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ABSTRACT  

 

Land use/land cover (LULC) information is essential for a plethora of applications including 

environmental monitoring and natural resource management. Traditionally, field surveying 

techniques were the sole source of acquiring such information; however, these methods are 

labour intensive, costly and time consuming. With the advent of remote sensing, LULC 

information can be acquired in an economical, less tedious and non-time consuming manner at 

shorter temporal cycles and over larger areas. The aim of this study was to assess the utility of 

multispectral remote sensing data and the Random Forest (RF) algorithm to improve accuracy of 

LULC maps in heterogeneous ecosystems.   

The first part of this study used moderate resolution SPOT-5 data to compare the 

performance of the RF algorithm to that of the commonly used Maximum Likelihood (ML) 

classifier. Results indicated that RF performed significantly better than ML (66.1%) and yielded 

an overall accuracy of 80.2%. Moreover, RF variable importance measures were able to provide 

an insight on the bands that played a pivotal role in the classification process. Due to the fact that 

moderate resolution satellite data was used, both classifiers seemed to experience some 

difficulties in discriminating amongst classes that exhibited similar spectral responses such as 

Eucalyptus grandis and Pinus tree plantations, young sugarcane and mature sugarcane, as well as  

river and ocean water. In that regard, the next section attempted to address this shortfall.  

The second part of the study used high resolution multispectral data acquired from the 

WorldView-2 sensor to discriminate amongst six spectrally similar LULC classes using the 

advanced RF algorithm. Results suggested that the use of WorldView-2 data together with the 

RF ensemble algorithm is a robust and accurate method for separating classes exhibiting similar 

spectral responses. The classification process yielded an overall accuracy of 91.23% and also 

provided valuable insight into WorldView-2 bands that were most suitable for discriminating the 

LULC categories. 

Overall, the study concluded that: (i) multispectral remote sensing data is an effective 

tool for obtaining accurate and timely LULC information, (ii) moderate resolution multispectral 

data can be used to map broad LULC categories whereas high resolution multispectral data can 
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be used to separate LULC at finer levels of detail, (iii) RF is a robust and effective tool for 

producing LULC maps that are less prone to error.  
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CHAPTER 1 

INTRODUCTION 

  

1.1 Background 

 

Reliable and timely land use/land cover (LULC) information is essential to many government 

and private organizations for different applications such as environmental monitoring, 

transportation planning, urban development, and modeling of ever-changing landscapes  (Chen 

and Stow, 2003). Furthermore, reliable information on the current state of LULC has become 

increasingly important as nations plan to combat problems associated with the destruction of 

important wetlands, loss of prime agricultural lands,  deteriorating environmental quality and the 

loss of fish and wildlife habitats (Ozdemir and Karnieli, 2011). Prior to the existence of space-

borne satellite sensors, conventional land-surveying techniques were commonly used to acquire 

such information (Comber et al., 2004; Chapman et al., 2009). Despite the relatively high 

accuracy achieved through these techniques, they are often expensive, time consuming and labor 

intensive. Remotely sensed satellite imagery, on the other hand, provides a cheaper, timely and 

less tedious alternative to conventional techniques and covers larger areas at high temporal 

frequencies (Friedl and Brodley, 1997; Kavzoglu and Colkesen, 2009; Mathur and Foody, 2008; 

Huang et al., 2002). 

Over the years, a large number of satellite sensors have been utilized for thematic mapping with 

varying degrees of success. Notably, multispectral datasets such as Landsat and SPOT have been 

among the most commonly used owing to their longer historical records (Ojo and Adesina, 

2010). However, traditional multispectral sensors face a limitation as they typically collect data 

using only few broad wavelengths from the visible to the infrared regions of the spectrum (Dye 

et al., 2011). The broad wavelengths result in limited discrimination capabilities when objects 

with subtle differences such as different types of the same species, are to be detected (Melgani 

and Bruzzone, 2004). Recent studies have shown that high classification accuracy can be 

achieved through the use of hyperspectral remote sensing datasets (Chan and Paelinckx, 2008b; 
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Petropoulos et al., 2012a; Ham et al., 2005). In contrast to broadband multispectral imagery, 

these datasets provide hundreds of bands within the visible, near infrared (NIR) and shortwave-

infrared (SWIR) regions of the spectrum that allow better discrimination among similar ground-

cover classes (Adam et al., 2012; Peerbhay et al., 2013; Mansour et al., 2012). However, 

although hyperspectral image data provide a wealth of information, the data present some 

difficulties, such as increased image costs, data volumes, data redundancy and data processing 

costs (Dye et al., 2011; Melgani and Bruzzone, 2004; Ham et al., 2005). This has driven 

researchers to explore alternative satellite datasets that have the potential to overcome the 

shortcomings of highly dimensional hyperspectral datasets. The WorldView-2 sensor has 

particularly caught the attention of the remote sensing community.  

WorldView-2 offers a high number of spectral bands (8 bands) and fine spatial resolution (2 m) 

than conventional multispectral sensors, while reducing unnecessary repetition of information as 

contained in hyperspectral data (Mutanga et al., 2012). In addition to the four traditional bands 

(Blue, Green, Red and NIR-1), WorldView-2 contains four new bands (Coastal blue, Yellow, 

Red-edge and NIR-2) that are currently unavailable in other sensors with sub-meter spatial 

resolution (Immitzer et al., 2012; Novack et al., 2011; Zhou et al., 2012). Each of these bands is 

specifically configured to a specific region of the electromagnetic spectrum that is sensitive to a 

particular feature on the ground, enabling successful detection of slight variations in ground-

cover objects (Ozdemir and Karnieli, 2011; Ribeiro and Garcia Fonseca, 2013). However, 

despite the immense potential of WorldView-2 as a source of producing reliable thematic maps, 

studies on LULC classification  have so far been limited to urban environments (Novack et al., 

2011; Zhang and Kerekes, 2011; Ribeiro and Garcia Fonseca, 2013). Results from these studies 

showed that the availability of the new bands in the WorldVeiw-2 sensor significantly improved 

the accuracy of classification maps in homogeneous urban landscapes. The question therefore 

remains whether the new bands in the WorldVeiw-2 sensor can better the classification accuracy 

in heterogeneous rural environments.  

The use of high resolution multispectral imagery, however, does not necessarily guarantee high 

classification accuracy as classification accuracy is largely dependent on the classifier employed 

for the classification (Lu and Weng, 2007; Hermes et al., 1999; Mountrakis et al., 2011). Several 

classification techniques have been developed and applied to remote sensing imagery. Popular 
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methods include classical pattern recognition techniques such as K-nearest neighbor, minimum 

distance to means, maximum likelihood and linear discriminant analysis. (Kavzoglu and 

Colkesen, 2009; Song et al., 2005; Tan et al., 2011; Perumal and Bhaskaran, 2010). These 

classifiers are generally characterized by having an explicit underlying probability model such as 

the Gaussian normal distribution, and their performance depends on how well the data correlate 

with the pre-defined model (Pal and Mather, 2004; Ghose et al., 2010). More recently, however, 

machine learning classifiers have emerged as more accurate and effective replacements for 

standard parametric classifiers, and have been shown to improve classification accuracy in 

coarse resolution datasets(Watanachaturaporn et al., 2008; Sesnie et al., 2010). Specifically, one 

machine learning method that has shown great potential in remote sensing image classification is 

Random Forest (RF).  

Random Forest can be considered as an improvement of conventional ensemble methods such as 

boosting and bagging (Walton, 2008; Chan and Paelinckx, 2008a). In the remote sensing 

domain, it has been successfully used for the classification of a wide range of datasets including 

multispectral (Pal, 2005; Mutanga et al., 2012), hyperspectral (Ham et al., 2005), Light 

Detection and Ranging (LIDAR) (Guo et al., 2011), synthetic aperture radar (SAR)  (Loosvelt et 

al., 2012), as well as aerial imagery (Chapman et al., 2009). RF employs a bagging-based 

approach to form an ensemble of classification trees (Watts et al., 2009). Each of the trees within 

the ensemble is trained on a subset of the original training samples (Waske et al., 2009; Sesnie et 

al., 2010). Approximately one third of the training samples are set aside to form an external 

dataset known as the out-of-bag (OOB) dataset (Chan et al., 2012; Loosvelt et al., 2012). This 

dataset (OOB) acts a measure of accuracy that produces results comparable to external accuracy 

assessments, so long as there is no bias in the reference data (Watts et al., 2009). RF also uses 

the OOB samples to calculate an internal measure of variable importance that gives an indication 

of the most useful variables in the classification (Dye et al., 2011; Dye et al., 2012). 

Furthermore, RF is superior to many tree-based algorithms as it is not sensitive to noise or 

overtraining, and is also capable of handling unbalanced data sets (Watts and Lawrence, 2008). It 

is also simpler to use than other tree-based algorithms as it only requires two user-defined 

parameters: the number of trees grown (ntree), and the number of variables used to split each 
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node (mtry) (Adam et al., 2009; Mansour et al., 2012). It is in light of this, that this dissertation 

sets itself to the following aims and objectives.  

 

1.2 Aims and Objectives 

The aim of this study was to assess the utility multispectral remote sensing data and the Random 

Forest (RF) algorithm to accurately map land use/land cover (LULC) in a heterogeneous 

environment. The main objectives were as follows:  

(i) TO EXAMINE THE UTILITY OF MODERATE RESOLUTION SPOT-5 DATA TO 

CLASSIFY LULC IN AN ECOSYSTEM CONSISTING OF DIVERSE LULC 

CATEGORIES.   

(ii) TO EVALUATE THE EFFICIENCY OF HIGH RESOLUTION WORLDVIEW-2 

IMAGERY IN THE CLASSIFICATION OF SPECTRALLY SIMILAR LULC 

CLASSES.  

(iii) TO RANK THE IMPORTANCE OF SPOT-5 AND WORLDVIEW-2 BANDS IN 

CLASSIFYING LULC CATEGORIES USING THE RF VARIABLE 

IMPORTANCE MEASURES.   

 

1.3 Outline of thesis 

This thesis is presented in four chapters. However, it is structured mainly around two core 

chapters (Chapter Two and Three) that form publishable papers and will be submitted to peer 

reviewed journals. Since both these chapters have detailed sections covering the study area, 

literature review, and methodology, these sections are not dealt with in the introductory section 

of the thesis in order to avoid redundance.  

Chapter Two assesses the capability of moderate resolution multispectral data to classify 

land use/land cover (LULC) in a heterogeneous ecosystem using the advanced Random Forest 

(RF) algorithm as well as the well-known Maximum Likelihood (ML) method. The RF variable 
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importance measures are then used to determine the SPOT-5 wavelengths that played a pivotal 

role in the landscape classification process.  

Chapter Three, on the other hand, evaluates the effectiveness of high resolution 

WorldView-2 multispectral data in discriminating spectrally similar LULC categories in the 

study area using the RF ensemble algorithm. Once again, the variable importance measures of 

RF are used to determine the bands that play a significant role in the classification of the 

spectrally similar LULC classes.  

Chapter Four provides a synthesis of the study. The aims and objectives of the study are 

discussed in detail while important findings from the study are highlighted. The chapter also 

examines the limitations of this study and presents recommendations for future research. 
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CHAPTER 2 

 

Assessing the utility of SPOT-5 data and the Random Forest ensemble 

algorithm to classify land use/cover in a complex environment 

 

2.1 Abstract 

 

The present study sought to assess the ability of SPOT-5 data to accurately map land 

use/land cover (LULC) in a heterogeneous environment using the advanced Random 

Forest (RF) algorithm as well as the commonly used Maximum Likelihood (ML) 

classifier. Results showed that SPOT-5 data can successfully discriminate amongst 

broad LULC classes using both classifiers. However, finer classes with minimal 

spectral variability could not be adequately differentiated. A comparison between the 

two classifiers showed that RF yielded better results, and also provided meaningful 

insight into wavelengths that were most useful in the classification process. Overall, 

the study demonstrated the unprecedented ability of RF to accurately classify LULC 

objects relative to conventional statistical classifiers.  

Keywords: SPOT-5; land use/cover classification; Random Forests; Maximum 

Likelihood; comparison 
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2.2 Introduction 

Land use/land cover (LULC)  is dynamic in nature and is an important factor for understanding 

the interaction of anthropogenic activities with the environment (Mahdavi, 2010). Furthermore, 

LULC data is among the most important and most universally used terrestrial datasets (Loveland 

et al., 2000). Scientists and government agencies need timely and accurate LULC information 

for a variety of  applications such as natural resource management (Foody and Mathur, 2004a), 

environmental monitoring (Chen and Stow, 2003), and ecological monitoring of vegetation 

communities (Pal and Mather, 2004). Without this information, policymakers often fail to make 

decisions or make incorrect decisions (Haack and English, 1996).  

Traditionally, LULC maps were derived from field surveys with GPS receivers, manual human 

interpretation on hard-copy maps or aerial photographs (Anderson et al., 1976; Yuan et al., 

2005). However, the conventional methods based on fieldwork are usually expensive, time 

consuming, labor intensive, and often lack the necessary geometric accuracy (Li and Shao, 

2012). Remote sensing offers a practical and economical means to mapping LULC, especially 

over large areas (Mathur and Foody, 2008). New satellite-borne instruments collect data in the 

visible and infrared portions of the spectrum at resolutions ranging from a few meters to a 

kilometer, presenting unique benefits for the detection of Earth surface materials (Kavzoglu, 

2009). The rapid improvement in remote sensing technologies have been propelled by three 

interconnected aspects, namely, advances in sensor technology and data quality, improved and 

standardized remote sensing methods, and research applications (Rogan and Chen, 2004). The 

advances in remote sensing technology have also resulted in the development of hyperspectral 

sensors.  

The potential of hyperspectral sensors to offer more discrimination amongst similar Earth surface 

objects has long been highlighted by earlier researchers (Bazi and Melgani, 2006; Ham et al., 

2005; Melgani and Bruzzone, 2004). These sensors capture spectral reflectance from ground-

cover objects in a number of narrow continuous spectral bands, acquiring an enormous amount 

of spectral information (Petropoulos et al., 2012b). The rich and detailed spectral data can be 

used to detect a large range of surface objects which cannot be identified by multispectral 

sensors (Ham et al., 2005). However, as hyperspectral sensors provide added spectral 
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information, they also carry new challenges such as the “curse of dimensionality”, also known as 

the Hughes effect (Bazi and Melgani, 2006; Chan and Paelinckx, 2008b). The high inter-band 

correlations and the need to determine multiple parameters contribute to the problems of 

classifying hyperspectral data (Pal, 2006). As a result, hyperspectral datasets have gained only 

limited acceptance for operational use, and many researchers opt for multispectral data for the 

classification of LULC (Loveland et al., 2000; Mariz et al., 2009; Perumal and Bhaskaran, 2010; 

Song et al., 2012; Immitzer et al., 2012; Pal, 2005; Ozdemir and Karnieli, 2011; Salberg and 

Jenssen, 2012; Sesnie et al., 2010).     

Depending on the spectral and spatial properties of the multispectral sensor used, the amount of 

classification accuracy attained varies significantly (Lu and Weng, 2007). If coarse resolution  

multispectral data is used (spatial resolution > 250m), analysis is generally limited to discerning 

between forested and non-forested areas, as coarse-resolution data is well suited for 

discriminating broad categories of LULC (Rogan and Chen, 2004). Moderate resolution satellites 

like Landsat, with spatial resolutions of 15-30m, can classify forests, grasslands and urban 

surfaces using the different spectral reflectance of each object, however, finer details cannot be 

reliably differentiated at these resolutions (Peters et al., 2011). In the recent decade, researchers 

have advocated for the use of high resolution sensors such as Quickbird and Ikonos, as these 

sensors allow the generation of geometrically detailed LULC maps (Mariz et al., 2009; Moran, 

2010). Another advantage of these high resolution sensors is that they greatly reduce the mixed-

pixel problem which is common in coarse resolution datasets, thus providing a greater potential 

to extract much more detailed information on LULC structures (Lu and Weng, 2005; Moran, 

2010).  

High resolution multispectral data however comes at a relatively high cost, hence, LULC maps at 

regional levels are usually based on medium-resolution satellite data such as Landsat Thematic 

Mapper (TM) and SPOT imagery (Fang et al., 2006). Incidentally, SPOT-4 satellite data has 

recently been used for the mapping of LULC in KwaZulu-Natal owing to its lower cost, longer 

history and higher frequency of archives (Ezemvelo, 2005). Unfortunately, the relatively coarse 

spatial (10m) and spectral resolution (4 bands) of SPOT-4 data means that LULC maps derived 

from SPOT-5 data are often judged to be insufficient in quality and thus not trustworthy for 

quantitative environmental applications, especially in complex (Manandhar et al., 2009). Recent 
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studies have however argued that unreliable LULC maps result from the use of traditional per-

pixel classifiers (Foody and Mathur, 2004a). A vast number of LULC maps are generated using 

traditional per-pixel classifiers such as minimum distance and linear discriminant analysis 

(Ghose et al., 2010). These traditional classifiers cannot effectively handle complex landscapes 

as well as the mixed pixel problem and therefore produce LULC maps that are prone to error (Lu 

and Weng, 2004).   

Over the years, some advanced techniques such as Random Forests (RF) have been introduced to 

overcome the shortcomings of statistical classifiers and produce improved classification 

performance. Recent comparisons suggest that these advanced non-parametric methods are 

superior to conventional parametric methods for LULC classification (Dixon and Candade, 2008; 

Pal and Mather, 2004; Song et al., 2012). However, none of the above mentioned comparisons 

have been conducted in an area characterized by landscape heterogeneity such as St Lucia, in the 

coastal areas of Eastern South Africa. Hence, the objective of this study was to compare the 

efficiency of the advanced RF algorithm and the commonly used Maximum Likelihood 

algorithm to classify LULC in a heterogeneous environment using moderate resolution (10 m) 

SPOT-5 data. Such a comparison is crucial as it enables environmental managers to make the 

correct decision in terms of selecting the appropriate classifier to use for generating reliable 

LULC maps. Moreover, the study sought to bridge the gap between previous studies by focusing 

on breaking down broad Level I classes (Commercial forest plantations and Sugarcane fields) 

into less complex Level II classes (Eucalyptus grandis and Pinus tree plantations; Young 

sugarcane and Mature sugarcane).    

 

2.3 Materials and Methods 

2.3.1 Study area  

The study area (Figure 1) is situated near St Lucia (28°22’21’’S and 32°24’52’’E), a small 

coastal town located in the KwaZulu-Natal province of South Africa. St Lucia lies 275 km north 

of the city of Durban and falls under the Mtubatuba Local Municipality. This town experiences a 

subtropical climate and has a mean annual temperature of 21.5°C (Feleke, 2010). Approximately 
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1200-1300mm of rain falls per annum and almost 60% of the annual rain falls during the summer 

months (Mafuratidze, 2010). The study site covers an area of approximately 136 km
2
 and is 

characterised by a number of LULC types. The south-western part of the study site is used for 

agricultural purposes and consists mostly of sugarcane fields. The south-eastern part, on other 

hand, is covered almost entirely by indigenous forest, whereas the north-eastern part consists 

mostly of natural growing vegetation. Towards the north western part of the study site, 

commercial forest plantations dominate. These plantations are owned by Mondi SA, a paper 

manufacturing company.  
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Figure 1. Location of the study area in relation to the rest of South Africa and KwaZulu-

Natal. An insert of a SPOT-5 (RGB=123) satellite image is provided. 
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 2.3.2 Data acquisition and pre-processing 

Satellite imagery of the study site was captured on 23 May 2011 under cloudless conditions by 

the SPOT-5 multispectral sensor. The image consisted of four bands with a spatial resolution of 

10 m with the exception of the Shortwave-Infrared (SWIR) band (20 m). The spectral ranges of 

the four bands were: Green (0.5 – 0.59 μm), Red (0.61 – 0.68 μm), Near-infrared (0.78 – 0.89 

μm), and SWIR (1.58 – 1.75 μm). The image was then orthorectified using georeferenced high 

resolution aerial photographs of St Lucia based on 20 ground control points. Using the 1
st
 order 

polynomial transformation technique, an overall Root Mean Square Error (RMSE) of 0.28% of a 

pixel was achieved. A visual assessment confirmed that the RMSE (0.28%) was sufficient as the 

image was aligned perfectly with the ancillary data (aerial photographs). Thereafter, the Fast 

Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm built into 

Environment for Visualizing Images (ENVI) 4.7 image processing software was used to 

atmospherically correct the image as described in the software package. Digital numbers (DNs) 

were converted to top-of-atmosphere reflectance using updated sensor calibration coefficients for 

SPOT-5 data provided by the SANSA thereby allowing retrieval of accurate reflectance spectra 

(Duro et al., 2012).   

 

2.3.3 Field data acquisition 

Using Hawth’s Analysis Tools (HAT) in ArcGIS 9.3 software, random points (n = 1080) were 

generated on a LULC map of the study area extracted from the KwaZulu-Natal Provincial LULC 

(KZNPLULC) map. The KZNPLULC map was developed in 2006 based on SPOT-4 satellite 

imagery and is available to the public at no cost from the following website: 

http://bgis.sanbi.org/kzn/landcover.asp. The points were then uploaded into a global positioning 

system (GPS) and used to navigate to the field sites. Once the sample point was located in the 

field, a 10× 10 m plot was created to cover a homogenous area of the LULC class and a GPS 

reading was then taken. Broad Level I classes such as Commercial forest plantations and 

Sugarcane fields were broken down into less complex Level II classes with the aid of ancillary 

data. For commercial forest plantations, the ancillary data was in the form of a forest stand map 

containing species data on all the plantations present in the study area.  The map suggested that 
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four distinct species of Pinus tree plantations occurred: Pinus elliottii, Pinus taeda, Pinus 

oocarpa and Pinus caribaea, whereas only two species of Eucalyptus grandis plantations were 

present: Eucalyptus grandis (Urophylla hybrid) and Eucalyptus grandis (Camaldulensis hybrid). 

For that reason, the commercial forest plantations were broken down into Eucalyptus grandis 

plantation and Pinus tree plantation. For sugarcane fields however, each field was classified as 

Young Sugarcane or Mature Sugarcane based on known planting. Additional reference data for 

locations that could not be accessed due to limiting factors such as rugged terrain were obtained 

by visually interpreting high resolution aerial photographs (0.5 m) of St Lucia. Thereafter, the 

HAT extension in ArcGIS 9.3 was used to randomly split the points into a training (70%) and 

validation (30%) dataset. The splitting of the datasets was performed three times in an effort to 

minimize any potential bias.  Training data were used to optimize the RF classification and to 

train the prediction model, whereas the validation data were used to test the quality and 

reliability of the prediction model (Mutanga et al., 2012). 

 

2.3.4 Classifiers   

The Maximum Likelihood (ML) classifier is the most commonly used supervised method in 

remote sensing and is based on Bayesian probability theory (Kavzoglu and Colkesen, 2009; 

Richards, 2006). Maximum Likelihood assumes that the statistics for each category have normal 

distribution and determines the possibility that each pixel belongs to a specific class (Mingjie et 

al., 2010). Unless the user selects a probability threshold, all pixels are classified and allocated to 

the LULC category that has the greatest likelihood. Maximum Likelihhod was utilized in this 

study as it is often used as a baseline for comparing machine learning classifiers (Wulder and 

Franklin, 2003). The Random Forests (RF) classifier on the other hand, is an ensemble algorithm 

developed in the field of machine learning that uses a similar but improved method of bagging 

(Gislason et al., 2006; Walton, 2008).  This classifier operates by creating multiple classification 

and regression trees, each trained on a bootstrapped sample of the original training data 

(Loosvelt et al., 2012).  
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Each tree created then casts a unit class vote, with the final classification determined by an 

amongst-tree plurality decision (Watts et al., 2009; Peters et al., 2011). For each of the new 

training sets that are created, approximately a third (1/3) of the samples are randomly left out, 

known as the out-of-bag (OOB) samples (Chan and Paelinckx, 2008b). The OOB samples are 

subsequently used for the calculation of an unbiased error rate as well as variable importance, 

eliminating the requirement for a test dataset (Prasad et al., 2006; Peters et al., 2007; Loosvelt et 

al., 2012). Compared to other non-parametric classifiers, RF is not sensitive to noise (Watts and 

Lawrence, 2008), does not suffer from over-fitting or a long training time (Loosvelt et al., 2012), 

and is computationally faster (Rodriguez-Galiano et al., 2012a). Other key advantages of RF 

include its capability to determine variable importance (Rodríguez-Galiano et al., 2012b), and 

handling unbalanced data sets (Watts et al., 2009).  

 

2.3.5 Optimization of RF parameters   

The success of the RF classifier depends on the optimization of key parameters (ntree and mtry). 

The grid search method was therefore used to optimize the RF classifier using a 10-fold cross 

validation. The concept behind the grid search technique is that different pairs of parameters are 

evaluated and the one yielding the highest level of accuracy is selected (Kavzoglu and Colkesen, 

2009). To establish the optimal value for the RF parameters, a number of experiments (n = 60) 

were carried out using different combinations of ntree and mtry. The experiments were carried 

out three times as the data was also split three times into a training (70%) and validation (30%) 

dataset. The value of ntree ranged between 500 and 10 000 using intervals of 500 while mtry was 

tested from 2 to 4 using intervals of 1.   

 

2.3.6 Accuracy assessment  

“A classification is not complete until its accuracy is assessed” (Lillesand et al., 2008). Map 

users require accuracy information to indicate the quality of LULC maps and their suitability for 

a particular purpose (Foody, 2004). To determine the accuracy of the classification maps, a 
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confusion matrix (Congalton, 1991) was built for each map and the Overall Accuracy (OA), 

User’s Accuracy (UA), Producer’s Accuracy (PA) were computed. OA refers to the number of 

pixels from the validation dataset that have been correctly classified over the total number of 

pixels used for the accuracy assessment and is expressed in percentage (Petropoulos et al., 

2012b). UA reflects the probability that a pixel belongs to a certain LULC class and the 

algorithm has labeled the pixel correctly into the same LULC class, whereas PA indicates the 

probability that the algorithm  has properly allocated an image pixel (Petropoulos et al., 2012a). 

The kappa index is the most widely used measure of assessing the amount of agreement between 

the reference and validation datasets (Foody, 2009a). However, this method is inadequate if the 

same sample sites are used as it assumes that samples employed for the classification are 

independent (Manandhar et al., 2009). Moreover, kappa indices have fundamental conceptual 

flaws, such as being undefined even for simple cases (Pontius Jr and Millones, 2011). Due to the 

large number of limitations, Pontius Jr and Millones (2011) recommended that researchers 

abondone the use of kappa indices and replace these indices with a more useful and simpler 

approach that focuses on two components of disagreement between maps. The present study 

therefore used allocation disagreement and quantity disagreement measures as proposed by  

Pontius Jr and Millones (2011).  

 

2.3.7 Statistical significance of classification results  

In this study, the McNemar test was used to assess whether a statistically significant difference 

exists in the accuracies obtained by the two image classifiers. This is a non-parametric test that is 

based upon confusion matrices that are 2 by 2 in dimension (Foody, 2004). The test is based on 

the standardized normal test statistic.  

                                                        Z =          (1) 

Where  represents the number of pixels that are incorrectly allocated by algorithm 1 but 

correctly allocated by algorithm 2, and  indicates the number of pixels that are correctly 

allocated by algorithm 1 but incorrectly allocated by classifier 2 (Manandhar et al., 2009; 
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Petropoulos et al., 2012b). The analysis can also be based on a chi-square distribution as below. 

The square of Z follows a chi-squared distribution with one degree of freedom (Foody and 

Mathur, 2004a).  

                                                          χ
2
=                                                                         (2)                                                                                                                                                     

Two classification outputs can be declared significantly different if Z is greater than 1.96 at 5% 

significance level (Foody, 2009b). 

 

2.4 Results  

2.4.1. Optimization of RF parameters   

The RF parameters were optimized so as to determine the combination of parameters that yielded 

the lowest OOB error for each of the three randomly split datasets. The OOB estimate of error 

was used as a measure of assessing the prediction accuracy. Results showed that the lowest OOB 

error (22.75%) was produced by a combination of ntree and mtry values of 3500 and 2 

respectively. The parameters were therefore selected to perform the final classification and 

generate the RF based classification map.  It was also discovered that the default value of mtry (n 

= 2), which is the square root of input variables (Mansour et al., 2012), produced the lowest 

OOB error in each of the three calibration datasets.    

 

2.4.2. RF variable importance 

The RF variable importance was used to rank the importance of each of the SPOT-5 bands in the 

landscape classification process. Results showed that the near-infrared band was the most 

instrumental variable in the classification of the 12 LULC classes considered in this study 

(Figure 2A). The Red and Green bands on the other hand were ranked 2
nd

 and 3
rd

 respectively, 

whereas the Shortwave Infrared (SWIR) band was the least important variable in the 

classification. The results concerning the importance of SPOT-5 bands in discriminating 
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individual LULC classes (Figure 2B), showed that the near-infrared band played a fundamental 

role in the classification of 6 out of the 12 classes considered in this study. These six classes 

were: Coastal Sand (CS), Eucalyptus grandis plantations (EU), Grassland (GL), Wetland (WT), 

Settlements (SM) and Young Sugarcane (YS). The Red band on other hand played a pivotal role 

in the classification of Indigenous Forest (IF) and Pinus tree plantations (PS) whereas Green 

wavelengths aided in classifying Bare Soil (BS) as well as Mature Sugarcane (MS). The SWIR 

region of the spectrum helped significantly in the classification of water bodies i.e. River (RV) 

and Ocean (OC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. The importance of SPOT-5 bands in LULC classification; for 

the entire LULC classes (A) and for each individual LULC class (B). The 

highest mean decrease in accuracy indicates the most important band. The 

classes are: BS (Bare soil), CS (Coastal sand), EU (Eucalyptus grandis 

plantation), GL (Grassland), IF (Indigenous forest), MS (Mature 

sugarcane), OC (Ocean), PS (Pinus tree plantation), RV (River), SM 

(Settlements), WT (Wetland), and YS (Young sugarcane).  
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2.4.3. Visual comparison of classification maps  

Classified data often manifest a “salt-and pepper” appearance as a result of the  inherent spectral 

variability encountered by a classifier when applied on a pixel-by-pixel basis. In such situations 

it is important to smooth the classified output to show only the dominant classification (Lillesand 

et al., 2008). In that regard, post classification smoothing was applied to the classified images so 

as to eliminate isolated pixels and generate a less noisy image (Al-Ahmadi and Hames, 2008). A 

majority filter (5 × 5 kernel) was applied to the two images as proposed by Lillesand et al. 

(2008) and the results were then analyzed. The results (Figure 3) showed that both classifiers 

performed relatively well in classifying some of the broader cover types such as Indigenous 

Forest, Grassland, and Bare Soil. However, there were minor problems encountered in mapping 

other broad cover types such as Eucalyptus grandis and Pinus tree plantations, Mature and 

Young Sugarcane, as well as River and Ocean. Specifically, some sections of the Eucalyptus 

grandis plantations were frequently misclassified as Pinus tree plantation. Conversely, there 

were sections of the Pinus tree plantations misclassified as Eucalyptus grandis plantation. In 

addition, both algorithms found it difficult to discriminate between Young Sugarcane and Mature 

Sugarcane. Small sections of the river were incorrectly classified as ocean and there were also 

parts of the ocean misclassified as river. Classes that cover relatively smaller spatial extents such 

as Settlements and Wetland were not mapped as accurately as the broader LULC classes.  
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2.4.4. Accuracy assessment  

Tables 1 and 2 contain detailed information on the confusion matrices computed for both ML 

and RF classifiers. The overall accuracies from the two tables indicate that the advanced RF 

algorithm outperformed the ML classifier. RF achieved an overall accuracy of 80.2% whereas 

ML attained an overall accuracy of 65.1%. For both classifiers however, user’s and producer’s 

Figure 3. Classification maps generated by Random Forests (A) and Maximum Likelihood (B) 

classifiers. Map A was generated using EnMap Box imageRF while Map B was computed using 

ENVI 4.7 image processing software. 

A B 
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accuracy values for Bare Soil, Grassland and Indigenous Forest were relatively high. Precisely, 

both user’s and producer’s accuracy values ranged between 80 and 89% for ML, and between 90 

and 93% for RF. However, there was a slight decline in accuracy when the same values were 

assessed for the finer LULC classes such as Eucalyptus grandis plantation (EU) and Pinus tree 

plantation (PS), Mature Sugarcane (MS) and Young Sugarcane (YS), as well as Ocean (OC) and 

River (RV). Both user’s and producer’s values for the six classes ranged between 69 and 86% for 

RF, while the same values were significantly lower for ML as they ranged between 54 and 77%.  

Settlements (SM) and Wetlands (WT) produced the worst performance amongst the 12 LULC 

classes considered in this study. The two classes failed to achieve a single value above the 68% 

mark. 

 

Table 1. Confusion matrix and associated Random Forest accuracies based on the 30% 

independent test dataset. The accuracies include: Overall accuracy (OA), user’s accuracy (UA) 

and producer’s accuracy (PA). 

 

 

  
BS CS EU GL IF MS OC PS RV SM WT YS 

Row 

total 

UA 

(%) 

BS 30 0 0 0 0 0 0 0 0 0 2 0 32 93.75 

CS 3 18 0 0 0 0 0 0 0 5 0 0 26 69.23 

EU 0 0 20 0 0 0 0 0 0 0 3 0 23 86.96 

GL 0 1 0 28 0 0 0 0 0 1 0 0 30 93.33 

IF 0 0 1 0 29 0 0 1 0 0 0 0 31 93.55 

MS 0 0 4 0 0 20 0 0 1 0 0 0 25 80 

OC 0 2 0 0 0 0 23 0 3 0 0 0 28 82.14 

PS 0 0 0 0 1 4 0 22 0 2 1 0 30 73.33 

RV 0 0 0 0 0 0 4 0 22 1 0 2 29 75.86 

SM 0 3 1 0 0 1 0 0 0 13 3 1 22 59..09 

WT 0 0 0 3 0 0 0 0 0 2 17 3 25 68 

YS 0 0 0 0 0 0 0 3 0 1 3 16 23 69 

Column 

total 
33 24 26 31 30 25 27 26 26 25 29 22 324 

 PA (%) 90.91 75 76.92 90.32 96.67 80 85.19 84.62 84.62 52 58.62 72.73 

  OA (%) 80.2              
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Table 2. Confusion matrix and associated Maximum Likelihood (ML) accuracies based on the 

30% independent test dataset. The accuracies include: Overall accuracy (OA), user’s accuracy 

(UA) and producer’s accuracy (PA).  

 

BS CS EU GL IF MS OC PS RV SM WT YS 
Row 

total 

UA 

(%) 

BS 21 0 0 0 2 0 0 0 0 1 0 0 24 87.5 

CS 0 12 0 0 2 0 4 2 0 0 2 0 22 54.55 

EU 0 0 17 0 0 4 0 6 0 0 0 0 27 62.96 

GL 0 0 0 26 0 2 0 1 0 0 0 0 29 89.66 

IF 0 0 2 1 32 0 4 0 0 1 0 0 40 80 

MS 2 0 0 0 0 25 0 1 7 1 0 0 36 69.96 

OC 0 0 4 0 0 0 8 0 0 0 5 0 17 47.05 

PS 0 0 4 0 0 2 0 16 3 0 0 2 27 59.26 

RV 2 2 0 0 0 0 0 0 18 0 8 0 30 60 

SM 0 8 0 0 0 0 0 0 0 4 0 1 13 30.77 

WT 0 0 0 2 0 0 0 2 0 3 12 4 24 54.17 

YS 0 0 0 0 0 9 0 0 2 1 0 24 

 

66.67 

Column 

total 25 22 27 29 36 42 16 28 30 11 27 31 
324 

 PA (%) 84 54.55 62.96 89.66 88.89 59.52 50 57.14 60 36.36 44.44 77.41 

  OA 66.1 

              

 

Table 3 contains information of the performance of the Kappa and Total disagreement measures 

of accuracy assessment. Total disagreement is the sum of Quantity disagreement and Allocation 

disagreement values. Results indicated that Kappa disagreement values for ML and RF were 

37% and 22% respectively. Total disagreement values on the other hand were lower for both 

classifiers.  Precisely, the Total disagreement for ML was 34% whereas the Total disagreement 

for RF was 21%. The lower Total disagreement suggests that the Kappa index reports more error 

than is actually present in the classification (Adelabu et al., In press).    
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Table 3. Comparison of Kappa and Total disagreement methods of classification assessments. 

All calculations were done using the confusion matrix proposed by Pontius Jr and Millones 

(2011) available from www.clarku.edu/~rpontius.  

 

2.4.5. Statistical significance of classification results  

In this study, the McNemar test was utilized for testing the statistical significance and superiority 

of one algorithm over the other. Of the total pixels (n =324) compared for the accuracy 

assessment, 256 were correctly classified by both classifiers, whereas 34 were misclassified by 

both algorithms. On other hand, 20 pixels were correctly classified by RF (classifier 1) but not by 

MLC (classifier 2) and 14 pixels were correctly classified by ML but not by RF. The McNemar 

test thus yielded a Z value of 2.45 at 5% level of significance. Since the value of Z was greater 

than 1.96, the difference in accuracy between the two classifiers was considered to be 

statistically significant, and a conclusion was reached that the RF algorithm is superior to the 

conventional ML classifier.  

 

2.5 Discussion   

In the last three decades, coarse resolution multispectral sensors such as Landsat have been used 

extensively for the classification of Earth surface features. However, LULC maps derived from 

such datasets are often regarded as inadequate in quality if based on traditional statistical 

classifiers. The problem with conventional statistical classifiers is that they assume members of 

all class data are normally distributed, which is not true for remote-sensing images (Song et al., 

Parameters ML RF 

Kappa 0.63 0.78 

Kappa disagreement (%) 37 22 

Allocation disagreement (%) 30 17 

Quantity disagreement (%) 4 4 

Total disagreement (%) 34 21 

http://www.clarku.edu/~rpontius
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2012). With the advent of advanced machine learning classifiers, the use of traditional per-pixel 

classifiers has gradually decreased and high classification accuracy can be achieved. In addition, 

advanced machine learning algorithms have been shown to increase classification accuracy in 

coarse resolution datasets (Duro et al., 2012; Dixon and Candade, 2008; Na et al., 2009). In this 

study, SPOT-5 (10 m) data was used to classify LULC in St Lucia, KwaZulu-Natal using the RF 

ensemble algorithm. The performance of the RF classifier was then compared to that of the well-

known ML algorithm as this classifier is often used as the baseline for comparing machine 

learning classifiers (Wulder and Franklin, 2003). The study also aimed to bridge the gap between 

previous studies by breaking down broader Level I classes (Commercial forest plantations and 

Sugarcane fields) into finer Level II classes (Eucalyptus grandis plantation and Pinus tree 

plantation; as well as Mature Sugarcane and Young Sugarcane).  

The study has shown that the use of SPOT-5 imagery in conjunction with RF significantly 

improves the accuracy of LULC maps when compared to the traditional ML method. The RF 

based classifier achieved an overall accuracy of 80.2% compared to 66.1% for the ML method. 

The results were found to be consistent with those of Na et al. (2009), and also Waske and Braun 

(2009), as they clearly demonstrated the superiority of RF over ML. The superior nature of RF 

can be attributed to its non-parametric approach which helps avoid some of the problems 

encountered by conventional statistical classifiers (Pal, 2005; Rodríguez-Galiano et al., 2012b). 

RF has no distributional assumptions on the input data and does not suffer from overfitting nor a 

long training time (Watts and Lawrence, 2008; Watts et al., 2009). Moreover, RF is easy to use 

and requires only two parameters (ntree and mtry) to be defined. Previous studies  have shown 

that the default value of mtry, defined as the square root of input variables, results in low OOB 

error (Mansour et al., 2012; Adam et al., 2012). Similar conclusions were drawn in this study as 

the default value of mtry (n = 2 in this case) repeatedly produced low OOB error with all ntree 

values.  

Furthermore, using the RF algorithm, the study was able to provide an insight into the 

importance of each of the SPOT-5 bands in the landscape classification process. Results 

indicated that the near-infrared band was the most instrumental variable in discriminating 

between the different LULC classes considered in this study. The dominance of this band can be 

explained by the fact that wavelengths from this region help in discriminating between various 
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surface cover types such as plant species, soil types and water bodies, which were all present in 

the study area (Lillesand et al., 2008).  Interestingly, the shortwave-infrared band was the least 

important variable in the classification. This band is useful in detecting moisture and effectively 

separating water bodies (Duro et al., 2012), and thus did not have a major role to play in the 

classification as only 2 of the 12 LULC classes were water bodies (River and Ocean). In 

addition, the shortwave-infrared band has a spatial resolution of 20 m (Lillesand et al., 2008), 

and is unable to detect ground surface objects less than 20 m in size.   

Using EnMap Box (imageRF), as well as ENVI 4.7 image processing software, classification 

maps were generated for both RF and ML classifiers respectively. Generally, both classifications 

showed a relatively accurate depiction of the larger LULC categories in the study area. 

Particularly, the classifiers were efficient in the mapping of three classes (Indigenous Forest, 

Grassland and Bare Soil). The large spatial extent of the classes resulted in the good performance 

of algorithms as homogenous areas for collecting training samples were relatively abundant and 

easy to identify. For the smaller LULC classes however, there was a remarkable reduction in 

classification performance mainly due to the following factors. Firstly, the dataset used in this 

study had a relatively coarse spatial resolution (10m) and thus suffered from the mixed pixel 

problem (Lu and Weng, 2007). Secondly, homogenous areas for collecting training samples are 

difficult to spot in coarse resolution data, especially when dealing with LULC classes that cover 

relatively small spatial extents (Foody and Mathur, 2004b).  

Generally, both classifiers seemed to experience difficulties in discriminating between classes 

with similar spectral profiles. These classes were Eucalyptus grandis plantation and Pinus tree 

plantation, Mature Sugarcane and Young Sugarcane, as well as River and Ocean. To counteract 

this problem, an alternative approach would be to use multispectral data with both higher spatial 

and spectral resolution such as WorldView-2. Overall, the results of this study indicate that 

SPOT-5 (10 m) data can be successfully used for mapping broad LULC classes. 
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2.6 Conclusion 

The present study used SPOT-5 data and the RF ensemble algorithm to classify LULC in a 

complex environment consisting of diverse LULC categories and the following conclusions were 

reached: 

 SPOT-5 (10 m) multispectral data has the potential to discriminate broad LULC 

categories in heterogeneous ecosystems using the RF algorithm. 

 However, finer LULC classes such as Eucalyptus grandis plantation and Pinus tree 

plantations can often be difficult to separate using moderate resolution SPOT-5 data due 

to the mixed pixel problem.    

 When compared to the conventional ML method, the RF algorithm produces better 

results and can identify optimal wavelengths for classifying specific LULC types.  

 SPOT-5 data remains a powerful tool for LULC classification so long as advanced 

machine learning classifiers are used.  

The next section will therefore assess whether WorldView-2 multispectral data with its 

improved spatial (2m) and spectral resolutions (8 bands) could be used to resolve the 

problems encountered by traditional coarse resolution datasets in small-scale LULC 

mapping.  

 

 

 

 

 

 

 



26 

 

CHAPTER 3 

 

Discriminating spectrally similar land use/cover classes using WorldView-2 

imagery in KwaZulu-Natal, South Africa 

 

3.1 Abstract 

Multispectral image data has been applied in land use/cover (LULC) classification 

with varying results. Problems are encountered when separating features with 

subtle differences such as species or age. WorldView-2 multispectral data, with 

strategically positioned bands, was used to discriminate amongst three sets of 

spectrally similar LULC classes near St Lucia (KwaZulu-Natal) using the advanced 

Random Forest (RF) algorithm. Results from the accuracy assessment indicated 

that WorldView-2 imagery in conjunction with RF can be used to differentiate 

between LULC categories exhibiting similar spectral properties as the classification 

yielded an overall accuracy of 91.23%. Furthermore, RF variable importance 

measures provided insight into wavelengths most influential in the classification 

process. Overall, the study demonstrated the utility and robustness of WorldView-2 

image data in classifying LULC features at fine spatial scales, which enables 

effective and efficient applications for land use planning and management.  

Keywords: WorldView-2; discrimination; spectrally similar classes; Random Forest 
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3.2 Introduction  

Over the years, a number of studies have sought to discriminate spectrally similar ground-cover 

objects such as soil types (Metternicht and Zinck, 1997; Brown et al., 1999), forest tree species 

(Van Aardt, 2000), and crop varieties (Daughtry, 2001). Generally, the studies have used various 

approaches ranging from field-work based methods (Jia et al., 2011), to sophisticated laboratory 

based techniques (Song et al., 2011). Recently however, research on spectral discrimination has 

focused on the use of remote sensing as a tool to effectively separate land use/cover (LULC) 

classes exhibiting similar spectral responses (Pugh and Waxman, 2006). Compared to 

conventional methods, remote sensing is cost-effective, less-time-consuming and reduces 

intensive field sampling and laboratory analysis (Adam et al., 2012). Multispectral sensors such 

as Landsat and SPOT cover vast areas of land at frequent intervals, making remote sensing an 

ideal alternative to conventional methods. However, traditional multispectral sensors (Landsat 

and SPOT ) are limited by coarse spatial resolution and are therefore unable to adequately 

differentiate between objects smaller than the sensor’s coarse ground resolution (Immitzer et al., 

2012; Moran, 2010).   

The development of high resolution multispectral sensors such as Ikonos provides unique 

opportunities for those seeking to classify LULC into finer levels of detail (Mansour et al., 

2012). Due to technological limitations however, the sensors have been limited to providing 

imagery comprising only four spectral bands, making the distinction of LULC classes of similar 

coloration difficult (Zhou et al., 2012). To tackle this problem, researchers have recommended 

the use of hyperspectral data as these contain hundreds of observation channels with the 

capability to discern subtle variations in ground-cover objects (Melgani and Bruzzone, 2004). 

Nonetheless, the use of hyperspectral image data carries its own limitations regarding cost, 

accessibility, processing and high dimensionality (Mutanga et al., 2012). With the availability of 

the WorldView-2 satellite, multispectral remote sensing has been transformed remarkably and 

limitations pertaining to coarse spatial and spectral resolution are now a thing of the past. 

(Novack et al., 2011; Peerbhay et al., In press). In addition to the four traditional  bands (Blue, 

Green, Red and Near-infrared 1), WorldView-2 contains four new bands (Red edge, Yellow, 
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Coastal blue and Near-infrared 2) that were previously unavailable in conventional high 

resolution multispectral sensors  (Marchisio et al., 2010; Zengeya et al., 2012).   

The additional four bands are expected to offer an improvement of up to 30% in  accuracy, when 

compared to classifications conducted with only the four conventional bands available in sensors 

such as GeoEye-1 or Ikonos (Zhou et al., 2012). In an urban context, Novack et al. (2011) has 

already shown that the use of these bands significantly improves classification results relative to 

classifications performed using only the four traditional bands offered by the Quickbird-2 sensor. 

Moreover, the study showed that targets with similar spectral responses such as ceramic tile 

roofs and bare soil, as well as asphalt and dark asbestos roofs can be easily separated when the 

additional bands of WorldView-2 were employed using the object-based classification 

procedure. However, this study was conducted in an urban setting, making its results 

inapplicable to all landscapes. The question therefore remains whether the new bands in the 

WorldVeiw-2 sensor could help improve discrimination amongst spectrally similar classes that 

are not commonly found in urban areas such as Eucalyptus grandis and Pinus tree plantations; 

mature sugarcane and young sugarcane, as well as water from the river and ocean (Figure 1).  

Numerous classifiers have been developed for the classification of remotely sensed imagery, 

with varying degrees of success (DeFries and Chan, 2000; Huang et al., 2002). Amongst these 

classifiers, the maximum likelihood and minimum distance algorithms have been the most 

widely used (Ghose et al., 2010; Kavzoglu and Mather, 2003). Popularity of the two algorithms 

can be attributed to their simplicity and availability in most software packages, as well as their 

ability to generate acceptable results (Lu and Weng, 2005; Song et al., 2012). Both these 

classifiers, however,  have their constraints in relation to distributional assumptions and 

restrictions on the input data types (Kavzoglu, 2009; Kavzoglu and Mather, 2003). Scientists and 

practitioners have therefore made great efforts in developing advanced classification techniques 

in an effort to overcome the shortfalls of traditional statistical classifiers, and produce improved 

classification performance (Kavzoglu, 2009; Lu and Weng, 2007). Examples include expert 

systems, neural networks, decision trees and support vector machines (Friedl and Brodley, 1997; 

Kavzoglu, 2009; Lu and Weng, 2007). More recently, attention has been focused on the use of 
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the Random Forest (RF) algorithm for solving problems associated with the classification of 

remotely sensed imagery (Rodríguez-Galiano et al., 2012b).  

Random Forest is an ensemble algorithm developed in the field of machine learning that uses a 

decision tree as the base classifier (Chan and Paelinckx, 2008b). This algorithm is relatively 

unknown and has not been explored exhaustively in the remote sensing community (Watts et al., 

2009). Some studies suggest that RF is unexcelled in accuracy among current algorithms 

(Lawrence et al., 2006; Watts and Lawrence, 2008). As a result, there has been a marked 

increase in the number of studies employing RF for remote sensing image classification (Stumpf 

and Kerle, 2011; Peters et al., 2011; Chan et al., 2012). In this study, WorldView-2 multispectral 

data was used to discriminate amongst three pairs of spectrally similar LULC classes using the 

advanced RF ensemble algorithm.  
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Spectrally similar 
classes 

Sample plots from Worldview-2 image used to 
compute the spectral profile  

Averaged spectral profiles  

Eucalyptus grandis 
(A) and Pinus tree 
plantations (B) 

 
   

 
   Eucalyptus grandis plantation 
 Pinus tree plantation 

 
Mature Sugarcane (A) 
and Young Sugarcane 
(B) 
 
 

 
 

 

 

 

  
 
 

  Mature sugarcane 
     Young sugarcane 

River water( A) and 
Ocean water (B) 

 
 
 
 

 
 

 River water 
 Ocean water 

Figure 4. Three sets of spectrally similar classes assessed in this study, with sample image plots 

and resultant spectral profiles highlighting challenges presented for discrimination. 
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3.3 Materials and Methods 

 

3.3.1 Study area  

The study was conducted in a heterogeneous ecosystem located near the small town of St Lucia, 

KwaZulu-Natal (refer to Figure 1). The site covers an area of approximately 136 km
2
 and 

extends from 32°18'43.805" to 32°25'25.975" E, and from 28°20'39.114" to 28°27'23.095” S. 

This area is characterized by extensive commercial plantations, sugarcane farms and indigenous 

forest. The area covers part of the Mfolozi/Msunduzi estuarine system which flows in a south 

westerly direction as it emerges from the Indian Ocean. Wetlands were once dominant in this 

ecosystem before agriculture subsequently converted 61% of the wetland system into highly 

productive sugarcane estates (Vivier et al., 2010). Rainfall ranges from 1200 mm to 1300 mm 

per annum with approximately 60 % of the rainfall falling in summer (Mafuratidze, 2010).   

 

3.3.2 Image acquisition and pre-processing  

High resolution multispectral imagery was acquired over the study area using the WorldView-2 

sensor on 12 May 2012. The image was acquired during sunny, low wind and clear skies at 

12:47 am (GMT) and consisted of 8 multispectral bands with a 2 m spatial resolution. The 

spectral ranges of the bands were as follows: Coastal blue (400–450 nm), Blue (450–510 nm), 

Green (510–581 nm), Yellow (585–625 nm), Red (630–690 nm), Red-edge (705–745 nm), Near-

infrared 1 (770–895 nm), and Near-infrared 2 (860–1040 nm). Digital numbers (DN) from the 

image were then converted into top of atmosphere reflectance using the Quick Atmospheric 

Correction (QUAC) algorithm built into Environment for Visualising Images (ENVI) 4.7 image 

processing software (ENVI, 2006). This ensures that meaningful spectral reflectance signatures  

are derived from the image for each of the LULC classes (Immitzer et al., 2012). Thereafter, the 

image was geometrically corrected using georeferenced aerial photographs (0.5m) based on 20 

ground control points that were evenly distributed across the two images (Zengeya et al., 2012). 

The 1st order polynomial transformation technique was applied, and a Root Mean Square error 
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(RMSE) of 0.33% of a pixel was achieved. The RMSE obtained from the geo-rectification 

process was considered sufficient as classes of interest from both images overlapped perfectly 

(Ozdemir and Karnieli, 2011).  

 

3.3.3 Field data collection  

Hawth's Analysis Tools (HAT) in ArcGIS 9.3 software was used to generate 540 sample points 

on a LULC map of the study area extracted from the KwaZulu-Natal Provincial LULC 

(KZNPLULC) map. To ensure that sample points were distributed only over the LULC classes 

considered in the study, spatial masking was applied to other LULC classes in the map so as to 

retain only the classes of interest i.e. Commercial forest plantations, Sugarcane fields, and Water 

bodies. The KZNPLULC map is available for free download from the following website: 

http://bgis.sanbi.org/kzn/landcover.asp, and was developed in 2006 using SPOT-4 satellite 

imagery. The points were subsequently stored in a global positioning system (GPS) device and 

used to locate the field sites. Once the sample site was located in the field, a 10 m × 10 m plot 

was created to cover a homogenous area of the LULC class and a GPS reading was recorded. 

Ancillary data was then used to distinguish Eucalyptus grandis plantations from Pinus tree 

plantations, as well as young sugarcane fields from mature sugarcane fields. For commercial 

forest plantations, the ancillary data was in the form of a forest stand map containing species data 

on all the commercial forest plantations present in the study area.  For sugarcane fields however, 

each field was classified as either mature sugarcane or young sugarcane based on known 

planting. Additional reference data for locations that could not be accessed due to limiting 

factors such as rugged terrain was obtained by visually interpreting high resolution aerial 

photographs (0.5 m) of St Lucia. The HAT extension in ArcGIS 9.3 was then used to randomly 

split the data (n = 540) into a 70% training (n = 378) and 30% validation (n = 162) dataset. 

Training data was used to optimize the RF classification and to train the prediction model, 

whereas the validation data was used to test the quality and reliability of the prediction model 

(Ismail and Mutanga, 2010). The splitting of the dataset was performed three times to avoid any 

potential bias that may occur in the selection process.  
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3.3.4 Random Forest (RF)  

The Random Forest (RF) algorithm is an ensemble-based technique established by Leo Breiman 

and Adele Cutler to alleviate the instability of conventional ensemble algorithms (Mansour et al., 

2012). RF classifies remote sensing imagery by building a large number of classification and 

regression trees that are trained on random bootstrapped samples of the calibration data (Sesnie 

et al., 2010). Each of these trees are built using a new subset from the original training dataset 

that contains approximately 2/3 of the cases (Rodriguez-Galiano et al., 2012a). The nodes of the 

trees are then split using the best split variable amongst a subset of randomly nominated 

variables (Loosvelt et al., 2012). Pixels are then assigned to classes that obtain the greatest 

number of votes from the ensemble of classification  trees (Ghimire et al., 2010). The remaining 

one-third (1/3) of the training data is included as part of another subset known as the “out-of-

bag” (OOB) sample (Rodríguez-Galiano et al., 2012b). The OOB sample is used as a measure of 

accuracy that produces results comparable to external accuracy assessments, so long as there is 

no bias in the reference data (Watts et al., 2009). In contrast to conventional statistical methods, 

RF is not sensitive to background noise, does not over-fit the data distributions, and is capable of 

handling unbalanced datasets (Walton, 2008). RF is also simple to train because it requires just 

two input parameters: (1) the number of trees (ntree), and (2) the number of input variables 

(mtry) (Dye et al., 2011).  

 

3.3.5 Variable importance using the RF algorithm 

Variable importance provides an indication of the relative value of predictor variables in the 

classification (Walton, 2008). Random Forest determines three variable importance measures, (i) 

the number of times a variable is chosen, (ii) the Gini importance and, (iii) the permutation 

accuracy importance measure (Adam et al., 2009). The third measure is regarded as the most 

fundamental owing to its ability to evaluate variable importance through internal OOB estimates 

while the forests are constructed (Mansour et al., 2012; Adam et al., 2012). Another key 

advantage of the RF variable importance is that it not only deals with the impact of each variable 

individually, but also considers multivariate interactions among variables (Dye et al., 2012). In 
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this study, the mean decrease in accuracy (MDA) was used to measure and rank the importance 

each variable, and thereafter identify the bands which contributed the most in the classification 

process (Mansour et al., 2012; Adam et al., 2012).   

 

3.3.6 Classification accuracy assessment 

One of the most common means of expressing accuracy is the preparation of a classification 

error matrix, otherwise known as a confusion matrix (Lillesand et al., 2008). Literature often 

suggests that a confusion matrix should be computed using an independent test data set that has 

not been used in the training phase (Mansour et al., 2012). In that regard, a 30% validation 

dataset (n = 162) which was set aside from the original dataset (n = 540) was used to assess the 

prediction performance of the RF based algorithm, while the training data (n = 378) was used to 

perform the classification. Subsequent to that, three measures were calculated i.e. overall 

accuracy (OA), user’s accuracy (UA), and producer’s accuracy (PA). OA is the average of the 

individual class accuracies, which are usually expressed in percentage (Mather and Koch, 2011). 

UA expresses the probability that a pixel belongs to a given class and the classifier has labelled 

the pixel correctly into the same given class (Petropoulos et al., 2012a). PA, on the other hand, 

indicates the probability that the classifier has correctly labelled an image pixel (Petropoulos et 

al., 2012b). 

 The kappa index has established itself as the most commonly used measure of assessing the 

amount of agreement between the reference data and the classifier used to perform the 

classification (Foody, 2004). However, recent studies (Pontius Jr and Millones, 2011) have 

shown that kappa indices are prone to error, and can often give information that is redundant or 

misleading for practical decision making. For this reason, Pontius Jr and Millones (2011)  

recommend that researchers abandon the use of kappa indices and replace these indices with a 

more useful and simpler approach that focuses on two components of disagreement between 

maps. In this study, quantity disagreement and allocation disagreement measures were used as 

recommended by the aforementioned authors. Quantity disagreement refers to the amount of 

pixels of a class from the training data that are different from the quantity of pixels of the same 

class in the test data. Allocation disagreement, on the other hand, refers to the number of pixels 
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that have a less than optimal spatial allocation in the test data , with respect to the training data 

(Pontius Jr and Millones, 2011). 

 

3.4 Results  

 

3.4.1 Tuning of RF parameters  

In an effort to determine the optimal RF parameters, mtry and ntree values were optimized using 

the grid search method and a 10-fold cross validation. The OOB estimate of error was then used 

as a measure of assessing the prediction performance of the different parameter combinations. 

Since the overall dataset (n = 540) was split into three calibration (70%) and validation (30%) 

datasets, parameters from the three datasets were compared and the one with the lowest OOB 

error was selected to perform the final classification. In terms of optimising the RF parameters, 

the best model yielded an OOB error of 8.16%, and was produced by ntree values of 3500 and 

4500 together with an mtry value of 3. However, since two ntree values yielded this value 

(8.16%), the larger ntree (4500) was chosen as the optimal ntree because literature suggests that 

a high number of trees results in a more stable model (Adam et al., 2012; Mansour et al., 2012). 

 

3.4.2 Variable importance  

In this study, the RF variable importance was used as a ranking index to determine the relative 

value of predictor variables in the classification. Based on the overall variable importance 

(Figure 3A), the Near-infrared 2 (NIR-2) and Near-infrared 1 (NIR-1) wavelengths played the 

most important role in the classification of spectrally similar LULC classes considered in this 

study. Similarly, the Coastal blue band (13.6%) also displayed relatively good performance, 

consequently yielding the third highest MDA amongst the 8 bands. Other variables that played a 

notable role in the classification were the Green (11.64%) and Red (11.4%) bands which were 

ranked fourth and fifth respectively by the RF variable importance algorithm. Interestingly, the 
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new Yellow band (7.7%) was the least important variable in the classification as it yielded the 

lowest MDA value.  

Results regarding the performance of each of the WorldView-2 bands in classifying individual 

LULC classes (Figure 3B) indicated that the NIR-2 band was crucial in the classification of 3 out 

of the 6 classes examined in the study. Precisely, the NIR-2 band was helpful in discriminating 

amongst the two water bodies (river (RV) and ocean (OC)), and also mature sugarcane (MS). 

The Coastal blue band, on the other hand, played the most important role in the classification of 

young sugarcane (YS). The significant wavelengths for classifying Eucalyptus grandis (EU) and 

Pinus (PS) tree plantations also differed, despite their resemblance in spectral curves. The Green 

band was relatively useful in the classification of Eucalyptus grandis plantations, while the Near-

imnfrared-1 (NIR-1) band was influential in classifying Pinus tree plantations.     
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Figure 5. The importance of WorldView-2 bands in the classification 

process; for all six classes considered in this study (A) and for classifying 

each class individually (B). The highest mean decrease in accuracy indicates 

the most important band. The spectrally similar classes of interest were: RV 

(River) versus OC (Ocean); PS (Pinus tree plantation) versus EU 

(Eucalyptus grandis plantation); and YS (Young sugarcane) versus MS 

(Mature sugarcane). 
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3.4.3 Traditional bands versus new bands  

Since the WorldView-2 sensor incorporates both traditional (n = 4) and new (n = 4) multispectral 

bands, the study sought to compare the differences in accuracies obtained using the two different 

sets of bands. Results indicated that the RF classification performed using the traditional 

multispectral bands (Blue, Green, Red and NIR-1) yielded an OOB error of 15.84%. On the 

other hand, the classification performed using only the four new spectral dimensions of 

WorldView-2 (Red edge, Yellow, Coastal blue and NIR-2) showed an improvement of 5.54% in 

accuracy as it yielded an OOB error of 10.3%.    

 

3.4.4 Accuracy assessment 

An accuracy assessment was performed for the RF based classification model using the 30% 

validation dataset. Based on this validation dataset, a confusion matrix was produced (Table 1). 

Results showed that the prediction performance of RF was satisfactory as the classification 

yielded an overall accuracy (OA) of 91.23%. Moreover, both user’s accuracy (UA) and 

producer’s accuracy (PA) values were relatively high as only 4 of the 12 observations were less 

than 90%. Despite the impressive results, there were still minor misclassifications encountered 

during the classification process. The values in bold in the confusion matrix highlight some of 

these complications. River (RV) was incorrectly classified as Ocean (OC) once, but Ocean was 

not incorrectly classified as River. Eucalyptus grandis plantation (EU), on the other hand, was 

misclassified twice as Pinus plantation (PS), whereas Pinus plantation was not misclassified as 

Eucalyptus grandis plantation. Young Sugarcane (YS) was misclassified once as Mature 

Sugarcane (MS), while Mature Sugarcane was not misclassified as Young Sugarcane. 

Interestingly, all classes with the exception of Ocean were misclassified as River once or twice 

(Table 1). 
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Table 1. Confusion matrix based on the 30% independent test dataset (n = 162 random points). 

The accuracies include: Overall accuracy (OA), user’s accuracy (UA) and producer’s accuracy 

(PA). The spectrally similar classes of interest were: RV (River) versus OC (Ocean); PS (Pinus 

tree plantation) versus EU (Eucalyptus grandis plantation); and YS (Young sugarcane) versus 

MS (Mature sugarcane). Bold values indicate accuracy relevant to the land-classes paired for 

discrimination. 

  

 

 

 

 

 

 

Kappa and Total disagreement measures of accuracy assessment are presented in Table 2. The 

Kappa disagreement measure obtained from the classification was 11%, whereas the Total 

disagreement computed from the allocation and quantity disagreement measures was 9%.  The 

fact that the Total disagreement (9%) is lower than the disagreement from Kappa (11%) suggests 

that there is less disagreement between the training and test datasets than the traditional Kappa 

index actually predicts (Adelabu et al., In press).     

 

 

 

 

 

RV OC EU PS YS MS 

Row 

Total 

UA 

(%) 

RV 27 1 0 0 0 1 29 93.1 

OC 0 20 0 2 0 0 22 90.9 

EU 1 0 26 2 1 0 30 86.67 

PS 2 0 0 23 0 0 25 92 

YS 2 0 1 0 25 1 29 86.21 

MS 1 0 0 0 0 26 27 96.3 

Row total 33 21 27 27 26 28 162 

 
PA (%) 81.82 95.24 96.3 85.19 96.15 92.86 

  
OA (%) 91.23 
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Table 2. Comparison of Kappa and Total disagreement methods of classification assessments. 

All calculations were done using the confusion matrix proposed by Pontius Jr and Millones 

(2011) available from www.clarku.edu/~rpontius. 

 

 

3.5 Discussion 

In the last decade, there have been numerous remote sensing studies aimed at discriminating 

LULC classes with similar spectral properties (Dalton et al., 2004; Pugh and Waxman, 2006). 

Hyperspectral datasets have generally shown great potential in this domain due to the narrow 

spectral channels that permit an in-depth detection of objects with subtle differences (Chang, 

2000; Johnson et al., 2008). More recently, however, multispectral datasets such as WorldView-

2 have emerged and attracted a lot of attention owing to the higher spatial (2 m) and spectral 

properties (8 bands). WorldView-2 provides great potential for distinguishing between spectrally 

related targets as wavelengths from this sensor are strategically positioned to detect slight 

variations in Earth surface features (Ozdemir and Karnieli, 2011). In that regard, the present 

study sought to evaluate the performance of this fairly new WorldView-2 sensor in 

discriminating spectrally similar LULC classes in St Lucia (KwaZulu-Natal) using the advanced 

RF algorithm. 

Results from the study demonstrated that multispectral data from the WorldView-2 sensor can be 

successfully used to discriminate amongst spectrally similar LULC objects. Using the advanced 

RF algorithm, an overall classification accuracy of 91.23% was achieved. These results were 

found to be comparable to those of Peerbhay et al. (In press) who used WorldView-2 data to 

Parameters RF 

Kappa 0.89 

Kappa disagreement (%) 11 

Allocation disagreement (%) 5 

Quantity disagreement (%) 4 

Total disagreement (%) 9 

http://www.clarku.edu/~rpontius
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classify six spectrally related commercial forest species in KwaZulu-Natal (South Africa) and 

attained an overall accuracy of 85.23%. The key behind the powerful discrimination ability of 

WorldView-2 lies in the sharper wavelength channels that are coupled with finer spatial 

resolution (Immitzer et al., 2012). The two attributes provide the potential for more robust 

modelling and discrimination of spectral signatures, resulting in more accurate extraction of 

Earth surface resources (Pacifici, 2011). Furthermore, WorldView-2 has the added advantage of 

four additional bands that are currently unavailable in other multispectral sensors. These new 

spectral dimensions target coastal and vegetation LULC types with applications in plant species 

identification, mapping of vegetation stress, crop types, wetlands, coast water quality and 

bathymetry (Marchisio et al., 2010). An improvement of 5.54% in classification accuracy was 

observed when LULC classes were discriminated using only the four new bands in contrast to 

the conventional wavelengths. Similar conclusions were drawn by Novack et al. (2011) who 

noted an improvement in classification accuracy when the new WorldView-2 bands were used in 

the classification of urban surfaces.  

The study also sought to determine the predictive power of each of the WorldView-2 bands in 

the landscape classification process. Using the RF variable importance, important wavelengths 

for discriminating spectrally similar LULC classes in the study area were effectively explored 

and identified. Results suggested that the near-infrared wavelengths (Near-infrared 1 and Near-

infrared 2) were the most instrumental bands in the classification. Immitzer et al. (2012), also 

recognized the significance of the near-infrared region in the classification of ground-cover 

objects. This region of the spectrum  provides more discriminatory power for vegetation analysis 

and biomass studies, while it effectively separates water bodies from vegetation and also 

discriminates between soil types (Navulur, 2009). The Coastal blue band,  on the other hand, has 

been proven to be useful for accurately classifying water bodies (Puetz et al., 2009). 

Interestingly, this band was less instrumental in the classification of water bodies (river and 

ocean) in the study area. Instead, it played a significant role in the classification of young 

sugarcane due to the fact that wavelengths from this band are strongly absorbed by plants in the 

early developmental stages (Navulur, 2009). Several studies have reported that the addition of 

the Yellow band fills important gaps in the spectrum that relate to our ability to capture 

vegetation (Marchisio et al., 2010). Despite this ability, the Yellow band was ranked as the least 
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important variable in the classification of features considered in this study. This could be due to 

the fact that the band is used to identify "yellow-ness" characteristics of targets (Immitzer et al., 

2012). Since the commercial forest plantations sampled in this study were healthy and well 

maintained, the band showed a slight decline in performance.  

Overall, the results from this study are a significant contribution towards the use of multispectral 

data for the discrimination of spectrally similar LULC objects. The high classification accuracy 

suggests that WorldView-2 is a reliable and cost-effective alternative to time consuming methods 

such as land surveying. However, the interpretation of these results can only be regarded as 

preliminary, since further research is needed to widen the use of WorldView-2 imagery in 

classifying other types of LULC such as soils and other non-vegetative features.  

 

3.6 Conclusion 

This study used WorldView-2 satellite imagery to separate three pairs of spectrally similar 

LULC classes in St Lucia (KwaZulu-Natal) and the following conclusions were drawn: 

 Multispectral data from the WorldView-2 sensor has great potential to discriminate 

spectrally similar LULC types in a vegetation dominated environment.  

 Using the advanced RF algorithm, an overall classification accuracy of 91.23% was 

obtained clearly demonstrating the remarkable performance of RF in LULC 

classification.   

 The new near-infrared band (Band 8) was found to be the most instrumental band in the 

classification of LULC classes considered in this study.  

 Overall, the combination of high resolution multispectral data with the RF algorithm is an 

efficient method for separating classes that exhibit similar spectral responses.    
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CHAPTER FOUR 

CONCLUSION 

 

4.1 Introduction  

Accurate land use/land cover (LULC) information is important for ecological, environmental and 

socio-economic applications (Li and Shao, 2012). Before satellite imagery became freely 

available, aerial photography was commonly used to acquire such information (Comber et al., 

2004). Although this method produces accurate results, it is costly, time-consuming and labor-

intensive. Remote sensing offers a cost-effective and quicker alternative to conventional methods 

and also covers larger areas at frequent intervals (Petropoulos et al., 2012a; Dixon and Candade, 

2008). The aim of this study was to assess the utility of multispectral remote sensing data and the 

Random Forest (RF) algorithm to reliably map LULC in a heterogeneous environment. The 

specific objectives were (i) to examine the utility of moderate resolution SPOT-5 data to classify 

LULC in an ecosystem consisting of diverse LULC categories, (ii) to evaluate the efficiency of 

high resolution WorldView-2 imagery in the classification of spectrally similar LULC classes, 

(iii) to rank the importance of SPOT-5 and WorldView-2 bands in the classification of the LULC 

categories considered in the study.   

 

4.2 Examining the utility of moderate resolution SPOT-5 data to classify LULC in an 

ecosystem consisting of diverse LULC categories 

Results from the study demonstrated that moderate resolution SPOT-5 data can be used to 

discriminate amongst broad LULC categories using both the ML and RF algorithms. However, 

LULC classes with subtle differences such as Eucalyptus grandis and Pinus tree plantations; 

young sugarcane and mature sugarcane; and water bodies from the river and ocean could not be 

adequately differentiated. In addition, ground-cover objects that covered relatively small spatial 

extents such as settlements could not be mapped as accurately as the broader LULC categories. 
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The moderate resolution (10 m) of SPOT-5 data was seen as the underlying factor leading to the 

above mentioned misclassifications. Moderate resolution datasets are extremely susceptible to 

the mixed pixel phenomenon which impacts negatively on the generalization ability of image 

classifiers (Moran, 2010). Consequently, these classifiers encounter difficulties in classifying 

such datasets when compared to more sophisticated methods such as RF. Results from the study 

showed that the advanced RF classifier produced results that were significantly better than those 

obtained through the use of the conventional ML method. Specifically, RF yielded an overall 

accuracy of 80.2% which was 14.1% better than that of the regularly used ML (66.1%) method. 

Similar conclusions were drawn by Ok et al. (2012) who also used SPOT-5 imagery, however, 

for the classification of agricultural crop species. In another study, Waske and Braun (2009) 

obtained comparable results with non-optical Synthetic Aperture Radar (SAR) data. The 

unprecedented ability of RF can be explained by its non-parametric approach to classification, 

while the failure of ML to outperform RF can be attributed to its parametric approach to the 

classification process. 

Parametric methods assume that image data are normally distributed, and the statistics computed 

from the calibration data are representative of all class members (Lu and Weng, 2007).  

Although this hypothesis is valid to some extent, it may be inaccurate for discriminating LULC 

categories that consist of several sub-classes, as is the case in complex ecosysytems (Kavzoglu 

and Colkesen, 2009). The non-parametric approach of RF, on the other hand, provides 

alternaitive ways of  producing land cover maps that are potentially robust to differences in 

brightness values caused by landscape heterogenity, uneven slopes, or high intra-class variability 

(Ghimire et al., 2010). The approach helps avoid some of the problems encountered by ealier 

statistical methods as it has no prior assumptions on the input data (Song et al., 2012; Kavzoglu 

and Mather, 2003). RF also minimises the effect of bias, variance, and instability which usually 

occurs in other ensembles and single classification and regression trees because the large number 

of trees are computed from random subsets of the calibration dataset (Mansour et al., 2012; 

Ismail and Mutanga, 2010).  

In addition, RF is faster in training when compared to ensemble methods and needs only two 

parameters to be specied i.e. the number of trees in the forest (ntree) and the number of variables 

to split the nodes of individual trees (mtry) (Dye et al., 2011). Lastly, one of the most attractive 
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properties of RF is that it can detect outliers which is useful when looking at classes that have 

been mislabelled (Peters et al., 2007; Walton, 2008) 

 

4.3 Evaluating the efficiency of high resolution WorldView-2 imagery in the classification 

of spectrally similar LULC classes  

WorldView-2, the first ever commercial satellite to carry a high resolution 8-band multispectral 

sensor was used in an attempt to separate LULC classes that exhibited similar spectral responses. 

These LULC classes were: Eucalyptus grandis and Pinus tree plantations; mature sugarcane and 

young sugarcane; as well as water from the river and ocean. Attempts to separate these LULC 

classes using moderate resolution SPOT-5 data were unsuccessful. WorldView-2, on the other 

hand, with its greater spatial (2 m) and spectral resolutions (8 bands), provided greater potential 

for the discrimination of such LULC features. Results from the study revealed that WorldView-2 

data is an effective data source for differentiating among LULC objects exhibiting similar 

spectral properties. Using the RF based algorithm and the entire WorldView-2 bands; an overall 

classification accuracy of 91.23% was obtained. This demonstrated the power that the higher 

spatial and spectral properties of WorldView-2 bring to the classification process.  

WorldView-2 is unique from other high resolution multispectral sensors in that it contains four 

new bands (Coastal blue, Yellow, Red-edge and Near-infrared 2 (NIR-2)) that no other high 

resolution multispectral sensor possesses. These distinctive wavelengths give remote sensing 

experts access to spectral domains where discernible variations occur among Earth surface 

features that may not be picked up by conventional multispectral sensors (Wolf, 2010). When the 

four new bands were used for the classification process, a relatively low out-of-bag (OOB) error 

of 10.3% (equivalent to 89.7% overall accuracy) was achieved. In contrast, when only the 

traditional bands (Blue, Green, Red and NIR-1) were used for the classification, the OOB error 

increased by 5.54% from 10.3% to 15.54% (equivalent to 84.46% overall accuracy). 

Previous studies have shown that the sharper multispectral channels provide greater potential for 

accurate modeling and discrimination of spectral signatures (Pacifici, 2011). These bands are 

strategically positioned to unique positions of the electromagnetic spectrum that permit optimum 
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discrimination amongst land surface objects (Mutanga et al., 2012). For instance, the Coastal 

blue band captures wavelengths shorter than the standard Blue wavelengths and assists in 

mapping aquatic vegetation or bathymetric studies, due to its ability to penetrate water better 

than longer wavelengths (Zhou et al., 2012; Navulur, 2009). The red-edge band, on the other 

hand, is tuned to the region between the Red and NIR wavelengths and provides very sensitive 

measurements of vegetation types, plant condition, as well as biomass (Mutanga et al., 2012). 

Wavelengths from the Yellow band are designed to aid in the mapping of senescent vegetation 

whereas the additional NIR band (NIR-2) is less sensitive to atmospheric conditions and assists 

in vegetation mapping (Navulur, 2009).  

 

4.4 Ranking the importance of SPOT-5 and WorldView-2 bands in the classification of the 

LULC categories considered in the study 

A very important feature of RF is its ability to determine variable importance. Variable 

importance measures allow the user to determine wavelengths that played a pivotal role in the 

classification process. The RF algorithm determines the prominence of each predictive variable 

through assessing changes in mean decrease in accuracy (MDA) values when OOB data for that 

variable are permuted while all other variables are left unchanged (Peters et al., 2007). It then 

ranks the variables according to importance, with the most important variable in the 

classification yielding the highest MDA value. Results from the study suggested that the NIR 

region of the spectrum played the most significant role in the classification of the LULC classes 

considered in the study (Chapters 2 and 3). Specifically, when moderate resolution SPOT-5 data 

were used for the classification of all 12 LULC categories present in the study area (Chapter 2), 

variable importance measures indicated that SPOT-5’s NIR band was the most crucial band in 

the classification. Similarly, when high resolution WorldView-2 imagery was used for the 

discrimination of spectrally related targets (Chapter 3), RF variable importance measures ranked 

the NIR-2 and NIR-1 bands first and second respectively in terms of importance.  

However, although the most important wavelengths in the classification from both SPOT-5 and 

WorldView-2 datasets were identical, the bands that contributed the least towards the 

classification differed. Results demonstrated that the shortwave-infrared (SWIR) band was the 
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least important SPOT-5 band in the classification, whereas WorldView-2’s Yellow band 

produced the worst performance in the classification of spectrally related targets. More so, 

wavelengths most instrumental in the classification of Eucalyptus grandis and Pinus tree 

plantations, as well as mature sugarcane and young sugarcane differed using both SPOT-5 and 

WorldView-2 imagery. However, this was not the case for water bodies from the river and ocean 

as the NIR region of the electromagnetic spectrum played a pivotal role in the classification of 

these features using both WorldView-2 and SPOT-5 imagery.   

 

4.5 Recommendations for future research 

Several recommendations for future research are listed below: 

 Future research should be focused on the use of multispectral sensors that possess both 

high spatial and spectral resolution for accurate LULC classification. Higher spatial 

resolution reduces the mixed pixel problem commonly found in conventional 

multispectral datasets thus providing more potential for the extraction of detailed 

information of ground-cover objects (Lu and Weng, 2005; Moran, 2010). In addition, 

land surface features that occupy minute portions of the Earth’s surface can be easily 

detected and distinguished when such datasets are used (Mariz et al., 2009). Several 

studies have shown that the use of high spatial resolution produces observations that are 

at a spatial scale equivalent to field measurements (Goward et al., 2003; Wang et al., 

2004; Pacifici et al., 2009). Higher spectral resolution, on the other hand, allows 

researchers to distinguish subtle variations in reflectance that may occur in similar LULC 

features such as crops, soils or trees. This can be useful in a number of application areas 

such as disease mapping or mineral detection. Nonetheless, the use of satellite datasets 

with high spectral resolution can be problematic due to issues such as signal noise ratio 

(SNR) or the Hughes phenomenon (Petropoulos et al., 2012a). Despite such 

shortcomings, advanced machine learning classifiers such as RF which are not sensitive 

to noise and handle large datasets effectively, can be used to overcome such problems 

(Chan and Paelinckx, 2008a).  
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 A large number of studies have shown that the use of spectral information alone can lead 

to inaccurate interpretations because the difference between land cover objects depends 

not only on spectral information but also on spatial (contextual) information (Bruzzone et 

al., 1997; Li and Shao, 2012). For instance, in areas where there is large variation in the 

spectral response of classes due to high relief and shadow, mapping solely on the basis of 

spectral response may not be appropriate (Watanachaturaporn et al., 2008). This 

dissertation therefore recommends that future remote sensing studies focus on 

incorporating spatial techniques such as texture, slope and shape for more accurate 

modelling and improvement of LULC classification. These measures provide additional 

information on neighbouring pixels and therefore enable algorithms to adequately 

differentiate between different objects on the surface of the Earth.  

 

 It would also be of great practical significance if governmental organizations such as the 

Department of Environmental Affairs could employ advanced classification techniques 

for generating more accurate LULC maps.  LULC maps are an integral source of 

information for decision makers and provide the basis for improving land management 

practices.   
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