 ± 0.01 g at 6 MAS to 

0.08 ± 0.0073 g at 8 MAS, with a further slight increase to 0.09 ± 0.011 g at 10 MAS (Fig. 3.8b). 

The SE bars showed that there was some uncertainty in the mean fresh mass of the embryo at 

sampling points 6, 8 and 10 months for seeds placed in hydrated storage 6 months after seed-

shed (Fig. 3.8b), which is possibly due to sampling error. 

 

The dry mass of the embryo of seeds placed in hydrated storage also appeared to increase 

compared with that of the open-stored seeds (Fig. 3.8b).   While the embryo dry mass of open-

stored seeds appeared to increase only slightly from 6 to 10 MAS, there was a more marked 

increase in the dry mass of the embryo of seeds placed in hydrated storage 6 MAS. The dry 

mass of the embryo of seeds placed in hydrated storage appeared to increase from 0.02 ± 0.0034 

g at 6 MAS to 0.04 ± 0.0063 g at 8 MAS, with a further increase to 0.05 ± 0.011 g at 10 MAS 

(Fig. 3.8b). There was also some uncertainty in the mean dry mass of the embryo at sampling 

points 6, 8 and 10 months for seeds kept in hydrated storage (Fig. 3.8b), which is due to 

possible sampling error.    
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Figure 3.8: a) Fresh mass (FM) 
___

◊
___ 

and dry mass (DM) 
___

□
___

 of the megagametophyte 

of E. natalensis batch B seeds placed in hydrated storage after open storage for 6 months 

(timing indicated by arrow), relative to the FM - - ♦ - - and DM - - ■ - - of the 

megagametophyte of seeds left in open storage; b) FM 
___

◊
___ 

and DM 
___

□
___

 of the embryo 

of E. natalensis batch B seeds placed in hydrated storage after open storage for 6 months, 

relative to the FM - - ♦ - - and DM - - ■ - - of the embryo of seeds left in open storage. n = 

10; bars indicate SE. 

 

b 

a 



 40 

None of the seeds placed in hydrated storage germinated when set out on water agar after 

sclerotesta removal, probably as the outcome of fungal contamination (Fig. 3.9a). This occurred 

despite the surface application of the fungicide, Benlate®. Nevertheless, occasional seeds had 

germinated during the hydrated storage period (Fig. 3.9b) despite the physical barrier imposed 

by the enclosing sclerotesta. Seeds dusted with Benlate® and placed into open storage in loosely 

closed paper bags had a longer life-span than those placed in hydrated storage, which is 

attributed to curtailed fungal proliferation under lower relative humidity conditions. However, 

seeds stored in open storage were ultimately overcome by fungi, but only around 18 MAS. 

Unfortunately in the present study, no seeds were placed in hydrated storage in disinfected 

containers immediately upon shedding, and following rigorous decontamination. Hence, the 

potential of responses and viability retention of the seeds under the strictly controlled hydrated 

storage conditions generally used for recalcitrant seeds (Berjak and Pammenter, 2004) is not 

known. 

 

3.2. Some aspects of E. natalensis megagametophyte development  

 

The micrographs presented in this section were chosen (after multiple biological and technical 

repeats) as the best representatives of the present investigation.   

 

3.2.1. Structure and ultrastructure of the earliest stage in megagametophyte development 

observed in this study  

 

The earliest developmental stage of the megagametophyte identified in this study was that of the 

coenocyte, which was found to be surrounded by nucellar tissue (Fig. 3.10a). The cells of the 

nucellus near the coenocyte stained more intensely with toluidine blue compared with the rest of 

the nucellus, while the cells of the nucellus immediately adjacent to the coenocytic 

megagametophyte appeared to be degenerated (Fig. 3.10a). The original membrane of the 

megaspore appeared relatively undulating, and stained dark blue-purple with toluidine blue (Fig. 

3.10a,b), and appeared to be made up of honeycomb like chambers when viewed at the 

transmission electron microscope (TEM) level (Fig. 3.10c).  

 

The coenocyte was characterised by a peripheral layer of cytomatrical material containing 

numerous free nuclei (Fig. 3.10b) and a prominent, large central vacuole (Fig. 3.10a,b). The 

peripheral layer of cytomatrix contained numerous small vesicles or vacuoles and what 
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appeared to be undifferentiated mitochondria, while Golgi bodies, endoplamic reticulum (ER) 

and cell walls were not seen (Fig. 3.10c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: Problems associated with the storage of E. natalensis seeds under hydrated 

conditions: a) contamination of seeds by fungi; and (b) germination of seeds (as indicated 

by arrows) after 6 months in hydrated storage. 
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Figure 3.10: The earliest developmental stage of the megagametophyte (the coenocytic 

stage) is illustrated. a) A cross section through the coenocyte showing the megaspore 

membrane (MM) and surrounding nucellus (�uc); section stained with toluidine blue, bar 

= 100 µm; b) a cross section of the coenocyte showing free nuclei (�) in a peripheral layer 

of cytomatrical material, and a large central vacuole (CV); section stained with toluidine 

blue, bar = 50 µm; and (c) a transmission electron micrograph of the peripheral 

cytomatrix showing a nucleus (�), numerous small vesicles or vacuoles (V) and what 

appear to be undifferentiated mitochondria (uM), while the megaspore membrane (MM) 

appeared to have numerous honeycomb-like chambers; sections stained with lead citrate 

and uranyl acetate, bar = 20 µm. 
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3.2.2. Structure and ultrastructure of the megagametophyte cells 1 week after the 

coenycyte was observed  

 

It was observed in this study that it took the megagametophyte as little as 1 to 2 weeks to 

proceed from the coenocytic to the fully cellularised stage (Fig. 3.11a,b). In a cross section 

midway between the centre and one of either pole of the megagametophyte, the cells appeared 

parenchymatous, having a relatively high cell:nucleus ratio. However, cross sections through 

the central region of the megagametophyte revealed relatively small cells near the periphery, 

and extraordinarily long cells near the centre of the megagametophyte (Fig. 3.11c), in radiating 

ranks toward the periphery of the megagametophyte (Fig. 3.11c). Such cells at an equivalent 

stage of development in other gymnosperm species, have been described as being alveolus-like 

(Sokolowa, 1890). Few nuclei were seen in the central and alveolus-like cells at this stage of 

megagametophyte development compared with cells of the outer nucellar tissue, the cells 

comprising the interior of the megagametophyte appearing clear of internal content at the light 

microscope level (Fig. 3.11).    

 

At the TEM level, it was found that the central and alveolus-like megagametophyte cells were 

not highly vacuolated as seen in the coenocytic stage, but dominated by an apparently 

homogeneous cytomatrical material: Figure 3.12 shows that various organelles are embedded in 

this otherwise homogeneous cytomatrix. The thin cell walls that appeared fibrous were flanked 

by discontinuous membranes and relatively short profiles of ER (Fig. 3.12b) with numerous 

vesicles in close apposition (Fig. 3.12).  

 

Two main types of vesicles were found: larger ER-derived vesicles some still showing 

associated polysomes, and fibrous contents; and small, smooth, Golgi-derived vesicles, with 

darker, homogeneous contents (Fig. 3.12). It appeared as though both the ER-derived vesicles 

and the small Golgi-derived vesicles were being incorporated into the developing cell 

membrane with a possible additional role in cell wall formation (Fig. 3.12c). However, there 

was a relative scarcity of Golgi bodies at this developmental stage. 
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Figure 3.11: Light microscopy images of the megagametophyte approximately 1 week 

after the coenocytic stage was observed. a) A cross section showing the megagametophyte 

as completely cellularised; section stained with toluidine blue, bar = 100 µm; b) a cross 

section showing the parenchymateous nature of the cells; section stained with toluidine 

blue, bar = 50 µm; and (c) a cross section through the middle of the megagametophyte 

showing alveolus-like cells (Al); section stained with PAS reagent, bar = 100 µm.   
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Figure 3.12: The ultrastructure of alveolus-like megagametophyte cells approximately 1 

week after the coenocytic stage was observed showing (a) thin primary cell walls (CW) 

flanked by discontinuous membranes (Mem) and cell membrane (CM), ER-derived 

vesicles (ERV) and associated Golgi-derived vesicles (GV), within the homogeneous matrix; 

bar = 20 µm; b) the walls flanked by short profiles of ER in some places, and 

discontinuous segments of membrane (Mem); bar = 10 µm; c) Golgi- (GV) and ER-

derived (ERV) vesicles, apparently fusing to form the cell membrane and possibly 

contributing material to the cell wall; bar = 5 µm. Sections were post-stained with ZIO. 
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As a caveat, it cannot be precluded at this stage that the homogeneously appearing cytomatrix, 

overall lack of Golgi bodies and wavy, discontinuous membranes may be artefacts of improper 

fixation.   

 

3.2.2.1. Enzyme-gold localisation of pectin and xylan during early cell wall development 

 

When enzyme-gold localisation for pectin was undertaken, labelling was found associated with 

the thin primary cell walls (Fig. 3.13). There was no labelling for pectin in the small, Golgi-

derived vesicles (Fig. 3.13) nor did the Golgi bodies label for pectin (Fig. 3.13b). However, 

labelling was found in some large, ER-derived vesicles (Fig. 3.13b) and a relatively high 

concentration of label was found in some ill-defined, diffuse structures within the cytomatrix 

(Fig. 3.13c).  

 

A similar result was obtained when enzyme-gold localisation of the primary cell wall 

component, xylan, was done (Fig. 3.14). Label for xylan was not found in Golgi bodies nor in 

the Golgi-derived vesicles (Fig. 3.14b), but it was present in the cell wall (Fig. 3.14a), some ER-

derived vesicles (Fig. 3.14b) and in the undefined structures within the cytomatrix (Fig. 3.14c). 

 

While labelling for pectin and xylan was found in the above-mentioned organelles, labelling 

was not observed in the controls to suggest any non-specific binding (results not shown). 

 

3.2.2.2. Ultrastructure of the cytomatrix  

 

When the apparently homogeneous cytomatrix of the megagametophyte was examined more 

closely with the TEM, at high magnification and using zinc iodide-osmium tetroxide as a post 

stain, numerous faintly appearing vesicles could be discerned (Fig. 3.15a). A profusion of what 

are presumably similar vesicles was found when the surfaces of resin blocks containing material 

of this developmental stage were etched using potassium methoxide and viewed with the 

scanning electron microscope (SEM) [Fig. 3.15b]. It can be seen that the vesicles in Figure 

3.15b are not artefacts, as the resin-only control did not have any vesicle-like structures (Fig. 

3.15c).     
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Figure 3.13: Enzyme-gold localisation for pectin approximately 1 week after the 

coenocytic stage was observed. �ote (a) label associated with the thin primary cell wall 

(CW) but not in the small Golgi-derived vesicles (GV); bar = 5 µm; b) label in some ER-

derived vesicles (ERV) and not in the Golgi body (G); bar = 5 µm; and (c) label in the 

substructure of the cytomatrix (arrows); bar = 5 µm. Gold particle size = 20 nm. 
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Figure 3.14: Enzyme-gold localisation of xylan approximately 1 week after the coenocytic 

stage was observed. �ote that there is (a) label in the primary cell wall (CW); bar = 5 µm; 

b) label in some ER-derived vesicles (ERV) but not in the Golgi body (G) or Golgi-derived 

vesicles (GV); bar = 5 µm; and (c) label in the substructure of the matrix (arrows); bar = 5 

µm. Gold particle size = 20 nm. 
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Figure 3.15: Some substructure resolved in the cytomatrix of megagametophyte cells 

approximately 1 week after the coenoctic stage was observed: a) A transmission electron 

micrograph of a section post-stained with ZIO showing the faintly visible apparently 

membrane-bounded vesicles (MVs); bar = 5 µm; b) a scanning electron micrograph of the 

smoothed surface of a resin block face, etched using potassium methoxide. �ote the 

profusion of vesicles; bar = 1 µm. c) �o vesicles could be discerned when resin-only control 

block faces were viewed with the scanning electron microscope; bar = 1 µm. 
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Immunocytochemistry for microtubules utilising gold-tagged anti-acetylated-tubulin, was 

undertaken to check for the presence of these tubulin-based structures in the cytomatrix of the 

megagametophyte cells. A relatively uniform distribution of gold-tagged anti-acetylated-tubulin 

was found throughout the cytomatrix (Fig. 3.16), but absent from vesicles (Fig. 3.16a,b), the 

mitochondria and Golgi bodies (Fig. 3.16b), and the nucleus (Fig. 3.16c), suggested that the 

cytomatrix is permeated by a network of microtubules.  

 

3.2.3. Structure and ultrastructure of the megagametophyte cells from 1 to 2 months after 

the coenocytic stage 

 

Approximately 1 month after the coenocytic stage was observed, faint cellular detail was 

observable at the light microscope level (Fig. 3.17a), which was not evident at the previous 

developmental stage, i.e. approximately 1 week after the coenocytic stage. At the TEM level, 

more consolidated cell walls had formed, relative to the earlier developmental stage, and the cell 

membrane was now continuous (Fig. 3.17a). There were more Golgi bodies present than in the 

newly cellularised condition (Fig. 3.17a), and organelles generally were present throughout the 

cell, not just peripherally as seen 1 week after the coenocytic stage. Long profiles of ER were 

particularly noticeable at this later stage, producing vesicles of two kinds (Fig. 3.17b,c). One 

type of ER-derived vesicle was initially double-membrane-bound (Fig. 3.17b), while the other 

was single-membrane-bound, apparently produced by terminal vesiculation of the ER (Fig. 

3.17c). The cytomatrix was now also interspersed with a faintly-staining, granular material that 

was not seen in the previous developmental stage (Fig. 3.17c). 

 

Two months after the coenocyte was observed, the interior of megagametophyte cells appeared 

denser at the light microscope level than at the previous stages examined, with many starch-

containing amyloplasts now evident (Fig. 3.18a). At the TEM level, the cytomatrix appeared 

more granular than it did previously (Fig. 3.18b), probably as the result of protein deposition. 

Considerable ER proliferation was evident near the cell periphery, with many cisternae showing 

localised luminal dilation (Fig. 3.18c). 
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Figure 3.16: Immunocytochemistry for microtubules using gold-tagged anti-

acetylated-tubulin. Megagametophyte cells 1 week after the coenocyte showing (a) 

labelling in the cytomatrix but not in vesicles (ERV); arrow indicating two gold 

particles; bar = 5 µm; b) labelling in the cytomatrix but not in the mitochondria 

(M); bar = 5 µm; and (c) labelling in the cytomatrix but not in the nucleus (�); bar 

= 5 µm. Gold particle size = 10 nm. 
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Figure 3.17: Cellular structure and ultrastructure of the megagametophyte 1 month after 

the coenocyte was observed showing (a) faintly appearing structure throughout the 

cytomatrix, not just peripherally as observed in the previous stage, while the nucleus (�) 

was particularly prominent; section stained with toluidine blue, bar = 10 µm; b) 

ultrastructure of the cytomatrix showing the thicker cell wall (CW) than in the newly 

cellularised megagametophyte (cf. Figs 3.12 and 3.13), numerous Golgi bodies (G), 

mitochondria (M), relatively long profiles of ER and one of the numerous double-

membrane-bound ER-derived vesicles (ERV1) observed at this stage; bar = 10 µm; c) an 

ER cisterna producing single-membrane-bound vesicles (ERV2) by terminal vesiculation 

at both ends. �ote that the cytomatrix was now characterised by a faintly-contrasted, 

granular material; bar = 10 µm. Sections shown in (b) and (c) post-stained with lead 

citrate and uranyl acetate.     
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Figure 3.18: Cellular structure and ultrastructure of the megagametophyte 2 months after 

the coenocyte was observed showing (a) at the light microscope level, the cell interior 

appearing more dense than it did 1 month prior to this stage, with amyloplasts (Am) 

frequently evident; section stained with toluidine blue, bar = 10 µm; b) some regions of the 

cytomatrix densely packed with a granular material which was tentatively identified (and 

later confirmed) as protein (Pb); bar = 20 µm; and c) ultrastructural detail showing 

regional proliferation of ER in the peripheral regions of neighbouring cells. Many of the 

ER cisternae showed localised dilation (arrows), bar = 10 µm. Sections in (b) and (c) post-

stained with lead citrate and uranyl acetate. 
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3.2.3.1. Protein histochemistry 

 

Using mature megagametophyte specimens, the dense, granular material in the cytomatrix was 

positively identified as protein on account of its positive reaction with eosin (James and Tas, 

1984) in sections prepared by wax embedding (Fig. 3.19a), and dark pink in resin-embedded 

sections (Fig. 3.19b) that were etched prior to the application of eosin dye. While protein bodies 

stained with eosin, the carbohydrate-containing amyloplasts were contrasted, as they did not 

stain. When the protein in wax-embedded sections was first digested using protease before 

application of eosin, no, or very little staining of protein was observed (Fig. 3.19c). From Figure 

3.19b, it is evident that there are at least two types of protein bodies formed in the 

megagametophyte, based on their physical appearance. One type appeared densely packed, quite 

possibly ER distended with accumulated protein, while the other type appeared less dense or 

interspersed with clear regions. However, apparent continuity could be seen between some of 

the regions of dense and less dense protein deposition (arrows, Fig. 3.19b). This possibly 

indicates localised accumulation of different types of protein within discrete regions of ER 

cisternae (Fig. 3.18c), or different stages in the deposition process.    

 

3.2.3.2. Carbohydrate histochemistry 

 

Carbohydrate histochemistry on mature megagametophyte tissue using Periodic acid-Schiff 

(PAS) reagent resulted in only the starch-containing amyloplasts staining in wax-embedded 

sections (Fig. 3.20a), and resin-embedded sections (Fig. 3.20b) that were etched prior to the 

application of PAS reagent. The granular material previously identified as protein did not stain 

with PAS reagent (Fig. 3.20b).  When the non-stained section in Figure 3.20c is compared with 

Figure 3.20b it can be seen that only the amyloplasts stained for carbohydrates.      

 

 

 

 

 

 

 

 

 

 

 



 64 

 

 

 

 

 

 

 

Figure 3.19: Protein histochemistry, using eosin, of the mature megagametophyte showing 

(a) protein staining bright red in a 20 µm thick (originally wax-embedded) section; bar = 

100 µm; b) protein staining as various intensities of pink in a 1 µm thick resin-embedded 

section. �ote the apparent regions of continuity (arrows) between protein accumulations 

showing different staining intensity or disposition; bar = 50 µm; and (c) no, or very little, 

protein reaction with eosin in a 1 µm thick, control, resin-embedded section where protein 

was digested using protease before application of the stain; bar = 100 µm.    
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Figure 3.20: Carbohydrate histochemistry, using PAS reagent, of the mature 

megagametophyte showing (a) amyloplasts staining maroon in a 20 µm thick (originally 

wax-embedded) section; bar = 50 µm; b) amyloplasts staining pale pink in a 1 µm thick 

resin-embedded section; bar = 50 µm; and (c) a 1 µm thick, control, resin-embedded 

section showing the original colour of the material before application of the stain. �ote 

that the amyloplasts stained light pink only after application of the stain; bar = 50 µm.     
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3.2.3.3. Lipid histochemistry 

 

The results obtained for the histochemical localisation of lipid in the mature megagametophyte 

of E. natalensis, using Sudan Black B, are shown in Figure 3.21. When a resin-embedded 

section was stained for lipid, the peripheral cell layer of the megagametophyte showed 

substantial lipid deposits, compared with other cells of the body of the megagametophyte, where 

only discrete, limited lipid content was indicated (Fig. 3.21a). The amyloplasts and nuclei did 

not stain. When previously wax-embedded sections were treated with the Sudan stain, numerous, 

relatively small, discrete lipid bodies were seen scattered throughout the cells of the 

megagametophyte (Fig. 3.21b). In a control treatment, where sections were first delipidised 

using chloroform:methanol (2:1) before application of the Sudan stain, very few locations 

staining with Sudan Black B were seen (Fig. 3.21c).   

 

3.2.4. Structure and ultrastructure of the megagametophyte cells from 3 months after the 

coenocyte was observed to the time of seed-shed 

 

Figure 3.22 shows an increased quantity of starch as evident from the development of the 

amyloplasts in the cytomatrix of megagametophyte cells 3 months after the coenocyte was 

observed compared with the situation a month previously (cf Fig. 3.18a). Large protein bodies 

and amyloplasts persisted in the cytomatrix (Fig. 3.22b), while lipid bodies were still being 

produced by relatively long profiles of ER (Fig. 3.22c). 

 

Four months after the coenocyte was observed, there was a further apparent increase in starch 

accumulation within the amyloplasts (Fig. 3.23a), while the relatively large protein bodies, lipid 

bodies and various organelles had not changed qualitatively between the 3rd and 4th month of 

megagametophyte development (Fig. 3.23b). Mitochondria were not frequent: however, the 

ultrastructure of those mitochondria that were observed, characterised by dense matrices and 

well-developed cristae (Fig. 3.23c), suggested intense, if localised, metabolic potential. 

 

Six months after the coenocyte was observed (Fig. 3.24), the only notable difference 

was an increase in the amount of amyloplast starch in the cells (Fig. 3.24a). The 

amyloplasts and large protein bodies dominated the cytomatrix (Fig. 3.24b), while long 

profiles of ER and occasional mitochondria still remained (Fig. 3.24c). 
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Figure 3.21: Lipid histochemistry, using Sudan Black B, of the mature megagametophyte 

showing (a) the peripheral cell layer of the megamatophyte staining dark brown-black 

with the Sudan stain in a 1 µm thick resin-embedded section with speckles of similar 

staining (arrows) in the otherwise homogeneous regions of underlying cells; bar = 100 µm; 

b) discrete, small lipid bodies staining black/grey in a 20 µm thick (originally wax-

embedded) section; bar = 100 µm; inset showing lipid bodies at higher magnification; bar 

= 50 µm; and (c) a 20 µm thick, control, wax-embedded section where very few lipid 

bodies were seen stained after delipidisation using chloroform:methanol (2:1); bar = 100 

µm.     
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Figure 3.22: Cellular structure and ultrastructure of the megagametophyte 3 months after 

the coenocyte was observed. �ote that (a) relatively more starch had accumulated in the 

amyloplasts (Am) than 1 month earlier; section stained with toluidine blue, bar = 10 µm; b) 

ultrastructure of the cells with relatively large protein bodies (Pb) and amyloplasts (Am); 

bar = 50 µm; c) discrete, small lipid bodies (L) that were apparently being produced by 

relatively long profiles of ER; bar = 10 µm. Sections in (b) and (c) post-stained with lead 

citrate and uranyl acetate. 
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Figure 3.23: Cellular structure and ultrastructure of the megagametophyte 4 months after 

the coenocyte was observed. �ote that (a) the cell interior had as many (if not more) 

starch-containing amyloplasts (Am) than it did 1 month prior to this stage; section stained 

with toluidine blue, bar = 10 µm; b) ultrastructure of the cells with relatively large protein 

bodies (Pb) and amyloplasts, while mitochondria (M) occurred in the homogeneous 

cytomatrix; bar = 50 µm; c) Mitochondria possessed dense matrices and well-defined 

cristae and lipid bodies (L) had remained small and discrete bar = 10 µm. Sections in (b) 

and (c) stained with lead citrate and uranyl acetate. 
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Figure 3.24: Cellular structure and ultrastructure of the megagametophyte 6 months after 

the coenocyte was observed. �ote that (a) the cell interior contained considerable starch 

within amyloplasts (Am) and possibly more of these organelles than previously, while 

there was apparent persistence of the two forms of protein body (Pb1 and 2) based on 

protein density; section stained with toluidine blue, bar = 10 µm; b) ultrastructure of the 

cells with relatively large protein bodies (Pb) and amyloplasts (Am); bar = 20 µm; c) long 

profiles of ER, and mitochondria (M) characterised by dense matrices and well-defined 

cristae occurred within localised regions of the cytomatrix; bar = 10 µm. Sections in (b) 

and (c) stained with lead citrate and uranyl acetate. 
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Eight months after the original coenocytic stage, when the seeds were ultimately being shed 

from the parent plant, the cells of the megagametophyte were seen to be crammed with starch-

containing amyloplasts and protein bodies (Fig. 3.25a), to such an extent that other organelles 

were not seen and the occasional nucleus visualised appeared ‘squashed’ (Fig. 3.25b).       

 

3.3. Viability status of the megagametophyte during post-shedding seed development 

 

3.3.1. Tetrazolium (TTZ) study  

 

The viability of the megagametophyte tissue of fertilised seeds (Fig. 3.26) and unfertilised, 

‘futile’ ovules (Fig. 3.27) was assessed by staining with 2,3,5-triphenyl tetrazolium chloride 

(TTZ). Tetrazolium acts as the terminal acceptor in the electron transport chain during 

respiration, developing a characteristic red-pink colour in tissue undergoing aerobic respiration 

(i.e. a metabolically-active / living tissue).  

 

Judging from the reactivity with tetrazolium, the megagametophyte of seeds (Fig. 3.26a) and 

shed, futile (unfertilised) ovules (Fig. 3.27a) was still metabolically active soon (days) after 

being shed from the parent plant. Three-month-old ovules (Fig. 3.27b) and seeds (Fig. 3.26b) 

showed less intense and somewhat more patchy tetrazolium staining than at shedding, indicating 

that although diminished, metabolic activity was still taking place in the megagametophyte. 

However, there was variability, with little TTZ reactivity in some ovules and seeds. The 

megagametophyte of 6-month-old seeds (Fig. 3.26c), showed very little, if any, tetrazolium 

reactivity. However, inconsistently, some of the unfertilised, ‘futile’ ovules (Fig. 3.27) showed 

positive TTZ reactivity, indicating continuing respiratory metabolism, in particular, the 

archegonial regions stained bright red with tetrazolium.  

 

 
3.3.2. Ultrastructural investigations of the megagametophyte during post-shedding seed 

development 

 

The megagametophyte cells of newly-shed seeds were nucleated (judging from the few 

instances where this body was able to be visualised), and packed with starch and protein, the 

two principal storage reserves (Fig. 3.28a). A relatively small number of discrete lipid bodies, 

and occasional mitochondria (Fig. 3.28c) could be seen where their visualisation was not 

precluded by the masses of stored reserves. At seed-shed, the mitochondria were of a  
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Figure 3.25: Cellular structure and ultrastructure of the megagametophyte 8 months after 

the coenocyte stage. �ote that (a) the cell interior appeared to be crammed with starch-

containing amyloplasts (Am) and protein bodies (Pb); section stained with toluidine blue, 

bar = 10 µm; b) ultrastructure of a cell showing the nucleus (�) compressed between the 

abundant amyloplasts (Am) and protein bodies (Pb); section stained with lead citrate and 

uranyl acetate, bar = 20 µm. 
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Figure 3.26: Reactivity to tetrazolium (TTZ) salts of the megagametophyte of fertilised 

seed, at various times after seed-shed: a) at seed-shed; b) at 3 MAS; and (c) at 6 MAS, 

arrows indicate thin peripheral band of tetrazolium staining. 
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Figure 3.27: Reactivity to tetrazolium (TTZ) salts of the megagametophyte of unfertilised, 

futile ovules, at various times after seed-shed: a) at seed-shed; b) at 3 MAS; and (c) at 6 

MAS. 
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Figure 3.28: Ultrastructure of the megagametophyte cells at seed-shed. �ote (a) that the 

cells were packed with starch-containing amyloplasts (Am) and protein (Pb); bar = 10 µm; 

b) mitochondria (M) with clearly defined cristae and dense matrices; bar = 0.5 µm; and c) 

discrete lipid bodies (L), bar = 2 µm. Sections stained with lead citrate and uranyl acetate.  
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metabolically active appearance with clearly defined cristae (Fig. 3.28d) and lipid bodies in 

their vicinity (Fig. 3.28c).       

 

At 3 MAS, the cells of the megagametophyte started to show some signs of deterioration which 

are presumed to be associated with utilisation of their content by the developing embryo (Fig. 

3.29a). Discernible nuclei were infrequently seen (not shown), there appeared to be utilisation of 

the protein in some areas (Fig. 3.29b), no rough ER nor Golgi bodies were found, and the 

mitochondria appeared distorted with poorly defined cristae and pale matrices (Fig. 3.29c,d).  

 

At 6 MAS, no discernible nuclei, endoplasmic reticulum or Golgi bodies occurred (Fig. 3.30a), 

where reserve utilisation appeared not (yet) to have occurred, the cells were dominated by large 

amyloplasts and tightly-packed protein bodies (Fig. 3.30a). Remnants of lipid bodies in some 

megagametophyte cells, illustrated in Figure 3.30b, were indicative of utilisation of this reserve. 

Few discernible mitochondria were found at this stage after seed-shed, and the mitochondria 

that were found where characterised by diminished cristae and pale matrices, especially in the 

centre of the organelle (Fig. 3.30c). 

 

3.4. Difference in ultrastructure of the peripheral cell layer of the megagametophyte 

 

The peripheral cell layer appeared very different from the cells of the body of the 

megagametophyte (Fig. 3.31). These peripheral cells were packed with lipid bodies as opposed 

to starch and storage protein (Fig. 3.31a,b). There was also far less accumulation of starch in 

these peripheral cells than in the cells of the body of the megagametophyte (Fig. 3.31a,b). Some 

of the plastids within these cells contained membranous stacks (Fig. 3.31c), which was 

suggestive of thylakoids.   
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Figure 3.29: Ultrastructure of the megagametophyte cells at 3 MAS. �ote (a) and (b) signs 

of cellular deterioration presumably associated with mobilisation, and utilisation of their 

contents by the developing embryo; bar = 10 and 1 µm respectively; and (c) the disfigured 

appearance of one of the few mitochondria (M) found at this stage after seed-shed. The 

mitochondria had ill-defined cristae and pale matrices; bar = 0.5 µm.  Sections were 

stained with lead citrate and uranyl acetate. 
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Figure 3.30: Ultrastructure of the megagametophyte cells at 6 MAS. a) Occasional cells 

did not show obvious starch and protein depletion; bar = 20 µm. In such cells (b) some 

lipid bodies (L) were observed and other structures appeared to be the remains of protein 

bodies (arrows); bar = 0.5 µm; and (c) the mitochondria (M) were of less active 

appearance than at seed-shed, displaying small cristae and electron-opaque matrices, bar 

= 0.2 µm. Sections were stained with lead citrate and uranyl acetate. 
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Figure 3.31: Ultrastructure of the peripheral cell layer of the megagametophyte at 6 

months after seed-shed. �ote that (a) the cells were packed with lipid bodies (L) and 

relatively small amyloplasts (Am); bar = 2 µm; b) the outer cell wall (CW) was thickened 

and appeared cuticularised; bar = 2 µm; and c) the amyloplast plastids often contained 

membranous stacks (St), suggestive of thylakoids; bar = 0.2 µm. Sections were stained 

with lead citrate and uranyl acetate. 
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4. DISCUSSIO� 

4.1. Some aspects of E. natalensis megagametophyte development 

 

The earliest developmental stage of the megagametophyte in this study was characterised by a 

large central vacuole and a thin peripheral layer of cytomatrix containing many free nuclei, 

small vesicles or vacuoles and what appeared to be undifferentiated mitochondria. This 

corresponds with the findings of Pettitt (1977), who observed undifferentiated mitochondria in 

the cytomatrix of cycad and Ginkgo biloba ovules at the coenocytic stage of development. 

However, Stewart and Gifford (1967), observed mitochondria with distinct cristae in the 

megaspore cytomatrix of G. biloba. The significance of undifferentiated mitochondria at the 

coenocytic stage is not immediately apparent, as the coenocyte should presumably be highly 

metabolically active in order for development to proceed. The undifferentiated appearance of 

the mitochondria at this stage may possibly be artefactual, as a consequence of improper 

fixation, as the coenotyic stage is a notoriously difficult stage of development to preserve 

(Maheshwari and Singh, 1967). 

 

The megaspore membrane of the coenocyte was relatively thick and appeared to be made up of 

honeycomb like chambers. Pettitt (1966; 1977), reported that the megaspore membrane of 

gymnosperms is a multiple structure that differs between species; is made up of contributions by 

both the megagametophyte and sporophyte; and is comprised principally of the polymer 

sporopollenin.        

 

According to Maheshwari and Singh (1967) the coenocytic stage is the most common 

developmental stage of the ovule at which most descriptive studies start. This is because the 

preceding stages, from the megaspore mother cell to the linear tetrad, normally occur when the 

ovules are concealed in the crown of the parent plant. The developmental stages preceding the 

coenocytic megagametophyte have, however, been observed in a few cycads: In Zamia 

floridana, the megaspore mother cell yields a linear tetrad (Smith, 1910); in Macrozamia 

spiralis (Brough and Taylor, 1940) and Cycas rumphii (De Silva and Tambiah, 1952), a linear 

triad is formed when the upper dyad fails to divide; whilst in Encephalartos poggei (De Sloover, 

1961), tetrads are encountered more often than triads. Whether a linear triad or tetrad is formed, 

the lower-most cell becomes the functional megaspore and it is this cell which enlarges and 

undergoes rapid free-nuclear division to give rise to the coenocyte (Maheshwari and Singh, 

1967).    
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While the earliest stage of megagametophyte development viewed in this study was the free-

nuclear coenocyte, the next sampling interval 1 week later showed a completely cellular 

megagametophyte. Extraordinarily long cells were observed at this stage in the central plane of 

the ovule, akin to the alveolar cells described by Sokolowa (1890). The megagametophyte of 

Encephalartos natalensis therefore appears to follow a similar mode of cellularisation (i.e. by 

alveolus formation) to other cycads viz. Cycas revoluta (Ikeno, 1898), Macrozamia reidlei 

(Light, 1924), M. spiralis (Brough and Taylor, 1940) and Encephalartos poggei (De Sloover, 

1964).   

 

The newly formed cells of the megagametophyte interior appeared essentially clear of internal 

content at the light microscope level, except for the occasional nucleus visible. Newly formed 

cells of the megagametophyte of Dioon (Chamberlain, 1906) and Ginkgo biloba (Carothers, 

1907) were reportedly filled with transparent “cell sap” by those authors, while in Taxus 

cuspidata (Sterling, 1948), they were said to possess large vacuoles and a lightly staining 

cytomatrix. In the present study, large vacuoles were not seen in the first cells of the 

megagametophyte. Instead, the cells were dominated by an apparently homogeneous 

cytomatrical material in which various organelles (e.g. discontinuous membranes, relatively 

short profiles of ER, the occasional Golgi body and numerous vesicles) were seen. The 

organelles were mostly concentrated at the periphery of the cells, in close apposition to the 

developing primary cell wall, where it is suggested that they were probably involved in wall 

formation. 

 

While mention has been made of the involvement of nuclei and phragmoplastic spindles in the 

development of the anticlinal walls during cellularisation of the megagametophyte (Carothers, 

1907; Light, 1924), very little attention has been paid to the organelles involved in the 

deposition of cell wall components (Maheshwari and Singh, 1967; Singh and Johri, 1972). 

According to Light’s (1924) account of Macrozamia reidlei, cell plates were laid down between 

adjacent nuclei interconnected by phragmoplastic spindles. However, while the cell plate-like 

concatenation of vesicles was seen in electron-microscopic investigations of Taxus baccata 

ovules, no phragmoplastic spindles seemed to be involved in wall formation (Pennell and Bell, 

1987). Those authors found evidence to suggest that the developmental path of the anticlinal 

walls was marked out by ER cisternae as opposed to the phragmoplastic spindles of normal 

cytokinesis. 

 



 93 

Golgi bodies have largely been implicated in the synthesis and deposition of primary cell wall 

components during cytokinesis (Pickett-Heaps and Northcote, 1966; Moore and Staehelin, 1988; 

Moore et al., 1991; Driouich and Staehelin, 1997). Golgi-derived vesicles ostensibly carry the 

precursors of wall components, which are added to the developing wall by a process of 

exocytosis (Pickett-Heaps and Northcote, 1966). However, those authors alluded to the fact that 

in some instances, the origins of the vesicles were not apparent. In the present study, Golgi 

bodies were particularly scarce during initial cellularisation of the megagametophyte when 

primary cell walls were being laid down. Both Golgi-derived and ER-derived vesicles were 

observed being incorporated into the developing cell membrane – with a possible involvement 

in cell wall formation.  

 

Immunocytochemistry and enzyme-gold localisation techniques have been used successfully to 

localise specific components of cell walls in several plant species (Fultcher et al., 1976; Moore 

et al., 1986; Benhamou and Côté, 1992; Lynch and Staehelin, 1992; Sutherland et al., 1999) and 

to identify the organelles responsible for their deposition (Lynch and Staehelin, 1992). For 

example, Lynch and Staehelin (1992), working on clover root tips, found xyloglucan labelling 

in both the cell wall and Golgi-derived vesicles, thereby implicating those vesicles in the 

deposition of xyloglucan in the walls.   

 

However, when enzyme-gold localisation for the primary wall components, xylan and pectin 

was done in the present investigation, label was not found in Golgi stacks nor Golgi-derived 

vesicles, but in some ER-derived vesicles. This result suggested that ER- (and not Golgi-) 

derived vesicles were the most likely contributors of xylan and pectin to the developing wall, 

which was surprising considering that (to the knowledge of this author) ER-derived vesicles 

have never been implicated in the development of the primary cell wall in gymnosperms. In a 

study on the development of the barley endosperm, Bosnes and Olsen (1992) observed fusion of 

ER-derived vesicles during the initial stage of primary cell wall formation and suggested that 

the associated polysomes probably represent transcripts that participate in the formation of the 

cell wall. This reiterates the notion of Staehelin (1997), that the endoplasmic reticulum is “the 

most versatile and adaptable organelle of eukaryotic cells”.    

 

Even more surprising than the apparent involvement of ER-derived vesicles in the formation of 

cell walls in the megagametophyte of E. natalensis, was the occurrence of a relatively high 

concentration of label in some ill-defined, diffuse structures within the cytomatrix. Zinc iodide-

osmium tetroxide (ZIO), first used by Maillet (1962) for neurohistochemical studies, was thus 
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employed as it has also been shown to accentuate visualisation of the endomembrane system in 

plant cells (Hawes, 1991). The ZIO post-staining treatment revealed numerous, faintly-

appearing vesicles within the cytomatrix. The presence of these cytomatrical vesicles seemed to 

be confirmed when a profusion of vesicular structures was found in the cells of the 

megagametophyte at the SEM level. It is proposed that these vesicles may well be the same ill-

defined structures that labelled strongly for pectin and xylan.  

 

These vesicles may ultimately fuse with ER- and Golgi-derived vesicles before their contents 

are incorporated into the developing cell wall, or their contents may be incorporated into the 

developing wall independent of the ER- and Golgi-derived vesicles. It is suggested that while 

the membrane component of these three vesicle types may give rise to the cell membrane, their 

inner contents may be incorporated into the developing cell wall. Furthermore, the presence of 

these faintly-appearing vesicles also suggested that the cytomatrix had a substructure that was 

not resolved adequately with lead citrate and uranyl acetate post-staining. For clearer resolution 

of these vesicles, future studies at the TEM level should incorporate the ZIO staining step to the 

specimens during processing – i.e. prior to embedding – as done by Machado and Gregório 

(2001).   

 

The substructure of the cytomatrix was then investigated further to check for organisation in the 

form of microtubules. The organised nature of the cytomatrix was confirmed by the positive 

localisation of these structures using immunocytochemical techniques. Microtubules are 

purportedly responsible for the control of cytokinesis; cell wall insertion; intracellular motility; 

and generally for organisation within the cytomatrix (Tiwari et al., 1984). Although 

microtubules were positively localised in the cytomatrix in the current investigation, they were 

not sufficiently concentrated near the cell walls or nuclei to suggest that the walls were laid 

down on cell plates. The path of development of the primary cell walls in this study appeared to 

be marked out by ER of short profile as well as discontinuous membranes, which are probably 

derived from ER and Golgi vesicles and which presumably join with each other to give rise to 

the cell membrane. At present, however, further observations are needed to confirm (or not) the 

implication of microtubules in spatial control.    

 

In addition, as a caveat, further research is required using freeze-substitution as opposed to 

gluteraldehyde fixation to ensure that the peculiar ultrastructure seen 1 week after the coenocyte 

was not a feature of improper fixation – i.e. artefactual, as this stage of ontogeny is notoriously 

difficult to preserve (Maheshwari and Singh, 1967).      
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The cell walls of the megagametophyte appeared more consolidated 1 month after the 

coenocytic stage was observed, relative to the earlier developmental stage. There was an 

increase in the number of Golgi bodies and ER, and the organelles were now spread throughout 

the cytomatrix, as opposed to being located peripherally in the previous stage.  This seemed to 

represent a change in focus in the megagametophyte from cell wall development to the 

development of the rest of the cell and quite possibly initiation of reserve accumulation. The ER 

appeared particularly active at this stage, producing two kinds of vesicles: one kind initially 

double-membrane-bound, and the other, single-membrane-bound, which seemed to be produced 

by terminal vesiculation as illustrated by Lamb and Berjak (1981).  

 

The ER continued to proliferate during development from 1 to 2 months after the coenocytic 

stage, with numerous cisternae displaying localised luminal dilation. Several starch-containing 

amyloplasts were seen at this stage, and there appeared to be an accumulation of a granular 

material in the cytomatrix and in some of the dilated ER cisternae. Histochemical staining of 

mature megagametophyte (at seed-shed) sections revealed that the granular material was likely 

to be protein; the amyloplasts contained carbohydrate, presumably starch; and that there was a 

limited occurrence of small, discrete lipid bodies. The two principal storage reserves in the 

megagametophyte of E. natalensis were thus confirmed to be starch and protein, with lipid 

contributing a minor component. While the megagametophyte tissue of Stangeria eriopus (Lang, 

1900), Dioon edule (Chamberlain, 1906) and D. spinulosum (Dorety, 1919) was also seen to 

have starch in large quantities, the low levels of lipid observed in the present investigation were 

surprising as gymnosperm species are said to have characteristically fat-storing seeds (Dodd et 

al., 1989). According to Tillman-Sutela and Kauppi (Berjak pers. comm.), 1  the mature 

megagametophyte cells of species of conifer store significant amounts of lipid. 

 

The protein found in this study appeared to be of two kinds. One type was apparently densely 

packed, quite possibly in ER distended with accumulated protein, while the other type appeared 

less dense or interspersed with clearer regions. Continuity was also apparent between some of 

the regions of denser and less dense protein deposition. This possibly indicates localised 

accumulations of different types of protein within regions of ER cisternae, or different stages in 

the deposition process. 

 

                                                 
1 P. Berjak, School of Biological and Conservation Sciences, UKZN, Durban 
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The next stage of megagametophyte development, approximately 3 months after the coenocytic 

stage, revealed an increase in the quantity of starch as evidenced by the development of the 

amyloplasts, while lipid bodies were now seen being produced at the terminal ends of long ER 

profiles. Therefore, it seems that during reserve accumulation in the megagametophyte of E. 

natalensis, starch and protein are accrued first (in amyloplasts and protein bodies respectively), 

followed by a limited quantity of lipid (in discrete bodies). 

 

From 4 to 8 months after the coenocytic stage was observed, the most noticeable feature of the 

megagametophyte cells was the increase in quantity of starch as seen by the increase in size of 

the amyloplasts. The quantity of starch amongst the abundant protein increased to such an 

extent that the visibility of other organelles was largely obscured, and the occasional nucleus 

seen appeared irregularly compressed. This was in contrast to the findings of Dodd and co-

workers (1989), where reserve accumulation in Podocarpus henkelii did not seem to obscure 

cytomatrical ultrastructure. Mitochondria in the current study were infrequently seen; however, 

when they were observed, they were characterised by well-defined cristae and dense matrices, 

suggesting intense, but localised metabolic potential.    

 

The seeds of E. natalensis were shed approximately 8 months after the coenotyic stage was 

observed. The cells of the megagametophyte were apparently still metabolically active upon 

seed-shed. This was confirmed by a positive tetrazolium test on the megagametophyte of both 

fertilised seed and unfertilised, futile ovules. The tetrazolium viability test is reportedly a rapid 

and good measure of seed quality / viability (Kulik and Yaklich, 1982).  

 

The degree of development and ultimately the ultrastructural integrity of mitochondria can also 

be used to gauge the metabolic status of cells (e.g. Kioko et al., 2006). The ultrastructure of the 

megagametophyte cells at seed-shed was found to be in agreement with the result of the 

tetrazolium test as mitochondria appeared metabolically-active, possessing dense matrices and 

well-developed cristae. The cells of the megagametophyte were still nucleated and showed an 

overall maintenance of integrity even after the seeds were shed from the parent plant.  

 

However, judging from the tetrazolium reactivity, the viability of the megagametophyte cells of 

both fertilised seed and unfertilised, futile ovules appeared to decline in the months after seed-

shed. This too, was in line with ultrastructural observations in the megagametophyte cells of 

seeds 3 months after seed-shed, showing generally featureless mitochondria, and where 

apparent, poorly defined cristae and a pale matrix, while nuclei were rarely seen. In addition, 
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those cells had a more deteriorated overall appearance compared with cells at seed-shed, 

presumably mostly due to the utilisation of reserves by the developing embryo. 

 

Based on the findings of the tetrazolium study, the decline in viability of the megagametophyte 

cells appeared to culminate in a complete loss at 6 months after seed-shed. Interestingly, even at 

this stage, there were regions of the megagametophyte where only a little depletion of reserve 

material seem to have had occurred, and occasionally apparently intact, although probably 

inactive mitochondria could be seen. 

 

At 6 months after seed-shed, the megagametophyte of fertilised seed and unfertilised, futile 

ovules displayed contrasting tetrazolium reactivity. While there was a complete loss of 

reactivity in the megagametophyte of seeds, some reactivity was evident in the 

megagametophyte of some unfertilised, futile ovules, especially around the archegonia. This 

seemed to suggest that there was still some continued, albeit localised, respiratory metabolism 

in these otherwise futile ovules 6 months after being shed.   

 

Two possible explanations have been identified to account for this reactivity in the ovules: (1) 

there may have been systemic fungi in the ovules which were actively respiring aerobically; or 

(2) unfertilised ovules may have retained metabolic activity after seed-shed, especially around 

the gamete-containing archegonia in the eventuality of post-shedding fertilisation. This suggests 

a further, interesting line of investigation – i.e. for how long after shedding might ovules be 

receptive to pollen with resultant fertilisation? 

 

The cell layer comprising the external surface of the megagametophyte showed marked 

ultrastructural differences from the inner cells. These peripheral cells were packed with lipid 

bodies and relatively small amyloplasts as opposed to large amyloplasts and protein bodies of 

the underlying cells, some of the plastids in these cells contained membranous stacks akin to the 

thylakoids of chloroplasts. Arguably the most obvious function of a lipid-rich peripheral cell 

layer might be to protect the seed against loss of water as the seeds of E. natalensis have been 

suggested, and shown to be desiccation-sensitive (Forsyth and van Staden, 1983 and 

Woodenberg et al., 2007 respectively), but since a thin band of tetrazolium stain was seen at the 

extreme periphery of the megagametphyte of seeds 6 months after seed-shed, this cell layer may 

still emerge as having an ‘aleurone-like’ function as in the endosperm of angiosperms (Lopes 

and Larkins, 1993). It is, however, possible that the cells of the body of the megagametophyte 

also participate actively – at least in the earlier stages of post-shedding seed development – in 
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mobilisation of stored reserves, which must support the development of the embryonic 

sporophyte.     

 

4.2. Some aspects of the post-shedding seed behaviour of Encephalartos natalensis 

 

The most important form of cycad reproduction is via the synthesis of seeds; however, cycad 

seeds collected from field and garden sources are often found outnumbered by unfertilised, 

seed-resembling ovules (personal observation; Osborne et al., 1992; Donaldson, 1995) due to 

deficient natural pollination. Cycads were originally thought to be anemophilic (Lawson, 1926; 

Chamberlain, 1935) despite an earlier report (Marloth, 1914) about the entomophilous nature of 

some Encephalartos species. It has since been shown (Norstog et al., 1986; Tang, 1987; 

Donaldson et al., 1995; Donaldson, 1997; Wilson, 2002) that the pollination of many, and 

possibly all, cycads is entomophilic.  However, with the depletion of natural cycad populations, 

and the scattering of these dioecious plants in gardens around the world, artificial pollination is 

often necessary to ensure a high yield of seeds (Osborne et al., 1992). This was evident in the 

present study, with relatively low (c. 10%) seed yields from naturally-pollinated strobili (batch 

A), and superior seed yields (>80%) from those that were rigorously hand-pollinated (batch B).  

 

The WC of batch A seeds, which were insect-pollinated, was assessed from seed-shed to 6 MAS. 

Seeds were shed with relatively high mean embryo (3.33 g g-1) and megagametophyte (1.25 ± 

0.16 g g-1) WCs, which is typical of recalcitrant seeded-species (Roberts and King, 1980; Hong 

and Ellis, 1998). However, it has been shown (King et al., 1981; Wood et al., 2000) that not all 

seeds shed at high WCs are recalcitrant. A more reliable characteristic of recalcitrance is a loss 

of viability at relatively high WCs upon drying (King and Roberts, 1980).  

 

Although Forsyth and van Staden (1983) alluded to the fact that Encephalartos natalensis 

produces ‘wet’ seeds and that they may be desiccation-sensitive, they did not test the 

desiccation sensitivity of the seeds so being able to categorise them unequivocally as being 

recalcitrant. This left the Seed Information Database of the Royal Botanic Gardens Kew, 

Millenium Seed Bank, which is presently the best collection of information on ecological and 

evolutionary aspects of seeds (Berjak and Pammenter, 2008), undecided about whether cycad 

seeds are recalcitrant or not (Liu et al., 2008). However, Encephalartos natalensis seeds were 

shown to be desiccation-sensitive, i.e. recalcitrant, by Woodenberg et al. (2007), after the seeds 

lost viability at relatively high WCs when subjected to a desiccation trial. Recalcitrant seeds of 

many species are notoriously short-lived in storage (Chin and Roberts, 1980; King and Roberts, 
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1980; Farrant et al., 1989; Berjak et al., 1989; Bonner, 1990; Pammenter et al., 1994); however, 

the life-span of E. natalensis seeds in open storage had not been determined.   

 

It was observed in the present investigation, that whilst the embryo and megagametophyte WC 

of open-stored E. natalensis seeds declined in the months after seed-shed, the seeds remained in 

a relatively highly hydrated state throughout the 18-month storage period (batch B, Fig. 3.2). 

The decline in megagametophyte WC can probably be accounted for by the slow loss of water 

to the external sclerotesta and atmosphere. This was evidenced by the fact that only the decrease 

in fresh mass from 4 to 18 MAS was statistically significant.  

 

On the other hand, the decline in embryo WC may also be attributed to the substantial increase 

in dry mass (2-fold, relative to fresh mass) as the embryos grew, such that the amount of water 

per gram of dry mass decreased. There was also continuous development of the embryos after 

seed-shed, with both the fresh and dry mass continuing to increase even after the embryos had 

reached a germinable size 4 to 6 MAS. This ongoing embryo development typifies recalcitrant 

seeds, which are always metabolically active and show continuous accumulation of dry mass 

until seed-shed (Hong and Ellis, 1990; Farrant et al., 1992; Tompsett and Pritchard, 1993; 

Finch-Savage and Blake, 1994; Fu et al., 1994; Lin and Chen, 1995), continuing through seed-

shed to germination (Berjak et al., 1984; 1989; Pammenter et al., 1984). At the other extreme, 

orthodox seeds undergo a cessation of dry mass accumulation and enter a state of metabolic 

quiescence upon maturation drying before the seeds are shed (Kermode, 1990; Bewley and 

Black, 1994).     

 

Although it is difficult to pin-point the timing of the transition from seed development to 

germination in recalcitrant seeds, it has been suggested that germinative events are initiated on, 

or soon after, seed-shed (Berjak et al., 1984; 1989; Pammenter et al., 1984). However, in the 

current study, when the seeds of E. natalensis were set out to germinate immediately after seed-

shed, no germination had occurred within 30 d, presently taken as the ‘cut-off’ time in this study, 

as fungal infection invariably occurred after this period. There was little doubt that the seeds 

were unable to germinate immediately upon seed-shed because of the incompletely developed, 

virtually rudimentary embryos.  

 

De Silva and Tambiah (1952) proposed a reason to account for the incompletely developed 

embryo of most cycad species at seed-shed. According to those authors, an immature, or 

incompletely developed, embryo would have been advantageous to those species reliant on the 
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ocean for dispersal e.g. Cycas rumphii, since such long-distance dispersal requires seeds to 

remain viable for a considerable period. For instance, crossing the Indian Ocean would provide 

sufficient time for the embryos within seeds impermeable to seawater to reach maturity.   

 

According to Vorster (1995), cycad seeds may take from 1 month to almost 6 years (Cycas 

rumphii) after sowing to germinate; however, not all cycad species shed their seeds with an 

incompletely developed embryo. It has been reported (Hooft, 1970; Vorster, 1995) that most, if 

not all, Zamia species shed their seeds with fully developed embryos capable of germination 

soon after seed-shed, while the seeds of others e.g. Encephalartos transvenosus and E. 

manikensis, are shed with a fully developed embryo (Vorster, 1995). 

 

However, even with a fully developed embryo at seed-shed, other concomitant dormancy 

mechanisms are known to contribute to the delayed germination of cycad seeds (Dehgan and 

Schutzman, 1989). According to those authors, dormancy mechanisms include a fleshy 

sarcotesta, which apparently contains unspecified inhibitors, and a thick, woody sclerotesta in 

addition to the under-developed embryo of some species at seed-shed. Nicolaeva (1977) has 

referred to such dormancy contributed by several factors as “morphophysiological complex 

dormancy”. 

 

Working on the seeds of Zamia floridana, Hooft (1970) discovered that the sarcotesta and 

sclerotesta were impermeable to water uptake and interfered with germination for 5 to 6 months 

after seed-shed. Noting that seeds of Zamia spp. are shed with fully developed embryos (Vorster, 

1995), removal of the sarcotesta shortened germination time to 50 to 60 d, whereas removal of 

both the external seed coverings permitted immediate germination (Hooft, 1970).  

 

It has also been reported that the germination of cycad seeds may also be enhanced by 

scarification of the sclerotesta using sulphuric acid (H2SO4) for various lengths of time (Dehgan, 

1983; 1984; Dehgan and Johnson, 1983). However, scarification treatments would be 

ineffectual in facilitating germination of seeds with incompletely developed embryos 

immediately upon seed-shed, as was shown in the current study when newly shed seeds were 

unable to germinate after both the sarcotesta and sclerotesta were removed.   

 

Treatment of seeds containing incompletely developed embryos with gibberellic acid (GA3) has 

been shown to improve germination in some cycad species (Dehgan and Johnson, 1983), which 

has been attributed to the breakdown of physiological dormancy (Khan, 1975; Lewak, 1985). 



 101 

During the present investigation GA3 was not employed, as the objective was to assess the post-

shedding seed longevity and behaviour as opposed to improvement of germination per se. 

However, future studies will entail investigations on the germinative response of E. natalensis 

seeds with incompletely developed embryos to GA3, as, to the knowledge of this author, such 

studies have not previously been carried out on the seeds of Encephalartos species. 

 

In the present study, while no seeds were capable of germinating immediately after seed-shed, 

about 50% were capable of germinating within 30 d after removal of the sclerotesta at 2 MAS. 

Seeds stored for 2 months also took relatively long to initiate germination (c. 24 d), whereas 

seeds stored for longer periods initiated germination within 6 to 12 d. Thus, the seeds of E. 

natalensis were found to exhibit the timing of germination-related processes characteristic of 

seeds classed in group C (very slow germination after shedding) of the model proposed by 

Berjak et al. (1989).  

 

Four-month stored seeds initiated germination earlier and displayed a more rapid germination 

rate and improved totality (c. 90%) compared with seeds stored for less time after seed-shed, 

while the highest viability (i.e. 100%) was seen at 6 MAS. Thereafter, the viability of the seeds 

decreased somewhat to the region of about 60 to 80% at 8 to 16 MAS, while 25% of 18-month 

stored seeds were still viable. This result seemed to suggest that the optimal time after seed-shed 

for the germination of E. natalensis seeds is around 4 to 6 months, where most of the embryos 

are fully developed and capable of germinating vigorously.  

 

While the reduced levels of vigour and viability seen before the optimal storage period for 

germination are ascribed to the under-developed nature of the embryo at seed-shed, the 

reduction in seed vigour and viability after storage periods longer than 6 MAS is probably a 

result of stress. Germination of the embryos was probably impeded by the thick sclerotesta 

during open storage where no extraneous water was provided, and the slightly slower rate of 

germination observed from 8 to 16 MAS may be indicative of the need for repair prior to 

germination.  

 

In comparison with the majority of other recalcitrant-seeded species, which have a shelf-life in 

open storage of weeks to a few months (e.g. Chin and Roberts, 1980; King and Roberts, 1980; 

Berjak et al., 1989; Farrant et al., 1989; Bonner, 1990; Pammenter et al., 1994), the seeds of E. 

natalensis in this study were relatively long-lived.  This is suggested to be a consequence of the 

under-developed embryo at shedding, which must undergo post-shedding development (for 
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about 6 months) before the initiation of germination (Berjak et al., 1989), as well as the 

maintenance of a relatively high WC in the months after seed-shed as the consequence of a thick 

sclerotesta that is largely impervious to water.     

 

While the seeds in the present investigation were relatively long-lived, the vigour and viability 

of 18-month stored seeds was reduced considerably compared with 8- to 16-month stored seeds. 

It is still uncertain whether this is an indication of the characteristic life-span of E. natalensis 

seeds being exceeded or not, as many E. natalensis seeds were observed to have germinated in 

sand when sown 24 MAS (personal observation, results not shown).         

 

The cause for the ultimate loss of vigour and viability of hydrated recalcitrant seeds was 

proposed by Pammenter and co-workers (1994). Those authors suggested that because hydrated 

recalcitrant seeds are metabolically active and undergo germination-associated changes in 

storage, they sooner or later (depending on the rate of these changes) require water additional to 

that present in the seed at shedding. As exogenous water is not available during open storage, 

the E. natalensis seeds are suggested to have suffered mild, but increasingly prolonged, water 

stress, which ultimately led to the death of the embryos by uncontrolled free-radical-mediated 

oxidative damage (Pammenter et al., 1994).  

 

Berjak and co-workers (1989) have suggested that recalcitrant seeds be kept as close to their 

shedding WC as possible to maximise their longevity in storage. However, in the present study, 

seeds were not placed in hydrated storage at seed-shed and following rigorous decontamination, 

but only after 6 months of open storage. Therefore, the potential of responses and viability 

retention of the seeds under the strictly controlled hydrated storage conditions generally used for 

recalcitrant seeds (Berjak and Pammenter, 2004) were not determined.  

 

When E. natalensis seeds were placed in hydrated storage after 6 months in open storage, both 

the embryo and megagametophyte WCs appeared to increase relative to those of seeds left in 

open storage at 10 MAS. However, the increased embryo and megagametophyte WCs were not 

significantly different from those of open-stored seeds.  

 

Similarly, the apparent increase in the embryo fresh and dry mass of hydrated-stored seeds was 

not significantly different from the embryo fresh and dry mass of open-stored seeds. Even 

though the WC, fresh and dry mass of embryos of hydrated-stored seeds were not significantly 

different from those of open storage, the apparent increases, along with the degree of 



 103 

uncertainty in the mean, suggest that there may have been a significant difference if there was 

little or no experimental error.     

 

While there was no significant difference in the embryo fresh and dry mass of hydrated-stored 

seeds relative to open-stored seeds at 8 and 10 MAS, the difference in these parameters for the 

megagametophyte was significantly different. However, this did not seem to have an impact on 

the WC of the megagametophyte at 10 MAS, as it was not significantly different from that of 

open-stored seeds. It would be expected that the fresh mass of the megagametophyte would 

increase in the months after seeds were placed in hydrated storage since seeds are hygroscopic 

(Roberts, 1972; Justice and Bass, 1978), with their WC usually coming to equilibrium with that 

of the surrounding atmosphere. However, in the present investigation, surprisingly the dry mass 

of the megagametophyte was also found to increase. Thus, the apparent increase in WC of the 

megagametophyte was not in direct proportion to the significant increase in fresh mass observed 

when seeds were placed in hydrated storage. It is suggested that the increase in dry mass of the 

megagametophyte may be explained by the unavoidable inclusion in the calculations, of the dry 

mass of fungi, which were also seen to affect the germination of the seeds adversely. Viability 

of the seeds after 2 months in hydrated storage was affected to such an extent that no 

germination occurred before the seeds were overwhelmed by fungi.         

 

Even orthodox seeds are reported to harbour a variety of fungi at seed-shed (McLean and Berjak, 

1987), which resume vigorous activity when the seeds become wet (Christensen and Kaufmann, 

1969, 1974). Although comprising different species, a spectrum of fungi has been identified, 

consistently associated with recalcitrant seeds of many species in South Africa (Mycock and 

Berjak, 1990; Sutherland et al., 2002). This was also evident in the present study, as fungal 

proliferation in hydrated storage was rife despite the application of Benlate®.  

 

Benlate® is reportedly a systemic fungicide which, even when applied to the surface of seeds as 

dust, is able to reduce fungal infections within seeds (Maude, 1983). The active ingredient, 

benzimidazole, has reputedly reduced fungal species of the genera, Fusarium (Vidhysekaran, 

1983; Nakagawa and Yamaguchi, 1989; Champawat, 1990; Hawara and Kannaiyan, 1992; 

Wilson et al., 1993); Penicillium (Wilson et al., 1993) and Aspergillus (Gupta et al., 1993) in 

seeds. In the present study, however, no fungal identification was undertaken (which will be 

remedied in future investigations), but surface application of Benlate® was ineffective in 

curbing fungal activity. 
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Forsyth and van Staden (1983) did not report any fungal proliferation during their experiments 

involving the hydrated storage of E. natalensis seeds.  This may highlight the point made by 

Berjak and Pammenter (2004) that the quality of seeds at the outset is important. Seeds in the 

present study may have been of inferior quality in terms of contamination when shed, compared 

with those used in the study of Forsyth and van Staden (1983). Those authors found that storing 

the seeds in hydrated conditions at 20oC promoted embryo growth, where the embryo could 

mature relatively quickly and, on transfer to a suitable incubation temperature (30oC), could 

germinate within 3 weeks (Forsyth and van Staden, 1983). 

 

In the present investigation, while no germination occurred after 2 months in hydrated storage 

without the seeds being overwhelmed by fungal proliferation, protrusion of the hypocotyl and 

germination earlier, during the course of hydrated storage was, observed in some cases. The 

hypocotyl was able to protrude despite the physical barrier imposed by the sclerotesta. This 

suggests that even with the eradication of seed-associated fungi, the seeds of E. natalensis 

cannot be stored in hydrated conditions for extended (months to years) periods. This is not only 

a problem with E. natalensis seeds, but recalcitrant seeds in general (Berjak and Pammenter, 

2004).  

 

4.3. Concluding remarks and future research 

 

Several interesting findings emerged from the current investigation. The first was that a study 

on the post-shedding seed behaviour of E. natalensis needs to start at least 6 months before 

seed-shed, because, at least in the ex situ situation, the strobili require hand-pollination to obtain 

a good yield of seed (>80%) on which to conduct experiments. Since fungi were found to 

proliferate in hydrated storage despite decontamination treatment using sodium hypochlorite, 

followed by surface application of a fungicide, future studies should also develop appropriate 

decontamination treatments from as early on in seed development as possible. Anti-fungal 

measures should be attempted preferably before pollination, as fungal spores that give rise to 

systemic fungal infections in the seeds may well be drawn into the ovule along with the pollen 

grains as has been shown for the desert gymnosperm, Welwitschia mirabilis (Whitaker et al., 

2008). 

 

Another finding of the present study was that the seeds of E. natalensis were shed with 

relatively high mean embryo (3.33 g g-1) and megagametophyte (1.25 ± 0.16 g g-1) WCs, when 

the embryo was rudimentary and incapable of germination. The embryos continued to develop 
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after seed-shed, reaching a germinable size (≥15 mm) only 4 to 6 months after seed-shed. It will 

be of interest to explore the use of gibberellic acid in hastening embryo maturation and 

overcoming the effective dormancy as achieved by Dehgan and Johnson (1983) for Zamia 

floridana, for  application in the horticultural industry.  

  

Although E. natalensis has been found to produce recalcitrant seeds (Woodenberg et al., 2007), 

which are characteristically short-lived (Chin and Roberts, 1980; King and Roberts, 1980; 

Farrant et al., 1989; Berjak et al., 1989; Bonner, 1990; Pammenter et al., 1994), the current 

contribution showed that a study on the post-harvest seed behaviour of E. natalensis needs to be 

longer than 18 months in order to record the lifespan of the seeds in open storage. This may well 

have implications for in situ as well as ex situ conservation of endangered cycad species in 

general. 

 

It would also be of interest to compare and contrast the storage lifespan of seeds that have an 

intact sarcotesta, with those that have this external layer removed, as the sarcotesta has been 

shown to be inhibitory to germination (Dehgan and Schutzman, 1989). In the present 

investigation, E. natalensis seeds were found to germinate in hydrated storage, which precludes 

storage of these seeds in a hydrated environment. However, the seeds were put into hydrated 

storage only 6 months after seed-shed and not immediately upon shedding as recommended by 

Berjak and co-workers (1989) for recalcitrant seeds. It will be informative to ascertain 

characteristics of the storage lifespan of sarcotesta-enclosed E. natalensis seeds that are placed 

in hydrated conditions immediately after seed-shed.   

 

While the current study has characterised the post-harvest seed behaviour of E. natalensis and 

supports the notion that the seeds of this species are recalcitrant, the post-shedding seed 

behaviour of many Encephalartos species remains a mystery. It has been reported (Vorster, 

1995) that Encephalartos manikensis and E. transvenosus produce seed with fully developed 

embryos at seed-shed. It will therefore be intriguing to assess, compare and contrast the post-

harvest behaviour of as many species of Encephalartos as possible and to see whether or not 

they produce desiccation-sensitive seeds.  This will be of paramount importance if suitable 

storage regimes are to be devised for the long-term conservation of cycads, in line with Target 

viii of the Global Strategy for Plant Conservation (of the Convention on Biodiversity) which 

advocates that 60% of all threatened plants should be in accessible ex situ collections by 2010.      
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Ultrastructural and viability assessments in the current investigation showed that the cells of the 

megagametophyte were nucleated and contained a few apparently-active mitochondria at seed 

shed. The metabolically active status of these cells was confirmed by the tetrazolium (TTZ) test. 

While the viability of the megagametophyte cells of fertilised seed appeared to decline slowly in 

the months after seed-shed, the archegonia of shed, futile ovules appeared to remain 

metabolically active even 6 months after abscission from the strobilus. Future research should 

thus aim to find out whether the shed, futile ovules would still be receptive to post-shedding, 

artificial pollination.      

 

Since the megagametophyte tissue of seeds was apparently metabolically active during the early 

stages of post-shedding seed development, this tissue could participate actively in the 

mobilisation of stored reserves during embryo growth. In addition, the cell layer comprising the 

external surface of the megagametophyte showed marked ultrastructural differences from the 

inner cells, and may emerge as having an ‘aleurone-like’ function.  

 

While the peripheral cells of the megagametophyte were dominated by lipid bodies, the cells of 

the body of the megagametophyte became progressively more packed with starch and protein as 

the two main storage reserves, with a limited number of discrete lipid bodies, and occasional 

mitochondria, all of which appeared to be embedded in a homogeneous cytomatrix. It was 

found that the unusual cytomatrix was present from the inception of megagametophyte 

cellularisation, and apparently contained microtubules, and numerous very faintly-visible 

vesicles. While further observations are needed to confirm (or not) the implication of 

microtubules in spatial control of the organelles during wall formation, the faintly-visible 

vesicles may appear more distinct if future studies employ zinc iodide-osmium tetroxide (ZIO) 

as a block stain instead of a post-stain as done in the current investigation. 

 

It was apparent from this study that cellularisation of the E. natalensis megagametophyte 

occurred over a period of about 1 to 2 weeks, with the rest of the 8-month-long ovule 

development on the parent plant dominated by reserve accumulation whether 

pollination/fertilisation had taken place or not. With the use of enzyme-gold localisation, it 

appeared as though ER-derived vesicles (and not Golgi-derived vesicles) were the principal 

contributors of the primary cell wall components, pectin and xylan during cellularisation. 

However, this finding is contrary to the popular understanding (Pickett-Heaps and Northcote, 

1966; Moore and Staehelin, 1988; Moore et al., 1991; Driouich and Staehelin, 1997) that Golgi 

bodies are responsible for the synthesis and deposition of the primary cell wall components. 
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Also, because of the relative scarcity of Golgi bodies and peculiar homogeneous appearance of 

the cytomatrix during the initial stages of megagametophyte ontogeny, future research must 

employ freeze-substitution techniques to fix material as opposed to the conventional 

gluteraldehyde fixation used in this study. This approach should resolve whether the relevant 

findings of the present study are artefactual, or whether the synthesis and deposition of primary 

cell wall components is indeed, almost unique in E. natalensis, thus meriting further 

investigations on early megagametophyte ontogeny across a spectrum of cycad species.    
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