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Abstract

We formulate a deterministic mathematical model for the co-infection of HPV with HIV without

treatment. Mathematical techniques were used to analyze the stability of the models in terms of basic

reproduction numbers for disease-free equilibrium point and fixed point theory used for analysis of the

endemic equilibrium point. The model incorporating HIV and HPV co-infection sought to investigate

the impact of HIV infection in the natural history of HPV infection, and the impact of HPV infection

in the natural history of HIV infection, over a period of time. Numerical simulations were carried out

to illustrate the trends of progression of HIV and HPV in the case of co-infection. The results from

our study showed that when both HIV and HPV infected individuals are active in the system then

co-infection grows faster compared to one infection which is active in the system. Our study also

showed that when we started with HPV infection in the community and introduces HIV infection

after sometime has more impact in the growth of co-infection population compared to start with HIV

infection and introduces HPV infection after sometime in the community.
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Chapter 1

INTRODUCTION

1.1 Background information

Human Papillomavirus (HPV) is a DNA virus from the papillomavirus family that affects the human

skin and moist membranes of the body. It can affect the throat, mouth, feet, fingers, nails, vulva,

vagina, penis, anus and cervix. HPV is mainly transmitted through sexual intercourse or oral sex [1].

HPV is one of the major global health problems. The prevalence of HPV infection in South Africa

is estimated to be between 14.6% to 22.3% people of at least 15 years of age are infected with HPV.

This means that about 6.9 million people are infected with HPV in South Africa [2]. Globally, be-

tween 9% and 14.3%, that is about 630 million people of at least 15 years of age are infected with

HPV [3, 4]. HPV is one of the most common sexually transmitted infectious (STIs). The sexually

active adults can acquire more than one type at some point in their lifetimes [5,6]. HPV infection is

very high in populations with a high rate of HPV acquisition, such as those who are sexually active,

but most of the infections are transient [7].
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HPV is classified into two groups namely low-risk and high-risk HPV types. Low-risk HPV types can

cause genital warts or very minor cell changes on the cervix and they are not virulent. The low-risk

HPV types includes 6, 11, 40, 42, 43, 44, 54, 55, 57, 61, 70, 72, 83 and 84. High-risk HPV types can

cause abnormal cells to form on the cervix and they are virulent. The high-risk HPV types includes

16, 18, 26, 31, 33, 34, 35, 39, 45, 51, 53, 56, 58, 59, 66, 68, 73, 80 and 82 [8]. Between 30 and 40 HPV

types are transmitted through sexual contact [9]. Individuals can clear HPV through an effective

immune response and the body can heal itself naturally. Treatment or vaccination can also be used

to clear HPV from an individual’s body.

Human Immunodeficiency Virus (HIV) is a retrovirus that fights the immune system. If HIV is

in the individual’s system, it lowers the number of healthy cells (CD4+ T cells) that the body have to

fight against infection [10]. Acquired Immune Deficiency Syndrome (AIDS) is the disease caused by

HIV. It is the final stage of HIV infection before an individual dies. At this stage the individuals gets

exposed to opportunistic infections such as diarrhoea, cholera, malaria, and tuberculosis. HIV can

be transmitted through blood transfusion, unprotected sexual contact, mother to child, and through

breast feeding. There are various factors that influence the spread of HIV/AIDS in the community.

These include heavy alcohol consumption, drug misuse, poverty and STIs [11–14].

HIV is also an STI where heterosexual transmission is the dominant mode of HIV transmission

on both men and women. HIV and AIDS infected individuals do not recover from their infection

because there are non curable diseases. There are many ways of prevention and control measures

which can be taken in reducing the spread of HIV infections such as the use of condoms, sticking

to one partner, avoiding the sharing of needles or syringes with anyone, counseling and testing, and

treatment with antiretroviral drugs [15].
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HIV/AIDS is also a major public health problem. Heterosexual transmission is the main mode

of transmission of HIV in sub-Sahara Africa, a region mostly hit with approximately 74% of the

global burden. In this region, 19.9 million people aged 15 years and above are living with HIV and

about 1.37 million are newly infected with HIV every year in sub-Sahara Africa. Globally, 26.9 mil-

lion people of at least 15 years old are living with HIV and 1.55 million people become newly infected

with HIV every year [16]. Of the 1.7 million people who die because of AIDS related illness globally,

1.19 million deaths are from sub-Sahara Africa [16].

HIV/HPV co-infection is the infection of individuals with both HIV and HPV infections. Individu-

als may be first infected with HIV and then infected with HPV or vice versa. Many observational

studies involving HIV-positive patients showed a strong and consistent relationship between HIV and

HPV [17]. Individuals who are HIV-positive are at high risk of infection with HPV types [18,19]. The

increased risk among individuals with HIV/AIDS is consistent with high incidence and persistence

of HPV infection [20]. There is evidence showing that high-risk HPV types are associated frequently

with HIV-positive individuals [18,21]. Low-risk HPV types were mostly associated with HIV-negative

individual population. There are high-risk HPV types which are associated with HIV-negative popu-

lation and there are also low-risk HPV types which are also associated with HIV-positive population.

HPV types associated with the HIV-positive population are HPV type 6, 11, 39, 43, 51 and 53. HPV

types 40 and 68 associated with HIV-negative. HPV type 16, 18, 35, 52, 58, 40, 42, 44 and 54 found

in both HIV-negative and positive [19].

The population of individuals who are HIV infected have increased susceptibility to HPV infec-

tion. Most individuals who are found to be HIV-positive are those with high proportion of multiple
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HPV types [4].

1.1.1 Problem statement

The co-infection of HPV with HIV is a significant and growing problem worldwide. Individuals may

be infected with HPV first and then with HIV infection or they may get infected with HIV first

then with HPV. Individuals can get infected with both infections (HPV and HIV) at the same time.

Since HIV infection is an infection that greatly compromises the immune system of an individual,

the introduction of an additional infection like HPV can heavily cause a drastic deterioration of the

body’s immune response to both infections. It is therefore worthy exploring the effects of having both

infections prevalent in a community where part of the community is only infected with one of the two

infections and part of the community is infected by both infections. Mathematical models are one of

the tools that can be used to analyze and understand the interplay of HIV/HPV co-infection. There

are rich mathematical theories that can be used to abstract the biological processes and patterns

of infectious diseases into mathematical formulations where analysis can be transferred back to the

biological explanation.

1.1.2 Aim

The aim of the study is to use mathematical models to understand the co-infection of HIV with HPV

and the consequences associated with occurrence of both infections in a community.

1.1.3 Objectives

The specific objectives of the study is to develop a model incorporating HIV/HPV co-infection and

analyze it to address the following research questions:
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(i) By how much impact does HIV infection impact the progression of HPV infection in a commu-

nity?

(ii) By how much impact does HPV infection impact the progression of HIV infection in a commu-

nity,

over a period of time?

1.1.4 Significance of the study

This research may help countries to improve policies on intervention regulating HIV/HPV co-infection

since many co-infections change the known dynamics and prognosis of individual infections. The

outcomes of this study will help the Government to establish policies, programmes and plans for

control of the HPV-HIV co-infection by taking into account of vaccination and treatment.

1.1.5 Scope of the project

The study is divided into six chapters. The first chapter has so far included the introduction to

HPV, HIV/AIDS and HIV/HPV co-infection, and statement of the problem, aim, objectives, and

significance of the study. In the second chapter, we look at the literature review, where we give the

definitions of basic concepts and analytical techniques which are useful in our analysis. In chapter

3, we look at the review of the low-risk and high-risk HPV types models. Chapter 4 contains

the co-infection model of HPV with HIV. In chapter 5, we carryout numerical simulations of the

co-infection of HPV with HIV model. In chapter 6, we discuss the results from simulations, give

possible recommendations and conclusion based on our model results.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Here we look at the theoretical concepts and definitions of the concepts which we shall use in this

study. The techniques give a spectrum over which we are able to ensure the existence of biologically

sensible solutions of the model and their behavior over time. We shall also review some mathematical

models that were used to model HPV infection and use these as building blocks of the HPV/HIV co-

infection model. We shall also discuss the different types of mathematical models used in modelling

infectious diseases.

2.2 Preliminary concepts

2.2.1 Basic reproduction number, R0

The basic reproduction number, R0, is the average number of secondary infections produced by

a typical infective person in a totally susceptible population [22]. To find the threshold R0, we
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assume that there are n compartments of which m are infected, x = (x1, x2, ..., xn), where x is the

disease-free equilibrium (DFE) point and xi denotes the number or proportion of individuals in the

ith compartment. Let Fi(x) be the rate of appearance of new infections into compartment i and let

Vi(x) = V−i (x) − V+
i (x), where V+

i is the rate of transfer of individuals into compartment i by all

other means and V−i is the rate of transfer of individuals out of the ith compartment. We can form the

next generation matrix (operator) FV −1 from matrices of partial derivatives of Fi and Vi evaluated

at x [23]. F =

[
∂Fi(x)

∂xj

]
and V =

[
∂Vi(x)

∂xj

]
, where i, j = 1, ...,m. The entries of FV −1 give the rate

at which infected individuals in xj produce new infections in xi, times the average length of time an

individual spends in a single visit to compartment j. R0 is given by the spectral radius (dominant

eigenvalue) of the matrix FV −1, that is, R0 = ρ(FV −1).

2.2.2 Bifurcation

A bifurcation is a qualitative change in the nature of the solution of the trajectories due to a param-

eter change. A bifurcation surface is a surface at which the equilibrium surfaces separate from each

other.

A transcritical bifurcation is a bifurcation where there is an exchange of stability between two equi-

librium points at a bifurcation point that is the stability is transferred from one equilibrium point to

another. In models for infectious diseases the exchange of stability normally occurs between a DFE

point and the endemic equilibrium point at R0 = 1, so that the DFE point become unstable and the

endemic equilibrium point becomes stable depending continuously on R0 [24]. A transcritical bifur-

cation can either be supercritical (forward) or subcritical (backward). In supercritical bifurcation,

the disease-free equilibrium point loses its stability when it passes through the bifurcation point and

the endemic equilibrium point gains its stability. Thus, a supercritical bifurcation ensures that the
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endemic equilibrium point is locally stable when R0 > 1 [12].

A backward bifurcation in epidemic models occurs when there is existence of two sub-critical en-

demic equilibria for R0 < 1. The initial direction of the bifurcation curve is such that as we move

along it from the bifurcation point, R0 decreases as the level of infection increases. This means that

the occurrence of backward bifurcation certainly has an implications for disease control since it is

now possible for the disease to spread or multiply even when R0 < 1. There is need to further reduce

the R0 in order to ensure that the disease is eliminated from the population. At least two subcritical

endemic equilibria exist for which R∗ < R0 < 1, where R∗ corresponds to the value of R0 at which a

vertical turning point on the bifurcation curve occurs. Therefore, in order to ensure that the disease

is eradicated from the population we require that R0 < R∗ [13, 25–27].

2.2.3 Center manifold theorem

The center manifold theorem provides a technique to analyze a bifurcation or catastrophe. A catas-

trophe is the sudden jump between DFE point and endemic equilibrium surface. The theory plays

a powerful role in the study of non-linear systems when the equilibrium point is not hyperbolic [28].

Under the normal form and with minimum phase assumption, a stabilization technique via the cen-

ter manifold, would be used to stabilize general affine non-linear control systems. For the case of

the non-minimum phase, the results would be obtained by introducing some new tools such as a

Lyapunov functions with homogeneous derivative to design the center manifold. For the equilibrium

point, the dimensions of such manifolds is determined by the number of roots of the characteristic

equation with zero real parts, and for the periodic orbits it is determined by the number of multipliers

that lie on the unit circle. Most of the non-linear phenomena have their origin in solutions that are

characterized by the zero real part of an eigenvalue of the Jacobian matrix [29].
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If we consider a continuous-time system defined by ẋ = f(x), x in Rn, where f is a sufficiently

smooth vector field on Rn with f(0) = 0, we can find the eigenvalues λ1, λ2, ..., λn of the Jacobian

matrix A of the system evaluated at the equilibrium point x0 = 0 [30]. Suppose the equilibrium

point is not hyperbolic and that there are eigenvalues with zero real part. We assume that there are

n+ eigenvalues with Re(λ) > 0, n0 eigenvalues with Re(λ) = 0, and n− eigenvalues with Re(λ) < 0.

We let T c denote the linear (generalized) eigenspace of matrix A corresponding to the union of the

set of the n0 eigenvalues and the imaginary axis. The eigenvalues with Re(λ) = 0 are often called

critical, in the eigenspace T c. We can describe the general center manifold theory using the following

theorem:

Theorem 2.2.1. Castillo-Chavez and Song [29]

We consider the following system of ordinary differential equations (ODEs) with a parameter φ:

∂x

∂t
= f(x, φ), f : Rn × R −→ R and f ∈ C2(Rn × R). (2.1)

It is assumed that x0 = 0 is an equilibrium for system (2.1) for all the parameters values of φ, that

is

f(0, φ) ≡ 0 for all φ. (2.2)

We assume that

(1) A = Dxf(0,0) =
∂fi
∂xj

(0, 0), 1 ≤ i, j ≤ n, is the linearization matrix of the system equation (2.1)

around the equilibrium x0 = 0 with φ evaluated at 0. We have a simple eigenvalue zero of A

and all other eigenvalues of A have negative real parts.

(2) Matrix A has a non-negative right eigenvectors W = (w1, w2, ..., wn) and left eigenvectors V =

(v1, w2, ..., wn) corresponding to the zero eigenvalue.
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We let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (2.3)

The local stability of the equilibrium point x0 = 0 is determined by the signed of a and b.

(i) a > 0, b > 0. When φ < 0 with |φ| � 1, x0 = 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < φ� 1, x0 = 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

(ii) a < 0, b < 0. When φ < 0 with |φ| � 1, x0 = 0 is unstable; when 0 < φ� 1, x0 = 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium.

(iii) a > 0, b < 0. When φ < 0 with |φ| � 1, x0 = 0 locally asymptotically stable negative

equilibrium; when 0 < φ� 1, x0 = 0 is stable, and a positive unstable equilibrium appears.

(iv) a < 0, b > 0. When φ changes from negative to positive, x0 = 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally

asymptotically stable.

2.2.4 Fixed point

Let I be a set and let f : I −→ I be a function that maps I into itself and such a function is often

called an operator, a transformation, or a transform on I. A fixed point of f is an element of Ii of I

for which f(Ii) = Ii [31]. We use fixed points theory to obtain the existence of the endemic equilibria.

We investigate their existence under some specific conditions, where f(Ii) is the disease incidence for

stage i, (i = 1, 2, ..., n) and Ii is the infectious class. The non-linear function f is assumed to satisfy

the following assumptions:
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(i) f(0) = 0, (ii) f ′(Ii) > 0,

(iii) f ′′(Ii) < 0, and (iv) limI→+∞ f(Ii) = C < +∞.

The function f is an increasing, bounded and convergent with no change of convexity on a finite

interval [32]. Let y be the solution of y = f(y) that is y which is a fixed point of f . Consider the

dynamics of the distances y(v) − y between iterates y(v) and a fixed point y (v = 0, 1, 2, ..., n). If

y(v+1) = f(y(v)) and y = f(y), then

y(v+1) − y = f(y(v))− f(y) =
∂f(y)

∂y
(y(v) − y) + t.h.o.

The local stability is then governed by the linearization (up to terms of higher order, t.h.o),

y(v+1) − y = J(y(v) − y),

which implies

y(v) − y = Jv(y(0) − y).

Here J denotes the Jacobian matrix fy of the n2 first order partial derivatives of f , evaluated at y.

Then there exists a set of n linearly independent eigenvectors wk with eigenvalues µk such that the

initial distance (y(0)−y) can be written as a linear combination, and y(v)−y = Jv(y(0)−y) implies

y(v) − y = Jv

n∑
k=1

ckw
k =

n∑
k=1

ckJ
vwk =

n∑
k=1

ckµ
v
kwk,

which shows that convergence y(v) → y can only take place for v → ∞ when |µk| < 1 for all

k = 1, 2, ..., n [33].

Theorem 2.2.2.

Assume that all eigenvalues µk of J lies inside the unit circle, |µk| < 1. Then, locally, the iterates

y(v) converge towards y, which is a stable fixed point. If |µk| < 1, then the fixed point is stable. If

|µk| > 1, then the fixed point is unstable and the iterates y(v) moves away from y or it diverges.
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2.3 Literature review

Ribassin-Majed et al [6], formulated a deterministic mathematical model for the transmission of

HPV 6/11. The purpose of study was to assess the impact of the quadrivalent HPV vaccine on the

prevalence of non-oncogenic HPV 6/11 types in French individuals. Quadrivalent HPV vaccine is a

four-in-one vaccine used to protect individuals from high-risk HPV types 16/18 and low-risk HPV

types 6/11. The transmission of HPV was only through sexual means where vaccination can be

used effectively. The vaccinated reproduction number Rv was calculated. The results showed that if

Rv > 1, the endemic equilibrium point exists and is globally asymptotically stable. If Rv < 1, the

disease-free equilibrium point exists and is globally asymptotically stable and HPV will die out. Their

modeling projected that in 10 years time after the introduction of vaccination, HPV 6/11 prevalence

in females would be halved and HPV 6/11 prevalence in males would be reduced by a quarter, assum-

ing a sustained vaccine coverage of 30% among females. However, the study did not include the effects

of the vaccine towards high-risk HPV types, which are more virulent than the low-risk HPV types.

The impact of the vaccine could be affected by the presence of HIV if it is introduced as a co-infection.

Lee and Tameru et al [1], formulated a mathematical model on HPV and the impact of HPV on

cervical cancer. The objective of study was to develop a mathematical model of HPV for African

American Women (AAW) in the United States and give quantitative insights into the U.S. preven-

tion and mitigation against cervical cancer. Their model showed that there is a direct relationship

between HPV and cervical cancer. Their results exposed the potential to test the effectiveness of

new methods of treatment that could be used to reduce the rate of infectivity of HPV and cervical

cancer with time. Their research was concentrated on AAW and as a results, the results may not

be used to infer the dynamics in men infected with HPV. HPV is one of the sexually transmitted
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infection, which can be worsened by other STI diseases such as HIV.

A study by Xiao et al was done on predicting the HIV/AIDS epidemic and measuring the effects

of mobility [34]. They formulated a network and compartmental model which enhanced the under-

standing of the spread and control of HIV in China. They analyzed the spatial characteristics of

HIV/AIDS cases, based on the national surveillance system and to addressed the effect of mobility

on the HIV/AIDS epidemic in mainland China. HIV-positive individuals who are likely to move from

economically developed regions to regions with large numbers of HIV cases, while AIDS individuals

move in opposite direction, where individuals have to return to their registered residence to get free

antiretroviral treatment.The study focused on high-risk groups only. Low-risk groups may also affect

significantly the mobility patterns with time since at any moment they are likely to change their

behaviour.

Bhunu et al [11], formulated a mathematical model on the assessing the effects of drug use on the

transmission dynamics of HIV/AIDS. Their study was on drug misuse which was recognized to have

a significant impact on the spread of HIV/AIDS epidemic.The study was on spread of HIV/AIDS on

drug misusers and non-drug users. Drug misusers infected each other through drug injection, while

non-drug users infected each other through sexually intercourse. Their theoretical results showed

that drug misuse had the capability to increases the spread of HIV transmission through the basic

reproduction number. HIV/AIDS is one of the STI’s which can co-infect individuals with other STI’s

such as HPV and so the impact of drug misuse could also be addressed in the case of co-infections.

Auvert et al looked at related study on HIV/HPV co-infection [18]. They formulated a data based

model on the association between high risk HPV and HIV acquisition. The objective of their study
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was to assess HPV as a risk factor of HIV acquisition among South African Female Sex Workers

(FSWs). The study targeted FSWs group which were to be at high-risk of STIs such as HPV and

HIV. They found that high-risk HPV was significantly and independently associated with HIV ac-

quisition among South African FSWs. The risk of acquiring HIV infection was significantly increased

as a result of multiple high-risk HPV infections. There was no association found in low-risk HPV

with HIV acquisition. The study does not include men in the co-infection, while men infect females

in the heterosexual transmission of the HIV and HPV co-infection.

Another study on co-infection of HPV with HIV was done by Baay et al [19], they formulated a

baseline model or data based model on HPV in a rural community. The study investigated the HPV

prevalence and the impact of HIV co-infection on HPV genotype distribution in a rural community in

Zimbabwe, with a high prevalence of HIV infection. They found out that high-risk and low-risk HPV

types were associated with HIV-positive women. Low-risk HPV type were also found in HIV-positive

and HIV-negative individuals. Their research was on data based model, which only captures the

pattern of the infections but does not capture interactive processes that leads to the patterns shown

by the data. Mathematical models have the ability to capture both the processes and the patterns.

2.4 Types of mathematical models

Mathematical modelling is the representations of some real world entity and can be in the form of

equations or computer codes. The modelling is characterized by assumptions about variables, param-

eters and functional forms which is the relationship between variables and parameters. Mathematical

modelling is a formal practical application of our thought processes expressed in terms of a series

of equations, that is, differential equations and stochastic processes. It also plays a great role in
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developing scientific understanding of complex biological processes of the epidemic. Mathematical

modelling helps us to clearly understand the underlying mechanisms and processes of diseases. It

allows us to investigate how the disease spreads in a system as a whole function. Important concepts

of infectious diseases such as understanding how the number of new infections at a particular time

depends on number of infections and susceptible individuals at existing points in time are also ad-

dressed using mathematical models. Mathematical models are classified into the following categories:

deterministic, stochastic, spatial, non-spatial, partial differential equations (PDEs), continuous-time

and discrete-time models [35,36].

A deterministic model is a type of mathematical modelling in which outcomes are definitely deter-

mined through known relationships among states and events without any room for random variation

or measurement error. The assumptions and equations of the deterministic model selected will de-

termine the outcome results. The model processes are often described by differential equations. The

models have unique inputs leading to unique outputs for a defined linear models and multiple out-

puts possible for nonlinear models. The model can be based on the nonlinear dynamics of infection

spreading in a population. The model equations can be solved analytically or by numerical methods

after discretization, that is, by modification to run on a grid or a mesh and parameterization by

setting parameters to account for subgrid processes [35,37].

A stochastic model is a type of mathematical modelling which presents data or predicts outcomes

using ranges of values for variables in the form of probability distributions. The output is repre-

sented by a probability distribution, which can be estimated from simulations. Stochastic models are

more computationally demanding compared to deterministic models. The stochastic model produces

many outcomes, since every iteration produces a different outcome. Many iterations are required for
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stochastic models to produce a representative distribution of possible outcomes [35].

Spatial models are used to model diseases that spread within a population by assuming that all indi-

viduals within it mix evenly with each other through social or sexual contact. Spatial heterogeneity

in populations is important in determining contact patterns between individuals, with potentially

profound implications for disease dynamics. Non-spatial models handles the whole population as ho-

mogeneous without considering space or any social interactions. Partial differential equations models

are used if two or more continuous independent variables are used, for example, time and space, and

time and age and comes from a basic balance or conservation law. The conservation law ensures

that a particular measurable property of an isolated physical system does not change as the system

develops over time [35,36].

Continuous-time models have more mathematical elegance and can bring more mathematical machin-

ery to bear on the problem which helps in deriving analytically solutions and asymptotic limits [35].

Discrete-time models are used to describe dynamical circumstances in biology and are appropriate

when circumstances are defined by discrete time steps [35, 36]. Discrete-time models are more suit-

able in modeling observed data where measurements are easier to simulate. Discrete-time models are

also used to describe the dynamics of various populations and developing methods of optimal control

strategies against new infections of diseases [38].

We want to investigate that mathematical models can be useful tools in exploring diseases trends

and health consequences of interventions in a population over the time. In our study, we develop

a deterministic model represented by the nonlinear ordinary differential equations to describe the

heterosexual transmission of the HIV and HPV infections in the population. We have established
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so far that HPV as an STI has a potential to complicate diseases dynamics in co-infection scenarios

such as in the case of cancer, drug abuse, HIV etc. We shall use this results to investigate HPV

effects in case the co-infection is with HIV infection.
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Chapter 3

REVIEW OF HUMAN

PAPILLOMAVIRUS MODELS

3.1 Introduction

Human Papillomavirus (HPV) is one of the most common sexually transmitted infections in both

men and women [39]. As stated earlier, at least 70% of sexually active people acquire HPV infection

at some point in their lives [40]. We shall review some mathematical models on HPV information

and improvise some of the models using information from the history of HPV. This will set up some

precedence towards our study on HPV and HIV co-infection. Mathematical models are important

in the study of HPV infection because they are useful tool in simplifying the study of the impact of

the processes involved in the spread of HPV. It is important in helping the countries to plan and to

predict the health outcomes in the long run [41].
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3.2 Basic sex-structured HPV model

We develop a mathematical model for HPV infection stratifying it into sexually active population

with the following classes: HPV Susceptibles females (Sw) and males (Sm), HPV Infectious females

(Iw) and males (Im) and HPV Recovered females (Rw) and males (Rm), where subscript w represent

females and m represent males. We assume that HPV is spread through heterosexual transmission

Sw

πw

Sm

πm

IwIm

RwRm

λmSwλwSm

rwIwrmIm

µSw

µIw

µRw

µSm

µIm

µRm

Figure 3.1: Flow chart for the HPV model. The dashed arrows represent cross infection and the solid

arrow represent the flow of individuals into and out of the compartment.

only and the probability of an individual acquiring HPV infection is dependent on sexual contact

patterns of the distribution of the infection within the population [42]. This means that men can

only have sexual contacts with women and vice versa. We therefore assume that recruitment into

the susceptible females and males compartments is through sexual maturity and onset of sexual

activity. We use constant recruitment rates of πw and πm for entry into compartments Sw and Sm

respectively. Individuals from susceptible compartments can leave either through natural death at

a rate µ or through acquiring HPV infection. Susceptible women acquire HPV infection through a
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force of infection λm = βwIm, βw = cwq, where cw is the number of male contacts a female makes

per unit time and q is the probability of successful HPV infection through a contact. Similarly, a

susceptible male acquires infection through a force of infection λw = βmIw, βm = cmq where cm

is the number of female contacts a male makes per unit time. βw = βm that is the total average

contact rate of females are equals to the total average rage of males. Once infected, women and men

enter new compartments Iw and Im of infectives respectively. They leave these classes either through

natural death (at a rate µ) or through recovery at rates rw and rm for women and men respectively.

Individuals from Iw and Im can recover from HPV infection naturally and progress to the recovery

compartments Rw and Rm (for women and men respectively). Once individuals recover, they acquire

immunity to HPV for the entire period of infection [43,44]. They can only leave the recovery classes

through natural death. In this basic model, we assume that there is no regression back to a class

once the individual move out of it. This is a simplifying assumption for mathematical tractability so

that we can identify the basic dynamics of HPV infection using a basic model. Our HPV model was

modified from an aged-structured model of human papillomavirus vaccination [45] and we did not

consider vaccination. We collapsed the aged structured model to non aged structured model because

one infection in each age group are rely on affected by one type of infection. The model guided by

the stated assumptions is given by:

dSw
dt

= πw − λmSw − µSw, (3.1)

dIw
dt

= λmSw − (µ+ rw)Iw, (3.2)

dRw

dt
= rwIw − µRw, (3.3)

dSm
dt

= πm − λwSm − µSm, (3.4)

dIm
dt

= λwSm − (µ+ rm)Im, (3.5)

dRm

dt
= rmIm − µRm. (3.6)
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We define Nw as the total female population, Nm as the total male population, N(t) as the total

population given by

Nw(t) = Sw(t) + Iw(t) +Rw(t),

Nm(t) = Sm(t) + Im(t) +Rm(t),

N(t) = Nw(t) +Nm(t).

3.2.1 Feasible region

For the system of equations (3.1)-(3.6), we need to prove that all the variables remains non-negative

such that the solutions of the systems of equations with positive initial conditions will remain positive

for all t ≥ 0 and that all the solutions are bounded for all t ≥ 0.

Lemma 3.2.1.

Let Sw(0) ≥ 0, Iw(0) ≥ 0, Rm(0) ≥ 0, Sm(0) ≥ 0, Im(0) ≥ 0, Rm(0) ≥ 0. The solution Sw(t), Iw(t),

Rw(t), Sm(t), Im(t) and Rm(t) are positively invariant for all t ≥ 0 in the region

Ω = {(Sw, Iw, Rw, Sm, Im, Rm) ∈ R6
+}.

Proof.

For t ≥ 0 we have from equation (3.1) that

dSw
dt

= πw − (λm + µ)Sw.

This gives

d

dt

Sw(t)e

(
µt+

∫ t

0

λm(s)ds

) = πwe

(
µt+

∫ t

0

λm(s)ds

)
.

The solution is

Sw(t)e

(
µt+

∫ t

0

λm(s)ds

)
= Sw(0) +

∫ t

0

πwe

(
µs+

∫ s

0

λm(w)d(w)

)
ds,
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so that

Sw(t) = Sw(0)e

(
−(µt+

∫ t

0

λm(s)ds)

)

+ e

(
−(µt+

∫ t

0

λm(s)ds)

)∫ t

0

πwe

(
µs+

∫ s

0

λm(w)dw

)
ds

 > 0.

From equation (3.2), we obtain

dIw
dt

≥ −(µ+ rw)Iw,

Iw(t) ≥ Iw(0)e− (µ+ rw) t ≥ 0.

Similarly,

Rw(t) ≥ Rw(0)e−µt ≥ 0,

Sm(t) = Sm(0)e

(
−(µt+

∫ t

0

λw(s)ds)

)

+ e

(
−(µt+

∫ t

0

λw(s)ds)

)∫ t

0

πme

(
µs+

∫ s

0

λw(w)dw

)
ds

 > 0,

Im(t) ≥ Im(0)e− (µ+ rm) t ≥ 0,

Rm(t) ≥ Rm(0)e−µt ≥ 0.

Adding the right hand side of system of equations (3.1)-(3.6) we obtain

dN

dt
= πw + πm − µN(t), (3.7)

The solution of the differential equation (3.7) is given by

N(t) =
πw + πm

µ
(1− e−µt) +N0e

−µt.

We have lim
t→∞

N(t) =
πw + πm

µ
. We then obtain 0 ≤ N(t) ≤ πw + πm

µ
. This means that

πw + πm
µ

is

the upper bound of N(t). Hence all the solutions of equations (3.1)-(3.6) which initiate in R6
+ are
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eventually confined in the region Ω. Clearly, the set Ω is positively invariant with respect to the

system of equations (3.1)-(3.6).

3.2.2 Basic reproduction number, R0

We compute the basic reproduction number R0 in order to analyze the local and global stability

of the disease-free equilibrium point (DFE) and endemic equilibrium point which depends on R0

values [46]. The basic reproduction number of the model equations (3.1)-(3.6) is computed by using

the next generation matrix. We consider a matrix Fi of the rate of appearances of new infectives into

the compartment i, where i representing w for women and m for men, a matrix V−i which is the rate

of transfer of infected individuals out the compartment i, a matrix V+
i which is the rate of transfer

of infected individuals into the compartment i by all other means so that Vi = V−i − V+
i [23].

Now,

F =

 βwImSw

βmIwSm

 , V− =

 (µ+ rw)Iw

(µ+ rm)Im

 , V+ =

 0

0

 , V =

 (µ+ rw)Iw

(µ+ rm)Im

 .

The DFE is obtained by setting the right hand side of the system of equations (3.1) to (3.6) to zero,

given by

E0 =

(
πw
µ
, 0, 0,

πm
µ
, 0, 0

)
.

The Jacobian matrices F and V of matrices Fi and Vi at E0 are given respectively by:

F =

 0 βwS
∗
w

βmS
∗
m 0

 , V =

 µ+ rw 0

0 µ+ rm

 ,

where S∗w =
πw
µ

and S∗m =
πm
µ

. The inverse of matrix V is

V −1 =


1

µ+ rw
0

0
1

µ+ rm

 ,
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and the next generation matrix defined by FV −1 is

FV −1 =

 0
βwS

∗
w

µ+ rm
βmS

∗
m

µ+ rw
0

 .

The characteristic equation of FV −1 is

λ2 − βwβmS
∗
wS
∗
m

(µ+ rm)(µ+ rw)
= 0,

whose roots are

λ = ±

√(
βwS∗w
µ+ rm

)(
βmS∗m
µ+ rw

)
,

λ = ±
√
RwRm,

where

Rw =
βwπw

µ(µ+ rm)
, (3.8)

Rm =
βmπm

µ(µ+ rw)
. (3.9)

The basic reproduction number is defined as the spectral radius of the next generation matrix FV −1

denoted by R0 = ρ(FV −1) is given by

R0 =
√
RwRm ⇒ R2

0 = RwRm,

where Rw is the number of secondary infections generated by one infected man in a population

of susceptible women during his infectious period and Rm is the number of secondary infections

generated by a one infected woman in a population of susceptible men during her infectious period.

3.2.3 Endemic equilibrium point

The equilibrium points of the system of equations (3.1)-(3.6) are obtained by setting the right hand

sides of differential equations (3.1)-(3.6) to zero.
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πw − λ∗mS∗w − µS∗w = 0,

λ∗mS
∗
w − (µ+ rw)I∗w = 0,

rwI
∗
w − µR∗w = 0,

πm − λ∗wS∗m − µS∗m = 0,

λ∗wS
∗
m − (µ+ rm)I∗m = 0,

rmI
∗
m − µR∗m = 0,

where

λ∗m = βwI
∗
m,

λ∗w = βmI
∗
w.

If I∗w = I∗m = R∗w = R∗m = 0, then we have the disease-free equilibrium point given in section 3.2.2. If

Iw 6= 0, Im 6= 0, Rw 6= 0 and Rm 6= 0, then we have the endemic equilibrium point given by

E1 =

(
S∗∗w , I∗∗w , R∗∗w , S∗∗m , I∗∗m , R∗∗

)
,

where

S∗∗w =
πw
µ

[
µ(µ+ rm)R2

0 + βwπm
(βwπm + µ(µ+ rm))R2

0

]
,

I∗∗w =
µ2(µ+ rm)(R2

0 − 1)

βm(βwπm + µ(µ+ rm))
,

R∗∗w =
µrw(µ+ rm)(R2

0 − 1)

βm(βwπm + µ(µ+ rm))
,

S∗∗m =
πm
µ

[
βwπm + µ(µ+ rm)

µ(µ+ rm)R2
0 + βwπm

]
,

I∗∗m =
µπm(R2

0 − 1)

µ(µ+ rm)R2
0 + βwπm

,

R∗∗m =
rmπm(R2

0 − 1)

µ(µ+ rm)R2
0 + βwπm

.
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Clearly, I∗∗w , I∗∗m , R∗∗w and R∗∗m are positive only when R0 > 1. We summarize the existence of the

equilibrium points in the following theorem:

Theorem 3.2.2.

(i) The disease-free equilibrium point exists for all values of R0.

(ii) The positive endemic equilibrium point exists only for R0 > 1.

3.2.4 Stability analysis of equilibrium points

Theorem 3.2.3.

The disease-free equilibrium point is locally asymptotically stable when R0 < 1.

Proof.

The analysis of the disease free equilibrium point is found by using the matrix F − V [23].

F − V =

 −(µ+ rw) βwS
∗
w

βmS
∗
m −(µ+ rm)

 ,

For stability of the matrix F − V , we need to show that det(F − V ) > 0 and tr(F − V ) < 0.

det(F − V ) = (µ+ rw)(µ+ rm)(1−R2
0) > 0,

tr(F − V ) = − ((µ+ rw) + (µ+ rm)) < 0.

The det(F − V ) > 0 when R2
0 − 1 < 0, that is R0 < 1. This means that all eigenvalues of F − V

have negative real parts when R0 < 1 and the stability of E0 follows. If R0 > 1, then det(F −V ) < 0

meaning that at least one of the eigenvalues of F−V has a positive real part and under this condition

E0 becomes unstable.
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Theorem 3.2.4.

The endemic equilibrium point E1 is locally asymptotically stable when R0 > 1.

Proof.

The Jacobian matrix of the system of equations (3.1)-(3.6) at E1 is given by

J(E1) =



−(βwI
∗∗
m + µ) 0 0 0 −βwS∗∗w 0

βwI
∗∗
m −(µ+ rw) 0 0 βwS

∗∗
w 0

0 rw −µ 0 0 0

0 −βmS∗∗m 0 −(βmI
∗∗
w + µ) 0 0

0 βmS
∗∗
m 0 βmI

∗∗
w −(µ+ rm) 0

0 0 0 0 rm −µ



.

The eigenvalues of J(E1) are λ1,2 = −µ < 0 and the rest are roots of the characteristic equation

λ4 + b3λ
3 + b2λ

2 + b1λ+ b0 = 0, (3.10)

where

b3 = (β1I
∗∗
m + µ) + (µ+ rw) + (β2I

∗∗
w + µ) + (µ+ rm) > 0, when R0 > 1,

b2 = (βwI
∗∗
m + µ)(µ+ rw) + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ) + (βwI

∗∗
m + µ)(µ+ rm)

+(µ+ rw)(βmI
∗∗
w + µ) + (βmI

∗∗
w + µ)(µ+ rm) > 0, when R0 > 1,

b1 = (βwI
∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw) + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rm)

+(βwI
∗∗
m + βmI

∗∗
w )(µ+ rw)(µ+ rm) > 0, when R0 > 1,

b0 = (βwI
∗∗
m + µ)βwβ

2
mS
∗∗
w S

∗∗
m I
∗∗
w + µβ2

wβmS
∗∗
w S

∗∗
m I
∗∗
m > 0 when R0 > 1.

We shall use the Routh-Hurwitz criterion [47,48] for polynomials of order four to prove the stability

of E1. The following conditions have to be established:
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(i) b3 > 0, (ii) b1 > 0, (iii) b0 > 0,

(iv) b2b3 − b1 > 0, (v) b1(b2b3 − b1)− b23b0 > 0.

Clearly b3 > 0, b1 > 0 and b0 > 0 when R0 > 1. It remains to prove conditions (iv) and (v). The

expression for condition (iv) after manipulations and simplification is given by

b2b3 − b1 = (βwI
∗∗
m + µ)2(µ+ rw) + (βwI

∗∗
m + µ)2(βmI

∗∗
w + µ) + (β1I

∗∗
m + µ)2(µ+ rm)

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw) + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rm)

+(βwI
∗∗
m + µ)(µ+ rw)2 + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw) + (βwI

∗∗
m + µ)(µ+ rw)(µ+ rm)

+(βmI
∗∗
w + µ)(µ+ rw)2 + (βmI

∗∗
w + µ)(µ+ rm)(µ+ rw) + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)2

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rm) + (βmI

∗∗
2 + µ)2(µ+ rw) + (βmI

∗∗
w + µ)2(µ+ rm)

+2µ(µ+ rw)(µ+ rm) + (βwI
∗∗
m + µ)(µ+ rm)2 + (βmI

∗∗
w + µ)(µ+ rm)2 > 0,when R0 > 1.

The condition (v) after simplification is given by b1(b3b2 − b1)− b23b0 =

(βwI
∗∗
m + µ)3(βmI

∗∗
w + µ)(µ+ rw)2 + (βwI

∗∗
m + µ)3(βmI

∗∗
w + µ)2(µ+ rw)

+(βwI
∗∗
m + µ)2(βmI

∗∗
w + µ)2(µ+ rw)2 + (βwIm + µ)2(βmI

∗∗
w + µ)2(µ+ rm)(µ+ rw)

+(βwI
∗∗
m + µ)2(βmI∗∗w + µ)(µ+ rw)3 + (βwI

∗∗
m + µ)2(βmI

∗∗
w + µ)2(µ+ rw)2

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)2(µ+ rw)3 + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)2(µ+ rm)(µ+ rw)2

+(βwI
∗∗
m + µ)2(βmI

∗∗
w + µ)3(µ+ rw) + (βwI

∗∗
m + µ)2(βmI

∗∗
w + µ)2(µ+ rm)(µ+ rw)

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)3(µ+ rw)2 + 2µ(βwI

∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw)2(µ+ rm)

+(βwI
∗∗
m + µ)(βmIw + µ)2(µ+ rw)(µ+ rm)2 + (βwI

∗∗
m + µ)3(βmI

∗∗
w + µ)2(µ+ rm)

+(β1I
∗∗
m + µ)3(β2I

∗∗
w + µ)(µ+ rm)2 + (βwI

∗∗
m + µ)2(βmI

∗∗
w + µ)2(µ+ rm)2

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)2(µ+ rm)(µ+ rw)2

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw)(µ+ rm)2 + (βwI

∗∗
m + βmI

∗∗
w )2(µ+ rm)3(µ+ rw)
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+(βwI
∗∗
m + µ)2(βmI

∗∗
w + µ)3(µ+ rm) + (βwI∗∗m + µ)2(βmIw + µ)2(µ+ rm)2

+(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)3(µ+ rm)(µ+ rw) + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)3(µ+ rm)2

+(βwIw + µ)2(βmI
∗∗
w + µ)(µ+ rm)3 + (βwI

∗∗
m + µ)(βmI

∗∗
w + µ)2(µ+ rm)3

+(βwI
∗∗
m + βmI

∗∗
w )(βwI

∗∗
m + µ)2(βmI

∗∗
w + µ)(µ+ rm)(µ+ rw)

+(βwI
∗∗
m + βmI

∗∗
w )(βwI

∗∗
m + µ)(µ+ rm)2(µ+ rw) + µβmI

∗∗
w (µ+ rw)2(µ+ rm)2

+µ(βwI
∗∗
m + µ)3(µ+ rw)(µ+ rm) + 2βwI

∗∗
m βmI

∗∗
w (βwI

∗∗
m + µ)(µ+ rm)2(µ+ rw)

+(βwI
∗∗
m + βmI

∗∗
w )(βmI

∗∗
w + µ)(µ+ rw)3(µ+ rm) + (βmI

∗∗
w )2(µ+ rm)2(µ+ rw)2

+(βwI
∗∗
m + βmI

∗∗
w )(βwI

∗∗
m + µ)(βmI

∗∗
w + µ)2(µ+ rw)(µ+ rm)

+(βwI
∗∗
m + βmI

∗∗
w )(βmI

∗∗
w + µ)2(µ+ rw)2(µ+ rm) + (βwI

∗∗
m + βmI

∗∗
w )2(µ+ rm)3(µ+ rw)

+(βwI
∗∗
m + βmI

∗∗
w )(βmI

∗∗
w + µ)2(µ+ rm)2(µ+ rw) + (βwI

∗∗
m )2(µ+ rw)3(µ+ rm)

+βwI
∗∗
m βmI

∗∗
w (βwI

∗∗
m + µ)2(µ+ rm)(µ+ rw) + 2µ2(βwI

∗∗
m + µ)(µ+ rm)(µ+ rw)2

+µ(βwI
∗∗
m + µ)2(βmI

∗∗
w + µ)2(µ+ rw)(µ+ rm) + µ2(βmI

∗∗
w + µ)2(µ+ rw)(µ+ rm)

+(βwI
∗∗
m + βmI

∗∗
w )(βwI

∗∗
m + µ)2(µ+ rw)2(µ+ rm) + 2µ(βwI

∗∗
m + µ)2(µ+ rw)(µ+ rm)2

+2µ2(βwI
∗∗
m + µ)(βmI

∗∗
w + µ)(µ+ rw)(µ+ rm) + µβmI

∗∗
w (µ+ rw)2(µ+ rm)2

+2(βwI
∗∗
m )2(βmI

∗∗
w + µ)(µ+ rm)(µ+ rw)2 + (βwI

∗∗
m )2(µ+ rm)2(µ+ rw)2

+2µ2(βmI
∗∗
w + µ)(µ+ rw)(µ+ rm)2 + (βmI

∗∗
w )2(µ+ rm)3(µ+ rw) > 0,when R0 > 1.

Since all the Routh-Hurwitz criterion conditions are satisfied when R0 > 1, then all the eigenvalues

of the Jacobian matrix J(E1) are negative or have negative real parts when R0 > 1. This proves that

E1 is locally asymptotically stable when R0 > 1.
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3.3 HPV model incorporating Low-risk and High-risk HPV

types

Sm Im Rm

Sw

I lw

Ihw

Rw

λwSm rmIm

δλmSw

(1− δ)λmSw

rlwI
l
w

rhwI
h
w

µSm µIm µRm

µSw

µI lw

µIhw

µRw

πm

πw

Figure 3.2: Flow chart for the low-risk and high-risk HPV types. The dashed arrows represent cross

infection and the solid arrow represent the flow of individuals into and out of the compartment.

More than half of sexually active people are infected with more than one or more HPV types at some

point in their lives [49]. Low-risk and high-risk HPV types are found in females population, while

man harbor all types of HPV but there are difficult to diagnose. Most men with HPV don’t have

any symptoms and so diagnosing HPV in men is difficult compared with women [50] We develop the

population for the HPV epidemic into the following classes: susceptibles (Sw) and (Sm), infectious
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women with low-risk (I lw) HPV and infectious women with high-risk (Ihw) HPV , infectious men (Im)

with low or high-risk HPV and recovered women (Rw) and recovered men (Rm). We use constant

recruitment of πw and πm for entry into compartment Sw and Sm respectively. Susceptible women

are infected by the low risk HPV and high risk HPV with a force of infection λm = βwIm. Similarly,

susceptible men acquire infection through a force of infection λw = βm(I lw + bwI
h
w), where bw ≥ 1.

The assumption that bw ≥ 1 ensures that high-risk HPV infected women have a higher likelihood

of infecting susceptible man than low-risk HPV infected women. Once infected, women progress

to the compartments I lw and Ihw of infectives, while men progress to Im. δ is the proportion of Sw

that are infected by low HPV, where 0 ≤ δ ≤ 1. Individuals from (I lw) and (Ihw) join the recovery

class Rw through recovery rates rlw and rhw respectively. Individuals from Im progress to Rm through

recovery rate rm. Both low-risk and high-risk HPV infected individuals can recover through acquiring

natural immunity [1]. Individuals from recovery classes Rw and Rm leave the classes through natural

death µ. In this model, we assume that there is no regression back to a class once the individuals

move out of it. The non-linear system of ordinary differential equations (ODEs) that represent our

compartmental structure is given as

dSw
dt

= πw − βwImSw − µSw, (3.11)

dI lw
dt

= δβwImSw − (rlw + µ)I lw, (3.12)

dIhw
dt

= (1− δ)βwImSw − (rhw + µ)Ihw, (3.13)

dRw

dt
= rlwI

l
w + rhwI

h
w − µRw, (3.14)

dSm
dt

= πm − βm(I lw + bwI
h
w)Sm − µSm, (3.15)

dIm
dt

= βm(I lw + bwI
h
w)Sm − (rm + µ)Im, (3.16)

dRm

dt
= rmIm − µRm. (3.17)
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The total population is governed by the following differential equation

dN

dt
= πw + πm − µN(t).

3.3.1 Positivity and boundness of solutions of the model

The feasible region of system of equations (3.11)-(3.17) is is defined by

Ω = {(Sw, I lw, Ihw, Rw, Sm, Im, Rm) ∈ R7
+ : Sw ≥ 0, I lw ≥ 0,

Ihw ≥ 0, Rw ≥ 0, Sm ≥ 0, Im ≥ 0, Rm ≥ 0, N ≤ πw + πm
µ

}.

We need to prove that the feasible region Ω is positively invariant and the solutions of feasible region

are bounded in the following lemma.

Lemma 3.3.1.

Given that the initial conditions of systems of equations (3.11)-(3.17) are Sw(0) > 0, I lw(0) > 0,

Ihw(0) > 0, Rw(0) > 0, Sm(0) > 0, Im(0) > 0 and Rm(0) > 0, the solutions of Sw(t), I lw(t), Ihw(t),

Rw(t), Sm(t), Im(t) and Rm(t) are non-negative for all t > 0.

Proof.

The positivity of solutions of system of equation (3.11)-(3.17) is similar to that of the model in section

3.2.1 except noting in this case,

I lw(t) ≥ I lw(0)e−(rlw + µ)t ≥ 0,

Ihw(t) ≥ Ihw(0)e−(rhw + µ)t ≥ 0.

The boundedness of solutions also follows from the proof in section 3.2.1.
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3.3.2 The disease free equilibrium point (DFE)

The disease free equilibrium is given by

E0 =

(
πw
µ
, 0, 0, 0,

πm
µ
, 0, 0

)
.

3.3.3 Basic reproduction number

We calculate the reproduction number using the equations from the system of equations (3.11)-(3.17)

that models infectious classes. The extracted infectious classes equations are given as:

dI lw
dt

= δβwImSw − (rlw + µ)I lw,

dIhw
dt

= (1− δ)βwImSw − (rhw + µ)Ihw,

dIm
dt

= βm(I lw + bwI
h
w)Sm − (rm + µ)Im.

We first have to obtain the matrices Fi and V−i − V+
i = Vi, where i = 1, 2, 3.

Now,

Fi =


δβwImSw

(1− δ)βwImSw

βm(I lw + bwI
h
w)

 , Vi =


(rlw + µ)I lw

(rhw + µ)Ihw

(rm + µ)Im

 .

We also need to compute F =
∂(F(E0))

∂xi
, V =

∂(V(E0))

∂xi
and V −1. For the system equations

(3.11)-(3.17) that models the infectious classes, we obtain that

F =


0 0 δβw

πw
µ

0 0 (1− δ)βw
πw
µ

βm
πm
µ

βmbw
πm
µ

0


, V =


(rlw + µ) 0 0

0 (rhw + µ) 0

0 0 (rm + µ)

 ,
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V −1 =



1

rlw + µ
0 0

0
1

rhw + µ
0

0 0
1

rm + µ


.

R0 is given by the spectral radius of the matrix FV −1 [51], so that

FV −1 =


0 0

δβwπw
µ(rm + µ)

0 0
(1− δ)βwπw
µ(rm + µ)

βmπm
µ(rlw + µ)

βmbwπm
µ(rhw + µ)

0


.

The entries of FV −1 can be explained as follows:

δβwπw
µ(rm + µ)

is the average number of women with low-risk HPV types infected by singe man.

(1− δ)βwπw
µ(rm + µ)

is the average number of women with high-risk HPV types infected by singe man.

βmπm
µ(rlw + µ)

is the average number of men with HPV cases which are infected by a single woman with

low-risk HPV types.

βmπm
µ(rhw + µ)

is the average number of men with HPV cases which are infected by a single woman with

high-risk HPV types.

The characteristic equation is obtained by solving the equation |FV −1−λI3| = 0, where I3 is a 3× 3

identity matrix to obtain

−λ
(
λ2 − βwβmbwπwπm(1− δ)(rlw + µ) + δβwβmπwπm(rhw + µ)

µ2(rlw + µ)(rhw + µ)(rm + µ)

)
= 0.

Thus, the spectral radius ρ(FV −) is given by

R0 =

√
βwβmπwπm (bw(1− δ)(rlw + µ) + δ(rhw + µ))

µ2(rlw + µ)(rhw + µ)(rm + µ)
, (3.18)

which can be written as

R0 =
√
Rw(δRl

m + (1− δ)Rh
m).
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Rl
m =

βmπm
µ(rlw + µ)

, Rh
m =

bwβmπm
µ(rhw + µ)

and Rw =
βwπw

µ(rmw + µ)
. Rl

m is the reproduction number for men

who were infected by women with low-risk HPV types, Rh
m is the reproduction number for men who

were infected by women with high-risk HPV types and Rw is the reproduction number for women

who were infected by man.

3.3.4 Analysis of R0

We examine the effects of reproduction numbers Rw, Rl
m, Rh

m and δ on R0 by computing the partial

derivatives of R0 with respect to Rw, Rl
m, Rh

m and δ.

∂R0

∂Rw

=
1

2

√
δRl

m + (1− δ)Rh
m

Rw

> 0.

R0 is an increasing function of threshold value Rw. The increase in the reproduction number for

women will results in the increase of the basic reproduction number R0. The partial derivative of R0

with respect to Rl
m is given by

∂R0

∂Rl
m

=
1

2

√
Rw

δRl
m + (1− δ)Rh

m

> 0.

The increase in the reproduction number for men who are infected by women with low-risk HPV

types will results in the increase of the basic reproduction number. The partial derivative of R0 with

respect to Rh
m is given by

∂R0

∂Rh
m

=
1− δ

2

√
Rw

δRl
m + (1− δ)Rh

m

> 0.

The increase in the reproduction number for men are infected by women with high risk HPV types

will yield an increase of the basic reproduction number. The derivative of R0 with respect to δ and

is given by

∂R0

∂δ
=

1

2

Rw(Rl
m −Rh

m)

R0

.

We observe the following
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(i) If Rl
m ≥ Rh

m, then
∂R0

∂δ
≥ 0.

(ii) If Rl
m < Rh

m, then
∂R0

∂δ
< 0.

When Rl
m is above the threshold Rh

m, then the increase in δ will increase the basic reproduction

number. When Rl
m is less than the threshold Rh

m, the increase in δ result in the decrease of the basic

reproduction number.

3.3.5 The endemic equilibrium point

The endemic equilibrium solutions can be obtained from equating the right hand side of the system

(3.11)-(3.17) to zero, i.e. denoted by

E1 = (S∗∗w , I
l∗∗
w , I∗∗w , R

∗∗
w , S

∗∗
m , I

∗∗
m , R

∗∗
m )

where

S∗∗w =
πw
µ

(
d+ a

aR2
0 + d

)
,

I l∗∗w =
aδπw(R2

0 − 1)

(aR2
0 + d)(rlw + µ)

,

Ih∗∗w =
aπw(1− δ)(R2

0 − 1)

(aR2
0 + d)(rhw + µ)

,

R∗∗w =
µπw

(
rlwδ(r

h
w + µ) + rhw(1− δ)(rlw + µ)

)
(R2

0 − 1)

aR2
0 + d

,

S∗∗m =
πm(aR2

0 + d)(d+ a)

ad(R2
0 − 1)(µaR2

0 + d)
,

I∗∗m =
aµ(R2

0 − 1)

βw(d+ a)
,

R∗∗m =
arm(R2

0 − 1)

βw(d+ a)
,

and

a = µ(rlw + µ)(rhw + µ),

d = βmπw
[
δ(rhw + µ) + bw(1− δ)(rlw + µ)

]
.
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The equilibrium point exists and is unique when R0 > 1.

3.3.6 Stability analysis of equilibrium points

Theorem 3.3.2.

The DFE is locally asymptotically stable when R0 > 1 and unstable when R0 < 1.

Proof.

To establish the local stability of DFE at E0, we use the Jacobian of the model evaluated at E0. The

Jacobian matrix for the system (3.11)-(3.17) is given by:

J =



−(βwI
∗
m + µ) 0 0 0 0 −βwS∗w 0

δβwI
∗
m −(rlw + µ) 0 0 0 δβwS

∗
w 0

(1− δ)βwI∗m 0 −(rhw + µ) 0 0 (1− δ)βwS∗w 0

0 rlw rhw −µ 0 0 0

0 −βmS∗m −βmbwS∗m 0 −(βm(I l∗w + bwI
h∗
w ) + µ) 0 0

0 βmS
∗
m βmbwS

∗
m 0 βm(I l∗w + bwI

h∗
w ) −(rm + µ) 0

0 0 0 0 0 rm −µ



.

The DFE is locally asymptotically stable if and only if all the roots of the characteristic equation are

negative or have negative real parts. Therefore either −(µ+ λ)4 = 0 i.e. λ1,2,3,4 = −µ or

λ3 + a1λ
2 + a2λ+ a3 = 0, (3.19)

where

a1 = (rlw + µ) + (rhw + µ) + (rm + µ),

a2 = (rlw + µ)(rhw + µ) + (rlw + µ)(rm + µ) + (rhw + µ)(rm + µ)− βmβwπmπw
µ2

(bw(1− δ) + δ),

a3 = (rlw + µ)(rhw + µ)(rm + µ)(1−R2
0).
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We analyze the roots of the characteristic equation (3.19) using Routh Hurwitz criterion to test the

stability of the DFE, so we need to show that a1 > 0, a3 > 0 and a1a2 − a3 > 0. The first inequality

is automatically satisfied. The second inequality, a3 > 0, holds if and only if R2
0 < 1, i.e R0 < 1.

We rewrite a2 in terms of R0 by considering

(rlw + µ)(rm + µ) = (rlw + µ)(rm + µ)(1−R2
0) + (rlw + µ)(rm + µ)R2

0,

(rhw + µ)(rm + µ) = (rhw + µ)(rm + µ)(1−R2
0) + (rhw + µ)(rm + µ)R2

0.

Now,

a2 = (rlw + µ)(rhw + µ) + (rlw + µ)(rm + µ) + (rhw + µ)(rm + µ)− βmβwπmπw
µ2

(bw(1− δ) + δ),

= (rlw + µ)(rhw + µ) +
(
(rlw + µ) + (rhw + µ)

)
(rm + µ)(1−R2

0)

+
(
δ(rhw + µ)Rl

m + (1− δ)(rlw + µ)Rh
m

)
(rm + µ)Rw, > 0, when R2

0 < 1⇒ R0 < 1.

Therefore

a1a2 − a3 = (rlw + µ)2(rhw + µ) + (rlw + µ)(rhw + µ)2 + (rlw + µ)(rhw + µ)(rm + µ)

+(rlw + µ)2(rm + µ)(1−R2
0) + ((rlw + µ) + (rhw + µ))(rm + µ)2(1−R2

0)

+((rlw + µ) + (rhw + µ))(rm + µ)(rhw + µ)(1−R2
0)

+(δ(rhw + µ)Rl
m + (1− δ)(rlw + µ)Rh

m)(rm + µ)(rlw + µ)Rw

+(δ(rhw + µ)Rl
m + (1− δ)(rlw + µ)Rh

m)(rm + µ)(rhw + µ)Rw

+(δ(rhw + µ)Rl
m + (1− δ)(rlw + µ)Rh

m)(rm + µ)2Rw > 0,when R2
0 < 1⇒ R0 < 1.

Since all the Routh-Hurwitz criterion conditions are satisfied when R2
0 < 1 ⇒ R0 < 1, then all the

eigenvalues of the Jacobian matrix J(E0) are negative or have negative real parts when R0 < 1. This

proves that E0 is locally asymptotically stable when R0 < 1.

Theorem 3.3.3.

The endemic equilibrium point E1 is locally asymptotically stable for R0 > 1.
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Proof.

Let βw be the bifurcation parameter so that when R0 = 1 the endemic and disease-free equilibrium

points coalesce. When R0 = 1, then

βw = β∗w =
µ2(rlw + µ)(rhw + µ)(rm + µ)

βmπmπw(bw(1− δ)(rlw + µ) + δ(rhw + µ))
. (3.20)

The characteristic equation of the Jacobian matrix when R0 = 1 becomes:

−λ(λ+ µ)4(λ2 + b1λ+ b2) = 0, where λ1 = 0, λ2,3,4,5 = −µ

and

λ2 + b1λ+ b2 = 0,

where

b1 = (rlw + µ) + (rhw + µ) + (rm + µ),

b2 = (rlw + µ)(rhw + µ) +
(
δ(rhw + µ)Rl

m + (1− δ)(rlw + µ)Rh
m

)
(rm + µ)Rw.

λ6 = −
(
b1
2

)
−

√(
b1
2

)2

− b2,

λ7 = −
(
b1
2

)
+

√(
b1
2

)2

− b2.

λ6,7 are the eigenvalues which are either negative or have negative real parts. We obtain a simple

eigenvalue λ1 = 0 and all other eigenvalues are negative or have negative real parts at R0 = 1.

This means that we can use center manifold theory which is associated with λ1 = 0 to establish the

stability of the endemic equilibrium point [29].

We denote

W = (w1, w2, w3, w4, w5, w6, w7)
>

as the right eigenvector associated with the zero eigenvalue λ1 = 0, where > is the transpose. To

find W , we use

(J(E0, β
∗
w))W = 0,
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where J(E0, β
∗
w) is the Jacobian matrix at the disease free equilibrium point when R0 = 1, where 0

is the zero vector. We solve the system of equations

−µw1 −
β∗wπw
µ

w6 = 0,

−(rlw + µ)w2 +
δβ∗wπw
µ

w6 = 0,

−(rhw + µ)w3 +
(1− δ)β∗wπw

µ
w6 = 0,

rlww2 + rhww3 − µw4 = 0,

−βmπm
µ

w2 −
βmbwπm

µ
w3 − µw5 = 0,

βmπm
µ

w2 +
βmbwπm

µ
w3 − (rm + µ)w6 = 0,

rmw6 − µw7 = 0,

to yield

W =

(
−β

∗
wπw
µ2

,
δβ∗wπw

µ(rlw + µ)
,
(1− δ)β∗wπw
µ(rhw + µ)

,
β∗wπw

(
rlwδ(r

h
w + µ) + rhw(1− δ)(rlw + µ)

)
µ2(rlw + µ)(rhw + µ)

,−rm + µ

µ
, 1,

rm
µ

)>
.

We denote the left eigenvector by V = (v1, v2, v3, v4, v5, v6, v7)
>. To find V, we use

V >(J(E0, β
∗
w)) = 0,

i.e

−µv1 = 0

−(rlw + µ)V2 + rlwv4 −
βmπm
µ

v5 +
βmπm
µ

v6 = 0,

−(rhw + µ)V3 + rhwv4 −
βmbwπm

µ
v5 +

βmbwπm
µ

v6 = 0,

−µv4 = 0,

−µv5 = 0,

−β
∗
wπw
µ

v1 −
δβ∗wπw
µ

v2 +
(1− δ)β∗wπw

µ
v3 − (rm + µ)v6 + rmv7 = 0,

−µv7 = 0.
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We obtain

V =

(
0,

βmπm
µ(rlw + µ)

,
βmbwπm
µ(rhw + µ)

, 0, 0, 1, 0

)>
.

Introducing the change of variables x1 = Sw, x2 = I lw, x3 = Ihw, x4 = Rw, x5 = Sm, x6 = Im and

x7 = Rm and letting X = (x1, x2, x3, x4, x5, x6, x7)
>, the equations (3.11)-(3.17) can be rewritten in

the form
dX

dt
= F (X), with F = (f1, f2, f3, f4, f5, f6, f7)

>, as follows:

dx1
dt

= f1 = πw − βwx6x1 − µx1,

dx2
dt

= f2 = δβwx6x1 − (rlw + µ)x2,

dx3
dt

= f3 = (1− δ)βwx6x1 − (rhw + µ)x3,

dx4
dt

= f4 = rlwx2 + rhwx3 − µx4,

dx5
dt

= f5 = πm − βm(x2 + bwx3)x5 − µx5,

dx6
dt

= f6 = βm(x2 + bwx3)x5 − (rm + µ)x6,

dx7
dt

= f7 = rmx6 − µx7.

The bifurcation coefficients, a and b are defined as

a =
7∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0), (3.21)

b =
7∑

k,i=1

vkwi
∂2fk
∂xi∂βw

(E0). (3.22)

Now, the non-zero partial derivatives of F at E0 are given by

∂2f2
∂x1∂x6

=
∂2f2
∂x6∂x1

= δβ∗w,
∂2f3
∂x1∂x6

=
∂2f3
∂x6∂x1

= (1− δ)β∗w,

∂2f6
∂x2∂x5

=
∂2f6
∂x5∂x2

= βm,
∂2f6
∂x3∂x5

=
∂2f6
∂x5∂x3

= bwβm.

To obtain a, we substitute the expressions above of the partial derivatives into equation (3.21). We
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get

a = 2v2w1w6
∂2f2
∂x1∂x6

+ 2v3w1w6
∂2f3
∂x1∂x6

+ 2v6w2w5
∂2f6
∂x2∂x5

+ 2v6w3w5
∂2f6
∂x3∂x5

= −2
β∗w
µ
β∗w
βmπmπw(δ(rhw + µ) + bw(1− δ)(rlw + µ))

µ2(rlw + µ)(rhw + µ)

−2β∗wβmπw(rm + µ)
(δ(rhw + µ) + bw(1− δ)(rlw + µ))

µ2(rlw + µ)(rhw + µ)

= −2(rm + µ)

(
βw∗

µ
+
rm + µ

πw

)
< 0.

For b, we take the partial derivatives of F that are non-zero partial derivatives at E0 which are

∂2f2
∂x6∂β∗w

= δx∗1,
∂2f3

∂x6∂β∗w
= (1− δ)x∗1. (3.23)

Substituting the expressions (3.23) into equation (3.22) we have

b = v2w6
∂2f2

∂x6∂β∗w
+ v3w6

∂2f3
∂x6∂β∗w

,

=
βmπmπw(δ(rhw + µ) + bw(1− δ)(rlw + µ))

µ2(rlw + µ)(rhw + µ)
> 0.

Since a < 0 and b > 0, it follows that the system will undergo a transcritical bifurcation at R0 = 1.

The type of transcrital bifurcation exhibited is supercritical bifurcation. In a supercritical bifurca-

tion there is an exchange of stability between the disease free equilibrium point and the endemic

equilibrium point that ensures that the endemic equilibrium point is locally asymptotically stable

when R0 > 1 [12].

3.3.7 Summary

We managed to obtain the disease- free equilibrium point. Using Routh Hurwitz criterion conditions,

we proved that it is locally asymptotically stable when R0 < 1. We managed to obtain the positivity

of endemic equilibrium point when R0 > 1. Using the center manifold theorem, the stability of

endemic equilibrium point was locally asymptotically stable when R0 > 1.
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We review some mathematical models on dynamics of HPV information. The model incorporated

states for HPV infection, low and high-risk HPV types to analyse the natural history of HPV infection

in men and women. HPV infection was used as a building block in the HPV-HIV co-infection. We

collapsed the two-sex model from the HPV model into one-sex model in the HPV-HIV co-infection

model because we assuming that the progression and infection of the disease is the same in males and

females. We concentrate more on individuals who are at high risk of HPV which is the most important

risk factor which associated with HIV. We adopt the HIV/AIDS models from other researchers to

review and analyse the natural history of HIV infection [11,34,52,53]. This will help us in set up of

some precedence towards the analysis of our study on HPV-HIV co-infection model.
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Chapter 4

MODEL FOR CO-INFECTION OF HPV

WITH HIV

4.1 Introduction

HPV and Human Immunodeficiency Virus (HIV) infection are sexually transmitted infections, and

there is evidence that the two infections are often found together [17]. Further evidence showed that

high risk HPV types are associated in patients with HIV infection and the acquired immunodeficiency

syndrome (AIDS) [21]. We collapsed the two-sex model from the HPV model into one-sex model

in the HPV-HIV co-infection model because we assuming that the progression and infection of the

disease is the same in males and females. We build up the core model of HPV-HIV co-infection

using the review of HPV model in chapter 3 and also the review of HIV/AIDS models from other

studies [11,34,52,53]. In this study, we seek to investigate the effects of the co-infection of HIV with

HPV and also by address the following research questions:

(i) By how much impact does HIV infection impact the natural history of HPV infection?
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(ii) By how much impact does HPV infection impact the natural history of HIV infection,

over a period of time?

4.2 Model formulation

Ip Ipv

AIv

RS

τλ1S

(1− τ)λ2S

rIp

α1Iv

σ2λ1Iv

λ2R

σ1λ2Ip

α2Ipv

(µ+ ξ)A

µS

µIp µIpv

µR

µIv

π

Figure 4.1: Flow chart for the co-infection of HPV with HIV. The arrow represent the flow of

individuals into and out of the compartment.

We develop a mathematical model of the co-infection of HPV with HIV infection by considering the

following compartments: susceptible individuals (S) who are vulnerable to both HPV and HIV, in-

fectious individuals with HPV infection only (Ip), infectious individuals with HIV infection only (Iv),

infectious individuals with both HPV and HIV infection (Ipv), AIDS individuals (A) and individuals
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recovered from HPV (R) but susceptible to HIV. We consider recruitment into the susceptible class

through sexual maturity since the two infections are mostly found in sexually active and mature in-

dividuals. We use constant recruitment π for entry into the susceptible compartment S. Individuals

leave the susceptible compartment either through natural death (at a rate µ) or through infection by

HPV or HIV and/or AIDS individuals. We assume that a susceptible individual can become infected

with HPV with a force of infection λ1 = β1Ip. τ is the proportion of susceptible individuals that are

infected by HPV only. We assume that 0 < τ < 1 so that at any particular moment, individuals

are either infected with HIV and/ or with HPV. The susceptible individuals are also infected by

HIV individuals with a force of infection λ2 = β2(Iv + ρ1Ipv + ρ2A). β1 is the rate of infection of

susceptible individuals by the infected HPV population and β2 is the rate of infection of susceptible

individuals by the HIV infected population. Thus, β1 is the probability of HPV transmission per

sexual contact and β2 is the probability of HIV transmission per sexual contact. We assume that

infection from individuals co-infected with both HPV and HIV have a higher probability of gener-

ating more new infections relative to infections coming from HIV individuals only, so that ρ1 > 1.

ρ1 is the modification factor of transmission rate for co-infection of HPV with HIV, in the HIV

transmission rate. We assume that the AIDS individuals have the highest probability of generating

new HIV infections compared to HIV infected individuals and co-infected individuals. Thus, ρ2 > 1

and ρ2 > ρ1 > 1. Where ρ2 is the modification factor of transmission rate for AIDS in the HIV

transmission rate. Individuals infected with HPV only will progress to the Ip compartment while

those infected with HIV only will move to the Iv compartment. Individuals from Ip compartment

progress to R through natural recovery from HPV at a rate r and also progressing to the co-infected

class Ipv with a force of infection λ3 = σ1λ2. We assume that σ1 > 1, since HPV infected individuals

are at a higher risk of getting HIV infection. Individuals from Iv compartment progresses to AIDS

(A) at a progression rate α1, or through HPV infection with a force of infection λ4 = σ2λ1. Since
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several studies showed that HIV positive individuals are at higher risk of HPV infection compared to

HIV negative individuals [21,54], we assume that σ2 > 1. Individuals from Ipv compartment move to

join AIDS class (A) through progression rate α2. We assume that individuals from Ipv class progress

to the HIV class after recovery from HPV and that the time taken to recover from HPV is small due

to the effects of HIV.
1

α1

is the average time spent by individuals in Iv and
1

α2

is the average time

spent by individuals in Ipv. Individuals in Iv are assumed to stay longer in their class than those

in Ipv. This means that
1

α1

>
1

α2

i.e α2 > α1. Individuals from A moves out of the compartment

through natural death (at a rate µ) or through the mortality associated with AIDS related illness

(at a rate ξ). R leaves the compartment through natural death (at a rate µ)or through progression

to the Iv class. Based on our model description and assumptions, we establish the following system

of non-linear ordinary differential equations:

dS

dt
= π − τλ1S − (1− τ)λ2S − µS, (4.1)

dIp
dt

= τλ1S − σ1λ2Ip − (µ+ r)Ip, (4.2)

dIv
dt

= (1− τ)λ2S − σ2λ1Iv − (µ+ α1)Iv + λ2R, (4.3)

dIpv
dt

= σ1λ2Ip + σ2λ1Iv − (µ+ α2)Ipv, (4.4)

dA

dt
= α1Iv + α2Ipv − (µ+ ξ)A, (4.5)

dR

dt
= rIp − (µ+ λ2)R. (4.6)

The total population is given by N(t) = S + Ip + Iv + Ipv + A+R.

4.2.1 Feasible region

For the system of equations (4.1)-(4.6), we need to prove for the positivity invariant and the bounded

of all the solutions of the system of equations with positive initial conditions will remain positive for
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all t ≥ 0. We define the feasible region to be

Ω = {(S, Ip, Iv, Ipv, A,R) ∈ R6
+ : S ≥ 0, Ip ≥ 0, Iv ≥ 0, Ipv ≥ 0, A ≥ 0, R ≥ 0, N ≤ π

µ
}.

Lemma 4.2.1.

The feasible region Ω is positively invariant.

Proof.

The positivity of solutions of systems of equations (4.1) to (4.6) is already shown in section 3.2.1

The rate of change of the total population, obtained by adding equations (4.1) to (4.6), is given by:

dN

dt
= π − µN − ξA (4.7)

≤ π − µN.

The solution of differential equation (4.7) is given by

N(t) ≤ N(0)e−µt +
π

µ
[1− e−µt].

As t→∞, 0 ≤ N(t) ≤ π

µ
. The lim

t→∞
N(t) =

π

µ
. This means that

π

µ
is the upper bound of N(t).

4.2.2 Disease free equilibrium point

The disease free equilibrium point is given by

E0 =

(
π

µ
, 0, 0, 0, 0, 0

)
.

4.2.3 Basic reproduction number R0

We first have to obtain the matrices Fi and V−i − V+
i = Vi.
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Fi =



τλ1S

(1− τ)λ2S + λ2R

σ1λ2Ip + σ2λ1Iv

0


, Vi =



(µ+ r)Ip + σ1λ2Ip

(µ+ α1)Iv + σ2λ1Iv

(µ+ α2)Ipv

(µ+ ξ)A− α1Iv − α2Ipv


.

The matrices, F = D(F(E0)), V = D(V(E0)), V
−1 and FV −1, are given by

F =



τβ1π

µ
0 0 0

0
(1− τ)β2π

µ

(1− τ)β2ρ1π

µ

(1− τ)β2ρ2π

µ

0 0 0 0

0 0 0 0


,

V =



(µ+ r) 0 0 0

0 (µ+ α1) 0 0

0 0 (µ+ α2) 0

0 −α1 −α2 (µ+ ξ)


,

V −1 =



1

µ+ r
0 0 0

0
1

µ+ α1

0 0

0 0
1

µ+ α2

0

0
α1

(µ+ α1)(µ+ ξ)

α2

(µ+ α2)(µ+ ξ)

1

µ+ ξ


,

FV −1 =



τβ1π

µ(µ+ r)
0 0 0

0
(1− τ)β2π((µ+ ξ) + α1ρ2)

µ(µ+ α1)(µ+ ξ)

(1− τ)β2π(ρ1(µ+ ξ) + α2ρ2)

µ(µ+ α2)(µ+ ξ)

(1− τ)β2ρ2π

µ(µ+ ξ)

0 0 0 0

0 0 0 0


.
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Remark 4.2.1. (1)
τβ1π

µ(µ+ r)
is the number of HPV cases that are caused by a single HPV indi-

vidual.

(2)
(1− τ)β2π((µ+ ξ) + α1ρ2)

µ(µ+ α1)(µ+ ξ)
is the number of HIV cases that are caused by a single HIV indi-

vidual.

(3)
(1− τ)β2π(ρ1(µ+ ξ) + α2ρ2)

µ(µ+ α2)(µ+ ξ)
is the number of HIV cases that are caused by a single co-infected

individual.

(4)
(1− τ)β2ρ2π

µ(µ+ ξ)
is the number of HIV cases that are caused by a single AIDS individual.

The characteristic equation of FV −1 is given by |FV −1 − λI| = 0 which yields

λ2
(

τβ1π

µ(µ+ r)
− λ
)(

(1− τ)β2π((µ+ ξ) + α1ρ2)

µ(µ+ α1)(µ+ ξ)
− λ
)

= 0.

Thus, the spectral radius ρ(FV −1) is given by

R0 = max{Rp, Rv},

where

Rp =

(
τβ1π

µ

)(
1

µ+ r

)
,

Rv =

(
(1− τ)β2π

µ

)(
1

µ+ α1

)
+ ρ2

(
(1− τ)β2π

µ

)(
α1

µ+ α1

)(
1

µ+ ξ

)
. (4.8)

Rv = Rvv+Rva, whereRvv =

(
(1− τ)β2π

µ

)(
1

µ+ α1

)
andRva = ρ2

(
(1− τ)β2π

µ

)(
α1

µ+ α1

)(
1

µ+ ξ

)
.

Rvv is the reproduction number due to HIV infected individuals and Rva is the reproduction number

due to AIDS individuals.

The terms Rp and Rv from the co-infection model coincide with single-infection basic reproduction

numbers for HPV and HIV when τ = 1 and τ = 0 respectively. The overall co-infection basic repro-

duction number, R0, is given by the maximum of Rp and Rv where Rp is the reproduction number

for the HPV infection and Rv is the reproduction number for the HIV infection.
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4.2.4 Analysis of R0

We want to look at the influences of parameters on the basic reproduction number R0. We compute

the partial derivative of R0 with respect to the parameters. We shall start by carrying out the

analysis on the reproduction number of HPV (Rp) i.e. differentiating Rp with respect to τ , β1 and r

respectively. The following partial derivatives are obtained

∂Rp

∂τ
=

β1π

µ(µ+ r)
> 0,

∂Rp

∂β1
=

τπ

µ(µ+ r)
> 0,

∂Rp

∂r
= − τβ1π

µ(µ+ r)2
< 0.

When either the proportion of susceptible that are infected with HPV (τ) and HPV infection trans-

mission probability per sexual contact (β1) are increased keeping other parameters at baseline levels

then the reproduction number of HPV (Rp) increases. This implies that they increase the endemicity

of the co-infection. The increase in HPV recovery rate (r) decreases value of threshold (Rp).

We take the partial derivatives of the reproduction number of HIV (Rv) with respect to τ , β2, ρ2, ξ

and α1 respectively. We obtain

∂Rv

∂τ
= −β2π[(µ+ ξ) + ρ2α1]

µ(µ+ α1)(µ+ ξ)
< 0,

∂Rv

∂β2
=

(1− τ)π[(µ+ ξ) + ρ2α1]

µ(µ+ α1)(µ+ ξ)
> 0,

∂Rv

∂ρ2
=

(1− τ)β2α1π

µ(µ+ α1)(µ+ ξ)
> 0,

∂Rv

∂ξ
= − (1− τ)β2ρ2α1π

µ(µ+ α1)(µ+ ξ)2
< 0,

∂Rv

∂α1

=
(1− τ)β2π[ρ2µ− (µ+ ξ)]

µ(µ+ α1)2(µ+ ξ)
.

From the partial derivatives above, an increase in the HIV infection transmission probability per

sexual contact (β2) and the modification of transmission rate for AIDS (ρ2) will results in an increase

in the reproduction number of HIV (Rv) which increases the endemicity of HIV in the community.
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While the increase in τ and the death rate due to AIDS (ξ) will result in a reduction in the threshold

Rv and reduces the endemicity of the HIV in the community. The effects of the progression rate

from HIV to AIDS (α1) is determined by
ρ2µ

µ+ ξ
− 1. When

ρ2µ

µ+ ξ
> 1 which means α1 will increase

the threshold Rv, while when
ρ2µ

µ+ ξ
< 1 will result in the reduction of Rv. Rp > Rv means that

there are more individuals who are infected with HPV compared with HIV and these individuals are

at risk of getting infected by HIV. The HPV infection reproduction number can be increased when

the rate of infection of susceptibles individuals increases and as a result the number of individuals

infected with HPV increases. The scenario can be made worse when the rate of recovery from HPV

infection is low. In this case a lot of the HPV infected individuals spend more time in the Ip class

where there are at high risk of contracting HIV. If Rv > Rp, then there are more individuals who

are infected with HIV than HPV. The key processes responsible for increasing Rv are the increase

in rate of HIV infection β2, the increase progression from HIV infected class to the AIDS class and

the increase in the intensity of infection by the AIDS individuals relative to other infectious classes.

The scenario can be made worse when the death rate due to AIDS is low and the proportion of those

getting infected with HPV is reduced.

The terms in the next generation can be explained as follows:

(i)
1

µ+ r
is the average times an individual spends in the infected class Ip.

(ii)
1

µ+ α1

is the average times an individual spends in the infected Iv.

(iii)
1

µ+ ξ
is the average times an individual spends in the AIDS class A.

(iv)
α1

µ+ α1

is the proportion of HIV individuals who develop AIDS by progressing from compart-

ment Iv to compartment A.

(v)

(
α1

µ+ α1

)(
1

µ+ ξ

)
is the proportion of HIV individuals who develop AIDS by progressing
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from compartment Iv to compartment A by the average times an individual spends in the

AIDS class A.

4.2.5 Stability analysis of the disease free equilibrium

Theorem 4.2.2.

The disease-free equilibrium point E0 of the model (4.1) to (4.6) is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof.

To establish the local stability of E0, we use the Jacobian matrix of the model evaluated at disease

free equilibrium (E0). Stability of this equilibrium point is then determined based on the eigenvalues

of the matrix for system (4.1) to (4.6) is given by J(E0) =

−µ −(µ+ r)Rp − (µ+α1)(µ+ξ)
((µ+ξ)+ρ2α1)

Rv −ρ1 (µ+α1)(µ+ξ)
((µ+ξ)+ρ2α1)

Rv −ρ2 (µ+α1)(µ+ξ)
((µ+ξ)+ρ2α1)

Rv 0

0 (µ+ r)(Rp − 1) 0 0 0 0

0 0 (µ+ α1)(
(µ+ξ)

((µ+ξ)+ρ2α1)
Rv − 1) ρ1

(µ+α1)(µ+ξ)
((µ+ξ)+ρ2α1)

Rv ρ2
(µ+α1)(µ+ξ)
((µ+ξ)+ρ2α1)

Rv 0

0 0 0 −(µ+ α2) 0 0

0 0 α1 α2 −(µ+ ξ) 0

0 0 0 0 0 −µ



.

The eigenvalues obtained from the characteristic polynomial of the matrix J(E0) are given by

λ1,2 = −µ < 0, λ3 = −(µ+ α2) < 0,

λ4 = −(µ+ r)(1−Rp) < 0,when Rp < 1,

and

λ2 + a1λ+ a2 = 0,
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where

a1 = [(µ+ ξ) + (µ+ α1)[1−
µ+ ξ

µ+ ξ + ρ2α1

Rv]] > 0, when Rv < 1 since 0 <
µ+ ξ

µ+ ξ + ρ2α1

< 1,

a2 = (µ+ α1)(µ+ ξ)(1−Rv) > 0, when Rv < 1.

Now,

λ5 = −a1
2
−
√(a1

2

)2
− a2 < 0,

λ6 = −a1
2

+

√(a1
2

)2
− a2 < 0,when Rv < 1.

λ5 < 0 and λ6 < 0 when Rv < 1. Since all the eigenvalues have negative real parts when both Rp < 1

and Rv < 1, the disease-free equilibrium point (E0) is locally asymptotically stable if and only if

R0 < 1 and unstable when R0 > 1.

Remark 4.2.2.

For R0 > 1, the following scenarios should hold

(i) Rp < 1 and Rv > 1. In this case, a2 > 0 making at least one eigenvalue to be positive.

The disease-free equilibrium point becomes a saddle point, which renders it unstable. This is a

scenario where HIV is the dominant infection in the co-infection.

(ii) Rp > 1 and Rv < 1. We also have at least one eigenvalue positive. Again, the equilibrium point

is a saddle point where HPV infection progress but HIV infection is suppressed.

(iii) Rp > 1 and Rv > 1. We have at least two positive eigenvalues and both HIV and HPV infections

are prevalent.
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4.2.6 Endemic equilibrium point

We define

G∗∗ = β1I
∗∗
p , (4.9)

H∗∗ = β2(I
∗∗
v + ρ1I

∗∗
pv + ρ2A

∗∗). (4.10)

The system of equations (4.1) to (4.6) at endemic equilibrium point can be simplified in terms of G∗∗

and H∗∗ to give

E1 = (S∗∗, I∗∗p , I
∗∗
v , I

∗∗
pv , A

∗∗, R∗∗),

where

S∗∗ =
π

τG∗∗ + (1− τ)H∗∗ + µ
, (4.11)

I∗∗p =
τG∗∗π

(σ1H∗∗ + (µ+ r))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.12)

I∗∗v =
πK0H

∗∗

(µ+H∗∗)(σ2G∗∗ + (µ+ α1))(σ1H∗∗ + (µ+ r))(τG∗∗ + (1− τ)H∗∗ + µ)
(4.13)

I∗∗pv =
πG∗∗H∗∗[τσ1(µ+H∗∗)(σ2G

∗∗ + (µ+ α1)) + σ2K0]

K1(µ+H∗∗)(σ2G∗∗ + (µ+ α1))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.14)

A∗∗ =
πH∗∗[K0[α1(µ+ α2) + α2σ2G

∗∗] + α2τσ1G
∗∗(µ+H∗∗)(σ2G

∗∗ + (µ+ α1))]

K1(µ+ ξ)(µ+H∗∗)(σ2G∗∗ + (µ+ α1))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.15)

R∗∗ =
rτG∗∗π

(σ1H∗∗ + (µ+ r))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.16)

and

K0 = (1− τ)(µ+H∗∗)(σ1H
∗∗ + (µ+ r)) + rτG∗∗,

K1 = (µ+ α2)(σ1H
∗∗ + (µ+ r)).

The positive endemic equilibrium of system (4.1)-(4.6) can be obtained by solving for the fixed

points of G∗∗ and H∗∗ in equations (4.9) and (4.10) and substituting the results into equations

(4.11)-(4.16) [53,55,56]. The expressions of G∗∗ and H∗∗ are given by

G∗∗ =
τβ1πG

∗∗

(σ1H∗∗ + (µ+ r))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.17)

55



H∗∗ =
β2πH

∗∗[K0(µ+ α2)[(µ+ ξ) + ρ2α1] +K2G
∗∗]

K1(µ+ ξ)(µ+H∗∗)(σ2G∗∗ + (µ+ α1))(τG∗∗ + (1− τ)H∗∗ + µ)
, (4.18)

where K2 = (ρ1(µ+ ξ) + ρ2α2)[σ2K0 + τσ1(µ+H∗∗)(σ2G
∗∗ + (µ+ α1))].

We define  G∗∗

H∗∗

 = f(G,H) =

 f1(G,H)

f2(G,H)

 ,

where f1(G,H) and f2(G,H) are defined as the right hand sides of equations (4.17) and (4.18) respec-

tively. Clearly, G∗∗ = 0 and H∗∗ = 0 is a fixed point of f1(G,H) and f2(G,H) which corresponds to

the disease free equilibrium point E0. We proceed to derive conditions which show that f has a unique

nonzero fixed point corresponding to the positive endemic equilibrium point whose coordinates are

the equations (4.1)-(4.6). For a fixed H > 0, we consider the real valued function

fH1 (G) =
τβ1πG

(σ1H + (µ+ r))(τG+ (1− τ)H + µ)
.

Since fH1 (0) = 0 and lim
G→∞

fH1 (G) =
β1π

σ1H + (µ+ r)
<∞, then 0 ≤ fH1 (G) < ∞. This means that

fH1 (G) is bounded for all fixed H > 0.

Now

∂fH1 (G)

∂G
=

τβ1π[(1− τ)H + µ]

(σ1H + (µ+ r))(τG+ (1− τ)H + µ)2
> 0,

∂2fH1 (G)

∂G2
= − 2τ 2β1π[(1− τ)H + µ]

(σ1H + (µ+ r))(τG+ (1− τ)H + µ)3
< 0.

This shows that fH1 (G) is an increasing concave down function which has no change in convexity [32].

Thus, there exist a unique positive G∗∗ such that fH1 (G∗∗) = G∗∗.

Substituting G∗∗ into the function f2(G,H) yields the function

fG
∗∗

2 (H) =
β2πH[K0(µ+ α2)[(µ+ ξ) + ρ2α1] +G∗∗K2]

K1(µ+ ξ)(µ+H)(σ2G∗∗ + (µ+ α1))(τG∗∗ + (1− τ)H + µ)
.
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fG
∗∗

2 (0) = 0 and

lim
H→∞

fG
∗∗

2 (H) =
σ1(1− τ)(µ+ α2)[(µ+ ξ) + ρ2α1] + σ1σ2G

∗∗(1− τ)[ρ1(µ+ ξ) + ρ2α2]

σ1(1− τ)(µ+ ξ)(µ+ α2)(σ2G∗∗ + (µ+ α1))
<∞.

Thus, 0 ≤ fG
∗∗

2 (H) <∞.

Let

fG
∗∗

2 (H) =
β2πH[ψ1H

2 + ψ2H + ψ3]

ψ4H3 + ψ5H2 + ψ6H + ψ
,

where

ψ1 = σ1(1− τ)(µ+ α2)[(µ+ ξ) + ρ2α1] + σ1σ2G
∗∗(1− τ)[ρ1(µ+ ξ) + ρ2α2],

ψ2 = (1− τ)(µ+ α2)[µσ1 + (µ+ r)][(µ+ ξ) + ρ2α1] + σ2G
∗∗(1− τ)[µσ1

+ (µ+ r)][ρ1(µ+ ξ) + ρ2α2] + τσ1G
∗∗(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2],

ψ3 = σ2G
∗∗[µ(1− τ)(µ+ r) + rτG∗∗](ρ1(µ+ ξ) + ρ2α2) + µτσ1G

∗∗(σ2G
∗∗

+ (µ+ α1))[ρ1(µ+ ξ) + ρ2α2] + [µ(1− τ)(µ+ r) + rτG∗∗](µ+ α2)[(µ+ ξ) + ρ2α1],

ψ4 = σ1(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1)),

ψ5 = (µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[µσ1(1− τ) + µσ1 + σ1τG

∗∗ + (1− τ)(µ+ r)],

ψ6 = [µ2σ1 + µσ1τG
∗∗ + µ(1− τ)(µ+ r) + (µ+ r)(τG∗∗ + µ)](µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1)),

ψ7 = µ(µ+ r)(τG∗∗ + µ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1)).

The partial derivative of fG
∗∗

2 (H) with respect to H is given by
∂fG

∗∗
2 (H)

∂H
=

β2π[(ψ1ψ5 − ψ2ψ4)H
4 + 2(ψ1ψ6 − ψ3ψ4)H

3 + (3ψ1ψ7 + ψ2ψ6 − ψ3ψ5)H
2 + 2ψ2ψ7H + ψ3ψ7]

(ψ4H3 + ψ5H2 + ψ6H + ψ7)2
.

∂fG
∗∗

2 (H)

∂H
> 0 when

(i)
ρ1α1

α2

> 1, (4.19)

(ii) (µ+ α1) < 1, (4.20)
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The conditions (i) and (ii) hold if

(a) ψ1ψ5 − ψ2ψ4 > 0 (b) ψ1ψ6 − ψ3ψ4 > 0 (c) ψ2ψ6 − ψ3ψ5 > 0.

The detailed calculation of positivity of condition (a) are given in appendix A1 where condition (a)

reduces to

σ2
1τG

∗∗(1− τ)(µ+ α2)(µ+ ξ)(σ1G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1][α2 − α1] > 0,

since α2 > α1.

The detailed calculation of positivity of condition (b) are given in appendix A2 where condition (b)

reduces to

µσ1G
∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2][µσ2 − σ1τ(µ+ α1)] > 0.

We require that µσ2 − σ1τ(µ+ α1) > 0, that is
µσ2

τ(µ+ α1)
> 1, where (µ+ α1) < 1.

The detailed calculation of positivity of condition (c) are given in appendix A3 and condition (c)

holds if the following expressions are positive. We require µ(ρ1 − 1) + (ρ1α1 − α2) > 0, therefore

ρ1 > 1 and
ρ1α1

α2

> 1.

We also require that
µσ2
τ

> (µ+ α1) and
µσ2
τ

>
σ1

1− τ
> 1 and these inequalities reduces to (µ+ α1) < 1.

Condition (c) holds if the inequalities (4.19) and (4.20) holds.

Clearly conditions (a), (b) and (c) reduces to conditions (i) and (ii), which are necessary for
∂fG

∗∗
2

∂H
(H) > 0.

The second partial derivative of fG
∗∗

2 (H) with respect to H is given by

∂2fG
∗∗

2 (H)

∂H2
= −2β2π[a1H

6 + a2H
5 + a3H

4 + a4H
3 + a5H

2 + a6H + a7]

(ψ4H3 + ψ5H2 + ψ6H + ψ7)3
< 0,
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where

a1 = ψ4(ψ1ψ5 − ψ2ψ4),

a2 = 3ψ4(ψ1ψ6 − ψ3ψ4),

a3 = 2ψ4(3ψ1ψ7 + ψ2ψ6 − ψ3ψ5) + ψ4(ψ2ψ6 − ψ3ψ5),

a4 = 7ψ7(ψ1ψ5 + ψ2ψ4) + 3ψ5(ψ2ψ6 − ψ3ψ5)− ψ6(ψ1ψ6 − ψ3ψ4),

a5 = 6ψ3ψ4ψ7 + 3ψ7(ψ2ψ5 − ψ1ψ6),

a6 = 3ψ7(ψ3ψ4 − ψ1ψ7) > 0, (see appendix A5),

a7 = ψ7(ψ3ψ6 − ψ2ψ7) > 0, (see appendix A6).

∂2fG
∗∗

2 (H)

∂H2
< 0 when a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a5 > 0.

If the conditions in inequalities (4.19) and (4.20) holds then a1 > 0, a2 > 0 and a3 > 0.

a4 > 0, if in an addition to condition in inequalities (4.19) and (4.20),

3ψ5(ψ2ψ6 − ψ3ψ5)

ψ6(ψ1ψ6 − ψ3ψ4)
> 1. (4.21)

a5 > 0, when inequality (4.19) hold, see appendix A4.

This shows that fG
∗∗

2 (H) is an increasing concave down function which has no change of convexity.

Thus, there exist a unique positive H∗∗ such that fG
∗∗

2 (H∗∗) = H∗∗ > 0, when conditions (4.19),

(4.20) and (4.21) are satisfied.

(G∗∗, H∗∗) is a fixed point of f which corresponds to an endemic state E∗∗ of the model. For stability

of (G∗∗, H∗∗), we require that |f ′(G∗∗, H∗∗)| < 1 and for instability we require that |f ′(G∗∗, H∗∗)| > 1.

The Jacobian of f at (G∗∗, H∗∗) is given by

J∗∗ =

 ∂f1(G,H)
∂G

|(G∗∗,H∗∗)
∂f1(G,H)

∂H
|(G∗∗,H∗∗)

∂f2(G,H)
∂G

|(G∗∗,H∗∗)
∂f2(G,H)

∂H
|(G∗∗,H∗∗)

 ,
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where

∂f1(G,H)

∂H
|(G∗∗,H∗∗) = −τβ1πG

∗∗[σ1(τG
∗∗ + (1− τ)H∗∗ + µ) + (1− τ)(σ1H

∗∗ + (µ+ r))]

(σ1H∗∗ + (µ+ r))2(τG∗∗ + (1− τ)H∗∗ + µ)2
< 0.

Let

f2(G
∗∗, H∗∗) =

β2πH
∗∗[φ1G

∗∗2 + φ2G
∗∗ + φ3]

φ4G∗∗2 + φ5G∗∗ + φ6

,

where

φ1 = σ2τ [r + σ1(µ+H∗∗)][ρ1(µ+ ξ) + ρ2α2],

φ2 = [ρ1(µ+ ξ) + ρ2α2][σ2(1− τ)(µ+H∗∗)(σ1H
∗∗ + (µ+ r))

+ τσ1(µ+H∗∗)(µ+ α1)] + rτ(µ+ α2)[(µ+ ξ) + ρ2α1],

φ3 = K1(1− τ)(µ+H∗∗)[(µ+ ξ) + ρ2α1],

φ4 = τσ2K1(µ+ ξ)(µ+H∗∗),

φ5 = K1(µ+ ξ)(µ+H∗∗)[σ2(1− τ)H∗∗ + µσ2 + τ(µ+ α1)],

φ6 = K1(µ+ α1)(µ+ ξ)(µ+H∗∗)((1− τ)H∗∗ + µ).

The partial derivative of f2(G,H) with respect to G is given by

∂f2
∂G
|(G∗∗,H∗∗) =

β2πH[(φ1φ5 − φ2φ4)G
2 + 2(φ1φ6 − φ3φ4)G+ (φ2φ6 − φ3φ5)]

(φ4G2 + φ5G+ φ6)2
> 0.

∂f2
∂G
|(G∗∗, H∗∗) > 0 when

(i)
ρ1α1

α2

> 1, (4.22)

(ii)
σ1α1

(1− τ)α2

> 1. (4.23)

∂fH
∗∗

2

∂G
> 0, when the following conditions holds.

(a) φ1φ5 − φ2φ4 > 0,
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(b) φ1φ6 − φ3φ4 > 0,

(c) φ2φ6 − φ3φ5 > 0.

From condition (a)

φ1φ5 − φ2φ4 = τµσ2
2K1(µ+H∗∗)2(µ+ ξ)[ρ1(µ+ ξ) + ρ2α2][σ1 − (1− τ)]

+ rτ 2σ2K1(µ+ ξ)2(µ+H∗∗)[ρ1(µ+ α1)− (µ+ α2)] > 0.

Since σ1 > 1 and (1− τ) < 1, σ1 − (1− τ) > 0.

Since ρ1 > 1, ρ1(µ+ α1)− (µ+ α2) > 0, reduces to µ(ρ1 − 1) > 0, and
ρ1α1

α2

> 1.

From condition (b), we have

φ1φ6 − φ3φ4 = µσ2τK1(µ+ ξ)2(µ+H∗∗)2[σ1(µ+ α1)− (1− τ)(µ+ α2)]

+ τσ1σ2K1H
∗∗(1− τ)(µ+ ξ)2(µ+H∗∗)2[ρ1(µ+ α1)− (µ+ α2)]

+ rτσ2K1H
∗∗(1− τ)(µ+ ξ)2(µ+H∗∗)[ρ1(µ+ α1)− (µ+ α2)]

+ rτµσ2K1ρ2(µ+ ξ)(µ+H∗∗)[α2(µ+ α1)− α1(µ+ α2)].

Condition (b) holds if
ρ1α1

α2

> 1 and
σ1α1

(1− τ)α2

> 1.

Condition (c) is given by

φ2φ6 − φ3φ5 = σ2K1H
∗∗(1− τ)2(µ+H∗∗)2(µ+ ξ)2(σ1H

∗∗ + (µ+ r))[ρ1(µ+ α1)− (µ+ α2)]

+ µσ2K1(1− τ)(µ+ ξ)2(µ+H∗∗)2(σ1H
∗∗ + (µ+ r))[ρ1(µ+ α1)− (µ+ α2)]

+ τσ1K1H
∗∗(1− τ)(µ+ α1)(µ+ ξ)2(µ+H∗∗)2[ρ1(µ+ α1)− (µ+ α2)].

Condition (c) holds if
ρ1α1

α2

> 1. The eigenvalues from the Jacobian matrix are given by the charac-

teristic equation

λ2 − λ
(
∂f1
∂G

+
∂f2
∂H

) ∣∣∣∣(G∗∗,H∗∗) +

(
∂f1
∂G

∂f2
∂H
− ∂f1
∂H

∂f2
∂G

)∣∣∣∣
(G∗∗,H∗∗)

= 0. (4.24)
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Since
∂f1
∂G
|(G∗∗,H∗∗) > 0 and

∂f2
∂H
|(G∗∗,H∗∗) > 0, then

(
∂f1
∂G

+
∂f2
∂H

)
|(G∗∗,H∗∗) > 0 when

ρ1α1

α2

> 1 and

(µ+ α1) < 1.

∂f1
∂H
|(G∗∗,H∗∗) < 0 and

∂f2
∂G
|(G∗∗,H∗∗) > 0, then

(
∂f1
∂G

∂f2
∂H
− ∂f1
∂H

∂f2
∂G

)
|(G∗∗,H∗∗), yields

Aτβ1π[(1− τ)H∗∗ + µ](φ4G
∗∗2 + φ5G

∗∗ + φ6)
2(σ1H

∗∗ + (µ+ r)) +BC(ψ4H
∗∗3 + ψ5H

∗∗2 + ψ6H
∗∗ + ψ7)

2

(σ1H∗∗ + (µ+ r))2(τG∗∗ + (1− τ)H∗∗ + µ)2(ψ4H∗∗3 + ψ5H∗∗2 + ψ6H∗∗ + ψ7)2(φ4G∗∗2 + φ5G∗∗ + φ6)2
,

such that

(
∂f1
∂G

∂f2
∂H
− ∂f1
∂H

∂f2
∂G

)
|(G∗∗,H∗∗) > 0, where

A = β2π[(ψ1ψ5 − ψ2ψ4)H
∗∗4 + 2(ψ1ψ6 − ψ3ψ4)H

∗∗3 + (3ψ1ψ7 + ψ2ψ6 − ψ3ψ5)H
∗∗2

+ 2ψ2ψ7H
∗∗ + ψ3ψ7],

B = β2πH
∗∗[(φ1φ5 − φ2φ4)G

∗∗2 + 2(φ1φ6 − φ3φ4)G
∗∗ + (φ2φ6 − φ3φ5)],

C = τβ1πG
∗∗[σ1(τG

∗∗ + (1− τ)H∗∗ + µ) + (1− τ)(σ1H
∗∗ + (µ+ r))].(

∂f1
∂G

∂f2
∂H
− ∂f1
∂H

∂f2
∂G

)
|(G∗∗,H∗∗) > 0 when

ρ1α1

α2

> 1,
σ1α1

(1− τ)α2

> 1 and (µ+ α2) < 1.

The characteristic equation (4.24) has two positive eigenvalues which are given by

D1 =
1

2

(∂f1
∂G

+
∂f2
∂H

)
+

√(
∂f1
∂G
− ∂f2
∂H

)2

+ 4
∂f1
∂H

∂f2
∂G

 ,
and

D2 =
1

2

(∂f1
∂G

+
∂f2
∂H

)
−

√(
∂f1
∂G
− ∂f2
∂H

)2

+ 4
∂f1
∂H

∂f2
∂G

 .
The fact that det(J∗∗) > 0 implies that∣∣∣∣∂f1∂G

+
∂f2
∂H

∣∣∣∣ >

√(
∂f1
∂G
− ∂f2
∂H

)2

+ 4
∂f1
∂H

∂f2
∂G

,(
∂f1
∂G

+
∂f2
∂H

)2

>

(
∂f1
∂G
− ∂f2
∂H

)2

+ 4
∂f1
∂H

∂f2
∂G

,

∂f1
∂G

∂f2
∂H
− ∂f1
∂H

∂f2
∂G

> 0.

Thus, both D1 > 0 and D2 > 0. Since D1 = ρ(J(G∗∗, H∗∗)) is the dominant eigenvalue of the

Jacobian matrix, then the fixed point (G∗∗, H∗∗) is locally asymptotically stable when the dominant

eigenvalue D1 < 1 and unstable when D1 > 1. We summarize this result in the following theorem.
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Theorem 4.2.3.

The endemic equilibrium point E1 is locally asymptotically stable if D1 < 1 and unstable if D1 > 1.

Remark 4.2.3.

When the fixed point (G∗∗, H∗∗) = (0, 0), then

D1 =
1

2

[
(Rp +Rv) +

√
(Rp −Rv)2

]
= Rp, thus D1 = Rp and the fixed point is stable when Rp < 1

and unstable when Rp > 1, while

D2 =
1

2

[
(Rp +Rv)−

√
(Rp −Rv)2

]
= Rv, thus, D2 = Rv, and the equilibrium point is stable

when Rv < 1 and unstable when Rv > 1. Since
∂f1
∂G
|(0,0) = Rp,

∂f2
∂H
|(0,0) = Rv,

∂f1
∂H
|(0,0) = 0 and

∂f2
∂G
|(0,0) = 0. Therefore when (G∗∗, H∗∗) = (0, 0) then Di = R0 = max{Rp, Rv}, where the equilib-

rium point is stable when R0 < 1 and unstable when R0 > 1.

4.2.7 Summary

The positivity of the endemic equilibrium point is obtained by showing that f has a unique non-zero

fixed point. Since 0 < fH1 (G) < ∞,
∂fH1 (G)

∂G
> 0 and

∂2fH1 (G)

∂G2
< 0, which shows that there exist

a unique positive G∗∗, such that fH1 (G∗∗) = G∗∗ > 0. While 0 < fG
∗∗

2 (H) < ∞,
∂fG

∗∗
2 (H)

∂H
> 0 and

∂2fG
∗∗

2 (H)

∂H2
< 0, which shows that there exist unique positive H∗∗, such that fG

∗∗
2 (H∗∗) = H∗∗ > 0.

The stability of (G∗∗, H∗∗) is asymptotically stable when Di < 1, where i = 1, 2 and unstable when

Di > 1.
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Chapter 5

NUMERICAL SIMULATIONS

5.1 Introduction

In this chapter, we are going to enhance the understanding of the theoretical results by carrying out

numerical simulations of a co-infection of HPV with HIV system of equations (4.1)-(4.6). We use

the parameter values from authentic literature which are suitable to represent our model situations.

Numerical results will help to draw important conclusions and to also give an understanding of the

effects of HIV infection alone, HPV infection alone as well as both infections in the community. We

illustrate the simulation results using graphs which shows the trends of each of the variables over a

period of time.

5.1.1 Parameter estimations

In this section, we estimate the parameters used in the system of equations (4.1)-(4.6) in order to

carry out numerical simulations. The parameter values are given in Table 5.1. The parameter π

which represents the constant recruitment rate, models the inflow of uninfected population into a
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risk susceptible sexually mature and active community. The population recruited into the community

must be at least 15 years old. This parameter is estimated based on the HPV and HIV transmission

data in the heterosexual community. We use HPV data from HPV Information Center of South

Africa of 2010 where the total population of males and females who are aged 15 years and above was

32,773,000 [2]. π = 642, 608 was the population aged 15 years and above in South Africa per year.

We estimate the natural death, calculated as the reciprocal of life expectancy. The life expectancy

of South Africa is estimated to be in the range [50, 53] years [2]. Thus µ ∈
[

1

53
,

1

50

]
per year. β1 is

the infectivity rates of successful HPV transmission per sexual contact, and is in the interval [0, 5]

per year [6]. The rate at which susceptible individuals are infected by HPV is given by τ , which is

governed by 0 < τ < 1. The natural recovery rate from HPV infection is estimated to be in the

range 0.036 ≤ r ≤ 1.6 per year [1, 57]. β2, the infectivity rates of successful HIV transmission per

sexual contact is assumed to be in the interval β2 ∈ (0, 1) per year [56]. The rate of progression of

HIV infected individuals to AIDS is α1 = 0.116 [34].
1

α1

is the average time spent by individuals

in Iv and
1

α2

is the average time spent by individuals in Ipv. Individuals in Iv are assumed to stay

longer in their class than those in Ipv. This means that
1

α1

>
1

α2

i.e α2 > α1. The death rate due to

AIDS is given by ξ and assumes a value of ξ = 0.43 per year [2].

When estimating the initial values for the numerical simulations, we use the total population of South

Africa of population aged 15 years and above using 2010 population. The initial population is given

by the range [14.6%, 22.3%] of south African population aged 15 years and above are infected with

HPV [2]. Thus, Ip(0) = 0.21× 32, 773, 000 = 6, 882, 330. Estimated number of adults population of

South Africa with 15 years and above living with HIV is given by the range [4,700,000, 6,200,000] [2].

Thus, Iv(0) = 5, 400, 000. We consider the initial population of co-infection of HPV with HIV to be

zero, of AIDS to be zero and of recovered from HPV to be zero. Thus, Ipv(0) = A(0) = R(0) = 0.
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The susceptible population is then calculated as S(0) = N(0)− (Ip(0) + Iv(0)) = 20, 490, 670.

5.1.2 Simulations

Parameter values used in this study are given in the Table 5.1. In order to get insight on the

predictions of our theoretical results and make projection of public healthy interests, we carry out

numerical simulations using the hybrid Runge-Kutta method of order 4 and 5 using MATLAB. We

seek to address the following hypotheses:

(i) By how much impact does HIV infection impact the natural history of HPV infection,

(ii) By how much impact does HPV infection impact the natural history of HIV infection,

over a period of 20 years. We would like to examine first the effects of considering that the recovered

individuals from HPV are careful not to indulge in risk of sexual activities again and thus will not

be at risk of contracting HIV. Figure 5.1-5.5 shows the dynamics of co-infection of HPV with HIV

reflecting this scenario.

Table 5.1: Variables and parameters for HIV and HPV co-infection

Parameter Description Estimated value/range Reference
π Human recruitment rate 642,608 yr−1 [2]
τ Proportion of susceptible that are infected with HPV 0 < τ < 1 yr−1 see text
β1 HPV infection transmission probability per sexual contact [0, 5] yr−1 [6]
β2 HIV infection transmission probability per sexual contact 0 ≤ β2 ≤ 1 yr−1 [56]
r Rate recovery from HPV infection [0.036, 1.6] yr−1 [1, 57]
σ1 Progression rate of HIV infection to co-infection class σ1 > 1 yr−1 see text
σ2 Progression rate of HPV infection to co-infection class σ2 > 1 yr−1 see text
ξ Death rate due to AIDS 0.43 yr−1 [2]
α1 Rate of progression from HIV to AIDS 0.116 yr−1 [34]
α2 Rate of progression from co-infection to AIDS α2 > 0.116 yr−1 see text
µ Natural death rate 1

51 yr−1 [2]
ρ1 Modification factor of transmission rate for co-infection ρ1 > 1 yr−1 see text
ρ2 Modification factor of transmission rate for AIDS ρ2 > ρ1 yr−1 see text

Figure 5.1-5.5 shows the simulation results which illustrate the dynamics of HPV-HIV co-infections.

Figure 5.1 is the control of our simulation results which shows the effects of both infections at the
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Figure 5.1: HIV and HPV infections dynamics when both infections are introduced at the same
time.Using the parameters: π = 642608, β1 = 1.7 × 10−8, β2 = 1.6 × 10−8, τ = 0.45, σ1 = 1.015,
σ2 = 1.09, r = 0.056, ρ1 = 1.112, ρ2 = 1.12, α1 = 0.116, α2 = 0.2, ξ = 0.43, µ = 0.01961

same time. In figure 5.2 and 5.3 illustrate the effects when we start with one infection and introduce

another infection after 2 years. The effects will show the changes after 2 years. We acknowledge that

using different times of introducing co-infection may lead to changes in the peaks but the qualitative

nature of the curves will be maintained. In figure 5.2, HPV infection is a predominant in the system

while HIV infection is not participating in the system of HPV-HIV co-infection. In figure 5.4, HPV

individuals were presents in the system but HPV infection were not participating in the co-infection

of HPV with HIV.

Figure 5.1 illustrates the scenario of introducing both infections (HPV and HIV) in the system at

the same time. The HIV only population generally increases slowly to peak around 10 years after

which it decreases steadily. The co-infection population increases to peak earlier than the HIV only

population peaks within 6 to 8 years and decreases slowly until reaches its equilibrium. The suscep-
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tibles population decreases significantly until it reaches its equilibrium. The HPV only population

decreases slowly within 4 to 6 years and decreases rapidly when the co-infection population reaches

its peak. The AIDS population steadily increases to peak within 8 to 9 years and there after it

decreases gradually. The recovered individuals grows slowly over time.

Figure 5.2: Simulation graph results showing the trends of compartments when we starts by switching
off HIV infection and switch on after 2 years, i.e β2 = 0 and σ1 = 0. Using the parameters given in
figure 5.1.

In Figure 5.2, we examine the effects of introducing HIV infection into a predominantly HPV in-

fection. We introduce HIV infection hypothetically 2 years after HPV infection has established in

the community. HIV infection will controlling the dynamics of the HPV-HIV co-infection. Initially,

the susceptible population decreases steadily within the first 2 years but sharply when HIV infection

is introduced. The HIV only population decreases rapidly within 2 years but there after slightly

increases reach its peak around 12 years after which it decreases slowly to finally reach its equilib-

rium. Within the first 2 years, HIV individuals were present in the system but HIV infection were
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not participating in the co-infection. The peak of HIV only population is delayed compared to the

scenario in Figure 5.1. In the initial stage of HPV only population, we observe a slight increase in

HPV infections because HPV infection is the only infection dominating in the system. After 2 years

when HIV infection becomes active, HPV only population decreases slowly within 8 to 10 years and

further decreases when the co-infection population reaches its peak. The co-infection population

initially increases slowly within the first 2 years but increases faster after HIV is active in the pop-

ulation. The AIDS population increases slowly before 2 years, and there after increases to a peak

around 12 years. The recovered individuals increases slowly before and after 2 years. In this case,

we observe that the co-infection can rise above the HIV only population, the recovered population

grows to levels above the AIDS population.

Figure 5.3: Simulation graph results shows the effects of starting by switching off HPV infection and
switch on after 2 years, i.e β1 = 0 and σ1 = 0. Using the parameters given in figure 5.1.

Figure 5.3 shows the effects of introducing HPV infection after 2 years into the community pre-
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dominantly HIV infected. The graph shows the distribution of individuals before and after 2 years in

all classes. The dynamics will be controlled by HPV infection. The susceptible population decreases

slowly within 2 years and thereafter faster decreases faster. The HIV only population increases within

2 years, after which it slightly drops due to the introduction of HPV and then increases slowly again

until it takes its peak within 10 to 12 years. HPV only population decreases continuously before

and after 2 years. HPV individuals were also present within the first 2 years, but HPV infection

were not participating in the co-infection. After 2 years, the co-infection population increases but to

levels below the HIV only population. The AIDS population increases to levels above the recovered

population. In this case the HIV only population reaches an equilibrium that is higher than the

equilibrium in Figure 5.1 and 5.2.

Figure 5.4: Shows the impact of HIV alone, i.e by taking β1 = 0. Using the parameters given in
figure 5.1.

Figure 5.4 illustrates the impact of dominant HIV infection in the system by taking HPV infec-
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tion transmission probability per sexual contact to be zero after HIV infection has once established

itself in the community. The HPV population rapidly decreases and ultimately diminishes to zero.

HPV population were present in the system but HPV infection were not active in the co-infection.

The susceptible population gradually decreases while the HIV only population increases more than

the case in Figure 5.1, 5.2 and 5.3. The co-infection population does not grow to higher levels than

those in Figure 5.1, 5.2 and 5.3.

Figure 5.5: The impact of HPV alone i.e when β2 = 0. Using the parameters given in figure 5.1.

Figure 5.5 illustrate the impact of dominant HPV infection in the system by switching off HIV

infection, after HPV infection has once establish itself in the community. We observe an increase in

HPV only population and recovered population over time whilst the susceptible population decreases

slowly with time. HIV and AIDS population diminishes within a short time period. HIV population

were there in the system but HIV infection were not active in the co-infection. The co-infection
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population grows as much as the case when HIV infection only in the system.

Figure 5.6: HIV and HPV infections dynamics when both infections are introduced at the same
time.Using the parameters given in figure 5.1.

We proceed to investigate the scenario where recovered individuals from HPV participate in the

HIV dynamics. In this case, recovering from HPV does not protect an individual from contracting

HIV infection. Figures 5.6-5.10 exhibit various cases of this scenario.

In Figures 5.6-5.9, we observe the occurrence of higher peaks in HIV only population, co-infection

and AIDS population than in Figure 5.1-5.4 respectively. In Figures 5.6-5.9, the recovered population

do not grow as much as in Figures 5.1- 5.4. No significant differences are observed in the dynamics

of susceptible populations and HPV only populations. This means that the recovered class has a

significant contribution towards the growth of HIV population, co-infection population and the AIDS

population.
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Figure 5.7: Simulation graph results showing the trends of compartments when we starts by switching
off HIV infection and switch on after 2 years, i.e β2 = 0 and σ1 = 0. using parameters given in figure
5.1.

Figure 5.8: Simulation graph results shows the effects of starting by switching off HPV infection and
switch on after 2 years, i.e β1 = 0 and σ1 = 0. Using the parameters given in figure 5.1.
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Figure 5.9: Shows the impact of HIV alone, i.e by taking β1 = 0. Using the parameters given in
figure 5.1.

Figure 5.10: The impact of HPV alone i.e when β2 = 0. Using the parameters given in figure 5.1.
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Chapter 6

CONCLUSION AND
RECOMMENDATION

6.1 Conclusion

We first reviewed the HPV model. We managed to obtain the basic reproduction number for HPV

model. The model had two equilibrium points which are DFE point and endemic equilibrium point.

The disease-free equilibrium point were existed and locally asymptotically stable when R0 < 1. The

existence of positivity endemic equilibrium point and their asymptotically stable were proved using

the center manifold theory. Our results showed that when R0 < 1, it is possible for HPV infection

to die out from the community and when R0 > 1, then HPV infection becomes endemic in the sense

that it will persist into the community. We observed that the increases in the reproduction number

for women (Rw), the reproduction number for men who were infected by women with low-risk HPV

types (Rl
m) and the reproduction number for men who were infected by women with high-risk HPV

types (Rh
m), results in the increase of basic reproduction number (R0). The increase in the basic

reproduction number will result in the persistence of HPV infection in the community.

We formulated the model for co-infection of HPV with HIV using the reviewed models of HPV

as building blocks. We first analyzed the mathematical model. We obtained the basic reproduction

number with two contributing components that is the reproduction number for HPV infection (Rp)
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and reproduction number for HIV infection Rv. The basic reproduction number was shown to be

the maximum of the reproduction number for HPV and the reproduction number due to HIV. Our

basic reproduction number does not include parameters from the co-infection class. We identified the

parameters which had an influence in the basic reproduction number of HIV and HPV co-infection.

We showed that the increase in the probability of successful HPV transmission per sexual contact

and the proportion at which susceptible individuals are infected by HPV will increase in reproduc-

tion number for HPV and if we increased rate of recovery from HPV then reproduction number for

HPV decreases. If we increased the probability of successful HIV transmission per sexual contact

and the contribution of AIDS individuals towards successful transmission of HIV then, the repro-

duction number due to HIV increases. Furthermore, the increase in the proportion of susceptible

individuals infected by HPV and the increase in the death rate due to AIDS results in the decrease

of the reproduction number due to HIV. When the reproduction number for HPV is greater than

the reproduction number due to HIV, we observed a rise in numbers of individuals from HPV pop-

ulation. This suggests that these HPV infected individuals remains at high risk of being infected

with HIV. The recovered individuals from HPV would be at high risk of being infected with HIV,

since they become susceptible to HIV infection. We showed that the DFE point of the co-infection

of HPV with HIV exist and locally asymptotically stable when R0 < 1 that is when Rp < 1 and

Rv < 1. We proved the positivity of endemic equilibrium point of the co-infection model using fixed

point theory. The condition for stability for the endemic equilibrium point could not be expressed in

terms of the basic reproduction number since the equilibrium point could not be expressed in close

form. However, we managed to express the condition in terms of other parameters D1 and D2. The

parameters D1 and D2 reduces to Rp and Rv at the (0, 0) fixed point. This gave us an insight that

D1 and D2 are closely related to the basic reproduction number of the model and hence one can infer

that D < 1 may imply that R0 > 1. The fixed point theory was beneficial to our model analysis
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in that it ensured the existence of a unique positive fixed point corresponding to a unique endemic

equilibrium point qualitatively. It is important in modelling of infectious diseases to determine the

existence and uniqueness of solutions in biologically feasible regions as this ensures one of the possible

trends of the infection from one basin of attraction of the system equilibrium point to another.

Our numerical analysis of HIV and HPV co-infection using the South African data produced several

interesting observations. In the scenario where the recovered individuals from HPV were careful not

to indulge in risky sexual activities and thus not at risk of contracting HIV, we observed the continu-

ous increase of recovered population leading few cases of HIV, co-infected and AIDS individuals. This

suggests that behavioral change from individuals without HIV infection does an impact of reducing

the prevalence of HIV, co-infected and AIDS population. We observed that when both HIV and

HPV infected individuals are active in the system then the co-infection population grows faster. We

also observed that when one infection is active in the system then the co-infection population will be

at low level.

In the scenario where the recovered individuals from HPV participates in the HIV dynamics or

when they are susceptible to HIV infection, we observed high peaks in HIV population, which had an

impact in the growth of co-infection population and AIDS population. The participation of recovered

population in the HIV dynamics promotes the high rise the HIV population, co-infection and AIDS

population compared to where the recovered individuals from HPV were not participating in risky

sexual activities.

If we consider the scenario where we start by switching off HIV infection and the progression rate

of HIV infection to co-infection population and introduce the HIV infection after 2 years then we
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observed a higher peak in co-infection than if we introducing both infection at the same time. After

introducing HIV infection, there are more individuals who are infected with HPV, and the HPV

population would be at high risk of being infected with HIV. This will increase the burden for HIV

infection and cause the increase in the co-infection population. If we switched off HPV infection

from the community and introducing it after sometime a lower peak in co-infection was obtained

compared to where both infections are introduced at the same time results. After introducing HPV

infection, the HIV population slightly decreases but peaks up again.

6.2 Recommendation

Our results showed that without intervention the burden of both HIV and HPV is compounded to

levels worse than when the two infection occur as single infections in the community. From the

base of this study, we intend to build up this study for future work by applying the vaccination

and treatment strategies. However, there are available interventions strategies such as vaccination

against HPV. The vaccines reduce the burden of HPV infected population in the community and

increases the number of recovered individuals [58], but will not protect the individuals from HIV

infection. HPV individuals and recovered individuals from HPV can be protected from HIV infection

by educating them on sticking to one partner who are HIV uninfected, abstinence from sexual activ-

ities, use of condoms and contraceptives [59]. These will reduce the burden of HIV population and

reduce the number of co-infected individuals. Individuals with HIV infection need treatment which

will induces the immune response such as use of antiretroviral (ART) drugs. These can significantly

prolong the HIV infected population’s lives and also to stay safe and healthy in HIV population class

and reduce the progression rate to co-infection population and AIDS population as well as reducing

the infectiousness of individuals.

78



Individuals with co-infection of HPV and HIV, may need to be considered for a combination of

both HPV and HIV interventions simultaneously. However, due care should be taken when consider-

ing this strategy since the administration of more than one intervention (vaccine and ARV treatment)

may result in one strategy rendering the other strategy useless. Some strategy suggests that multi-

kine treatments showed eliminated a number of HPV strains in the case of co-infection treatment [60].

Our model had several limitations. We did not include any treatment and prevention measures

in our co-infection of HPV with HIV model. HPV can be curable and there are prevention mea-

sures which can be used to prevent from HIV infection such as condom use. We did not include

some processing as regression of recovered individuals into HPV population and also regression into

susceptible population, which could bring other realistic and exciting observations and predictions

on HIV/HPV co-infection. However, we believe our model managed to expose potential dangers of

HIV/HPV co-infection guided by the basic assumptions on the model construction.
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Appendix

A1

ψ1ψ5 − ψ2ψ4 = σ2
1τG

∗∗(1− τ)(µ+ α2)(µ+ ξ)(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1](α2 − α1)

+ µσ2
1(1− τ)(µ+ α2)

2(µ+ ξ)(σ2G
∗∗ + (µ+ α1))[(µ+ xi) + ρ2α1]]

+ µσ2
1σ2G

∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ σ2
1τG

∗∗(1− τ)(µ+ α2)
2(µ+ ξ)(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

> 0, since α2 > α1.

A2

ψ1ψ6 − ψ3ψ4 = µτσ2
1G
∗∗(1− τ)(µ+ α2)

2(µ+ ξ)(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1G
∗∗(1− τ)(µ+ α2)(µ+ ξ)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2][µσ2 − σ1τ(µ+ α1)]

+ µσ1τ(1− τ)(µ+ α2)
2(µ+ ξ)(µ+ r)(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1σ2τG
∗∗(1− τ)(µ+ α2)(µ+ r)(µ+ ξ)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2
1(1− τ)(µ+ α2)

2(µ+ ξ)(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1(1− τ)2(µ+ α2)
2(µ+ ξ)(µ+ r)(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1σ2G
∗∗(1− τ)2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ1τG
∗∗(1− τ)(µ+ α2)

2(µ+ ξ)(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1σ2τG
∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

> 0, when (µ+ α1) < 1.
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A3

ψ2ψ6 − ψ3ψ5 = µ3σ2
1(1− τ)(µ+ α)2(µ+ ξ)(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µ2σ1(1− τ)2(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µ2σ1τG
∗∗(1− τ)(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µτG∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µ(1− τ)(µ+ r)2(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µ2σ1σ2G
∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ1σ2τG
∗∗2(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2τG
∗∗2(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2G
∗∗(1− τ)(µ+ r)2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ1σ2τ
2G∗∗3(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ1τG
∗∗(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ1τ(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rσ1τ
2G∗∗2(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1τ
2G∗∗2(µ+ ξ)(µ+ α2)(µ+ α1)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ rµσ1τG
∗∗(µ+ ξ)2(µ+ α2)(σ2G

∗∗ + (µ+ α1))[µ(ρ1 − 1) + (ρ1α1 − α2)]

+ rµ2σ1ρ2τG
∗∗(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[α2 − α1]

+ µ2σ2
1G
∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2][µσ2 − τ(µ+ α1)]

+ rτG∗∗2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2][µσ2(1− τ)− τσ1]

> 0, when
ρ1α1

α2

> 1, µσ2 − τ(µ+ α1) > 0 and µσ2(1− τ)− τσ1 > 0.
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A4

ψ2ψ5 − ψ1ψ6 = µ2σ2
1(1− τ)2(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ1(1− τ)2(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µ2σ2
1σ2G

∗∗(1− τ)2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ1σ2G
∗∗(1− τ)2(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1τG

∗∗2(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1τG

∗∗(µ+ ξ)(µ+ α2)(µ+ α1)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1τG

∗∗(1− τ)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ2
1σ2τG

∗∗2(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ σ2
1τ

2G∗∗2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ (1− τ)2(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ σ2G
∗∗(1− τ)2(µ+ r)2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ σ1τG
∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))
2[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1σ2τ

2G∗∗2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1τG

∗∗(1− τ)(µ+ ξ)2(µ+ α2)(σ2G
∗∗ + (µ+ α1))[µ(ρ1 − 1) + (ρ1α1 − α2)]

+ µ2σ2
1ρ2τG

∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))[α2 − α1]

+ µσ1σ2τG
∗∗(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

> 0, since ρ1 > 1 and
α2

α1

> 1 and when
ρ1α1

α2

> 1.
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A5

ψ3ψ5 − ψ1ψ7 = µ2σ1σ2G
∗∗(1− τ)2(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ rµσ1σ2τG
∗∗2(1− τ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2
1τG

∗∗(1− τ)(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ1(1− τ)2(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rµσ1τG
∗∗(1− τ)(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rµσ1σ2G
∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2
1τG

∗∗(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ rσ1σ2τ
2G∗∗3(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ2
1τ

2G∗∗2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ rσ1τ
2G∗∗2(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ µσ2G
∗∗(1− τ)2(µ+ r)2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ rσ2τG
∗∗2(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µσ1τG
∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))
2[ρ1(µ+ ξ) + ρ2α2]

+ µ(1− τ)2(µ+ r)2(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rτG∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

> 0.
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A6

ψ3ψ6 − ψ2ψ7 = rµ2σ1σ2τ
2G∗∗2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ3σ2
1τG

∗∗(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ rµ2σ1τG
∗∗(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rµσ1σ2τ
2G∗∗3(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2
1τ

2G∗∗2(µ+ ξ)(µ+ α2)(σ2G
∗∗ + (µ+ α1))

2[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ2G
∗∗(1− τ)2(µ+ r)2(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ rµσ2τG
∗∗2(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ µ2σ1τG
∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))
2[ρ1(µ+ ξ) + ρ2α2]

+ µ2(1− τ)2(µ+ r)2(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rµτG∗∗(1− τ)(µ+ r)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rσ2τG
∗∗2(µ+ r)(τG∗∗ + µ)(µ+ ξ)(µ+ α2)(σ2G

∗∗ + (µ+ α1))[ρ1(µ+ ξ) + ρ2α2]

+ rτG∗∗(µ+ r)(τG∗∗ + µ)(µ+ ξ)(µ+ α2)
2(σ2G

∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

+ rµσ1τ
2G∗∗2(µ+ ξ)(µ+ α2)

2(σ2G
∗∗ + (µ+ α1))[(µ+ ξ) + ρ2α1]

> 0.
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