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Abstract

In this thesis we seek new solutions to the anisotropic Einstein field equations which are

important in the study of highly dense stellar structures. We first adopt the approach

used by Maharaj & Maartens (1989) to obtain an exact anisotropic solution in terms of

elementary functions for a particular choice of the energy density. This class of solution

contains the Maharaj & Maartens (1989) and Gokhroo & Mehra (1994) models as special

cases. In addition, we obtain six other new solutions following the same approach for

different choices of the energy density. All the solutions in this section reduce to one with

the energy density profile f-L ex r-2
. Two new algorithms are generated, Algorithm A and

Algorithm B, which produce a new anisotropic solution to the Einstein field equations

from a given isotropic solution. For any new anisotropic solution generated with the

help of these algorithms, the original isotropic seed solution is regained as a special case.

Two examples of known isotropic solutions are used to demonstrate how Algorithm A

and Algorithm B work, and to obtain new anisotropic solutions for the Einstein and de

Sitter models. Anisotropic isot~ermal sphere models are generated given the corresponding

isotropic (f-L ex r-2
) solution of the Einstein field equations. Also, anisotropic interior

Schwarzschild sphere models are found given the corresponding isotropic (f-L ex constant)

solution of the field equations. The exact solutions and line elements are given in each

case for both Algorithm A and Algorithm B. Note that the solutions have a simple form

and are all expressible in terms of elementary functions. Plots for the anisotropic factor

S = J3(Pr - pJJ/2 (where Pr and Pl. are radial and tangential pressure respectively) are

generated and these point to physically viable models.
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Introduction

Schwarzschild (1916) constructed, within the framework of Einstein's general relativity, the

simplest model of astrophysical relevance. He gave an exact solution for Einstein equations

with the energy-momentum stress tensor for a perfect fluid, with a constant energy density

p" of a static spherically symmetric star surrounded by vacuum. The implication of these

rather stringent assumptions imposed on the matter properties is that the mass to radius

ratio of a stellar body should be bounded for it to remain stable and escape collapse to a

black hole. In addition there is a bound on the maximum surface redshift from the object

(Barraco et al 2003). These conditions also hold for isotropic stars with variable energy

densities under reasonable assumptions. The purpose of this thesis is to find anisotropic

relativistic models which are related to isotropic solutions which have a clear physical

interpretation. To this end we choose models for which p, ex: r- 2 (isotropic isothermal

spheres) and p, ex: constant (isotropic interior Schwarzschild spheres).

From as far back as 1933, close to two decades after the Schwarzschild interior solution

became known, a number of researchers raised the possibility that matter properties may

need to be relaxed to accommodate higher values than those imposed by isotropy on the

maximum value of the surface gravitational potential (Fiizfa et al 2002, Herrera & Santos

1997, Lemaitre 1933, Ivanov 2002). However, it was not until the pioneering work of Bowers

& Liang (1974), applying anisotropic fluid models to neutron stars, that some formalism
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for achieving this was laid out. Anisotropic pressure is a physical phenomenon where the

radial pressure Pr may be different from the tangential pressure P.l.., that is Pr - P.l.. =1= O.

Bowers & Liang (1974), Chan (1993), Chan et al (1993), Consenza et al (1981), Dev &

Gleiser (2002, 2003), Gokhroo & Mehra (1994), Guven & 6 Muchandha (1999), Herrera

et al (1979), Herrera & Santos (1995), Heintzmann & Hillebrandt (1975), Hillebrandt &

Steinmetz (1976), Maharaj & Maartens (1989), Mak & Harko (2002, 2003), Rago (1991)

(and in references therein) have examined how anisotropic matter affects the critical mass,

critical surface redshift and stability of highly compact bodies. Using various ansatze they

all established that in many cases the maximum equilibrium mass and surface redshift of

anisotropic matter increase without any upper bound, over the isotropic values. Certain

models were found to be more stable while others became less stable if the matter was

anisotropic (Stewart 1982).

Although much work has been done on various aspects of anisotropy in stellar bodies,

its existence, let alone direct application has been questioned over the years (Bowers &

Liang 1974, Gleiser 1988). This may be due to the fact that the existence of anisotropy

was initially suggested by theoretical work on more realistic stellar models (Canuto 1974,

1975, Ruderman 1972). Up to this point in time a consensus has not been fully reached on

what causes anisotropy or where it occurs naturally. There is however mounting evidence,

again substantiated theoretically, that allowing local anisotropy to exist in stellar models is

probably the best route to take in trying to understand the physics of highly compact bodies

with high densities. Ivanov (2002) argues that in many papers it is stressed that arbitrarily

large redshifts are obtained when tangential pressure grows to infinity with no or little

consideration of its physical conditions. The author deals with the problem in a manner

that leads to finite values for the maximum surface redshift when the tangential pressure

satisfies either the dominant or strong energy condition, and shows that the bounds can be
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relaxed but cannot be saturated. This concern is to some extent indirectly corroborated by

Bondi (1992, 1999) who shows that with all pressures positive and Q = (Pr + 2p.l..)/ J.1 ::; 1,

a constant Q (implying Pr i= P.l..) relatively gives the highest possible redshifts that remain

finite. In view of all these restrictions the question arises as to which of these conditions of

'physical reasonableness' is more acceptable. General relativity has so far given no unique

and universally accepted answer (Florides 1974).

Amidst all the uncertainties related to anisotropy, there is yet another school of thought

that also came to the fore in the early 1970's (Bodmer 1971), again theoretically motivated,

of what are called strange matter stars (Farhi & Jaffe 1984, Kettner et al 1995, Witten

1984). This comes about in an attempt to explain the ever increasing likelihood that there

are bound and stable stellar bodies, more dense than a neutron star, but which have not

collapsed to a black hole. Again pressure anisotropy may be the physical feature to consider

in the quest to understanding the role of strange matter in 'denser than the neutron star'

stellar bodies (Mak & Harko 2002, Sharma & Mukherjee 2002). In the extreme case that

the strange matter hypothesis (Witten 1984) stands, some neutron stars could actually

be strange stars and pulsars would be interpreted as rotating strange stars rather than

rotating neutron stars (Kettner et al 1995). So this concept of strange matter stars on the

one hand is seen to be an area where looking at systems with pressure anisotropy could be

applied, while on the other it compounds the issue of applications of systems with pressure

anisotropy by raising a lot more questions about the nature of matter than there were

already.

Herrera & Santos (1997) have compiled a very thorough overview of trends in the general

area of local anisotropy and possible areas in which the theory may be applicable. The

reference can be consulted for more on these topics. On the issue of physical reasonableness,

Delgaty & Lake (1998) and Finch & Skea (1998) completed a comprehensive physical
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analysis review on isotropic solutions. Although the reviews are on isotropic solutions,

they do put into some context the question of physical considerations when dealing with

Einstein solutions of stellar bodies, and this can be easily extended to anisotropic stars.

As strange as all these may sound, experience shows that extreme situations tend to occur

in the Universe where least expected (Bondi 1992). What appears as apparent theoretical

studies like those done in works referred to above, and the work presented in this thesis may

therefore have future applications. We hope the work presented here makes a contribution

to the quest of mathematically modelling, and perhaps to facilitate the understanding of

the physics of ultradense stellar bodies.
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Chapter 1

Spacetime Geometry and Field

Equations

1.1 Introduction

In this chapter we introduce the basic elements of differential geometry which are used

as building blocks for the Einstein field equations. Spacetime is taken to be a four­

dimensional, differentiable manifold endowed with a metric tensor field g of signature

(- + + +). Points in the four-dimensional manifold are labelled by the real coordinates

(xa ) = (xO, xl, x 2, x3) where xO = et is the timelike coordinate (with the speed of light

c = 1) and xl, x 2, x 3 are the spacelike coordinates. In §1.2 we introduce the concept of

curvature, the Riemann tensor, the Einstein tensor, and the general energy-momentum

tensor. The Einstein field equations are given. The spacetime manifold is then restricted

to be static and spherically symmetric on physical grounds. In §1.3 the Einstein field

equations for anisotropic matter are derived in detail for static spacetimes with spherical

geometry. This system is rewritten as a system of first order differential equations which is
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the form that is integrated in later chapters. In §1.4 the physical conditions for a realistic

gravitating relativistic sphere are briefly reviewed. A more detailed discussion on space-

time geometry and the field equations in general relativity is given in d'Inverno (1992),

Misner et al (1973) and Stephani (1982).

1.2 Spacetime Geometry

The line element defining the invariant infinitesimal separation between neighbouring

points is

(1.1)

An additional structure in spacetime, the metric connection r is used to characterise the

curvature of spacetime. The metric connection r, also known as the Christoffel symbol of

the second kind, is defined in terms of the metric tensor g and its derivatives by

r a 1 ad ( )
be = "29 9de,b + 9bd,e - 9be,d (1.2)

where a comma denotes partial differentiation. The metric tensor g in equations (1.1) and

(1.2) is a function of the spacetime coordinates x a .

The notion of curvature arises from the path dependence of parallel transport and is

directly related to the non-commutativity of the covariant derivative. The Riemann tensor

R, also called the curvature tensor, provides a measure of the curvature of spacetime. The

components of R are given by

(1.3)

On contracting the Riemann tensor (1.3) we obtain

(1.4)
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which is the Ricci tensor. A further contraction of the Riemann tensor, that is contraction

of Rab in (1.4), yields

(1.5)

The quantity R represents the trace of the Ricci tensor and is called the Ricci or curvature

scalar.

The components of the Einstein tensor G are given by

(1.6)

which is defined in terms of the Ricci tensor (1.4) and the Ricci scalar (1.5). The Einstein

tensor is constructed such that it has zero divergence:

Cab
'b = 0,

where the semicolon denotes covariant differentiation.

(1. 7)

In general relativity the matter distribution for neutral fluids is described by the energy-

momentum tensor T, the components of which are given by

(1.8)

where the energy density !-L, the isotropic pressure p, the energy flux vector qa(qaua = 0),

and the stress or anisotropic pressure tensor 1rab (1rabU a = 1raa = 0) are measured relative

to the four-velocity ua. The four-velocity u is timelike and unit so that uaua = -1. For

perfect fluids the stress tensor and energy flux vector vanish, and equation (1.8) becomes

(1.9)

Normally the perfect fluid form (1.9) is assumed to describe a relativistic gravitating system

in cosmology. However in this thesis we will take 1r
ab =1= 0 in equation (1.8) for describing

relativistic anisotropic stars. In many applications we require that
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so that there is a barotropic equation of state.

The energy-momentum tensor T is coupled to the Einstein tensor G via the Einstein field

equations which are given by

cab (1.10)

where we have chosen units in which the value of the gravitational coupling constant is

unity. These field equations were first formulated by Einstein to provide a description

of gravitating systems, and constitute a system of nonlinear partial differential equations

which determine the gravitational field g. From equations (1.7) and (1.10) it follows that

Tab;b = 0

which generates the conservation law for energy-momentum.

1.3 Static Spherically Symmetric Spacetimes

The generic line element for static spherically symmetric spacetimes is given by

(1.11)

(1.12)

where v(r) and A(r) are related to the gravitational potentials. The non-vanishing com-

ponents of the connection coefficients for the line element (1.12) are

rOOI lv' r l
oo Iv'e-)"ev

2 2

rln 1).' r l
22 - -re-)..

2

r l
33 - -re-).. sin2 0 r 2

12 1/r

r 2
33 - sin 0cos 0 r 3

13 1/r

r 3
23 cotO
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where primes denote differentiation with respect to the coordinate r. Then the non-

vanishing Ricci tensor components (1.4) become

1 ( v'A' (v')' 2V') (1.13a)Roo -A l/" + +-e e v -- -- --
2 2 2 r

Rll

v" >..' v' (V,)2 >..'
(1.13b)--+----+-

2 4 4 r

R22 1 + e-A+ rA'e-A- ~re-A (v' + >..' + ~) (1.13c)

R33 sin2 ()R22 (1.13d)

The Ricci tensor components (1.13) imply that the Ricci scalar (1.5) has the form

2 2, A 1 A(" " (,)2 4v' 4 )R = - + -A e- - -e- 2v - v A + v + - + -
r2 r 2 r r2 (1.14)

Then the components ofthe Einstein tensor (1.6), from equations (1.13) and (1.14), assume

the form

Goo 1 -Al/(l X A) (1.15a)- - r2e e - r - e

1
Gll - r2 (1 - eA + rv') (1.15b)

G22 1 2 -A (2" ,A' (')2 2v' 2>..' ) (1.15c)- -r e v - v + v + - - -
4 r r

G33 sin2 ()G22 (1.15d)

We study non-radiating relativistic spheres with anisotropic stress (qa = 0, 7fab =1= 0) and

write the energy-momentum tensor (1.8) in the form

(1.16)

In (1.16) we have introduced the projection tensor hab = uaub + gab which is measured

relative to the four-velocity ua. It is convenient to express the anisotropic stress in the

9



form

where the unit spacelike vector c is orthogonal to the fluid four-velocity u and 15(r)1 is

the magnitude of the stress tensor. This representation for nab is a consequence of the

symmetries of the static spherically symmetric spacetimes (Maharaj & Maartens 1986).

The quantity 5 is a useful device to introduce

Pr - p+ 25/Y'3

Pi- P - 5/Y'3

which are the radial and tangential pressures respectively. Note that for isotropic matter

5 = 0 and Pr = Pi- = p. The magnitude 5 provides a measure of anisotropy.

We assume that the fluid four-velocity is comoving. This assumption implies that

for the vectors u and c from the line element (1.12). Then the non-vanishing energy-

momentum tensor components (1.16) are

Too eV p, (1.17a)

Tll eApr (1.17b)

T22 - r 2pi- (1.17c)

T33 - sin2 BT22 (1.17d)

Pr

Pi-

From (1.15) and (1.17) we find that the Einstein field equations (1.10) become

-A
e ( , A)---;:2 1-Ar-e

e-A
--;:2 (1 - eA + rv')

e-
A(2 11 , \' (')2 2v' 2A')-v-v/\+v+---

4 r r

10
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for static spherically symmetric anisotropic matter.

The momentum conservation equation (1.11) becomes

I I 4( ) 0(/-l + Pr) V + 2Pr + - Pr - P.l =
r

(1.19)

for the spacetime (1.12). Note that (1.19) can also be obtained directly from the field

equations (1.18). We define the mass function as

(1.20)

following the treatment of Stephani (1982). With the help of (1.19) and (1.20) we can

replace the field equations (1.18) by the equivalent system

e->- 2m
(1.21a)1--

r

r(r - 2m)v' - prr3 + 2m (1.21b)

(/-l + Pr) V' + 2p~
4

(1.21c)-- (Pr - P.l)
r

The system (1.21) has the advantage of being a first order system of differential equations.

For certain applications it is easier to use (1.21) rather than the original second order

system (1.18), which is the approach that we follow in this thesis.

1.4 Physical Conditions

For physical viability, any stellar interior solution should match smoothly to the appropri-

ate exterior spacetime. The spacetime surrounding a static, spherically symmetric body is

given by

11
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known as the exterior Schwarzschild line element. In (1.22), M is the mass of the stellar

body measured by an observer at infinity which is given by M = m(R) from (1.20) where

R is the stellar radius. In addition, it is often assumed that realistic stellar models for

isotropic matter should satisfy:

(a) The energy density 1-£ and pressure p should be positive and finite throughout the

interior of the star. The radial pressure should vanish at the boundary r = R.

(b) The gradients 1-£' and p' should be negative for barotropic matter.

(c) The speed of sound should remain subluminal throughout the interior of the star,

that is 0 ::; dp/dl-£ ::; 1. This condition is necessary to preserve causality.

(d) The metric functions el/ and eA should be positive and non-singular throughout the

interior of the star.

(e) At the boundary the metric functions should match smoothly to the exterior

Schwarzschild solution:

2M
1-­

R

(f) The solutions should be stable with respect to radial perturbations.

It should be noted that not all relativistic stellar models satisfy the above conditions.

Extensive reviews on this aspect for isotropic stars can be found in papers by Delgaty &

Lake (1998) and Finch & Skea (1998). The physical analysis for anisotropic relativistic

stars is more complicated because Pr =I- Pl.., as one can see in the treatments of Bowers &

Liang (1974), Dev & Gleiser (2002, 2003) and Mak & Harko (2003). Note that it is possible

to study the behaviour of anisotropic matter in the presence of an electromagnetic field

12



which represents a charged anisotropic star (Sharma et al 2001). It is advisable to put

any exact solution through the test of the conditions listed above because they provide

qualitative features which represent many physical stars. Exact solutions to the Einstein

field equations which do not satisfy all of conditions (a)-(f) are still of interest because

they provide useful qualitative features which assist in the analysis of relativistic stars.
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Chapter 2

Exact Solutions: Maharaj &

Maartens Algorithm

2.1 Introduction

We seek explicit solutions to the Einstein field equations that describe anisotropic rela­

tivistic stars by utilising an algorithm that was initially proposed by Maharaj & Maartens

(1989). In their approach they expressed the field equations as the first order system of

differential equations (1.21). The energy density f.-L and the radial pressure Pr are chosen

on physical grounds. The remaining relevant quantities (eV
, eA, rn, P-l, S) then follow from

the field equations. In §2.2 we generate a new class of anisotropic exact solutions for a

particular form of the energy density using this approach. This class of solution contains

particular cases studied previously. All details of the calculations are given. Six addi­

tional classes are tabulated in §2.3 which were also obtained by following the Maharaj &

Maartens (1989) algorithm. The tables list the energy density functions, the radial pressure

functions, gravitational potentials and the matter variables. The physical features of the

14



various solutions found in this chapter are briefly considered in §2.4. The software package

Mathematica@ 5 (Wolfram 2003) was a useful tool in helping to verify the accuracy of the

solutions found.

2.2 A class of solutions

We demonstrate that the argument given in §2.1 does indeed lead to new solutions of the

Einstein field equations (1.21) for anisotropic matter which are physically reasonable. It

is convenient to make the following choice for the energy density

(2.1)

where j, k and f are constants. This form for J-L contains particular cases studied previously.

Then (1.20) yields the expression

(2.2)

for the mass function and the particular energy density (2.1). Equation (1.21a) gives

(2.3)

for the particular mass function (2.2), and the gravitational potential A has been deter-

mined.

With the help of (2.2), we can write (1.21b) as

Vi = (2.4a)

(2.4b)
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where we have used partial fractions to simplify the last term in (2.4a). On integration,

(2.4b) can be expressed as

v
j 1

11+ --.lnr + --.12 + InB
1-) 1-)

(2.5)

where In B is a constant of integration and we have set

for simplicity. To continue it is necessary to make a choice for the radial pressure Pr. A

number of choices are possible which are physically reasonable. We make the choice

c ( . k 2 £ 4) ( r
2

) n
Pr = 1 _ j 1 - ) - 3'r - Sr 1 - R2

When j = k = £ = 0, we obtain the radial pressure

(2.6)

which was the form postulated by Maharaj and Maartens (1989). The form (2.6) for Pr

is physically reasonable because Pr > 0 in the interval (0, R), Pr = C at the centre r = 0,

Pr = 0 at the boundary r = R, and Pr is continuous and well behaved in the interval [0, R].

The first integral 11 then simplifies to

h = ~J(1 -~) n rdr
1- j R2

CR2 ( r 2)n+1
- 2(1 - j) (n + 1) 1 - R2

To evaluate the second integral 12 we need to consider two cases: £ = 0 and £ =j:. O.

Case 1: £ = 0

With £ = 0 the integral 12 becomes

J ~r dr
1 - j - ~r2

-~ In { 1 - j - ~r2}

16



Case II: £ =f 0

When £ =f 0 we let

2 5k
u - r + 6£

q2
5k2

- 1- j + 36£

and obtain

We can collectively write for both Case 1 and Case II that

_1 In {I _J' + 5k
2

_ f (r 2 + 5k) 2 }
4 36e 5 6e

1( ) {I 2 5k }+ (Q)2 k tanh-1 (f)2 r +6i 2 ,for £ #- 0
e 12)1- '+ 5k

2 5 ) 1- '+,§,LJ ~ J ~

On substituting 11 in (2.5) we obtain

, {I CR2
( 2 ) n+

1
}v -l...., 2 r

e = Br1-Jexp 1-j-2(1-j)(n+1) 1- R2

(2.7)

(2.8)

for the gravitational potential eV where h = I 2(r) has the functional representation given

above in (2.7) for £ = 0 and £ =f O.

17



The last field equation (1.21c) then gives the tangential pressure pJ...:

pJ...

(2.9)

where we have used (2.1), (2.6) and (2.8). The anisotropic factor S(r) is given by

S =

(2.10)

which follows from (2.6) and (2.9).

Thus we have generated a class of solutions to the Einstein field equations (1.21). Collecting

18



the various results given above we can express the exact solution as

J1, L + k + £r2 (2.11a)
r2

Pr ~ (1 _ j _ ~r2 _ ~r4) (1 _ ~ ) n (2.11b)
1 - j 3 5 R2

( )( ')" '( k f r'C £4 r r 2 4
P.l.. P + j - -r 1 - - + - 1 - j - -r --r

r 2 (1 - j) 5 R2 2 3 5

{ C' ( k, f ')' ( r'rX 2(1 _ j)2 1 - j - 3r -"5r 1 - R2

2nC ( k, f')' ( r'r1
- (1 _ j)R2 1 - j - 3r -"5r 1 - R2

+2~2 (;2 + k + £r
2
) (j + ~r2 + ~r4) } (2.11c)

eV ~ {I, CR' ( r'fl} (2.11d)- Br1-j exp 1 _ j - 2(1 _ j)(n + 1) 1 - R2

e>'
1

(2.11e)1 . k 2 e 4- J - -r --r3 5

where 12 (given in (2.7)) contains the two cases, £ = 0 and £ =I O. The exact solution

(2.11) represents the interior of an anisotropic star corresponding to the energy density

J1, = j/r2+k+£r2. We believe that (2.11) is a new solution to the Einstein field equations.

This solution has to match the Schwarzschild exterior solution (1.22). The matching

condition eveR) = e->.(R) = 1 - 2M/ R yields

_-L ( 2M) {12 (R) }B = R I-j 1 - If exp - 1 _ j

which fixes the constant of integration B where 12 is as given in (2.7), M = m(R) and R

is the stellar radius.

We consider three special cases of the above new class of solution which lead to two

particular models that have been studied previously.
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Case a: j = 0

When j = 0, (2.11) becomes

P.l..

(2.12a)

(2.12b)

(2.12d)

(2.12e)

where 12 (given in (2.7)) contains the two cases, £ = 0 and £ =/:- O. The particular solution

(2.12) was found by Gokhroo & Mehra (1994). Their solution is regained when we set

k - Po

PoK---
a2

in (2.12) above. If we require /1' < 0 in (2.12a) then the constant £ < 0 for a monotonically

decreasing energy density as we approach the boundary r = R from the centre.
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Case b: j = i! = 0

When j = i! = 0, (2.11) becomes

k

Pr

P..L

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

The particular solution (2.13) was found by Maharaj & Maartens (1989). Their solution

is regained when we let

k
6M
R3

in (2.13) above. Note that J.L is constant in (2.13a) and we may interpret this solution as

an anisotropic generalisation of the incompressible Schwarzschild interior sphere; however

note that the anisotropy factor S(r) #- 0 everywhere except at the centre r = O.
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Case c: k = f = 0

When k = f = 0, (2.11) assumes the form

J (2.14a)p,
r2

Pr - C(l- ~22)n (2.14b)

e ( ')" '{ e' ( ,rPl. - Pr + 2 (~ _ j) 1 - ~2 + r2 2(1 _ j) 1 - ~2

2 e ( 'rI' }- ~2 1 - ~2 + 2r4(~ _ j) (2.14c)

{ eR' ( ')"+1}el/ ErR (1 - j)-2(/-j) exp - 1 - ~ (2.14d)
2(1 - j)(n + 1) R2

eA 1
(2.14e)- --

1-j

Since p, ex: r- 2 we may interpret (2.14) as an anisotropic generalisation of the isothermal

sphere. Even though (2.14) has a very simple form, we believe that it is a new anisotropic

solution to the Einstein field equations and has not been published before.

Note that Dev & Gleiser (2002), Herrera & Santos (1997) and Petri (2003) found solutions

to the anisotropic Einstein field equations involving p, ex: r- 2 . In each of these papers a

different additional assumption to that utilised in this chapter was used; in our treatment

we have chosen a form for the radial pressure Pr. In each of these works, a different set of

assumptions and a different integration technique was used. Therefore their solutions are

necessarily different from (2.14) for the corresponding energy density choice p, = jr- 2 . In

addition, the general solution obtained by Dev & Gleiser (2002) for the choice p, = jr- 2 + k

is given in terms of hypergeometric functions. Our corresponding solution has the advan-

tage of being expressed in terms of elementary functions (see Case 11 in Tables 2.3-2.4).

The physical features of the exact solution (2.11) are considered in §2.4.

22



2.3 Additional classes of solutions

In this section we find other solutions to the Einstein field equations (1.21) by following a

similar procedure to that outlined in §2.2. We do so by considering other possible forms

for the energy density function M. The following is a list of forms for energy densities that

have been studied:

I .i.
r 2

II .i. + kr 2

III .i. + k + fr 2
r 2

IV r12 (1 - a) - (p + 1)brP- 2

V 1 (a-l+br
2
.) + 2b

r 2 a+br2 (a+br 2 )2

VI 1.. (a-c+(b-d)r:) _ 2b(a+br
2
)-d(c+dr

2
)

r 2 a+br2 (a+br 2 )2

VII 1 (a-l+br2+cr4
.) 2 b+2cr2

r 2 a+br2 +cr4 - (a+br 2+cr4 )2

Table 2.1: Energy density functions

The forms of energy density Min Table 2.1 were chosen so that the Einstein field equations

could be fully integrated, and the gravitational potentials and matter variables written in

closed form. To complete the integration of the Einstein field equations (1.21) we also need

to make a choice for the radial pressure Pr. Clearly a variety of choices for Pr is possible;

our choice is made on physical grounds. The following is a list of forms for the radial

pressure:
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Pr (r)

I C (1 _ ~~.) n

II l~j (1 - j - ir2 ) (1 _ ~ ) n

III £ (1 - j - &r2 _ f r 4 ) (1 _ r~) n
1-) 3 5 R

IV ~(a+brP)(l- ~i)n

V aC ( r2r) n
a+br2 1 - R2

VI f!C (c+dr
2
r) (1 _ r2r) n

c a+br2 R2

( r) nVII aC 1 r2
a+br2+cr4 - R2

I Case I

Table 2.2: Radial pressure functions

The forms of Pr selected in Table 2.2 are all reducible to the expression

(which was first used by Maharaj & Maartens (1989)) with appropriate choices for the

parameters.

Table 2.3 contains the gravitational potentials eV and eA. Tables 2.4 and 2.5 list the corre-

sponding matter variables: the mass function rn, the energy density 11, the radial pressure

Pr and the tangential pressure P.1. We have not presented details of the calculations as the

method of integration is similar to that in §2.2. All the results were carefully checked and

we believe that they are correct. In addition the solutions were all verified with the help

of the software package Mathematica® 5 (Wolfram 2003).

We believe that the families of solutions for Cases I-VII presented in Tables 2.1-2.5 are

new solutions to the field equations, apart from particular cases, for relativistic anisotropic

matter. These solutions are amenable to a physical analysis because they have a simple

form, and in all cases the gravitational potentials and matter variables are given in terms

of elementary functions. Note that the solution discussed in §2.2 corresponds to Case III
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where 12 is given in (2.7). We have included Case III in the tables for completeness. The

parameters j, k, and I! in Cases I-Ill are constants. The quantities a, b, c, d and p are also

constants in Cases IV-VII.
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(1 _ j)-1 Br-d:J (1 - j)-2(L iJ exp 2 ( 2) n+lI - 2(1-~~n+1) 1 - ~2

( k 2)-1 Br~ { 2 ( 2) n+l}Il 1- j - 3r exp 2(1-~~n+1) 1 - ~2
(1-j-i r2 ) 2(lj)

( . k 2 f 4)-1 -L ( ) n+1III 1 - J - 3r - 5r Brl-j exp < .h.... _ CR2 1 _ .r.:.
1-j 2(1-j)(n+l) R2

I-a { ( ) n+1 }IV (a + brP)-1 Br-a- CR2 1 r 2
1 exp - - 2'

(a+brP ) ap 2a(n+1) R

p>O

V a+ br2 Bra- 1exp _ aCR2 (1 _ .r.:.) n+l br2 }
2(n+1) R2 + 2

VI a+br2 Br a~c (c + dr2 ) bC2~;d exp < aCR2 ( r 2 ) n+l
c+dr2 - 2c(n+l) 1 - R2 ~

( ) n+lVII a + br2 + cr4 Bra- 1exp aCR2 r 2 br2 cr4
- 2(n+1) 1 - R2 + 2 + T

Table 2.3: Gravitational potentials
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I:'V
-.:J

ICase I J1 I m I Pr (C = Pr (0), n 2: 1) I P~ I

.i. C (1- ~~) n . ( ) nI 2. r ---1S2.- r 2
r 2 2 Pr + 2(I-j) 1 - R2{ ( rn

( ) n-l '2}r 2 C 2 r 2 2nC r 2 )+2 2(I-j) 1 - R2 - Ji2 1 - R2 + 2r4 (I-j)

Il .i. + k ~ (j + ~r2) C (1 . k 2) ~ (1 r
2

)n r
2 (1 . k 2)-1-. -J --r Pr + 2(I-j) - R2 + 2 - J - '3 rr 2 1-) 3

X (1 _ ~~) n { ()~C2 . k 2 2 r 2
X 2(I-j)2 (1 - J - '3 r ) 1 - R2

( ) n-l2nC . k 2 2 r 2
- (l-j)R2 (1 - J - '3 r ) 1 - R2

+2;2 (~+ k) (j + ~r2)}

III .i. + k + fr 2 ~ (j + ~r2 + ~r4) C (1 . k 2 f. 4) C ( . f. 4) (1 r 2 ) n r
2 (1 . k 2 f. 4)-1-. - J - -r --r Pr + 2(I-j) J - '5 r - R2 + 2 - J - '3 r - '5 rr 2 1-) 3 5

X (1 _ ~~) n { ( rnc 2 . k 2 f. 4 2 r 2
X 2(I-j? (1 - J - '3 r - '5 r ) 1 - R2

( ) n-l2nC . k 2 f. 4 2 r 2
- (l-j)R2 (1 - J - '3 r - '5 r ) 1 - R2

+_1 (.i. + k + fr 2) (j + k r 2 + {r4)}
2r2 r 2 3 5

Table 2.4: Matter variables



t...:l
00

ICase I It I m IPr (C = Pr (0), n ~ 1) I P l- I
IV r12 (1-a) ~ (1 - a - brP) ~ (a + brP) Pr + ~ (1;a + b (~ - ~) r P) (1 - ~~) n + r; (a + brpr

1

-(p + 1)brP- 2
p>O x (1- ~~) n X { ~~ (a + brP)2 (1 _ ~~) 2n _ ~~~ (a + brP)2 (1 _ ~~) n-l

+2;4 (1 - a - brP) (1 - a - b(p + 1)rP)}

V .l... ( a-l+br
2

) ~ (1 - a+~2)
aC r { a-l+br2 2b aC ( r2) n}

r 2 a+br2 a+br2 Pr + 4 r2(a+br2) + (a+br2)2 + a+br2 1- R:I

2b
X (1- ~~) n x{aCr(1- ~~)n +~(a-1+br2)}+ (a+br2)2

( :) n (:.)n-labCr2 r 2 aCnr2 r 2
- (a+br2)2 1- R2 - R2(a+br2) 1- R2

.l... ( a-e+(b-d)r2 )
{ ( ) ( ) n}VI !. (1 _ e+dr

2
) Q,C ( e+dr

2
) r a-e+(b-d)r2 ad-be aC e+dr2 r 2

r 2 a+br2 2 a+br2 e a+br2 Pr + 4 r 2(a+br2) - (a+br2)2 + C a+br2 1- R2

_ 2 b(a+br2)-d(e+dr2)
X (1- ~~) n X { aCr (1 _ ..c.. ) n + a-e+(b-d)r

2
}

(a+br2)2 e R2 r(e+dr2)

+aCr2 ad-be (1 _ r2.) n _ anCr2 (c+dr2.) (1 _ r2.) n-l
e (a+br2)2 R2 eR2 a+br2 R2

VII .l... ( a-l+br
2
+cr

4
) r (1 1) aC r { a-l+br2+er4 b+2cr2 aC ( r2 ) n}

r 2 a+br2+cr4 2 - a+br2+cr4 a+br2+cr4 Pr + 4 r2(a+br2+er4) + 2(a+br2+cr4) + a+br2+cr4 1- R2

2 b+2cr2
X (1 _ ~~) n X { aCr (1 - ~~) n + ~(a - 1+ br

2 + cr
4

) }- (a+br2+cr4)2

(: .) n (:.)n-l2 b+2cr2 r 2 aCnr2 r 2
-aCr (a+br 2+cr4)2 1- R2 - R2(a+br2+cr4) 1- R2

Table 2.5: Matter variables



2.4 Physical features

The gravitational potentials eA are finite for all Cases I-VII at the centre r = 0 and at the

boundary r = R. The functions eA are well behaved in the interior of the relativistic star.

The gravitational potentials eV for all Cases I-VII are continuous and well behaved in the

interior and finite at the boundary of the star r = R. From Table 2.3 we observe that

there is a singularity at the centre r = 0 in general for all Cases I-VII in the potential eV
•

The singularity in eV is removable for specific choices of parameter values. This singularity

is eliminated by setting

• j = 0 in Cases I, II and III

• a = 1 in Cases IV, V and VII

• a = c in Case VI

It should be pointed out that in Case I, we are left with a point mass if we set j = O.

This form of f-£ is usually used in domains where it is not possible to use a single equation

of state; particularly where the origin is excluded, like a body with a constant density

core and matter density distribution around the core going like r-2 (Dev & Gleiser 2002,

Sharma & Mukherjee 2002).

The radial pressure Pr is continuous and well behaved in the interior of the star. Also Pr > 0

in the interval (0, R), regular at the centre (Pr(r = 0) = C), and vanishes at the boundary

(Pr(r = R) = 0) in all considered cases. The tangential pressure Pi- in the studied cases has

a singularity at the centre, but is otherwise well behaved throughout the interior of the star

and finite at the boundary. The singularity in pi-may be eliminated by suitable particular

choices for parameter values. In general the tangential pressure is not zero at the boundary

of the star (pi-(r = R) =I 0) which is different from the radial pressure (Pr(r = R) = 0). It
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is also important to observe that the magnitude of the stress tensor

is a nonzero function in general for all Cases I-VII. Hence this class of solutions is generally

anisotropic and does not have an isotropic limit (the isotropic limit results when we set

particular values for the constants in our ansatz). It is not possible to eliminate Sand

obtain an isotropic counterpart. This means that the model remains anisotropic. An

analogous situation rises in Einstein-Maxwell solutions modelling charged relativistic stars

in which the electric field is always present. An example of such a charged star is given by

Hansraj (1999).

The energy density f-L for all cases contains the limiting case

which arises in isothermal spheres for isotropic matter for both Newtonian and relativistic

stars (Saslaw et al 1996). The energy densities studied here are physically reasonable and

describe important phenomena. For example, Misner & Zapolsky (1964) propose that Case

I models the physical configuration of a relativistic Fermi gas for some particular value of

the parameter j. Another example is due to Dev & Gleiser (2002) who suggest that for

some particular value of j and k =J. 0 the energy density function in Case II describes a

relativistic Fermi gas core immersed in a constant density background.

One of the original reasons for studying anisotropic matter was to generate models that

permit redshifts higher than the critical redshift Zc of isotropic matter (Bowers & Liang

1974). Observational results indicate that certain isolated objects have redshifts higher

than zc. The surface redshift is given by

(
2M)_1

z I-If 2_ 1
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The critical redshift Zc = 2 is the limiting value for the perfect fluid spheres, and is attained

when 2M/R = 8/9. For the range of values 8/9 < 2M/R < 1 the redshift is greater than

Zc; this phenomenon may be explained by allowing for anisotropy. For values of 2M/ R close

to unity, the surface redshift becomes infinitely large. The feasibility of higher redshifts

for anisotropic matter, in both Newtonian and relativistic models, was firmly established

by Bondi (1992). It is interesting to note that Bondi (1992), Binney & Tremaine (1987),

Cuddeford (1991) and Michie (1963) emphasise the significance of anisotropies in stellar

clusters and galaxies, in addition to individual stars.

The solutions presented in this chapter have the feature that Pr =I Pi. in general so that the

anisotropy factor S =I 0 and the solutions do not have an isotropic limit as indicated earlier.

This means that we cannot obtain isotropic stars from the anisotropic stars presented

here, for example we cannot regain the constant density interior Schwarzschild solution.

This may be viewed as an undesirable feature because we would expect isolated matter to

eventually isotropise. In subsequent chapters we present algorithms that generate solutions

to the Einstein field equations for anisotropic matter that do have an isotropic limit.

31



Chapter 3

Algorithms to generate Anisotropic

from Isotropic Solutions

3.1 Introduction

In this chapter we follow a different approach from that presented in Chapter 2 to solve

the field equations. Two new algorithms which generate new anisotropic solutions for

the Einstein field equations from known isotropic solutions are established. The original

seed isotropic solution is regained when the anisotropic term vanishes (this is not possible

in general for the solutions found in Chapter 2). The first algorithm, Algorithm A, is

presented in §3.2. In this case we set

v = Vo + ,B(r)

for the gravitational potential v, Vo is given, and ,B(r) is the anisotropy inducing term.

The Einstein field equations are formally integrated, and we generate a representation for

the exact solution. The second algorithm, Algorithm B, is presented in §3.3. In this case
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we set

A Ao + x(r)

m - mo+y(r)

for the gravitational potential A and the mass function m, Ao and mo are given, and x(r)

and y(r) are the anisotropy inducing terms. We show that the Einstein field equations can

be formally integrated, and we present a representation for the exact solution. In §3.4 we

illustrate Algorithms A and B with the help of two known isotropic solutions, namely the

Einstein and de Sitter models.

3.2 Algorithm A

We consider the Einstein field equations with isotropic pressure distribution so that

Pr = Pl.. = p. Then we can write the field equations in the form

e->' 2m
(3.1a)- 1--

r

r(r - 2m)v' pr3 + 2m (3.1b)

(2m' )~ + p v' + 2p' - 0 (3.1c)

from (1.20) and (1.21). Suppose an explicit solution to (3.1) is known where

v Vo (3.2a)

m

p - Po
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are given. Then the equations in (3.1) are satisfied and we can write

e->'o 1- 2mo (3.3a)
r

r(r - 2mo)vb por3 + 2mo (3.3b)

(2m~ )' , 0 (3.3c)7 + Po Vo+ 2po

The equations in (3.3) correspond to an isotropic relativistic sphere.

The Einstein field equations (1.21) with anisotropic matter can be written in the form

e->'
2m

(3.4a)1--
r

r(r - 2m)v' pr3 + ar3 + 2m (3.4b)

(2m' ) 6
--;;:2 + P+ a v' + 2p' + 2a' - --a (3.4c)

r

where we have used (1.20). Also we have set

Pr - p + a

Pl..
1

P- -a
2

for the radial and tangential pressures respectively. Observe that

2
a = -8

V3

which connects the function a = a(r) to the anisotropic factor 8 = 8(r) defined in §1.3.
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We seek a solution to the system (3.4). To this end we propose the possible solution

v - Vo + /3(r) (3.5a)

A Ao (3.5b)

m mo (3.5c)

Pr - Po + a(r) (3.5d)

1
(3.5e)P.l.. po--a(r)

2

where a and /3 are arbitrary functions. With the assumed solution (3.5), the system (3.4)

becomes

eAO - 1- 2mo (3.6a)
r

r(r - 2mo)vb + r(r - 2mo)/3' por3 + ar3 + 2mo (3.6b)

(2m' ) 6
r20 + Po + a (vb + /3') + 2p~ + 2a' - --a (3.6c)

r

The systems (3.3) and (3.6) imply that

(r - 2mo)/3'

(
2m' )
r 20 + Po /3' + a (vb + /3') + 2a'

6
--a

r

(3.7a)

(3.7b)

We need to integrate (3.7) to obtain expressions for a and /3. Two cases arise: a = 0 and

a =1= o. If a = 0 then (3.7) has the solution

a-a (3.8a)

/3 constant
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Equations (3.8) correspond to the isotropic case. Thus Algorithm A regains the isotropic

solution in the relevant limit. If a: =1= 0 then we can write (3.7b) as

(2 I ) 2 I 6mo r I I a:
-2 + Po + Vo+ {3 + 2- = --
r r - 2mo a: r

with the help of (3.7a). This differential equation can be integrated to give

10: + Vo + {3 + 2 In a: = - 6ln r + 2 In k

where 2ln k is a constant of integration, k =1= 0, and we have set

J(2ml ) r 2

10: = ~ + Po dr
r r - 2mo

The solution (3.9) above can be rewritten as

(3.9)

(3.10)

so that a: is the subject of the formula. From (3.7a) and (3.10) we generate the nonlinear

differential equation in {3:

This first order differential equation is integrable and we generate the result

where .e is a constant of integration and we have set

I Jexp {- ~ (Io: + vo) }
~ = dr

r (r - 2mo)

in (3.11). Equations (3.10) and (3.11) correspond to anisotropic matter.
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Thus if given an isotropic solution (3.2) we can generate a new anisotropic solution (3.5)

to the Einstein field equations where

a - ~ exp { - ~ (IQ + Vo + j3) }

(3 2 In { ~ I {3 + f }

The integrals IQ and I{3 in (3.12) are given by

IQ - J(2m~ +po) r
2

dr
r2 r - 2mo

Jexp {-! (IQ + vo)} dr
I{3 =

r (r - 2mo)

(3.12a)

(3.12b)

The integrations in IQ and I{3 can be performed explicitly as Vo, Po and mo are specified in

the isotropic solution functions in (3.2). Note that (3.12) applies to both cases a = 0 and

a =1= O. If a = 0 we can set k = 0 and regain the isotropic result (3.8). When a =1= 0 then

k =1= 0 and we regain the anisotropic equations (3.10) and (3.11).

..,
1 2" ~)

3.3 Algorithm B

The Einstein field equations for isotropic matter are

e-J. 2m
(3.13a)- 1--

r

r(r - 2m)v' pr3 + 2m (3.13b)

(2m' )--:;:2 + P v' + 2p' 0 (3.13c)
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as given in §3.2. Again we assume the explicit solution

v

m

(3.14a)

(3.14b)

(3.14c)

P Po (3.14d)

to (3.13). The equations in (3.13) are satisfied and we can write

e->'o 2mo
(3.15a)1--

r

r(r - 2mo)v~ - por3 + 2mo (3.15b)

(2m~ ) I I 0 (3.15c)--:;:2 + Po Vo+ 2po -

which, as indicated earlier, corresponds to the isotropic sphere.

We now write the Einstein field equations (1.21) with anisotropic matter in the form

r(r - 2m)v'

(
2m

l

)--:;:2 + P+ ex Vi + 2p' + 2ex'

where we have used (1.20) and we set

Pr - Po + ex

1- 2m
r

6
--ex

r

(3.16a)

(3.16b)

(3.16c)

Pl..
1

Po --ex
2
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which suggests

2
a - yi3S(r)

as in the previous section.

We seek a solution to (3.16). To this end we propose the solution

v Vo (3.17a)

A - Ao+x(r) (3.17b)

m - mo + y(r) (3.17c)

Pr - Po + a(r) (3.17d)

1
(3.17e)P.l.. - Po - -a(r)

2

where a, x and y are arbitrary functions. With the assumed solution (3.17) the system

(3.16) becomes

e-(AO+X) 1-
2mo + 2y

(3.18a)
r

r(r - 2mo - 2y)v~ - por3 + ar3 + 2mo + 2y (3.18b)

(2m~ + 2y' )'" 6
(3.18c)r2 + Po + a Vo+ 2po + 2a - --a

r

The systems (3.15) and (3.18) lead to

x

y

(
2Y' )-;:2 + a v~ + 2a'
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ar3

2(1 + rvb)
6a
r

(3.19a)

(3.19b)

(3.19c)



We need to integrate (3.19c) to find the function a. The remaining functions x and y are

defined in terms of a. Two cases arise: a = 0 and a #- O. If a = 0 then (3.19) has the

solution

a - 0 (3.20a)

x o (3.20b)

y - 0 (3.20c)

Equations (3.20) correspond to the isotropic case. Thus Algorithm B also regains the

isotropic solution in the appropriate limit. If a#-O then we eliminate y to get

2//' {a'r3 3ar2 ar3 v' + rv" }_0 _ _ + _ 0 0 + av' + 2a' _
r2 2(1 + rvb) 2(1 + rvb) 2 (1 + rvb)2 0

from (3.19b) and (3.19c). This differential equation can be written as

a' v' { v' + r //" } (6) (1 + rv' )__ 0 3-ro 0 --v'+- 0
a 2 + rvb 1 + rvb - 0 r 2 + rvb

after some simplification. On integration (3.21) leads to

lna - la + Ink

where In k is a constant of integration, k #- 0, and we have set

6a
r

(3.21)

(3.22)

J = J{ Vo (3 + 2rvo- r
2
vo) _ (1/ +~) (1 + rvo)} dr

a 2 + rvb 1 + rvb 0 r 2 + rvb

We can write (3.22) in the compact form

Equations (3.19a), (3.19b) and (3.23) correspond to anisotropic matter.
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Thus if given a known isotropic solution (3.14) we can generate a new anisotropic solution

(3.17) where

a ke Joc (3.24a)

1 { 2y AO} (3.24b)x - - n 1 - --:;:e

ar3

(3.24c)y -
2(1 + rvb)

and the integral la is given by

la = J{ vb (3 + 2rvb - r2v~) _ (VI +~) (1 + rVb)} dr
2 + rvb 1 + rvb 0 r 2 + rvb

The integration in la can be explicitly performed as Vo is specified in the isotropic solution

(3.14). Note that (3.24) applies to both cases a = 0 and a # O. If a = 0 we can set

k = 0 and regain the isotropic result (3.20). When a # 0 then k # 0 and we regain the

anisotropic equations (3.19a), (3.19b) and (3.23).

3.4 Simple Examples

In this section we show how isotropic solutions lead to anisotropic solutions by utilising

Algorithms A and B. We choose the simple Einstein and de Sitter models as illustrations.

In later chapters we consider other examples which have greater physical significance for

the description of stars.
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Example 1 Einstein model

The line element for the Einstein model is

(3.25)

The relevant isotropic functions for (3.25) are

VD - 2lnc (3.26a)

AD -In{l- ~22} (3.26b)

r 3

(3.26c)mo -
2R2

1
(3.26d)Po - R2

Algorithm A

The integrals IQ and I{3 for Algorithm A respectively become

for the functions (3.26). Then (3.12) gives

Q =

(3

(3.27)

(3.28)
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Hence the new anisotropic solution to the Einstein field equations is

IJ - 21nC+2ln{e-~Jl- r'} (3.29a)
2cr R2

A -In{l- ~2} (3.29b)

r 3
(3.29c)m

2R2

Pr - -~+~Jl- r' (e-~Jl- r'r' (3.29d)
R2 cr3 R2 2cr R2

Pl.. -~-~n(e-~n-l (3.2ge)
R2 2cr3 R2 2cr R2

with the corresponding line element

ds2 = _c2 (e _~J1- r
2
)2 dt2 + (1- ~)-l dr2

2cr R2 R2

+r2 (d02 + sin2 Odq}) (3.30)

The isotropic Einstein model (3.25) generates the anisotropic Einstein model (3.30), where

(3.29) is a new exact solution to the anisotropic field equations, by Algorithm A.

Algorithm B

The integral la for Algorithm B is

la - -3J~

- -3lnr

for the function (3.26a). Then (3.24) gives

a -

x

y

k

r 3

-In{l+ k }
r (1 - r 2/ R2)

k
2
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Hence the new anisotropic solution to the field equations is

11 2lnc (3.31a)

A -In { 1 - ~22 }- In { 1 + r (1 _ ~2/R2) } (3.31b)

r3 k
(3.31c)m - ---

2R2 2
1 k

(3.31d)Pr - --+-R2 r3

1 k
(3.31e)Pl.. - ----

R2 2r3

with the line element

(3.32)

The isotropic Einstein model (3.25) gives the anisotropic Einstein model (3.32) where

(3.31) is the new exact solution for Algorithm B.

Example 2 : de Sitter model

The line element for the de Sitter model is

ds' = - (1 - ~:) dt' + (1 - ~,) -1 dr' + r' (dO' + sin' Odq,') (3.33)

The relevant isotropic functions for (3.33) are

110 In{l- ~22}

Ao - -In{l- ~:}
r3

mo - 2R2
3

Po R2

(3.34a)

(3.34b)

(3.34c)

(3.34d)
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Algorithm A

The integrals 10: and If3 for Algorithm A become

o

J 1 3 dr
r2(1 - r2/ R2)2

- )1- ~: (R'(1 :r'fR') - n
for the functions (3.34). Then (3.12) gives

k ~( k ~( r 1))-1
Q = r3 V1 - Ji2 f + 2V 1 - Ji2 R2(1 - r2/ R2) - ~

(3 = 21n {f+ ~)1- ~: (R'(1 :r'fR') - ~) }

Hence the new anisotropic solution to the field equations is

v - In{1- ~}+2In{e+~)1- ~: (R'(1:r'fR') -~)}

A -In {1- ~:}
r 3

m

Pl..

(3.35a)

(3.35b)

(3.35c)

with the corresponding line element

ds' ~ - (1 - ~:) (e +~)1- ~: (R'(1: r'fR') - ~))'dt'

+(1 - ~:) -1 dr' +r' (dO' +sin' Od4>') (3.36)

The isotropic de Sitter model (3.33) generates the anisotropic de Sitter model (3.36) where

(3.35) is a new exact solution to the field equations by Algorithm A.
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Algorithm B

The integral Jo: for Algorithm B is

for the function (3.34a). Then (3.24) gives

a =

x

y =

Hence the new anisotropic solution to field equations is

v In {1- ~: } (3.37a)

.\ { r'} { kR'} (3.37b)- In 1 - -2 - In 1 + 7

R r (R2 - 2r2)4

r3 (R' - r' ) (3.37c)m -+k
2R2 2 (2r2 - R2)t

3 (3r' - R' ) (3.37d)Pr - --+k
R2 r3 (2r2 _ R2) t

3 k ( 3r' - R' ) (3.37e)Pl..
R2 2 r3 (2r2 _ R2)t

with the line element

(3.38)
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The isotropic de Sitter model (3.33) gives the anisotropic de Sitter model (3.38) where

(3.37) is the new exact solution by Algorithm B.
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Chapter 4

Anisotropic Isothermal Sphere

4.1 Introduction

Isothermal structures feature in many physical phenomena in general relativity and astro­

physics. In this chapter we generate two new exact solutions to the Einstein field equations

for anisotropic isothermal spheres utilising Algorithm A and Algorithm B established in

Chapter 3. The isotropic isothermal model is presented in §4.2. The isotropic isothermal

model is characterised by a linear barotropic equation of state and the energy density

f.t ex: r-2
. Algorithm A is used to generate a new solution to the anisotropic Einstein

field equations in §4.3. Another new solution is obtained with the help of Algorithm B

in §4.4 for anisotropic matter. The anisotropic factor S(r) for each of the new solutions

is plotted and the physical implications of their behaviour are briefly discussed. Both

anisotropic solutions found reduce to the conventional isotropic isothermal sphere in the

appropriate limit. The solutions are given in closed form and are expressed in terms of

simple elementary functions.
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4.2 Isotropic Model

The line element for the isothermal model (Saslaw et al 1996) is

where c is a constant. The relevant isotropic functions for (4.1) are

4c
(4.2a)I/o - --lnr

l+c

Ao In{l+~} (4.2b)
l+c

2cr
(4.2c)mo -

4c + (1 + C)2

1 4c2

(4.2d)Po -
r2 4c + (1 + C)2

The energy density function, that generates the mass function (4.2c), has the form

4c 1
J-Lo = 4c+(1+c)2 r2

From (4.3) and (4.2d) we observe that

Po = CJ-Lo

(4.3)

(4.4)

which is a linear barotropic equation of state. Isothermal spheres with J-L ex: r-2 and the

equation of state (4.4) arise in both Newtonian and relativistic stars. They have a long

history in astrophysics as an equilibrium approximation to more complicated systems which

are close to a dynamically relaxed state (Saslaw 1985).
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4.3 Algorithm A

The integrals IQ: and I{3 for Algorithm A respectively become

~JdrIQ:
l+e r

4e
--lnr
l+e

I{3 - J(1 + 4e ) r- 21
-;'6ee dr

(1 + e)2
4e + (1 + e)2 _lH£

_ - r l+e

(1 + e)(1 + 5e)

for the functions (4.2). Then (3.12) gives

k( O k 4e+(I+e)2 _lH£)-1 _3+7e
{. - - r l+e r l+e

2 (1 + e)(1 + 5e)

j3 _ 2 In {f _~ 4e + (1 + e)2 r - \-;'5ee }

2 (1 + c) (1 + 5e)

Hence the new anisotropic solution to the field equations is

(4.5)

(4.6)

4e 1 21 { 0 k 4e + (1 + c) 2
_ H5e }

V - -- n r + n {. - - r He
1+ e 2 (1 + c) (1 + 5e)

,\ - In {I + 4e 2}
(1 + c)

2er
m

Pr

Pl.. =

4e + (1 + e)2

1 4e2 k (f k 4e + (1 + e)2 _lH£) -1 _3+7e

r2 4e + (1 + c) 2 + - "2 (1 + c) (1 + 5e) r He r He

1 4e2 k (f k 4e + (1 + e)2 _l±fuo) -1 _3+7e

r24e + (1 + e)2 - "2 - "2 (1 + e)(1 + 5e) r l+e r l+e

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

with the corresponding line element

4e ( k 4e + (1 + c) 2 lH£) 2 ( 4e)
-p+e f - - r- l+e dt2 + 1 + dr2

2 (1 + c) (1 + 5e) (1 + c) 2

+r2 (de2 + sin2 edej})

for the equations (4.7).
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The isotropic isothermal sphere model (4.1) generates the anisotropic isothermal sphere

model (4.8). With the parameter values

k = 0

e = 1

we regain the conventional isothermal sphere. The degree of anisotropy is

k r;:; ( k 4c + (1 + C)2 _l.il£) -1 _3±7e
S = - v 3 e- - r l±e r He

2 2 (1 + c) (1 + 5c)
(4.9)

A graph of the anisotropy factor (4.9) was plotted with the help of Mathematica@ 5

(Wolfram 2003). This is given in Figure 4.1 for the particular values of the parameters

shown. The anisotropy factor S is plotted against the radial distance on the interval

o< r :S 1. It is worth noting from this graph that the anisotropy has the feature that it is

a monotonically decreasing function as r approaches the boundary subject to a particular

choice of parameters. There is a singularity at r = 0 which S shares with the other

dynamical and metric functions. However there are other choices of parameters that could

be made such that S is a monotonically increasing function if the physics of the problem

demanded such behaviour. We have provided an illustration of such a profile in Figure

4.2 for a particular choice of parameters. The profile for S in Figure 4.2 could actually

turn out to be physically more relevant for boson stars as pointed out by Dev & Gleiser

(2002); however note that their analysis was performed for a constant energy density. The

monotonically increasing profile will also fit in well with the physical constraint of Dev &

Gleiser (2002) that Pr and Pl.. should coincide at the centre of the stellar body, and that Pl..

is not subjected to any constraint at the boundary. The simple behaviour of S reflected in

these two graphs indicates that a full physical investigation of this solution is possible; we

will perform this investigation in future work.
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Figure 4.1: S(r) for anisotropic isothermal sphere (Alg. A); c = -1.1, k = 1, and f = 0.2
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Figure 4.2: S(r) for anisotropic isothermal sphere (Alg. A); c = -0.6, k = 1, and f = 1
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y =

4.4 Algorithm B

The integral la for Algorithm B is

_J(3 + 14c + 19C
2

) dr
1 + 4c + 3c2 r

3 + 14c + 19c2 I
------::-- n r

1 + 4c + 3c2

for the function (4.2a). Then (3.24) gives

3t14ct19c2

a - kr - lt4ct3c2

{
4c + (1 + C)2 _lt6ct13C

2
}

X - - In 1 + k r lt4ct3c2

(1 + c)(l + 5c)

k ( 1+ c ) 2ct10c
2

- - r 1t4ct3c2

2 1 + 5c

Hence the new anisotropic solution to the field equations is

v

m -

Pr

Pl. =

4c
--lnr
l+c

{
(I + c?} { 4c + (1 + c? _lt6c t 13C

2
}In - In 1 + k r 1t4ct3c2

4 + (1 + c) 2 (1 + c) (1 + 5c)

2cr k ( 1 + c) _2ct10c
2

----- - - r 1t4ct3c2

4c + (1 + C)2 2 1 + 5c

1 ( 4c2
) 3t14ct19c

2

- + kr lt4ct3c2

r2 4c + (1 + C)2

1 ( 4c2
) k _ 3t14ct19c

2

- - -r 1t4ct3c2

r2 4c + (1 + C)2 2

(4.lOa)

(4.10b)

(4.10c)

(4.lOd)

(4.lOe)

with the line element

( ) ( ( )2 )-14c 4c 4c + 1 + C _lt6c+13c2

-r ltc dt2 + 1 + 1 + k r 1t4ct3c2 dr2

(1 + C)2 (1 + c)(l + 5c)

+r2 (d02+ sin2Od</>2) (4.11)

for the equations (4.10).

The isotropic isothermal sphere model (4.1) gives the anisotropic isothermal model (4.11).

With the parameter value

k 0
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we regain the conventional isothermal sphere. The degree of anisotropy is

k ;;:; _ 3±14c±19c2

S = - v 3r 1±4c±3c2

2
(4.12)

Again a graph of the anisotropy factor (4.12) was plotted with the help of Mathematica® 5

(Wolfram 2003). This plot is shown in Figure 4.3 for the chosen particular values of the

parameters. The anisotropy factor S plotted against the radial distance on the interval

o< r :S 1 (note that Figures 4.1 and 4.3 yield similar graphs; this is not surprising as they

both contain the isotropic isothermal sphere). We again note that subject to the choice

of the parameters, the anisotropy is a monotonically decreasing function as r approaches

the boundary. A different selection of parameters produces a monotonically increasing

function as given in Figure 4.4. The profile in Figure 4.4 of the anisotropy factor S is

consistent with the behaviour of boson stars as illustrated by Dev & Gleiser (2002) for a

constant energy density. A complete analysis of the physical features of this model will be

pursued in future work.
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Figure 4.3: S(r) for anisotropic isothermal sphere (Alg. B); c = 1 and k = 0.01
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Figure 4.4: S(r) for anisotropic isothermal sphere (Alg. B); c = -0.5 and k = 2
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Chapter 5

Anisotropic Schwarzschild Sphere

5.1 Introduction

With the isotropic Schwarzschild sphere being one of the widely studied models with as­

trophysical relevance, often used as a benchmark for analytical models, we felt it would be

justified to apply the new algorithms, Algorithm A and Algorithm B (presented in Chap­

ter 3), to the interior Schwarzschild sphere solution. In §5.2 the isotropic Schwarzschild

sphere solution is given. The Schwarzschild interior solution is important for the descrip­

tion of dense, nearly uniform stars. Algorithm A is used to obtain a new anisotropic

Schwarzschild interior solution in §5.3. In §5.4 another new solution is generated with the

help of Algorithm B for anisotropic matter. Plots of the respective anisotropy factors S(r)

are shown in each case and physical implications of their behaviour are briefly discussed.

Both anisotropic solutions found reduce to the isotropic interior Schwarzschild sphere in

the relevant limit. Note that the solutions are presented in closed form and are expressed

in terms of simple elementary functions.
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5.2 Isotropic Model

The line element for the interior Schwarzschild model is

where A and B are constants. The relevant isotropic functions for (5.1) are

lIO 21n{A- BV1-~:} (5.2a)

Ao - -in {1- ~: } (5.2b)

r 3
(5.2c)mo 2R2

Po
_~C-3BJ1-~~) (5.2d)-

R2 A - BJ1- ~~

The energy density function, that generates the mass function (5.2c), has the form

(5.3)

From (5.3) we observe that

/-lo = constant (5.4)

which essentially replaces the equation of state (4.4) of Chapter 4. The interior of dense

neutron stars and superdense relativistic stars are of near uniform density (Maharaj &

Leach 1996, Rhoades & Ruffini 1974). Consequently the assumption (5.4) of uniform

energy density is often made in the modelling process (Bowers & Liang 1974, Dev &

Gleiser 2002, Maharaj & Maartens 1989).
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5.3 Algorithm A

The integral IQ for Algorithm A becomes

which was easily integrated. However the integral I{3 takes the form

We need to investigate two cases: A i:- B and A = B.

Case I: Ai:- B

To carry out the integration in (5.5) for A i:- B we make the substitution

. iJ r
SIll = R

so that I {3 becomes

(5.5)

~J 1 diJ
R sin2 iJ(A - B cos iJ)2

1 (6AB
2 h_l{(A+B)tan~}

R (A2 - B2)2 VB2 _ A2 tan VB2 _ A2

(
2 2 B3 sin iJ )- 2AB + A cos iJ + B cos iJ) csc iJ - -:-----

A - BcosiJ
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in terms of {). In terms of the original radial coordinate r we have

I{3 =

Then (3.12) gives

a -

j3

for the anisotropic functions a and j3.
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Hence the new anisotropic solution, with A #- B, to the field equations is

v ~ 21n{A-B)I-:'}
+2In{ k (6AB

2
tanh_1{(A+B)tan{!sin-1fl}}

2R (A2 - B2)2 JB2 - A2 JB2 - A2

-~ (2AB + (A' + B') )1- ~:)

-B~r (A-BF~r) +f}
A - - In { 1 - ~22 }

r 3
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with the corresponding line element

for the equations (5.6).

With the parameter values

k 0

e 1

we regain the original interior Schwarzschild sphere. The degree of anisotropy is

(5.7)

s

The graph of the anisotropy factor (5.8) was plotted with the assistance of Mathematica@ 5

(Wolfram 2003). This is shown in Figure 5.1 for the particular values of the parameters.

The interval for the plot of S against r is 0 < r :S 1. The quantity S is a monotonically
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decreasing function. Subject to the choice of the parameters, the anisotropy can be con­

structed such that it is a monotonically decreasing function as r approaches the boundary.

The function S vanishes at the boundary. Other choices of the parameters A, B, k and

f may generate different behaviour for S. The singularity at the centre does not seem

to be 'removable' by any choice of parameters (as was the case with Figures 4.2 and 4.4

presented in the previous chapter). A comparison of this case with Dev & Gleiser (2002)

is not possible as the anisotropy factor vanishes at the boundary r = R. This will be

investigated further and a detailed analysis of the anisotropy factor S and the dynamical

variables for this anisotropic solution will be pursued in the future.
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Figure 5.1: S(r) for anisotropic Schwarzschild sphere (Alg. A (A #- B)); A = 1, B = -10,

k = 2, e= 1 and R = 1.
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Case II: A = B

The integral IQ when A = B becomes

To carry out the integration in (5.5) with A = B we again make the substitution

r
sin fJ = R

to have

I{j - J 1 2 dr

r 2J1- ~~ (1 -J1- ~~)
- ~J 1 dfJ

R sin2 fJ (1 - cos fJ)2
1 fJ fJ

- 80R csc5 "2 sec "2 (5 cos fJ - 4 cos 2fJ + cos 3fJ)

The terms cos 2fJ and cos 3fJ can be simplified with basic trigonometric identities and I{j,

in terms of the original radial coordinate r, becomes
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Then (3.12) gives

~ 2In{f- 8~Rcsc5{~Sin-l~}sec{~Sin-l~}

x((3- ~:) M -2(1- ~:))}

Hence the new anisotropic Schwarzschild sphere solution, with A = B, to the field equations

IS

1I 21n{1-M}
{ k 5{1. 1 r} {I. 1 r}+2ln f - - csc - SIll- - sec - SIll- -

80R 2 R 2 R

x((3- ~:) M-2(1- ~:))} (5.9a)

A - -In { 1 - ~22 } (5.9b)

r3

(5.9c)m - 2R2

Pr _~C-3R)
R2 1 - )1 _ .r.:.R2

kJ1- ;; [ k 5f· 1r} fIr}+ 3 ( "' 2 f - BOR csc 2sm- R sec 2sin- R
r 1- )1- R2)

x((3- ~:) M-2(1- ~:))r (5.9d)
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with the corresponding line element

for equations (5.9).

With the parameter values

k - 0

f - 1

(5.10)

we regain the original interior Schwarzschild sphere (5.1) with A = B. The degree of

anisotropy is

s -

(5.11)
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The graph of the anisotropy factor (5.11) was plotted with the assistance of Mathematica® 5

(Wolfram 2003). This is shown in Figure 5.2 for the particular values of the parameters.

The interval for the plot of S against r is 0 < r :s; 1. The quantity S is a monotonically

decreasing function. The behaviour of S is similar to the case A =1= B given in Figure 5.1.

However observe that the behaviour in Figure 5.2 is more restricted for Case 11 as A and

B are fixed.
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Figure 5.2: S(r) for anisotropic Schwarzschild sphere (Alg. A (A = B)); k = 0.00006,

f = 100 and R = 1
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5.4 Algorithm B

The integral Jo. for Algorithm B is

2B2r2 2B
-R' (1- ~~) (A +BJl- ;:,; )' + R2Jl- ;:,; (A+ BJl- ;:,;)

+WR(~:BR))]/
[R2R-~: (A+ BR-~:) (1+ --;::::R2Jl====--~~ ---r--(~:--;::=BR===\~~))

x (2+ R2R(~:BR)) ]

-(~+ R2Jl-~~(~~BR))

x (1+ R2J1 _ ~ (~~BJl _~~))
x (2 + 2Br2

) _1) dr
R2J1 - ~~ ( A - B J1 - ~~ )

With the substitution
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this integral becomes

J((B + 3Au - 4Bu2) (2B + Au - 3Bu2)
(1 - u2) (A - Bu) (B + Au - 2Bu2)

3Bu2(A - Bu)

(2B + Au - 3Bu2) (B + Au - 2Bu2)

2B2 (1 - u2) (A - 2Bu - 2Au2+ 3Bu3
) ) d+ u

u (A - Bu) (2B + Au - 3Bu2) (B + Au - 2Bu2)

The above integral is very complicated but can be simplified with the help of partial

fractions. We obtain

J(~ + 3 _ 3 + _B_
u 2 (1 - u) 2 (1 + u) A - Bu

A - 6Bu 2A - 7Bu )+ - du
2B + Au - 3Bu2 B + Au - 2Bu2

3 3
In u - 2In {I - u} - 2In {I + u} - In {A - Bu}

+ In {2B + Au - 3Bu2}

-J(A2+SB2 ~/(B _ ..:1.)2 - (~) A2±8B2U_-(~_ ..:1.)2) du
16B2 U 4B 16B2 U 4B

I {u (2B + Au - 3Bu
2
) }

n (A _ Bu) (1 _ U2)~

A I {I + J Ai:8B2 (u - ~) }
- 4JA2 + 8B2 n 1- JAi:8B2 (u - 4~)

-~ In {B + Au - 2Bu2}

In { u (2B + ~u - 3Bu
2
) 7 }

(A - Bu) (1 - u2)2 (B + Au - 2Bu2)4

A I {I - J Ai:8B2 (u - 41i) }
+4JA2 + 8B2 n 1 + JAi:8B2 (u - 4~)
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We have completed the integration and obtained la in terms of the intermediate variable

u. In terms of the original variable r we can write la as

Then the function a in (3.24a) becomes

and (3.24b) and (3.24c) respectively lead to

(5.12a)
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Hence the new anisotropic solution to field equations is
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(5.13c)

(5.13d)

(5.13e)



and with the line element

for the equations (5.13).

With the parameter value

k = 0

(5.15)

2r3
( A - B J1 - ~ )

x (2B +AVI - ~: - 3B (1 -~))

x (B +AVI - ~: - 2B (1 - ~:)r'
x (1- vAi~8B2 (R -~)) 4VA:+8B2

1 + VAi~8B2 ( J1 - ~~ - 4~ )

s -

we regain the original interior Schwarzschild sphere. The degree of anisotropy has the form

kR3v'3J1- ~~
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The graph of the anisotropy factor (5.15) was plotted with the help of Mathematica@ 5

(Wolfram 2003). This is presented in Figure 5.3 for chosen particular values of the parame­

ters. The plot of S against r is in the interval 0 < r ::; 1. The quantity S is a monotonically

decreasing function (note that Figures 5.1, 5.2 and 5.3 produce similar graphs; this is not

surprising as they all reduce to the isotropic Schwarzschild interior solution). Subject to

the choice of the parameters, the anisotropy S can be constructed so that it is a decreasing

function as r approaches the boundary. The function S vanishes at the boundary. Other

choices of the parameters A, B, and k may produce a different behaviour for S. In future

work we intend to fully investigate the behaviour of this solution.
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Figure 5.3: S(r) for anisotropic Schwarzschild sphere (Alg. B)j A = 3, B = 1, k = 1 and

R=l
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Conclusion

The main objective of this thesis was to find new solutions to the anisotropic Einstein field

equations which can be used to describe a relativistic anisotropic star. We believe that we

have met this objective by utilising existing methods and also generating new techniques of

integration which we have formulated as algorithms. We demonstrated that the algorithms

work with a number of examples of exact solutions that have a simple analytical form and

have physical relevance.

In the Introduction we briefly outlined the reasons for studying anisotropic matter in

general relativity and applications for relativistic anisotropic stars. In Chapter 1 we provide

only those aspects of the Einstein field equations necessary for later work.

In Chapter 2 we applied the Maharaj & Maartens (1989) integration procedure to generate

new exact solutions to the anisotropic Einstein field equations. We chose the energy density

function to be

on physical grounds to produce a class of solutions III terms of elementary funtions.

This new category of solutions contains models found previously as special cases. When

j = 0 = f, we regain the Maharaj & Maartens (1989) solution. When j = 0, we regain the

solution of Gokhroo & Mehra (1994). Six more classes of solution were found utilising the
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algorithm of Maharaj & Maartens (1989). The energy density for all cases contains the

limiting case

which is significant for isothermal spheres in Newtonian and relativistic stars (Saslaw et al

1996). Note also that the radial pressure is reducible to

for appropriate choice of parameters. This form of Pr was first used by Maharaj & Maartens

(1989) and ensures Pr(r = R) = O. The physical features of the solutions found were briefly

considered.

The Maharaj & Maartens (1989) approach yields an exact solution that is anisotropic

in general and the anisotropy factor S =I 0 throughout the interior of the star. In

Chapter 3, we sought to overcome this difficulty and to produce models that have an

isotropic limit. We derived two new algorithms with each producing a new solution

to the anisotropic Einstein field equations from a given isotropic solution. In Alga-

rithm A, given an isotropic solution (vo, Ao, mo, Po), we generated the anisotropic solution

(vo + (3, Ao, mo,po + O:,Po - 0:/2) where

0: ~ exp { - ~ (Ja + Vo + (3) }

{3 = 2ln { ~1{3 + e}

The integrals la and 1{3 have the form

la J(2n;~ + po) r; dr
r r - mo

Jexp {-~ (Ja + vo)}
1{3 - dr

r (r - 2mo)

While in Algorithm B, given an isotropic solution (vo, Ao, mo, Po), we generated the
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anisotropic solution (1I0, Ao + x, mo + y,Po + a,po - a/2) where

The integral JQ has the form

x =

y

_ In { 1 _ 2: eAO }

ar3

2(1 + rllb)

J = J{ lib (3 + 2rllb - r211~) _ (VI +~) (1 + rllb)} dr
Q 2 + rllb 1 + rllb 0 r 2 + rllb

We considered two known isotropic solutions, the Einstein and de Sitter models to demon-

strate that the algorithms work, and to explicitly show that they indeed generate new

anisotropic solutions.

We generated anisotropic isothermal sphere models in Chapter 4, given the corresponding

isotropic solution of the Einstein field equations. Algorithm A was used on the isotropic

isothermal sphere solution to produce the new line element

..k. (f) k 4c + (1 + c? -~) 2 d 2 (1 4C) d 2-r He {. - - r He t + + r
2 (1 + c) (1 + 5c) (1 + c) 2

+r2 (d02 + sin2 Ode/i)

The conventional isothermal sphere model is regained when k = 0 and f = 1. Algorithm

B was used on the isotropic isothermal solution to produce another anisotropic solution

depicted by the line element

4e ( 4C) ( 4c + (1 + c? 1±6e±13e
2 )-1

-T1±ede + 1 + 2 1 + k r - H4e±3e2 dr2

(1 + c) (1 + c) (1 + 5c)

+r2 (d02+ sin2 Od</>2)

The conventional isothermal sphere is regained when we set k = O. The anisotropy factor

S was plotted for both of the above line elements and shown to exhibit a wide range of

interesting behaviour.
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We generated anisotropic Schwarzschild interior sphere models in Chapter 5, given the

corresponding isotropic solution of the Einstein field equations. This was more complicated

technically and the integrations were rather involved. Algorithm A led to the line element

ds' = -(A-Bh)'
x [ k (6AB

2 tanh-l{(A+B)tan{~sin-l~}}
2R (A2 - B2)2 VB2 - A2 VB2 - A2

-~ (2AB + (A' + B') J1 - ~:)

_B~r (A-Bhf) Hrdt'
+ (1 -~) -1 dr' + r' (dB' + sin' BM')

for the anisotropic Schwarzschild sphere solution. With the parameter values k = 0 and

f = 1 we regain the original isotropic interior Schwarzschild sphere line element. The above

line element holds for A =I- B. With A = B, we generated the metric

using Algorithm A. Algorithm B was used on the isotropic Schwarzschild interior solution
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to produce another anisotropic solution given by

With the parameter k = 0 we regain the original isotropic interior Schwarzschild sphere.

The anisotropy factor S was plotted for the above three line elements and all shqwed a

monotonically decreasing behaviour with S(r = R) = O.

We hope that we have established that the Maharaj & Maartens (1989) approach and our

new algorithms produce valuable new anisotropic solutions. We expect that these exact

solutions will lead to physically viable models of anisotropic relativistic stars. We have

only briefly considered the physical features in our treatment. In future work we intend to

fully study the physical behaviour and stability of these using analyses such as that found

in Dev & Gleiser (2003).
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