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ABSTRACT 

 

Invasive species have many deleterious effects, including ecological and economic impacts. 

Invasiveness of exotic plant species has been linked to various attributes, including reproductive 

traits such as potential for uniparental reproduction, co-option of pollinators in the invasive range, 

and hybridization with congeners. Therefore, studies of the reproductive biology of invasive plant 

species can provide invaluable information about the risks species may pose and assist in their 

management. Several taxa of Canna L. native to the Americas have been introduced into South 

Africa, but their modes of reproduction have remained largely unknown. In this study, I 

investigated the breeding systems, extent of inbreeding depression, pollinator assemblages, 

pollinator effectiveness, extent of pollen limitation, and hybridization potential in populations of 

Canna indica and Canna glauca in KwaZulu-Natal, South Africa. Results showed that C. indica is 

partially autogamous and self-compatible, whereas C. glauca is allogamous, but the orange-

flowered form (OF) of this species is partially self-compatible while the yellow-flowered form (YF) 

of this species is fully self-compatible. Inbreeding depression was detected in self-fertilized progeny 

of C. indica, but not in C. glauca OF. I found that seeds of C. indica are sired readily by C. glauca 

YF and partially by C. glauca OF, and the two colour forms of C. glauca are completely inter-

fertile. Despite the apparent adaptation for pollination by birds, I found that honeybees are the most 

frequent and important pollinators of all taxa. Sunbirds rob flowers of nectar without effecting 

pollination. In C. indica, I found that honeybees and social bees are frequent visitors. Honeybee 

pollination in C. indica resulted in significantly higher seed set than did autonomous self-

pollination. Both forms of C. glauca are pollinated effectively by pollen-collecting honeybees. I 

found that C. indica experienced pollen limitation in two of the three years of study. Canna glauca 

YF experienced severe pollen limitation in one year of the study, whereas C. glauca OF did not 

experience pollen limitation in any of the study years. Both study taxa exhibit vegetative 

reproduction. The results of this study highlight the potential for honeybees to promote reproduction 

of invasive plant species adapted to other pollinators (primarily hummingbirds in this case). While 

C. indica is already a declared invasive species, this study suggests that C. glauca should also be 

prioritized in management programs due to its prolific seed production resulting from co-option of 

local bee pollinators, absence of inbreeding depression, and ease of hybridization with other 

species.  
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Chapter 1 

 

Invasive alien plant species are a major threat to biodiversity, economy, water sources, human and 

animal well-being, as well as ecosystem services provided to human societies in areas infested with 

these species (Rouget et al., 2004, Stout et al., 2006, Forsyth et al., 2012, Ward et al., 2012, 

Kumschick et al., 2017a, Latombe et al., 2017, Mafanya et al., 2017, Visser et al., 2017). Invasive 

alien plant species may affect biodiversity of infested ranges in many different ways (Kumschick et 

al., 2017a). For example, these plants may disturb prevailing disturbance regimes by promoting or 

suppressing fire (Foxcroft et al., 2008, Mafanya et al., 2017); they may usurp copious amounts of 

water, light, and oxygen for native species (Foxcroft et al., 2008, Abella et al., 2009); they may also 

modify processes of nutrient cycling, disturb long standing mutualisms, and donate limiting 

resources that prevent proliferation of native species (Foxcroft et al., 2008, Stout et al., 2006). The 

exotic annual grass Bromus rubens (Poaceae) in the western U.S.A., for example, has encouraged 

wildfires that kill many native long-lived plants such as Yucca brevifolia (Asparagaceae) - in turn 

these wildfires increase soil erosion and lower the quality of breathable air (Abella et al., 2009). 

Indeed, in the Americas, Australia, and many tropical islands, grasses generally modify ecosystems 

by disturbing prevailing fire regimes (Visser et al., 2017). Invasive grasses not only encourage fires. 

The African grass species Eragrostis plana Nees (Poaceae), for example, in Brazil, outcompeted 

and displaced the native Aristida species (Poaceae) that were used for cattle grazing in pastures 

(Zenni and Ziller, 2011). In its invasive ranges such as Britain and Ireland, Rhododendron ponticum 

L. (Ericaceae) shades out native species and limits their growth and in addition this species is also 

thought to suppress proliferation of native species through donation of allelopathic acids (Stout et 

al., 2006). Lantana camara L. (Verbenaceae), the notorious invasive plant from the Old World 

tropics, has been reported to invade a staggering 40 000 km
2 

of forest biome in Australia that 

includes national parks (Hanley and Goulson, 2003). Cacti are among the most abundant invasive 

plants in southern Africa (e.g., 35 species listed as invaders in the NEM: BA regulations) and many 

reproduce vegetatively so that they form dense stands with 100 % canopy cover disturbing light 

regime to native vegetation (Kaplan et al., 2017). The invasive salt cedar Tamarix ramosissima 

(Tamaricaceae) in the arid western U.S.A., following the formation of dense stands, consumes 

considerable amounts of water through deep-root systems and high leaf areas when compared to the 

lower leaf area native flora in the riparian areas it invades (Abella et al., 2009). 

Invasive alien plant species not only raise concerns associated with environmental impacts as cited 

above, but also economic impacts (Hong et al., 2008, Kumschick et al., 2017a, Kumschick et al., 

2017b). It has been estimated that invasive alien plant species in the United States, Canada, Britain, 
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and India exacted a combined total cost of US$ 336 billion per year in overall impacts associated 

with ecosystem services (Semenya et al., 2012). Bromus rubens (see above) fuels wildfires in the 

arid west of U.S.A., wildfires estimated to cost millions of dollars when measures to control them 

are undertaken (Abella et al., 2009). In Australia, control of L. camara costs approximately A$ 10 

million per year, whereas the livestock industry from this L. camara invasion has suffered losses of 

A$ 7.7 million due to reduced stocking densities and poisoning of approximately 1500 cattle annu-

ally that led to their death (Hanley and Goulson, 2003). In general, according to 2004 reports, Aus-

tralia expends an estimate of AU$ 4.4 billion per year in the control of invasive alien plant species 

and associated agricultural loss costs (Ward et al., 2012). Tamarix ramosissima, the deep-rooted 

invasive alien tree in the riparian areas of western U.S.A., has had economic costs that were esti-

mated to be US$ 133 – 285 million annually, and these costs were associated with agricultural loss-

es and other decreases in resource values due to its nature of forming dense, monospecific stands 

that consume large quantities of water (Abella et al., 2009). In southern Africa, invasive alien plant 

species alone have been estimated to cost an overwhelming R 6.5 billion per year to control (Wilson 

et al., 2013). Therefore, owing to the impacts of invasive alien plant species, it is expedient and 

cost-effect to assess potential invasiveness of a species based on its biology, ecology, and popula-

tion dynamics in order to provide information needed for managing the species as well as to gain 

insights about the risks a species may pose (Stout et al., 2006, Van Wilgen et al., 2007, Le Roux et 

al., 2010, Kaplan et al., 2012). Invasive alien plant species may impose dramatic negative effects on 

infested ecosystems (Hooper et al., 2005, Van Wilgen et al., 2007, Wilson et al., 2013) and such 

invasive plants could ultimately contribute to local extinctions of some native plant species (Hooper 

et al., 2005, Traveset and Richardson, 2006), as it has been demonstrated by Vila and Weiner 

(2004) that invasive species are generally more competitive than native species. 

 

The history of introduction of plants to new ranges around the world by humans 

Anthropogenic activities around the world have been, and are still today, changing the biotic struc-

ture and composition of ecological communities locally, regionally, nationally and globally (Hooper 

et al., 2005). One of the often noted activity of humans that has been considerably important in 

bringing global scale changes to the ecological communities of the world (Hanley and Goulson, 

2003) is the introduction of exotic species to habitats new to them (Parker, 1997, Heywood, 2001, 

Foxcroft et al., 2008, Abella et al., 2009, Zenni et al., 2009). The introduction, domestication, culti-

vation, and tending of wild plant species for ornamentation and agricultural purposes begun with 
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some few early human civilizations around 2100 B.C. – 1600 B.C. (Heywood, 2001, Novoa et al., 

2017). The cultivation and tending of unimproved wild plant species for ornamentation continued 

long after the Xia Dynasty ( Heywood, 2001). Cultivating wild plants for ornamentation occurred in 

civilizations from around the subtropics of Africa, Asia, and temperate zones of Europe (Novoa et 

al., 2017). According to literature (Rejmanek and Richardson, 1996, Parker, 1997, Richardson et al., 

2000, Heywood, 2001, Abella et al., 2009, Zenni et al., 2009, Novoa et al., 2017), exotic plant spe-

cies have been disseminated widely by man across the world, to an extent that even protected areas 

are inhabited by alien species introduced by humans (Foxcroft et al., 2008). As a consequence of 

these human-mediated introductions of alien species and alterations of biotic environments, the 

structure and composition of communities change dramatically (Kumschick et al., 2017b) and hence 

disruptions in ecosystems functioning are inevitable (Hooper et al., 2005, Dohzono and Yokoyama, 

2010, Zengeya et al., 2017).  

 

Why exotic plant species were introduced to different parts of the world? 

Many exotic plant species were intentionally distributed to many different parts of the world so that 

they could provide some value to humans (Foxcroft et al., 2008, Canavan et al., 2016, Marr et al., 

2017). Most pine species, for example, provide significant economic values and have been deliber-

ately introduced to almost all countries with climates considerably matching their native ranges 

(Rejmanek and Richardson, 1996). Species such as Senna didymobotrya Mill. (Fabaceae) provide 

green manure in tropical Asia and America (Jaca and Condy, 2017) whereas Opuntia ficus-indica 

(Cactaceae) provides fodder for livestock in South Africa (Kaplan et al., 2017). Other introduced 

species valuable in agriculture include bamboo which has met increased popularity - 2.5 billion 

people use this group of plants (Canavan et al., 2016). Species were not only introduced for agricul-

tural purposes, but also for stabilization of dunes, control of erosion, and other purposes (Hooper et 

al., 2005, Le Roux et al., 2010, Wang et al., 2013, Zengeya et al., 2017). Of the many exotic plant 

species introduced by man to many regions across the world, a large proportion of these intentional 

introductions were/or are for use in horticulture (Heywood, 2001, Maas-van de Kamer and Maas, 

2008, Zenni et al., 2009, Geerts et al., 2013, Ugoletti et al., 2013). Indeed, the horticultural industry 

is said to be one of the pivotal pathways to introducing species in different parts of the world 

(Cronin et al., 2017). Rhododendron ponticum, for example, was introduced into Britain around 

1763 AD and later in the century to Ireland as an ornamental plant that also provided shade for 

game and functioned as a wind-breaker (Stout et al., 2006). In 1839, in Britain and Ireland still, Im-
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patiens glandulifera (Balsaminaceae) was introduced for ornamental purposes from the Himalayas 

(Ugoletti et al., 2013). Well-known species such as Cytisus scoparius (Leguminosae) (Parker, 1997) 

and Acacia paradoxa DC. (Fabaceae) (Zenni et al., 2009) were introduced in the U.S.A. and Chile 

as ornamentals respectively. In the U.S.A., professional and amateur breeders introduced over 100 

new floricultural species between 1998 and 2008 (Foxcroft et al., 2008). Species of the family Ara-

ceae have been widely introduced throughout the world for horticulture (Moodley et al., 2017). Hy-

drocleys nymphoides (Limnocharitaceae), originally from Brazil and Venezuela, has been intro-

duced into Australia as an ornamental plant, and into Zimbabwe and Kenya as both as an ornamen-

tal and wastewater treating plant in wetlands (Nxumalo et al., 2016). The horticultural trade indus-

try is immense, to the extent that in the United Kingdom alone it employs roughly about 500 000 

people and generates about £ 500 million per year; the Netherlands generates £ 1330 million annu-

ally through tulips whereas the U.S.A. has been reported to generate  a revenue of US$ 11 bil-

lion/year (Heywood, 2001, Novoa et al., 2017). In South Africa reports estimate that 300 species of 

cacti are still introduced for use in horticulture (Novoa et al., 2017) and that many of these species 

can still be found in gardens and private collections (Kaplan et al., 2017). Other than the cacti, in 

1997 South Africa was reported to generate a revenue of R 149.3 million annually through the hor-

ticultural trade industry of wild harvesting of fynbos flowers (Heywood, 2001). To date, the number 

of exotic species around the globe is large, with about 20 000 different plant species used for orna-

mental purposes (Heywood, 2001) and more than 13 000 naturalized vascular plant species occur-

ring globally (Latombe et al., 2017) owing to the continuous introduction of plants for many various 

socio-economic benefits (Zengeya et al., 2017).  

 

The introduction & naturalization of the genus Canna in southern Africa & potential reasons for 

introductions 

Many alien plants, now with well-known ecological and economic impacts, have been introduced to 

South Africa. In efforts to mitigate the impacts, considerable research and management options 

have been explored and/or carried out in southern Africa in the recent past (Rouget et al., 2004). 

One particular genus that has been introduced and established in southern Africa and continental 

Africa from the New World is Canna L. (Rambuda and Johnson, 2004, Maas-van de Kamer and 

Maas, 2008), although there are no clear accounts as to when introductions of the abovementioned 

genus occurred, particularly in South Africa. The genus Canna is a group of herbaceous plants 

within the order Zingiberales (Baran et al., 2010, Almeida et al., 2013, Huber et al., 2013, Mishra et 
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al., 2013). All species of Canna are sturdy monocots with shoots that live for a few months follow-

ing flowering (Maas-van de Kamer and Maas, 2008), and the clump of shoots may live for several 

years (Soares et al., 2005, Gupta et al., 2013). Canna is the only genus within the family Cannaceae 

(Prince, 2010, Glinos and Cocucci, 2011, Huber et al., 2013, Mishra et al., 2013) and it is composed 

of approximately 10 - 20 species (Kress and Specht, 2006, Glinos and Cocucci, 2011, Mishra et al., 

2013) and more than 1000 hybrids (Prince, 2010, Gupta et al., 2013). Canna originate in the Ameri-

cas (Soares et al., 2005, Baran et al., 2010, Glinos and Cocucci, 2011) but today species are widely 

distributed throughout the tropical and subtropical regions of the world (Prince, 2010, Tobar-Vargas 

et al., 2013) owing to their extensive use as ornamentals by the horticultural trade industries 

(Young, 1982, Baran et al., 2010). Canna have also been used as food items (Soares et al., 2005, 

Prince, 2010), medicinal plants, musical instruments (Mishra et al., 2013), and jewellery (Maas-van 

de Kamer and Maas, 2008). Again, there is no clear account for the reason of introduction of these 

species in southern Africa, however, it is very likely that they were introduced for ornamentation as 

many other countries have used these species for such purposes (Maas-van de Kamer and Maas, 

2008, Prince, 2010). Canna indica L., is declared invasive and categorized as ‗category 1 b‘ and 

‗category 1‘ invasive plant by the NEM: BA (National Environmental Management: Biodiversity 

Act) and CARA (Conservation of Agricultural Resources Act) regulations respectively (DAFF, 

2001, DoEA, 2009, Wilson et al., 2013). Photographs of the species and forms of Canna included 

in this study are given in Fig. 1. 
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Figure 1: Canna glauca (orange form, hereafter C. glauca OF) in A and C. glauca (yellow form, 

hereafter C. glauca YF) in B visited by pollen-collecting honeybees. Canna indica L. (in C) flower 

with a petaloid stigma bearing pollen following a process of secondary pollen presentation while 

flower was in bud stage. Scale bar = 1 cm. All photos by S. D. Johnson.  

 

Reproductive biology of Canna species  

All species of Canna exhibit a distinct process called secondary pollen presentation (Maas-van de 

Kamer and Maas, 2008, Glinos and Cocucci, 2011, Maruyama et al., 2015). Secondary pollen 

presentation in Canna is categorized as ―sub-terminal stylar‖ secondary pollen presentation, where 

pollen is passively loaded onto the presenting style at bud stage (Howell et al., 1993, Kubitzki, 

1998, Yeo, 2012). This process occurs when the petaloid stamen wraps itself around the petaloid 

style in bud stage where, in ordered events, the theca deposits all of the pollen on the style so that it 

can be readily available to potential pollinators (Maas-van de Kamer and Maas, 2008). Only two 
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species of Canna have been explicitly demonstrated to be pollinated by hummingbirds in their na-

tive ranges. Canna indica, native in Argentina, has been shown to be efficiently pollinated by Heli-

omaster furcifer (Trochilidae) which  contacts the receptive petaloid stigma with pollen previously 

placed on its bill following a visit from another congener (Glinos and Cocucci, 2011). In a more 

recent study conducted in Brazil, the hermit hummingbird Phaethornis eurynome (Trochilidae) is 

the effective pollinator of Canna paniculata in its native range (Maruyama et al., 2015).  Although 

the above examples provide evidence that Canna is bird-pollinated in their native ranges, pollina-

tors of many species of this genus have not been documented, and previously there has been only 

speculation and fragmentary accounts of pollinators of these species (Armbruster et al., 1999, Maas-

van de Kamer and Maas, 2008, Aizen et al., 2016). Indeed, existing studies involving Canna are 

mostly restricted to the evolutionary relationships (Kress and Stone, 1982, Kirchoff, 1983, Kress 

and Specht, 2006, Prince, 2010, Almeida et al., 2013, Gupta et al., 2013), characterization of bio-

minerals (Baran et al., 2010), protection of species from natural enemies (Young, 1982, Soares et 

al., 2005), and assessments of species as alternatives for other food sources (Lai and Tsai, 1989, 

Piyachomkwan et al., 2002). Therefore, the pollination biology of many invasive species, particu-

larly the ones occurring in unfamiliar ranges, has received little attention and it remains unclear how 

introduced Canna species reproduce in new ranges.  

Breeding systems of Canna species are largely undocumented. In Argentina, where Canna indica is 

indigenous, it has been reported that this species is pollinator dependent (Glinos and Cocucci, 

2011), but tests for self-incompatibility were not performed. Interestingly, in southern Africa, where 

C. indica is reported invasive, the species has been reported to be autogamous, capable of producing 

fruits and seeds autonomously with self-pollen (Rambuda and Johnson, 2004). In addition, Canna 

paniculata, native in Brazil, has been reported to be self-compatible, but incapable of automatic 

self-fertilization (Maruyama et al., 2015). In general, it has been presumed that all species of Can-

na, and a few other Zingiberales (Wang et al., 2005, Ma et al., 2012), are self-compatible (Maas-

van de Kamer and Maas, 2008). However, it appears that some species of Canna do require the ser-

vices of pollinators to set seeds in their native ranges and that levels of autogamy may vary among 

populations. Therefore, more studies of the breeding systems of Canna are required to test whether 

species are generally self-compatible and whether some are autogamous, particularly in their inva-

sive ranges.  
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How do other exotic plant species manage to reproduce in new ranges following introductions: 

Baker’s focus on plant breeding systems 

Most angiosperms including self-compatible species rely on animal pollinators for successful fruit 

and seed set following successful out-crossing (Hanley and Goulson, 2003). However, among inva-

sive alien plant species there is a relatively high percentage of self-compatible species, particularly 

autogamous species (van Kleunen and Johnson, 2007a). Notable examples of highly successful in-

vasive alien plants that have selfing ability include Alliaria petiolla (Brassicaceae), Bromus tecto-

rum, Carpobrotus edulis (Aizoaceae), and Mesembryanthemum crystallinum (Aizoaceae) in the 

United States (Richardson et al., 2000); Bidens pilosa (Asteraceae), Sonchus asper (Asteraceae), 

and Sonchus oleraceus (Asteraceae) in China (Hao et al., 2011), and Senna didymobotrya and Can-

na indica in southern Africa (Rambuda and Johnson, 2004). In an attempt to explain the apparent 

correlation between the breeding system of individuals and their colonization ability, Baker‘s ―rule‖ 

was published  which was later termed ―Baker‘s Law‖ (Carr et al., 1986). Baker‘s original ideas 

were based on observations he made on freshwater shrimps (Notostraca) inhabiting the ephemeral 

pools. He noted that these invertebrates, although ancestrally diocious, had evolved hermaphrodit-

ism and that eggs of these shrimps were dispersed by wind or animals the same way as plant seeds. 

Hence, Baker noted that in animals, autogamous hermaphroditism provided opportunities for rapid 

establishment.  

Baker‘s Rule is logical and tidy for a few reasons. It is logical to expect that plants introduced from 

their native ranges to new ranges may suffer from mate limitation (van Kleunen and Johnson, 

2007a) or lack suitable pollinators in new biogeographical ranges such that their expansion potential 

is limited or not realized at all (Stout, 2007, Le Roux et al., 2010). Outcrossing, when possible, can 

be beneficial in restricting the expression of recessive deleterious alleles in homozygous individuals 

(e.g., inbreeding depression Barrett and Harder, 1996) and promoting evolution of invasive plants 

(van Kleunen and Johnson, 2007a). However, in situations of mate or pollinator limitation, repro-

ductive assurance may likely be attained through autonomous selfing, and, less so, through facilitat-

ed selfing (Brys and Jacquemyn, 2011). Although Baker‘s Rule is logical in its own right, there has 

been considerable arguments and skepticism about this hypothesis when applied to invasive alien 

plant species. For example, some scientists have raised suggestions that self-fertility may be im-

portant for the maintenance of certain traits in individuals that are colonizers, rather than self-

fertility being a trait to overcome the scarcity of mates during colonization (Rambuda and Johnson, 

2004). Skepticism around Baker‘s Rule arises due to those earlier studies that identified exceptions 

to Baker‘s Rule, such as that island plants are often dioecious and that some alien invasive plant 
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species are self-incompatible yet able to spread (Bawa and Beach, 1983, Crawford et al., 2008, Hao 

et al., 2011, Pannell and Barrett, 1998, Ward et al., 2012). Despite these doubts about the applicabil-

ity of Baker‘s Rule to plant invasions, a number of studies have demonstrated that this hypothesis 

holds true for plant invasions (Rambuda and Johnson, 2004, Crawford et al., 2008, Hao et al., 2011, 

Ward et al., 2012, van Kleunen and Johnson, 2007a, van Kleunen et al., 2007c).  

 

The importance of self-compatibility in assuring reproduction for introduced plant species in new 

ranges 

It has been estimated that up to 20 % of flowering plants have evolved a selfing breeding system as 

a sexual strategy (Barrett, 2002). Also, in the many plants that have been introduced from their na-

tive ranges to new ranges, a small percentage of these have become invasive (Stout et al., 2006, van 

Kleunen and Johnson, 2007b, van Kleunen et al., 2007c) and within this group of invasive plants, 

there is a high proportion of self-compatible species (van Kleunen and Johnson, 2007a). Self-

compatibility in invasive plants may be important for a few reasons. Self-compatibility may provide 

an additional source of pollen to fertilize more ovules of the same individual (Barrett and Harder, 

1996, Barrett, 2002) to ultimately counteract pollen limitation caused by a deposition of an insuffi-

cient number of pollen grains in cases where exotics are not fully adapted to pollinators or when 

pollinator visits to populations are rare due to Allee effects (van Kleunen et al., 2007a, Rambuda 

and Johnson, 2004).  Selfing typically alleviates the need for individuals to have mating partners, 

and thus promotes speedy invasion of unoccupied environments (Barrett, 2002). Furthermore, self-

compatibility, together with autonomous fertilization, is likely to increase seed production even if 

some outcrossing occurs in the presence of suitable mates and pollinators (Hao et al., 2011), and so 

may impart increased propagule pressure and invasiveness of plants (van Kleunen and Johnson, 

2007a, van Kleunen et al., 2007c). Despite the notable benefits of self-compatibility and autono-

mous self-fertility in providing reproductive assurance for invasive plant species (van Kleunen and 

Johnson, 2007a), self-fertility is usually associated with costs of reduced plant fitness (Stout, 2007, 

Lin et al., 2012), inbreeding depression (Barrett and Harder, 1996, Barrett, 2002), loss or reduction 

of pollen export due to increased rates of self-pollination (e.g., pollen discounting Kohn and Barrett, 

1994, Barrett and Harder, 1996, Barrett, 2002), and the formation of genetically similar populations 

(Barrett, 2002). Nonetheless, certain breeding system attributes, particularly self-compatibility and 

automatic self-fertilization, may contribute to the rate of spread of invasive alien plant species and 
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may be an important determinant of potential invasiveness (Rambuda and Johnson, 2004, van 

Kleunen and Johnson, 2007a, van Kleunen and Johnson, 2007b, van Kleunen et al., 2007c). 

 

The potential importance of secondary pollen presentation in invasive alien plant species 

Secondary pollen presentation is said to be a reproductive strategy employed by plants to increase 

accuracy of pollen transfer (Howell et al., 1993, Lin et al., 2012). However, this strategy may also 

be beneficial for invasive alien plant species if it breaks down and becomes a selfing strategy. Sec-

ondary pollen presentation is a pollination adaptation where pollen is developmentally relocated 

from the conventional anthers (which produce pollen and typically function as pollen presenters Lin 

et al., 2012) onto another floral organ which then assumes the key role of a pollen presenting organ 

(Howell et al., 1993, Imbert and Richards, 1993, Hong et al., 2008). There are approximately 3 - 5 

monocotyledonous and 13 – 20  dicotyledonous plant families (Hong et al., 2008, Lin et al., 2012) 

known to manifest secondary pollen presentation - and these plants are from taxonomically distinct 

groups (Howell et al., 1993). The most common floral organs participating in the process of sec-

ondary pollen presentation are the styles and stigmas (Lin et al., 2012). However, owing to the vari-

ety of floral organs employed during this process, nine different types of secondary pollen present-

ing systems are recognized (Howell et al., 1993). Due to the close proximity of pollen and stigmas 

in flowers displaying secondary pollen presentation, self-pollination may be inevitable (Lin et al., 

2012). Species such as Canna indica, which has been reported to be autogamous in southern Africa 

(Rambuda and Johnson, 2004), may benefit from the close association of pollen and stigmas and 

may consequently spread rapidly. Although secondary pollen presentation has been hypothesized to 

only increase the efficiency and precision of pollen movement from presentation organs to stigmas 

(Lin et al., 2012), this trait among invasive alien plants may be important in promoting their spread 

by assuring reproduction. 

 

The occurrence of invasive alien plant species that require pollinators and/or are self-

incompatible 

The percentage of angiosperms that are exclusive or facultative out-crossers is high -  approximate-

ly 80 % - and within this group most rely on movement of pollen by an animal vector (e.g., birds or 

honeybees) from one plant to the next in order to successfully set seeds and reproduce (Richardson 
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et al., 2000, Hanley and Goulson, 2003, Hargreaves et al., 2010). Many introduced invasive plant 

species require pollen vectors for seed set. For example, Lonicera japonica (Caprifoliaceae) is a 

woody vine native to eastern Asia but also an aggressive invader of natural ecosystems in the east-

ern and southern U.S.A. and depends on pollen transfer from genetically distinct plants for seed set 

(Larson et al., 2002). Rhododendron ponticum and Impatiens glandulifera are highly invasive spe-

cies in Britain and Ireland that rely on pollinating bumblebees (Bombus spp.) for successful fruit 

and seed set to ultimately establish and spread (Stout et al., 2006, Stout, 2007, Ugoletti et al., 2013). 

Solanum torvum (Solanaceae), a native plant of Central America and the Caribbean, is another ex-

ample of an invasive alien species in the U.S.A. that depends on pollinators for fruit set, though it 

can effect seeds with self-pollen (Liu and Pemberton, 2009). The role of pollination, particularly in 

promoting or limiting invasions, is thus crucial and has received little attention but needs to be fur-

ther investigated (Stout et al., 2006) because even self-incompatible species (e.g., 17 % of European 

species in the U.S) become invasive (van Kleunen and Johnson, 2007a). 

 

Western honeybees (Apidae): their origin & subsequent introductions to other parts of the world  

Enormous amounts of literature have highlighted and documented introductions and reasons of in-

troductions of alien plant species to new geographical ranges (Rejmanek and Richardson, 1996, 

Parker, 1997, Richardson et al., 2000, Foxcroft et al., 2008, Zenni et al., 2009). However, other or-

ganisms have also been introduced widely throughout much of the rest of the world for a variety of 

reasons (Richardson et al., 2000, Goulson et al., 2002, Hanley and Goulson, 2003, Dohzono and 

Yokoyama, 2010). Social bees (e.g., honeybees and bumblebees), based on the number of studies 

that investigated their importance in non-native plant-pollinator or native plant-pollinator mutual-

isms in new ranges (McQuillan and Hingston, 1999, Goulson et al., 2002, Hanley and Goulson, 

2003, Dohzono and Yokoyama, 2010), are among the many species that were introduced to new 

geographical regions around the world. Indeed, owing to its extensive human-mediated dissemina-

tion and naturalization in many parts of the world, the honeybee is today considered to be one of the 

most widespread and abundant insect in the world (Hanley and Goulson, 2003).  

Western honeybees (e.g., Apis mellifera L., Hymenoptera; Apidae) are naturally from the continen-

tal Africa, Europe (particularly in the south-east), the Middle East, and western Asia (Hanley and 

Goulson, 2003, Dohzono and Yokoyama, 2010). The African subspecies of honeybees (e.g., A. mel-

lifera scutellata Lepeletier) are frequently found in tropical forests and savannas whereas the Euro-
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pean honeybees are typically found in temperate and Mediterranean climatic zones (Hanley and 

Goulson, 2003). The honeybee was probably introduced to new regions around the world in the ear-

ly 1800s (Gross and Mackay, 1998). Indeed, the honeybee was first introduced into Australia in 

1821 (Goulson et al., 2002) and from 1863 to 2002, feral honeybees spread widely across Australia 

and increased in abundance (Gross and Mackay, 1998, Goulson et al., 2002). The African honeybee 

A. mellifera scutellata was first introduced to Brazil in 1957 (Hanley and Goulson, 2003). Today 

these social bees together with their feral populations have expanded their ranges and became estab-

lished (Goulson et al., 2002) in much of Asia‘s landmass, North America, the southern half of 

South America, Australia, and much of the neotropics (Hanley and Goulson, 2003, Dohzono and 

Yokoyama, 2010). 

The deliberate introduction of social bees throughout much of the rest of the world has been largely 

for improvement of commercial crop plant pollination and, to a lesser extent, honey production 

(Goulson et al., 2002, Hanley and Goulson, 2003, Dohzono and Yokoyama, 2010). Although these 

social bees were translocated for specific purposes into their new geographic ranges, published data 

indicates that some of these social bees have become naturalized and have had significant impacts 

on native plants and invasive plants (Gross, 1993, Gross and Mackay, 1998, McQuillan and 

Hingston, 1999, Gross, 2001, Goulson et al., 2002, Larson et al., 2002, Hanley and Goulson, 2003, 

Dohzono and Yokoyama, 2010). 

 

Honeybees: their role in the fitness of native & introduced plant species  

Introduced social bees may disrupt mutualistic relationships between native plants and pollinators 

such that introduced social bees‘ presence may tamper with the foraging behavior of native pollina-

tors - e.g., the presence of introduced Apis mellifera (Apidae) reduced foraging trips of Bombus oc-

cidentalis Greene (Apidae) to five plant species (Thomson, 2004). The disruption of mutualistic re-

lationships between native plants and pollinators by introduced social bees may ultimately result in 

reduced fruit and seed set of native plants (Gross and Mackay, 1998, Goulson et al., 2002, Traveset 

and Richardson, 2006, Dohzono and Yokoyama, 2010). Introduced social bees may also directly 

reduce reproductive success of native plants, both in insect and bird-pollinated systems, by becom-

ing important pollen thieves who strip pollen from stigmas that were previously pollinated by native 

anthophiles (Botes et al., 2009, Dohzono and Yokoyama, 2010, Gross, 1993, Gross and Mackay, 

1998). On the other hand, introduced social bees (and in this case, some introduced solitary bees) 
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may be important pollinators of introduced invasive plants in new ranges (Liu and Pemberton, 

2009), or important pollinators of native plant species in new ranges. For example, in a study con-

ducted in western U.S.A. in 2001, Barthell and colleagues showed that honeybees were frequent 

visitors to three populations of the invasive Centaurea solstitialis L. (Asteraceae) and exclusion of 

honeybees from flower heads significantly reduced seed set of this plant species when compared to 

flowers open to honeybees (Hanley and Goulson, 2003). In an analysis of Charles Robertson‘s data 

of pollination published as a monograph in 1929, Memmott and Waser (2002) showed that Apis 

mellifera (Apidae) visited 217 of 456 plant species, of which 12.3 % (26.7) of these species were 

alien; they also mention that honeybees and other alien insects may have been ancestral pollinators 

to these alien plants in Illinois, U.S.A. Work by Memmott and Waser (2002) clearly shows that 

honeybees may be important pollinators of both native and alien plant species. On the other hand, in 

Brazil, honeybees have become important pollinators of the native Dinizia excels (Fabaceae) in 

fragmented habitats as they resulted in more than three times the seeds when compared to native 

bees in continuous habitats, and they have replaced these native bees (Dohzono and Yokoyama, 

2010). Honeybees may indeed be both quantitatively effective or qualitative poorer pollinators in 

various systems (Traveset and Richardson, 2006). Thus, due to these equally plausible outcomes, 

much debate has arose in the past, particularly in Australia, about the role that introduced social 

bees play in the reproductive ecology of native and introduced plants and fitness of native biota 

(Gross and Mackay, 1998, Goulson et al., 2002, Hanley and Goulson, 2003).  

 

Honeybees: their importance as pollinators of invasive plant species in southern Africa  

The spread of invasive alien plant species from their sites of introductions in new biogeographical 

ranges may be facilitated by a number of factors, particularly by the establishment of positive inter-

actions with the prevailing organisms in the new range  (Richardson et al., 2000). The above is 

highlighted by invasive alien plant species integrating successfully within pollination webs of new 

ranges (Ford et al., 1979, Hanley and Goulson, 2003, Geerts and Pauw, 2009, Le Roux et al., 2010). 

Indeed, the chances of an introduced plant species becoming invasive may depend on how well it 

integrates with the prevailing pollination webs in the new system (Stout et al., 2006, Geerts and 

Pauw, 2009). Many introduced plant species typically exhibit generalized pollination syndromes 

with flowers having readily accessible rewards (Stout et al., 2006, Coombs and Peter, 2010). In-

deed, introduced flowering plants exhibiting traits that allow them to overcome pollinator limita-

tions in new ranges may become more invasive than plant species without these features (van 
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Kleunen et al., 2007a). One trait that may assist introduced plant species in new ranges to overcome 

pollinator limitation is a showy display of unspecialized flowers (Stout et al., 2006). Introduced 

plant species that have distinct showy unspecialized flowers are most likely to be attractive to native 

pollinators (Gibson et al., 2013) such as honeybees which are considered excellent generalist polli-

nators (Allsopp et al., 2008). For example, in Ireland where Rhododendron ponticum is invasive, its 

large floral display allows it to attract a variety of insects although pollination is mostly achieved by 

Bombus species and not by honeybees (Stout et al., 2006). In southern Africa, many Australian aca-

cias have been introduced in the 19
th

 and 20
th

 century for a variety of reasons (Zenni et al., 2009), 

and these acacias are characterized by presenting dense clusters of flowers to attract unsuspecting 

and/or potential flower visitors.  One Acacia species, Acacia saligna, introduced into southern Afri-

ca in the mid-19
th

 century, has yellow inflorescences with numerous flowers that have rewards read-

ily accessible to a wide range of flower visitors, thus making it more attractive (Gibson et al., 2012). 

Acacia saligna (Fabaceae) invades the fynbos vegetation of South Africa and is considered a prob-

lematic invasive plant species that transforms land and vegetation. In southern Africa, A. saligna 

has significantly usurped the native bees (Apis mellifera subspecies capensis) away from the native 

species Roepera fulva (Zygophyllaceae) which is florally similar and overlaps anthesis with the 

former (Gibson et al., 2012), and the native honeybees are suggested as potential cross-pollinators 

of this Acacia (Gibson et al., 2013). Apis mellifera subspecies capensis, native to the Cape region of 

southern Africa, have also been observed in Table Mountain Park pollinating the invasive Australi-

an Acacia paradoxa (Zenni et al., 2009).  Apart from the acacias, Datura stramonium (Solanaceae) 

is one other introduced plant species that might be potentially be pollinated by honeybees in its in-

vasive range South Africa. Datura stramonium is an annual plant that has been introduced into 

southern Africa for more than 100 years, and today it occurs mainly in disturbed sites, agricultural 

and industrial sites, and in road sides (van Kleunen et al., 2007a). In South Africa, honeybees (pos-

sibly A. mellifera) were the main visitors to D. stramonium flowers and they actively collected pol-

len on flowers; accordingly, the authors suggested that honeybees might induce some cross-

pollination to the latter plant and that they are also likely to induce self-pollination during pollen 

removal from anthers (van Kleunen et al., 2007a). In another study, native honeybees Apis mellifera 

were demonstrated to successfully pollinate the invasive ―moth catcher‖ Araujia sericifera Brot. 

(Apocynaceae-Asclepiadoidea) (Coombs and Peter, 2010). Araujia sericifera is originally from 

South America but has invaded many countries including southern Africa where it grows in dis-

turbed sites and in urban areas along fences. The moth catcher has white, dense, scent producing 

flowers throughout the day and night which were shown to be mainly visited and pollinated by hon-

eybees during the day, with moths only making a negligible contribution to fitness of this plant spe-

cies (Coombs and Peter, 2010). According to the above demonstrations, honeybees, although native 
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in southern Africa (Donaldson, 2002), play a crucial role in the reproductive ecology of introduced 

plant species and this is particularly important due to that these positive interactions may facilitate 

the naturalization (van Kleunen et al., 2007b) and hence invasiveness of these undesired plant spe-

cies. It should also be borne in mind that the numbers of honeybees in habitats in southern Africa 

may be artificially high on account of the large number of managed hives.  

 

Hummingbirds and passerine birds: their importance as pollinators of native & invasive alien 

plant species  

Birds, as evidenced by several studies, are also flower visitors, nectar feeders, and important in 

providing pollination to native and, to a lesser extent, exotic plant species that occur in native and 

alien geographical ranges respectively (Ford et al., 1979, Botes et al., 2009, Geerts and Pauw, 2009, 

Glinos and Cocucci, 2011, Maruyama et al., 2015). The most important avian pollinator group in 

the Old World regions encompasses nectarivorous birds in the order Passeriformes (Ford et al., 

1979, Geerts and Pauw, 2009) whereas in the New World, the important nectarivorous bird pollina-

tor group is Trochilidae (Maruyama et al., 2015). The Old World nectarivorous passerines are the 

African and Paleotropical sunbirds within the family Nectarinidae (in Australia there is one species 

of sunbirds within the genus Nectarinia Ford et al., 1979) and the Australian honeyeaters, Melipha-

gidae, in Australasia (Ford et al., 1979, Geerts and Pauw, 2009). All passerines are characterized by 

short wings, comparatively larger body sizes (e.g., malachite males weight about 19.4 g), curved 

bills, and large feet, and their behavior when feeding on nectar in flowers displays rare occasions of 

hovering but they usually prefer perching (Geerts and Pauw, 2009). The New World Trochilidae 

are, in comparison to passerines, characterized by long, pointed wings; small, light bodies; long, 

straight bills (e.g., hermit hummingbird, bill length of approx. 2.8 cm Maruyama et al., 2015); small 

feet; and a tendency to hover when feeding off nectar in plants (Geerts and Pauw, 2009).  

Plants that conform to bird pollination are characterized by a suite of traits that include copious vol-

umes of dilute nectar, red to orange coloration, tubular perianths with no landing platforms, un-

scented flowers, and anthers with stigmas distant from the nectary (Ford et al., 1979, Westerkamp 

and Gottsberger, 2000, Johnson and Nicolson, 2008, Botes et al., 2009, Geerts and Pauw, 2009, 

Faegri and Van der Pijl, 2013). These features of bird pollinated plant species have been suggested 

to act as filters of inefficient animal pollinators that visit these flowers (Johnson et al., 2006). For 

example, it has been said that the red coloration in flowers filters insects visitors, and, nectar is thus 
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less likely to be depleted by these robbers as the red coloration is inconspicuous to most insect spe-

cies (Ford et al., 1979, Johnson et al., 2006). Furthermore, other studies (in Johnson et al., 2006) 

have suggested that nectar may contain secondary compounds such as phenolics and alkaloids in 

order to filter out ineffective floral visitors. Pollination by birds may be more advantageous than 

pollination by insects in several regards. Birds, although requiring large amounts of nectar than in-

sects, may increase the chances of outcrossing as they visit more flowers and fly further during 

feeding bouts (Ford et al., 1979, Ducroquet and Hickel, 1996). Although some insects (e.g., bum-

blebees) have longer daily activity periods, particularly in cool weather conditions where they can 

maintain body temperatures that are significantly higher than the surrounding environment and thus 

are able to forage very early or very late in the day in relation to other insects (McQuillan and 

Hingston, 1999, Goulson et al., 2002), birds in very cool weather conditions or in winter can be 

rendered reliable pollinators (Ford et al., 1979, Dohzono and Yokoyama, 2010).  Bees often feed on 

nectar in blossoms that are considered ―ornithophilous‖ (Johnson et al., 2006, Botes et al., 2009). 

However, other studies suggest that honeybees may be ineffective as pollinators of apparently bird-

adapted plants (Botes et al., 2009, Maruyama et al., 2015) to an extent that they may reduce fitness 

of these ―ornithophilous‖ plants (e.g., Dohzono and Yokoyama, 2010, Hargreaves et al., 2010). 

Birds can be pollinators of exotic plant species, as evidenced by studies of the invasive Nicotiana 

glauca in southern Africa (Geerts and Pauw, 2009). Nicotiana glauca is native to northern Argenti-

na where it is predominantly pollinated by hummingbirds. However, in southern Africa, N. glauca 

has integrated into the Old World pollination web that lacks hummingbirds and, instead, its flowers 

are pollinated by Malachite sunbirds (Nectarinia famosa) which successfully transfer pollen be-

tween plants and enhance seed set when compared to pollinator excluded flowers (Geerts and Pauw, 

2009). Interestingly these perching birds often hover like hummingbirds when feeding on the flow-

ers. In addition, it has been reported that the generalist and opportunistic behavior of honeyeaters in 

Australia allows them to feed on, and probably pollinate exotic plant species (Ford et al., 1979). 

From the above examples, particularly examples of invasive alien species, it becomes apparent that 

new or established mutualisms between one organism (either alien or indigenous organism) and the 

other (native or themselves introduced) very often enhance, and are important for, many invasion 

events or the success of native or introduced species (Richardson et al., 2000). 

 

The importance of hybridization in invasion events 
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The spread of invasive alien plants in new biogeographical ranges may also be influenced by the 

potential to hybridize (Ward et al., 2012). Indeed, earlier records have demonstrated that naturaliza-

tion, possibly followed by invasion, may be affected by the potential of species to hybridize with 

other species, and to introgress genes from other species (van Kleunen et al., 2007b). The potential 

to hybridize may also be particularly important for the evolution of breeding systems of invasive 

plants in that hybridization may allow opportunities to switch breeding systems of plants, as sug-

gested that Rubus alceifolius in Madagascar and La Re'union which switched from being self-

incompatible to being apomictic (van Kleunen et al., 2007c). In other cases, an invasive plant may 

simply switch breeding systems following introductions, as is the case with Nicotiana glauca (Sol-

anaceae) that invades the Canary Islands and Greece where there are no specialized flower visitors 

such as hummingbirds and sunbirds, and this plant maintains abundant seeds through selfing in the-

se invasive ranges (Ollerton et al., 2012). However, the hybridization with, and introgression of 

genes from, other species, and ultimately the integrity of closely related species may depend on 

processes which prevent inter-specific pollination such as mechanical and ethological isolation 

(Ellis and Johnson, 1999). If this is the case, visits of pollinators to closely related species, or dis-

tantly related species may not be beneficial since this would waste pollen and ovules if post-

pollination events results in inviable seeds or unfit offspring due to genetic incompabilities (Ward et 

al., 2012).  Nevertheless, it has been shown that non-native species often hybridize with other spe-

cies, which are either native or themselves exotic, and this has resulted in the origin of new forms of 

sexually reproducing plant species and most of these ―new‖ forms (even new species in the case of 

allopolyploids) have spread beyond their sites of introduction (Ellstrand and Schierenbeck, 2006). 

Ultimately, these new lineages with a long history of hybridization may be genetically advanta-

geous when compared to their parental plants as they may be relatively genetically diverse 

(Schierenbeck and Ellstrand, 2009). 

 

Hypotheses and aims 

In this study, I explore the breeding systems, pollination biology, and hybridization potential of 

Canna indica L. and two forms of Canna glauca L., which are all naturalized in South Africa. The 

motivation behind this study is that the reproductive biology of introduced Canna is not well under-

stood, apart from some preliminary data existing for Canna indica L. (Rambuda and Johnson, 

2004). In fact, only two studies document the breeding systems and pollination biology of Canna in 

their native range (Glinos and Cocucci, 2011, Maruyama et al., 2015). Ultimately, this leaves the 

scientific community with little information about the pollination or breeding system biology of 
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Canna. The most influential motivation driving this study is that some species of Canna are inva-

sive, including in southern Africa (Rambuda and Johnson, 2004, Maas-van de Kamer and Maas, 

2008, Prince, 2010, Wilson et al., 2013). Finding out about the reproductive traits and pollination 

biology Canna can be valuable because such information could contribute to the effective control of 

these species. For example, nurseries could be prohibited from selling Canna species that are likely 

to become invasive in the future. In line with Baker‘s hypothesis, I hypothesize that the Canna spe-

cies naturalized in South Africa are self-compatible and possibly autogamous, and that they are not 

pollen limited. I also hypothesize that the Canna species are pollinated by honeybees due to my pre-

liminary observations which showed that bees are frequent visitors and that sunbirds appeared to 

rob nectar of flowers rather than contacting the anthers and stigmas. In addition, I hypothesize that 

the study species can hybridize freely on account of the plethora of hybrids in horticulture and the 

variety of mixed coloured plants occurring among the original species at my study sites. 
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Chapter 2 

 

Breeding systems and potential for hybridization in Canna species 

naturalized in South Africa 

 

Abstract  

A key aim of invasion biology is to identify characteristics of species that contribute to 

invasiveness. Breeding systems such as self-compatibility and autogamy as well as hybridization 

and vegetative reproduction are some aspects of reproductive biology that have been considered to 

play a role in the process of invasion by exotic plant species. In this study, the reproductive biology 

of two Canna species (C. indica and C. glauca) was assessed in order to better understand the risks 

associated with their invasiveness in southern Africa. Using controlled experiments, I established 

that C. indica is largely autogamous and fully self-compatible, whereas orange- (OF) and yellow-

flowered (YF) forms of C. glauca are allogamous (e.g., dependent on pollinators) and partially and 

fully self-compatible, respectively. Unexpectedly, given that habitual selfers should purge genetic 

load, selfed progeny of C. indica showed evidence of inbreeding depression, whereas selfed 

progeny of C. glauca OF did not show inbreeding depression. I also found that both C. indica and 

C. glauca OF are inter-fertile with C. glauca YF. None of the study taxa are apomictic, but all can 

reproduce vegetatively. These results show that both of the Canna study species are capable of 

uniparental reproduction. Autogamy in C. indica is significant as this species has been reported to 

be allogamous in its native range. Hybridization could introduce new genotypes into populations 

and populations could expand through vegetative reproduction. Canna species thus pose a 

significant risk, particularly because their favoured habitat is sensitive wetland vegetation.  

Key words: invasive alien plant species; Canna; Baker’s Rule; hybrids; inbreeding depression 

 

Introduction 

Recent reports estimate that approximately 33 000 plant species have been introduced in areas 

where they are not native (Latombe et al., 2017). Many of these introduced plant species reproduce 

efficiently following introductions (Bufford and Daehler, 2014) and spread from sites of 
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introductions to present a variety of effects to the functioning of surrounding ecosystems 

(Richardson et al., 2000). Despite the staggering number of introduced plants in new ranges, only a 

small proportion of introduced plant species has become invasive (Ellstrand and Schierenbeck, 

2006, Stout et al., 2006, van Kleunen and Johnson, 2007a). However, given the current number of 

species occurring in new ranges and their potential negative effects, it is an urgent key aim of 

invasion biology to formulate generalized models and identify features that promote invasiveness of 

species (Stout et al., 2006, Hao et al., 2011). 

Assessment of the reproductive biology of species is still highly researched and has contributed to 

development of accurate screening protocols (e.g., Rambuda and Johnson, 2004, van Kleunen and 

Johnson, 2007b, van Kleunen et al., 2007b, Gibson et al., 2011, Bufford and Daehler, 2014, Bufford 

et al., 2016). Specifically, assessing breeding systems of naturalized and/or invasive plant species is 

important because these breeding systems may affect the dynamics of targeted populations by 

supplying propagules via seeds, of varied quality and quantity (Ward et al., 2012, Bufford and 

Daehler, 2014). Knowledge of breeding systems of naturalized plant species can help inform risk 

assessments as well as estimations of hybridization potential (Ugoletti et al., 2013), and studies 

involving these assessments have been proposed for inclusion in management programs (Le Roux 

et al., 2010).  

Studies of the breeding systems of invasive alien plant species are based largely on theory 

developed by Herbert Baker in the 1950s (van Kleunen et al., 2007c, Harmon-Threatt et al., 2009). 

Baker‘s hypothesis posits that self-compatible species, especially those capable of autonomous self-

pollination (or self-fertilization), are most likely to be invasive or to be the dominating colonizers in 

a new range where suitable pollinators and/or mates are limited following long-distance dispersal 

(Baker, 1967, Pannell and Barrett, 1998). Baker‘s hypothesis is highly relevant to invasive species 

because the new ranges in which these species are introduced are generally expected to be deprived 

of suitable mates and/or pollinators (Brys and Jacquemyn, 2011). The lack of suitable pollinators 

means that allogamous alien species are most likely to experience reduced seed set due to 

deposition of an  insufficient number of pollen grains, which may also be of low quality (Parker, 

1997, Brys and Jacquemyn, 2011). As a consequence, the spread of aliens that do not have capacity 

for uniparental reproduction, and autonomous selfing in particular, is likely to be limited (Le Roux 

et al., 2010). Questions have been raised about the generality of Baker‘s hypothesis. The first of 

these was from the botanist Sherwin Carlquist in 1966 noting the wide occurrence of outcrossing in 

island floras (Baker, 1967),  many of which have a high proportion of dioecious taxa (Bawa and 

Beach, 1983, van Kleunen and Johnson, 2007a, van Kleunen et al., 2007c, Pannell, 2015). Despite 
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these doubts, Baker‘s hypothesis may be applicable in some cases, such as when a population has to 

be established following introductions and when initial expansion is needed to occupy new 

available habitats (Pannell, 2015). Species introduced in abundance by humans or natural dispersal 

agents are less likely to require uniparental reproduction at later stages (Pannell et al., 2015b). 

Explicit tests of Baker‘s hypothesis provide results that support Baker‘s hypothesis (Rambuda and 

Johnson, 2004, van Kleunen et al., 2007b). Given the small number of such studies, there is a need 

for additional empirical studies to support or discredit Baker‘s hypothesis in this context.  

A general pattern among invasive alien species is that they have high reproductive outputs despite 

the lack of suitable mates and/or pollinators in new ranges (e.g., Hao et al., 2011, Moore et al., 

2011, Kaplan et al., 2014). Self-compatibility may likely provide an additional source of pollen to 

fertilize more ovules of the same individual (Barrett and Harder, 1996, Barrett, 2002) to ultimately 

counteract pollen limitation caused by a deposition of an insufficient number of pollen grains in 

cases where aliens are not fully adapted to pollinators or when pollinator visits to populations occur 

rarely due to Allee effects (Lamont et al., 1993, Stephens et al., 1999, Rambuda and Johnson, 2004, 

van Kleunen et al., 2007a). In addition, autonomous self-fertilization may alleviate both mate and/or 

pollinator limitation even further because species would rarely require the services of pollinators 

(Barrett and Harder, 1996) or mates to set seeds. Therefore, capacity for uniparental reproduction 

and autonomous selfing in particular may facilitate the naturalization and ultimately the 

invasiveness of introduced alien species (Rambuda and Johnson, 2004, van Kleunen and Johnson, 

2007b).  

Problems associated with selfing include inbreeding depression, which is the reduction of fitness of 

selfed derived offspring in comparison to outbred derived progeny (Eppley and Pannell, 2009). 

Inbreeding depression may be particularly more prevalent in small populations in part because 

related individuals within are more likely to mate with each other (Zhou and Pannell, 2010). 

However, studies have shown that species that have inbred for a long time usually purge deleterious 

recessive alleles and are thus less likely to show increased inbreeding depression in comparison to 

species that have historically experienced high rates of outcrossing (Barrett and Harder, 1996). It is 

therefore important to further investigate the levels of inbreeding depression in invasive species 

(Ward et al., 2012). 

Vegetative reproduction may be an additional aspect of plant life histories that promotes 

invasiveness (Gibson et al., 2011). Vegetative reproduction can strongly promote increases in the 

size of existing populations, but may not contribute as much as seeds to long-distance dispersal and 
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thus establishment of new populations (van Kleunen and Johnson, 2007a). Vegetative reproduction 

may be particularly important for species with minimal or no ability for seed set via autogamous 

reproduction or co-option of existing pollinators (Pannell and Barrett, 1998). 

Another component that is particularly important for plant invasions is the potential of species to 

hybridize (Ward et al., 2012, Ugoletti et al., 2013). Hybridization can result in hybrid vigour 

through heterosis and can accelerate the development of variation that makes colonization of new 

environments possible (Ellstrand and Schierenbeck, 2006, Ugoletti et al., 2013). Hybridization may 

even allow for the evolution of breeding system characteristics in plants (e.g., plants switching from 

a self-incompatible to a self-compatible breeding system, van Kleunen et al., 2007c, Schierenbeck 

and Ellstrand, 2009). Hybridization among invasive plants has been documented previously (e.g., 

milkweed species, Apocynaceae, Asclepiadoideae), and the hybridization process may involve 

combinations of  invasive and non-invasive alien species, or even alien and native species (Ward et 

al., 2012). Current knowledge about the potential for alien species to hybridize is limited and often 

missing in legislation (see example list of invasive grass hybrids not listed in NEM: BA regulations 

Visser et al., 2017). This information may be particularly important for the development of 

informed and updated risk assessment protocols. South Africa often uses the Australian Weed Risk 

Assessment Protocol, which incorporates hybridization potential of species (e.g., Zenni et al., 2009, 

Geerts et al., 2013, Kaplan et al., 2014, Nxumalo et al., 2016); thus inclusion of studies of 

hybridization potential of species may be invaluable for risk assessment protocols.  

In this study, I assess and document the breeding systems, hybridization potential, and vegetative 

reproduction in Canna indica L. and two colour forms of Canna glauca L. which are naturalized in 

South Africa. Although there are some assessments of breeding system characteristics of Canna 

species in their native ranges (Glinos and Cocucci, 2011, Maruyama et al., 2015), and other 

Zingiberales (Wang et al., 2005, Ma et al., 2012), relatively little information is available about the 

reproductive biology of Canna in introduced ranges (Rambuda and Johnson, 2004) where most 

available information is anecdotal (Maas-van de Kamer and Maas, 2008).  The motivation behind 

this study is that some species of Canna are invasive in some parts of the world, including southern 

Africa (Rambuda and Johnson, 2004, Maas-van de Kamer and Maas, 2008, Prince, 2010), and the 

overall risk of invasiveness needs to be assessed. Canna indica L. is a declared category 1 b and/or 

category 1 invasive plant in South Africa according to the NEM: BA and the CARA Regulations 

respectively (DoEA, 2009, Wilson et al., 2013). The study taxa often occur sympatrically, thus 

increasing the risk of on-going hybridization. I hypothesized that Canna study taxa are self-

compatible and possibly autogamous on account of the close proximity of pollen and stigma on the 
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pollen presenter (Maas-van de Kamer and Maas, 2008, Glinos and Cocucci, 2011). I also 

hypothesized that the study taxa will have high levels of inter-fertility, given the large number of 

hybrids available in horticulture (Gupta et al., 2013). Finally, I sought to examine the extent of 

vegetative reproduction and inbreeding depression in populations of the taxa.  

 

2. Methods 

2.1. Study species or taxa 

Canna in the order Zingiberales (Baran et al., 2010, Huber et al., 2013) is the only genus within the 

family Cannaceae (Prince, 2010). It  is comprised of herbaceous species with annually renewable 

shoots that live for a few months following flowering (Maas-van de Kamer and Maas, 2008), and 

the clump of progressive shoots may live for several years (Soares et al., 2005, Gupta et al., 2013). 

The genus comprises approximately 10 - 20 species (Kress and Specht, 2006, Mishra et al., 2013) 

and a staggering 1000 plus hybrids (Prince, 2010, Gupta et al., 2013). Canna species originate in 

the Americas (Soares et al., 2005, Baran et al., 2010), but today they are widely distributed 

throughout the tropical and subtropical regions of the world (Prince, 2010, Tobar-Vargas et al., 

2013) owing to their extensive use as ornamentals by the horticultural trade industries (Young, 

1982, Baran et al., 2010).  

Canna indica L. is native to South America and in North America up to Mexico (Glinos and 

Cocucci, 2011). Canna indica is characterized by its habitat preference in wet forests, along rivers 

or road sides in secondary vegetation (Maas-van de Kamer and Maas, 2008). The genus has flowers 

with petals that are fused at the base and petals are further fused with the stamen and 3 staminoids 

(Glinos and Cocucci, 2011). The overall flower colour of C. indica is red or orange and with 

individuals that can grow up to 2 m. The distinctive feature of this species is that the lower sides of 

leaves are glabrous (Maas-van de Kamer and Maas, 2008). Canna glauca L. is native to South 

America as far south as northern Argentina (Maas-van de Kamer and Maas, 2008). In this study, 

two colour forms of C. glauca were studied; one with orange flowers (e.g., C. glauca OF) while the 

other form had yellow flowers (C. glauca YF). Canna glauca grows in marshes, swamps, and along 

margins of lakes (Armbruster et al., 1999, Maas-van de Kamer and Maas, 2008). Individuals of this 

species may reach up to 3.5 m in height. Canna glauca usually has leaves that are dull grey, green, 

or bluish in colour (Maas-van de Kamer and Maas, 2008).  
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All species of Canna exhibit secondary pollen presentation (Howell et al., 1993, Maruyama et al., 

2015) where shortly before anthesis, pollen from the anther is deposited in a clump directly 

underneath the receptive part of the stigma (Glinos and Cocucci, 2011). Secondary pollen 

presentation has been said to facilitate accurate pollen transmission (Howell et al., 1993).  Canna 

indica in its native range Argentina is efficiently pollinated by a hummingbird, Heliomaster furcifer 

(Glinos and Cocucci, 2011). In addition, in Argentina, this species is reported to be allogamous 

(Glinos and Cocucci, 2011) but in its introduced range in southern Africa it has been reported to be 

fully autogamous (Rambuda and Johnson, 2004). Canna glauca in its native range has been 

reported to be visited and possibly pollinated by hummingbirds, butterflies, honeybees and moths 

(Armbruster et al., 1999, Aizen et al., 2016) and is presumed to be self-compatible (Maas-van de 

Kamer and Maas, 2008). 

2.2. Study Sites 

Field studies were conducted in 2014 (February to October), 2015 (February to October), 2016 (Oc-

tober) and 2017 (June). Field experiments were conducted at one site in Pietermaritzburg, and at 

one site in Howick, South Africa. The site in Pietermaritzburg (S 29°38‘9.002‖ E 30°25‘5.998‖) has 

populations of both forms of C. glauca that occur sympatrically with C. indica in a wetland in sa-

vanna vegetation. The site in Howick (S 29°28‘50.999‖ E 30°13‘52.003‖) has populations of both 

C. glauca colour forms in a wetland in grassland vegetation.  

2.3. Breeding system assessment 

To assess the capacity for uniparental reproduction and autonomous self-fertilization, controlled 

pollination experiments using flowers bagged prior to anthesis were conducted on the study plants.  

In 2014 and 2015, only C. indica and C. glauca OF received all the treatments. Whole plants (60 

and 40 plants for each year, respectively) were assigned to the following treatments; (1) emascula-

tion to test for apomixis; (2) bagged and unmanipulated to test for autonomous seed production; (3) 

self-pollination using pollen from the same test plants to test for self-compatibility; and (4) cross-

pollination using donors that were at least 10 m away from the test plants and usually in a different 

patch as a positive control.  



31 

 

In 2017, C. indica and both colour forms of C. glauca received all the treatments.  In this case, 

however, a split-plot design was used, where four flowers were used on each of 15 plants per form 

and each flower on a plant was assigned to a different breeding system treatment.  

In all years, after four weeks, fruits from all treatments were harvested and the proportion of flowers 

setting fruits was calculated. For each fruit, the number of viable and aborted seeds as well as num-

ber of unfertilized ovules were counted on a dissecting microscope (A. Krüss Optronic – Germany; 

MSZ5000-T-IL-TL Stereo Microscope). Lastly, seeds from each fruit were weighed on an electron-

ic balance and their weights recorded.  

2.4. Hybridization 

To assess inter-fertility among study species and forms, a set of controlled hybridization treatments 

were carried out in 2017 where four flowers were used on each of 15 plants, and each flower on a 

plant was assigned to a different hybridization treatment. Flower buds were covered with mesh bags 

and after anthesis four flowers on each plant were each assigned to the following treatments; (1) 

self-pollination (with pollen from same plant); (2) cross-pollination (with pollen from a conspecific 

plant that is at least 10 m away and from a different patch), and (3) and (4) interspecific crosses 

with one of the other forms.  

2.5. Inbreeding depression assessment 

Seeds that were used for germination tests and for investigating the extent of inbreeding depression 

in C. indica and C. glauca OF were obtained from the 2015 breeding system treatments (98 seeds 

from selfing and 201 seeds from outcrossing for C. indica and 204 seeds from selfing and 181 seeds 

from outcrossing for C. glauca). All seeds were mechanically scarified with a metal file and later 

sowed in six-hole seedling trays. Each hole had four seeds, and each tray had seeds of the same spe-

cies and same treatment. Trays were placed in a green house in a stratified manner, and seeds were 

watered every day from September 2016 following sowing. Germination success of seeds was 

measured after seven, and 14 days. With maintained watering, measurements of seedling heights, 

heights of longest leaves, widths of leaves, and number of leaves in seedlings were recorded after 

28, and 56 days of germination.   

2.6. Vegetative reproduction assessment 
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To assess whether plants have the capacity to reproduce vegetatively, five plants for each spe-

cies/form were dug out from the soil to check root connections between neighbouring plants. 

2.7. Data Analysis 

Breeding system data from 2014 and 2015 (hereafter 2014/15) were combined for analysis, and that 

of 2017 was analysed separately. This was due to a change in the experimental design where a sin-

gle treatment was applied to each plant in 2014/15, while a split-plot design (several treatments per 

plant) was used in 2017. Data for masses of seeds only includes the years 2015 and 2017, and these 

data are analysed separately for each year for each species/plant form. All analyses were done using 

Generalized Estimating Equations (GEE) to deal with potential non-independence of data, except 

the analyses of seed masses in 2015, which was done using simple Generalized Linear Models 

(GLM) as plant identity was not available for each seed (seeds from a treatment were pooled). The 

software used was IBMs SPSS® Statistics, version 23/24. In the GEEs used to analyse most data, 

the subject variable in 2014/15 breeding systems was the year; in the 2016 seed germination data 

the subject was tray identity, and in the 2017 breeding systems data, and in hybrids data the subject 

variable was plant identity. All proportions (i.e., of flowers setting fruits, aborted ovules, ovules set-

ting seeds, and percentage germination) were analysed using a model, where the probability distri-

bution was binomial and the link function was logit. The predictors were controlled pollination 

treatments and species/plant form, the events variables were the no. of fruits, aborted ovules, no. of 

seeds, no. of germinated seeds, and the trial variables were the no. of flowers, no. of all ovules (e.g., 

all unfertilized and aborted ovules plus no. of seeds), and no. of sowed seeds in a tray. All the 

measured plant characteristics in germination tests (except percentage germination) were analysed 

using a normal distribution and identity link. Only germination success of day 14 and measured 

plant characteristics at day 56 were used for analysis. For GLM, the likelihood ratio chi-square was 

used as a statistic to test the model effects (set at type III). For GEE, significance was assessed us-

ing Wald or Score statistics depending on sample sizes (the former was used for small sample siz-

es). Significant differences (at p < 0.05) between treatments in the pairwise comparisons were based 

on the Sequential Sidak adjustment. 

All masses of seeds in 2015 (GLM) and 2017 (GEE) were analysed using the Identity Link func-

tion, where the probability distribution was normal. The factor was the treatment; the dependent 

variable was the mass of seeds per fruit. 
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In all taxa across all years, indices for self-compatibility were calculated as s/c, where s = the mean 

number of seeds per flower for self-pollination and c = the mean number of seeds per flower for 

cross-pollination. Indices were also calculated for autonomous self-pollination as ratios of mean 

number of seeds per flower in the bagged control treatment over the mean number of seeds per 

flower for self-pollination (Rodger et al., 2010). 

Plants were considered inter-fertile when fruit and seed set of hybrids did not differ significantly 

among the conspecific and interspecific crosses.  

 

3. Results 

3.1. Breeding system assessments 

3.1.1. Canna indica 

In 2014/15, the breeding system treatments had no significant effect on fruit set (Appendix, Fig. 1 

A). In 2017, however, fruit set in the treatment to test for autogamy (hereafter autogamy treatment) 

was similar to that resulting from self-pollination, but lower than that resulting from cross-

pollination; fruit set in self- was also similar to that of cross-pollination treatment (Fig. 1 A).  

In 2014/15, flowers in the autogamy treatment group had seed set similar to that of self-, but both 

the afore-mentioned treatments were different to the cross-pollination treatment which had a one-

fold increase of seed set (Appendix, Fig. 1 B). In 2017, flowers in the autogamy treatment group 

had seed production similar to the self- but both autogamy and self- were lower than the cross-

pollination treatment (Fig. 1 B).  

In 2014/15, the breeding system treatments had no significant effect on ovules aborted (Appendix, 

Fig. 1 C). In 2017, flowers in the autogamy treatment group had aborted more ovules than those in 

both the self- and cross-pollination treatment groups which were similar (Fig. 1 C).  

In 2015, the autogamy treatment produced seeds weighing less than those of both the self- and 

cross- treatments and the self- and cross-pollination treatments were different (Appendix, Fig. 1 D). 

In 2017, the autogamy treatment had produced seeds with similar weight to those resulting from the 
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self-treatment, but both these treatments had seeds weighing less than those resulting from the 

cross-pollination treatment (Fig. 1 D).  

3.1.2. Canna glauca  

During the years 2014/15, fruit set in the autogamy treatment for C. glauca OF was approximately 

five-fold less than the self- and cross-pollination treatments which had similar fruit sets (Appendix, 

Fig. 2 A). Similar results were obtained in the 2017 experiments involving both the orange and yel-

low colour forms of C. glauca (Fig. 2 A and Fig. 3 A respectively).  

In 2014/15, the autogamy treatment in C. glauca OF led to the lowest seed production following the 

self- and then the cross-pollination treatments (Appendix, Fig. 2 B). In 2017 similar results were 

obtained for C. glauca OF (Fig. 2 B), with C. glauca YF having lower levels of seeds from the au-

togamy treatment and similar seed levels from the self- and cross-pollination treatments (Fig. 3 B).  

Levels of ovule abortion were highest for selfed seeds of C. glauca (Fig. 3 C; Fig. 2 C).  

In 2015, the breeding system treatments had no significant effect on masses of seeds of C. glauca 

OF (Appendix, Fig. 2 D). However, in 2017, the autogamy treatment had produced lighter seeds 

followed by the self- and the cross-pollination treatments (Fig. 2 D). The autogamy treatment of C. 

glauca YF in 2017 resulted in seeds weighing less than both the self- and cross-pollination treat-

ments, of which both the afore-mentioned treatments had similar seed masses (Fig. 3 F). 

In all species/plant forms across all the study years, no fruits were produced when flowers received 

the emasculation treatments used to test for non-pseudogamous apomixis.  

Indices of autonomous self-pollination were 0.6 and 0.6 for C. indica in 2014/15 and 2017 respec-

tively. For C. glauca OF in 2014/15 and 2017, autonomous self-pollination indices were 0.1 and 0.1 

respectively. In 2017, index for autonomous self-pollination in C. glauca YF was 0.0. Indices for 

self-compatibility in C. indica were 0.7 and 0.5 in 2014/15 and 2017 respectively and indices were 

0.8 and 0.5 for C. glauca OF in 2014/15 and 2017 respectively. Index for self-compatibility in C. 

glauca YF in 2017 was 0.7.  
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Figure 1: Mean values (± SE) of breeding system treatments of C. indica during 2017. Fruit set (A) 

is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules setting seeds 

per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed masses (D) 

represents total mass of seeds per fruit. Values in brackets represent number of plants (with one 

flower) treated. Means that share letters are not significantly different. 
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Figure 2: Mean values (± SE) of breeding system treatments of C. glauca OF during 2017. Fruit set 

(A) is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules setting 

seeds per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed masses 

(D) represents total mass of seeds per fruit. Values in brackets represent number of plants (with one 

flower) treated. Means that share letters are not significantly different. 
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Figure 3: Mean values (± SE) of breeding system treatments of C. glauca YF during 2017. Fruit set 

(A) is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules setting 

seeds per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed masses 

(D) represents total mass of seeds per fruit. Values in brackets represent number of plants (with one 

flower) treated. Means that share letters are not significantly different. 

3.2. Hybridization 

Pollination with C. indica pollen resulted in similar fruit set levels for all three types of maternal 

parents (Fig. 4 A). Similar results were obtained when C. glauca YF pollen was used (Fig. 6 A). 

When C. glauca OF pollen was used as the sire, fruit set in the C. glauca OF maternal parent was 

higher than that for the C. indica maternal parent (Fig. 5 A).  

In terms of seed set, C. indica × C. indica crosses produced significantly more seeds than other 

crosses (Fig. 4 B). Only C. glauca OF pollen had no significant effect on seed set of all maternal 

plants (Fig. 5 B). When C. glauca YF was used as the sire, a significant difference was found in 

seed set between the two maternal forms of C. glauca (Fig. 6 B).  
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Siring with C. indica had no significant effect on ovules aborted in all maternal plants (Fig. 4 C). In 

other crosses, seed abortion was lowest for the C. glauca OF maternal parent (Fig. 5 C, 6 C).  

Crossing combinations did not affect the overall mass of seeds produced (Fig. 4 D, 5 D, and 6 D). 

 

Figure 4: Mean values (± SE) of conspecific and interspecific-crosses of maternal C. indica, C. 

glauca OF, and C. glauca YF with paternal C. indica pollen to infer hybridization potential of the 

sympatric species. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) represents 

proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of aborted ov-

ules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in parentheses 

represent number of plants (with one flower) treated. Means that share letters are not significantly 

different. 
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Figure 5: Mean values (± SE) of conspecific and interspecific-crosses of maternal C. indica, C. 

glauca OF, and C. glauca YF with paternal C. indica pollen to infer hybridization potential of the 

sympatric species. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) represents 

proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of aborted ov-

ules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in parentheses 

represent number of plants (with one flower) treated. Means that share letters are not significantly 

different. 
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Figure 6: Mean values (± SE) of conspecific and interspecific-crosses of maternal C. indica, C. 

glauca OF, and C. glauca YF with paternal C. indica pollen to infer hybridization potential of the 

sympatric species. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) represents 

proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of aborted ov-

ules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in brackets repre-

sent number of plants (with one flower) treated. Means that share letters are not significantly 

different. 

3.3. Inbreeding depression assessment 

In C. indica, all measured plant characteristics, except the number of leaves in seedlings (Fig. 7 E), 

were significantly different between the seeds and seedlings derived from the cross- and self-

pollination treatments, with cross-pollination treatments outperforming the self-pollination treat-

ments (Fig. 7 A, B, C, and D). In C. glauca OF, there were no significant differences registered be-

tween treatments for all measured parameters (Fig. 7 A – E). 



41 

 

 

Figure 7: Germination success of seeds and performance of seedlings of C. indica and C. glauca OF 

across hand self- and hand cross-pollination treatments used to infer the extent of inbreeding de-

pression in the studied species.  

3.4. Vegetative reproduction assessment 
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When plants of each of the study species were dug out of the soil, they all had roots interconnected 

with neighbouring plants of the same species.  

 

Discussion 

The results of this study indicate that all study taxa are incapable of apomictic reproduction but are 

capable of sexual forms of uniparental reproduction. However, this capacity varies with each taxon 

in their introduced range, South Africa. Here, I have found that C. indica is self-compatible and is 

partially autogamous, e.g., able to set fruits mostly and seeds automatically without the services of 

pollinators (see Appendix, Fig. 1 A and B; Fig. 1 A and B). Canna glauca OF is partially self-

compatible and is incapable of automatic self-pollination (see Appendix, Fig. 2 A and B; Fig. 2 A 

and B). Finally, C. glauca YF, is also incapable of automatic self-pollination; however, this form is 

fully self-compatible (Fig. 3 A and B).  

In Argentina, C. indica has been found to be incapable of automatic self-pollination (Glinos and 

Cocucci, 2011). In contrast, I found that this species is partially capable of automatic self-

pollination in its invasive range in South Africa (Appendix, Fig. 1 A and B; Fig. 1 A and B). A sim-

ilar result was recorded by Rambuda and Johnson (2004). Therefore, the results of this study indi-

cate a risk factor for invasiveness as per according to the NEM: BA regulations (DoEA, 2009). The 

other two studied Canna taxa (C. glauca YF and OF) are fully and partially self-compatible, respec-

tively. However, neither is autogamous. Canna paniculata has been found to be self-compatible in 

Brazil (Maruyama et al., 2015). Therefore, self-compatibility seems to be common within this ge-

nus. However, more studies are required to verify this particularly in Canna species used in horti-

culture but not invasive.  

The fact that C. indica in its native range has been shown to be allogamous (Glinos and Cocucci, 

2011), while my study  and that of Rambuda and Johnson (2004) have shown capacity for autoga-

mous reproduction, may indicate that breeding systems have evolved in the invasive range of this 

species (van Kleunen et al., 2007c). Alternatively, it could mean that there is variation in the breed-

ing system in the native range and that a selfing form was introduced to South Africa, or even that 

ability to self autogamously was derived by hybridization with other Canna species during the inva-

sion process. Another study has shown that Rubus alceifolius (Rosaceae) switched from being self-

incompatible in its native range in Vietnam to become apomictic in its introduced range in Mada-
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gascar (Amsellem et al., 2001). Furthermore, the milkweed Gomphocarpus physocarpus (Apocyna-

ceae, Asclepiadoideae) has switched from self-incompatibility in its native range to self-

compatibility in Australia where it is declared invasive (Ward et al., 2012). The switch in breeding 

systems may be particularly correlated with the potential of a species to hybridize (van Kleunen et 

al., 2007c). Nonetheless, the current study‘s results, and those of Rambuda and Johnson (2004) 

show increased support for Baker‘s hypothesis which posits that species capable of uniparental re-

production through self-compatible breeding systems, and especially through spontaneous self-

pollination, are more likely to be the dominating colonizers in new ranges following widespread 

dispersal (Baker, 1967, Pannell and Barrett, 1998).  

Other studies using similar and/or identical methods employed for assessing these three study Can-

na taxa also support Baker‘s predictions. For example, Hao et al. (2011) in China has shown that 

ten of the twelve invasive species of Asteraceae they studied are fully autogamous, being able to set 

seeds though autonomous self-fertilization. Moreover, Rambuda and Johnson (2004) also found that 

all of the invasive alien plants they have tested were self-compatible, with some fully autogamous 

or capable of reproducing asexually through apomixis. Furthermore, it has been  showed that South 

African Iridaceae naturalized elsewhere have a higher frequency of autonomous reproduction than 

species that have been introduced elsewhere without becoming invasive (van Kleunen and Johnson, 

2007b). Although the abovementioned studies show support for Baker‘s hypothesis, other studies 

show that other colonizing species can be self-incompatible (e.g., Carr et al., 1986, Parker, 1997). 

It has been estimated that there are more than 1000 hybrids within the genus Canna (Prince, 2010, 

Gupta et al., 2013), but to my knowledge, this study is the only one that has empirically assessed 

the potential of hybridization within this genus using controlled pollinations. The results of this 

study suggest that all study taxa are inter-fertile, however, this ability varies with which taxon is the 

sire of seeds of hybrids (Fig. 4 B, 5 B, 6 B). Plants intermediate between C. indica, C. glauca OF 

and YF were observed and anecdotally identified as hybrids (M. Cheek and M.S. Sibiya observa-

tions). Introduced Canna species in southern Africa often flower simultaneously. Therefore, hybrid-

ization of the study species is less likely to be limited by divergence in flowering time which is 

known to contribute to reproductive isolation in sympatric species (Ellis and Johnson, 1999, 

Ugoletti et al., 2013). Indeed, Ugoletti et al. (2013) showed that overlap in flowering time of the 

invasive Impatiens glandulifera and the less invasive Impatiens balfourii in Britain and Ireland re-

sulted in successful pollination of these species by Apis mellifera, Bombus hortorum, and B. pas-

cuorum which all switched between these species when foraging for pollen. Moreover, as all these 

study taxa have an overlap of floral visitors (M. S. Sibiya personal observations), of which honey-
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bees are definite pollinators, this overlap could be important in facilitating hybridization, as report-

ed for milkweeds (Apocynaceae, Asclepiadoideae, Gomphocarpus species) in Australia (Ward et 

al., 2012) and invasive Impatiens species in Britain and Ireland (Ugoletti et al., 2013). The results of 

this study indicate that there are few genetic barriers to hybridization among the taxa, at least in 

terms of seed production. Some of the interspecific crossing combinations were, however, less suc-

cessful (Fig. 4 B and 6 B). This was also the case with crosses among Satyrium orchid- (Ellis and 

Johnson, 1999) and Impatiens species in South Africa and in Britain and Ireland respectively 

(Ugoletti et al., 2013). Nevertheless, species of Canna have a long history of hybridization in horti-

culture (Maas-van de Kamer and Maas, 2008), and even our study taxa may not represent pure spe-

cies, but have some hybrid background. Hybridization can complicate efforts at management as it 

introduces new forms and hybrids may not be biologically controlled by agents specific to parent 

species (see failure of control of Salsola tragus genotypes by introduced moths in Schierenbeck and 

Ellstrand, 2009). In addition, hybridization itself may alter breeding systems. For example, in my 

study system, hybridization with C. indica may transfer genes for autogamy into the otherwise al-

logamous species C. glauca.  

Although selfing can increase seed production by alleviating pollen limitation, the resulting progeny 

may not be as fit as crossed progeny if there is inbreeding depression (Barrett and Harder, 1996, 

Barrett, 2002, Lin et al., 2012), and this may ultimately limit the spread of invasive species. Rapid 

seedling emergence has been proposed to likely increase species establishment and abundance (van 

Kleunen and Johnson, 2007b) and ultimately naturalization and invasiveness. Thus, it is important 

to germinate selfed seeds and compare the performance of seedlings to those from crossed seeds 

(Ward et al., 2012). In this study, I have found that C. indica seeds from selfing do not germinate as 

readily as seeds from crossing and selfed seedlings also performed relatively poorly. This result was 

unexpected since this species is autogamous and would be expected to have purged its genetic load. 

However, studies suggest that C. indica in its home range is allogamous and inbreeding depression 

could be explained if there has been a recent shift to selfing. In contrast, inbreeding depression was 

less evident in C. glauca OF, despite being allogamous and thus probably having a mixed mating 

system. Absence of inbreeding depression means that selfed seed can contribute to propagule pres-

sure.  

Vegetative reproduction may be important for plant species in new ranges, particularly if they are 

not capable of selfing or have not co-opted local pollinators (van Kleunen and Johnson, 2007a). The 

results from this study indicate that both study species are capable of vegetative reproduction, as is 

well known for Canna species (Maas-van de Kamer and Maas, 2008). In China it has been found 



45 

 

that self-incompatible Asteraceae which are invasive were capable of vegetative reproduction (Hao 

et al., 2011). Vegetative reproduction means that populations can be formed from discarded garden 

plants and not just from seeds. The importance of seeds versus vegetative reproduction for estab-

lishment of Canna populations is not yet known.  

 

Conclusions 

The results of this study are consistent with Baker‘s hypothesis about the capacity for uniparental 

reproduction in colonizing species. I have found that C. indica is partially autogamous and self-

compatible. However, selfed progeny showed indications of inbreeding depression. I have also 

found that both colour forms of C. glauca are self-compatible to some degree and selfed progeny 

perform almost as well as crossed progeny. Hybridization among these species and forms means 

that new hybrid combinations will arise continuously in the invasive range and this is likely to lead 

to further evolution of the breeding systems. It would be interesting to test other Canna cultivars 

that are in horticulture but not invasive whether they are less capable of uniparental reproduction 

than are the study taxa. 
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Appendix 

 
Figure 1: Mean values (± SE) of breeding system treatments of C. indica during 2014/15. Fruit set 

(A) is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules setting 

seeds per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed masses 

(D) represents total mass of seeds per fruit for only 2015. Values in brackets represent total number 

of whole (with all flowers) plants treated. Means that share letters are not significantly different. 
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Figure 2: Mean values (± SE) of breeding system treatments of C. glauca OF during 2014/15. Fruit 

set (A) is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules set-

ting seeds per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed 

masses (D) represents total mass of seeds per fruit for only 2015. Values in brackets represent total 

number of whole (with all flowers) plants treated. Means that share letters are not significantly dif-

ferent.  
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Chapter 3 

 

Honeybees are the primary pollinators of New World Canna 

species naturalized in southern Africa 

 

Abstract 

Most flowering plants depend on animal vectors to effect fertilization. Introduced angiosperms, es-

pecially those with specialized pollination syndromes, are likely to experience limitations to fruit 

and seed set in new ranges owing to the rare occurrence and/or absence of pollinators. Pollinators 

and factors limiting fecundity were examined in Canna indica and two colour forms of C. glauca in 

their introduced range in South Africa. These Canna species are native to the Americas and adapted 

for pollination by hummingbirds. We observed visits of sunbirds that robbed nectar from the floral 

tubes and honeybees that collect pollen and also feed on nectar from holes left in the corolla by 

sunbirds. Experimental exclusion of birds did not affect seed production. Pollen-collecting honey-

bees appear to be the primary pollinators of the study taxa and deposited pollen on the stigmas in 

single visit experiments. Single visits by honeybees were also shown to enhance seed production in 

C. indica. Fecundity was pollen-limited in C. indica in one of two years of study and also in C. 

glauca YF. These results show that honeybees can act as substitute pollinators of exotic plant spe-

cies adapted for pollination by hummingbirds.  

Key words: Apis mellifera, invasive alien species, Canna, pollinator limitation, pollination syn-

dromes, hummingbirds 

 

Introduction 

Over 308 000 species of angiosperm rely on animal vectors for movement of pollen between or 

within individuals for sexual reproduction and seed set (Ollerton et al., 2011, Dáttilo and Rico-

Gray, 2018).The dependency of angiosperms on animal vectors can either be facultative or obliga-

tory (Mayer et al., 2011). Some angiosperms are visited by a variety of animal vectors, while others 
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restrict visitation to only a specific taxonomic group of animals (Richardson et al., 2000, Traveset 

and Richardson, 2006); e.g., pollination of species of Dalechampia and Clusia by bees only in the 

families Megachilidae and Apidae (Pan et al., 1998). Pollination by a single species is relatively ra-

re, good examples being Ficus (e.g., many figs are only pollinated by a single wasp species), Yucca 

(pollinated by Tegiticula moths), and some orchid species (the deception of wasps by orchid spe-

cies) (Richardson et al., 2000, Johnson, 2005, Stout et al., 2006, Armbruster, 2012). Flowering 

plants introduced to new ranges are usually considered advantageous as they often leave behind 

natural enemies that inhibit their fitness in native ranges (Larson et al., 2002); however, they also 

often leave behind their pollinators and this can pose a barrier to seed production in the introduced 

range especially if they are specialized plants (Parker, 1997, Stout et al., 2006).  

The reproductive success of introduced angiosperms, especially allogamous species, can depend on 

how well they integrate into prevailing pollination webs and on how well they attract local efficient 

pollinators (Geerts and Pauw, 2009, Harmon-Threatt et al., 2009). Introduced plants, particularly 

those with specialized pollination syndromes in their native ranges are likely to experience pollina-

tor limitation and may only reproduce successfully if they can shift to new pollinators (Rodger et 

al., 2010, Coombs and Peter, 2010). Examples of this phenomenon in South Africa include Nicotia-

na glauca (Geerts and Pauw, 2009), Acacia saligna (Fabaceae) (Gibson et al., 2012, Gibson et al., 

2013), and Araujia sericifera (Apocynaceae-Asclepiadoidea) (Coombs and Peter, 2010). Most inva-

sive plant species have generalized pollination systems and are thus fairly likely to find substitute 

pollinators in their introduced ranges (Stout et al., 2006, Traveset and Richardson, 2006, Coombs 

and Peter, 2010).  

Fecundity of introduced plant species is frequently pollen-limited, even when substitute pollinators 

are available (Richardson et al., 2000, Bufford and Daehler, 2014). This can be due to a shortage of 

pollinators or a shortage of mating partners in the case of self-incompatible species. For example, 

the obligatory outcrossing Cytisus scoparius (Fabaceae) in the USA experienced pollen-limitation 

in one of two sites due to shortage of pollinators (Parker, 1997). In the west of Ireland, where Rho-

dodendron ponticum (Ericaceae) is declared invasive, some populations of this species suffered lim-

ited fruit and seed set owing to infrequent floral visitors (Stout et al., 2006). In one meta-analysis, it 

has been found that introduced plants incapable of autogamous reproduction suffered more pollen 

limitation than did native species (Burns et al., 2011). Reproductive success of introduced plant 

species thus usually depend on pollination mutualisms established in new ranges (Parker, 1997, 

Richardson et al., 2000, Stout et al., 2006). 
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 Previous studies have shown that the success of invasive alien plant species in new ranges can be 

due to the establishment of mutualisms with honeybees, even in places where honeybees are not 

native (Hanley and Goulson, 2003, van Kleunen et al., 2007a, Zenni et al., 2009, Coombs and Peter, 

2010, Gibson et al., 2012, Gibson et al., 2013). For example, Centaurea solstitialis L., which is in-

vasive in the USA experienced significantly lower levels of seed set when honeybees were excluded 

from flower heads (Hanley and Goulson, 2003). In South Africa, Acacia paradoxa relies mainly on 

Apis mellifera susbspp. capensis for reproductive success and adequate seed production (Zenni et 

al., 2009). Flowers of Datura stramonium (Solanaceae) have been reported to be visited mainly by 

honeybees in South Africa (van Kleunen et al., 2007a). Honeybees are, indeed, highly generalist 

insects (Allsopp et al., 2008). Honeybees generally occur in significant numbers in plants they visit 

and this means that they can contribute to seed set even when they are not very effective at deposit-

ing pollen on a per-visit basis (Botes et al., 2009).  

Species of Canna L. (Cannaceae) have been frequently reported to be pollinated by hummingbirds 

in their native ranges (Maas-van de Kamer and Maas, 2008, Prince, 2010). For example, it has been 

reported that Canna indica L. native in Argentina is pollinated efficiently by Heliomaster furcifer 

(Glinos and Cocucci, 2011). Canna paniculata in its native range is pollinated by Phaethornis eu-

rynome (Maruyama et al., 2015) and Canna glauca L. is visited and possibly pollinated by moths, 

butterflies, honeybees and hummingbirds (Armbruster et al., 1999, Aizen et al., 2016). Despite 

Canna species seemingly being pollinated mainly by hummingbirds, Rambuda and Johnson (2004) 

reported C. indica to set seeds prolifically in southern Africa where this species is declared invasive 

and where hummingbirds are absent. Canna indica in southern Africa has been reported to be au-

togamous (Rambuda and Johnson, 2004) and allogamous in its native range (Glinos and Cocucci, 

2011); however, the pollination biology of this species has not been assessed in its introduced 

range. Therefore, the occurrence of Canna species in southern Africa provides an opportunity to 

assess the role of pollinator substitutions in mitigating or facilitating the spread of invasive alien 

plant species.  

In this study, I assess and document the pollination biology of three Canna taxa that are naturalized 

in South Africa. The taxa studied are Canna indica L., and two colour forms of Canna glauca L. 

Canna species are native to  the New World (Soares et al., 2005, Baran et al., 2010), but they now 

occur widely across the tropics (Tobar-Vargas et al., 2013), including southern Africa (Maas-van de 

Kamer and Maas, 2008), owing to their use as ornamentals in horticulture (Young, 1982). Most 

Canna species are presumed to be self-compatible in their native ranges (Maas-van de Kamer and 

Maas, 2008) and they are afforded adequate pollination by hummingbirds (Maas-van de Kamer and 
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Maas, 2008, Glinos and Cocucci, 2011, Maruyama et al., 2015). Preliminary observations of natu-

ralized Canna populations in South Africa by the author suggested that sunbirds do not feed legiti-

mately from flowers (they pierce the floral tube) and that the only insects to make contact with the 

stigma are pollen-collecting honeybees. Honeybees are native in southern Africa (Donaldson, 2002) 

and are extreme generalists in terms of flower selection (Hanley and Goulson, 2003, Allsopp et al., 

2008). I therefore predicted that the study taxa would either rely on selfing or be effectively polli-

nated by honeybees. Given the high levels of fruit set recorded in preliminary observations, I also 

predicted that fecundity is not pollen-limited in these species.  

 

2. Methods 

2.1. Study species 

Canna is the only genus within the family Cannaceae (Zingiberales) (Maas-van de Kamer and 

Maas, 2008, Almeida et al., 2013, Mishra et al., 2013). Canna encompasses approximately 10 - 20 

species (Kress and Specht, 2006, Mishra et al., 2013) and more than 1000 hybrids (Prince, 2010, 

Gupta et al., 2013). Canna indica L. is native to South America and occurs up to Mexico (Glinos 

and Cocucci, 2011). Canna indica occurs in shady, often wet forests, particularly along rivers or 

road sides in secondary vegetation (Maas-van de Kamer and Maas, 2008). The species has flowers 

with petals that are fused at the base and petals are further fused with the stamen and 3 staminoids 

(Glinos and Cocucci, 2011). Flowers tend to be red or deep orange (Chapter 1: Fig. 1 C). The dis-

tinctive feature of this species is that the lower sides of leaves are free of hairs (Maas-van de Kamer 

and Maas, 2008). Canna glauca L. is native to the Caribbean in South American as far South as 

northern Argentina (Maas-van de Kamer and Maas, 2008). In this study, two forms of C. glauca are 

studied; one form with orange flowers, here termed C. glauca OF (Fig. 1 A, D and E), while the 

other form has yellow flowers and is termed C. glauca YF (Fig. 1 B and C). In overall, C. glauca is 

found in marshes, swamps, and along margins of lakes (Maas-van de Kamer and Maas, 2008). 

Canna glauca usually has leaves that are dull grey, green, or bluish in colour (Maas-van de Kamer 

and Maas, 2008). All species of Canna are characterized by secondary pollen presentation process 

(Howell et al., 1993). In this event before anthesis, pollen from the anther is deposited under the 

receptive part of the stigma (Glinos and Cocucci, 2011). 
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Figure 1: Flowers and animal visitors of the Canna study taxa. C. glauca OF flowers being robbed 

of nectar by an amethyst sunbird (A). C. glauca YF flowers being robbed of nectar by a white-

bellied sunbird (B) and honeybee (C). C. glauca OF with pollen on anther (D) and with pollen be-

ing collected by a honeybee (E). Scale bar = 1 cm. All photos by S. D. Johnson. 

2.2. Study Sites 

Field observations and experiments were conducted in 2014 (February to October), 2015 (February 

to October), 2016 (December) and 2017 (March to June) in five sites around Pietermaritzburg, 

South Africa. The site in Hayfields (S 29° 38' 9.035'' E 30° 25' 5.998'') has populations of two forms 

of C. glauca that occur sympatrically with C. indica in a wetland in savanna vegetation. The sites in 

Gladys Manzi Road (S 29° 38' 29.998'' E 30° 25' 10.001'') and in intersection of St. Patricks and 

Leinster Road (S 29° 37' 4.998'' E 30° 23' 34.998'') has populations of C. indica alone in an open 

grassland near the road. Canna glauca OF and Canna glauca YF were also studied in Foxhillspruit 



56 

 

Canal near Shell fuel station (S 29° 21' 50.418'' E 30° 13' 57.489'') and in Msunduzi River in 

Boshoff Street (S 29° 36' 28.998'' E 30° 23' 32.999'') respectively, both in wet grassland vegetation 

next to a river.   

2.3. Observations of floral visitors 

Observations were conducted in 2015, 2016 and 2017 to assess floral visitors of each taxon. All ob-

servations were carried out specifically from 7h00 to 12h00 as 10-minute intervals. In all observa-

tions, the observer recorded the number of visitors, the identity, and behaviour of each floral visitor 

in a selected population. 

Canna indica was observed every day for 20 days in Hayfields (December 2016), and for 20 days in 

Gladys Manzi Road (March and April 2017). Canna glauca OF was observed for 30 days (10 days 

for each of April, May 2015 and March 2017) and C. glauca YF for 10 days (in March 2017).  

2.4. Single-visit effectiveness of bees  

To assess the efficiency of honeybees in depositing Canna pollen on virgin stigmas, controlled 

single visit experiments (in 2015, 2016, and 2017) using flowers bagged prior to anthesis were 

conducted on all taxa. Single visit studies for C. indica were conducted in Hayfields (December 

2016), Gladys Manzi Road, and St. Patrics-Leinster Road in March and May 2017 respectively. 

Single visit studies for C. glauca OF and C. glauca YF were carried out in all sites with these taxa 

in April to May 2015 and March 2017 respectively during flower handling.  

Previously bagged flowers were exposed to single visits by honeybees. Stigmas were then dabbed 

on a block of Fuschin gel on a microscope slide to collect pollen, making sure that pollen  from the 

pollen presenters did not fall on the block. The pollen-gel mixture on the slide was covered with a 

clean coverslip and the slide heated briefly so to melt the gel and dye the grains. Control virgin 

stigmas (unvisited) were also treated as described above as a control for autonomous self-

pollination and pollen contamination from presenters.  

To compare the efficiency of solitary bees in depositing Canna pollen on virgin stigmas, controlled 

experiments were conducted at the Gladys Manzi Road site in May 2017 using C. indica flowers 

bagged prior to anthesis. These experiments were done without controls, however. We used this 

species for this experiment as it was observed to be visited by both honeybees and solitary bees, but 

both visitors were not compared in terms of their efficiencies.  
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In all single visits to flowers, the number of pollen grains in slides from control and bee-visited 

flowers were counted systematically with a light microscope. Foreign pollen grains were counted 

but excluded in analyses. 

To assess the contributions of honeybees to fruit and seed set, controlled single visit pollination 

experiments were conducted in all taxa in March and May 2017 using flowers bagged prior to 

anthesis. Virgin stigmas were allowed one-time contact with honeybees and then re-bagged and 

labelled accordingly. Virgin stigmas for controls were not visited, but were subjected to the same 

bagging procedure. The number of single visit and control stigmas per taxon was 10 and 10 

respectively.  

After four weeks, fruits were harvested and the proportion of flowers setting fruit was calculated. 

For each fruit, the number of viable and aborted seeds, as well as number of unfertilized ovules 

were counted on a dissecting microscope (A. Krüss Optronic – Germany; MSZ5000-T-IL-TL Ste-

reo Microscope). Seeds from each fruit were weighed using an electronic balance.  

2.5. Selective exclusion of sunbirds  

To assess the contribution of birds to fruit and seed set, controlled selective exclusion experiments 

were performed by enclosing flower bud in mesh cages (mesh diameter ~ 20 mm). Wire cages al-

lowed insect-visitors, but excluded birds.  

These experiments were performed on C. indica and C. glauca OF in the Hayfields populations in 

2014/2015. Whole plants (C. indica, 20 and 15 plants; C. glauca OF, 26 and 20 plants for each year 

respectively) were assigned to an open control or to a mesh-enclosed treatment. Following wilting 

of all flowers in individual plants, mesh cages were removed and fruits were allowed to develop. 

Fruits and seeds were counted and weighed as described previously.  

2.6. Pollen supplementation experiments 

To assess whether study taxa experience limitations to fruit and seed set due to pollen limitation, I 

used data from controlled hand-pollinations of bagged flowers (Chapter 2) to test whether hand-

pollination increases seed production beyond the level achieved by natural pollination  

In 2014 and 2015 (hereafter, 2014/15), only C. indica and C. glauca OF received all treatments in 

Hayfields. Whole plants (C. indica, 45 and 30 plants; C. glauca OF, 45 and 41 plants for each year 
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respectively) were assigned to the following treatments; (1) open natural pollination to test for natu-

ral levels of fruit and seed set; (2) supplementary self-pollination using pollen from the same test 

plants; and (3) supplementary cross-pollination using donors that were at least 10 m away from the 

test plants and usually in a different patch as a positive control.  

In 2017, all taxa received the treatments. In this case, however, a split-plot design was used, where 

three flowers were used on each of 15 plants and each flower on a plant was assigned to a different 

pollen supplementation treatment.  

2.7. Data analysis 

All analyses were carried out using Generalized Linear Models (GLM) implemented in SPSS 24 

(IBM Corp). In cases where data were potentially correlated, as in the case of flowers on the same 

plants, I used Generalized Estimating Equations (GEE). Subjects in GEEs included year in 2014/15 

supplementation and bird exclusion treatments, plant no. in 2017 supplements and single visit polli-

nation treatment, and plant no. in single visit pollen-deposition data. All proportions (e.g., flowers 

setting fruits, aborted ovules, ovules setting seeds) were analysed using a model, where the proba-

bility distribution was binomial and the link function was logit. The predictors were as follows; in 

2014/15 and 2017 supplement treatments, the predictors were the supplementation treatments. In 

2014/15 bird exclusion treatments, the predictors were controls and bird exclusion treatments. In 

single visit deposition treatments, the predictors were controls and bee visited treatments. 

Canna pollen-deposition data were analysed using a negative binomial distribution with a log link 

function. Total number of seeds per fruit (hereafter seed mass) was analysed using a Gaussian dis-

tribution and identity Link function. Significance testing in all GLMs used likelihood ratios, except 

in the case of GEEs which used Score statistics or, in the case of small samples sizes, Wald statis-

tics.  

 

3. Results 

3.1. Observations of floral visitors 

During 2016 (December) and 2017 (March and April), a total of 108 floral visitors were observed 

foraging on C. indica. Twenty three visitors were honeybees (only observed in Hayfields) and 85 
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were solitary bees (82 observed in Gladys Manzi Road and three observed in Hayfields). Twenty 

honeybees (86.9 %) were collecting pollen from the secondary pollen presenter (and all making 

contact with the receptive stigma) and on average (± SE) they spent 68.4 ± 5.2 s per flower. Three 

honeybees were drinking nectar (outside the base of floral tubes) and spent on average 22.3 ± 0.3 s 

per flower. Of the solitary bees seen visiting C. indica,  37 were collecting pollen (six in Gladys 

Manzi Road making contact with the receptive stigma while three in Hayfields did not) and on 

average they spent 45.7 ± 4.9 s per flower, 10 were seen drinking nectar (inside the base of floral 

tubes) for an average of 14.2 ± 2.3 s per flower, 34 were hovering while inspecting flowers (for 30.4 

± 5.4 s), and four were in aggressive interactions for 6.8 ± 3.1 s with ants already in the flowers of 

C. indica. 

In 2015 (April and May) and 2017 (March), a total of 629 floral visitors were observed foraging on 

C. glauca OF that occurred only in Hayfields. Twelve visitors were sunbirds which fed on nectar on 

the outside base of floral tubes (two observed and this lasted for 35.0 ± 0.0 s per flower). Two 

solitary bees were observed hovering around these plants, and they did so for an average of 15.0 ± 

5.0 s. Four wasps were observed, of which two were hovering in front of flowers for 23.5 ± 6.5 s 

and two drinking nectar from puncture holes at the base of flowers for 29.0 ± 18.0 s per flower. The 

remaining 611 floral visitors observed in the C. glauca OF population were honeybees. One 

hundred and seventy six honeybees were seen collecting pollen (and all making contact with the 

receptive stigma) for an average of 13.8 ± 2.5 s per flower, 371 were foraging for nectar (136 

honeybees drinking inside floral tubes for 33.2 ± 5.1 s, and 235 drinking from holes pierced in the 

floral tubes for 22.5 ± 3.5 s per flower), and 64 were  seen hovering in front of flowers for 23.3 ± 

3.7 s.  

In C. glauca YF, 25 floral visitors were observed foraging during March of 2017. One sunbird was 

observed drinking nectar outside the base of floral tubes for 35.0 s. The remaining visits were by 

honeybees. Sixteen honeybees were collecting pollen (and all making stigma contact for an average 

of 40.7 ± 8.0 s per flower),  one was drinking nectar outside the base of floral tubes for 27.0 s, and 

seven were hovering in front of flowers for 9.7 ± 2.8 s.  

3.2. Single-visit effectiveness of bees 

In C. indica, there was no significant difference between the mean number of Canna pollen grains 

deposited by honeybees versus the controls on respective stigmas (Fig. 2 A). However, in C. glauca 

OF, flowers visited by honeybees had 56-fold more pollen grains than did controls (Fig. 2 B). 
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Similar results where obtained in C. glauca YF, where honeybees deposited 20-fold more pollen 

relative to the controls (Fig. 2 C). 
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Figure 2: Mean (± SE) number of Canna pollen grains deposited by honeybees on single visits in 

stigmas of C. indica (A), C. glauca OF (B), and C. glauca YF (C). Values in brackets represent 

sample sizes.  

Only C. indica set fruits for both controls and honeybee single visit pollination treatments. Honey-

bee single visit pollination did not influence fruit set of C. indica (Fig. 3 A), but did result in slight-

ly increased seed set (Fig. 3 B), reduced ovule abortion (Fig. 3 C) and a higher mass of seeds (Fig. 3 

D). 

Figure 3: Mean values (± SE) of contributions of honeybees to fruit and seed set of C. indica. Fruit 

set (A) is the proportion of flowers setting fruits. Seed set (B) represents proportion of ovules set-

ting seeds per fruit, ovules aborted (C) represents proportion of aborted ovules per fruit, and seed 

masses (D) represents total mass of seeds per fruit. Values in brackets represent number of plants 

(with one flower) treated.  

3.3. Selective exclusion of birds  
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The exclusion of birds from flowers of both C. indica (Fig. 4) and C. glauca OF (Fig. 5) resulted in 

slightly increased seed set (but did not affect fruit set) relative to when birds were allowed to visit 

flowers. 

Figure 4: Mean values (± SE) of contribution of sunbirds to fruit and seed set of C. indica in 

2014/15 whole plant treatments. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) 

represents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of 

aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit for only 2015. 

Values in brackets represent total number of whole (with all flowers) plants treated.  
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Figure 5: Mean values (± SE) of contribution of sunbirds to fruit and seed set of C. glauca OF in 

2014/15 whole plant treatments. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) 

represents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of 

aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit for only 2015. 

Values in brackets represent total number of whole (with all flowers) plants treated.  

3.4. Pollen supplementation experiments 

In 2014/15, hand-pollination with cross and self-pollen increased fruit and seed set of C. indica 

(Fig. 6 A and B). In addition, abortion rates from open-pollinations and supplementary cross-

pollinations were lower (Fig. 6 C). 

In 2014/15, the hand cross-pollination treatments, in relation to open-pollinations, had no signifi-

cant effect on fecundity of C. glauca OF (Fig. 7 A, to D). 
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Figure 6: Mean values (± SE) of fruit and seed set of C. indica in situations of limited floral visitors 

in 2014/15 whole plant treatments. Supp self = supplementary self-pollination, Supp cross = sup-

plementary cross-pollination. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) 

represents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of 

aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit for only 2015. 

Values in brackets represent total number of whole (with all flowers) plants treated. Means that 

share letters are not significantly different. 
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Figure 7: Mean values (± SE) of fruit and seed set of C. glauca OF in situations of limited floral 

visitors in 2014/15 whole plant treatments. Supp self = supplementary self-pollination, Supp cross = 

supplementary cross-pollination. Fruit set (A) is the proportion of flowers setting fruits. Seed set 

(B) represents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion 

of aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit for only 

2015. Values in brackets represent total number of whole (with all flowers) plants treated. Means 

that share letters are not significantly different. 

Relative to open-pollination, hand-pollination with cross and self-pollen did not increase fecundity 

of C. indica (Fig. 8 A - D) or C. glauca OF (Fig. 7 A - D), but did increase fecundity of C. indica 

(Fig. 8 B and D) in 2017.  
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Figure 8: Mean values (± SE) of fruit and seed set of C. indica in situations of limited floral visitors 

in 2017 split plot design. Supp self = supplementary self-pollination, Supp cross = supplementary 

cross-pollination. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) represents 

proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of aborted ov-

ules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in brackets repre-

sent number of plants (with one flower) treated. Means that share letters are not significantly differ-

ent. 
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Figure 9: Mean values (± SE) of fruit and seed set of C. glauca OF in situations of limited floral 

visitors in 2017 split plot design. Supp self = supplementary self-pollination, Supp cross = supple-

mentary cross-pollination. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) rep-

resents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of 

aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in 

brackets represent number of plants (with one flower) treated. Means that share letters are not sig-

nificantly different. 
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Figure 10: Mean values (± SE) of fruit and seed set of C. glauca OF in situations of limited floral 

visitors in 2017 split plot design. Supp self = supplementary self-pollination, Supp cross = supple-

mentary cross-pollination. Fruit set (A) is the proportion of flowers setting fruits. Seed set (B) rep-

resents proportion of ovules setting seeds per fruit, ovules aborted (C) represents proportion of 

aborted ovules per fruit, and seed masses (D) represents total mass of seeds per fruit. Values in 

brackets represent number of plants (with one flower) treated. Means that share letters are not sig-

nificantly different.  

 

Discussion 

In this study, I have found that naturalized Canna species are visited by sunbirds, honeybees and 

solitary bees. However, sunbirds rob flowers of nectar by piercing the corolla. The results of this 

study suggest that honeybees are effective pollinators of C. glauca as they clearly contributed to 

pollen deposition on stigmas of C. glauca (Fig. 2 B and C). Of the honeybees foraging for pollen on 

C. indica, 20 bees made clear stigma contact. However, we did not detect additional deposition of 
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Canna pollen besides that arising from automatic self-pollination in this species (Fig. 2 A). 

However, visitation by honeybees did slightly increase fecundity of C. indica (Fig. 3 B, C and D).   

Literature documenting the role of honeybees in plant reproduction often mentions that they are 

inefficient as pollinators (Richardson et al., 2000, Westerkamp and Gottsberger, 2000, Traveset and 

Richardson, 2006), particularly in bird-pollinated systems (Botes et al., 2009). However, many 

studies have implicated honeybees as legitimate pollinators of invasive alien plant species in 

introduced ranges (Richardson et al., 2000, Hanley and Goulson, 2003, Traveset and Richardson, 

2006), particularly in southern Africa (Coombs and Peter, 2010, Gibson et al., 2011, Gibson et al., 

2012, Gibson et al., 2013). Furthermore, it has also been mentioned that their widespread occurance 

in many habitats may increase chances that obligatory outcrossing and/or specialized introduced 

plant species may be afforded at least some pollination (Richardson et al., 2000). In this study, 

honeybees afford adequate pollination to the study taxa. In Grahamstown, the native honeybee A. 

mellifera was shown to pollinate the invasive ―moth catcher‖ Araujia  sericifera. This South 

American invader has white, dense, scented flowers throughout the day and night which were 

shown to be mainly visited and pollinated by honeybees during the day and moths only making 

negligible contributions to fitness of this plant species (Coombs and Peter, 2010). This was also the 

case with A. saligna in southern Africa. Acacia saligna has significantly co-opted native honeybees 

(A. mellifera subspecies capensis) away from the native species Roepera fulva (Gibson et al., 2012), 

and these honeybees are anecdotally considered to effect cross-pollination (Gibson et al., 2012, 

Gibson et al., 2013). Other invasive acacias benefiting from the prevalence of honeybees in 

southern Africa include A. paradoxa which has been observed in the Table Mountain Park being 

pollinated by A. mellifera subspecies capensis (Zenni et al., 2009). In addition, other species that 

may benefit from the widespread occurance of honeybees in South Africa include Datura 

stramonium of which has A. mellifera as its primary visitor and is an effective pollinator (van 

Kleunen et al., 2007a).  

In this study, sunbirds could have been expected to be co-pollinators with honeybees as the study 

taxa are adapted for pollination by hummingbirds (Maas-van de Kamer and Maas, 2008, Glinos and 

Cocucci, 2011).  Sunbirds in the Old World efficiently pollinate Nicotiana glauca, another invasive 

species adapted for pollination by hummingbirds in the New World (Geerts and Pauw, 2009). 

However, my observations and experimental results suggest otherwise. In this study, the exclusion 

of sunbirds, but not honeybees, from flowers resulted in C. indica and C. glauca OF setting 

significantly more seeds (Fig. 4 B and 5 B), perhaps because birds damage flowers when robbing 

the corolla. This is a strong suggestion that sunbirds make no significant contribution to fruit and 
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seed set of these species. Although my results are contradicting that of Geerts and Pauw (2009), 

e.g., honeybees contributing more significantly than sunbirds to seed set of C. indica, sunbirds in 

this study system rarely visited C. indica (M.S. Sibiya personal observation). In addition, sunbird‘s 

rare visits to C. indica (in 2014/15) was only destructive – sunbirds poked the outside base of floral 

tubes when foraging for nectar and often resulting in freshly opened flowers (with pollen and 

stigmas still intact) detaching from the ovary.  

Sunbirds also did not make a significant contribution to fruit and seed set of C. glauca OF. This 

may be in part because of their infrequent visits, robbing behaviour  or due to their destructive 

nature. Although these taxa have red to orange colouration that conforms to the bird pollination 

syndrome (Ford et al., 1979, Johnson and Nicolson, 2008, Botes et al., 2009, Geerts and Pauw, 

2009), I did not measure nectar content and concentration within these plants as this is one other 

characteristic that is associated with ornithophilous pollination syndromes (Johnson and Nicolson, 

2008). Thus, further reseach may investigate whether sunbirds‘ attraction to these plant taxa is 

associated with availability of resources.  

It is often mentioned that seed production in angiosperms relying on animals for reproduction is 

generally limited by floral visitors which are inefficient pollen vectors, e.g. deposit insufficient 

number of pollen grains of low quality (Brys and Jacquemyn, 2011). Limitation to seed set in 

introduced plant species in new ranges is one barrier that limits their spread, and understanding this 

may improve our knowledge of invasions and development of improved management strategies 

(Bufford and Daehler, 2014). By examining the effects of pollen limitation due to infrequent or 

inefficient floral visitors on fecundity, in this study I have found that the autogamous C. indica 

during the years 2014/15 experienced pollen limitation to fruit and seed set (Fig. 6 A and B). In 

addition to pollen limitation, I have found that low quality supplies of additional pollen by floral 

visitors compromises the fecundity of this species (Fig. 6 C). However, in 2017 the autogamous C. 

indica experienced no limitation to fruit and seed set (Fig. 8 A and B) caused by infrequent or 

inefficient floral visitors, and quality of pollen delivered had no effect on fecundity (Fig. 8 C and 

D). Canna glauca OF in 2014/15, and in 2017 experienced no limitation of fruit and seed set (Fig. 7 

A and B; Fig. 9 A and B), but low quality pollen slightly compromises the overall reproductive 

output of this taxon (Fig. 7 C). Canna glauca YF in 2017 had seed set, but not fruit set, limited by 

availability of pollen (Fig. 10 A and B). Furthermore, offspring quality of this taxon is highly 

affected by the quality of siring pollen (Fig. 10 D).  
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Due to the fact that C. indica is autogamous, it was never expected that this species would suffer 

from pollen limitation in any year because autogamy may be an additional source of pollen 

(Rambuda and Johnson, 2004, van Kleunen et al., 2007a, van Kleunen et al., 2007c, Hao et al., 

2011). Comparison of hand-pollinated and open-pollinated flowers suggest that autogamy is only 

partially effective in this species. Notably, the C. indica populations were relatively small and were 

comprised of seven – 100 individuals whereas other taxa had populations with 250 (C. glauca YF) 

and 500 (C. glauca OF) individuals each (M. S. Sibiya personal observations). Plants of C. indica 

received comparatively low honeybee visits (23 in two months) in relation to other taxa which had 

176 (C. glauca OF in three months) and 24 (C. glauca YF in one month) of visits. Indeed, small 

populations are more likely to experience pollen limitation due to relatively low number of 

pollinators that visit them (e.g., Allee effects Stout et al., 2006, van Kleunen et al., 2007a). Canna 

indica may have suffered pollen limitation in 2014/15 due to infrequent honeybee visits in small 

populations regardless of the capacity of autogamous reproduction which may be essential for 

initial colonization (Rambuda and Johnson, 2004). Canna glauca OF may have not suffered from 

pollen limitation in all years because its populations are continuous with adequate number of 

available mates and received adequate pollinator visits. Canna glauca YF might have experienced 

limitation to seed set due to infrequent floral visitors because this taxon also had only one small 

patch which honeybees can visit. Indeed, limitation of seed set in plants due to insufficient 

pollinator visits is a common phenomenon (Parker, 1997). It has been documented that in 258 

species, 160 had suffered reduced seed set due to pollinator limitation (Burd, 1994) and some 

populations of R. ponticum in Ireland where it is invasive experienced a reduction in fruit and seed 

set when pollinators were rare (Stout et al., 2006). In 2017, C. indica may have not experienced 

pollen limitation because of increased number of honeybees probably attracted to simultaneously 

flowering plants (M. S. Sibiya personal observations). The above phenomena is similar to that of 

Parker (1997) who found that  C. scoparius in USA experienced pollen limitation in wild settings 

and not in urban sites because the broom in urban sites had significantly more pollinator visits that 

were attributed by other simultaneously flowering native species (Richardson et al., 2000). In 

addition, the differences in pollen limitation of C. indica during 2014/15 and 2017 may simply 

reflect that pollinator services vary in space and time, and that pollen limitation essentially 

decreases as pollinator availability increases (Parker, 1997) or simply that other factors such as 

resource availability may be essential for fruit establishment (Stout et al., 2006). Indeed, other 

factors, such as nectar availability, are associated with reproduction in flowering plants as has been 

shown that Delphinium nelsonii Greene (Ranunculace) increased it seed set when nectar was readily 

available in some individuals and seed set diminished to some individauls when nectar was not 

available (Zimmerman, 1983).  
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Conclusions 

This study has documented the pollination biology and pollinator species of three Canna taxa that 

are invasive and naturalized in South Africa. This study has also inspired further research within 

these taxa. For example, sunbirds in South Africa efficiently pollinate N. glauca which also has 

hummingbird pollination syndrome (Geerts and Pauw, 2009), but do not seem to feed legitimately 

on Canna flowers and thus pollinate them, perhaps because of differences in hovering ability 

among sunbird species. In addition, further research can investigate the extent to which solitary bees 

contribute to fecundity of C. indica through measures of pollen deposition among solitary bees and 

controls and measures of fruit and seed production between autogamy and solitary bee single polli-

nation. However, this study supports the idea that honeybees are important pollinators of invasive 

species in new ranges (Richardson et al., 2000, Coombs and Peter, 2010, Gibson et al., 2013). In 

this study, honeybees were found to deposit significant numbers of pollen grains on stigmas to effi-

ciently pollinate two forms of C. glauca. In addition, honeybees may be important in pollinating C. 

indica as they increased some aspects of fecundity of this species. In general a combination of au-

tonomous self-pollination (in C. indica) and effective pollination by honeybees (in C. glauca) 

meant that very little pollen-limitation of fecundity was evident in the study taxa.  
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CHAPTER 4 

 

General discussion and conclusions 

Invasive alien plant species are a major threat to biodiversity (Kumschick et al., 2017a), economy 

(Kumschick et al., 2017b), human health (Bandara et al., 2010), and scarce water sources of 

infested areas (Abella et al., 2009), and if left unmanaged, overall negative impacts may be 

exacerbated (Wilson et al., 2013). Owing to these crippling impacts, there is a need to identify 

species characteristics that are correlated with invasiveness (Hao et al., 2011), and these can prove 

invaluable for mitigating impacts and/or predicting future invasions (Rejmanek and Richardson, 

1996). Canna indica L. (Cannaceae) is declared invasive in southern Africa (DoEA, 2009) but only 

one study has empirically assessed breeding systems characteristics of this species that are 

associated with invasiveness (Rambuda and Johnson, 2004). Reliable estimates of invasion risks of 

species require many other species traits associated with invasiveness; e.g., hybridization potential, 

extent of reliance on (specialized) pollinators for reproduction, and existence of invasive related 

taxa (Ugoletti et al., 2013, Nxumalo et al., 2016, Moodley et al., 2017). These traits are particularly 

important to assess because risk assessment protocols often lack this information (Panetta, 2016).  

In this thesis, I have assessed and documented the reproductive and pollination biology of three 

Canna taxa that are invasive and naturalized in South Africa. I have achieved this by studying the 

breeding systems, extent of inbreeding depression following selfing, hybridization potential, 

pollinators and their single-visit efficiencies, and the magnitude of pollen limitation. The aim of this 

chapter is therefore to summarise and discuss major findings about the role reproductive and 

pollination biology plays in facilitating the spread of our study taxa. This chapter also aims to aid in 

estimating risk of invasiveness and possibility of inclusion of these study taxa in management 

programs. 

 

The role of breeding systems in facilitating spread of three studied Canna taxa 

Along the lines of Baker‘s hypothesis that was coined in 1955 (Baker, 1967), the study taxa were 

hypothesized to exhibit self-compatibility and possibly also automatic self-pollination, owing to the 

occurrence of pollen closely with the receptive part of stigma (Glinos and Cocucci, 2011). I 

demonstrated that C. indica is indeed mostly autogamous and self-compatible (Chapter 2: 

Appendix, Fig. 1 A and B; Fig. 1 A and B). Further evidence for capacity of automatic reproduction 
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is highlighted in Chapter 3 where I demonstrated that automatic self-pollination delivers pollen to 

stigmas (Fig. 2 A). Rambuda and Johnson (2004) also demonstrated that C. indica in southern 

Africa is fully autogamous and self-compatible. However, inbreeding depression was detected in 

this species and this raises questions about the contribution of selfed seed to demographics of this 

species. Evidence for inbreeding depression is highlighted in Chapter 2 where I have demonstrated 

that selfed C. indica seeds germinate less readily than crossed seeds and have less vigour (Fig. 7 A 

– D). Another line of evidence for inbreeding depression in this species was that visits by 

honeybees which presumably contributed outcross pollen to stigmas resulted in production of 

higher quality seeds of heavier masses and reductions in ovule abortions in comparison to those 

seeds arising from automatic self-pollination (Chapter 3: Fig. 3 D and C).  

Canna glauca YF is self-compatible but incapable of automatic self-pollination (Chapter 2: Fig. 3 A 

and B). Further support for this is highlighted in Chapter 3 where I have shown that negligible 

amounts of pollen are deposited in stigmas through automatic self-pollination whereas considerable 

amounts of pollen are deposited by honeybees (Fig. 2 C). Inbreeding depression was not detected, 

but I cannot exclude it being important at later stages of plant development.  

Canna glauca OF is also incapable of automatic self-pollination, and is partly self-compatible 

(Chapter 2: Fig. 2 A and B; Appendix, Fig. 1 A and D). Supporting evidence is also highlighted in 

Chapter 3 where I have shown that honeybees outperform deposition in control treatments where 

automatic self-pollination is the only mechanism of pollen deposition to stigmas (Fig. 2 B). While 

this taxon sets fruits and seeds with self-pollen, I have shown that outcross-pollen often results in 

greater seed production and seeds of higher quality (Chapter 2: Fig. 2 B and D; Appendix, Fig. 1 B 

and D). Despite being partially self-compatible, this taxon produces progeny with self-pollen that 

does not experience inbreeding depression (Fig. 7 A – E).  

In this thesis, self-compatible breeding systems are prevalent in the study taxa and are likely to 

contribute to the spread of these taxa across the invasive range South Africa. Canna indica has a 

potential to deploy considerable amounts of seeds without the aid of pollinators though automatic 

self-pollination, but the fate of selfed progeny in contributing to spread is less likely owing to 

extensive levels of inbreeding depression expressed as poor performing progeny. Contrary to this, 

both C. glauca taxa are more likely to spread despite their incapability to self-pollinate 

automatically, as they have co-opted local native honeybees as pollinators  

 

The role of pollinators in facilitating spread of three studied Canna taxa 
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In this thesis, I have also hypothesized that our study taxa are afforded efficient pollination by 

honeybees and thus do not suffer from pollen limitation to fruit and seed set. I demonstrated that 

honeybees (together with solitary bees) are the most frequent visitors to all study taxa. In addition, 

honeybees are the only animal pollinators that often effect pollination of all study taxa by making 

positive stigma contact (Chapter 3, section 3.1). Evidence for effectiveness of honeybees as cross-

pollinators of C. indica is highlighted in their contribution to fruit and seed set where I have shown 

that their pollination results in significantly high seed production, of high quality (Chapter 3: Fig. 3 

B and D). I demonstrated that sunbirds make no contribution to fruit and seed set in either Canna 

species and act only as nectar thieves. Indeed, their presence seems to reduce seed production, 

perhaps on account of damage to flowers by their bills as they probe around the ovaries (Chapter 3: 

Fig. 4). As the primary pollinators of Canna species, native honeybees contribute to their seed 

production and thus invasiveness. Honeybees probably also facilitate hybridization among the study 

taxa which are largely inter-fertile (Chapter 2: Fig. 4, 5, and 6).  

Although honeybees deposit pollen grains on stigmas (Chapter 3: Fig. 2), I found that a single 

honeybee visit to both forms of C. glauca did not result in fruit set (Chapter 3: section 3.2). This 

could reflect resource limitation at the time of that experiment or that multiple honeybee visits to 

stigmas are required for effective pollination.  

 

Future research directions and concluding notes  

 Overall, these results are consistent with Baker‘s hypothesis that self-compatible breeding systems 

are favoured and prevalent in colonizing species (Rambuda and Johnson, 2004). Selfing may be 

important for initial establishment of populations and initial spread from sites of introductions to 

occupy available habitats (Pannell et al., 2015a, Pannell, 2015). Follow up studies are required to 

elucidate the actual level of selfing in these species. This could be achieved using co-dominant 

molecular markers such as SSRs (Henry, 2012). Estimate of outcrossing rates using molecular 

markers would also allow independent marker-based estimates of total inbreeding depression. 

Another useful application of SSRs would be to estimate the extent of clonality in populations due 

to vegetative spread (Zane et al., 2002).  

These results add to the growing evidence that many invasive alien plant species in new ranges are 

efficiently pollinated by honeybees (Coombs and Peter, 2010, Gibson et al., 2012). Indeed, all our 

study taxa demonstrate a potential for spread by seeds away from sites of introductions owing to the 

widespread occurrence of native generalist honeybees in South Africa (Donaldson, 2002, Allsopp et 

al., 2008).   
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It is clear that the study taxa pose considerable risk to vulnerable wetland habitat. A combination of 

ability to self and effective pollination by ubiquitous honeybees means that there are few barriers to 

seed production in these taxa and that new more invasive hybrid combinations are likely to arise in 

the future. Management is cost-effective when a potentially invasive species is detected early and 

objective control measures are implemented early enough to prevent a species from expanding its 

range and impacts (Le Roux et al., 2010). In this thesis I have provided data to aid in estimating risk 

of invasion (as per Australian Weed Risk Assessment Protocol Nxumalo et al., 2016)  and attributes 

of these species to aid in decision making.  
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