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ABSTRACT 

Seaweeds are known to possess excellent sources of proteins, vitamins, dietary fibre, macro and 

micro-elements, as well as important bioactive compounds. Thus, they can contribute to the 

nutritional requirements of humans and may also be beneficial to human health. The use of 

seaweeds for human consumption and as medicine has strong roots in the Asian cultures and 

they have also gained importance in many other parts of the world due to their health benefits. In 

South Africa, despite the abundance of seaweeds, only a few seaweed species are exploited for 

the hydrocolloid industry and as feed for abalone, particularly in the Cape provinces. The coast 

of KwaZulu-Natal possesses diverse algal flora yet there is a lack of information regarding the 

nutritional and medicinal properties of these seaweeds.    

The main aim of this study was to investigate the nutritional and medicinal properties of selected 

seaweeds namely Halimeda cuneata, Spyridia hypnoides, Codium capitatum, Hypnea spicifera 

and Sargassum elegans (the latter three are edible), found along the east coast of KwaZulu-Natal. 

The proximate composition of the three edible seaweeds and the effect of seasonal variation on 

elemental uptake in all five seaweeds was investigated. As brown seaweed are generally known 

to accumulate high concentrations of toxic elements, the distribution of essential elements and 

the toxic element arsenic (total and inorganic) in S. elegans from eight different sites along the 

east coast of KwaZulu-Natal were also investigated. The brown seaweed, S. elegans, was also 

investigated for its secondary metabolites. 

The edible seaweeds had a moisture level of 85.4 to 89.5%, protein of 6.1 to 11.8%, lipids of 7.5 

to 13.1% and carbohydrates (which was obtained by difference) of 37.8 to 71.9 %. In general,  

elemental concentrations in the five seaweeds varied significantly with season (p < 0.05) and 

were found to be in decreasing order of Ca > Mg > Fe > Cu > Mn > As > Zn > Ni > Cr > Pb > 
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Co ≈ Se. In S. elegans, elemental concentrations varied significantly with location (p < 0.05) and 

total As was found to be extremely high, ranging from 42.1 to 105.4 µg g-1, of which, 21.4 to 

53.0 µg g-1 were in inorganic form. The phytochemical investigation of S. elegans revealed the 

presence of three bioactive compounds, β-sitosterol, fucosterol and phaeophytin a. This showed 

that S. elegans could be a potential and alternate source of these compounds. This study also 

shows that C. capitatum and H. spicifera could be potential sources of most essential nutrients 

and may contribute positively to the diet without posing the risk of adverse health effects due to 

low concentrations of toxic elements. However, consumption of S. elegans for nutritional or 

medicinal purposes could increase exposure to inorganic As which could cause adverse health 

effects therefore it should be avoided. 
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CHAPTER 1 

 

1.1 Introduction 

Seaweeds have been consumed traditionally in Asian countries since ancient times, but only a 

few coastal communities outside Asia have occasionally used seaweeds as components of their 

dishes (Ródenas de la Rocha et al., 2009; Bocanegra et al., 2009). However, due to increasing 

consumer interest in foods that do not only meet nutritional needs but also have health benefits 

and the influx of Asian cuisines, the use of seaweeds as foodstuffs and as components of 

functional foods has steadily gained importance in many parts of the world. Apart from their 

proven nutritional properties in Asian cuisines, seaweeds are exclusively used for the extraction 

of important food hydrocolloids such as agar, alginates and carrageenan in the rest of the world. 

Their availability, almost throughout the year, and relatively easy collection (seaweeds can be 

picked on foot during low tide) makes them an inexpensive natural food resource. 

Bioactive compounds found in seaweeds have attracted the interest of health conscious societies 

and scientists as they are regarded as natural producers of active compounds and an alternative to 

synthetic substances (Rajapakse and Kim, 2011; Chojnacka and Kim, 2015). Seaweeds grow in 

harsh environments where they are exposed to a combination of light and high concentrations of 

oxygen which gives rise to the formation of free radicals and other strong oxidizing agents. Even 

under these conditions, seaweeds seldom suffer any serious photodynamic damage during 

metabolism. This suggests that seaweed cells have protective mechanisms and compounds 

(Matsukawa et al., 1997). The bioactive compounds in seaweeds include carotenoids, 

phlorotannins, glycolipids, polysaccharides, vitamins, sterols, tocopherol and meroterpenoids 
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(Cox et al., 2010; Holdt and Kraan, 2011; Liu et al., 2012; Smit, 2004). The reported biological 

activities of these components include, among others, antioxidant, antibacterial, antifungal and 

fibrinolytic activity (Liu et al., 2012; Matsukawa et al., 1997; Wu et al., 2009). Epidemiological 

studies comparing Japanese and Western diets have linked seaweed consumption to lower 

incidences of chronic diseases such as cancer, hyperlipidaemia and coronary heart disease 

(Brown et al., 2014). Seaweeds are used traditionally for the treatment of diseases such as 

arthritis, high blood pressure, gout, goitre and hypertension.  

Seaweeds are rich in proteins, vitamins, minerals, fibre, carbohydrates and physiologically 

important fatty acids therefore they are used as vitamin and mineral supplements (Dawczynski et 

al., 2007; Gillesi`le et al., 1996; Ruperez, 2002). The mineral content of some seaweeds can 

account for up to 36% of its dry matter with some of the macronutrients being sodium, calcium, 

magnesium, potassium, chlorine, sulphur and phosphorus and some of the micronutrients being 

iodine, iron, zinc ,copper, selenium, fluorine, manganese, boron and nickel (Rajapakse and Kim, 

2011). Such properties of seaweeds have the potential to contribute positively to the nutritional 

requirements of humans and can benefit human health. However, some seaweed may also 

contain high levels of toxic elements like arsenic, cadmium and lead which are potential risks to 

human health. Therefore, the determination of the concentration of toxic elements in seaweeds is 

necessary to evaluate both their nutritive potential and risks to human health. In most countries, 

there are no special regulations enforced for seaweed consumption except that they have to 

conform to the general safety regulations for food as specified by the Provisional Tolerable 

Weekly Intake (PTWI) recommended by the World Health Organization (WHO) (Mouritsen et 

al., 2013). However, France is one of the countries that have a specific list of seaweeds for 
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human consumption which specific upper limits of inorganic arsenic, cadmium, lead, tin, 

mercury and iodine (Burtin, 2003; Holdt and Kraan, 2011).  

 South Africa has the highest regional seaweed diversity and is considered among those countries 

with the richest marine flora in the world. To date, the known species of seaweeds in South 

Africa are estimated at around 750-800, of which 270 species (only intertidal and shallow water 

collections) are believed to be in KwaZulu-Natal (Bolton and Stegenga, 2002; Bolton et al., 

2004). Despite their abundance, the valuable health and nutritional benefits of these seaweeds are 

yet to be explored and exploited in South Africa. Research on seaweeds found in South Africa 

focuses mostly on species that are being exploited for commercial use (hydrocolloid industry) 

and abalone farming from the Cape provinces (Anderson et al., 2003; Levitt et al., 2002; 

Rothman et al., 2010). Studies on the chemical composition, medicinal and nutritional properties 

of a great variety of species found in South Africa, are still lacking.  

 

1.2 Problem Statement 

South Africa has a coastline of 3650 km in length and has been shown to have an extremely rich 

seaweed flora of well over 800 species but remains, to a great extent, under-researched with 

regards to utilisation (Bolton et al., 2004; Griffiths et al., 2010). Studies from other parts of the 

world where seaweeds (from wild stock or cultivated) are utilised have shown seaweeds to 

provide great economic benefit as well as to be a healthy food resource. The KwaZulu-Natal 

coast supports a wide range of genera which have found uses throughout the world, but studies 

on the constituents of these seaweeds are still lacking. Therefore, there is need to investigate the 

chemical composition of these seaweeds and evaluate their nutritive potential. It is also important 
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to investigate, isolate and characterise the secondary metabolites found in these seaweeds to 

explore their ethno-medicinal properties.  

 

1.3 Aims 

The aim of this study was to analytically and phytochemically investigate different classes of 

seaweeds namely, Halimeda cuneata, Spyridia hypnoides, Codium capitatum, Hypnea spicifera 

and Sargassum elegans (latter three are edible), found along the east coast of KwaZulu-Natal. 

The analytical investigation was done to determine the nutritional value of the edible seaweeds 

and evaluate the effect of seasonal variation on elemental uptake by seaweeds. The 

phytochemical investigation was done on the brown edible seaweed, S. elegans, to determine if it 

contains any secondary metabolites. Total and inorganic arsenic concentrations in S. elegans 

were also determined to evaluate its safety for human consumption. 

 

1.4 Objectives 

 To determine the chemical composition (ash, carbohydrate, lipid, moisture and protein) 

of edible seaweeds. 

 To determine the elemental concentrations in different classes of seaweeds as a function 

of seasonal variation. 

 To evaluate the nutritional value of edible seaweeds by comparing their elemental 

concentrations to recommended dietary allowances (RDAs).  

 To determine the concentration of total and inorganic arsenic in the brown edible 

seaweed, S. elegans. 
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 To extract, characterise and identify the compounds from S. elegans using spectroscopic 

techniques (NMR, IR, UV and MS). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Seaweeds 

Seaweeds are marine macro-algae which are found throughout all oceans, in all climatic zones, 

from the warm tropics to the icy polar-regions. They grow wherever rocks, coral or some fixed 

structures such as shells are available for their attachment. Seaweeds contain photosynthetic 

pigments similar to land plants and use sunlight and nutrients from seawater to photosynthesise 

and produce food. However, they are not considered true plants as they lack structures such as 

roots, stems and leaves (Garza, 2005). Generally, seaweeds consist of a root-like holdfast which 

is not used to absorb nutrients but to attach to suitable substrata, a stipe (the stem of seaweed) 

which is used to support the seaweed and blades (leave-like) which provide a large surface for 

absorption. Some seaweeds have hollow gas-filled sacs which are called floats that help keep 

them afloat on water.  The basic structure of seaweeds is represented in Figure 1. 

 

Figure 1. Basic structure of seaweeds. 
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Biologically, seaweeds are classified into three main groups according to their pigmentation, 

morphology, anatomy and chemical composition as Phaeophyta (brown), Rhodophyta (red) and 

Chlorophyta (green) (Pramanick et al., 2015). Phaeophyta, is the largest type of seaweed, 

growing up to 20 m in length. Examples include Laminaria, Saccharina, Fucus and Sargassum. 

The brown or yellow-brown colour in brown seaweeds is mainly due to fucoxanthin and some 

small amounts of chlorophyll. Rhodophyta, often have brilliant red and orange hues due to 

phycoerythrin and phycocyanin, which are dominant over other pigments such as chlorophyll α, 

β-carotene and a number of xanthophylls. The green colour in Chlorophyta is due to chlorophylls 

a and b which are in the same proportions as in higher plants (Mouritsen, 2013). 

 

2.2 The seaweed industry in South Africa 

In South Africa, the seaweed industry is based on Ecklonia, Laminaria pallida and red seaweeds 

of the genus Gelidium. Currently, Gelidium species are collected in the Eastern Cape and 

Gracilaria species are collected at Saldana Bay; these are exported for the production of agar. 

Large beds of kelp (Ecklonia maxima or “sea bamboo”) grow on Western Cape shores which, 

during storms, wash up on the beaches. These beach casts are picked, dried, separated and milled 

to various size chips and exported for the extraction of alginate (Troell et al., 2006). 
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Figure 2. Beach cast. 

http://www.nda.agric.za/doaDev/sideMenu/fisheries/03_areasofwork/Resources. 

 

The majority of seaweeds, harvested and collected in South Africa, are exported since it is 

technologically complicated and too expensive to extract and manufacture the end-products 

(plant-growth stimulants, cosmetics, alginate and carrageenan). Presently, only plant growth 

stimulants are produced from kelp in South Africa. However, large quantities of fresh kelp are 

harvested from the surface, using boats. This is done during low-tide when the kelp fronds are 

accessible from the surface. The fresh kelp is used as feed for farmed abalone (approximately 

6000 tonnes fresh weight of kelp in 2003) (Troell et al., 2006). Abalones are edible sea snails 

(marine gastropod molluscs in the family Haliotidae) that are a delicacy in many parts of the 

world. 

 

http://www.nda.agric.za/doaDev/sideMenu/fisheries/03_areasofwork/Resources
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Figure 3. A farmer feeding fresh kelp to abalone (Robertson-Anderson et al., 2006). 

 

2.3 Seaweed uses in Africa 

Seaweed, as a direct source of food, appears to be largely neglected on the African continent.  

Along the South African coast, early Cape colonists have been reported to have used Suhria 

vittata known as “red ribbon” for jelly making (FAO, 2011). In Chad, Spirulia (blue-green algae) 

is used as food. It is particularly rich in vitamins and has been long valued by central African 

tribesmen as a weaning food for infants. It is also used to make biscuits and meals in conjunction 

with millet. Spirulia grows on ponds and pools and it is reported that annual yields of up to 50 

tonnes per hectare can be harvested (FAO, 2011). 

It is reported that the Topnaar people who lived near the Kuiseb River in Nambia dried, roasted 

and grounded kelp into a powder which they mixed with fat and used as a salve to prevent 

infection and aid the healing of wounds (Van Damme et al., 1922). Some herbalists from 

KwaZulu-Natal believe that the sea has extraordinary powers and they use seaweed to make tea 

infusions with boiling water to treat sore throats, chest pains and stomach ache. Some tribes burn 
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the seaweed in a pot and inhale the smoke to drive away evil spirits. To these tribes, seaweeds 

are commonly known as Amakhafilithi or izibizolwande. 

 

2.4 Hydrocolloids 

A hydrocolloid is a non-crystalline substance with very large molecules that dissolve in water to 

give a thickened viscous solution. Currently, they are used in various industries for thickening 

and gelling aqueous solutions, foams, emulsions and dispersions, inhibiting ice and sugar crystal 

formation. Red and brown seaweeds are mainly used to produce hydrocolloids namely agar, 

alginate and carrageenan (Phillips and Williams, 2009). 

 

2.4.1 Agar 

Agar, commonly known as agar-agar was the first hydrocolloid used as a food additive; its use 

began over 300 years ago in the Far East (Armisen and Gaiatas, 2009). Agar is a strong gelling 

hydrocolloid extracted from the red seaweeds, Gelidium and Gracilaria. The extraordinary 

gelling power of agar is due to the hydrogen bonds formed among its linear galactan chains that 

provide an excellent reversibility; they melt just by heating and gel again upon cooling (Armisén 

and Gaiatas, 2009). Since agar does not need any other substance to gel, it has enormous 

potential in applications such as the manufacture of capsules for medical applications and as a 

medium for cell cultures. It has been reported that agar-agar leads to a decrease in the 

concentration of blood glucose levels and exerts an anti-aggregation effect on red blood cells 

(Kraan, 2012). The anti-tumour activity of the agar-type polysaccharide obtained from a 

Graciliara species by cold water extraction was also reported (Holdt and Kraan, 2011). 
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2.4.2 Alginate 

Alginates, for commercial use, are mainly extracted from species of brown seaweeds 

(Laminaria, Ascophyllum nodosum, Macrocystics pyrifera and Sargassum) that contribute up to 

40% of their dry weight (Rhein-Knudsen et al., 2015). Alginates extracted from brown seaweeds 

are water-soluble. In the food industry, alginates are used as stabilizers and thickeners. In 

addition, alginates are important in the healthcare and pharmaceutical industries and in 

biotechnology where they are being used as wound dressings, in dental impressions, and enzyme 

immobilization (Kaplan, 2013). Studies on alginic acid (acid form of alginate) have shown that it 

leads to a decrease in the concentration of cholesterol, exerts an anti-hypertension effect, can 

prevent absorption of toxic chemical substances, and plays a major role as dietary fibre for the 

maintenance of animal and human health (Kraan, 2012). 

 

2.4.3 Carrageenan 

Carrageenan is extracted mainly from red seaweeds (Kappaphycus alverezii and Eucheuma 

denticulatum). Carrageenan dissolves in water, forms highly viscous solutions and remains stable 

over a wide pH range. They are used as stabilizers, gelling agents, emulsifiers, and thickeners in 

the food and baking industries (ice-cream, cheese, jam, bread dough). Recently, carrageenan has 

attracted attention in the pharmaceutical industry due to its ability to inhibit attachment of viruses 

such as the human papillomavirus, dengue virus and herpes virus. In addition, carrageenan is 

used in several drug delivery systems as matrixes to control drug release, microcapsules, and 

microspheres (Rhein-Knudsen et al., 2015). 
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2.5 Nutrition in seaweeds 

Worldwide, approximately 221 species of seaweeds are commercially utilised, of which 65% are 

used as human food. Of the 221 species, 32 are Chlorophyta, 64 Phaeophyta and 125 

Rhodophyta (Subba-Rao et al., 2009). From a nutritional perspective, edible seaweeds are low 

calorie foods with high concentrations of minerals, vitamins and proteins and low content of 

lipids which range from 2.3 to 4.6% based on semi-dry sample weight (Mohamed et al., 2012). 

Seaweeds are an excellent source of vitamins A, B1, B12, C, D, and E, riboflavin, niacin, 

pantothenic acid, folic acid and minerals such as calcium, potassium, sodium and phosphorus 

(Dhargalkar and Pereira, 2005). Seaweeds are reported to have more than 54 trace elements, 

most of which are required for the physiological functioning of the human body, and these are in 

quantities greatly exceeding vegetables and other land plants (Chapman and Chapman, 1980). 

The essential elements in seaweeds are in chelated, colloidal, optimally balanced form, which 

enhances their bioavailability in the human body (Mouritsen, 2013). 

The protein content in seaweeds is reported to vary from 26.6% in red seaweeds to 12.9% in 

brown seaweeds (Dawczynski et al., 2007). The protein in red seaweeds contain essential amino 

acids with levels sufficient enough to meet dietary requirements; the protein content in Palmaria 

Palmata (Dulse) and Porphyta Tenera (Nori) can reach 35% and 45% of their dry weight, 

respectively (Burtin, 2003). These levels are comparable to those found in high protein 

vegetables such as soybeans (35% protein based on dry mass).  

Seaweeds contain large amounts of polysaccharides in their cell walls which are not found in 

land plants (Ruperez et al., 2002). Algal polysaccharides are considered to be undigested by 

humans, hence they are considered to be an abundant source of dietary fibre (Misurcova et al., 

2012). The content of total dietary fibre in seaweeds ranges from 33 to 50% dry weight and it is 
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higher than that found in most fruits and vegetables (Ruperez and Saura-Calixto, 2001). Human 

consumption of algal fibre has proven to promote growth and protection of the intestinal flora, it 

greatly increases stool volume and also reduces risk of colon cancer (Dawczynski et al., 2007). 

Anticoagulant activity is the most investigated in sulfated polysaccharides, as researchers attempt 

to find a substitute for heparin (Ruperez et al., 2002). 

The role of the diet in human health is progressively gaining more attention over the last few 

years. Food is not only beneficial due to the presence of essential nutrients, but also due to the 

occurrence of other bioactive compounds which have been found to be important for health 

promotion and disease prevention. These beneficial effects can be attributed to the complex 

mixture of secondary metabolites which possess antioxidant, antimicrobial, anticancer and 

antiviral activity. The compounds responsible for these activities include phenolic compounds, 

terpenes, carotenoids and volatile halogenated organic compounds and seaweeds are a rich 

source of such compounds (Gupta and Abu-Ghannam, 2011). 

 

2.6 Secondary metabolites in seaweeds 

The secondary metabolites of seaweeds, compared to land plants, have attracted the interest of 

biochemists because of their diversity. The major groups of secondary metabolites found in 

seaweeds are isoprenoids (terpenes and steroids), pigments (carotenoids and chlorophylls), 

polyketides (phlorotannins), amino acid derived natural products (alkaloids) and shikimates 

(flavonoids). Red seaweeds (Rhodophyta) are richer sources of these secondary metabolites 

compared to the other macro-algae. Phlorotannins are found exclusively in brown seaweeds 

(Mendis and Kim, 2011) and their amounts can vary among species, depending on algae age, 

size, tissue type, nutrient level and season (Lopes et al., 2012). Phlorotannins, like other 
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polyphenolic compounds, exhibit numerous biological activities such as, antioxidant, anti-

inflammatory, anti-allergic, antimicrobial, anticancer and antidiabetic activities (Lopes et al., 

2012; Yang et al., 2010).   

Carotenoids, chlorophylls and phycobiliproteins are the main classes of pigments found in algae. 

β-carotene, lutein and violaxanthin are among the carotenoids found in green seaweeds. Red 

seaweeds contain mainly α-and β-carotene, lutein and zeaxanthin (Takaichi, 2011). Brown 

seaweeds contain mostly fucoxanthin, a xanthophyll that possesses a wide range of biological 

activities (Peng et al., 2011; Rajauria and Abu-Ghannam, 2013). Chlorophylls are green lipid-

soluble pigments found in all algae, higher plants and cyanobacteria which are responsible for 

photosynthesis. Chlorophylls are sensitive to extreme pH and temperature conditions which 

allow the formation of distinct chlorophyll derivatives such as phaeophytins. These derivatives 

have shown anti-mutagenic effects and may play a significant role in cancer prevention (Holdt 

and Kraan, 2011; Pangestuti and Wibowo, 2013). Phaeophytin a, a chlorophyll a derivative 

isolated from the brown alga, Sargassum fulvellum was shown to be a strong neuro-

differentiating compound with strong antioxidant activity (Ina et al., 2007).  
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(a) 

 

(b) 

 

Figure 4. Chemical structures of (a) chlorophyll a and (b) phaeophytin a. 

 

Terpenes from seaweeds are frequently observed with substituted halogenated functional groups. 

In brown seaweeds, terpenes are found in two main orders; fucales and dictyotales. Diterpenes, 

sesquiterpenes and halogenated terpenes isolated from brown seaweeds have been reported to 
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exhibit antiviral and anticancer properties and possibly have the potential to counteract malaria 

(Mouritsen, 2013). 

Sterols are abundant in macro-algae, they can occur in free form, esterified with fatty acids or in 

glycosylated conjugates. Algal sterols are similar in structure to cholesterol (that is also found in 

red seaweeds), however they contain an additional alkyl group at C-24 (Figure 5) that is absent 

in cholesterol (Lopes et al., 2013).  

 

(a)  

(b)  

Figure 5. Chemical structures of (a) cholesterol and (b) fucosterol. 
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Cholesterol plays a vital role in cellular function where it affects the fluidity of the cell 

membrane and acts as a secondary messenger in developmental signalling. Cholesterol is the 

major sterol in red seaweeds. Fucosterol is the predominant sterol in green and brown seaweeds 

and it has been reported to have antidiabetic and anti-oxidant activities (Lee et al., 2003). 

Alkaloids are relatively rare in marine algae. Phenyl ethylamine alkaloids, that are known anti-

depressants, have been found in brown and red seaweeds (Guven et al., 2010). The indole 

alkaloid, caulerprin, isolated from Caulerpa racemosa was found to possess strong anti-

inflammatory and anti-nociceptive activities (Tenorio de Souza et al., 2009).  Halogenated indole 

alkaloids, which possess strong antibacterial activity, have been isolated from algae and not from 

land plants (Guven et al., 2010). 

Many reports are available on the content of flavonoids in vegetables and fruit but not so much 

in seaweeds. Yumiko et al. (2003) investigated the distribution of flavonoids and related 

compounds in several seaweeds found in Japan. They found most red seaweeds to contain 

hesperidin (626 to 119000 µg g-1, dry weight) and green seaweeds to contain catechol (1660 to 

777000 µg g-1, dry weight).  

 

2.7 Sargassum 

2.7.1 Scientific classification of Sargassum 

The taxonomy of Sargassum species is considered difficult since Sargassum morphology is 

highly plastic, with environmental and temporal factors creating variations between and within 

populations of the same species. Many descriptions in the literature are not complete or based on 
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variable characteristics such as blade size and shape, making it difficult or impossible to 

determine the species (Phillips, 1995). However, the most recent classification is outlined below: 

Kingdom  : Protista 

Division  : Heterokontophyta 

Class   : Phaeophyceae 

Order   : Fucales 

Family   : Sargassaceae 

Genus   : Sargassum 

Sargassum, a genus of brown seaweed, is well represented in both temperate and tropical waters 

worldwide, often being a dominant member of both the sub-tidal and intertidal flora.  It is found 

to be the most diverse genus among Phaeophyceae and it is presented with approximately 400 

species (Marimuthu et al., 2012; Liu et al., 2012). Sargassum is consumed as food and medicine 

in many cultures, with the Oriental being the largest consumers. Currently, about 200 compounds 

such as terpenoids, phlorotannins, fucoidans and sterols have been identified from this genus. 

The English common names for Sargassum are gulfweed or sea holly. In Asia, where the 

majority of ethnopharmacological knowledge is found, Sargassum has numerous common names 

such as “Hai Zao” or “Hai Qian” in Chinese, “Hondawara” in Japanese and “Mojaban” in 

Korean. Sargassum is characterised by a holdfast (discord or conical) that attaches to the 

substrate, a short stem that differentiates into numerous primary branches that mostly have leaf-

like laterals, spherical air vesicles that aid flotation and reproductive structures in specialised 

laterals called receptacles. The shape of leaf-like thallus, vesicles and receptacles are highly 
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diversified. Even within the same species, Sargassum morphology significantly varies under 

different environmental conditions and at different seasons. Due to these variations it is often a 

difficult task to identify Sargassum species, especially from diverse tropical flora (Liu et al., 

2012). 

 

2.7.2 Bioactive compounds found in the family Sargassaceae 

In recent years, seaweeds have caused emerging interest in biomedicine and the food industry 

because they possess a wealth of bioactive compounds. Many biologically active compounds 

have been isolated from different Sargassum species and some are highlighted in Table 1. 

 

Table 1. Compounds isolated from different Sargassum species and their uses. 

 

 

Species Compounds Use Reference 

S. thumbergii Sargathunbergol A. Antitumor Youngwan et al., 2007 

 

S. siliquastrum Fucoxanthins Antioxidant Heo and Jeon, 2009 

 

S. wighitti 

 

Dioctyl phthalate Antibacterial Sastry and Rao, 1995 

S. vulgare Alginic acid Anticancer Holdt and Kraan, 2011 

 

S. micracantham Plastoquinones Antioxidant 

 

Mori et al., 2005 
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 2.7.3 Sargassum as a food source   

The use of seaweed as food has strong roots in Asian countries such as China, Japan and 

Korea. However, in recent decades, due to advances in understanding of the relationship 

between diet and health, consumers are increasingly becoming interested in foods that not 

only adequately meet nutritional needs but also confer health benefits, hence the growing 

demand for foods such as seaweeds. The well-known correlation between the diet and health 

demonstrates the great possibilities of food to maintain or even improve our health. Over the 

past few decades, there have been many changes in food habits and lifestyle. The diet of 

individuals in most developed and developing countries are often high in calories, saturated 

fats and sugars and low in dietary fibre. This, together with a decrease in physical activity, 

has given rise to obesity, heart disease, diabetes and hypertension.  

 Seaweeds, due to their phenomenal biodiversity, are a treasure house of novel healthy food 

ingredients and biologically active compounds. Sargassum is used as food in different parts 

of the world and can be consumed fresh, cooked or dry. Table 2 highlights some of the uses 

of Sargassum as a food source. 

Table 2. Traditional uses of Sargassum as a food source. 

Country and species Uses References 

Japan and Phillipines 

S. siliquosm 

Seaweed salad 

 

Chennubhotla et al., 1981 

Pacific Islands 

Sargassum sp. 

Dry spice Novaczek and Athy, 2001 

Hawaii 

S. echninocarpum (Limu Kala) 

Dry spice, fried chips Green www.eattheweeds.com 

 

Pacific Islands 

Sargassum sp. 

Seaweed Soup Novaczek and Athy, 2001 
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2.7.4 Sargassum elegans Suhr (1840) 

This study focuses on the edible species, Sargassum elegans, which grows abundantly along 

the KwaZulu-Natal coastline, and is a dominant alga of many upper intertidal rock pools. S. 

elegans is one of the largest non-kelp brown alga often attaining lengths in excess of 1 m. 

The genus consists of long, highly branched fronds with prickly margins, which can make it 

appear almost leafy and has characteristic berrylike-gas filled bladders (Figure 6). These 

bladders keep S. elegans free floating near the surface of the water enabling it to 

photosynthesise. S. elegans tends to clump together and form mats that provide a habitat for 

many marine creatures including shrimps, crabs, worms and fish.  

 

 

Figure 6. Sargassum elegans. 
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2.8 Seaweed species in this study 

2.8.1 Halimeda cuneata Hering in Krauss (1846) 

Halimeda cuneata is an inedible, green seaweed (Chrolophyta) belonging to the family 

Halimedaceae that is commonly known as “wedge weed”. The algal body (thallus) is 

composed of calcified green segments. Calcium carbonate is deposited in the tissues, making 

it inedible to most herbivores. H. cuneata is exclusively marine algae restricted to tropical 

water. These seaweeds colonise sand and mud substrates, where rhizoids of the plant 

penetrate the soft bottom to develop holdfasts. 

 

Figure 7. Halimeda cuneata. 

 

2.8.2 Spyridia hypnoides (Bory de Saint-Vincent) Papenfuss (1968) 

Spyridia hypnoides is an inedible, red seaweed (Rhodophyta) belonging to the family 

Spyridiceae. They are most common in calm protected areas, epiphytic on Hypnea or on 

“seagrass”. They are characterised by a thallus of pink to red colour, fuzzy, filamentous, 

densely bushy and branching alternate in all directions. 
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Figure 8. Spyridia hypnoides. 

 

2.8.3 Codium capitatum P. Silva (1959) 

Codium is a genus of green seaweed belonging to the Codiacease family; it is particularly 

abundant in intertidal rock pools that are also prone to sand inundation. Codium capitatum is 

forked, upright and feels velvety and spongy. It is able to regulate the movement of its 

chloroplasts to maximise photosynthesis. Its thallus is internally composed of interlocking 

filaments that end in club-like structures bearing the chloroplasts and the reproductive 

structures. C. capitatum belongs to a group of seaweeds that are unique in that their internal 

filaments lack cross-walls. Thus, instead of being divided into cells, each filament is a giant 

cell with many nuclei. The Codium species are edible and are eaten raw as salads in Hawaii 

and used as tea in Korea (Nishizawa, 2002) 
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Figure 9. Codium capitatum. 

 

2.8.4 Hypnea spicifera (Suhr) Harvey (1847) 

Hypnea Spicifera is an edible, red seaweed (Rhodophyta) belonging to the family of 

Cystocloniaceae and is commonly known as “green tips”. These seaweeds occur as dense 

green and purple clumps on the lowest parts of the shore and are only visible during low 

spring tide. The upper parts of the clumps are covered with numerous short, green, fleshy 

spines. The colour in this species is characteristically purple-brown at the base and a luscious 

translucent green at the tips. These seaweeds are able to form extensive mats on the lowest 

reaches of the shore because of its rhizomatous spreading holdfast system; hence it can be 

cultivated in high volumes for potential commercial uses.  



  

27 
 

 

Figure 10. Hypnea spicifera. 

 

2.9 Essential elements in seaweeds 

A nutrient or element is essential when a deficiency of the element makes it impossible for 

the seaweed to grow or complete its vegetative or reproductive cycle and the requirement 

cannot be replaced by another element (Lobban and Harrison, 1994). Nutrients such as C, H, 

O, N, Mg, Cu, Mn, Zn, and Mo are considered to be essential to all seaweeds. Sulphur, K, 

and Ca are required by all seaweeds but can be partially replaced by other elements. Sodium, 

Co, V, Se, Si, Cl, B and I are required only by some seaweed (Hurd et al., 2014). There are 

up to 21 elements required for metabolic processes in plants and seaweeds but more than 

double that number are present in seaweeds. However, the presence of an element in seaweed 

tissue does not necessarily mean it is essential. 

Generally, essential and non-essential elements are accumulated in seaweed tissues to 

concentrations well above their concentration in the surrounding seawater. Some elements are 

absorbed in excess of the seaweed requirements, whereas others are taken up and not utilised. 

In some cases, the excess nutrients are stored for future growth (DeBoer, 1981). 
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2.10 Essential nutrients in humans 

Nutrients are defined as chemical substances found in foods that are necessary for human life 

and growth, maintenance and repair of body tissues (Stipanuk, 2013). It is now commonly 

accepted that proteins, fats, carbohydrates, vitamins, minerals and water are the major 

nutritional constituents. Nutrients are classified into two broad groups: organic and inorganic. 

Nutrients in the organic or carbon-containing group (macronutrients) make up the bulk of our 

diets and provide us with energy. They include proteins, carbohydrates (sugars and starches), 

fats and vitamins. These organic compounds are synthesised by living cells from simpler 

compounds. Green plants and phytoplankton such as seaweeds and photosynthetic bacteria 

are able to use light energy to drive the synthesis of organic compounds. 

Inorganic nutrients (micronutrients) are mainly minerals and do not need to come from living 

sources such as plants or animals, they are present in the earth’s crust and are taken up from 

soil or water by plants and microorganisms, thereby making their way into the food chain. 

Unlike macro nutrients these are required in minute amounts. 

 

2.10.1 Micronutrients 

Micronutrients are classified into macro minerals and micro minerals or trace minerals. Micro 

minerals include Ca, P, Mg, Na, K, S, O, N, C and trace minerals include Fe, Cu, Co, Mn, 

Mo, B, Cr, F, I, Ni, Se and Zn.  The recommended amounts of essential elements for 

individuals and the tolerable upper intake levels are presented in Table 3 and 4, respectively. 

Calcium and phosphorus are co-dependent nutrients and together they are essential for bone 

formation and resorption. Calcium and P, combine to form a calcium phosphate salt called 

hydroxyapatite which is a major structural component that gives teeth and bones their 

rigidity. A deficiency of Ca or imbalance of Ca to P ratio may result in osteoporosis (thinning 
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of bone tissue and loss of total bone amount) and other skeletal disorders such as rickets in 

children (Soetan et al., 2010). 

Magnesium is required for the activation of approximately 300 enzyme systems, 

predominantly for those involved in energy metabolism for the activation of phosphate 

groups. Magnesium deficiency is associated with neuromuscular symptoms such as 

cramping, however it is rare and usually observed only in cases of chronic alcohol abuse or in 

critically ill patients. Low Mg dietary intake has also been associated with a number of 

chronic diseases including diabetes mellitus type II, cardiovascular disease, osteoporosis and 

metabolic syndrome (Bohn, 2008). 

Chromium improves the efficiency of insulin and is required for normal protein, fat and 

carbohydrates metabolism. Insufficient dietary Cr has been linked to maturity onset diabetes 

and cardiovascular disease. Supplementation of Cr often leads to significant improvements in 

glucose tolerance (Anderson, 1986). Copper is associated with many metallo-enzymes and is 

necessary for proper development of connective tissue, myelin and melanin. Copper 

deficiency is usually the consequence of decreased Cu stores at birth and also inadequate 

dietary Cu intake and poor absorption. Anaemia, neutropenia and bone abnormalities are 

some of the common results of Cu deficiency. Copper has potential toxicity if the intake 

loads exceed lower tolerance levels (Uauy et al., 1998)  

Iron is essential for a number of biochemical functions in the body including the transport of 

oxygen and energy production in the mitochondria. Iron deficiency is also one of the most 

common nutrient disorders in the world`s population. Iron deficiency results in anaemia, 

while excess Fe is highly toxic and can lead to cell and organ damage. Interestingly, the 

human body does not possess the capacity to remove Fe, like other dietary metals that are 
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excreted in faeces and urine. However, a number of proteins have evolved which tightly 

regulate Fe homeostasis (Srai and Sharp, 2012). 

 

Table 3. Dietary Reference Intakes (DRIs) - Recommended Intakes for Individuals*. 

Life stage Ca 

mg/d 

Cr 

µg/d 

Cu 

µg/d 

Fe 

mg/d 

Mg 

mg/d 

Mn 

mg/d 

Se 

µg/d 

Zn 

mg/d 

Males         

14-18yrs 1300 35 890 11 410 2.2 55 11 

19-50yrs 1000 35 900 8 400 2.3 55 11 

>51yrs 1200 30 900 8 420 2.3 55 11 

         

Females         

14-18yrs 1300 24 890 15 360 1.6 55 9 

19-50yrs 1000 25 900 18 320 1.8 55 8 

>51yrs 1200 20 900 8 320 1.8 55 8 

*Food and Nutrition Board, Institute of Medicine, National Academies, 2011. 

   

 

Table 4. Tolerable Upper Intakes levels (UL)*. 

Life stages 

M/F 

As 

µg/d 

Ca 

 mg/d 

 

Cr 

 µg/d 

 

Cu 

µg/d 

Fe 

mg/d 

Mg 

mg/d** 

Mn 

 mg/d 

 

Ni 

mg/d 

Se 

 µg/d 

 

Zn 

mg/d 

 ND 3000 ND 8000 45 350 9 1 400 34 

 ND 2500 ND 10000 45 350 11 1 400 40 

 ND 2500 ND 10000 45 350 11 1 400 40 

ND- Not Determinable,  

*Food and Nutrition Board, Institute of Medicine, National Academies, 2011, 

 ** Represent intake from a pharmacological agent only. 

 

 

Manganese is associated with a number of metallo-enzymes and is important for protein and 

energy metabolism, bone mineralisation, metabolic regulation and cellular protection from 

reactive oxygen species. Manganese deficiency in humans is quite rare but toxicity is known 
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to mostly occur when inhaled as Mn-laden dust by miners. The brain is particularly 

susceptible to excess Mn and accumulation can cause a neurodegenerative disorder known as 

mangasm (Dobson et al., 2004). 

Selenium has structural and enzymatic roles; it is needed for proper functioning of the 

immune system and appears to be a key nutrient in counteracting the development of 

virulence and inhibiting HIV progression in AIDS. A deficiency of Se has been linked to 

adverse mood states (Rayman, 2000). 

Zinc is associated with catalytic activity of more than 200 enzymes and regulatory proteins. 

Zinc regulates secretion of calcitonin from the thyroid gland and has an influence on bone 

turnover. A deficiency of Zn is characterised by growth retardation, loss of appetite, and 

impaired immune function. In more severe cases, Zn deficiency results in hair loss, diarrhoea, 

delayed sexual maturation, impotence and hypogonadism in males (Hambridge, 2000). 

 

2.10.2 Macronutrients 

Macronutrients include carbohydrates, fats and proteins and are required in large amounts to 

fuel the body. The acceptable distribution range of macronutrients in percentages is shown in 

Table 5. 

Table 5. Dietary Reference Intakes (DRI) - Acceptable Macronutrient Distribution Ranges*. 

Macronutrient Children 1-3 yrs. % Children 8-14 yrs. % Adults % 

Fat 30-40 25-35 20-35 

Carbohydrate 45-65 45-65 45-65 

Protein 5-20 10-30 10-35 

*Food and Nutrition Board, Institute of Medicine, National Academies, 2011.   
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Most of our energy is consumed as carbohydrates. The acceptable macronutrient distribution 

range (AMDR) for carbohydrates is estimated at 45 to 65% of energy for adults (Table 5). 

Carbohydrates, mainly sugars and starches, provide energy cells in the body, particularly to 

the brain which is a carbohydrate dependent organ (Lutz et al., 2015). Dietary carbohydrates 

are important to maintain glycaemic homeostasis and for gastrointestinal integrity and 

function. Unlike fats and proteins, high levels of dietary carbohydrates (provided they are 

obtained from a variety of sources) are not associated with adverse health effects (FAO, 

1998). 

Fat is also a source of fuel energy for the body and aids in the absorption of fat-soluble 

vitamins and other food components such as carotenoids. Saturated fatty acids, 

monounsaturated fatty acids and cholesterol are synthesised by the body and have no known 

beneficial role in preventing chronic diseases and thus are not termed essential even though 

they have vital physiological roles (DRIs, 2005). Excess dietary fat intake is detrimental to 

human health as overconsumption is associated with excess body weight and adipose stores.  

Proteins form the major structural components of all the cells of the body. Dietary proteins 

provide the amino acids needed for synthesis of various body proteins such as skeletal muscle 

and other structural proteins, membrane carriers, enzymes and hormones (Guigoz, 2011). 

Proteins can also serve as an energy source when there are insufficient carbohydrates and fats 

to meet the body`s needs. Insufficient protein intake is a common problem in poor 

communities and the disorder commonly occurs in a variety of pathologic states. Children are 

mostly affected from protein deficiency (although the deficits maybe both protein and 

energy) and the two main forms are marasmus and kwashiorkor (Barasi, 2003). 
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2.11 The toxic element arsenic (As) 

 Arsenic is a metalloid that occurs in different organic and inorganic forms and can arise from 

natural sources such as rocks and sediments and also as a result of anthropogenic activities 

such as coal burning, copper smelting and the processing of mineral ores (Rose et al., 2007). 

Marine organisms can accumulate higher levels of arsenic than terrestrial plants, as arsenic is 

fairly water soluble and may be washed out of arsenic bearing rocks into the sea (Zhao et al., 

2014). In particular, seaweeds are known to bioaccumulate available nutrients from their 

environment making them highly nutritive, however they may also accumulate arsenic which 

may be harmful to humans. Hence, arsenic levels need to be monitored in seafood and edible 

seaweeds to establish their potential threat to consumers. 

 It is well known that arsenic toxicity depends not only on the total concentration but also on 

the chemical species in which this element is present. Inorganic arsenic species, arsenite 

(As(III)) and arsenate (As(V)), are generally considered to be more toxic, while the organic 

species such as, arsenocholine, arsenobetaine and arsenosugars are considered to be less toxic 

or non-toxic (FSANZ, 2010). Inorganic arsenic is a known human carcinogen associated 

especially with liver, bladder, lung and skin cancer (WHO, 2011).  

Dietary exposure to inorganic arsenic is mainly from natural ground water and foods such as 

rice and other grain-based processed products (EFSA, 2014). Seafood is also a major 

contributor to arsenic dietary exposure. Borak and Hosgood (2007) estimated seafood to 

contribute approximately 90% towards dietary arsenic in the United States. However, the 

predominant arsenic was in the less toxic organic forms, with inorganic arsenic only 

accounting for a minor percentage. Edible seaweeds contain higher levels of inorganic 

arsenic in proportion to the total arsenic content compared to other foods (FSANZ, 2010). 

Since the available seaweed species are widely diverse, their levels of inorganic arsenic vary, 

thus their contribution to dietary arsenic exposure varies with species. However, specific 
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types of seaweeds such as brown seaweeds from the Sargassum family (S. fusiforme (hijiki)) 

have been found to consistently contain high levels of inorganic arsenic (Rose et al., 2007; 

Zhao et al., 2014). 

Food regulators in most countries have not established specific maximum limits for inorganic 

arsenic in seaweed. France, New Zealand and Australia are the only countries with maximum 

limits for inorganic arsenic in seaweeds. In Australia and New Zealand, the maximum limit 

for inorganic arsenic in seaweeds is 1 µg g-1 calculated with respect to the mass of seaweed at 

85% hydration, while in France it is set at < 3 µg g-1, dry weight (Burtin, 2003; FSANZ, 

2010). In 2010, the Joint Food and Agriculture Organization / World Health Organization 

Expert Committee on Food Additives (JECFA) determined the inorganic arsenic benchmark 

dose lower confidence limit for a 0.5% increased incidence of lung cancer in human 

(BMDL0.5) to be 3.0 μg kg-1 body weight/day. 

 

2.12 Seasonal variation 

There may be different reasons for seasonal variation on elemental uptake by seaweeds 

including: environmental factors such as variations in metal concentrations in solution, 

interactions between metals and other elements, surface water and atmospheric temperature, 

tidal range, salinity and pH, and metabolic factors such as dilution of metal content due to 

growth (Villares et al., 2002). 

Seasonal variation on elemental uptake has been linked to growth, where the metal 

concentration is stated to increase in dormant winter periods and decrease during periods of 

growth. Riget et al. (1995) observed metal concentrations in Fucus vesiculus (brown) to be 

highest in winter and lowest in summer. Misheer et al. (2006) found elemental uptake by 
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Plocamium corallorhiza (red) found along the KwaZulu-Natal coastline to also increase in 

winter and decrease during summer. 

In some studies higher metal concentrations have been found in the growth periods (summer). 

These changes could be due to higher rates of photosynthesis and respiration during summer 

which would favour the assimilation of metals (Villares et al., 2002). However, others studies 

have attributed high concentrations in summer (rainy season) to high concentrations of metals 

in water because of an increase in terrestrial inputs (Lacerda et al., 1985). Some studies 

suggested that high metal concentrations in algae indicated the capacity of the alga to take up 

the metals. 

 

2.13 Analytical and phytochemical techniques 

The following techniques were employed to achieve the objectives of this research. 

 

2.13.1 Microwave digestion 

Microwave digestion is a fast and effective technique that uses concentrated acids to 

decompose many kinds of samples for the determination of a wide range of elements by 

atomic spectrometric techniques. Microwave digestion involves placing the sample in a vial 

(or bomb), usually constructed of a fluorinated polymer, such as polytetrafluoroethylene 

(PTFE) or perfluoroalkoxy (PFA). After adding the digestion reagents, the vial is tightly 

sealed and placed in the microwave oven for irradiation by microwave energy, at elevated 

temperatures and pressure (Lamble and Hill, 1998). This technique ensures accelerated 

sample digestion with minimal contamination and loss of volatile elements. 
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Figure 11. CEM MARS 6 microwave. 

http://www.cem.com/mars6-options.html. 

Figure 11 shows a typical closed system microwave with built in pressure and temperature 

controls. The microwave is designed to hold a maximum of 24 MarsXpressTM or 12 

EasyPrepTM vessels (Figure 12), on a turntable that can rotate through 360 degrees to ensure 

uniform microwave energy to each vessel.  

(a)     (b)  

Figure 12. CEM MARS 6 (a) EasyPrepTM and MarsXpressTM vessels. 

http://www.cem.com/mars6-vessels.html. 
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2.13.2 Inductively coupled plasma-optical emission spectrometry (ICP-OES) 

The ICP-OES (Figure 13) is one of the most powerful and popular analytical tools for the 

determination of trace elements in a variety of different sample matrices. The technique is 

based upon the spontaneous emission of photons from atoms and ions that have been excited 

in a radio-frequency (RF) discharge. Liquid samples may be injected directly into the 

instrument, while solid samples require extraction or acid digestion so that the analytes will 

be present in a solution (Hou and Jones, 2000). The sample solution is converted to an 

aerosol and directed into the central channel of the plasma. The inductively coupled plasma 

(ICP) sustains a temperature of approximately 10 000 K, so the aerosol is quickly vaporised, 

and energised through collisional excitation to the excited states. The excited atomic and 

ionic species may then relax to the ground state via the emission of a photon (Ghosh et al., 

2013). These photons have characteristic energies that are determined by the quantized 

energy level structure for the atoms or ions. Thus the wavelength of the photons can be used 

to identify the elements from which they originated. The total number of photons is directly 

proportional to the concentration of the originating element in the sample. 

 

Figure 13. ICP-OES Optima 5300 DV at the School of Chemistry and Physics (UKZN). 
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The instrumentation associated with an ICP-OES system is relatively simple. A portion of the 

photons emitted by the ICP is usually collected by a focusing optic such as lens or a concave 

mirror. This optic focuses the image of the ICP discharge onto the entrance aperture of a 

wavelength selection device such as a monochromator. The particular wavelength exiting the 

monochromator is converted to an electrical signal by a photo detector. The signal is 

amplified and processed by the detector electronics, then displayed and stored by a computer 

(Wang, 2004). 

 

2.13.2.1 Advantages and disadvantages of ICP-OES 

Some of the advantages of ICP-OES include: 

 Excellent detection limits for most elements (1–100 µg L-1). 

 Simultaneous multi-element capability (almost all the elements in the periodic table). 

 Fairly simple to run the instrument. 

 High stability leading to excellent accuracy and precision. 

 Limited spectral interferences. 

 Low matrix effects. 

One major disadvantage of the ICP-OES is that it only analyses liquid samples. 

 

2.13.2.2. ICP-OES interferences 

Some of the interferences that occur when using the ICP-OES include: 

 Physical interferences due to changes in viscosity of the solution. 

 Chemical interferences due to the generation of compounds that have low atomization 

efficiency. 
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 Spectral interferences (also referred to as background interferences) due to the 

overlapping of emission or absorption lines. 

Spectral interferences maybe eliminated by using advanced background correction techniques 

or by choosing a different analytical wavelength for the element(s) of interest. The high 

temperature of the plasma helps to reduce chemical interferences. The temperature is high 

enough to break down most species into atoms or ions for excitation and subsequent 

emission. However, chemical interferences do exist in the ICP-OES and sometimes higher 

RF power and/or lower inner argon flow rates are used to reduce these interferences (Hou and 

Jones, 2000). Physical interferences may be minimised by use of internal standardisation and/ 

or matrix matching.  

 

2.13.3 Chromatography 

Chromatography refers to a set of techniques used to separate compounds from different 

mixtures by distributing them between two phases. The stationary phase (usually a solid or 

bonded coating) stays fixed in one place, while the mobile phase or eluent (usually a liquid or 

gas) moves through the medium being used. The movement of the components in the mobile 

phase is controlled by the significance of their interactions with the mobile and/or stationary 

phases. Because of the differences in factors such as the solubility of certain components in 

the mobile phase and the strength of their affinities for the stationary phase, some 

components will move faster than others, thus facilitating the separation of the components 

within that mixture. 

 



  

40 
 

2.13.3.1 Thin layer chromatography (TLC) 

Thin layer chromatography (TLC) is a simple, quick and inexpensive procedure used to 

determine the number of components in a mixture as well as the purity of compounds. TLC is 

also used to identify a compound by comparing its retention factor (Rf) to that of known 

compounds. TLC is performed on a sheet of glass, plastic, or aluminium coated with a thin 

layer of adsorbent material, such as silica or alumina. This layer of adsorbent is known as the 

stationary phase. After the sample has been applied on the plate, a solvent or solvent mixture 

(mobile phase) is drawn up the plate via capillary action (Figure 14). Because different 

analytes ascend the TLC plate at different rates, separation is achieved. 

 

 

Figure 14. A schematic diagram of the TLC technique. 

 

2.13.3.2 Column Chromatography 

In column chromatography, the stationary phase (silica gel or alumina) is placed in a vertical 

glass column. The mobile phase, a liquid, is added to the top and flows down through the 

column by either gravity or external pressure (Figure 15). Column chromatography is 

generally used as a purification technique; it isolates desired compounds from a mixture. 
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Figure 15. A column used to separate compounds in this study. 

 

Components of the sample separate from each other by partitioning between the stationary 

phase and the mobile eluent. Molecules with different polarity partition to different extents 

and therefore move through the column at different rates. The eluent is collected in fractions. 

Fractions are typically monitored by TLC to see if separation of the components was 

successful. 

 

2.13.4 Spectroscopic techniques 

Spectroscopic techniques employ light (electromagnetic radiation) to interact with matter and 

reveal certain features of a samples’ structure. Different regions of the electromagnetic 

spectrum provide different kinds of information as a result of such interactions (Hofmann, 

2010). 
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2.13.4.1 Nuclear magnetic resonance (NMR) 

This technique exploits the magnetic properties of certain atomic nuclei to study physical, 

chemical and biological properties of matter. The NMR is frequently used by chemists and 

biochemists to investigate the properties of organic molecules, suitable samples range from 

small compounds analysed by one-dimensional proton or carbon-13 NMR spectroscopy to 

large and complex compounds such as proteins using two-dimensional techniques. 

The 1H-NMR spectrum provides detailed information such as; 

 Chemical shifts which show differences in the hydrogens’ chemical environments. 

 Splitting representing the number of neighbouring hydrogens (N+1 rule). 

 Integration (area under the signal) which gives the relative number of hydrogens 

present at each signal. 

 The number of peaks shows number of different environments the hydrogen atoms 

are in. 

This information is helpful in determining the chemical structure of organic compounds. The 

13C-NMR works on the same principle as 1H-NMR (nuclei spin), however it has a wider 

chemical shift range from 0-230 ppm than 1H-NMR (0-13 ppm). The signals in 13C-NMR 

appear as singlets due to the decoupling of the attached proton.  

Distortionless enhancement by polarization transfer (DEPT) is a NMR method used for 

determining the presence of primary, secondary and tertiary carbon atoms. The DEPT 

experiment differentiates between CH, CH2 and CH3 groups by variation of the selection 

angle parameter (the tip angle of the final 1H pulse): 135° angle gives all CH and CH3 in a 

phase opposite to CH2; 90° angle gives only CH groups. Signals from quaternary carbons 

with no attached protons are always absent in DEPT. 
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Two-dimensional (2D) NMR experiments are useful in providing additional information 

about complex compounds whose signals overlap because their resonating frequencies are 

very similar, and where 1D-NMR is insufficient. Examples of 2D-NMR include: Correlation 

Spectroscopy (COSY), Nuclear Overhauser Effect Spectroscopy (NOESY), Heteronuclear 

Singlet Quantum Coherence (HSQC) and Heteronuclear Multiple Bond Correlations 

(HMBC). 

 

2.13.4.2 Infrared spectroscopy (IR) 

Infrared spectroscopy (IR) is an absorption method in the infrared region of the 

electromagnetic spectrum. Absorption of infrared radiation excites vibrational and rotational 

motions within molecules and 'measurements' of the ways in which bonds vibrate gives rise 

to IR. Atom size, bond length and bond strength vary in molecules and so the frequency at 

which a particular bond absorbs infrared radiation is characteristic to that bond. 

An infrared spectrometer (Figure 16) analyses a compound by passing infrared radiation, 

over a range of different frequencies, through a sample and measuring the absorptions made 

by each type of bond in the compound. This produces a spectrum, normally a ‘plot’ of % 

transmittance against wavenumber. Examination of the spectrum can provide information of 

the functional groups in the compound. 

This technique is very useful in the identification and structure analysis of a variety of 

substances, including both organic and inorganic compounds. It can also be used for both 

qualitative and quantitative analysis of complex mixtures of similar compounds. 
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Figure 16. Infrared spectrometer at the School of Chemistry & Physics (UKZN). 

 

2.13.4.3 Mass spectrometry 

Mass spectrometry (MS) is an analytical tool used for measuring the molecular mass of a 

sample. A mass spectrometer determines the mass of a molecule by measuring the mass-to-

charge ratio (m/z) of its ion. Ions are generated by inducing the loss of a charge from a 

neutral species. Once formed, ions are electrostatically directed into a mass analyser where 

they are separated according to m/z and detected. The detected signal is sent to a data system 

where the m/z ratios are stored together with their relative abundance for presentation in the 

format of an m/z spectrum. The mass or structure of the molecule is subsequently derived 

from careful interpretation and analysis of the spectrum. There are many types of ionization 

methods used in mass spectrometry, including modern techniques such as Matrix Assisted 

Laser Desorption Ionization (MALDI). The time-of-flight (TOF) analysers are typically used 

with the MALDI ionization source. 
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CHAPTER 3 

CHEMICAL COMPOSITION AND SEASONAL VARIATION ON 

ELEMENTAL UPTAKE OF SELECTED SEAWEEDS FROM THE 

INDIAN OCEAN, KWAZULU-NATAL, SOUTH AFRICA. 

 

Abstract 

 Five seaweeds namely Halimeda cuneata, Spyridia hypnoides, Codium capitatum, Hypnea 

spicifera and Sargassum elegans, of which the latter three are edible, were collected from the 

KwaZulu-Natal east coast region of South Africa during four different seasons. The 

proximate composition of the three edible seaweeds and seasonal variation of minerals and 

trace elements in all five seaweeds was investigated. The edible seaweeds had a moisture 

level of 85.4 to 89.5%, protein of 6.1 to11.8%, lipids of 7.5 to13.1% and carbohydrates 

(which was obtained by difference) of 37.8 to 71.9 %. In general,  elemental concentrations 

in the five seaweeds varied significantly with season (p < 0.05) and were found to be in 

decreasing order of Ca > Mg > Fe > Cu > Mn > As > Zn > Ni > Cr > Pb > Co ≈ Se.  This 

study suggests that C. capitatum and H. spicifera could be potential sources of most essential 

nutrients and may contribute positively to the diet without posing the risk of adverse health 

effects due to low concentrations of toxic elements. However, consumption of S. elegans 

should be moderated as it could increase dietary exposure to inorganic As if too much is 

consumed. 

 

Keywords: seaweeds; arsenic; trace elements; seasonal distribution 
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3.1 Introduction   

Marine macro algae, commercially referred to as seaweeds, are commonly classified into 

three main groups according to their pigmentation, morphology, anatomy and nutritional 

composition as red (Rhodophyta), green (Chlorophyta) or brown (Phaeophyta) seaweeds 

(Dawczynski et al., 2007). The consumption of seaweed is common practice in Asian 

countries such as Japan, China and Korea and this has been so since ancient times (Burtin, 

2003). Currently, the worldwide human consumption of seaweeds is 5% for green, 66.5% for 

brown and 33% for red seaweeds (Marinho-Soriano et al., 2006). The demand for seaweeds 

as food has also extended to North America, South America and Europe. In South Africa, 

only six of approximately 800 seaweed species known have been harvested and this is done 

mostly for export to the hydrocolloid industry (Amosu et al., 2013).The fresh kelp harvested 

in South Africa is mainly used as feed for abalone. 

Seaweeds are known to take up high levels of certain nutrients from the sea, making them 

highly nutritive; this can make them rich in certain vitamins, proteins, minerals, fibre and 

essential fatty acids (El-Said and El-Sikaily, 2013). The protein and lipid content of seaweeds 

make them acceptable for human consumption as they contain essential amino acids and 

unsaturated fatty acids (Bhargyabati et al., 2011). Generally, green and red seaweeds contain 

higher amounts of proteins (10 to 30%, dry weight (DW)) than brown seaweeds (5 to 15%, 

DW).  The lipid content of seaweeds ranges from 1 to 6%, DW (Benjama and Masniyom, 

2011). The mineral content of seaweeds is generally high and in some calcified seaweeds it 

accounts for up to 36% of the dry matter, with these seaweeds being rich in essential 

elements. Factors such as salinity, turbidity, nutrient content and heavy metal contamination 

of growth medium largely influences the mineral content of seaweeds which in turn varies 

according to season (Marinho-Soriano et al., 2006). 
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The chemical composition of seaweeds from other regions of the world has been documented 

but information on edible seaweeds found in South Africa is lacking. Previously, we reported 

on the elemental concentrations in Gellidum abbottiorum, Plocamium corallorhiza, Caulerpa 

racemosa and Ulva lactuca collected over a period of one year from different sites along the 

east coast of KwaZulu-Natal (Misheer et al., 2006a, 2006b, 2006c, 2006d). In this work, the 

elemental concentrations in different classes of edible seaweeds, Codium capitatium (green), 

Hypnea spicifera (red), and Sargassum elegans (brown) found in KwaZulu-Natal, South 

Africa was investigated as a function of seasonal variation and compared to each other as 

well as to concentrations in inedible seaweeds, Halimeda cuneata (green) and Spyridia 

hypnoides (red). The chemical composition (protein, ash, lipid, moisture and carbohydrate) of 

C. capitatium, H. spicifera and S. elegans was also determined and the potential nutritive 

value of these edible seaweeds was evaluated. 

    

3.2 Materials and Methods 

3.2.1 Sampling 

Samples of five seaweed species, C. capitatium, H. cuneata, H. spicifera, S. hypnoides and S. 

elegans were collected from Inyoni Rocks, KwaZulu-Natal (30.0479 o S, 30.8902 o E) during 

low tide in autumn, winter, summer and spring of 2014. Seaweeds were washed on-site with 

seawater to remove sand, epiphytes and shells, placed in polythene bags and then thoroughly 

washed with double distilled water in the laboratory before drying at 45 oC to constant mass. 

Dried samples were ground in a blender (Braun range) and stored in plastic bottles in the 

refrigerator until analysed. 
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3.2.2 Analysis of proximate composition 

The protein, ash and moisture content in seaweeds were determined using standard AOAC 

methods with slight modifications (Benjama and Masniyom, 2012; Smith et al., 2010). Crude 

protein was obtained by the Kjeldahl distillation method using a conversion factor of 6.25 to 

convert total nitrogen to crude protein (%N  6.25). The ash content was determined 

gravimetrically after heating the sample in a muffle furnace at 600 o C for 16 hr. Moisture 

content was determined by drying the seaweed in an oven at 105 oC to constant mass. The 

lipids were obtained using a soxhlet apparatus with hexane as the solvent (Marinho-Soriano 

et al., 2006). Carbohydrate content was calculated by subtracting the amount of protein, lipid 

and ash from total dry matter. 

 

3.2.3 Reagents 

All reagents were of analytical reagent grade and were supplied by Sigma-Aldrich, Germany. 

Double distilled water was used for all dilutions. All plastic and glassware was cleaned by 

soaking in dilute HNO3 and rinsed with double distilled water prior to use. Elemental 

standards were prepared from 1000 mg L-1 stock solutions that were supplied by Fluka 

Analytical, Sigma, Switzerland.  

 

3.2.4 Determination of elemental content 

Seaweed samples were digested using the CEM MARS 6 microwave (CEM Corporation, 

Matthews, North Carolina, USA) with Easyprep™ vessels. A 0.25 g portion of each ground 

seaweed and certified reference material (CRM), white clover BCR-402, was transferred into 

Teflon vessels to which 10 mL of concentrated HNO3 was added. Samples were allowed to 

pre-digest for 2 hr to minimise the risk of an exothermic reaction and to allow most of the 

organic matrix to decompose at atmospheric pressure before sealing (Rhoades Jr, 1996). For 
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digestion, the microwave power was at 1050 W; the temperature was ramped to 180 oC for 15 

min where it was held for 15 min and then cooled for 15 min. All digests were transferred to 

25 mL volumetric flasks and made to volume with double distilled water before being 

analyzed (in triplicate) for As, Ca, Co, Cr, Cu, Fe, Mg , Mn, Ni, Pb, Se and Zn using a Perkin 

Elmer simultaneous inductively coupled plasma-optical emission spectrometer (ICP-OES, 

model 5300DV) with radial viewed plasma. Analytical wavelengths were selected based on 

minimum spectral interferences and maximum analytical performance. Initially, the three 

most sensitive lines were chosen, thereafter, the line with no interfering elements was 

selected.  

 

3.2.5 Statistical analysis 

A Levene`s test was applied to data sets to test for homogeneity of variances. For parameters 

that presented homogeneous variances, one-way ANOVA was employed to test for 

statistically significant differences within groups. For parameters that presented 

heterogeneous variances, Welch-ANOVA was used to test for statistically significant 

differences. In case of significance, the Tukey’s post hoc test (homogeneous variances and 

equal sample numbers) or Games-Howell post hoc test (heterogeneous variances) was 

performed. All statistical analyses were performed using the Statistical Package for the Social 

Sciences (PASW Statistics 22, IBM Corporation, Cornell, N.Y.) 

 

3.3 Results and Discussion 

3.3.1 Proximate composition 

The chemical compositions of the three edible seaweeds, C. capitatum, H. spicifera and S. 

elegans were significantly different (p < 0.05) (Table 6). The moisture content of the fresh 

seaweed was 85.4% in S. elegans, 89.4 % in H. spicifera and 89.5% in C. capitatum. On a 
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dry weight basis, the protein content ranged from 6.1% in S. elegans to 11.8% in C. 

capitatum. These results are consistent with those previously reported in brown seaweed (5-

15%, DW) and red and green seaweeds (10-30%, DW) (Burtin, 2003). Variations in the 

protein content have been reported in different species and have been seen in the same 

species collected in different seasons and under different environmental conditions (Matanjun 

et al., 2009).  

According to literature, the lipid content in most seaweeds range from 1 to 6%, DW 

(Ambrozova et al., 2014). However, some seaweed such as Dictyota sandvicensis (20.2%, 

DW) and Dictyota acutiloba (16.1%, DW) have been shown to have a higher lipid content 

(McDermid and Stuercke, 2003). In this study, the lipid content was significantly high in C. 

captatium (13.1%, DW) and relatively low in S. elegans (7.5%, DW). These results are 

consistent with those reported on Codium species collected in Australia with lipid content 

ranging from 7.3% to 21.1%, DW (Xu et al., 1998). The Sargassum species in this study had 

higher lipid content than those previously reported in S. subrepandum (3.61%, DW) (Abou-

El-Wafa et al., 2011) and S. mcclurei (1.2%, DW) (Hong et al., 2007).  

Ash broadly represents mineral content and some studies have shown the ash content in 

seaweeds to range from 8 to 40%, DW (Mabeau and Fleurence, 1993; Ortega-Calvo et al., 

1993). In this study, the ash content was significantly high in H. spicifera (40.4%) and 

relatively low in S. elegans (14.5%). These results suggest that seaweeds could be richer in 

their mineral content than most land vegetables that have an average ash content of 5 to 10%, 

DW (Tabarsa et al., 2012).  

Total carbohydrates were estimated by difference, this method gives a summary value of 

simple sugars, complex soluble sugars and insoluble carbohydrates (Menezes et al., 2004).  In 

this study, carbohydrates were a major component ranging from 37.8% in C. capitatum to 
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71.9% in S. elegans. The carbohydrate content in S. elegans was higher than previously 

reported in S. polycystum (34.9%) but lower than S. vulgare 93.3% and S. fusiforme (hijiki) 

90.7% (Ahmad et al., 2012; El- Shafay, 2014). These variations might be due to many factors 

such as environment, metabolic preferences and season. 

 

Table 6. Proximate chemical composition of the seaweed samples analysed (Mean ± SD, 

n=3) at the 95% confidence interval. 

Seaweeds Protein* (%) Lipid (%) Ash (%) Carbohydrate** (%) 

C. capitatum 11.8 ± 0.55a 13.1 ± 0.55a 37.3 ± 0.49b 37.8 ± 0.49c 

H. spicifera 10.4 ± 0.20a 5.4 ± 0.58c 40.4 ± 0.87a 43.8 ± 0.59b 

S. elegans 6.1 ± 0.23b 7.5 ± 0.59b 14.5 ± 0.21c 71.9 ± 0.30a 

* Percentage based on dry weight, 

** Carbohydrate obtained by subtracting the amount of ash, lipid and protein from total DW, 

Different superscript letters within the column indicate significant differences between 

species (p < 0.05). 

 

3.3.2 Elemental analysis 

To evaluate the accuracy of the analytical method, the experimental values for the CRM 

(white clover BCR-402) were compared to certified values (Table 7). The values provided for 

Fe, Ni and Zn are indicative so no uncertainties were ascribed to them. The experimental 

values were in agreement with certified values. 
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Table 7. Elemental concentrations (mean ± SD, n=3) in the certified reference material, white 

clover BCR-402. 

 

 

 

 

 

 

 

 

In all of the five seaweed species studied, the concentrations of Ca, Cu, Fe, Mg and Mn 

differed significantly with season (p < 0.05) (Table 8). In general, concentrations of Ca, Cu, 

Fe and Mn in green seaweed (C. capitatum and H. cuneata) were low in winter and high in 

summer with the lowest and highest concentrations being significantly different. Calcium 

uptake in H. cuneata was relatively high compared to all of the other species studied (88 850 

µg g-1 in autumn). This could be because H. cuneata is a typical calcareous alga; previous 

studies have reported different calcifying algae to have Ca concentrations as high as 18.4%, 

DW (Hou and Yan, 1998). The accumulation of nutrients from winter to summer was 

observed as in C. capitatum, where there was a 110% increase in Cu uptake and 9.5% 

increase in Mn uptake, clearly indicating seasonal variation on elemental uptake. The 

accumulation of nutrients from summer to winter was also observed as in H. cuneata, which 

accumulated 3960 µg g-1 of Mg in winter which was significantly higher than that in summer.  

 

The effect of seasonal variation on elemental uptake in red seaweeds (H. spicifera and S. 

hypnoides) was different where; H. spicifera accumulated high concentrations of Ca, Cu and 

Element Concentration in white clover BCR-402 (µg g-1) 

 Certified     Experimental 

Co 0.178 ± 0.008                          0.17 ± 0.03 

Se 6.70 ± 0.25                              6.60 ± 0.26                                                                                             

Fe 244 240 ± 36.65 

Ni 8.25 8.23 ± 0.46                                                                                                        

Zn 25.2                                   25.40 ± 0.64                                                                
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Fe in winter and low concentrations in summer, opposite to S. hypnoides. This showed 

variations in elemental uptake among species of the same group. In S. hypnoides, the 

concentration of Cu increased significantly (> 8.5 times) between consecutive seasons (winter 

and spring). The uptake of Mn by H. spicifera was significantly different between the seasons 

that took up the highest and lowest concentrations of the element. The uptake trends for Mg 

were similar in both species with uptake being higher in the colder seasons than warmer ones. 

Amongst all the seaweed species studied, S. hypnoides had the highest affinity for Mg 

(22 276 µg g-1 in autumn) and Fe (3 324 µg g-1 in summer). 

Generally, uptake of Ca, Cu, Fe and Mn was lowest in the brown seaweed, S. elegans. 

Calcium, Fe and Mn concentrations in S. elegans, between seasons, were within a small range 

of variation. Copper uptake increased significantly from 8.43 µg g-1 in winter to 43.20 µg g-1 

in spring.  

Of the minor elements (Co, Cr, Ni, Se and Zn) in C. capitatum, there was no statistically 

significant difference in Co or Se concentration between seasons (p > 0.05) (Table 8). Uptake 

trends for Cr and Ni were similar with concentrations increasing from autumn to summer. 

The uptake of Zn followed no clear trend as concentrations alternated between seasons 

however these were significantly different (p < 0.05). In H. cuneata, Co, Cr and Se 

concentrations fell within a small range of variation. For Ni, uptake increased significantly 

from spring to summer. The uptake of Zn was higher than the other minor elements in 

autumn, winter and summer but uptake appeared to be significantly restricted in spring.  

In H. spicifera, the concentrations of Co and Ni showed no significant difference through all 

seasons and for Cr there was no significant difference from autumn to spring. The uptake 

trends for Se and Zn were similar with highest concentrations in autumn and lowest 

concentrations in summer. Zinc uptake in autumn was significantly different from the other 
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seasons and was higher than Co, Cr, Ni and Se in all seasons. In S. hypnoides, concentrations 

of Co, Cr, Ni, Se and Zn varied significantly between seasons. The mean concentration of Ni 

in summer (53.62 µg g-1) was noticeably higher than the other seasons. Zinc concentrations 

decreased significantly between autumn and winter and increased significantly between 

winter and spring.  

In S. elegans concentrations of Co, Cr and Se in all four seasons were very low compared to 

the other species studied. In general, no statistically significant difference was observed 

between seasons for Cr and Se. For Ni, no statistically significant difference was observed 

from autumn to spring but there was a significant increase from spring to summer. The 

uptake of Zn decreased significantly from winter through to summer. 

The difference in elemental concentration due to seasonal variation found in this study is 

attributed to the algae’s inherent controls as the effect of environmental factors would be 

constant (since collected from the same site). S. hypnoides had the highest capacity to 

accumulate metals. The findings indicated that certain species tended to accumulate certain 

metals in summer whilst some tended to accumulate metals in winter. High concentrations in 

summer could be correlated to concentrations of metals in water which could be high due to 

increased terrestrial inputs as a result of the rainy season. High concentrations in winter could 

be linked to growth, where uptake tends to increase in dormant winter periods and decrease 

during periods of growth.  
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Table 8. Concentration (in µg g-1, dry weight) of elements in seaweeds (Mean ± SD, n = 3) for the four different seasons. 

Species Season Ca Cu Fe Mg Mn Co Cr Ni Se Zn 

C
. 
ca

p
it

a
ti

u
m

 (
G

) 

Autumn 18 125 ±742b         8.80±0.4c             748.63±20.6b           8921±51.9a       45.10±1.5b           0,67 ±0.12a 3.43±0.12b             2.93±0.12b           1.70±0.56a      8.53±0.46c 

Winter 8 661±644c        7.76 ±0.7c             529.93±11.4c           7846±19.3b         21.47±1.6d           0.53±0.05a 3.93±0.29b 3.20±0.26b 1.30±0.44a 11.97±0.95b 

Spring 10 580±396c     200.53±16.9b            841.10±32.9b        8 642±33.2a         26.63±0.8c 0.57±0.21a 7.40 ±0.26a 8.76±0.29a 0.87±0.38b 5.90±0.40a 

Summer 23 184 ±646a           858.24±69.9a          2 583±282a             6  336±274c              201.77±12.8a          0.58±0.02a 9.25±1.45a 23.44±4.57a 0.03±0.00ab 20.22±4.42abc 

Significance              *         **           **         **        ** **         **           **         *        ** 

H
. 
cu

n
ea

ta
 (

G
) 

Autumn 88 850±84.9a      10.27±0.3c         1 166±61.1a       2 317±60.1b     32.67± 2.3a          0.87±0.06a       3.60±0.17c         3.13±0.42b     1.23±0.06b     24.17±4.01a          

Winter 66 600±95.4c    7.30±0.2d           343.67±15.1b          3 960±82.2a      14.77±0.4b         0.47±0.06ab 7.30±0.32a  1.57±0.06b 1.93±0.06a 17.63±4.70a 

Spring 73 760±361.7b    58.87±0.3b          1 258±28.7a          3 683±54.1a        30.73±0.5a          0.90±0.02a 5.27±0.11b 5.60±0.47b 1.53±0.51abc 4.13±0.12b 

Summer 73 302±689b       516.27±50.2a      1 270±203a          2 429±256b         34.41±4.6a        0.37±0.04b  14.92±2.05a 17.75±3.69a 0.01±0.00c 23.03±8.50a 

Significance          *         **          *         *         *        **         **          *         **         * 

H
. 
sp

ic
if

er
a
 (

R
) Autumn 18 436±471a       7.30±0.4c 262.67±22.4b          3 567±48.1a       18.73±2.1a 0.47±0.06a    3.03±0.35a 6.60±1.17a          1.93±0.75a 22.70±3.39a 

Winter 17 325±431.3b   21.20±1.2b 504.33±3.0a 3 698±67.1a 16.30±1.9ab 0.50±0.01a 3.63±0.76a 7.00±0.17a 1.70±0.35a 14.40±1.47a 

Spring 10 907±580.2c   62.77±4.1a        447.50±33.2a 2 929±36.5b 15.77±2.1b 0.47±0.12a 2.60±0.69a 11.67±6.17a  0.30±0.01b 10.80±0.26b 
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Summer 4 522±232d        10.19±1.6c       206.10±7.3b 2 939±1.6b 11.37±2.3b 0.59±0.05a 0.84±0.08b 6.70±0.77a 0.01±0.00b 8.24±0.76b 

Significance            *         ** *           *          *          **         * **           *          * 

S
. 
h
yp

n
o
id

es
 (

R
) 

Autumn 20 117±105d       12.83±0.6c       2 215±46.7b      22 276±214a     134.20±2.9a      2.93±0.06a 9.37±0.47b      10.30±0.79a      0.4±0.06a     29.15±1.06a      

Winter 23 845±162.6c    94.13±4.0b          2 471±28.6b       13 380±60.8b    133.60±2.7a         2.00±0.10b 19.30±0.82a 11.87±0.21a 0.50±0.01a 9.90±1.76c 

Spring 43 435±572.8b     801.80±39.5a            2 943±18.7a         8 245±12.7c         74.57±2.5b          1.37±0.12c 6.97±0.25c 6.47±0.25b 0.03±0.00b 22.80±0.82b 

Summer 45 816±610a        164.17±44.0b      3 324±92.6a        6 964±364d          119.77±11.3a       2.01±0.09b 8.97±1.39bc 53.62±12.59ab 0.03±0.00b 21.23±5.19abc 

Significance            **         **         ** * *          *         *         **        ** ** 

S
. 
el

eg
a
n
s 

(B
) 

Autumn 9 270±16.3a 7.43±0.8c 189.77±9.6a 5 130±33.5a 10.27±0.6a 0.47±0.06b 1.20±0.26a 1.83±0.31b 1.13±0.40a 18.70±2.69a 

Winter 9 684±736.2a 8.43±0.5c 115.55±15.2b 3 875±65.1b 8.73±0.7b 0.30±0.01b 3.40±1.76a 3.03±1.10b 1.47±0.46a 23.33±2.13a 

Spring 8 428±392.6a 43.20±2.2a 111.50±14.8b 3 686±50.2b 7.45±0.2c 0.20±0.01c 0.70±0.10a 1.37±0.31b 0.80±0.40ab 9.10±0.01b 

Summer 10 347±303ab 16.48±1.9b 152.30±29.7ab 4 768±320ab 8.19±0.3bc 1.50±0.09a 0.41±0.08a 9.67±1.74a 0.30±0.00b 7.16±0.36c 

Significance                *             *             *           **            *         **          **          **           *            ** 

G -green, R - red, B – brown, 

*, ** indicates significance at p≤0.05 for one-way ANOVA and Welch ANOVA, respectively, 

Different superscript letters within columns indicate mean separation by Tukey or Games-Howell at the 5% level.
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3.3.3 Toxic elements 

The effect of seasonal variation on uptake of As for the five studied seaweed species is 

presented in Figure 17. 
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Figure 17. Mean concentrations of As in the five seaweed species studied during the four 

different seasons, n = 3. Different superscript letters within columns indicate mean 

separations by Tukey`s or Games-Howell post-hoc tests at the 5% level. 

 

In S. elegans, there was a significant difference in uptake of As from summer (65.1 µg g-1) 

through to winter (94.70 µg g-1). In C. capitatum, the uptake of As was comparable in all four 

seasons. Uptake of As in H. spicifera and H. cuneata increased significantly from winter 

(6.37 µg g-1 and 4.37 µg g-1, respectively) to summer (12.99 µg g-1 and 13.99 µg g-1, 

respectively). In S. hypnoides, uptake of As was comparable in summer, winter and autumn 

but concentrations decreased significantly from winter to spring. In general, the concentration 
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of As was highest in S. elegans, followed by C. capitatum, H. cuneata, H. spicifera and S. 

hypnoides. This was in agreement with previous studies that reported brown algae to have a 

high affinity for As (77 µg g-1 in Sargassum sinicola) (Rodriguez-Castaneda et al., 2006). 

The effect of seasonal variation on Pb uptake for the studied species is presented in Figure 

18. The uptake trends for Pb in C. capitatum, H. cuneata, H. spicifera, S. hypnoides and S. 

elegans were similar with a significant increase from winter to spring to summer and a 

significant decrease from summer to autumn. In general, uptake of Pb increased with an 

increase in temperature (hotter seasons) and decreased with a decrease in temperature (colder 

seasons). 
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Figure 18.  Mean concentrations of Pb in the five seaweed species studied during the four 

different seasons, n = 3.  Different superscript letters within columns indicate mean 

separations by Tukey’s or Games-Howell post-hoc tests at the 5% level. 
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3.3.4 Contribution to the diet 

The mineral content of edible seaweeds makes them nutritionally valuable and they could 

contribute significantly to the diet of the impoverished coastal communities in South Africa. 

Generally, poor communities often depend upon natural resources to meet their basic 

nutritional needs, and these resources degrade easily and become less productive which in 

turn leads to inadequate nutrition and sickness caused by deficiencies in the diet. Previously, 

we reported on the elemental contribution of fruits and vegetables found in the east coast 

region of KwaZulu-Natal, South Africa, to the diet (Moodley et al., 2012; Kisten et al., 2015) 

The coastal communities in South Africa rely mostly on fishing for food (Stern, 2013; 

Young, 2013). This can be supplemented by seaweeds which could offer an alternative to 

vegetables for a balanced diet. The elemental distribution in the edible seaweeds studied is 

compared to Dietary Reference Intakes (DRIs) for most individuals (Table 9) to determine 

the contribution of seaweeds to the diet.  

Based on dry mass, if 10 g of any of the studied edible seaweeds is consumed, it would 

contribute satisfactorily to the intake of most essential elements and would not exceed the 

tolerable upper intake levels (ULs). Iron is essential for a number of biochemical functions in 

the body including the transport of oxygen, and its deficiency results in anaemia. About 10 g 

of C. capitatum would contribute 78 to146% towards the RDA for Fe and 299% towards the 

RDA for Cu, both of which would be considered safe as the ULs were not exceeded. 

Chromium improves the efficiency of insulin and is required for normal protein, fat and 

carbohydrate metabolism (Chowdhury et al., 2003). Chromium deficiency has been linked to 

maturity onset diabetes and cardiovascular disease. If about 10 g of C. capitatum, H. spicifera 

or S. elegans is consumed, it would contribute 171 to 250%, 85.7 to 125% and 28.6 to 41.7%, 

respectively towards the RDA for Cr. Chromium is considered one of the safest nutrients, and 
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is likely to be without risk of adverse health effects over a lifetime therefore no ULs have 

been established for this element (Krejpcio, 2001). 

Copper is necessary for proper development of connective tissue, myelin and melanin; its 

deficiency is usually the consequence of decreased Cu stores at birth, inadequate dietary Cu 

intake and poor absorption. Anaemia, neutropenia and bone abnormalities are some of the 

common results of Cu deficiency (Uauy et al., 1998). If about 10 g of C. capitatum is 

consumed, it would contribute 299% towards the RDA for Cu; however this amount does not 

exceed the UL so it would be considered safe. Consumption of 10 g of H. spicifera and S. 

elegans would contribute 27.8% and 21.1%, respectively towards the RDA for Cu. 

Lead is a toxic metal and high dosages of Pb can damage the central nervous system and the 

kidneys (Chamannejadian et al., 2013). The WHO/FAO Expert Committee on Food 

Additives has set the provisional tolerable daily limit for Pb, which can be taken over a 

lifetime with no adverse health effects, as 0.214 mg per day for an average body weight of 60 

kg (WHO, 2000). The average concentration of Pb in 10 g of C. capitatum, H. spicifera and 

S. elegans was 0.06, 0.03 and 0.04 mg, respectively which do not exceed the daily limit for 

Pb. 

Results from the survey of total As in the 1999 Total Diet Study showed an upper-bound 

daily intake of 0.1 µg kg-1 body weight for a normal consuming adult (Tao and Bolger, 1999). 

For an average person (body weight of 60 kg), this would amount to 6 µg of As per day.  

Based on the United States Department of Agriculture's 1987-1988 Nationwide Food 

Consumption Survey, the estimated daily total As average intake is 28 to 37 µg per day for 

most women and 47 to 57 µg per day for most men. Uptake of total As in S. elegans ranged 

between 65.1 µg g-1 and 94.70 µg g-1. If 10 g of seaweed is consumed in summer (the season 

where uptake is lowest), this would contribute 651 µg per day to an adult which is more than 
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a hundredfold increase in the upper bound daily intake for a normal consuming adult and it 

exceeds the United States estimated daily total As average intake. However total As content 

alone does not fully reflect the level of hazard in consuming S. elegans, hence it is important 

to determine the various forms of As to evaluate the risk associated with too much 

consumption of S. elegans. The most toxic forms of arsenic are the inorganic ones (As(III) 

and As(V)). The organic forms such as arsenocholine, arsenobetaine and arsenosugars are 

considered less toxic or non-toxic (Rose et al., 2007). 
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Table 9. Dietary Reference Intake (Recommended Dietary Allowance (RDA) and Tolerable Upper Intake Level (UL)) for each essential 

element and estimated contribution of seaweeds (C. capitatum, H. spicifera and S. elegans) towards the RDA for most individuals. 

Element Average concentration 

(mg per 10 g) 

DRI* 

(mg g-1) 

Estimated contribution to RDA 

(%) 

C.  capitatum H. spicifera S. elegans RDA UL C.  capitatum H. spicifera S. elegans 

Fe 11.75 3.55 1.42 8-15 45 78-146 23.7-44.4 9.5-17.8 

Cu 2.69 0.25 0.19 0.9 10 299 27.8 21.1 

Zn 0.12 0.14 0.15 8 -11 40 1.1-1.5 1.3-1.8 1.4-1.9 

Mn 0.74 0.15 0.09 1.6-2.3 11 32.2-46.3 6.5-9.4 3.9-5.6 

Pb 0.06 0.03 0.04  ND 28.0 14.0 18.7 

Cr 0.06 0.03 0.01 0.024-0.035 ND 171-250 85.7-125 28.6-41.7 

Ni 0.10 0.08 0.04 ND 1.00 ND** ND ND 

Se 0.01 0.01 0.01 0.055 0.40 18.2 18.2 18.2 

* Dietary Reference Intake,  

**ND- Not determinable. 
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3.4 Conclusion 

The three edible seaweeds from this study, C. capitatum, H. spicifera and S. elegans were 

shown to be rich sources of proteins, lipids and carbohydrates and had sufficient amounts of 

essential nutrients to contribute positively to the diet. Seaweeds are therefore potential 

sources of these minerals and their potential as a health food should be explored especially in 

the impoverished coastal communities in South Africa. However, consumption of S. elegans 

should be moderated as it could increase dietary exposure to inorganic As if too much is 

consumed. The study also revealed the effect of seasonal variation on elemental uptake in 

seaweeds. In general, the concentrations of essential elements in seaweeds were found to be 

in decreasing order of Ca > Mg > Fe > Cu > Mn > As > Zn > Ni > Cr > Co ≈ Se. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

74 
 

REFERENCES 

Abou- EL-Wafa, G.S.E., Shaaban, K.A., El-Naggar, M.E.E., Shabaan, M., 2011. Bioactive 

constituents and biochemical composition of the Egyptian brown alga Sargassum 

subrepandum (Forsk). Revista Latinoamericana de Quimica. 39, 1-2, 62-74. 

Ahmad, F., Sulaiman, R.M., Saiman, W., Yee, F.C., Matanjum, P., 2012. Proximate 

compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, 

Malaysia. Borneo Science. 31, 74-83. 

Ambrozova, V.J., Misurcova, L., Vicha, R., Machu, L., Samek, D., Baron, M., Mlcek, J., 

Sochor, J., Jurikova, T., 2014. Influence of extractive solvents on lipid and fatty acids 

content of edible freshwater algal and seaweed products, the green microalga Chlorella 

kessleri and the cyanobacterium Spirulina platensis. Molecules. 19, 2, 2344-2360. 

Amosu, O.A., Robertson-Anderson, V.D., Manevedlt, G.W., Anderson, R.J., Botlon, J.J., 

2013. South African seaweed aquaculture. African Journal of Agricutural Research. 8, 43, 

5268-5279. 

Benjama, O., Masniyom, P., 2011. Nutritional composition and physicochemical properties 

of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern 

Thailand. Songklanakarin Journal of Science and Technology. 33, 5, 575-583. 

Benjama, O., Masniyom, P., 2012. Biochemical composition and physicochemical properties 

of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in 

Southern Thailand. Journal of Science and Technology. 34, 2, 223-230.  

Bhargyabti, T., Kirithika, T., Shiny, K., Usha, K., 2011. Phytochemical screening and 

antioxidant activity of various extracts of Sargassum miticum. International Journal of 

Pharmaceutical Research and Development. 3, 25-30. 

Burtin, P., 2003. Nutritional value of seaweeds. Electronic Journal of Environmental, 

Agricultural and Food Chemistry. 2, 4, 498-503. 



  

75 
 

Chamannejadian, A., Sayyad, G., Moezzi, A., Jahangiri, A., 2013. Evaluation of estimated 

daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran 

Journal of Environmental Health Science and Engneering. 10, 28. 

Chowdhury, S., Pandit, K., Roychowdury, P., Bhattacharya, B., 2003. Role of chromium in 

human metabolism, with special reference to Type 2 diabetes. Journal of the Association 

of Physicians of India. 51, 701-705. 

Dawczynski, C., Schafer, U., Leiterer, M., Jahreis, G., 2007. Nutritional and toxicological 

importance of macro, trace and ultra-trace elements in algae food products. Journal of 

Agricultural and Food Chemistry. 55, 470-475. 

El-Said, F.G., El-Sikaily, A., 2013. Chemical composition of some seaweeds from 

Mediterraneans coast, Egypt. Environmental Monitoring and Assessments. 185, 7, 6089-

6099. 

El-Shafay, M.S., 2014. Biochemical composition of some seaweeds from Hurghada coastal 

along Red Sea coastal, Egypt. International Journal of Basic and Applied Sciences. 14, 

29-35. 

Hong, D.D., Hien, H.M., Son, D.N., 2007. Seaweeds from Vietnam used for functional food, 

medicine and biofertilizer. Journal of Applied Phycology. 19, 6, 817-826. 

 Hou, X., Yan, X., 1998. Study on the concentration and seasonal variation of inorganic 

elements in 35 species of marine algae. Science of the Total Environment. 222, 3, 141-

156. 

Institute of Medicine, Food and Nutrition Board, 2001. Dietary Reference Intakes for 

Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, 

Molybdenum, Nickel, Silicon, Vanadium and Zinc. National Academy Press, 

Washington, DC. 



  

76 
 

Kisten, K., Gounden, D., Moodley, R., Jonnalagadda, S.B., 2015. Elemental distribution and 

uptake by watercress (Nasturtium aquaticum) as a function of water quality. Journal of 

Environmental Science and Health Part B. 50, 439-447. 

Krejpcio, Z., 2001. Essentiality of chromium for human nutrition and health. Polish Journal 

of Environmental Studies. 10, 6, 399-404. 

Mabeau, S., Fleurence, J., 1993. Seaweed in food products: Biochemical and nutritional 

aspects. Trends in Food Science and Technology. 4, 103-107. 

Marinho- Soriano, E., Fonseca, P.C., Carneiro, M.A.A., Moreira, W.S.C., 2006. Seasonal 

variation in the chemical of two tropical seaweeds. Bioresource Technology. 97, 2402-

2406. 

Matanjum, P., Mohamed, S., Mustapha, M.N., Muhammad, K., 2009. Nutrient content of 

tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum 

polycystum. Journal of Applied Phycology. 21, 75-80. 

McDermid, J.K., Stuercke, B., 2003. Nutritional composition of edible Hawaiian seaweeds. 

Journal of Applied Phycology. 15, 513-524.  

 Menezes, E.W., Melo, A.T., Lima, G.H., Lajolo, F.M., 2004. Measurement of carbohydrate 

components and their impact on energy value of foods. Journal of Food Composition and 

Analysis. 17, 3-4, 331–338. 

Misheer, N., Kindness, A., Jonnalagadda, S.B., 2006. Elemental distribution in seaweed, 

Gelidium abbottiorum along the KwaZulu-Natal coastline, South Africa. Journal of 

Environmental Science and Health Part A. 41, 1-15.  

Misheer, N., Kindness, A., Jonnalagadda, S.B., 2006. Elemental uptake by seaweed, 

Plocamium corallorhirza, along the KwaZulu-Natal coast of Indian Ocean, South Africa. 

Journal of Environmental Science and Health Part B. 41, 1037-1048. 



  

77 
 

Misheer, N., Kindness, A., Jonnalagadda, S.B., 2006. Seaweeds along KwaZulu-Natal coast 

of South Africa-4: Elemental uptake by edible seaweed Caulerpa racemosa (sea grapes) 

and the arsenic speciation.  Journal of Environmental Science and Health Part A. 41, 

1217-1233. 

Misheer, N., Kindness, A., Jonnalagadda, S.B., 2006. Seaweeds along KwaZulu-Natal coast 

of South Africa-3: Elemental uptake by Ulva lactuca (sea lettuce). Journal of 

Environmental Science and Health Part A. 41, 1249-1259. 

Moodley, R., Koorbanally, N., Jonnalagadda, S.B., 2012. Elemental composition and fatty 

acid profile of the edible fruits of Amatungula (Carissa macrocarpa) and impact of soil 

quality on chemical characteristics. Analytica Chimica Acta. 730, 33-41. 

Ortega-Calvo, J.J., Mazuelos, C., Hermsoyn, B., Sar-Jimenez, C., 1993. Chemical 

composition of Spirulina and Eukaryotic algae food products marketed in Spain. Journal 

of Applied Phycology. 5, 425-435. 

Rhoades, B.C. (Jr)., 1996. Clean- laboratory chemistry for the microwave-assisted digestion 

of botanical samples. Journal of Analytical Atomic Spectrometry. 2, 751-757. 

Rodriguez-Castaneda, P.A., Sanchez-Rodriguez., Shumilin, E., Sapozhinkov, D., 2006.  

Element concentrations in some species of seaweeds from La Paz Bay and La Paz 

Lagoon, South-Western Baja California, Mexico. Journal of Applied Phycology. 18, 399-

408. 

Rose, M., Lewis, J., Langford, N., Baxter. M., Origgi, S., Barber, M., MacBain, H., Thomas, 

K., 2007. Arsenic in seaweed - forms, concentration and dietary exposure. Food and 

Chemical Toxicology. 45, 1263-1267.  

Smith, J.L., Summers, G., Wong, R., 2010. Nutrient and heavy metal content of edible 

seaweeds in New Zealand. New Zealand Journal of Crop and Horticultural Science. 38, 

19-28. 



  

78 
 

Stern, M., 2013. Sustainable livelihoods and marine resources: How does South Africa`s 

policy for the small-scale fisheries sector considering current challenges on the ground. 

South African Institute of International Affairs. Occasional paper no. 166. 

Tabarsa, M., Rezaei, M., Ramezanpour., Waaland, J.R., 2012. Chemical composition of the 

marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a 

potential food source. Journal of the Science of Food and Agriculture. 92, 12, 2500-2506. 

Tao, S.H., Bolger, P.M., 1999. Dietary arsenic intake in the United States: FDA Total Diet 

Study, September 1991- December 1996. Food Additives and Contaminants. 16, 11, 465-

472. 

Uauy, R., Olivares, M., Gonzalez, M., 1998. Essentiality of copper in humans. The American 

Journal of Clinical Nutrition. 67, 5, 9525-9595. 

World Health Organization (WHO), 2000. Safety evaluation of certain food additives and 

contaminants: lead. WHO food additives series 44. World Health Organization: Geneva.  

Xu Xin-Qing, Tran, V.H., Kraft, G., Beardall, J., 1998. Fatty acids of six codium species 

from Southeast, Australia. Phytochemistry. 48, 1335-1339. 

Young, M., 2013. Achieving equity in the fishing industry: The fate of informal fishers in the 

context of the policy for small-scale fisheries sector in South Africa. Potchefstroom 

Electronic Law Journal. 16, 5. 

 

 

 

 

 

 



  

79 
 

CHAPTER 4 

BIOACTIVE COMPOUNDS, ELEMENTAL CONCENTRATIONS, 

TOTAL AND INORGANIC ARSENIC IN SARGASSUM ELEGANS 

SUHR (1840). 

 

Abstract 

The brown marine macro alga, Sargassum elegans Suhr 1840 (Phaeophyta), collected from 

the coast of KwaZulu-Natal South Africa, was investigated for its secondary metabolites.  

Structural elucidation was performed using IR, NMR and mass spectroscopy. The 

compounds isolated from S. elegans were identified as β-sitosterol, fucosterol and 

phaeophytin a. The distribution of essential elements and the toxic element arsenic (total and 

inorganic) in S. elegans from eight different sites along the coast of KwaZulu-Natal were 

investigated. In general, elemental concentrations varied significantly with location (p < 0.05) 

and were found to be in the decreasing order of  Ca > Mg> Fe > Cu > Zn > Mn > Ni > Pb > 

Co > Se > Cr. Total As  in S. elegans was extremely high, ranging from 42.1 to 105.4 µg g-1, 

of which, 21.4 to 53.0 µg g-1 were in inorganic form. This study suggests that consumption of 

S. elegans could significantly increase dietary exposure to inorganic As which can cause 

adverse health effects, therefore its consumption should be avoided. 

 

Keywords: fucosterol, phaeophytin a, inorganic arsenic, toxicity 
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4.1 Introduction 

Sargassum is brown seaweed belonging to the family Sargassaceae and order Fucales. It has 

more than 400 species and is widely distributed in the tropical and temperate oceans of the 

world (Marimuthu et al., 2012). Sargassum spp. has been used in traditional Chinese 

medicine for nearly 2000 years to treat various diseases including thyroid diseases such as 

goitre (Liu et al., 2012). Chinese herbalist use powdered Sargassum to prepare a tea that is 

used to remove excess phlegm (Simoons, 1991). Cultures outside of China and Japan such as 

Indonesian and Hawaiian have also consumed Sargassum as food and medicine. The use of 

Sargasssum in South Africa has not been documented; however the locals living in the 

coastal areas use Sargassum spp. to make tea infusions as a remedy for sore throat and to 

treat chest pains. The quantities used to make tea infusions are not consistent or properly 

measured which creates the risk of exposure to high levels of toxic inorganic As. 

Many biologically active compounds like terpenoids, flavonoids, sterols, polyphenols, 

sargaquinoic acids, sargachromenol and phaeophytin have been isolated from this genus. 

These isolated compounds have been reported to exhibit diverse biological activities like 

analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, 

fibrinolytic, immune-modulatory, anti-coagulant, hepato-protective and anti-viral activity 

(Hur et al., 2008; Liu et al., 2012; Peng et al., 2013; Seo et al., 2007; Zhang et al., 2013). This 

suggests that Sargassum species have great potential to be used in pharmaceutical and 

nutraceutical industry. Sargassum elegans Suhr (1840) is widely distributed along the 

coastline of South Africa however this species is not utilized commercially in this country. 

Seaweed utilization is mainly focused on the larger kelps like, Ecklonia and Laminaria and 

the agar producing red seaweeds Gelidium and Gracilaria (Gillespie and Critchley, 1999).  
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Sargassum species have also been found to contain high concentrations of As to which long-

term exposure especially to the inorganic form, is known to cause cancer and skin lesions, 

and can be fatal (Chen et al., 1992; Chiou et al., 1995). Sargassum fusiforme (hijiki) has been 

reported to contain high concentrations of inorganic As and its consumption has since been 

stopped by the Canadian Food Inspection Agency (CFIA, 2001). In a previous study, we 

investigated the elemental concentrations in different classes of edible seaweeds, found in 

KwaZulu-Natal, South Africa as a function of seasonal variation and found total As in S. 

elegans to range between 65.1 µg g-1 (in summer) and 94.7 µg g-1 (in winter) (unpublished 

results). In this study, total and inorganic As in S. elegans from eight different sites in 

KwaZulu-Natal, South Africa were determined to evaluate its safety for human consumption. 

We also report on the secondary metabolites present in S. elegans to validate its ethno-

medicinal use.   

 

4.2 Materials and Methods 

4.2.1 General experimental procedure 

4.2.2 Sampling 

Samples of S. elegans were collected by hand picking during low tide from the coast of 

KwaZulu-Natal, in summer and identified by marine biologist, Dr Deborah V. Robertson-

Anderson from the School of Life Sciences, University of KwaZulu-Natal, Westville. The 

sampling sites were: 1 Compensation Beach (29.55353 o S, 31.2228 o E), 2 Inyoni Rocks 

(30.0479 o S, 30.8902 o E), 3 Isipingo Beach (29.9974 o S, 30.9446 o E), 4 Winklespruit 

(30.0946 o S, 30.8604 o E), 5 Park Ryne (30.3167 o S, 30.7333 o E), 6 Pennington (30.3674 o S, 

30.7333 o E), 7 Ifafa (30.4623 o S, 30.8902 o E) and 8 Hibberdene (30.5718 o S, 30.5724 o E).  

The collected seaweeds were washed with seawater to remove sand particles, epiphytes and 

shells and transported to the laboratory in polythene bags where they were thoroughly 
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washed with double distilled water and dried at 45 oC to constant mass. The dried samples 

were ground using a blender (Braun range), then stored in plastic containers in the 

refrigerator until analysed. 

 

4.2.3 Preparation of extracts 

About 1.100 g of ground S. elegans was sequentially extracted exhaustively with hexane, 

dichloromethane (DCM) and methanol (MeOH) on an orbital shaker at room temperature. 

The crude extracts were filtered using Whatman No. 1 filter paper and the filtrates were 

concentrated under reduced pressure using a rotary evaporator. The aqueous MeOH extract 

was partitioned with equal volumes of DCM followed by ethyl acetate (EtOAc) and the 

collected fractions were concentrated by rotatory evaporation.  

 

4.2.4 Phytochemical screening 

Phytochemical screening of the extracts was carried out according to standard methods as 

described by Trease and Evans (2002) and Sofowora (1993). The different extracts were 

tested for alkaloids, flavonoids, terpenoids, tannins and steroids. 

 

4.2.5 Characterization and quantification methods. 

The compounds were characterized using different spectroscopic techniques. Nuclear 

Magnetic Resonance (NMR) spectra (1D and 2D) were recorded in deuterated chloroform 

(CDCl3) at room temperature using the Brucker AVANCE III 400 MHz spectrometer with 

tetramethylsilane (TMS) as an internal standard. Infrared (IR) spectra were obtained using the 

Perkin Elmer Universal ATR Spectrometer. Mass spectra were recorded using a Waters 

Micro-mass LCT Premier TOF-MS. Column chromatography was performed using silica gel 

(Merck Kieselgel 60, 0.063-0.200 mm, 70-230 mesh ASTM). The obtained fractions were 
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monitored by thin layer chromatography (TLC) (Merck silica gel 60, 20× 20 cm F254 

aluminum sheets). The TLC plates were viewed under an ultraviolet lamp (254 nm) and 

developed using 10% H2SO4 in MeOH. 

 

4.2.6 Isolation of compounds from S. elegans 

The hexane (3.34 g) and DCM (5.06 g) extracts were combined due to similar retention 

factors, Rf. The combined extract was subjected to column chromatography and separated 

using a hexane: EtOAc step gradient starting with 100% hexane and gradually increased by 

10% to 100% EtOAc. Ten 50 mL fractions were collected for each solvent system and 

fractions with similar TLC profiles were combined and concentrated using the rotary 

evaporator. After elution with a hexane: EtOAc (7:3) solvent system, fractions 35 and 36 

afforded the isolation of compound 1 (106.3 mg). Fractions 32-34, were combined and re-

chromatographed to give compound 2 (20 mg), which eluted with a hexane: EtOAc (8.5:1.5) 

solvent system.  

The DCM fraction from MeOH extract (14.45 g) was subjected to column chromatography 

using 100% hexane that was gradually increased by 10% to 100% EtOAc. Ten 50 mL 

fractions were collected for each solvent system and fractions 40-46 were combined and 

purified with hexane: EtOAc (8:2) to yield compound 3 (78 mg). 

 

Compound 1: 

1H-NMR spectral data (CDCl3, 400 MHz) δH ppm: 5.33 (1H, t, J = 5.7 Hz, H-6), 3.52 (1H, m, 

H-3), 0.99 (3H, s, H-19), 0.91 (3H, d, J = 6.5 Hz, H-21), 0.82 (3H, s, H-29), 0.81 (3H, br s H-

27), 0.78 (3H, s, H-26), 0.66 (3H, s, H-18).  
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13C-NMR spectral data (CDCl3, 400 MHz) δH ppm: 140.8 (C-5), 121.7 (C-6), 71.8 (C-3), 56.8 

(C-14), 56.1 (C-17), 50.1 (C-9), 45.8 (C-24), 42.3 (C-4), 42.2 (C-13), 39.8 (C-12), 37.3 (C-1), 

36.5 (C-10), 36.1 (C-20), 33.9 (C-22), 31.9 (C-7, 8), 31.7 (C-2), 29.2 (C-25), 28.2 (C-16), 

26.1 (C-23), 24.3 (C-15), 23.1 (C-28), 21.1 (C-11), 19.8 (C-27), 19.4 (C-19), 19.0 (C-26), 

18.8 (C-21), 12.0 (C-18), 11.9 (C-29).     

 

Compound 2:  

1H-NMR spectral data (CDCl3, 400 MHz) δH ppm: 5.33 (IH, br d, J = 5.34 Hz, H-6), 5.18 

(1H, q, J = 6.73 Hz, H-28), 3.53 (1H, m, H-3), 2.25 (1H, m, H-25), 1.57 (3H, d, J = 6.4 Hz, 

H-29), 0.99 (3H, s, H-21), 0.96 (3H, d, J = 1.2 Hz, H-27), 0 .95 (3H, d, J = 1.2 Hz, H -26), 

0.66 (3H, s, H-18). 

13C-NMR spectral data (CDCl3, 400 MHz) δH ppm: 147.0 (C-24), 140.7 (C-5), 121.7 (C-6), 

115.6 (C-28), 71.8 (C-3), 56.8 (C-14), 55.8 (C-17), 50.1 (C-9), 42.4 (C-13), 42.3 (C-4), 39.8 

(C-12), 37.2 (C-1), 36.5 (C-10), 36.4 (C-20), 35.2 (C-22), 34.8 (C-25), 31.9 (C-7,8), 31.6 (C-

2), 28.2 (C-16), 25.7 (C-23), 24.3 (C-15), 22.2 (C-26), 22.1 (C-27), 21.0 (C-11), 19.4 (C-19), 

18.8 (C-21), 13.2 (C-29), 11.8 (C-18). 

 

Compound 3: 

1H-NMR spectral data (CDCl3, 400 MHz) δH ppm: 9.35 (1H, s, H-10), 9.20 (1H, s, H-5), 8.52 

(1H, s, H-20), 7.88 (1H, dd, J = 11.58, 17.73 Hz, H-31), 6.27 (1H, s, H-132), 6.21 (1H, d, J = 

17.95 Hz, H-32), 6.10 (1H, d, J = 11.60 Hz, H-32), 4.47 (1H, m, H-18), 4.21 (1H, m, H-17), 

3.90  (3H, s, H-134), 3.64 (2H, s, H-81), 3.33 (3H, s, H-21), 3.10 (3H, s, H-71), 1.81(3H, d, J = 

7.2 Hz, H-181)  
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13C-NMR spectral data (CDCl3, 400 MHz) δH ppm: 189.67 (C-131), 172.98 (C-173), 172.22 

(C-19), 169.64 (C-133), 161.25 (C-16), 155.60 (C-6), 150.94 (C-9) 149.66 (C-14), 145.15 (C-

8), 142.86 (C-1), 142.03 (C-P3), 137.92 (C-11), 136.47 (C-3), 136.21 (C-4), 136.11 (C-7), 

131.81 (C-2), 129.05 (C-13), 129.00 (C-12), 128.96 (C-31), 122.72 (C-32), 117.74 (C-P2), 

105.24 (C-15), 104.37 (C-10), 97.48 (C-5), 93.10 (C-20), 64.72 (C-132), 61.49 (C-P1), 52.85 

(C-134), 51.16 (C-17), 50.14 (C-18), 39.80 (C-P4), 39.36 (C-P14), 37.39 (C-P6), 37.33 (C-

P8), 37.26 (C-P10), 36.64 (C-P12), 32.76 (C-P11), 32.62 (C-P7), 31.22 (C-172), 29.71 (C-

171), 27.97 (C-P15), 24.99 (C-P5), 24.77 (C-P9), 24.42 (C-P13), 23.09 (C-181), 22.72 (C-

P16), 22.62 (C-P17), 19.73 (C-P111), 19.66 (C-P71), 19.39 (C-81), 17.39 (C-P31), 16.29 (C-

82), 12.08 (C-121), 12.04 (C-21), 11.17 (C-71). 

 

4.2.7 Reagents 

All reagents were of analytical reagent grade and were supplied by Sigma-Aldrich 

(Germany). Double distilled water was used for all dilutions. All plastic and glassware was 

cleaned by soaking in dilute HNO3 and rinsed with double distilled water prior to use. 

Elemental standards were prepared from 1000 mg L-1 stock solutions that were supplied by 

Fluka Analytical, Sigma, Switzerland. 

  

4.2.8 Determination of elemental content 

Ground seaweed samples of 0.25 g dry weight (DW) were quantitatively digested in 

Easyprep™ teflon closed vessels using 10 mL of concentrated nitric acid with a CEM MARS 

6 microwave (CEM Corporation, Matthews, North Carolina, USA).  The digests were 

transferred to 25 mL volumetric flasks and made to volume with double distilled water before 

being analysed (in triplicate) for As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn using a 

Perkin Elmer simultaneous inductively coupled plasma-optical emission spectrometer (ICP-
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OES, model 5300DV) with radial plasma observation. Analytical wavelengths were selected 

based on minimum spectral interferences and maximum analytical performance. Initially, the 

three most sensitive lines were chosen, thereafter, the line with no interfering elements was 

selected. Quality assurance for the measured elements was performed using the certified 

reference material (CRM), white clover BCR-402, from the Community Bureau of Reference 

of the Commission of the European Communities. 

 

4.2.9 Determination of inorganic arsenic 

Different methods are used for the extraction of inorganic As from algae, with MeOH and 

water (with or without the assistance of microwave or sonication) being among the 

commonly used solvents (Petursdottir et al., 2014). Given that the As compounds 

investigated are very polar, the method described by Zhao et al. (2014) was used.  Seaweed 

samples (0.5 g, DW) were accurately weighed into 50 mL polypropylene vials and extracted 

with 38 mL of  deionized water using ultrasonic irradiation (ultrasonic bath PS-30A 

frequency of 40 Hz) for 40 min. The samples were held at 4 oC before being centrifuged for 

10 min. The supernatants were microwave digested then filtered through a 0.45 µm 

membrane before being analysed for As using ICP-OES. At the same time, a tea infusion 

using 0.5 g of seaweed and 38 mL of boiling water was also prepared, filtered and analysed 

for As using ICP-OES.  

 

4.2.10 Statistical analysis 

The significant differences in elemental concentrations from the different sampling sites were 

tested by One-way analysis of variance (ANOVA) and Tukey`s multiple comparisons test at 
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p < 0.05. All statistical analyses were performed using the Statistical Package for the Social 

Sciences (PASW Statistics 22, IBM Corporation, Cornell, N.Y.) 

 

4.3 Results and Discussion 

Preliminary phytochemical screening for flavonoids, terpenoids, tannins, steroids and 

alkaloids was conducted on three different extracts of S. elegans. These tests facilitated the 

qualitative separation of biologically active compounds using column chromatography. The 

screening revealed the presence of sterols in the hexane extract, flavonoids and sterols in the 

DCM extract and tannins in the MeOH extract (Table 10). 

  

Table 10. Preliminary phytochemical screening of crude extracts of S. elegans. 

Extract Flavonoids Terpenoids Tannins Steroids Alkaloids 

Hexane - - - + - 

DCM + - - + - 

MeOH + - + - - 

 

4.3.1 Structure elucidation of compounds from S. elegans 

Compound 1 was isolated as a white solid with a mass of 106.33 mg. The 1H-NMR spectrum 

of compound 1 showed six methyl resonances (δH  0.66-0.99), a resonance for a single 

olefinic proton at δH 5.33 (H-6) and a multiplet at δH   3.52 (C-3) confirming the presence of a 

hydroxyl group. The 13C-NMR spectrum resolved twenty nine carbon resonances, of which 

two resonances  were due to the presence of a double bond at δC 140.8 (C-5) and 121.7 (C-6). 

The IR spectrum of compound 1 showed absorbance bands at 3 342 cm-1 (-OH) and 2934 cm-

1 (-C-H). The mass spectrum of compound 1 gave molecular ion peak at m/z 414 [M+] 
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corresponding to a molecular formula C29H50O. This data corresponded with that in literature 

(Chaturvedula and Prakash, 2012; Murade et al., 2015; Tripathee et al., 2011) and confirmed 

compound 1 to be β-sitosterol, (Figure 19). β-sitosterol has been reported to be an effective 

immune booster and has been used in the treatment of prostate enlargement and HIV (Sen et 

al., 2012). It has also been shown to possess anti-inflammatory and antipyretic activity 

(Gupta et al., 1980). 

 

 

Figure 19. Structure of compound 1 (β-sitosterol). 

 

Compound 2 was isolated as white crystalline solid (20 mg). The 1H-NMR and 13C-NMR 

spectra of compound 2 was similar to compound 1 expect for the olefinic resonance at δH 

5.18 (H-28). The IR spectrum showed absorption bands at 3329 cm-1 (-OH), 1378 cm-1 (C-H) 

and 822 cm-1 (H atom on a trisubstituted double bond). The mass spectrum obtained by HR-

ESI-MS positive mode gave a molecular ion peak at m/z 395.33 [M-OH] + corresponding to 

molecular formula C29H48O. This data corresponded with that in literature (Hwang et al., 

2012; Khanavi et al., 2012) and confirmed compound 2 to be fucosterol (Figure 20). 

Fucosterol, the most abundant sterol in brown algae (Bouzidi et al., 2008) has been reported 
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to be non-toxic and has the ability to reduce blood cholesterol levels (Mouristen, 2013). It has 

also been reported to possess anti-diabetic, antioxidant and anticancer activities (Lee et al., 

2004; Kim et al., 2013). 

 

 

Figure 20. Structure of compound 2 (fucosterol). 

 

Compound 3 was isolated as a brownish green amorphous solid (78 mg). The 1H-NMR 

spectrum showed characteristic peaks for chlorophyll derivatives with an up-field shift at δH -

1.7 (pyrrole ring) and δH 6.1-7.9 (vinyl group). The 13C-NMR (DEPT 90 and DEPT 135) 

spectrum of compound 3 resolved fifty five carbon resonances corresponding to, eleven 

methyl, fourteen methylene, nine methine and twenty-one quaternary carbons. The IR 

spectrum of compound 3 showed absorption bands at 3388 cm-1 (NH), 1618 cm-1 (C=C) and 

1376 cm−1(CN). The mass spectrum obtained by HR-ESI-MS positive mode gave a 

molecular ion peak at m/z 893.5530 corresponding to molecular formula C55H74N4O5 

[M+Na]+. This data corresponded with that in literature (Gonçalves de Brito Filho et al., 

2014) and confirmed compound 3 to be phaeophytin a (Figure 21). Phaeophytin a was 

previously isolated from brown alga Sargussum fulvellum was found to be a strong neuro-

differentiating compound that could be used to develop new therapeutic drugs for  
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neurodegeneration diseases such as Alzheimer’s (Ina et al., 2007). Phaeophytin a, is also 

known to have antioxidant activity (Higashi-Okai et al., 2001).  

 

 

Figure 21. Structure of compound 3 (phaeophytin a). 

 

4.3.2 Elemental analysis 

To evaluate the accuracy of the analytical method, the experimental values for the CRM 

(white clover BCR-402) were compared to certified values. The values provided for Fe, Ni 

and Zn are indicative so no uncertainties were ascribed to them. The experimental values 

obtained for the CRM (n=3, p=0.05) (expressed in µg g-1) were 0.089 ± 0.25, 0.17 ± 0.03, 

240 ± 36.65, 8.23 ± 0.46, 6.60 ± 0.26 and 25.40 ± 0.64 for As, Co, Fe, Ni, Se, and Zn, 

respectively; compared to their corresponding certified values 0.093 ± 0.010, 0.178 ± 0.008, 

244, 8.25, 6.70 ± 0.25 and 25.2 µg g-1.  

Table 11 represents the concentrations of selected elements in S. elegans from the eight 

different sites. The variation in elemental concentrations for an element could be attributed to 

the different geographical locations. Concentrations of the macro-elements (Ca and Mg) 
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ranged from 6400 to 11113 and 4548 to 6475 µg g-1, respectively. For the micro-elements 

(Cu, Fe and Zn) concentrations ranged from 6.91 to 34.61, 37.80 to 191.9 and 8.14 to 31.56 

µg g-1, respectively. Cobalt concentrations were within a small range of variation (0.23 to 

3.58 µg g-1) with no statistically significant difference (p < 0.05) observed from 

Compensation Beach (site 1) to Park Ryne (site 5). The concentrations of the micro-elements 

(Cr, Mn, Ni and Zn) from the different sites were within a small range of variation indicating 

the algae’s control on uptake of these elements. In general the concentrations of essential 

elements were found to be in the decreasing order of Ca > Mg > Fe > Cu > Zn> Mn > Ni >Co 

> Se > Cr.   

For the toxic element Pb, concentrations ranged from 0.89 to 4.98 µg g-1. The maximum level 

of Pb in foodstuffs (fish and processed fish) set by the Department of Health, South Africa, is 

0.5 µg g-1 (Department of Health, 1994). All sites exceeded this threshold. Results for the 

toxic element As are presented in Table 12. The concentrations of total and inorganic As in S. 

elegans varied significantly with location (p < 0.05). Total As ranged from 42.1 µg g-1 (site 1) 

to 105.4 µg g-1 (site 7) and inorganic As ranged from 21.37 µg g-1 (site 1) to 53.0 µg g-1 (site 

4). Ifafa (site 7) had the highest concentration of total As 105 µg g-1 of which 31% was found 

to be in inorganic form. On average, about 50% of total As was found to be in inorganic 

form. The high levels of As in S. elegans are consistent with previous studies that have 

reported high concentrations of As in the brown seaweed genus, Sargassum. The levels of 

both total and inorganic As in the prepared tea infusion were found to be 83.60 µg g-1 and 

53.0 µg g-1 (63% of the total), respectively. 
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Table 11. Concentrations (in µg g-1, dry weight) of elements in S. elegans (Mean ± SD, n = 3) at the eight different sites. 

Elements Site 1* 2 3 4 5 6 7 8 

Ca 10147 ± 31.8c 7276 ± 38.7e 7145 ± 29.8e 7754 ± 77.7d 6400 ± 53.9f 10547 ± 85.2b 11113 ± 41.3a 7476 ± 66.2e 

Mg 5516 ± 68.8b 4806 ± 33.9f 4834 ± 66.7e,f 4548 ± 93.3g 5044 ±57.8d 5268 ± 26.1c 6475 ± 31.2a 4966 ± 36.7d,e 

Fe 37.80 ± 0.51e 189.4 ± 14.5a 133.7 ± 5.04b,c 191.9 ± 2.63a 89.11 ± 7.08d 115 ± 2.18c 146.06 ± 2.90b 82.36 ± 14.4d 

Cu 8.18 ± 0.48c 7.88 ± 0.33c 7.93 ± 0.12c 8.20 ± 0.17c 18.67 ± 1.99b 6.91 ± 0.22c 31.46 ±  4.55a 34.61 ± 0.76a 

Co 0.30 ± 0.00c 0.42 ± 0.06c 0.30 ± 0.00c 0.40 ± 0.00c 0.23 ± 0.06c 3.27 ± 0.09b 3.58 ± 0.06a 3.53 ± 0.13a 

Cr 0.27 ± 0.12c 1.92 ± 0.17a 0.77 ± 0.06b 0.57 ± 0.12b,c 2.00 ± 0.20a 0.33 ± 0.04c 0.36 ± 0.08c 0.27 ± 0.02c  

Mn 6.61 ± 0.33c 9.26 ± 0.23a 8.53 ± 0.25a,b 9.20 ± 0.56a 6.10 ± 0.26c 5.85 ± 0.07c 7.89 ± 0.40b 6.22 ± 0.38c 

Ni 1.40 ± 0.15d 1.99 ± 0.45d 3.30 ± 0.35c,d 1.60 ± 0.36d 3.13 ± 0.06d 5.13 ± 0.51b,c 8.97 ± 1,87a 6.72 ± 0.15b 

Se 1.09 ± 0.34b 0.71 ± 0.07a,b 1.37 ± 0.12a 0.93 ± 0.23a,b 0.23 ± 0.12b 1.46 ± 0.59a 1.41 ±0.53a 1.34 ± 0.22a 

Zn 31.56 ± 6.31a 26.17 ± 1.79a,b 18.87 ± 3.36b,c 3.50 ± 0.85e  8.30 ± 0.44d,e 13.90 ± 1.93c,d 8.93 ± 0.18d,e 8.14 ± 0.21d,e 

Pb 0.89 ± 0.19d 1.03 ± 0.39c,d 1.47 ± 0.29b 1.57 ± 0.12b 1.23 ± 0.25c 4.34 ± 0.22a 4.92 ± 0.19a 4.98 ± 0.24a 

Difference superscript letters within rows indicate significantly different means (Tukey, post hoc comparisons, p < 0.05). 

*Sites: 1 Compensation Beach, 2 Inyoni Rocks, 3 Isipingo Beach, 4 Winklespruit, 5 Park Ryne, 6 Pennington, 7 Ifafa and 8 Hibberdene. 
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Table 12. Concentrations (in µg g-1, dry weight) of total and inorganic arsenic in S. elegans 

(Mean ± SD, n = 3). 

Sites Total arsenic 

(µg g-1) 

Inorganic arsenic 

(µg g-1) 

Inorganic arsenic 

% 

1 42.10 ± 2.92d 21.37 ± 0.40f 51 

2 71.28 ± 2.25c 42. 68 ± 0.29b 60 

3 63.87 ± 1.63c 37.15 ± 0.33c 58 

4 83.60 ± 5.91b 53.00 ± 0.38a 63 

5 72.70 ± 1.32c 40.69 ± 1.83b 56 

6 87.49 ± 3.34b 27.91 ± 0.28e 32 

7 105.4 ± 4.28a 32.89 ± 1.01d 31 

8 90.52 ± 1.58b 34.45 ± 0.47c,d 38 

Mean 77.12 ± 17.9 36.27 ± 9.62 50 

Difference superscript letters within columns indicate significantly different means (Tukey, 

post hoc comparisons, p < 0.05). 

*Sites: 1 Compensation Beach, 2 Inyoni Rocks, 3 Isipingo Beach, 4 Winklespruit, 5 Park 

Ryne, 6 Pennington, 7 Ifafa and 8 Hibberdene. 

 

In South Africa, no specific regulatory limits for heavy metals in algae foods have been set 

however in some countries regulations or maximum limits for total and inorganic As have 

been established. In 2010, the Joint FAO/WHO Expert Committee on Food Additives 

(JECFA) set the health based-guidance value for inorganic As (lower limit) as 3 µg kg-1 body 

weight per day (FSANZ, 2010). Also, the UK independent Committee on Toxicity of 

Chemicals in Food, Consumer Products and the Environment (COT) stated that As is a 
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genotoxic carcinogen so no Provisional Tolerable Weekly Intake (PTWI) would be set and 

exposure should be ‘as low as reasonably practicable’ (ALARP) (Rose et al., 2007). 

In those parts of the world where seaweed is regularly consumed, an average serving size 

would be between 5-10 g, DW (Mouristen et al., 2013; Smith et al., 2010).Consumption of 

the minimum suggested serving size (5 g) of S. elegans with a concentration greater than 36 

µg g-1 of inorganic As would lead to an intake of more than 180 µg of inorganic As. This 

would exceed the limit set by JECFA for inorganic As (3 µg kg-1 body weight per day) for an 

average individual weighing 60 kg. The French legislation permits less than 3 µg g-1 (DW) of 

inorganic As in edible seaweeds (Burtin, 2003). According to French limits, consumption of 

S. elegans would be prohibited as the inorganic As content exceeds the maximum limit by 

more than thirty-fold. 

Previous studies have consistently found high concentrations of inorganic As, in S. fusiforme 

(hijiki). The concentrations of inorganic As in hijiki have been reported to be as high as 88 µg 

g-1 (DW), up to 72% of the total As content (Kraan, 2013). In another study, the mean 

concentration of total As in hijiki was found to be 109 µg g-1 (DW), of which, 77 µg g-1 

(71%) was in the toxic inorganic form (Rose et al., 2007). In the same study, the 

concentrations of inorganic As is other seaweed species were found to be below 0.3 µg g-1. In 

this study, the mean concentration of total As in S. elegans was found to be 77.12 µg g-1 and 

50% of this was in inorganic form. It is evident from these results that seaweed species of the 

Sargassum family concentrate large amounts of inorganic As.  

 

4.4 Conclusion 

The phytochemical investigation led to the isolation of three compounds (β-sitosterol, 

fucosterol and phaeophytin a). These compounds were not previously isolated from S. 
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elegans (Suhr). This study showed that S. elegans could be a potential and alternate source of 

the bioactive compounds isolated. However, consumption of S. elegans for nutritional or 

medicinal purposes could increase exposure to inorganic As which could cause adverse 

health effects therefore it should be avoided. This study confirms that seaweed species from 

the Sargassum genus concentrate high levels of inorganic As. The effect of geographical 

location on the distribution of essential elements was also evident. In general, the 

concentrations of essential elements in S. elegans were found to be in the decreasing order of 

Ca > Mg> Fe > Cu > Zn > Mn > Ni > Pb > Co > Se > Cr. 
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CHAPTER 5 

 

5.1 Summary 

This study focused on different seaweed species found along the coast of KwaZulu-Natal 

namely H. cuneata, S. hypnoides, C. capitatum, H. spicifera and S. elegans, of which the 

latter three are edible. Studies from other regions of the world have shown that seaweeds are 

a good source of essential nutrients and bioactive compounds, but information on nutritional 

and medicinal properties of the seaweeds found in KwaZulu-Natal is still lacking. Therefore, 

this study aimed at investigating the seaweeds as a source of essential dietary elements and 

secondary metabolites. The total and inorganic arsenic in the brown seaweed, S. elegans, was 

also determined to evaluate its safety for human consumption.   

  

5.2 Findings from the chemical analysis of the edible seaweeds 

The edible seaweeds (C. capitatum, S. elegans and H. spicifera) were shown to be rich 

sources of proteins, lipids and carbohydrates therefore they could be potential sources of 

these nutrients and could be explored as a health food, especially in the impoverished coastal 

communities in South Africa. 

 

5.3 Findings from the elemental analysis 

The effect of seasonal variation on elemental uptake of the five studied seaweeds was 

investigated. In general, elemental concentrations in the five seaweeds varied significantly 

with season (p < 0.05) and were found to be in decreasing order of Ca > Mg > Fe > Cu > Mn 

> As > Zn > Ni > Cr > Pb > Co ≈ Se. The concentrations of essential elements in the edible 

seaweeds were compared to RDAs to assess their nutritional value. The results showed that 
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C. capitatum and H. spicifera could contribute to the health and nutritional needs of most 

individuals for most elements, without causing adverse health effects. However, S elegans, 

showed very high concentrations of the toxic element As, therefore it was further investigated 

for elemental distribution from eight different geographic locations in KwaZulu-Natal, South 

Africa. The elemental concentrations in  S elegans varied with location and were found to be 

in decreasing order of Ca > Mg> Fe > Cu > Zn > Mn > Ni > Pb > Co > Se > Cr. Total As in 

S. elegans was found to be extremely high, of which 50% was in the more toxic, inorganic 

form. 

 

5.4 Findings from the phytochemical study of S. elegans  

Three compounds β-sitosterol, fucosterol and phaeophytin a, were isolated from S. elegans. 

These compounds were not previously isolated from S. elegans (Suhr). This showed that S. 

elegans could be a potential and alternate source of the bioactive compounds isolated. 

 

5.5 Overall conclusion 

In general, this research has contributed significantly to the scientific knowledge base on 

seaweed. More specifically, this research can contribute positively to the Nutrient and Food 

Database for edible seaweeds. This study has also shown that the consumption of S. elegans 

for nutritional or medicinal purposes could increase exposure to inorganic As which could 

cause adverse health effects therefore it should be avoided. The phytochemical analysis 

revealed that S. elegans could be a potential and alternate source of secondary metabolites. 
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5.6 Recommendations for further study 

 Isolation and identification of the secondary metabolites in the other edible seaweeds 

species investigated. 

 Speciation of inorganic arsenic in brown seaweeds. 

 Research on the other species of seaweeds found on the coast of KwaZulu-Natal to 

assess their potential for exploitation. 
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APPENDIX 

Supporting information 

Supporting information includes NMR, IR and MS data. 

The CRM certificate is also attached. 
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