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ABSTRACT 

Recent literature on mathematics education, and more especially on the teaching and 

learning of geometry, indicates a need for further investigations into the possibility of 

devising new strategies, or even developing present methods, in order to avert what might 

seem to be a "problem" in mathematics education. Most educators hIld textbooks, it 

would seem, do not address the need (function and meaning) of proof at all, or those that 

do, only address it from the limited perspective that the only function of proof is 

verification. The theoretical part of this study, therefore, analyzed the various functions 

of proof: in order to identify possible alternate ways of presenting proof meaningfully to 

pupils. 

This work further attempted to build on existing research and tested these ideas in a 

teaching environment. This was done in order to evaluate the feasibility of introducing 

"proof' as a means of explanation rather than only verification, within the context of 

dynamic geometry. Pupils, who had not been exposed to proof as yet, were interviewed 

and their responses were analyzed. The research focused on a few aspects. It attempted to 

determine whether pupils were convinced about explored geometric statements and their 

level of conviction. It also attempted to establish whether pupils exhibited an independent 

desire for why the result, they obtained, is true and if they did, could they construct an 

explanation, albeit a guided one, on their own. 



Several useful implications have evolved from this work and may be able to influence, 

both the teaching and learning, of geometry in school. Perhaps the suggestions may be 

useful to pre-service and in-service educators. 
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INTRODUCTION AND OVERVIEW 

Proof and proving in mathematics and mathematics education has been the subject of 

much discussion and debate, as will be seen in the chapters that follow. This research, 

whilst attempting to investigate whether pupils' display any need for conviction and 

explanation in dynamic geometry, also takes into account the different views and 

ideas that surrounds the concept of proof. Kline (1982 : 317) and Bell (1945 : 4), 

along with many other mathematicians, expressed a clear need for proof, but recently 

certain mathematicians, like Zeilberger (1994 : 11), have questioned the need for 

proof in mathematics. Some authors, like Horgan (1993 : 74-82), have also argued 

that verification by computer is making proof obsolete. 

Thi's research also explores the need for proof from an educational perspective. 

Several teachers of mathematics have argued that the provmg of riders in 

examinations has been a major factor in pupils' poor results. Most teachers and 

textbooks do not address the need (function and meaning) of proof at all, or those that 

do, only address it from the limited perspective that the only function of proof is that 

of veritication. 

The theoretical part of this study is contained in chapters one and two. Chapter One 

analyses the various functions of proof within mathematics, in order to identify 

possible alternate ways of presentin;s proof meaningfully t;; pupils. Tn this chap!er the 

need for proof in mathematics is dealt with, and it takes into account the arguments 

for and against the advent of computer assisted proofs. Many definitions of 
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mathematical proof have been recorded in the various texts and articles that are 

available and this chapter reflects on some of them. 

Chapter Two considers proof in the mathematics curriculum at schools. It examines 

the need for pupils to prove in mathematics. It also takes cognisance of the levels 

expounded by the Van Hieles and also previous research conducted by other authors 

and researchers, including that of De Villiers (1990;1991) and Zack (1997 : 291-297). 

The empirical part of this investigation will build on previous research, related to 

pupils' cognitive needs for conviction and explanation within the context of geometry. 

In particular, a main aspect of the study will be to check the findings of De Villiers 

(1990;1991), that pupils' exhibit a need for explanation, independent from their need 

for conviction, using the pencil and paper method, whereas this study is based in the 

context of dynamic geometry. This research will further try to establish whether a 

guided explanation provides a deeper understanding of that which the pupil is already 

convinced of Therefore the purpose of the research is to evaluate the feasibility of 

introducing "proof' as a means of explanation rather than only verification, within the 

context of dynamic geometry. 

Chapter Three briefly summarizes the research methodology that was used in the 

collation of the data. A brief overview of the process that was involved is discussed. 

Chapter Four deals explicitly with the analysis of the data that was collected. The 

significant qu·~stio!;.~ that ;.,;~re asked and t~ie responses obtained are uiscussed in this 

chapter. 
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Finally, Chapter 5, deals with the conclusions that were drawn from the pupils' 

responses and some recommendations are made. These recommendations are highly 

relevant and would hopefully serve as a springboard for further research. 
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CHAPTER ONE 

PROOF IN MATHEMATICS 

1.1 Introduction 

Understanding the role that proving has played in mathematics must be considered 

important. Although proof should be seen as serving many functions, it would seem 

that establishing certainty in a statement has been its main function. According to 

Davis and Hersh (1984 : 249) this can be traced back to the Greek mathematicians 

who saw the proof process as that of validation and certification. Of course, this 

meant that once a statement had been proved then that statement was true beyond any 

shadow of doubt. Even the first theorem, which was proved by Thales of Miletus 

(600B.C.), showed that a diameter divides a circle into two equal parts. This may 

seem quite obvious to the reader, but it did show that proof was necessary and 

possible (Davis and Hersh, 1984 : 248). According to Jones (1996 : 142) it is the most 

important aspect of mathematics and it is that which distinguishes it from other 

disciplines. 

The significance of a mathematical proof is not only contained in the end result, but 

also in the process of proving. Mathematicians are often interested in finding new 

types of af~\.lme,,-~~~ in 0 .. ~aking new gro:lnds, so that new and existing statements can 

be proved using these new found links. This is why even incorrect proofs are not 
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discarded, but rather they are scrutinized carefully for ideas that may be used to prove 

new and existing problems. 

Recent developments in proof strategies (namely, computer generated proofs), has 

threatened to alter the existing concept of proof It was never envisaged that certainty 

of a statement could be based entirely on the results of a computer, whose language 

and operating mechanisms is difficult to understand. The existing concept of 

mathematical proof is clear in that it allowed the reader to follow the argument in a 

logical way, which if understood, would give much insight to the problem. 

It must be acknowledged though, that different standards and types of proof (Tall, 

I 

1996 : 28) exist at a formal level, and therefore different forms of proof might be 

appropriate in different contexts. Despite the method and context within which proof 

is done, proof has remained the main tool which mathematicians use for verifying, 

communicating, explaining, systematizing and discovering. It is therefore important 

to continue to closely examine (and re-examine) the teaching of proof at school. Jones 

(1996 : 144) has, for example, pointed out that "we need to continue to lookfor ways 

of laying the foundation for a deeper appreciation of the role of proof". Hanna and 

Jahnke, (1993 : 329) have made similar comments when they stated that : "The last 

fifteen years has seen a remarkable reassessment of the role and meaning of proof, 

one which has influenced the attitude and practice of mathematicians, the theory of 

mathematics education, and the cUrriculum ". 

Much has been said and written about proof in mathematics and many salient issues 

have been raised. Despite the vast amount of literature available, it would seem that 
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which vanishes in the distance, and conjectures that it leads to a peak in the clouds or 

below the horizon. But when he sees a peak, he believes that it is there simply 

because he sees it. If he wishes someone else to see it, he points to it, either directly 

or through the chain of summits, which led him to recognise it himself. When his 

pupil also sees it, the research, the argument, the proqf isfinished. " 

This extract of Hardy's intimates that proof, to an extent, is informal. The chain of 

summits merely refers to a chain of statements in a proof But proof has yielded far 

more discussion than what has been stated above. 

1.2 The need for proof in mathematics 

The need for proof has been the source of much deliberation in mathematics circles. It 

has evoked many responses from various authors of mathematics texts. Some of these 

responses have been inspired by innovations in computer generated proofs, (for 

example, the Appel and Haken proof of the Four colour theorem) and to some extent, 

by the work of Lakatos, who claimed that proof and refutation are the essential 

driving forces behind mathematical discovery. In fact, many people have narrowly 

misinterpreted proof as that of simply serving the function of verification alone. 

Many authors (Hanna: 1996; De Villiers: 1995) have recognised that this idea of proof 

is inadequate and they have been stating that there should be a balance between the 

different functions of proof This can easily be seen by the number of conferences 

that spccific~!ly d~<..!. with proofs '-tnd proving and journal Q.l1icles that are bei~lg 

published at these conferences, like the conference in London in 1995 (Justifying and 
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proVIng III school mathematics) and the Topic Group on Proof at the ICME 

conference in Sevilla in 1996. 

Steiner (1975 : 93) had also noted the explicit need for proof when he had stated that : 

"In principle, it is held, mathematical proof is essential to mathematical knowledge ". 

Bell, E.T. (1945 : 4) similarly said that : "Without the strictest deductive prooffrom 

admitted assumptions, explicitly stated as such, mathematics does not exist". The 

main reason for this is that mathematical certainty cannot be attained from mere 

empirical evidence. The following simple example (peterson, 1990 : 153) illustrates 

the point that a mathematician cannot rely on empirical evidence alone. Consider this 

sequence of integers: 31, 331,3331,33331,333331 and 3333331. What is it that is so 

special about these numbers? They are all prime numbers. Is 33333331 a prime as 

well? Yes it is. Is the next integer in this sequence a prime? Unfortunately, no! This 

number turns out to be the product of two numbers, 17 and 19607843. Thus it can be 

seen that although empirical evidence may appear to be convincing, only a formal 

proof provides absolute certainty. Empirical results may ensure a high level of 

conviction but it cannot guarantee the truth of the statement because it provides no 

grounds on which we can accept the evidence. Although it can be said that strong 

empirical evidence may provide belief in the truth of a result, thus motivating the 

search for its logical explanation. 

Proofs give mathematician an assurance that a statement is true, if it has been proved 

using sDund ~taten-;':"':1ts that were p!'eviously obtained and proved. Slomson (199(}-: 

12) states that proofs "give us the justification for the mathematical methods we use, 

and good proofs also help us to understand the mathematics". In a lighter vein he 
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states that "mathematics without proof is like brandy without alcohol : the ~pirit of 

the subject is missing" (Slomson, 1996 : 12). 

Barbara Ball (1996:34) also conveys the need for proof when she said that ''proof can 

bring understanding of why methods work and , consequently Qf how those methods 

might be adapted to cope with new and altered circumstance~' and ''we do them 

(pupils) a great disservice if we exclude it (proof) from the curriculum". Schoenfeld 

(as quoted by Hanna, 1996: 1) similarly replied to the question "Do we need proof in 

mathematics education ?" as follows: "Absolutely. Need I say more? Absolutely. ". 

Otte (1994 : 312) believes that proof is essential : " ... formal proof is required, which 

however connects not empirical facts but formal propositions". 

Putnam (1986 : 63) also states that "proof will continue to be the primary method of 

mathematical verification". She (1986 : 52) envisages that if Martians were to 

communicate with man then they would say : "We recognize proof, and we value 

proof as highly as you do when we can get it. What we don't understand is why you 

restrict yourself to proof - why you refuse to accept confirmation". Here she argues 

that it is this fact (not accepting quasi-empirical methods as proof) that prevents us 

from using certain profound discoveries in mathematics. She believes that it is often 

quite convincing from quasi-empirical methods that statements may be true but the 

lack of a formal proof prevents us from using the result to discover other truths in 

mathematics. 

Kitcher (1984 : 180), like many other authors, also emphasizes the need for proof as 

follows: "proof provides optimal support for the conclusion, in that other ways of 

9 



obtaining the conclusion from those prerruses would be more vulnerable to 

challenge". In essence, Kitcher is not saying that steps in a proof are invulnerable to 

challenge, but rather that, proofs would fare much better as compared to other fonns 

of argument. Kitcher (1984 : 181) further argues that proofs not only increases 

understanding but also generates new knowledge. It is well known that many 

theorems in mathematics have more than one proof. This discovering of new proofs 

for old theorems, increases understanding and provides a greater insight into the 

different relationships that exist between theorems and these various proofs. 

Ultimately it must be said of proof that "anyone who has looked into the 

contributions of mathematics to human thought would not sacrifice the concept of 

proof' (Kline, 1982 : 317). 

1.3 Proof is seen mainly as verification 

There is little doubt that the traditional role of proof has been seen mainly in tenns of 

verification of the correctness of mathematical statements. Proof: it would seem, 

served the explicit function of convincing skeptics about the truth of a statement. Coe 

and Ruthven (1994 : 42) summarized this by claiming that "the most salient function 

of proof is that it provides grounds for belief'. In fact, a survey in 1984 by De Villiers 

(1990 : 18) revealed that more than 50 % Higher Education Diploma students in 

mathematics education agreed that the only function of proof was that of "making 

sue", ::hat is, t:~e verification 0f the truth ofthe results. 
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Despite being the dominant view tor a long time, several authors have cautioned 

against such stereotyped views. Bell (1976 : 24) stated that "conviction is normally 

reached by quite other means than following a logical proof; proof is essentially a 

public activity of validation which follows the reaching of conviction, though it may 

be conducted internally". In fact, Hersh (1993 : 390) echoes a similar sentiment when 

he says that: " ... more than whether a conjecture is correct, mathematicians must 

know why it is correct". Reid (1996 : 185) echoed similar sentiments when stating: 

"[ would like to question the common assumption that the role of deductive reasoning 

or proving in mathematics is the verification of conjectures' . 

The fact that proof is more than just verification of conjectures is emphasized by John 

Searl (1996 : 21) when he observed that: "Of course, it is uszially more important to 

understand the meaning and implications of a theorem than its proof Sometimes the 

method of proof offers some insight into the meaning of the result but sometimes the 

proof has been so refined by successive generations of mathematicians that insight is 

lost. So the nature of mathematical proof is not as well defined as some writers 

appear to believe. Further it has not been demonstrated beyond reasonable doubt 

that the rote leanling of mathematical proofs inculcates, either logical thought, 

technical fluency or mathematical insight. There is, however, evidence that good 

investigational work does ". 

1.4 The role of computer generated proofs 

Computers are fast becoming a useful tool in the proving process. Many complex and 

very long proofs have been presented, by mathematicians, which has made use of 
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computers. This has inevitably evoked some debate as to whether these ' proofs' can 

really be classified as proofs. Of greater interest is the fact that computers can check 

the truth of mathematical conjectures, using millions of possible values in a few 

seconds. 

But computer generated proof of mathematical statements has created a fair amount 

of controversy amongst some mathematicians. Horgan (1993 : 74-82) pronounces the 

"death" of proof because, with computer assisted proofs, he argues that 

mathematicians will move away from deductive proofs. The invention of high-speed 

computers has certainly created a new awareness that proofs in mathematics may 

never be the same. In fact, some mathematicians are ill at ease about computer 

generated proofs (Kleiner and Hadar, 1997 : 22). A good example of this is Appel 

and Haken's proof of the Four Colour Theorem. The proof required 1200 hours of 

computing on three different computers (Mackernan, 1996 : 18). As Hersh (1993 : 

393) states, "not everyone was overjoyed" with this /proof He quotes Halmos as 

follows: "[ do not find it eruy to say what we learned from all that. We are still far 

from having a good proof of the Four-Colour Theorem. I hope as an article of faith 

that the computer missed the right concept and the right approach. 100 years from 

now the map theorem will be, I think, an exercise in a first - year graduate course, 

provable in a couple of pages by means of the appropriate concepts, which will be 

completely familiar by then" (Hersh, 1993:393). 

Z~ilbe·'-3er (1 ~ ')4 : 11), a math~matician of some note, alsu states that : "The writing is 

on the wall that, now that the silicon saviour has arrived, a new testament is going to 

be written ... . The computer has already started doing to mathematics what the 
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telescope and microscope did to astronomy and biology. in the future, not all 

mathematicians will care about absolute certainty, since there will be so many 

exciting new facts to discover ... ". 

A basic and very important aspect that needs to be considered is the fact that 

computers can perform large calculations and can provide us with very high levels of 

conviction, but it does not give explanations. Otte (1994 : 310) expanded on this idea 

when he said "that a proof which does nothing but prove in the sense of mere 

ver~fication must be unsati~actory " . Why? Because computer proofs cannot explain, 

generalize, nor can it "enrich our intuition" (Otte, 1994 : 310). Undoubtedly, 

computer proofs might establish a high level of certainty in a mathematical statement, 

but from previous computer proofs (like the Appel and Haken proof) it would seem 

that it does not remove the skepticism that you would find in a formal but traditional 

mathematical proof. 

What is it about the computer generated proof that causes concern? Kleiner and 

Hadar (1997 : 22), have noted a comprehensive list of concerns which are listed 

below: 

• "control over the.subject must be shared with a foreign agent - machine". 

• "mathematics seems to resemble an experimental science". For example in order 

to satisfy oneself about the proof, one needs to repeat the procedure with another 

cv~npuk:. Often, verifying results on another computer seems impractical 

(Peterson, 1990 : 276). 
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• "computer proofs are not 'surveyable'" The actual computer programs are not 

published, so it would be difficult to verify the procedures it employs. Besides, 

we do not fully understand the physical processes by which the computer works 

(Hersh, 1993 : 393). Of greater significance, maybe, is that most computer 

generated proofs are far too long. 

• "both computer hardware and software are subject to error". 

• "while the accepting of a traditional mathematical proof is a social process, that 

of a computer proof is not". This argument is based on the fact that computer 

proofs cannot be read generally, unless of course, the reader understands the 

language of the computer. These proofs cannot be verified by the normal 

processes, understood and internalised, and used by other mathematicians. 

• "the function of proof is - or should be - to enlighten the reader, in addition to 

validating the result which it purports to prove." Kleiner and Hadar argue that 

computer proofs fail in this respect. In other words, computer generated proofs 

do not serve the important function of explanation. 

In addition to the concerns mentioned above by Kleiner and Hadar, the following 

concerns were expressed by Peterson (1990 : 276): 

• In general, it would seem that several people have a hand in writing out these 

computer programs. This would mean that there is greater chance of human error. 

In fact, in some cases, programs were written by people in different countries at 

differer..t times. It might just be possible that one member of the team writing out 
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these programs might have left and replaced by a new member, which would 

imply further that the continuous train of thought might be broken. 

• The computations are generally done in bits and pieces, over a number of years, 

and requires large amounts of time. Again the possibilities of errors do exist, 

especially when these bits and pieces are brought together. 

Another relevant and important argument against those that are suggesting that 

computer proof will make human proof obsolete is that computers have serious 

limitations with regard to general verification because they can only test for a finite 

number of cases. 

Yehuda Rav (In Press : 1) argues that even if we had a supercomputer which would 

give us an answer to any ma~hematical question that we put to it, we would still need 

proof. His argument goes more or less as follows. Suppose there is such a computer, 

called PYTIllAGORA, which would not only answer any mathematical question but 

it would do so at the speed of light. This would mean that we could test the validity 

of any statement by simply checking whether it is true by asking PYTIllAGORA. 

The Riemann Hypothesis and the Fermat Theorem would have been deemed to be 

true or false a long time ago. Rav' s argues that whether a statement is true or false is 

not as important as the actual process involved in searching for the truth or falsity. 

He states that "proofs rather than the statement-form of theorems are the bearers of 

mathematical knowledge" (Rav, In press : 18). In other words, greater knowledge is 

derive~ from the prvc~ss of proving and the underlying meaning thai. is a~::ribute,"! to 

the proof, instead of simply knowing whether the statement is true or false. Rav (In 

press : 18), further emphasizes this when he stated that we should "think of proofs as 
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a network of roads in a public transportation system, and regard statements of 

theorems as bus stops; the site of the stops is just a matter of convenience". The 

point, according to Rav, is that knowing whether a conjecture is true or not (as 

PYTHAGORIA might tell us) is not as worthwhile as knowing how to get there 

(why is it true or not?). 

Some people believe that the computer should be regarded as a legitimate means of 

conducting proof, and it would seem that these computer proofs are here to stay. 

Moreover, since it is believed that computer proofs are no different from the 

traditional proof, they may be freer from man-made errors and liable to contain new 

machine errors. 

1.5 Some important functions of proof 

The following are some of the thoughts on proof that have already been expressed by 

different authors: 

• " ... proof is a discourse designed to convince or persuade or it is an argument or 

presentation of evidence that convinces or produces belief " (Exner and Rosskopf, 

1970 : 197) 

• " ... proof is ritual, and a celebration of the power of pure reason. Such an 

exercise in reassurance may be necessary in view of all the messes that clear 

thinki!lf; gets l .!S into." (Davis and Hersh, 1981 : 151) 
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• "Proof is no more than the testing of the products of our intuition ... The sensible 

thing to do seems to be to admit that there is no such thing, generally, as absolute 

truth (proof) in mathematics, whatever the public may think." (Raymond L. 

Wilder( 1944) as quoted by Kline, 1982 : 314) 

• "Thus mathematical argument (proof) becomes a tool in the dialectic between 

what the mathematician suspects to be true and what the mathematician knows to 

be true." (Schoenfeld, 1985 : 173) 

• " ... proofis proof from premises". (Steiner, 1975 : 96-97) 

A more precise definition of proof was given by Kitcher (1984 : 36) when he said that 

"a proof in a system is a sequence of sentences in the language of the system such 

that each member of the sequence is either an axiom of the system or a sentence 

which results from previous members of the sequence in accordance with some rule 

of the system" . According to Lakatos (1986 : 155) also admitted that most students of 

the modem philosophy of mathematics would tend to instinctively define proof 

according to their formalist conception of mathematics, that is : "Proof is a finite 

sequence of formulae of some given 5ystem, where each formula of the sequence is 

either an axiom of the system or a formula derived by a rule of the system from some 

of the preceding formula" . 

With respect to the above definitions of proof: it is therefore necessary to analyse the 

different functions of proof The model expounded by De Villiers (1990 : 18) expands 

on Bell' ::; mode! (Bell, 1979 : 366) and it is therefore presented here in no particular 

order. According to this model, proof has the following functions : 
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• Verification 

• Explanation or illumination 

• Systematization 

• Discovery 

• Communication 

• Self realization 

1.5.1 Proof as a means of verification I justification 

Earlier (refer to page 8), some aspects of verification was discussed. The following 

are a few examples of definitions of proof which are inclined towards the verification 

function of proof: 

• Proof is " a logically sound piece of reasoning by which one mathematician could 

convince another of the truth of some assertion". (Devlin, 1988 : 148) 

• Proof is that which attests the veracity or authenticity, the guarantee, the evidence, 

the process of verification of the accuracy of operations and reasonings ... " 

(Garnica, 1996 : 257) 

This function of proof is concerned with the tmth of a statement or proposition and is 

indeed a very important function of proof The reason for emphasising this function is 

that sometimes intuition or strong experimental evidence can turn out to be 

miSleading or wrong. Any evidence based on a finite number of test cases or 

examples is not good enough, because the one exception to the rule may be just 
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outside the range of experimentation or computation (Peterson, 1990 : 14). An 

example of a well-known theorem, which was believed to be true for a long time, was 

Merten's Conjecture, which was first proposed by Thomas Stieltjies in 1885 and 

again by F. Merten in 1897. This conjecture "concerns the function M(n) defined on 

positive whole numbers n by setting M(n) to be the difference between the number of 

numbers less than n which are products of an even number of distinct primes and the 

number of numbers which are products of an odd number of distinct primes" (Devlin, 

1985 : 30). This conjecture seemed to be correct according to the computations of 

Merten himself, von Sterneck and, Cohen and Dress. But in October 1983, using 

complex computer methods, Hermann te Rie1e and Andrew Odlyzko, finally 

disproved the conjecture that existed for about 86 years (Devlin, 1988 : 218). 

Another useful example which shows that verification is indeed an important process 

is given by Rotman (1998 : 2). It involves perfect squares, which can be defined as an 

integer of the form cl. He considers the statements S(n) , for n > 1 (n can alS() be 

equal to 1) : S(n): 991 n2 + 1 is not a perfect square. This statement is true for 

many n values. In fact the smallest value of n for which S(n) is false is 

11 = 12 055 735 790331 359447442 538 767 

which is approximately 1.2 x 1029
. Rotman (1998 : 3) goes further when he quotes a 

special case ofPell's equation (given a prime p , when there are integers m and n with 

m
2 

= pn? + 1). A rather spectacular result is obtained when p = 1 000 099. The 

smallest n for which 1 000 099n2 + 1 is a perfect square has 1115 digits. On a lighter 

uote, Rotman (1998 : 3) makes a very pertinent comment which is reproduced here : 

"The latest sCient!/ic estimate of the age qf the earth is 20 billion (20, 000, 000, 000) 

years, or about 7.3 x 10 12 days, a number much smaller than 1.2 x 1029, let alone 
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}O1115. If, starting on the very first day, mankind had verified statement S(n) on the 

nth day, then there would be, today, as much evidence C?f the general truth C?f these 

statements as there is that the sun will rise tomorrow morning. And yet some 

statements S(n) are false! ". 

Rotman was, in the above quotation, attesting to the fact that empirical evidence 

alone is insufficient and verification is a vital function of proof 

Another very simple example, which conveys the idea, that verification is an essential 

function of proof is the expression n2 
- n + 41 which produces prime numbers when 

the numbers 1, 2, 3, ... is substituted for n. This is true for 11 up to 40, but when 11 = 

41, the answer is not prime anymore. Similarly, the Chinese conjectured in 500 BC, 

that if 2n 
- 2, is divisible by n, then n must be prime. Substituting values for n will 

reveal that this conjecture seems to be true, because 23 
- 2 is divisible by 3, 24 - 2 is 

not divisible by 4 and 25 
- 2 is divisible by 5. In fact, this conjecture holds true for all 

values up to n = 340, but was in 1819 discovered to be false for n = 341 (which is a 

composite number). This meant that this conjecture was not true in general! 

Tymoczko (1986 : 126) argued that "the practice of mathematics is essentially the 

verification of rigorous proofs". Schoenfeld (Coe and Ruthven, 1994 : 42) argued that 

"mathematical argument becomes a tool in the dialectic between what the 

mathematician suspects to be true and what the mathematician knows to be true". 

This view of proof functions "as the last judgement, the final word before a problem 

is put to bed" (Hersh,1993 : 390). This really implies that proof is the only way to 

obtain conviction. De Villiers (1990 : 18) argues that this claim is distorted because 



"proof is not necessarily a prerequisite for conviction - conviction is far more 

frequently a prerequisite for proof' . This explains why mathematicians spend many 

months attempting to find a formal proof for a specific conjecture - they must already 

be convinced of the truth of the conjecture. This means that mathematicians generally 

believe, that behind every conjecture there must be a sequence of comprehensible, 

irrefutable, logical arguments, which move from a hypothesis to a conclusion. 

Almeida (1996 : 86) also states that "proof is about reaching rather than follOWing 

conviction and where conviction may come from intuition or by weight of evidence". 

The major argument that faith in a particular statement or proposition can only be 

attained by a rigorously formulated proof is false. In fact, a very high level of 

conviction can be reached even in the absence of proof The Riemann Hypothesis is a 

good example. This hypothesis by Riemann is amongst the greatest unsolved 

problems in mathematics. The hypothesis concerns the roots of the zeta function - the 

complex numbers z at which the zeta function equals zero. Riemann conjectured that 

these roots lie on the line parallel to the imaginary axis and half a unit to the right of it 

(Davis and Hersh, 1990 : 363-364). The evidence supporting this conjecture is so 

strong that it has compelled belief despite the absence of a formal, rigorous proof It 

has indeed been verified by calculations that the first 70 000 000 complex zeros do, 

in fact, satisfy Riemann's Hypothesis. More importantly, many profound theorems on 

the representation of numbers as sums of primes or in other interesting forms, which 

have been independently proved, can be deduced from the Riemann Hypothesis and 

other similar assumptions (Bell, 1945 : 315). This strongly suggests the truth of the 

Riemann Hypothesis. 
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De Villiers (1995 : 155) has argued that in "mathematical research, proof is not an 

absolute prerequisite for conviction. To the contrary, it can be argued that some form 

of priori conviction is probably far more frequently a prerequisite for the finding of 

proof, than the other way around". it therefore seems clear that conviction is not 

attained by proof alone. 

Perhaps, it should be stated that "empirical evidence" within dynamic geometry tends 

to be more convincing than the "empirical evidence" within number theory. This 

stems from the simple notion that it is impossible to test a conjecture for every 

possible number in the latter. A conjecture may be true for a very large number, but 

no guarantee exists that there is no other larger number, which disproves the theory. 

Whilst, on the other hand, the former allows for the dragging of a diagram to almost 

any position within a few minutes. Anything contrary to the conjecture could be quite 

easily detected. This is due to the fact thatthe variables used in the latter are discrete, 

whilst the variables used in the former are continuous (De Villiers, 1998 : 373). 

1.5.2 Proof as a means of explanation 

The following is a definition, which conveys the meaning of proof as a function of 

explanation: 

• "By proof is meant a deductively valid, rationally compellmg argument which 

shows why this must be so . .. ". (Mary Tiles, 1991 : 7) 
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This function of proof helps the individual make sense of a mathematical result and to 

satisfy the individual's curiosity as to why it may be true. This function of proof has 

been neglected because proof has been seen as performing only the function of 

verification. Coe and Ruthven (1994 : 42) claim that less emphasis has been placed 

on explanation because much writing about proof "has been from a philosophical 

rather than a pedagogical perspective" . But Hanna (1996 : 16) states that "with 

today's stress on ' meaningful' mathematics, teachers are being encouraged to focus 

on the explanation of mathematical concepts ... ". Wittmann (1996 : 16) quotes 

David Gale as saying that "the main goal of all science is to .first observe and then to 

explain. In mathematics the explanation is the proof'(bold added). Schoenfeld (1985 : 

172) demonstrated this important function of proof quite succinctly when he states 

that: .. 'Prove it to me' comes to mean 'explain to me why it is true', and 

argumentation (proof) becomes a form of explanation, a means of conveying 

understanding" . 

Although it is quite possible to achieve a high level of conviction that a conjecture 

holds true by experimentation, this does not provide a deeper understanding as to why 

the conjecture may be true (De Villiers,1990 : 19). Experimentation, especially if it is 

computer driven, may provide a large degree of certainty but it does not necessarily 

provide the insight or understanding of how the result may be true as a consequence 

of other already established results. Hersh (1993 : 396) states that "what proof should 

do for the student is provide insight into why the theorem is true" and at the high­

school level "the primary role of proof is explanation"(1993 : j~8). 
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Johnston Anderson (1996 : 32,.38) appropriately summarises the explanatory role of 

proof in order to establish a deeper understanding of why certain results always hold 

true : "Proof should be seen as being about explaining, albeit carefully and precisely. 

It is where instrnmental understanding gives way to relational understanding. It 

should be seen as the essence of mathematics and all pupils who study mathematics 

should meet it at some time, at some level." Slomson also (1996 : 12) expressed the 

idea that "good pr()()fs not only convince us of the truth of mathematical statements, 

but also helps us to understand what is going on" . 

The following two quotations also emphasize that proof as a means of explanation 

plays an important role in mathematics: 

• "The mathematician's reaction shows quite clearly that a proof which does 

nothing but prove in the sense of mere verification must be unsatisfactory. A 

proof is also expected to generalize, to enrich our intuition, to conquer new 

objects, on which our mind may subsist". (Otte (1994: 310)) 

• "the functions of proof are to generate knew knowledge and to advance 

mathematical understanding'(my emphasis).( Kitcher (1984 : 189)) 

This function of proof deserves greater emphasis than it seems to have been given at 

this point in time. Hanna (1996 : 135) supports this as follows: "The best proof, even 

in the eyes of practicing mathematicians, is one that not only establishes the truth of a 

theorem but also helps understand it. Such a proof is also more persuasive and more 

likely to be accepted'. 
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1.5.3 Proof as a means of systematization 

These are some of the ideas that have been expressed about systematization as a 

function of proof: 

• "All mathematical proofs must be deductive. Each proof is a chain of deductive 

arguments, each of which has its premises and conclusion." (Kline, 1962 : 42) 

• Proof is "the logical organisation of a body of mathematical knowledge". (Kline, 

1968: 2) 

• "A proof is a directed tree of statements, connected by implications, whose end 

point is the conclusion and whose starting points are either in the data or are 

generally agreed facts or principles." (Bell, 1976 : 26) 

This function of proof is concerned with the logical organisation of propositions into 

a deductive system. In fact this aspect deals with the logicai structure of the actual 

reasoning involved in the formal proof - the writing down of ideas in a logical 

sequence. The focus is on making logical connections between statements; statements 

that may already be known to be true (by local proof) or assumed to be true. Lakatos 

(1986 : 167) stated that "certain statements are derivable from other statements by 

means of 'pure reason', and a corpus of connected material can be built from a few 

fundamental statements known as axioms". 



Often when we prove we assume categorically the existence of some previously 

defined knowledge, namely definitions, axioms and theorems. Definitions are 

"generalizations found in mathematical systems" (Travers, et aI, 1977 : 80). These 

generalizations are related to other concepts in a particular hierarchy. Skemp cited in 

Floyd (1981 : 82) states that: "Definitions can thus be seen as a way of adding 

precision to the boundaries of a concept, once formed; and of stating explicitly its 

relation to other concepts" . Axioms are statements, the results of which are accepted 

without proof Axiomatization plays an important role in proving. In descriptive ("a 

posteriori") axiomatization (De Villiers, 1986 : 3), certain axioms, which are already 

arranged in some hierarchical system, is selected for the process of writing down a 

proof. The axioms are arranged in a particular, logical way which taking into account 

the relatedness of all the statements. Theorems are also generalizations in 

mathematical systems. Theorems are general statements which can be shown to be 

logical consequences of the axioms, definitions, and previously proven theorems in a 

mathematical system (Travers, et al, 1977 : 81). 

Systematizing, according to Coe and Ruthven (1994:42), "lies in the fact that logical 

structure is cOllcemed with formal, explicit arguments, publicly agreed and 

conforming to standard conventions". Bell (1979 : 366) also believes that proof 

serving the function of systematizing is the process of collecting a set of known 

results and then organising it into a hierarchical deductive sequence involving the 

choice of suitable starting points as axioms. Mary Tiles also emphasizes the idea of 

"natural order". She takes this idea a step further oy saying "the point of 

axiomatization and the provision of proofs either directly from axioms or by reference 

to previously proved theorems is that a rational order is imposed" (Tiles, 1991 : 17). 



Clearly, the order that she wrote of, should reflect the way in which things are learnt 

and understood. Otte (1994 : 314) described mathematical proof as "deriving new 

theorems from those already known .. . " . 

According to De Villiers (1990 : 20) proof is an essential tool in the systematization 

of known facts into a deductive system of axioms, definitions and theorems. But the 

production of conviction is not the prime reason for this formal structuring of proof 

(Exner and Rosskopf, 1970 : 197). De Villiers (1990:20) provides an extensive list of 

important functions of a deductive systematization, which are now reproduced here: 

• It helps with the identification of inconsistencies, circular arguments and hidden 

or not explicitly stated assumptions 

• It unifies and simplifies mathematical theories by integrating unrelated 

statements, theorems and concepts with one another, thus leading to an 

economical presentation of results 

• It provides a useful global perspective or bird' s eye view of a topic by exposing 

the underlying axiomatic structure of that topic from which all the other properties 

may be derived 

• It is helpful for applications both within and outside mathematics, since it aids 

checking for applicability of a whole complex structure or theory simply by 

evaluating the suitability of its axioms and definitions 

• It often leads to alternate deductive systems which provide new perspectives 

and/or are more economical, elegant and powerful than existing ones 
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Michael Otte (1994 : 299) sums up the systematization function of proof by stating 

that proofs ".. . connect propositions into longer chains of reasoning. Proofing ( sic) 

may then become an exercise in the correct arrangements of propositions ... " . So 

proving, it seems, achieves a coherent organisation although the value of this logical 

pattern is grossly underrated. As Kitcher (1984 : 218) states that "to be a proqf is to 

be a member of a system of reasonings serving two functions: (a) providing optimal 

generation of new knowledgejrom old and (b) providing increased understanding of 

statements previously accepted'. 

1. 5.4 Proof as a means of discovery 

In criticizing formalism in mathematics, the claim is often made that new 

mathematical results are always discovered by means of intuition and/or quasi­

empirical methods before they are verified by the production of proofs. For example, 

Hanna (as quoted in De Villiers, 1990 : 21) claims that "mathematical concepts and 

propositions are .. . conceived and formulated before proofs are put in place". Even 

Steiner (1975 : 100) echoed a similar sentiment when he stated that: " On the spot he 

(the mathematician) may discover important premises as yet unproved and prove 

them". Paul Halmos (quoted in De Villiers (34 : 1996» similarly emphasizes the 

precedence of discovery over proof as follows: "The mathematician at work ... 

arranges and rearranges his ideas, and he becomes convinced of their truth long 

before he can write down a logical proof" 

Peterson (1990 : 16), however, makes it clear as follows that discoveries are often not 

first made empirically, but can occur quite unintentionally during proof : "Often, the 
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obsession with proof is itself an important source of new ideas and mathematical 

methods. Efforts to prove that closed curves divide space into an outside and an 

inside led to the new mathematical field of algebraic topology, a central topic in 

modem mathematics. It's unlikely that any attack on a particular practical problem 

would have led to such novel abstract ideas". Even Alexander Graham Bell did not 

set out to invent the telephone. All he was trying to do was invent something to heip 

the hard of hearing. Similarly, when Thomas Edison invented the phonograph, all he 

was trying to do was develop something that might record telephone conversations. 

So, it can be seen that even in general life discoveries are made without any explicit 

intention to do so. 

Yehuda Rav (In press) demonstrates the idea of discovery by taking the example of 

Christian Goldbach's conjecture which states that every even integer greater than 6 

can be represented as the sum of two distinct odd primes. Rav (3) states that whether 

the conjecture turns out to be true or not is of no "theoretical or practical importance", 

because of the immense discoveries the attempts at solving this conjecture has 

yielded. Jean Merlin in 1911 thought he had proved Goldbach' s conjecture and 

another famous problem, the twin-prime conjecture. He, in fact, outlined a sieve 

method, which generalised the sieve of Eratosthenes. His proofs turned out to be 

invalid, but it led to the invention of the Merlin sieve method, which is today used in 

number theory. This method has developed to such an extent that it has become a 

subject in its own right (Rav : In press, 4). Besides the sieve methods that were 

developed, other mathematicians, like L. Schnirelmann in 1930, achieved new and 

important discoveries while attempting to prove it. The Goldbach conjecture has in 

fact acted like a catalyst for new discoveries. It can be conjectured that, in the absence 
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of the Goldbach conjecture, many relevant theories in mathematics might not have 

surfaced. 

Another way proof can often lead to new discoveries is that when proving a result, 

one discovers that certain conditions were not necessary, thus leading to an 

immediate generalization. An example of this is given in De Villiers (1997) with 

reference to the following result: 

"If ABCD is an equilic quadrilateral and equilateral triangles are drawn on AC, DC 

and DB, away from AB, then the three new vertices, P, Q and R are collinear;; (refer 

to the Figure 1). An equillc quadrilateral IS a quadrilateral ABCD having AD = BC 

and where these sides are inclined at 60° to each other. Through further 

experimentation, De Villiers discovered that the result was also true for any 

quadrilateral ABCD with AD = Be, if similar triangles were constructed on AC, DC 

and DB and angle APC = angle ASB (referto Figure 2). After proving his result, De 

Villiers noticed that he had never used the property that AD = BC in the proof. This 

meant that the result could be further generalized to any quadrilateral. 

A' B 
AngJe(CBA) = 50° 
AngJe(BAO) = 700 

AngJe(CBA) + AngJe(BAO) = 1200 

Figure 1 

R 

Figure 2 



It is also true that purely "logical analysis" can lead to simultaneous "discovery" and 

"proof' . Figure 3 represents a quadrilateral, which has its sides tangential to a circle 

centre A. KC = KE = x, EH = HG = n, GI = IF = m, and JF = JC = y. It can easily be 

seen that the sum of the opposite pairs of sides are equal, that is, JK + HI = KH + Jl, 

because JK + ill = x + y + n + m and KH + n = x + Y + n + m. Furthermore, the 

above serves as an explanation (proof) for the observation. 

B< = 2.59 an 
KC=2.59 an 
CJ =4.83 an 
.F= 4.83 an 
H:J =1 .65 an 

1-E=1.65an 

R = 1.98 an 

IG=1 .98an 

B< +I-E+.F+R = 11.(~an 

1.5.5 Proof as communication 
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Mathematical proof has afforded mathematicians ample opportunities to 

communicate with each other. In fact, it might be the aspect of communicating with 

other people that makes proof a human activity. Many books relate the letters written 

by great mathematicians (Poincare; Wittgenstein; Hardy and many more) to their 

colleagues communicating a new proot~ or even the inability to prove a statement. 

Without doubt proof creates an ideal forum for healthy, critical debate because it has 
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become a source of communication between the broader mathematical community. 

This is what inspired Tymoczko (1986 : 127), in an editorial, to say that verification 

of proofs is a public affair, an elaborate social process that proceeds by the canons 

and paradigms of a particular community of experts" . Re goes on further to say that 

the "verification of proofs would involve such factors as the dissemination of results 

through a community" . 

De Villiers (1990 : 22) also relates a view which indicates that proof "is a unique way 

of communicating mathematical results between professional mathematicians, 

between lecturers and students, between teachers and pupils, and among students and 

pupils themselves" . So it is clear that proof is a social activity which involves 

gathering, reporting Ilnd disseminating knowledge. 

Of greater significance though, must be the tremendous communication that exists 

between many people that are working on the same proof (example Appel and Raken 

and associates). In the case of the Four-Colour Theorem, which Appel and Raken 

together with a team of mathematicians proved using computers, it was clear that a 

vast communication network existed between them because of the huge amount of 

work that had to be done in order to achieve the proof 

There is also a similar type of communication that exists between professional 

mathematicians, resulting in the discovery of proofs. Often mathematicians 

themselves, in attempting to prove a theorem, unwittingly set up a communication 

between themselves and other mathematicians, which results in a proof The 

Bieberbach Conjecture (as quoted by Devlin, 1985 : 31) is a good example. In 1916, 



Ludwig Bieberbach, wrote a paper in which he proved that if a complex function of 

the form f(z) = z + a2i + a3z3 + ... is such that no two values of z of absolute values 

less than 1 give the same value off(z). then the absolute value of a2 is at most 2. In a 

footnote Bieberbach conjectured that for all values of n, the coefficient of an of jI will 

be at most n in absolute value. Many mathematicians worked on this conjecture. The 

following mathematicians (Devlin, 1985 : 31) proved certain aspects of the proof : 

lean Dieudonne in 1931, C. Loewner in 1923, Z. Charzynski and M. Schiffer in 1960, 

M. Ozawa in 1969, R. Pederson and M. Schiffer in 1972 and finally Louis De 

Branges in 1984. 

It appears that proof is a form of social interaction, which involves communication 

between mathematicians, either directly or independently. The value of proof as a 

means of communication is emphasized as follows by De Villiers (1990 : 22) : " ... 

such a social filtration of a proof in various communications contributes to its 

refinement and the identification of errors, as well as sometimes to its rejection by the 

discovery of a counter-example" . 

1.5 .6 Proof as a means of self-realization 

This is an aesthetic function of proof and is very important because it deals with 

exactly what the human mind feels satisfied with. Although most mathematicians 

know that a proof will benefit many others, the inner joy and personal satisfaction at 

discovering a proof is the main intrins~c motivating factor. As Davis and Hersh (1990 

: 369) state: "Perhaps, though. there is another purpose to proof - as a testing 

ground for the stamina and ingenuity oj the mathematician. We admire the conqueror 
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of 1ivere~1, not because the top of liverest is a place we want to be, but just because it 

is so hard to get there ". This may just explain why a mathematician may work with a 

problem for many years - the thought of doing what no one else has done before. The 

following extract may serve to further emphasize this point. Klaus Barner (1997 : 

1294) asked Andrew Wiles (Wiles is accredited with the proof of the Fermat 

conjecture) what was it about the Fermat conjecture that fascinated him ? Wiles 

initially responded that that it was the "romantic history" of the problem, which drew 

his attention (at the age of 11 I). When probed further he responded that "because 

Fermat said he had a proqf, but none was found". It is exactly this intellectual 

challenge which drives mathematicians to find new frontiers in mathematical proofs. 

De Villiers (1997) experienced this intellectual challenge whilst working with Van 

Aubel' s theorem, which states that the centres of squares on the sides of any 

quadrilateral ABeD form a quadrilateral EFGH with equal and perpendicular 

diagonals (refer to figure 4 below). 

Figure 4 
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He discovered two more generalizations of Van Aubel's theorem, using the dynamic 

geom~try program Cabri, namely: 

1. if similar rectangles are constructed on the sides of any quadrilateral as shown in 

figure 5 below, then the centres of these rectangles form a quadrilateral with 

perpendicular diagonals. 

2. if similar rhombi are constructed on the sides of any quadrilateral as shown in 

figure 6 below, then the centres of these rhombi form a quadrilateral with equal 

diagonals. 

G 

Figure 5 

Figure 6 
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De Villiers was quite convinced that the above statements were correct and further 

convinced himself by using the property checker of Cabri to confirm his results. This 

property checker, tests the statement to check whether it would always be correct - if 

the statement is correct then it would state that it is "true in general". If it is false, 

then the property checker produces a counter-example. After receiving confirmation 

of the truth of both of these generalizations, De Villiers (1997 : 17) described his 

feelings as follows: "As was the case previously, I did not really experience a need 

for further certainty, but rather of explanation (why were they true'!) and of 

intellectual challenge (can I prove them?} ." 

It is this very same intellectual challenge and aesthetic emotion which Poincare spoke 

about when he said that constructing proofs is a "satisfaction of our needs" (Kline : 

17). In fact, Poincare went on to state that the person lacking this "aesthetic 

sensibility will never be a real creator" . Very often the satisfaction of this aesthetic 

need may only come after many attempts to find a solution, and it is then even more 

satisfying. Alfred Adler (1984 : 9-10) emphasizes this point when he wrote : "A new 

mathematical result, entirely new, never before conjectured or understood by anyone, 

nursed from the first tentative hypothesis through labyrinths of false attempted 

proofs, wrong approaches, unpromising directions, and months or years of difficult 

and delicate work - there is nothing, or almost nothing, in the world that can bring a 

joy and a sense of power and tranquility to equal those of its creator". 

Davis and Hersh (1984 : 250) describc~ this beauty and power of mathematical proof 

quite clearly when they wrote : "A shudder might even run down our spines if we 

believe that with a few magic lines of proof we have compelled all the right triangles 
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in the universe to behave in a regular Pythagorean fashion". This is the beauty of a 

mathematical proof. 

This aesthetic desire is so pervasive that it often compels mathematicians to carefully 

re-examine already proven results, particularly if they do not have elegant proofs. 

Kline (as quoted by Peterson, 1990 : 288) states in this regard that "much research 

for new proofs of theorems already correctly established is undertaken simply 

because the existing proofs have no aesthetic appear . 

Mathematicians often persevere for many years in attempting to prove new or 

existing theorems. However, there are very few material benefits for discovering a 

proof. There is no, or very little monetary gain, there is no Nobel prize for 

mathematics\ and very little public recognition (mainly amongst other serious 

mathematicians) is accorded to great mathematical achievers. So that which spurs 

them on to find satisfactory mathematical arguments can only be attributed to the 

intellectual challenge that they experience and the tremendous beauty they discover in 

a proof This is also true for those who discover new proofs for old theorems. 

1 The highest award for research achievement in mathematics is the Field's Prize, which comprises a 
relatively small sum of money. 
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CHAPTER TWO 

PROOF IN SCHOOL MATHEMATICS 

2.1 The general response 

With the present school mathematics curricula set out as it is, pupils are required to 

begin proving at Grade 10 (in some schools it begins at the Grade 9 level). A quick 

perusal of literature based on proof at the secondary school level will reveal that 

pupils experience many problems with regard to the need for proof. De Villiers (1990 

: 17) states that "the problems that pupils have with perceiving a need for proof is 

well-known to all high school teachers and is identified without exception in all 

educational research as a major problem in the teaching of proof". In fact many 

teachers are asked the same question by pupils all the time: Why do I have to prove ? 

Gonobolin (1954 : 61), for example, found that pupils do not recognise the need for 

proof of geometric theorems especially if the proofs are visually obvious or it can be 

established empirically. Senk (1989 : 309) also refers to a study which revealed that 

"although leaching students to write proofs has been an important goal of the 

geometry curriculum for the college bound in the United States for more than a 

century, contemporary students rank doing proofs in geometry among the least 

important , most disliked, and most difficult of school mathematics topici" . Data 

wHected by the Co6'1litive Development and Ach;evement in Second?,ry School 

Geometry project confirmed that writing proofs was indeed a difficult task for most 

students (Senk, 1989 : 309). 
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Driscoll (1988 : 21) emphasized that proof is difficult, since it requires a high level of 

cognitive activity: "A formal mathematics proof is a complex cognitive task. ... These 

are taxing, if not futile , demands on pre10rmal students and there are many such 

students in the ninth and tenth grades, where formal proof is a frequent objective in 

the curriculum". Due to the cognitive complexity of proof, many pupils simply resort 

to memorization, as explained by Jones (1996 : 235): "For many children it (proof) 

became an exercise of memory; facts and processes to be learnt and reproduced". 

There is a growing body of knowledge which indicates that many students do not 

understand proof, for example: 

• A study by Suydam (1985 : 483) showed that about 50% of pupils saw no need to 

prove what they considered obvious. 

• Senk (1985 : 454) found that only 30% of pupils attained 70% mastery on six 

geometry problems involving proofs. 

• Usiskin (1982) also determined that although 50% of secondary school graduates 

completed a year of geometry less than 15 % mastered proof writing. 

• Bell (1976 : 23) carried out an investigation of 160 grammar school girls and 

• 

discovered that only 10 % of them could give an acceptably complete, deductive 

argument (proof). 

Reynolds (Bell, 1979 : 370) stuQied the "proof concepts of grammar school pupils 

and concluded that, in general, tormal axiomatic proof was not understood even 

by 17-year old pupils specialising in mathematical and scientific subjects" . 
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• Williams (DriScoll, 1988 : 156) surveyed eleventh grade pupils and found that less 

than 30 % exhibited any understanding of the meaning of proof, and that almost 

60 % were unwilling to argue, for the sake of argument, from any hypothesis they 

considered false. 

These statistics reveal that the current instruction processes of mathematics proof are 

inadequate and are quite concisely summed up by Retzer (1996 : 60) when he stated 

that "proof making is one of the most dreaded activities in American mathematics. 

Students often ask for assurance that this will not appear on an upcoming 

examination ". 

From an educational perspective, pupils' poor performance in geometry examinations 

could be attributed to the cognitive difficulty in proving the geometry riders and 

theorems in those papers. This poor perfonnance of pupils in geometry riders and 

theorems might also be attributed to the following underlying reasons: 

• pupils' may be at the inappropriate Van Hiele level (De Villiers, 1996:6) in order 

to attempt proof. Van Dormolen (1977 : 32) writes as follows in regard to the Van 

Hiele theory (see page 48) : "Now, in mathematics education it is essential that 

the teacher bears in mind that it is impossible to operate on the higher level if the 

lower one has not yet been reached". 

• inadequate traditional teaching strategies that are employed when proof is taught. 

It would seem that msuffident emphasis is placed on proof heuristics with most 

teachers preferring the direct presentation of proof. 
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• Negative attitude, brought about by the pupils not understanding the role or 

meaning of proof when the concept of proof was initially introduced. 

Some authors like Mackernan (1996 : 18) believe that proof should not feature in the 

mathematics curriculum at all since pupils have such difficulty with it. He believes 

that anything taught at school must be both enjoyable and useful, and proof (the kind 

that requires a certain amount of rigor) according to him, is neither useful nor 

enjoyable. His argument is based on the fact that discovering of patterns is enjoyable 

but he questions the attempt to deduce a formal proof for this pattern. John Searle 

(1996:21) similarly questioned the traditional approach to teaching of proof at school, 

because "it has not been demonstrated beyond reasonable doubt that the rote learning 

of mathematical proof inculcates either logical thought, technical fluency or 

mathematiqtl insight" . 

Dave Hewitt (1996:27) counters this by insisting that proof should be in the 

curriculum, mainly because' students learn about properties and that "proof is not only 

about properties but is also about an awareness of properties". This means that if a 

pupil has had the opportunity to explore the relationship between the angles at the 

centre and the angles at the circumference of a circle, via measurement in a number of 

cases, then the pupil is aware that the angle at the centre is twice the angle at the 

circumference. In fact the pupil might be quite convinced that the result will hold true 

for all circles. According to Mackernan, this should be sufficient for the pupil, and 

there is no need for ~rther proof. However, Hewitt speaks about bringing about an 

understanding of the problem. Learning proof through rigor means that it must be 

accepted on trust, without an "awareness" of the properties through experimentation 
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and exploration, whilst learning proof with an "awareness" of the properties gives 

insight and therefore leads to a better understanding of the problem. According to 

Hewitt (1996:31) : "Attending to proof can force a student to examine what they do 

know and what they do not knuw about something. This forces attention onto 

properties, and it is not unusual for someone to learn a number Qf new things on the 

way to a proof". In other words, in order to understand a result (and its proof) one 

needs to first understand the properties involved. If, for example, the teacher presents 

a proof based on properties which the pupil is not aware of then the pupil may have a 

difficulty in understanding it. So, it is quite obvious that every pupil must be aware of 

all properties involved in a proof. 

The concern with the present state of affairs with regard to proof was expressed by 

Greeno (as quoted by Hanna,1996:1) : "Regarding educational practice, I am 

alarmed by what appears to be a trend towards making proof disappear from pre­

college mathematics education, and I believe that this could be remedied by a more 

adequate theoretical account of the epistemological significance of proof in 

mathematics". Greeno criticizes viewpoints, like that of Mack ern an, and he pleads for 

a better theoretical account of the role of proof. 

Although proof has been relegated to a less prominent role (Hanna, 1996 : 1) in the 

secondary school mathematics curricula in some countries, like the United Kingdom 

during the past 10 years or so, it is being re-established again. However, the role of 

proof appears to be no longer seen simply as a means 01 simple verification, but 

rather has far greater value in mathematics education (for example, involving 

explanatioIt, discovery, and so on). It would be appropriate to look at proof, which is 
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motivated by pnor personal conviction due to experimentation by the pupils 

themselves. Thus, proof becomes a means of helping the child make sense of a 

mathematical result and to satisfy the child's curiosity as to why it may be true. Hanna 

(19% : 16) stated that "with today's stress on ' meaningful' mathematics, teachers are 

being encouraged to focus on the explanation of mathematical concepts ........ ". Hersh 

(1993 : 396) states that "what proof should do for the student is provide insight into 

why the theorem is true" and at the high-school level "the primary role of proof is 

explanation"(1993 : 398). 

In an experiment carried out by Zack (1997 : 291-297), fifth grade children were 

given a task of counting squares of ANY size, where the squares resembled a 

chessboard pattern. The first was a 5 by 5 grid and was quite easily done by them. 

Further questions were posed, where the children were asked to count the squares in a 

10 by 10 grid and eventually they were asked to count the squares in a 60 by 60 grid. 

It was quite evident that some of the children were able to establish patterns, make 

conjectures and then test these conjectures. This enabled Zack (1997:4-296) to 

conclude that even with grade five children (ten and eleven year old children) "there 

is evidence of conviction prior to proving~ their arguments are based upon their 

conviction that their pattern works in all instances." She finally concluded that the 

children displayed strong evidence of the need for an explanation. In fact, despite 

finding one pupil' s result very good, the majority of the pupils insisted on finding out 

why the result worked as it did. 

Slomson (1996 : 13) made the following useful points in regard to the teaching of 

proof: 
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• "There has never been a golden age when all pupils left school knowing about 

mathematical proofs". This statement is in line with the generally held notion that 

very few pupils are in fact successful with mathematical proofs. 

• "The logical structure of mathematics is one of its most attractive features, and it 

might be that by playing down the role of proof we are failing to attract 

potentially talented pupils to becoming mathematicians". 

• "Pupils can reasonably be expected to investigate problems and conjecture results, 

when it would be unreasonable to expect proofs. (It is the nature of good proofs, 

like good music or good novels, that far fewer people are capable of creating them 

than of appreciating them.) Unfortunately, this can lead to two wrong ideas. First, 

that once you have spotted the pattern, the problem is solved. Second, the way 

pupils are encouraged to investigate problems often gives a wrong idea about how 

mathematicians think". 

• "It is unreasonable to expect anyone to come up with proofs at the end of 

investigations unless they have been shown in a didactic fashion lots of examples 

. .' 

of proofs which they can use as models for their own attempts". 

Perhaps the following quote by Hanna (1996 : 12) adequately summarises the need 

for pupils to prove in mathematics : "With today's stress on teaching 'meaningful' 

mathematics, teachers are being encouraged to focus on the explanation of 

mathematical concepts and students are being asked to justify their findings and 

assertions. This would seem to be the right climate to make the most of proof as an 

explanatory tool, as well as to exercise it in its role as the ultimate form of / 
mathematical just~fication. But for this to succeed, students must he made familiar 
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with the standards of mathematical argumentation; in other words, they must be 

taught proof" (my emphasis). Similarly Anderson (1996 : 34) expressed his feelings 

for the need for proof: "This places proof at the very heart of the mathematical 

experience and therefore, if we wish to convey to pupils something of what 

mathematics is really about, then we do them (and ourselves) a disservice if we 

exclude it from the curriculum". 

Hoyles (1996 : 59) also acknowledges that proof is essential at the secondary school 

stage, but points out that: H ••• !f formal proof is presented only as a way to 

demonstrate something that students are already convinced is tnte, it is likely to 

remain a meaningless activity. The challenge to mathematics educators is to widen 

the notion of proof and to build connections between its diverse aspects". A similar 

view is expressed by Goldenberg (1996 : 184) when stating that ''we often hear of 

negative associations that students have with proof : the game seems to be played 

with a distrustful or ullwarrantedly skepticaillature, or requires one to engage in an 

empty, post-hoc, proof ritual even though one is already fully convinced of the tntth 

of the statement' . 

2.2 Previous research based on pupils' need for conviction and explanation 
within the context of geometry. 

Relevant research was carried out by De Villiers in 1990 and 1991 . As part of the 

initi.a! ;tudy, in 1990, high school pupils were asked to jud~e 42 geometry thecft::ms 

according to the following set of codes : 
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Code 1 : Believe it is true from own conviction; 

Code 2 : Believe it is true because it appears in the textbook or because the teacher 

said so; 

Code 3 : Do not know whether it is true or not; 

Code 4 : Do not think it is true; 

Code 0 : Unanswered; 

This study revealed that between 50% and 70% of the pupils based their conviction 

on authoritarian grounds, that is, Code 2, rather than on personal conviction. In order 

to verify these findings, De Villiers conducted further research in township schools in 

the Durban area in 1991. 

The aims of the investigation were to try to establish : 

• which geometric statements the children were convinced about and the reasons 

for that conviction 

• which geometric statements the children found doubtful or false, and the reasons 

for their views in this respect 

The investigation was based on the hypotheses that : 

• the majority of pupils would base their conviction of the truth of the given 

statements on the authority of the teacher and / or textbook rather than personal 

conviction. 
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• the majority of children would not easily distinguish false statements on their 

own, but will be dependent on the authority of the teacher and / or textbook for 

this distinction. 

The investigation yielded some significant results. Code 2 responses were in virtually 

all 42 cases, on average two or three times greater than Code 1 responses. This 

allowed De Villiers (1991 : 22) to draw the following conclusion: "The certainty or 

conviction of the majority of pupils with respect to prescribed statements presently 

seem to be based on authoritarian grounds rather than on personal conviction. 

De Villiers (1991:22) attributes this to the fact that there is a dominance of the 

traditional approach which really involves the imposition of the teacher's ideas 

instead of an investigative approach, which involves conjecturing, testing of the 

conjecture, refining of the conjecture, understanding and, finally, justification. In 

similar but separate studies (De Villiers, 1991 :22), Smith in 1986 and De Villiers & 

Njisane in 1987, it was shown that of the 1959 standard 7 to standard 10 pupils who 

were interviewed, 88% were certain of the truth of the statements that were presented 

to them, yet only 7% indicated that they were certain because the statements could be . 

proved. This motivated De Villiers (1991:22) to draw another conclusion: "Only for 

a minority of the pupils, proofs seems to have the function of conviction / 

justification "0 

The following results were also obtained by D\:; Villiers (1991 : 23) in a teaching 

experiment in 1987 in which standard 7 pupils were involved as well as further 

interviews with standard 6 to standard 10 pupils 
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1. After initially discovering the conjecture, . 'If the midpoints of the adjacent sides 

of a quadrilateral ABeD are consecutively connected, then a parallelogram 

EFGH is formed", by construction and measurement, 94 % of the standard 7 

pupils spontaneously indicated that further quasi-empirical testing would satisfy 

their need for certainty. 

2. 8 out of 11 standard 6 to standard 10 pupils interviewed, also spontaneously 

obtained certainty with respect to the above conjecture by means of construction 

and measurement of a number of different quadrilaterals. 

This motivated De Villiers (1991 : 24-25) to make the following conclusion: 

• "the majority of pupils spontaneously choose to satisfy their need for personal 

conviction in new and unknown situations by quasi-empirical testing" 

A significant result that was obtained was that "despite displaying no further need for 

deductive verification, the 3 pupils who had used construction and measurement with 

respect to the given isosceles trapezium, still exhibited a need for explanation which 

had not been satisfied by their quasi-empirical approach" (De Villiers, 1991 : 24). 

This lead to the following conclusion: 

• "pupils who have convinced themselves by quasi-empirical testing still exhibit a 

need for explanation, which seems to be satisfied by some sort of informal or 

formallogi.co-deductive arguments". 
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Another important aspect was that the given logico-deductive explanation appeared to 

increase their confidence/certainty in the statement (De Villiers, 1991 : 25). This 

teaching experiment showed that although pupils were already quite satisfied about 

the truth of the statements after experimentation, they still displayed a need for further 

explanation. 

Other significant research was done by Zack (1997 : 291-298) in her fifth grade class 

(refer to details on pages 42 and 43). She finally concluded (1996 : 296) that "there is 

evidence of conviction prior to proving; their arguments are based upon their 

conviction that their pattern works in all instances" . Her findings (1996 : 296) further 

suggests "that the students who succeed in convincing their peers are those whose 

justifications are based upon the generalizations". Of great importance is the fact that 

her students emphasized that their criteria for proof included (1996 : 297) : 

1. a need for evidence, 

2. that the proof must make sense, and 

:3 . the person presenting must say why it works. 

For example, her students responded as follows to Johnston Anderson's (1996 : 296) 

rule ([n(n+1)(2n+1)/6]): 

Ross stated : "brilliant, but he should state why it works". 

Lew stated : "I think that if the Johnston Anderson's rule had evidence, if Johnston 

himself explained why it worked it woule be more convincing". 
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Rina stated: Johnston' s expression was" a great way to tigure out the problem but it 

doesn't make sense ... I think a mathematical proof is when you say it works and if it 

works for everything show why" . 

From the above, it is clear that her students displayed a need to know why, in other 

words, a need for explanation, despite being convinced of the validity of the rule. 

2.3 The Van Hiele Model of geometric thought 

Most pupils will never encounter geometry proof before they reach secondary school. 

Strangely enough, it seems that even when they reach the secondary school phase 

they still have problems with understanding and writing proof This, according to 

Dina van Hiele-Geldof and her husband, Pierre Marie van Hie1e, is due to the pupils' 

level of geometric maturity. Through extensive research they were able to posit the 

existence of five distinct levels of geometric maturity. All these levels describe the 

thinking process, which when assisted by the appropriate instructional strategies, 

allows the learner to move sequentially from the most basic stage (visualization or 

recognition) to the final stage of rigor (Crowley, 1987 : 1). According to the theory, 

pupils pass through these levels in consecutive order, but not all pupils pass through 

these levels at the same rate. The levels as proposed by the van Hie1es are as follows: 

Levell : (Basic level) Recognition or Visualization 

At this basic level the pupil is aware of space and has a knowledge of a certain basic 

vocabulary. The pupil can recognize, for example, a square but will not be able to list 

50 



any properties of the square. So, in other words, the child recognizes specitied shapes 

holistically, but not by its properties. 

Level 2 : Analysis 

At this level pupils begin to understand that the shapes that they are working with, 

through observation and playing around with it, has certain properties. The child can 

now see that the square is made up of all equal sides, or the rectangle has opposite 

sides equal. But the child still cannot find the relevant links between the different 

figures, for example, the relationship between a square and a rectangle. 

Level 3 : Ordering or Informal deduction 

At this level, pupils discern the relationships between and within geometric figures. 

For example, pupils can conclude that if the opposite sides of a quadrilateral are 

parallel then the quadrilateral is a parallelogram or that a square is a rectangle. So, at 

this level they can determine the characteristics of an entire class of figures, for 

example, quadrilaterals. At this level pupils cannot employ deductive strategies to 

solve geometric problems. They may be able to follow a proof but may not 

themselves be able to prove. 

Level 4 : Deduction 

At this level, the pupil understands the significance of deduction as a means of 

solving geometric problems. They also understand the role of axioms, postulates, 
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detinitions and theorems. They can use their knowledge to construct a proof of a 

statement. In fact, the relationship between a statement and its converse is also 

understood. 

Level 5 : Rigor 

The least amount of research has been done concerning this level, but it suffices to 

state that pupils at school rarely reach this level. Here the pupil is supposed to work in 

a variety of axiomatic systems, that is, non-Euclidean geometries can be studied, and 

different systems can be compared. 

An important point to remember is that not all pupils in the same class attain the same 

levels at the same time. Research done by U siskin and Senk regarding pupils and 

their Van Hiele levels (Driscoll, 1988 : 160) detennined the following: 

• During the year of geometry, more than 50 % of the students at the lowest level 

moved to Levels 2 and 3, but about a third of them remained in Levell . 

• After a full year of a geometry course with proof, only about 50 % of the students 

could do more than simple proofs. 

• As a predictor of how well students would do with proof after a year-long 

geometry course, the van Hiele model proved to be successful. More importantly, 

it seems that if the student enters geometry at Levell or below, there is very little 

chance of success with proof Entry at Level 2 will guarantee the child a better 
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than even chance of success, whilst entry at Level 3 implies a very good chance of 

success. 

According to the Van Hiele model two people reasoning at different levels will not 

understand each other; Further to this, in other words, a student who has attained only 

level n will not understand the thinking of level n + 1 or higher (compare Senk, 1989 

: 310). Level 3 becomes the transitional stage from informal to formal geometry. At 

this level students are able to derive short chains of reasoning whilst at level 4, 

students can write formal proofs. 

Research conducted by Senk (1989) confirmed the positive link between the Van 

Hiele levels and successful proof writing. The fact that students might not be at the 

correct van Hiele level in order to attempt a proof will explain why these students 

attain very little success at proof writing. 

A serious limitation of the van Hiele theory is that proof is only assigned to van Hiele 

Level 3. Here proof serves the function of systematization. It now appears that the 

other functions of proof, like explanation, could be addressed at earlier levels. At van 

Hiele Level 1 pupils could be provided with diagrams which they can manipulate 

themselves and visually draw conclusions. Thereafter they can measure and deduce 

properties of the different figures and at the same time, new terminology can be 

learnt. This would then be van Hiele Level 2. Only then would it be appropriate to 

challeng,e them to construct such dynamic quadrilaterals themselves, thus assist.ing 

the transition to Level 3. 
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students can write formal proofs. 

Research conducted by Senk (1989) confirmed the positive link between the Van 

Hiele levels and successful proof writing. The fact that students might not be at the 

correct van Hiele level in order to attempt a proof will explain why these students 

attain very little success at proof writing. 

A serious limitation of the van Hiele theory is that proof is only assigned to van Hiele 

Level 3. Here proof serves the function of systematization. It now appears that the 

other functions of proof, like explanation, could be addressed at earlier levels. At van 

Hiele Level 1 pupils could be provided with diagrams which they can manipulate 

themselves and visually draw conclusions. Thereafter they can measure and deduce 

properties of the different figures and at the same time, new terminology can be 

learnt. This would then be van Hiele Level 2. Only then would it be appropriate to 

challenge them to construct such dynamic quadrilaterals th\~mselves, thus assisting 

the transition to Level 3. 
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CHAPTER THREE 

RESEARCH METHODOLOGY AND OVERVIEW 

The present study builds on research by De Villiers (refer to pages 45-49) but it 

contextualizes it specifically within dynamic geometry. The purpose of this study is 

to determine whether pupils have any need for conviction and explanation within the 

context of dynamic geometry. Furthermore, this study will test curriculum material 

that was developed as a result of previous empirical and theoretical research. The 

material allows the child to discover a solution to a problem by guiding the child 

through stages that are easy and practical. As the child progresses through the 

worksheets, the child is allowed to record his/her conclusions and conjectures and is 

led to an explanation (proof). 

The empirical part of this research has focussed on the following major research 

questions: 

Given a self-exploration opportunity within dynamic geometry: 

• are pupils convinced about the truth of the explored geometric statements and 

what is their level of conviction? Do they require further conviction? 

• do they exhibit a desire for an explanation for why the result is true? 

• can they construct a logical explanation for themselves with t.midance? 

• do they find the guided, logical explanation meaningful? 
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As a result of these questions it was decided to use the method of qualitative analysis 

by means of one-to-one task based interviews. This method makes it easier to 

document the high level of information that individual children reveal about their 

sense making of situations and contexts. Furthermore, this method would allow the 

researcher greater control to observe and take note of, how each pupil went through 

the task sheet. As "Novak and Gowin (1984 : 12) stated: "For this reason most 

psychologists prefer to do research in the laboratory, where variation in events can be 

rigidly prescribed or controlled. This approach clearly increases the chances for 

observing regularities in events and hence for creating new concepts". The researcher 

acknowledges that the classroom situation is dynamic, due to the interaction of pupils 

with each other, the teacher, the subject content and the environment. By reducing the 

number of external variables, one narrows the focus, giving generalizations based on 

findings during task-based interviews greater credibility. Such findings, however, 

might be able to dictate future classroom practice. 

The tasks to be used in the interviews have been conceptualized within an action 

research paradigm. The tasks are based on curriculum materials that have been 

conceptualized within a theoretical framework of the different functions of proof, as 

well as empirical research on pupils' cognitive needs with respect to conviction and 

explanation. This research will determine how well they cope with the tasks provided 

and whether they construct meaning as it has been conceptualized. Based on these 

results, the material may have to be reviewed or redesigned. This explains the need 

for action res,-arch. As Cohen ami Ma;;ion (i~36 : 208) stated : "Action research is a 

small-scale intervention in the functioning of the real world and a close examination 

of the effects of such intervention". This in effect summarises the purpose of this 
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experiment. The strategic plan that would be implemented involves the pupil 

interacting with the developed curriculum material, careful observation and thereafter 

reflection. 

The researcher chose to work with pupils from Glenover Secondary School due to the 

convenience of having easy access to the computer laboratory and arrangements 

could easily be made to interview the pupils. Seventeen pupils, about 14 years old, 

were interviewed from grade 9 (standard 7). These pupils were selected randomly by 

their computer studies class teacher, who chose every ninth pupil appearing in the 

attendance register. They were selected from a group of 153 pupils in February 1997. 

At this stage, the pupils had not written any examinations for the year and therefore 

their individual academic performances could not be commented on. Grade 9 pupils 

were ideal for this study because the questions are suited to their level, and since they 

were just beginning with proofs in geometry. 

The school at which this experiment was carried out, . was previously administered by 

the ex-House of Delegates. There were a larger number of Indian pupils at this school 

in 1997, as compared to pupils from other race groups. All of the pupils selected for 

these interviews were Indian. The school itself is situated in Westcliff, in Chatsworth, 

which is a predominantly Indian suburb south of Durban. The residents of Westcliff 

are generally those of the middle to lower income group. The mathematics results at 

this school, has been below average over the previous years, and this was apparent 

from the matric results and the iact th~t below 10% of the pupils doing mathematics 

at matrie level offer it at the higher grade level. On this basis the average mathematics 

achievement of pupils at this school could be considered to be below average. 
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Pupils were not exposed to this particular problem at the school before and therefore 

did not know the solution or what to expect beforehand. However, pupils needed to 

have some knowledge of equilateral triangles, the formula to determine the area of a 

triangle and basic factorising skills. This was well within the capabilities of the grade 

9 (standard 7) pupils. 

A brief synopsis of the interviewing process is necessary in order to place the 

responses obtained in perspective. Although the pupils did not know exactly what to 

expect, they initially displayed an unwillingness to participate in this experiment. 

They feared failure and felt that they were incapable of working with mathematics in 

.a computer environment because they never experienced any such thing before. The 

interviews were conducted in the school computer laboratory over a period of one and 

a half months. The interviews were subject to the availability of the laboratory and 

the pupils, because the school only allowed the use of its laboratory during school 

hours. The laboratory was adequately equipped for the purposes of the interviews. It 

was initially envisaged that all pupils involved would be brought together for a short 

period in order to familiarize them with the general use and application of the 

computer software - Sketchpad. This was not possible for two reasons: 

• permission was not granted for the use of all pupils at anyone given time, and 

• only five computers could be used for the purposes of an orientation, which 

meant that 17 pupils would not have been able to satisfactorily enjoy and learn 

the basics about the soft-ware. 

57 

) 



In any event, this did not affect the experiment because minimal knowledge was 

expected from the pupils about the software. Each pupil was made to feel at ease 

before the interview commenced, in order to ensure that they would respond in a way 

that would reflect their understanding of the task provided. 

The task that the pupils had to work through was based on an equilateral triangle. The 

sketch of the equilateral triangle was presented ready-made to the pupils, although the 

task of constructing it for themselves might have been an interesting task on its own. 

The decision to present the equilateral triangle to them was based on the following 

reasons: 

• it would take each pupil a long time to figure out how to construct a dynamic 

equilateral triangle because they were not familiar with Sketchpad. 

• The construction of the triangle was not one of the objectives of this experiment. 

So presenting the construction to them did not affect the essence of the 

experiment. 

All measurements were clearly visible on the screen of the computer, so that pupils 

could easily view any changes that might have taken place. This is an example of 

what pupils would have seen on the screen (refer to Figure 7). 
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mCB=3.84an 

mAB=3.84an 

mCA=3.84 an 

mPi =1.24an 

mPJ=O.89an 

mPH=1.19an 

(mA) + (mPJ) + (mR-l) = 3.32 an 

Figure 7 

On being seated pupils were given the task sheet (refer to APPENDIX 2) and were 

asked to read through it. At the commencement of the interview (when the tape 

recording began), pupils were asked whether they understood the question posed to 

them. This was done for the following reasons: 

• to break the ice and make them feel at ease during the course of the interview, and 

• to ensure they knew exactly what they had to determine. 

The schedule of questions that followed, was designed and redesigned after three 

trial runs. This is what it finally looked like : 

TIIE ClllLD AFTER SUFFICIENT TIME, 

WILL BE ASKED TO WRITE A CONJECTURE. 

1 
THE CHILD WILL BE ASKED WHETHER 

SIRE IS SURE OF TIIE CONJECfURE. 

~ 
DETERMINE TIIE LEVEL OF CONVICTION. 

( 50 ~(" 80 %, 90 %, WOO/O) ? 

1 
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ASK THE CHU.,o : IF THE ISLAND (TRIANGLE) 

WAS BIGGER WILL THE RESULT BE ANY DIFFERENT? 

'V 

DETERMINE WHETHER THE CHILD FINDS THE RESULT SURPRISING. 

IFNO- WHY? IFYES- WHY? 

ESTABLI~ WHETHER THE CHILD ~S A DESIRE 

TO KNOW WHY THE RESULT IS TRUE? 

(WOULD YOU LIKE TO KNOW WHY TIllS IS TRUE ? ) 

1 
ASK THE CHILD: CAN YOU EXPLAIN WHY TIllS IS TRUE? 

1 
IF A CHILD SAY YES BUT GIVES 

A SIMPLISTIC REASON EG. I 

CAN DRAG IT AROUND AND 

SHOW THAT IT IS TRUE. 

1 

IF THE CHILD SAYS NO 

A SHEET CONTAINING SEVERAL GUIDELINES 

WILL BE HANDED TO THE CHILD. ASK THE 

CHILD TO READ IT. 

RESEARCH OUE8TION : CAN THE CHILD NOW GIVE 

AN EXPLANATION? 

(GUIDE IF NECESSARy) 
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ESTABLISH LEVEL OF UNDERSTANDING 

DID THE EXPLANATION INCREASE THE 

CHILD'S UNDERSTANDING? 

Each interview was approximately twenty minutes long and each was audio taped. 

Although these questions were structured around the critical questions, it also allowed 

for variation in expected responses from the pupils, and further probing was done in 

particular cases. 

Finally, the data analysis amounted to systematically grouping and summarizing the 

responses, and providing a coherent organising framework that encapsulated and 

explained the way each pupil produced meaning whilst working through the tasks 

provided. 
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CHAPTER FOUR 

DATA ANALYSIS 

4.1 INTRODUCTION 

The question chosen for this investigation was as follows (refer to Figure 8): 

In yes tiga tion: Dis tanees 

Sarah, a shipwreck survivor manages to. swim to a desert island. As it happens, the 

island closely approximates the shape of an equilateral triangle. She soon discovers 

that the surfing is outstanding on all three of the island's coasts and crafts a 

surfboard from a fallen tree and surfs every day. Where should she build her house P 

so that the total sum of the distances from P to all three beaches is a mInimum? (She 

visits them with egual frequency) . Before you proceed further, first write down your 

intuitive guess in the space below where you think P should be placed for the total 

sum of the distances to be a minimum. 

Figure 8 

The above question is a replica of that which was given to the pupils. The schedule of 

questions on pages 60 to 61, was based on this task-sheet and was merely a guideline 

to important questions and was not strictly adhered to, in order to allow for individual 

differences and further probing. 

Pupils were asked these questions to ensure that the researcher understood exactly 

what they were saying : "Are you sure (certain)?", "Do you desire an explanation? 
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Do you want to know why the result is always true?". Other questions were also 

asked. For example: " Where do you think Sarah should build her house? " or "Are 

you surprised with the results?". 

During the latter part of the interview, pupils were expected to write out an 

explanation. They were asked to do so at the back of their task sheet. Also, much 

time was needed for the pupils to carry out their testing process (using the mouse to 

drag the point P around) and for the calculation. During these processes, the tape 

recorder was stopped and restarted when they were ready to continue. The shortest 

interview took 17 minutes and the longest one took 26 minutes. No time constraints 

were placed on the pupils - they worked at their own pace . . 

When the pupil arrived for the interview s/he was given the question to read. After 

they had completed the question they were asked whether they understood the 

question. At this point the interview began. Very few understood the question after 

the first reading as can be seen from the following responses: 

• Kovilan stated that : "Sarah wants to build her house so that the distance to the 

beaches will be equal". 

• Floyd said that : "Sarah wanted to find the minimum distance from the three sides 

of the triangle". 

• Emily also stated that : " ... .. . it had to be the shortest distance to all the beaches" . 

• Higashnee said that : ".. ... . ......... the sum of all the beaches must be the 

smallest" . 
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• Rhyam' s response was : " ............ she wants to get a way so that she can go to 

three beaches at the same time" . 

From the pupils' it was also clear that none of them had seen the question before. To 

enable the pupils to correctly understand the problem, the researcher then asked each 

pupil to re-read the question carefully, and providing some guidance where necessary. 

After it was clear that the pupils understood the question, they were asked to make an 

initial intuitive guess (refer to Figure 9 which appeared in the task sheet). 

Investigation: Distances 
Sarah, a shipwreck survivor manages to swim to a desert island. As it happens, the 

Island closely approximates the shape of an equilateral triangle. She soon discovers 

that the surfing is outstanding on all three of the island's coasts and crafts a 

surfboard from a fallen tree and surfs every day. Where should she build her house P 

so that the total sum of the distances from P to all three beaches is a minimum? (She 

visits them with egual frequency) . Before you proceed further, first write down your 

intuitive guess in the space below where you think P should be placed for the total 

sum of the distances to be a minimum. 

Figure 9 

The question "Where do you think that Sarah should build her house?" elicited a 

common response among most pupils, namely that Sarah should build her house at 

the centre. The pupils were asked why they felt that the house should be built at the 

centre. Kumarasen, for example, responded by saying that: " ... if you build anything 

in the centre then there is always a short distance around it ". Kumarasen seemed 

quite convinced of his conjecture and so was Manivasan, whose reason was " 

.. . because everything will be equal". Rowan believed that it should be at the centre 
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because "it will be close ... it will be the same distance to all the beaches" and 

therefore the sum will be a minimum. Karishma felt that the sum would be a 

minimum if the point P was at the centre because "it will be closer to all three 

beaches". Ansuya's reason was similar when she said "because it seems the easiest 

way to get to any qf the three beaches ". On the other hand Kerushnee wasn't so sure. 

She said that " ... maybe here the sum will be the shortest". She was totally non-

committal. The only person who answered differently was Nicolas, who believed that 

Sarah should build her house close to one apex of the triangular island. When he was 

asked why he felt that way, his response was that he just felt that way. 

The next task required the pupils to investigate the problem with a ready-made sketch 

on Sketchpad where, the distances to the sides and their sum, was already provided. 

Pupils were then asked to move the point around in the triangle and to observe 

whether any changes were taking place (refer to Figure 10 from task sheet). 

Sketch 

Slep 1: 

Seep 2: 

Step 3: 

Construct a dynamic equilateral triangleABC. 

Construct a point P in the triangle. 
..; 

I 

Measure the distances from P to the three sides. 

Step 4: Select the three distances and choose Calculate to add the three distances. 

Investigate 

Drag point P around the interior of the 

triangle. What do you notice regarding 

the total sum of the distances? Drag A, U 

or C to change the size of the I,'!quilateral 

triangle and again drag point P around 

the Interior of the triangle. What do you 

notice now? Wh~t happens if Pis dragged 

outside the triangle? 

.Conjecture 

OIst.nce(P to Segment k) - 1.1 5 em 
0i5unce(P to Segment J) - 2.22 em 
Dist.nce{P to Segment m) - 0.94 em 
otsurce{P to Segment m)+Oistarce(P to Se9ment D • .. . • 4.31 ern 

c 

" B 

In the space below, write a conjecture regarding your observations above. 

Figure 10 



After the pupils had moved the point around, they had to make a conjecture regarding 

their observations. All the pupils found that when moving the point around, the 

distances to the three sides of the triangle changed, but their sum did not. All of them 

seemed quite surprised at the result, and when asked whether they found the result 

surprising, the following responses were obtained: 

Kerushnee : (emphatically) Yes I find the result very surprising. 

Ansuya : (confidently) Yes. I thought it would change. 

Kumarasen : Yes, because atfirst you think it should be at the centre and the sum will 

be small. But now it can be anywhere. 

Floyd : (emphatically) I didn't expect it. It is surprising! 

This could probably be attributed to the result so clearly contradicting their initial 

expectation. It was also noticed that the majority of them began to smile after they 

came up with their conjecture, which indicated that the discovery was not an 

unpleasant, but a pleasant surprise. 

4.2 Pupils' need and level of conviction regarding the truth of the discovered 

conjecture. 

The main purpose of this section was to establish how pupils convinced themselves of 

the truth of the conjecture, as well as the level of their certainty. It took only a few 

minutes for pupIls to .:;onvince themseives about the truth of this conjecture. The 

researcher was surprised to find that most pupils (14) stopped within a few minutes of 
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experimentation because they felt that there was no need to conduct further computer 

testing of the conjecture. 

When Nicholas stopped after a few minutes of experimentation, his response was as 

follows: 

Researcher : You've stopped Nicholas. What's wrong? 

Nicholas : No matter where I move the point P the total remains constant. 

Researcher : You mean the sum remains constant? 

Nicholas : Yes. 

Researcher : Are you convinced ? 

Nicholas : Yes. 

Nicholas was asked whether he wanted to try some more, and he reluctantly tried 

again and confidently stated : 

Nicholas Okay, I'm convinced that the sum is always constant. 

When asked whether he was really completely sure, he responded rather irritably : 

Nicholas : I'm convinced that it wouldn't change at all no matter how long I hy. 

Nicholas weilL furtt::.r by saying that he was a 100 % convinced, and that he didn 't 

need to conduct further tests in order to convince himself. Floyd similarly showed a 

very high level of conviction, for example: 

67 



Floyd : No matter where 1 put the 'centre' point in the triangle its always going 

to be the same. 

Researcher : When you say the centre point, do you mean point P ? 

Floyd : Yes. 

Researcher : And what happens? 

Floyd : The sum of all the distances from point P to the sides is always the 

same. It's not changing. 

Researcher: Are you convinced? Do you want to move it around some more ? 

Floyd : No. 

Researcher : But are you convinced already ? 

Floyd : (emphatically) Yes, I'm convinced! 

Researcher : If I asked you how many percent convinced are you, what would you 

say ? 

Floyd : (emphatically) 100% 

Researcher : You are. 1 00% convinced that no matter where pOint P is .. . (pausing) 

Floyd : (completing the statement) ......... the slim of the distances will still be 

the same! 

To probe his level of conviction further regarding the generality of the statement, for 

any equilateral triangle, the researcher continued as follows: 

Researcher : I want to know what would happen if I grabbed this pOint of the triangle 

a:-:d made it bigger or smaller? Do you think the result will change? 



At this point the researcher increased the size of the equilateral triangle which 

resulted in an increase in the sum of the distances to the sides. 

Floyd : Yes, the result will change. 

Researcher : When you say the result will change, are you saying that the sum will 

Floyd 

change? 

: It will change because the distance from the house to the beaches will 

be different. 

Researcher : Are you speaking about the dtfferent triangles ? 

Floyd : For the different triangles. 

Researcher : No, I'm asking, if you made the triangle bigger or smaller, will the result 

in that triangle change ? 

Floyd : No it will not change ........ . ... ... it will be the same. 

Researcher : What do you mean 'the same' ? 

Floyd : Wherever I move the house within the triangle, the sum of all the 

distances will be the same. 

Researcher : So you're saying irrespective of the size of the triangle ... ... ... ... ... . 

Floyd : Irrespective of the size, the distance will be the same. You can build the 

house anywhere. 

Researcher : Are you sure "I 

Floyd : Yes, sir, I'm positive. (sounding satisfied) 

It was int:festing to note that Floyd did not even try 1.0 move the point around withi:: 

the new triangle. He remained steadfast in his belief that it will remain the same. The 

researcher then moved the point around just to reinforce what Floyd was saying. 
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Clearly, both Nicholas and Floyd had obtained high levels of conviction, any attempt 

to get both of them to carry out further tests seemed pointless. Vinolia showed similar 

levels of conviction. She was confident of her conjecture and didn't want to continue 

any further. Nirvana also displayed a very high level of confidence in her conjecture 

as follows: 

Researcher : Okay Nirvana, you seemed to have moved it to a number of points. What 

is your observation ~ 

Nirvana : The distances are changing and the sum ................ . 

Researcher : Which distances are changing? 

Nirvana : All of them and the sum remains the same. 

Researcher : Do you think that this is the same throughout the triangle ? 

Nirvana : Throughout the triangle. 

Researcher : Do you think that if I moved the point to the comer there (pointing with 

the finger) then the sum will remain the same? 

Nirvana : Yes! 

Researcher: Are you convinced? 

Nirvana : Yes! 

Researcher : You don't want to try ? (The researcher was attempting to establish 

whether she was simply saying ' yes' to satisfy the researcher or did she 

really mean it ?) 

Nirvana : I'll try .. . ...... '" ...... ... (after a while) yes it remains the same 

Res6urcher : So, no matter where you moved it in the triangle, it will be the sami ? 

Nirvana : Yes. 

Researcher : If I asked you how many percent convinced are you, what would you 



Researcher : 1 noticed that you didn't move to many points ... ...... are you saying that 

what you observed will be the case anywhere in the triangle ? 

Kerushnee : Maybe. 

Researcher : If we made the triangle bigger or smaller, do you think now if we moved 

the point around, will the sum change ! 

(The researcher changed the size of the triangle.) 

Kerushnee : I don't think so. 

Researcher : Try it and see. 

(Because she was not so confident in the way she said it, the researcher requested 

that she move the point on the inside just to check whether her statement was 

correct.) 

Kerushnee : (after a while of actual testing) The sum is not changing. 

Researcher : So what can you say irrespective of the size ? 

(In other words, will the size of the equilateral triangle affect the result obtained?) 

Kerushnee : No matter where you move the point the sum will still be the same. 

Researcher : Do you feel that you are convinced that that will be the case always ! 

Are you sure that if I moved it to a comer pOint, it willllot change ? 

Kerushnee : I dOll 't think it will change. 

Despite some initial lack of confidence, Kerushnee later in the interview, showed 

that she was now quite convinced. 
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Researcher : Kerushnee, I want you to convince yourself that what you are saying 

will always be true. (The emphasis was on her convincing herself) 

Kerushnee : But when I 'm moving it everywhere it still remains the same. 

Researcher : So if I asked you if you were 60% convinced, what would you say ? 

Kerushnee : I think I 'm more than 60% convinced ! 

Researcher : How many percent convinced are you ? 

Kerushnee : (confidently) 100% 

Researcher : So you don't have any doubt that it would always hold? 

Kerushnee : (emphatically) I did try and I don't think there is such a point ! 

The need for sufficient empirical exploration before the attainment of certainty was 

also evident in the interview with Kurnarasen. 

Kumru.-asen : I noticed that the distances from the house to the beaches always 

changes but the sum is alway.~ constant. 

Researcher : Are you saying that no matter where P is the sum of the distances is 

always the same ? 

Kumarasen : Yes. 

Researcher : What if I moved P to a corner will the sum change ? 

Kumarasen : No! 

Researcher : How many percent convinced are you? .. . ...... Would you say about 

60% ? 
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Although he seemed quite convinced that the result will always hold, his reply was 

surpnsmg. 

Kumarasen : About 55 %. 

It might be that his expressed lack of certainty at this point was in regard to the truth 

of the statement for ANY equilateral triangle (generalization 2), rather than whether 

it was true for ANY point within the GIVEN equilateral triangle (generalization 1). 

This seemed to have been the case, as is borne out by the rest of the interview. 

Researcher : What do you think would happen if we changed the size of the triangle ? 

(The researcher did not change the size of the triangle.) 

Kumarasen : Then the sum of all the distances will change. 

Researcher : What do you mean that the sum of all the distances will change? 

Kumarasen : When you make the triangle bigger then the sum will change. 

Researcher : But within the same triangle will the sum change ? 

Kumarasen : Yes! 

Researcher : Okay, then let us make the triangle bigger (the researcher increased the 

size of the triangle) ...... now test the conjecture. 

Kumarasen : (after a while of testing) The sum never changes even if the triangle is 

made bigger vr slnwller. J he sum will always stay the same. 

Now it seemed that he was quite convinced. 
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Researcher : You said before that you were 55% convinced, now how many percent 

convinced are you ? 

Kumarasen : About 100%, because no matter how big or small yau make the triangle 

the sum will always be the same. 

Researcher: Yoo don't have any doubts? 

Kumarasen : No ! 

Emily also needed extensive empirical exploration before gaining a high level of 

conviction in generalization 2. 

Researcher : So yoo are saying that no matter which triangle yoo have the principle 

will he the same ? (This was in the context of a smaller or larger 

equilateral triangle.) 

Emily : (emphatically) Yes. 

Researcher : if J had to ask you hm-fl convinced you are of this and you had to give it 

to me in the form of a percentage what would you say ? 

Emily : About 70%. 

Researcher : So you still have some doobt ? 

Emily : Yes. 

Researcher : Do you want to try some more to further convince yourself ? 

Emily : Yes. 

Researcher : (after a while) I see you \ '!: stopped What does {hat mean ? 

Emily : I'm .... .. '" ... ... I'm .. . .... .. .. . 

Researcher : Are you a little bit more convinced? 
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Emily : Yes. 

Researcher : What percentage do you think ? 

Emily : About 90% now. 

Natasha was also initially unsure about generalization 1, but through further 

investigation Natasha became absolutely convinced of the conjecture. 

Natasha : No, it won 't change! 

Researcher : Are you sure ? Are you confident of your answer? You're looking 

unsure? 

Natasha : No, I'm quite confident that it won't change. 

Researcher : Do you want to try it again ? You moved it around the centre only, you 

did not move it around the comers. 

Natasha : (after a while) It remains the same. 

When asked whether the result would still hold for a larger or a smaller equilateral 

triangle (generalization 2), she responded positively, stating that she was sure that the 

result will be the same. Yet when she was asked how convinced she was about this, 

she replied that she was only 70% convinced. However, after some further 

investigation, she became 100 % convinced about generalization 2. The following 

provides a summary of the findings in this section. 

After the initial experimental ;;; j(plor?~~on, the followmg levels of initial conviction 

were displayed : 
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• 12 (70.5 %) were 100 % convinced 

• 2 ( 11 .8 %) were 98 % to 99 % convinced 

• 2 (1l.8 %) were 70 % convinced 

• 1 (5 .9 %) were 55 % convinced 

After further exploration, the following levels of conviction were displayed: 

• 14 (82.3 %) were 100 % convinced 

• 2 (11 . 8 %) were 98 % to 99 % convinced 

• 1 (5 .9 %) was 90 % convinced 

It was evident that the more pupils experimented the more convinced they became. 

The level of conviction of all pupils was very high, and for many pupils just a few 

minutes of experimentation on the computer was sufficient to achieve this level of 

conviction. 

• From the pupils interviewed, it was clear that pupils could achieve a very high 

level of conviction about the truth of a geometric statement by exploration on 

computer. Tn fact, their level of conviction was much higher than that expected by 

the researcher. It is also possible that pupils might not have achieved this level of 

conviction, so quickly and easily, if they had used only the pencil and paper 

construction and discovery method. 
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The tollowing finding was made with respect to the question that was asked of the 

pupils: 

FINDING 1: The pupils developed very high levels of conviction in relation to 

this conjecture within a dynamic geometry environment. 

4.3 Pupils' need for explanation (or understanding of why the result is true). 

The purpose of this section was to try and establish whether pupils exhibited a need 

for explanation of the conjecture they had made. Do they want to know why the 

conjecture is true? Do they display a desire for a deeper underStanding, independent 

from their conviction? The researcher found that the majority of pupils expressed a 

desire for an explanation. Tn fact 94 % (16) of the pupils said that they would want an 

explanation and only one pupil (6%) took a while before saying that she would also 

like an explanation. Some extracts from the interviews are now given. 

Researcher: Do YOll think then, now that YOll are a 100% convinced, that there is a 

need jor an explanation? 

Manivasan : Yes. 

Researcher : Would you want an explanation ? 

Manivasan : Yes. 

Researcher : Why ? 

Manivasan : So I can understand it. (emphasis by child) 
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It seemed clear that despite being convinced, Manivasan also wanted to understand 

why the result is true. He seemed to want something more than just being able to 

observe and accept the validity ofthe statement. Rowan responded in a similar way. 

Researcher : Do you think that there is a needfor an explanation '! Do you 

want to know why this is true ? 

Rowan : Yeah, there is a needfor explanation. 

Researcher : Why do you think there is a need'! ... Why '! 

Rowan : So we will be able to understand more clearly that diagram. 

The researcher acknowledges that by asking the question "Do you want to know why 

this is true?" the pupil may have been led to answering in the affirmative. However, 

Rowan's body language and response seemed to indicate that he had made up his 

mind on his own and that he truly wanted to know why. Although Rowan was 

absolutely sure (100%) of the statement, he nevertheless seemed to express a need for 

further understanding. Similar responses were given by the following students, all of 

whom seemed to express some curiousity regarding the result. 

Researcher : Do yau think, now that you are very convinced, ... ... is it necessary to 

know why this is the case '! 

Rodney : Yes. 

Researcher : Why do you want an explanation for this? 

Rodney : Fo ~iisjy m)' ..;uriosity. 
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Researcher : Why do you think there is a needfor an explanation ? 

Karishma : Because 1 '111 curious and I'd like to know what 's going on. 

Researcher : Why do you think there is a need for an explanation? 

Debashnee : Because I 'm a curious person and I would like tofind a solutionfor 

things. I would like to do the same for this. 

Researcher : Do you desire an explanation for what is going on ? 

Ryham : Yes. 

Researcher : You really would want to know why ? 

Rhyam : Yes. 

Researcher : Why ? Why would you want know why? 

Rhyam : I like to find out why things are taking place. 

Higashnee's response was very similar when she said : "I would like to find out 

about it myself and know more about it than finding out from the computer". 

From the above, it was clear that she also expressed a desire to satisfy her curiousity 

herself rather than just be given an explanation. Natasha expressed the same desire to 

know why as follows. 

Researcher: Do you think now that you are 100% convinced ... .... .. do you think that 

it is r:ecessaf~\J to have some surt of explanation as to why the result is 

true ? 

Natasha : Yes. 
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Researcher : Why du yuu think there shuuld be an explanatiun ? 

Natasha : Out of interest I would want to know why. 

Again it would seem that there was a deeper urge to find an explanation rather than to 

check whether the result was really true. Indeed, Natasha had earlier already stated 

that she was 100% convinced about the truth of the result, and did not express any 

doubt regarding the validity of the statement. However, some pupils did not explicitly 

state a need for an explanation or curiousity, for example : 

Researcher : Do you think there is a need to explain why this is the case ? Do you 

have a desire to know why ? 

Vinolia : No, I'd like to ....... ..... . 

Researcher : You'd like to know ... ... ... . 

Vinolia : ......... to go more ahead 

Although Vinolia' s did not clearly state that she desired some explanation, but it 

appeared as if her statement to "go more ahead" implied that she desired some 

further understanding beyond the experiences she had whilst she carried out her task. 

The transcription does not adequately can)' the entire emotion that she showed during 

her interview. 

It further seems clear that the pupils desire for further explanation or a deeper 

understanding b ,d notl.:een satisfied by the empirical exploration on computer. This 

exploration only seemed to convince them, but did not appear to have satisfied some 

deeper need for explanation and understanding. 
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Leann was the only pupil who did not immediately indicate a need for explanation. 

Researcher : Leann, now that you are a 100% convinced, do you think that there is a 

need for explanation ? 

Leann : I don't think so. 

Researcher : Why would you not want an explanation ? 

Leann : I'm quite convinced it is true. 

Researcher : But then, wouldn't you want to know why the result is true ? 

(researcher' s emphasis) 

Leann : Yes, it might be necessary. 

It might be that she had interpreted the first question as one which was enquiring 

about her need for conviction rather than explanation. Her response later on ("I'm 

quite convinced it is true") seems to indicate that this was indeed the case. It was for 

this reason that the researcher ' in the next question attempted to enquire more 

explicitly whether she wanted to know why the result was true (by emphasising the 

word "why"). Although this question might be viewed as a somewhat leading 

question, it seemed necessary to make sure that the pupil understood that it was not 

about further conviction, but about understanding why the result was true. This 

question then resulted in the pupil finally stating that it might be necessary. It was not 

entirely clear, however, whether she was merely responding to &atisfy the researcher. 

Eventually all the pupils seemed to express some desire to have an explanation. This 

desire clearly did not emanate from a need to further verify the result as they already 
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had very high levels of conviction. They seemed to want to 'understand' the problem 

which ' interested' them and which made them 'curious'. De Villiers (1991 : 25) 

similarly found that: "Pupils who have convinced themselves by quasi-empirical 

testing still exhibit a need for explanation, which seems to be satisfied by some sort of 

i~formal orformallog;co-deductive argument". It seems. that the distinction between 

experimental conviction and explanation is important. Although pupils could not 

make this distinction, they perhaps intuitively felt that that which was being observed 

required an explanation, that is, a deeper understanding of why it was true. There 

must be something more than an ordinary, simplistic answer. That is what pupils 

appeared to have needed. 

Pupils were also asked why they wanted an explanation, but very few could give a 

clear reason for their need. It seemed that they had difficulty verbalising this desire 

for an explanation. In fact, the majority simply said 'I don't know why', when asked 

'why?' . The pupils were further asked whether they would like to attempt an 

explanation on their own. However, only 6 (36 %) wefe willing to try, and then only 

came up with empirical arguments based on their earlier exploration (for example, if 

we move the point around we can see that the sum of the distances is constant). This 

was not unexpected as these pupils had not yet been exposed to proof in geometry. 

Even with their limited knowledge the 6 pupils were eager to attempt an explanation, 

although they gave very simplistic explanations, for example, they referred to the 

ubsel ~;~d eni!:irical evidence. The interview with Kumurasen was a good example of 

this. 
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Researcher: Now that you are so convinced, do you like to know why that is true ? 

(referring to his observation) 

Kumarasen : (confidently) Yes I would. 

Researcher : Can you give me an explanation for why that is true ? 

Kumarasen : Well by changing the size of the triangle you are changing the distance 

of the house from the beach. 

Researcher : Okay. What you are saying is not really an explanation. What we want 

are logical reasons. Do you think that you can come up with logical 

reasoning? 

Kumarasen : No. 

FINDING 2 : The pupils appeared to display an intrinsic desire 

for an explanation, that is, a need for understanding the conjecture, independent 

of its verification. 

4.4 Pupils' ability to construct a logical explanation with guidance. 

The basic research question, investigated in this section, was whether pupils could 

construct their own logical explanations with some guidance. Pupils were first asked 

to read the introduction (refer to Figure 11) which clearly illustrates the difference 

between observation / experimentation and explanation. The purpose of this was to 

'break the ice' and to attempt to illustrate to pupils that the activity, which they had 

eiigag~d in u!) to that point, W(iS in fact, only observation and experimentatioll. 
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Distances: explaining , " 

You are no doubt at this stage quite convinced that the total sum of the distances from 

a point P to all three sides of a given equilateral triangle is always constant. But can 

you explain why It is true? 

Although further .exploratlon on Sketchpad may succeed -iIi convincing you even 

more of the truth , of your conjecture, it really provides no explanation; it only 

confirms its truth. For example, the regular observation that the sun rises every 

morning clearly does not constitute an explanation; it only reconfirms the validity of 

the observation. To explain something, one therefore has to try and explain it in 

terms of something else, e.g. the rotation of the .earth around the polar axis. 

Recently, a mathematician named Feigenbaum made some new eXDerimental 

discoveries ill fractal geometry using a computer just as you have used Sketchpad 
, 1 ' 

earlier to discover your conjecture. These discoveries were then later explained by 

Lanford and other mathematicians. Carefully read and comment on the following 

quotation in this respect: 

".Lc111ford and otller mathematicians lVere llOt lrying La validate Feigenbaum's 

results allY more than. say. Newtoll was trying to validate the discoveries of 

, . Kepler 011 the planetary-orbits; "IIi" both cases the validity of the resuUs was 

never ill questioll. What was missing \Vas tlle e.':pJana'tion . : Why were tile 

ol'bUs ellipses? .Why did tlley sallsf)' tllcse particular relailons7 ... there's a 

world of difference bellveell validating and explainillg.n 

- D. Gale (1990) in The Mathematical lntelligencer, 12(.1), 4. 

Figure 11 

The pupils were then asked to complete the next section (see Figure 12) which 

provided guidelines for the finding of explanation to the problem, in a logical, 

sequential way. 
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Explain 
.'( 

Here are some hints for plani1ing a possible explanatiun. Read~nd work through it if 

~'youwallt, or try to construct your own explanation. 

E1. Label all three sides as a and the distances from P to the sides iAB~ BC and CA 

respectively as hl1 11.2 alld.h]. " :'f \ " ~ .. 

, E2; Write expressions for the areas of triangles PAB, PRe andPCA ihterms of the 

above distances. 

8 ;'" Add the three areas 'and simplify your expression by taking out a common 

factor. 

E4. How does the sum in P3 relate to the total area of triangle ABel- What can you 

conclude from this? 

ES. Which property therefore explains why this result is true? 

EG. Discuss your explanation with your partner or group. 

Figure 12 

It should again be noted that these pupils had not yet been exposed to the writing of 

proofs (explanations) for geometric statements. The guided explanation given to them 

required them to follow six steps in determining a possible solution. They were 

comfortable with the ease of the instructions because they could understand what was 

required. Refer to Figure 13 for Nicholas' s written work. 
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Nicholas went through the sheet with considerable ease. 

Researcher : Okay, I can see that you have done that (referring to the writing down of 

expressions for the areas of the three small triangles). The next step asks 

you to add all three up. Do you know what to do 1 

Nicholas : Yes. 

Researcher : (after a while) You've got AJ , A2 and A3 and you've got expressions 

for them. Now add these expressions. 

(after a while) Have you done that Nicholas? 

Nicholas : Yes. 

Researcher : Now simplify it. . ............... ............. . ... .... Have you done that? 

Nicholas : Yes. 

Researcher : I 've noticed that you removed half 'a' as a common factor. 

Nicholas : Yes. 

Researcher : Describe what you have done. 

Nicholas : I've removed haifa as a commonfactor andI've got haifa into hJ + h2 

+ h3. 

Researcher : Nicholas can you tell me how these three triangles relate to the area of 

the large triangle ? 

Nicholas : The area of the three triangles when you add it up, will give you the area 

of the big triangle. 

Researcher : If that is the case and we found the sum of the areas of the three 

triangles, tllen what can we conclude ? 

Nicholas : (silence) 

Researcher : That the areas of these triangles equal to ... ... ... .. . .... ? 
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Nicholas : area of the big triangle. 

Researcher: Now look at E4. I want you to write down this expression. 

Nicholas : (after a while) I noticed that the big triangle also had half a in it. So I 

cancelled off the half a from the big triangle and half a from the three 

small triangles. 

Researcher: And what have we arrived at ? 

Nicholas : The height of the three triangles ........... . when you add it up it gives 

you the height of the big triangle. 

Researcher : What does this mean to you ? 

Nicholas : No matter what the heights of the three smaller triangles are, it will 

always equal the height of the big triangle. 

Researcher : So what does it mean in terms of Sarah's house ? 

Nicholas : It means that no matter where she pu.ts her house the total distances will 

always be constant. 

Floyd also worked through the worksheet quite easily. Very little was required of the 

researcher in terms of "leading" the pupils to a solution. The interview with Floyd is 

now presented followed by his written work (see Figure 14): 

Researcher : Do you have the three expressions '! 

Floyd : Yes. 

Researcher : Can I have a look at them ...... ...... ....... That's okay. The next step E3 

Floyd 

asks YOii to add the three areas and simplify them by taking Oul a 

common factor. Can you do that? 

Yes ... .. .. ....... (after a while) Okay. 
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Researcher: Now tell me this floyd, instead of writing it. How does the sum in £3 

relate to the total area of the triangle ? 

Floyd : I 've divided the triangle into three different parts and I've found the 

area, ........ .I mean the height of the triangle ............ . 

Researcher : But my question is: how is the sum of the three triangles you've got, 

related to the entire triangle. 

Floyd : If you add the whole three triangles then it will give you the sum of the 

whole thing. 

Researcher : So you're saying that the sum of the three triangles .. . ......... . 

Floyd : ... ...... is equal to the big triangle. 

Researcher: Now I want you to use that and come up with some form of explanation. 

Floyd : ..... .. .. ... (after some time) Okay, I've found the height of each triangle 

and I added them together and I've taken out a common factor and I 

found that hJ + h2 + h3 = H, which is the height of the whole triangle. 

Researcher : But what does it mean? hJ + h2 + h3 - H ... ....... What does it mean? 

Floyd : I found the areas of each of the three triangles and then found the sum 

hJ + h2 + h3 = H ... ........ . . 

Researcher : What does it mean to you if it is equal to H ? 

Floyd : Yes, when I move it around it does not change hJ , h2, h3 no matter 

how much I move it around ... ... ..... . 

Researcher : Are you saying that hJ, h2 and h3 will not change? 

Floyd : hJ , h2 and h3 will change, but when you add all three up, it will remain 

the same. 

Researcher : So you 're saying that hJ , h2 and h3 changes but when you add them up 

the sum is staying the same. 
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Floyd : Yes, the !!.um of every height in the triangle is still the same. 

Researcher : What does this mean with respect to Sarah ? 

Floyd : No matter where she builds her house on the island the distance from her 

house to the beaches will still be the same. 

Researcher: When you say distance you are referring to the '! ... .... ...... ,. 

Floyd : The sum. 
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!'loyd took sligatly longer than Nicholas but he understood exactiy wbt he was 

doing. In fact, Floyd showed a lot of satisfaction as he worked through the 

explanation stage. 
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Some pupils had more difficulty arriving at a l-ogical explanation, for example, 

Kerushnee. Besides taking longer to arrive at the explanation, she required more 

guidance. Like the other pupils, she was asked to go through the sheet and attempt to 

follow the guidelines set out, but after a while the researcher noticed that she had not 

written anything down. This is how the interview proceeded from there. 

Researcher : What is the area of the large triangle ? 

Kerushnee : Half base times height. 

Researcher : Okay. Then what is the base of the large triangle? 

Kerushnee : a 

Researcher : So you should write that down. That b that you wrote represents the 

base. . 00 What is the base ? 

Kerushnee : a 

Researcher: Then maybe you should write that. So you would write half a.h}. 

Kerushnee : I've got it here. Half base times height - half. a. hj. 

Researcher : You should do it separately. What does small h represent? 

Kerushnee : The height of the big triangle. 

Researcher : So capital H does not represent that ? 00 • • •• 00' Somewhere in the sheet 

you are asked to find a relationship between the large triangle and the 

small triangles. What relationship do you think exists ? 

Kerushnee: The total 00. 00 , • 00 00. the areas of the small triangles = the area of the big 

triangle. 

Researcher : Maybe that is what you ought to write. . 00 00 . 00 •• 00 00. What can Y-:?;J 

conclude from this? 

Kerushnee : The total area of the big triangle is equal to the sum of the small ones 
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inside. 

Researcher : That we know already, okay. Can you simplify your expression further? 

Kerushnee : Can I take out the h ? 

Researcher : Why h ? 

Kerushnee : (silence) 

Researcher : Okay, look at both sides, what can you do to both sides ? 

Kerushnee : ( silence) 

Researcher : Okay Kerushnee, let us look at it again. On this side we have half a.B 

and on this side we have half a.(hl + h2 + h3). What can we do to 

simplify that ? 

Kerushnee : I only know that H = hl + h2 + h3. 

Researcher : But why would you do that? 

Kerushnee : Because they are going to be equal to the same thing. 

These statements were encouraging. She seemed to know that B - hl + h2 + h3, but 

she could not tell why. 

Researcher : Okay, you 're saying that all of these (hl + h2 + h3) are going to equal 

to this (H). Why ? 

Kerushnee : (silence) 

Researcher : You are telling me the right thing, but look at your equation and tell me 

why? 

Kerushnee : (silence) 

Researcher : Do you agree that this equation is like a scale ? 

Kerushnee : Yes. 
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Researcher : The left hand side equals the right hand side ? 

Kerushnee : Yes. 

Researcher : Think of the scale, what you do on the left you do on the right. 

Kerushnee : Maybe I should cancel .... ....... . 

Researcher : What would you cancel 1 

Kerushnee : The ......... ... ... ... h 'so 

Researcher : Why the h's ? 

Kerushnee : (silence) 

Researcher : Okay in any equation what can be cancelledfrom both sides? 

Kerushnee : The common factor. 

Researcher: What is the common factor? 

Kerushnee : The h's. 

Researcher: Are you saying that the h here is the same as the hJ + h2 + h3 ? 

Kerushnee : No. 

Researcher : There's a half here, is there a half there? 

Kerushnee : Oh, yes. 

This sudden insight made Kerushnee feel excited. From here onwards she found that 

to arrive at the explanation was much easier. 

Researcher : What else is common? 

Kerushnee : The a. 

Rescar.;her : Okay cancel off what you think should be can:.;::lled (~~~ 

......... (after she had done that) What does this mean ? 

Kerushnee : It means that if you add up all the heights of the small triangles it will 
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give you the height of the big triangle. 

Researcher : What can we conclude from that ? What does it really mean to us ? 

Kerushnee : It means that the triangle can be any .... .. ............. .. .... .. the area call be 

any amount but the heights will ~1i11 be the same when you add them 

together. 

Researcher: Why ? Why would they be the same ? 

Kerushnee : Because they belong to an equilateral triangle. 

Researcher : You are saying that these (hI. h2• h3) can change but their sum will be 

the same. Why ? 

Kerushnee : (silence) 

Researcher: Each of the individual values can change. Do you agree ? 

Kerushnee : Yes. 

Researciler : But what can you say about the sum ? 

Kerushnee : The sum is always the total height of the big triangle. 

Researcher : Which means that the height will be fixed and therefore ... . .... . ? 

Kerushnee : ..... . ... the ~7Jm will always remain the same. 

Although Kerushnee required much more guidance, and it took her much longer, she 

seemed at the end to have understood the explanation (refer to her written work in 

Figure 15). 
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Rowan came up with a slightly different explanation, as can be seen in the following 

excerpt. 

Researcher : Now Rowan I've noticed that you've completed. .. .. . ... What have you 

done there'! I can see that youfound the sum. What have you finally 

arrived at ? 

Rowan : half a into hi plus h2 plus h3• 

Researcher : Thereafter you equated the sum of the areas of the triangles to that of 

the area ~f the large triangle. Why have you equated them ? 

Rowan : The sum of the areas does not change. 

Researcher : ...... ... because ? ... .... .. ...... why do you think the sum of the areas does 

not change ? 

Rowan : Because the large triangle does not change. 

Unlike the other pupils, he immediately noticed that the area of the large triangle was 

constant, and therefore the sum of the areas of the small triangles also had to be 

constant (implying hJ + h2 + h3 is constant). 

Refer to Figure 16 to Rowan' s written work. 
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From the interviews it was apparent that the pupils were able to construct logical 

explanations, although some required more guidance than others. 

FINDING 3: If given proper guidance, pupils' were able to construct a logical 

explanation for the conjecture. 

4.5 Pupils' interpretation of the guided, logical explanation. 

The basic research question in this section was to try and establish whether pupils had 

experienced the guided, logical explanation as meaningful. More specifically, did it 

satisfy their earlier expressed needs for explanation or understanding? To attempt to 

establish this, pupils were asked at the end of the interview whether they found the 

explanation satisfying or good. 

The following responses from Rowan and Manivasan were typical. 

Researcher: Do you find this explanation insightful? 

Rowan : Yes. 

Researcher : Do you think it is a good explanation ? 

Rowan : Yes. 

Researcher : You enjoyed working with it ? 

Rowan : Yes. 

Researcher : Do you think that this was a good explanation? 

Manivasan : Yes. 
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Researcher : Did you find it insightful ? 

Manivasan : Yes. 

Researcher : Did you understand it well ? 

Manivasan: Yes. 

Researcher: You think it was '! 

Manivasan : Yes. 

Given that these pupils had not been exposed to such a problem and explanation 

before, Rhyam's response, in particular, seemed to indicate that it was a satisfying 

experience for him. His statement was perhaps even surprising in the light of the 

generally poor performance of these pupils in mathematics tests and examinations .. 

Researcher: Do you think that this explanation we gave you there is a good one? 

Rhyam : Yes. 

Researcher : Did you find it insightful? 

Rhyam : Yes. 

Researcher: Did you enjoy working with it ? 

Rhyam : I wish I could do it again ! 

Every pupil answered positively, and seemed to be satisfied with the guided 

explanation they had worked through. However, the researcher acknowledges that 

from the results obtained, it is very difficult to conclusively state that the pupils found 

the e;.:plaI!a~ion i i~ ~ightful. The extracts above do not indicate their exact thoughts. 

Although it can be argued that they were simply agreeing with the researcher to 

please him, their smiles gave some indication that they appeared to find the 
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explanation good. Perhaps more care should have been taken to probe further in order 

to extract their true feelings. 

This sense of satisfaction seemed to have arisen from their own participation in 

establishing the explanation, as well as that it appeared to have satisfied their earlier 

expressed need for an understanding of why it was true. More research in this area, in 

particular the development of good diagnostic techniques, is however necesssary. 

Finding 4: The guided, logical explanation appeared to satisfy their earlier 

expressed need for explanation and understanding. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

This research has yielded some valuable results in terms of the teaching and learning 

of geometry theorems and problems. Given the fundamental importance of proof 

within mathematics as a discipline, as outlined in the theoretical part of this study, 

proof should remain an essential part of the secondary school curriculum. Moreover, 

the teaching (and learning) approach used in the empirical research seemed to provide 

pupils a greater, and more meaningful, understanding of the role of proof. This study 

concentrated mainly on the introduction of proof to pupils as a means of explanation 

rather than as verification. 

The following statistics reveal the significant level of conviction that pupils 

experience whilst exploring geometric statements using Sketchpad: 

• After initially experimenting, 12 (70,5%) were 100% convinced, 2 (11.8%) were 

98% to 99010 convinced, 2 (11.8%) were 70% convinced, 1 (5.9%) were 55% 

convinced. 

• Asking them to explore the conjecture further yielded the following results: 14 

(82.3%) were 100% convinced, 2 (11.8%) were 98% to 99010 convinced, and 1 

(5 .9%) were 90% convinced. 

The research also indicated that pupils had a need for an explanation (deeper 

understanding) which was independent of their need for conviction. In fact, almost all 
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the pupils stated that they wanted an explanation for why the statement was true. 

Only one pupil initially felt that there was no need for any further explanation. So it 

would seem that pupils do exhibit an intrinsic desire for an explanation. Although 

they had a high level of conviction with respect to their conjecture, it did not seem to 

satisfy their need for an explanation. They showed signs of being very convinced of 

what they experienced. Such conviction often reduces a problem to that of the 

obvious, in other words 'I can see that it is true so why do I need an explanation for 

it?' . If they were so sure of the result then it should have made no difference to them 

whether there was some logical explanation for it or not. Yet they expressed a strong 

desire for an explanation. It seemed that they had recognised the fact that they had 

merely observed the result through experimentation. Perhaps it could be stated that 

they were aware of the difference that existed between observation, through 

experimentation, and knowing why it was really true. They undoubtedly wanted to 

know why the result was true and not whether the result was true. From the pupils' 

responses it seemed that the explanation provided insight into the reason why it was 

true. 

More significantly, this research found that given proper guidance, pupils can 

construct reasonable explanations for their conjectures. Although the different pupils 

were able to do this at their own pace, they were nonetheless able to do it. It has been 

stated that these pupils had not constructed a proof before and like most teachers the 

researcher believed that they could not. From talking to other colleagues, the 

reseafcter es~,.blished that th1:. perception is quite rife. The pupils involved -in tite 

experiment, showed that, with 'guidance, they could construct a proof In a sense, the 

act of moving points on a screen and seeing the results displayed on the screen, is a 
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type of proof in itself Constructing a logical argument ·hereafter becomes much 

easier, because seeing the images on the screen, allowed them to see the 

generalization in the particular diagrams they were constructing. Even an attempt to 

confuse them (by changing the sizes of the equilateral triangle, although this may be 

viewed as testing their level of conviction) did not work. This clearly indicates that 

through active participation pupils can achieve greater understa..lding of geometrical 

concepts. The researcher asked the pupils whether they would change their conjecture 

if the equilateral triangle was made bigger or smaller and, as was stated earlier, they 

were convinced that the same result would hold, irrespective of the size of the triangle 

as long as it was an equilateral triangle. Their conviction was of a very high degree, 

which enabled them to state that they did not need more time to explore. Some of the 

pupils were showing signs of impatience due to my constantly asking them whether 

or not they were convinced. This method was therefore a powerful tool for pupils to 

explore and make their own conjecture, which they can test and then prove. The 

researcher was convinced that pupils at this point did not display a need for further 

proof (that is to logically validate their conjecture), but rather to understand why their 

conjecture was always true. This is how mathematics is experienced as compared to 

merely learning it. Even Grade Nine pupils saw the need for proof as an explanation 

(within the context of the problem they worked on), which was, for the researcher, an 

astounding fact. Thus if proof is going to feature in the curriculum, then it must be 

presented in such a way that pupils do it for themselves and not simply learn what the 

teacher or text-book says. 

Although it appeared that the pupils found the guided, logical explanation 

meaningful, no conclusive results can be obtained from the evidence of this research. 
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This is mainly due to the tact that the pupils answered all questions in the afiirmative, 

thus giving the impression that they were simply agreeing with the researcher. Further 

probing might have been useful in drawing firmer conclusions. 

Although the researcher anticipated that the novelty of 'doing' mathematics might 

produce some important information, the nature of the responses obtained has 

certainly been overwhelming. The pupils that were interviewed enjoyed working 

through the mathematics, although the circumstances seemed quite formal, which 

resulted in them being somewhat anxious. Unlike the paper and pencil investigations, 

prior to a proof, the dynamic nature of the presentation surprised them. Looking at 

this problem presented to them, their surprise did not take long to manifest itself. 

There was no way that pupils could have correctly guessed that Sarah could build her 

house anywhere on the island, unless they had seen the result previously. But the 

results displayed on the screen convinced them that the result did not change for as 

long as Sarah built her house within the triangle. Pupils, who dragged the point 

outside, noticed that the sum of the distances were no longer constant. Within the 

context of the problem this made sense as it would have meant that she would have to 

build her house in the sea.2 

Another significant point that ought to be mentioned is that pupils never distrusted the 

results displayed on the computer. They never gave any indication that they felt that 

the researcher had 'doctored' the results. This was essential because they were quick 

te for;:~!llate t~eir conjecture that Sarah could build her house anywhere on tile is:.and 

2 The result can actually be generalised to points outside the equilateral triangle, but then use must be 
made of directed line-segments to represent the distances to the sides. 
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and the sum of the distances would be constant. As it was stated before, none of the 

pupils had explored mathematics, in this experimental way before, and subsequently, 

the researcher has been inundated with requests that we continue with similar 

problems. This interest was encouraging. This researcher was convinced that it was 

possible to achieve similar, if not better, results with other problems. An important 

factor, which contributed to this, must have been the notion that in the traditional 

sense, the theorem and its proof is directly presented to pupils whilst in this 

experiment pupils were able to first make a conjecture and thereafter, build an 

explanation, albeit a guided one, themselves. Their experiences, in a short period of 

time, was far greater than that which they would have gained using traditional 

methods. In a matter of minutes pupils were able to drag the point inside to many 

different positions and at the same time they observed the sum of their distances. No 

matter how accurately a pupil worked, similar results through any other medium 

might have been very difficult to attain. 

Perhaps, it must also be stated that the way the problem was presented was also a 

novel experience to the pupils. Rephrased the question could have read : Do you think 

the sum of the distances from any point within an equilateral triangle to its sides will 

be the same? Besides being -ordinary and boring, it does not allow pupils to become 

creative and imaginative. The problem itself allowed pupils to imagine an island 

which was in the shape of an equilateral triangle, and they could relate to the fact that 

Sarah wanted to surf. Besides using their creativity, they were able to use their 

imagilln_tion in this activity. 
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Although the debate about the relative emphasis that should be placed on proof might 

continue, pupils in this experiment showed that they actually desired a proof as a 

means of explanation. Quite obviously, this experiment focused on one problem and 

therefore a generalisation may not be appropriate. Nevertheless it seems likely that 

similar responses could be evoked in other appropriate contexts. 

The idea here is that the move should be away from the traditional method of 

teaching proof rather than moving away from proof itself Instead of the teacher 

simply verifying the truth of a statement by directly providing a proof, pupils should 

be conjecturing and seeking explanations for their own observations. Instead of 

learning the proof that somebody else has already written out, pupils should be 

encouraged to observe, conjecture, test and seek explanations. This experiment 

showed that pupils are capable of doing just that. Of course, it might be necessary for 

the teacher to guide pupils. It is clear that the processes of fonnulating proof has been 

hidden from pupils, because of the way proof is presented to them. Pupils believe that 

the proofs of statements are just written out by someone . without the person 

experiencing any difficulties whatsoever. Pupils here were able to see that proving is 

a process, whereby empirical testing played a vital role in making a conjecture. The 

process continued with the conjecture being refined and finally constructing a proof. 

Also significant was the fact that in some instances pupils had to examine and re­

examine the logical statements that they had written. 

-Not ,~nly did pupils karn some of the processes lflvolved in proving, they '-41so ie~lled 

about the properties of the figure that they worked with. In this case they were able to 
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see that the length of the sides of an equilateral triangle were equal. If time permitted 

they could have also measured the angles of the triangle. 

An important concluding idea that must be mentioned is that the pupils really began 

writing their proof towards the end of the interview. Most of the work was done by 
, 

visually observing the changes to the data. if there were any. All that the explorations 

did, which the pupils engaged in, was increase their conviction. They were able to 

mentally collate and analyse the information they observed. 

Reconstruction of the mathematics curriculum needs to take place where much 

thought must be given to introducing dynamic geometry at Grade 7 level (or earlier). 

Recognition must be given to the tremendous power of the computer in creating 

powerful contexts for the teaching and learning of mathematics, in general and, more 

especially, mathematical proof Surely, the "curriculum is to be thought of in terms of 

activity and experience rather than of knowledge to be acquired and stored" 

(McIntosh as cited in Floyd, 1981 : 9). 

It would be interesting to continue the experiment on a larger scale where group work 

would be assessed and whether larger groups cope with this type of approach. 

A primary aim of future mathematics education courses should be to create an 

awareness of proving techniques which allow pupils to generate conjectures and 

dev~~,')p proofs on th~ir own. Mathematics educators often display techniques th:!~ are 

merely mechanical routines, more especially in the teaching of proof Attitudes must 

be changed, by teaching mathematics educators themselves, about proving 
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techniques. An argument that most educators might present is that the method 

presented here may not be financially viable. Despite this problem, learning about 

these techniques is essential because the future might bring about changes that would 

allow pupils to work with computers. Thus teacher educators need to begin focusing 

on this aspect of proving techniques in their in-service training (INSET) programs. 

This will enable teachers to gain insight into the many and varied functions of proof. 

For the mathematics educator, the following recommendations can be made: 

\ . Problems (or theorems) should be presented to pupils in a way that would ensure 

greater understanding, as compared to simply directly presenting the theorem and 

\ 

\ 

its proofs. Instead of pupils learning proofs for re-writing them for examinations 

and tests only, they must be taught to prove, with guidance if necessary, on their 

own. The researcher is confident that as pupils are exposed to more examples, less 

guidance from the teacher would be necessary. 

• Pupils must be allowed to attempt to construct their own proof. If worksheets 

are well planned then pupils can be guided to a proof that may satisfy their 

desire for a proof as an explanation. 

• Although this experiment concentrated on a one-to-one interview, it could be 

hypothesised that the results would be just as significant in groups as well. 

• Proofwriting must be made to be an enjoyable task rather than a session of boring 

facts. 

With respect to curriculum planners and officials of education departments : 
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• The idea is to ensure that the child has every opportunity to do well in 

mathematics. Proof writing is an important part of mathematics examinations. 

Results in examinations and the mathematical literacy of pupils could improve, 

mainly because of the interest they will show in the subject. 

• Curriculum planners shol!ld include material, which uses this method for 

teaching proof, as this approach of exploring, conjecturing and explaining could 

also be carried without the use of a computer. The computer and software used 

only makes it the process easier. 

• Teacher education institutions should also focus on proof and proving. 

This research also presents a good platform for further related research in the 

following areas: 

I. An investigation, which would chart the progress of pupils through the Van 

Hiele levels in a dynamic geometry environment. Although the Van Hiele 

theory does not foresee the possibility of pupils' understanding proof before 

the attainment of Level 3, a dynamic geometry environment might stimulate 

proof (particularly as a means of explanation) on Level 2, or perhaps even 

Levell . 

II. Research which would indicate whether similar results can be obtained with a 

classroom of pupils, instead of a one-to-one interview. 

;-. I. Further research, which would investigate a greater variety of Pi oblems, 

making use of the different functions of proof 
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IV. Perhaps, more relevant to the present classroom situation in many South 

African schools, an investigation can be carried out to ascertain whether these 

results are also true for non-dynamic geometry environments. 

V. Further research needs to be carried out in order to determine whether 

examination and test results improve if pupils are exposed to these types of 

environments. 

VI. A substantive, longitudinal study should be carried out in order to determine 

whether pupils have acquired an understanding of the different functions of 

proof 
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R: RESEARCHER K = KUMARASEN 

R Ok, Kumarasen, now that you understand the question, I want you to make a conjecture as to 

where you think Sarah should build her house? 

~ Tn the centre. 

R Why? 

K Well if you build anything in the centre then there's always a short distance all around it. 

R What I want you to do now is to move point P around and obselVe carefully these distances. Do 

you know what these represent? (pointing to the distances on the screen.) Okay. Further, obselVe 

this sum. (After a while.) Why have you stopped? 

K I noticed that the distances from the house to the beach always changes but the sum is always 

constant. 

R Are you saying that no matter where P is the sum is always constant? 

K Yes. 

R What if I move P to a comer, would the sum change? 

K No. (Emphatically.) 

R Are you convinced? 

K Yes. 

R You are not looking so sure. How many percent convinced are you? (silence.) Would you say 

about60%? .. 

K About 55%. 

R Let's see if you can convince yourself further? ... How would you convince yourself further? 

K By measuring from her house to the beach at each point on the triangle. 

R Do you want to tty to do that? 

K Yes. No matter where P is the sum of the distances will always be the same. 

R What do you think would happen if we changed the size of the equilateral triangle? 

K Then the sum of the distances will change. 

R What do you mean when you say that the sum of the distances 'will change? 

K When you make the triangle bigger then the sum will change. 

R But within that triangle will the sum change? 

K Yes. 

R Okay, let's make this triangle bigger. . .. now test the conjecture. 

K The sum never changes even if the triangle is bigger or smaller. The sum will always stay the 

same. 

R Are you saying that as :long as it is an equilateral triangle, the sum within the triangle will be the 

same? 
-- - '---v Yes L'Io.. 

R Are you sure? 

K Yes. 

R You said before that you were 55% convinced, now how many percent convinced are you? 
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K About 100%. Because no matter how big or small you make the triangle the sum of the distances 

will always remain the same. 

R Do you have any doubts? 

K No. 

R Now that you are so convinced, would you like to know why it is true? 

K Yes, I would. 

R Can you give me an explanation as to why that is true? 

K Well by changing the size of the triangle you are changing the distances from the house to the 

beaches. 

R Ok. What you are saying is not really giving us an explanation. What we want are logical 

reasons. Do you think that you can come up with some form of logical reasoning? 

K No. 

R Would you like to have such a logical explanation? 

K Yes. 

R Initially you told me that she should build her house at the centre, now you've concluded that, 

really, it can be anywhere. Do you find the result surprising? 

K Yes, because at first you think that it should be in the centre and the sum will be small but now it 

can be anywhere. 

R I'm now going to give you a sheet. I want you to read through it and when you are finished we'll 

take it from there. 

R (After a while.) With regard to what you have read, can you tell in your own words what that 

says? 

K 1 can't explain it. 

R What ·distinction is made between ... what two things? 

K (Silence.) 

R There's a distinction made between two kinds of activities .. . 

K (Silence.) 

R Would you agree that there is a distinction between experimentation and explanation? 

K Ycs. 

R What do you think you were doing? 

K Experimenting where she should build her house so that she can have a small total distance from 

her house to the beaches. 

R Do you agree that you have been experimenting and you have not come up with an explanation? 

K Yes. 

R So now we want to come up with some logical explanation as to why this is true. Now read 

through this ... (handing pupil a sheet.) ... (After a while.) I see you have written something 

down. What have you got? 

K I've written do\;n the areas of the three triangles. 
-_. 

R And what have you done here? (pointing to the sheet.) 

K I've equated the sum to the area of the large triangle. 

R Why? 
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K Because the 3 triangles add up to the area of the big triangle. 

R I notice that you wrote h::: hI + h2 + h3. What does this mean? 

K lL means lhal if you add lhe areas up you will gel Ute area of lhe big lriangle. 

R But that is terms of the area. I'm referring to this part here. You have finally arrived at 

something which says that hI + h2 + h3 = h. What does that mean? 

K It means that if you add the area of the 3 triangles ... . 

R Hoes h represent the area of the triangle? 

K Yes. 

R Look at your diagram and tell me what hI , hz and h3 represent? 

K hI represents this triangle, and ... 

R Does it really represent the triangle? 

K It represents the distance from the house to the beach. 

R In the context of a triangle what does it mean? 

K The area. 

R Alright you've got a formula for area, what is it? 

K Y2 base times height 

R So what does hi represent then? 

K The distance from the house to the beach. 

R In terms of the triangle? 

K The height. 

R ' So what does hi, h2 and h3 mean now? 

K The 3 different heights. If you add them up you get the big height of the whole triangle. 

R What did you notice about hI, h2 and ~ when you moved point P around? 

K They always changed but the sum remained constant. 

R What do you know about the height of the large triangle? 

K But the height always stays constant. 

R S what does it really mean? 

K She can build her house anywhere within the island the sum of the distances will always be the 

same. 

R Does this satisfy your need for an explanation? Do you find this explanation satisfactory? 

K Yes. 

R Does it explain to you why this result is true? 

K Yes, no matter where you build the house the constant sum is there. 

R So are you satisfied with this kind of explanation? 

K Yes. 

R Did you really understand it? 

K Yes. 
-- j 

R ~you. 
- ---- - ---J 
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M = RESEARCHER R=RHYAM 

M Ok, Rhyam where do you think that Sarah should build her house? 

R In the centre. 

M Why do you think in the centre? 

R Because the centre seems to be most suitable to go to any beach. 

M That's· fine. What I want you to do now is move the point P around and whilst you' re doing that 

1 want you to observe the distances PM, PC and PK. At the same time observe the sum. Move 

the point around as much as you want to and when you are satisfied that you have moved it 

around enough you can tell me. 

R (After a while.) Ok. The sum remains constant and PM, PL and PK always change. 

M Are you saying that it's true throughout or only at the points you moved it to? 

R Throughout. 

M Are you quite sure that if I moved Ule point P to Uris comer here, UlaI. it won't change? 

R Yes. 

M It won't change? 

R No. 

M Are you convinced? 

R Yes. 

M If I asked you how many percent convinced are you, what would you say? 

R 100% 

M 100 %! If I made this a larger equilateral triangle, do you think the result will change? 

R No. 

M You're quite sure. 

R Yes. 

M Wouldn't you like to just check? 

R Ok. (After a while.) Yes it remains the same. 

M Do you find this result quite surprising? You did say that P should be at the centre before, now 

you indicate that it can be anywhere in the triangle. Do you find the result surprising? 

R Yes. 

M I'm going to give you a sheet which I want you to read. Read just the initial part first. (After a 

while.) Can you in your own words tell me what you have read? 

R (Silence.) 

M What are the two things that are being differentiated between? 

R Exploration and explanation. 

M Can you give me another word for exploration? 

R Expl-Jning. 
. -

M Are you saying that exploration is another word for explanation? 

R Finding out further ... 

M Ok, exploration is similar to experimenting, whilst explanation is finding logical reasons for why 
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something is true. We have been experimenting all this while, but now we want to find an 

explanation. Do you think that there is a need for an explanation? 

R Yes. 

M You really would want to know why? 

R Yes. 

M Why, why would you want to know why? 

R I like to find out why things are taking place. 

M You simply want to know why? Good. Rhyam, at the bottom of the page you would notice that 

there are a few points. I want you to work through each point and ask questions if you want to. 

(After a while.) It seems you are finished. Can you tell me what you have done? 

R I've added all the areas of the small triangles. 

M And what have you got? 

R The most common is Y2. 

M Is only Y2 common? 

R Y2a. 

M Thereafter what did you do? 

R Y2 a into hi + h2 + h3. 

M Why did you equate the area of the large triangle to the sum of the areas of the small triangles? 

R They're equal. 

M Why would you say that? 

R Because the small ones add up to the big one. 

M What does your last statement mean to you? (Referring to h = hI + h2 + h3.) 

R The small triangles are changing. 

M So what can we say about hi , h2 and h3? 

R They are also changing. 

M What can we say about h? 

R It doesn't change. 

M What is another word for "it doesn't change"? 

R Stays constant 

M How would you summarise what you have just said? 

R hI + h2 + h3 remains constant although hI , h2 and h3 are changing because h is the same. 

M So where should Sarah build her house? 

R She can build it anywhere on the island 

M Do you think this explanation we gave you there is a good one? 

R Yes. 

M Did you find it insightful? 

R Yes. 
- . -
M Di:i you enjoy workIng through it. -- - - _ .. -

R Yes. I wish I could do it again. 

M Thank you. 
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M:;:: RESEARCHER R:;:: ROWAN 

M Rowan, where do you think that Sarnh should build her house? 

R In the centre. 

M So it will be close ... it will be the same distance to all three beaches. 

M Do you think that if it the same distance to all three beaches then the sum will be a minimum? 

R Yes. 

M T want you to grab this point P and move it around. Observe at the same time the distances PM, 

PL and PK and at the same time observe their sum. As soon as you're satisfied you may stop. 

(After a while.) Now tell me what did you observe. 

R The sum of the distances does not change while the distances changed. 

M These distances here (pointing) changed? Is that what you ' rc saying? 

R Yes. 

M Are you sure? Do you think that if I had to move P right to the bottom here (pointing to the 

triangle), the sum won't change? 

R It won't change. 

M Are you positive? 

R Yes. 

M Would you say that you are quite convinced? 

R Yes. 

M If I made this a larger equilateral triangle, do you think the sum will change? 

R No. 

M A smaller equilateral triangle'! 

R No. 

M Wouldn't you WdIlt to just check? I 

R Okay. (After a while.) Yes it is the same. 

M Alright if I asked you how many percent convinced are you, what would you say? 

R 100% 

M A 100%? 

R Yes. 

M Rowan do you think that there is a need for an explanation? Do you want to know why this is 

true? 

R Yeah, there is a need for an explanation. 

M Why do you think there is such a need? ... Why? 

R So we will be able to understand more clearly the diagram. 

M So you actually want to understand Do YOt! find this result surprising? 

· R -; Yes. _._-- - .-

M Okay. Take this sheet and read through it and when you're finished I'll ask you some 

questions. (After a while.) Can you briefly tell me what you read in the preamble? 

R 
(Silence.) 
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M Would you be able to? 

R Yes. 

M Wha.l have you read in the preamble? 

R (Silence.) 

M What did it say? 

R (Silence.) 

M Okay there is distinction being made between two things, what are these two things? 

R Exploration and explanation. 

M Is there a difference between these two? 

R Yes. 

M What does exploration entail? ... What is another word for exploration? ... What were we 

doing all this while? 

R Experimenting. 

M So we were experimenting and exploring. Now we want to find a possible explanation. Do you 

. think that you can give us an explanation? 

R No. 

M Don't you want to try? 

R No. 

M At the bottom of the same sheet you will find a list of instructions. Read through that and see if 

you can come up with an explanation. (After a while.) Now Rowan I noticed you've 

completed. What have you got there? 

R Y2 (hI + h2 + h3) 

M Why did you eventually equate the sum of the areas of the triangles to that of the big triangle? 

R The sum of the areas does not change. 

M Why does it not change? 

R Because the large triangle does not change. 

M So you are saying that the areas of the small triangles will change but their sum won't because 

the area of the large one does not change. That is correct. What did you finally arrive at? 

R h=hl + h2+ h3 

M What does it mean to us? 

R The sum of the distances will not change, but if you move P then the distances will change. 

M What does it mean in terms of Sarah's house? 

R She could build her house anywhere on the island. 

M Do you find this explanation insightful? 

R Ycs 

M Do you think that it is a good explanation? 

R Yes. 

! M ' Did you enjoy working with it? - --'- -" -

R Yes. 

M Thank you. 
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M = RESEARCHER K = KERUSHNEE 

M Kerushnee, you seem to understand the question. Where do you think that Sarah should build 

her house? 

K I think that Sarah should build her house in the centre. 

M Why? 

K Maybe here the sum of the distances will be the smallest. 

M This computer program will allow you to take the point and move it around I want you to look 

at the diagram on the screen. Move this internal point around and observe the distances MJ, JL 

and JK. At the same time observe the sum of the distances. (After a while.) Why did you stop? 

K The sum of the distances, they don't change. 

M But what is changing? 

K The distances from Sarah's housc to the beaches. 

M I noticed that you didn't move to many points .. .... are you saying that what you observed will 

be the case anywhere in the triangle? 

K Maybe. 

M If we made the triangle bigger or smaller, do you think now if we moved the point around, will 

the sum change? 

K I don't think so. 

M Try it, let us see. 

K (After a while.) The sum is not changing. 

M So what can we say irrespective of the size? 

K No matter where you move the point the sum will still remain the same. 

M Do you feel that you are convinced that that will be the case always? Are you sure that if I 

moved it to that comer point there, it will not change? 

K I don't think it will change. 

M At every point, you are fairly convinced that it will be true? 

K No. Not that convinced. 

M Let's try it again. How do you think you can convince yourself some more? 

K If I could measure all the sides and find the sum. 

M How would you do that? ... What does the sides have to do with those distances? 

K I will measure all the distances from Sarah's house. 

.M Are you saying that you will physically measure it with a ruler or the computer? 

K With the computer. 

M But they have been measured already and they have been added here. That has already been 

done. 

K I would quickly draw one. 
--

M So you would like to quickly draw one and measure it yourself? 

K Yes. 

M Do you think that your equilateral triangle will be different from yours? 

K No. 
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M Kerushnee, I want you to convince yourself that what you are saying will always be true. 

K (After a while.) When I'm moving it everywhere it still remains the same. 

M So if I asked you if you were 60 % convinced what would you say? 

K I think I'm more that 60 % convinced. 

M How many percent convinced are you? 

k lOO%. 
, 

-
M So, you don't have any doubts that it will not hold true at some point? 

K I did try and I don't think there is such a point. 

M You seem to be fairly convinced. Keeping in mind the conjecture you made, do you find this 

result surprising? 

K Yes, I find the result very surprising. 

M Kerushnee, now that you told me that you are lOO % convinced, do you think that you need to 

know why the result is true? 

K Yes. 

M Do you want to attempt an explanation on your own? 

K Yes. I think it is because it is an equilateral triangle. Anywhere she builds her house it would 

be the same. 

M You are basically repeating the statement. You have read the question and you have seen the 

result What we mean by explanation is that you must explain in terms of something else. What 

you are giving is a simplistic answer. What we need is a logical reasoning - we want you to 

logically explain why it is the case. Do you think you can do that? 

K No, T don't think so. 

M Would you like to see such an explanation? 

K Yes. 

M I'm going to give you a sheet now, which has an explanation on it. Note that there are 6 points 

here. What you would need to do is read through the page and work through each point. Would 

you want to try? 

K Yes. 

TAPE FAULTY 

K They say that nobody ever questions his discovering and that, er, ... he wanted to know how 

that was so. 

M Would you agree that he is making a distinction between an explanation and experimenting? 

K Yes. 

M In some sense what have you done here? What would you describe that work as? 

K EXl>lanation. 

M Is that an explanation? 

M Did you give us an explanation for what was going on? 
- - .-

K Experimentation. 

M That was experimentation, but what you don't yet have is the explanatioll 

M Do you know what they're saying here? 

K Yes. 
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M For example, if the sun rises every morning and somebody asks you why does tbe sun rise, you 

can't just say it rises. There must be some explanation for that and that is the reason for what is 

going on now. I want you to go through E1 to E6. If there is something you don't understand 

please ask. 

K Okay. 

M (After a while.) What is the area of the large triangle? 

K 'l'2 base times heigllt. 

M Ok. Then what is the base of the large triangle. 

K a 

M So you should write that down. That b that you wrote represents the base. What is the base? 

K a 

M Then maybe you should write that. So you would write 'l'2 abo 

K I've got it here 'l'2 base x height = Y2 ah. 

M Maybe you should do it separately. 

M What does small h represent? 

K The height. 

M Off? 

K The big triangle. 

M So capital H does not represent that? Some where in the sheet they ask you to find a 

relationship between the large triangle and the small triangle. What relationship you think 

exists? 

K The total ... the area of the small triangles = to area of the big triangle. 

M Maybe that's what you ought to write now. (After a while.) What can you conclude from this? 

K The total area of the big triangle = three small areas inside. 

M That we know already. Can you simplifY your expression further. ( 'l'2 ah = hI + h2 + h3 ). Can 

you SinlPlify further? 

K Can I take out the h? 

M Whyh? 

K (Silence). 

M Okay look at both sides. What can you do to both sides? 

K (Silence). 

M Okay Kerushncc, let's look at it again. On this side we have 'l'2 a (hI + h2 + h3)' What can we do 

to simplify that? 

K T only know that h - hI + h2 + h3. 

M Bul why would you do tllal? 

K B~cause they are going to equal to the same thing. 

M You're saying that all of this (hI + h2 + h3) are going to equal this (h). Why? 

K (Silence). Because Ltns is an ~uilateral triangle. No matter how many triangles you get inside, 

the height of the big triangle is the same. 

M You are saying the correct thing, but look at your equation and tell me why h = hI + h2 + h1 

K (Silence.) 
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M Do you agree that this equation is like a scale? 

K Yes. 

M TIle left hand side - the right hand side. 

K Yes. 

M Think of the scale. What you do on the left you must do on the right. 

K Maybe I should cancel ... 

M What would you cancel? 

K The .. ... h's. 

M Why the h's? 

K (Silence.) 

M Okay in any equation what can we cancel from both sides? 

K The common factor. 

M What is the common factor? 

K The h's. 

M Are you saying that the h here is the same as the hi + h2 + h3 here? 

K No. 

M There is a Y2 here. Is there a Y:z there? 

K Ohyes. 

M What else is common? 

K Thea 

M Now cancel off, what you think should be cancelled off. (After a while.) What does this 

mean? 

K It means that if you add up all the heights of the small triangles, it will give you the height of 

the big triangle. 

M What can we conclude from that? What does it really mean to us? 

K It means that the triangle can be .. .. The area can be any amount but the heights will still be the 

same when you add them together. 

M Why? Why would they be the same? 

K Because they belong to an equilateral triangle. 

M You said that these (hI , h2 • h3) can change but the sum will be the same. Why? 

K (Silence.) 

M Each of the individual values can change. Do you agree? 

K Yes. 

M But what can you say about the sum? 

K Their sum is always the total height of the big triangle. 

M Which means that the height will be fixed and therefore ... ? 

K ... the sum will always remain the same. 
.. 

.tv~ Does thai explain to you what you have observed? 

K Yes. 

M I just want to make sure you understood it. Can you repeat it to me? 

K No matter where Sarah builds her house the total sum will always be the same. 
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M Why would she be able to do that? 

K Because the three distances, no matter how they change the height of the big triangle will 

always remain the same. 

M So you understand it fairly well? 

K Yes. 

M Does the ex-planation really satisfy your curiosity? 

K Yes. 

M 1bankyou. 
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to do the same for this. 

M Really, that is good. Do you think that you would be able to come up with an explanation on 

your own? 

D No. 

M Wouldn't you want to try? 

D No. 

M What we have here is a sheet, which gives a possible explanation. I want you to read through it 

and let me know when you' re finished? ... . , . ... ..... Okay Debashnee, you seem to have read 

through. What is being said in the preamble? 

D (Silence.) 

M Would you be able to say anything? 

D No. 

M Do you find that there is a distinction being made between two things? Do you know what 

these two things are? 

D Exploration and explanation. 

M You can see this distinction, but what is another word for exploration? 

D Experimentation. 

M Yes experimentation. What have you been doing? Were you exploring or w,ere you 

experimenting? 

D Experimenting. 

M What we need to do now is find an explanation for our observation, is that not so? 

D Yes. 

M At the bottom of this sheet, there are points E 1 to E6. I want you to go through all these points. 

Draw a diagram by copying exactly what you see on the screen and attempt to come up with an 

explanation. Would you be able to do that? 

D Yes. 

M (After a while.) I notice that you are finished. Very briefly tell me what you've done. 

D I've found the area of the three sides. 

M Sides? Areas of the sides? 

D No. The area of the triangles. I then added up the areas. 

M Which triangle did you work with? The big one or the small ones? 

D The small ones. 

M And then what did you do? 

D T added it up. 

M You added Utem up here (pointing) and what did you finally get? 

D I've got Y2 a(hl , h2 , h3)' 

M Is it hi , h2 , h3? Or is it hi + h2 + h3? 
.--1- - -

D hi +h2 +h3. 

M Okay, so I noticed here, you equated the area of the large triangle, to the sum of the areas of 

the small triangles. Why? 

D Because it's equal. 
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M What's equal? 

D The area of the large triangle and the sum of the areas of the small triangle. 

M Thereafter, whal have you done? 

D Thereafter I cancelled both the Y2' S ... ... (silence). 

M What else have you cancelled off? 

D Thea. 

M So 1;2 a was cancelled off and what have you got? 

D I've got h = hI + h2 + h3. 

M What does this really mean? 

D (Silence.) 

M What can you say about this statement with respect to what you observed? 

D (Silencc.) 

M What can you say about hI , h2 and h3 as we moved point P around? 

D It changes. 

M So they changed. What did we notice about hI + h2 + h3? 

D It remained the same. 

M And what can we say about this h here (pointing) ? 

D It's the same height. 

M When you say that it is the same height I presume you mean it is constant? 

D Yes. 

M So you're saying that hI , h2, h3 changed, but hI + h2 + h3 remained the same? 

D Yes. 

M But then you also stated that h is constant? 

D Yes. 

M So what does this imply? 
I 

D Although hI , h2 and h3 changes their sum will stay the same. 

M Where then should Sarah build her house? 

D Anywhere. 

M Now that you've gone through this explanation, do you think that it was insightful? 

D Yes. 

M Do you think that you would be able to work with something like tIlis again? 

D Yes. 

M Thank you. 
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M = RESEARCHER E = EMILY 

M Emily can you tell what does the question require? 

E Sarah wants to find ... er ... er.. . 

M . .. a spot where she can build her house. What are the conditions for that spot? 

E It has to be the shortest distance to all the beaches. 

M Is it the shortest distance? Is that what she really wants? 

E Yes. 

M The question requires you to find the point within the island where Sarah would be able to 

build a house such tIlaL tIle swn of all distances from tIle house Lo tIle tIlree beaches will be a 

minimum. Do you understand exactly what I'm talking about? 

E Yes. 

M Emily, tell me where you think that Sarah should build her house? 

E In the middle? 

M 1 want you to check whether what you're saying is correct? Move point P around and observe 

these three distances listed on the left hand side PM, PL and PK. Below is the sum of these 

three distances. Observe both simultaneously and tell me what you notice. 

E (After a while.) They change. 

M What is changing? 

E The distances from P to M, P to L and P to K. 

M What else did you observe? 

E The sum of the distances remain the same. 

M What does this mean to you? 

E No matter where she builds her house the sum of the distances will always be the same. 

M Just so that I know that you understand, can you say what you just said in other words? 
.. -

E (Silence) 

M You just said that no matter where she build her house the sum of the distances will be the 

same. Considering what you said initially that she should build her house in the middle, what 

do you say now? 

E I think that she can build her house anywhere. 

M If I had to make this triangle bigger, do you think the result will change? 

E It will change if the triangle is made bigger. 

M Yes if the triangle is lllade bigger thell the Sunl will change if it is compared to the otller 

triangle. But within this bigger triangle will it change? 

E No. 

M Would you want to just eheck? 

E Yes. 
- - . ---

E (After a while). Yes it remains the same within the bigger triangle. 

M So you are saying that no matter which equilateral triangle you use the principle will be the 

same? 

E Yes. 



M If I ask you how many percent convinced are you, what would you say'! 

E About 70%. 

M So you do have some doubt? 

E Yes. 

M Do you want to try again to further convince yourself? 

E Yes. 

M (After a while). I see you've stopped. What does that mean? 

E I'm .. ... . I'm ...... 

M Are you a little bit more convinced? 

E Yes. 

M What percentage do you think? 

E About 90010 now. 

M Do you find the result here surprising? 

E A little. 

M Compared to what you had guessed? 

E Yes. 

M Would you like to know why this is the case? 

E Yes. 

M Would you want to attempt an explanation on your own? 

E Yes. 

M Okay I'll give you some time. (After a while.) I've noticed that you have not written 

anything down. What does that mean? 

E I can't .... (silence). 

M You can't find an explanation? 

E No. 

M I'm giving you a sheet IlQW, which has points El to E6. These points help you with 

determining a possible explanation. If you look at E 1 it says that you must label all the sides 

'a' and the distances from P to the sides AB, Be and AC respectively as hI, h2 and h3.Please 

do that now. 

E (After a while). I'm finished with that. 

M Now E2 says, write expressions for the areas of these triangles. 

E (After a while). Okay. 

M The next step requires the removal of a common factor. (After a while). Emily, you seem to 

have completed that. Can you tell me your simplified answer? 

E Y2 a (hI + h2 + h3) 

M The next step asks: How does the sum of the areas of the small triangles relate to the area of 

the large tri~:1gle? 
1----

E The smn of Ule smalllriangles add up to the big triangle. -

M You mean the areas? 

E Yes. 

M Equate them and see what you get. 



E (After a while). Okay. 

M Explain to me what you've arrived at. 

E I've gol Y2 a which is common on boLh sides, so I've Laken lhem oul and I've come up witi. 

hI + h2 + h3 = h. 

TAPE FAULTY. 

E As I move the point around hI + h2 + h3 changes. 

M Does hI + h2 + h3 change? 

E No, hI , h2 and h~ changes. 

M What can you say about the sum? 

E The sum remains the same. 

M What does this really mean? 

E Sarah can build her house anywhere and the distance will always be the same. 

M Did you enjoy this? 

E Yes. 

M Thank you. 



M = RESEARCHER H = HlGASHNlE 

M Higashnie, now that you understand the question, where do you think Sarah should build her 

house? 

H In the centre. 

M Why do you say so? 

H Because it will be closer to all the beaches and the distances will be the same. 

M What 1 want you to do now is grab the point P, like this, and move it around and 1 want you 

to observe what would happen on the left hand s:de here. Observe these distances PM, PL 

and PK and at the same time observe the sum of those distances at the bottom. I'll give you 

some lime to do that. (Mer a willie). Okay you've stopped. What can you tell me about what 

you've observed? 

H The distances change but the sum remains the same. 

M Do you think it will be the same throughout this triangle? 

H Yes, throughout the triangle. 

M What if I made this triangle slightly bigger, an equilateral triangle nonetheless ... I made it 

bigger, what do you think would happen? 

H It won't change. It will remain the same. 

M If I made it smaller, would it change? 

H No. 

M Why don't you test it? 

H Okay. Yes it remains the same. 

M So you seem quite convinced that the result will be the saIne. If I asked you how many 

percent convinced are you, what would you say? 

H 100 0/0. 

M Arc you sure? 

H Yes. 

M Do you find the result surprising? 

H Yes. 

M Now tllat you are a 100 % convinced, do you think that there is a need to fmd an explanation 

for what you've discovered? 

H Yes. 

M Why? Why, do you think there should be an ex-planation? 

H I would like to find out more about it myself and know more about it than just finding out 

from the tX>mputer. 
-
M So you what to really know why it is true? 

H Yes. 

M Do you think that you would be able to come up with an explanation yourself? 

H No. 



· M Wouldn't you like to try? 

H No. 

M Higasllllie, Uris sheet contains a possible explanation. First read Ulfough the preamble, and 

I'll ask you some questions. (After a while). Can you give me a brief summary of what you 

read? (Silence). Would you be able to? 

H No. 

M Higasbnie, there is a distinction being made between two things. What are they? 

H Explanation and exploration. 

M What is another word for exploration? 

H Experimenting. 

M What have we been doing all this while? 

H Experimenting. 

M Yes, we were experimenting. What we need to do now is find an explanation. Read the sheet 

at the bottom. There are six points whlch I would like yoo to work through. I'll give you 

some time. (After a while). Higasbnie, now that you've completed that task, can you briefly 

tell me what you've done? 

H I added the areas of the three triangles. 

M Yes. 

H I then equated it to the area of the big triangle. 

M What have you got? 

H I came up with a common factor V2, I cancelled it and I've got hI + h2 + h3. 

M What is that equal to? 

H Yl. 

M I can see you cancelled Yl and a, but what have you arrived at? 

H hI + h2 + h3• 

M What is that equallo? 

H h. 

M So you've got hI + h2 + h3 = h. What does that mean? 

H The sum is the same throughout and Sarah can build her house anywhere on the island. 

M Did you easily understand the explanation? 

H Yes. 

M Did you find it insightful? Did you enjoy working with it? 

H Yes. 

M Thank you. 

xx 



M = RESEARCHER K=KOVIT...AN 

M Kovilau, now that you understand the question, where do you think that Sarah should build 

her house? 

K In the centre. 

M Why do you say that it should be in the centre? 

K (Silence.) 

M Did you just guess? 

K Yes. 

M Kovilan I wanl you lo check whelher whal you're saying is correct Grab tlns poinl P and 

move it around. As you move it around I wa.~t you to observe the measurements PM, PL and 

PK, which are the ~stances from the house to the beaches. At the same time I want you to 

observe the sum. Then I want you to tell me what you observed. 

K (After a while). The sum of the total- the three distances change but the sum does not. 

M Can we go through that again? What changes? 

K The distances. 

M Which distances? 

K The three - PK, PL and PM 

M In other words the distances from P to the three sides. But what else did you notice? 

K PL and PK and PM remain constant. 

M But you just said that they change. 

K The total- PM + PL + PK remains constant. 

M So that doesn't change? 

K Yes. 

M Are you convinced that that is true? 

K Yes. 

M How many percent convinced are you? 

K 100010. 

M You are a 100% convinced? 

K Yes. 

M What would happen if I made this a slightly bigger or smaller? I want to know whether the 

result you were a hundred percent sure of .... .. will it still be true? 

K Yes. 

M Are you convinced that that would be true? Do you want to try again? (After a while.) 

Alright, are you convinced that what you said is correct? 

K Yes. 

M Do you think that there shoaJG !Je an explanation for this? Do you want to know why this is i 
I 

true? 

K Yes. 

M Do you think that you would be able to come up with an explanation on your own? 

K Yes, I'll try. 



M I've noticed Kovilan that you have not written anything, what's going on? Do you know how 

to explain it? 

K No. 

M I've got a sheet with a possible explanation in a step wise way. Read through it (After a 

while). Have you done the first part? 

K Yes. 

M Now look at E2. Do that now. (After a while.) Have you completed that? 

K Yes. 

M Now add them and simplify your answer. (After a while). What have you got? 

K I've added Y2 ahl + Y2 a112 + Y2 a h3 and I've noticed a common factor. 

M What is your final answer? 

K Y2 a (hI + 112 + 113)' 

M The next step requires you to find the relationship between the areas of the three triangles 

and the area of the large triangle. What is that relationship? 

K (Silence). 

M Is there any relationship? 

K The areas add up. 

M The areas of which one adds up? 

K The small ones. 

M To which triangle do they add up? 

K The big one. 

M So the areas of the smaIl triangles adds up to the area of the large one? 

K Yes. 

M Now show this relationship - write it down. 

K I wrote Y2 a (hI + h2 + h3) = Y2 ah and I cancelled off Y2 a 

'M And what have you arrived at? 

K hI + h2 + h3 = it 
M What does it mean? 

K In the smaller triangles the heights change but the sum of the large one does not. 

M What do you mean by the sum of the large one? 

K The height of the large triangle. 

M What does lhis mean then? If lhe small ones change and the large one does nol, whal can we 

say about the sum? 

K It won't change. It remains constant. 

M Did you understand the explanation? 

K Yes. 

M Thank you. 

XXII 



M == RESEARCHER N == NICHOLAS 

M Nicholas, now that you understand the question, where do you really think that Sarah should 

build her house? 

N I thought towards anyone of the comers of the ... of the ... 

M Island? 

N Yes. 

M Why? 

N (Silence). 

M Nicholas I want you to check whether you are right. Grab point P and move it around wiUrin 

the triangle. Observe the distances PL, PM and PK and at the same time observe the sum of 

these distances. (After a while). You've stopped Nicholas. What' s wrong? 

N No matter where I move point P their total remains constant. 

M You mean their sum remains constant? 

N Yes. 

M Are you convinced? 

N Yes. 

M Do you want to try some more? 

N (After a while). Okay, I'm convinced that the sum will always remain constant 

M That changes from what you thought it would be? 

N Yes. 

M Are you surprised? 

N Yes. 

M How convinced are you that this will not change? 

N I'm convinced that it will not change no matter how long I try. 

M How many percent convinced would you say? 

N 100%. 

M You're actually a 100% convinced? 

N Yes. 

M Nicholas, do you want to know why this is true? 

N Yes. 

M Do you think you would be able to come up with an explanation? 

N I can try. 

M I'll give you a moment. (After a while). I've noticed you didn't write anything at all. 

N I didn' t come up with an explanation. 

M You can't? 

N No. 
\ 

M Nicholas, I'm going to give you a sheet whieh has a possible e"'Planation on it. Let us go 

through El to E6. Can you do that now. (After a while). Okay I can see that you've done 

that. The next step asks for you to add all three up. Do you know what to do? 

Yes. 
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I notice that you've got Al + A2 + A3. Simplify that expression. (After a while). Describe 

what you've done. 

N I've removed Y2 a as a common factor and I've got Y2 a (hI + h2 + h3)' 

M Nicholas can you tell me how these areas of the three triangles relate to the area of the large 

triangle? 

N Thc area of thc three triangles whcn you add it up, will give you the area of the big triangle. 

M If that is the case and we found the sum of the three triangles then what can we conclude? 

... (Nicholas is silent). That the sum of the area of these three triangles equal to ... 

N The area of the big triangle. 

M Now can you look at E4. I want you to write down this expression. 

N I noticed that the big triangle also Cad Y2 a in it. So I cancelled off the Y2 a from the big 

triangle and Y2 a from the 3 other triangles. 

M And what have we arrived at? 

N The height of the three triangles ... when you add it up it gives you the height of the big 

triangle. 

M What does this mean to you? 

N No matter what the heights of the three smaller triangles it will always equal the height of the 

big triangle. 

M So what does it mean in terms of Sarah's house now? 

N It means that no matter where she puts the house the total distances will always be constant. 

M So do you think that this is a good explanation? 

N Yes. 

M TIumk you, Nicholas. 



M = RESEARCHER R = RODNEY 

M If you understand the question Rodney, I would like for you to tell me where do you think 

Sarah should build her house on the island? 

R In the centre. 

M Why centre? Do you have any particular reason for saying centre? 

R It would be most appropriate. 

M Then Rodney 1 want you to check. 1 want you to grab point P and move it within the triangle. 

Observe the distances PM, PL and PK and at the same time observe the sum of these 

distances. Do that now. (After a while). What did you observe? 

R Wherever she goes ... 

M No, no. I'm talking about your moving the point. Alright carry on. 

R Its equal to thc samc distancc. 

M What is the same distance? Are those there (pointing to PM, PL and PK) the same? 

R No, they all changed. 

M So you're saying that the distances from the house to the beaches changed. Now what remain 

the same? 

R The sum of the distances. 

M Do you think that this will be the case for all points within the triangle? 

R Ycs. 

M You're sure? 

R Yes. 

M Do you want to convince yourself some more or do you think that you are fairly convinced? 

R Convinced. 

M If I made this a larger or a smaller equilateral triangle do you think the result will be the 

same? 

R Yes. 

M Now I'd like to know from you how many percent convinced are you? 

R lOO%. 

M You have no doubt at all? 

R No doubt. 

M Do you find the results surprising? Initially you told me that she should build her house at the 

centre but now you've changed your mind, do you find the results surprising? 

R Yes. 

M Do you think, now that you are very convinced, .. . . .. is it necessary to know why this is the 

case? 

R Yes. 
1---.-

M Why do you want an explanation for this? 
- - ---

R To satisfy my curiosity. 

M Do you think you would be able to come up with some explanation for this on your own? 

R Yes ... no. 



M If you think you can, you must tty. 

R Yes, I'll tty. 

M I've given you some Lime now, Rodney. I see Ulat you've not wriUen anything at all. Why? 

R 'cos I couldn't find any solution. 

M I'm going to give you a sheet that contains a possible explanation. 

TAPE FAULTY AND INAUDmLE FOR APPROXIMATELY & REMAINING MINUTES 

OF INTERVIEW. 



M = RESEARCHER F=FLOYD 

M Floyd, now that you understand the question, where do you think that Sarah should build her 

house? 

F At the centre. 

M Do you want to eheck your results? Grab point P and move it around within the triangle. 

Observe carefully the distances we have on Ule leU here. TIley would indicate he distances 

from the centre to the beaehes and also observe the swn of the distances and then let me know 

what you think is happening. 

F (After a while). No matter where J. put the centre point in the triangle it's always going to be 

the same. 

M So when you say "the centre point" you really mean the point P? 

F Yes. 

M And what happens? 

F The sum of all the distances from point P to the sides is always the same. It's not changing. 

M Are you convinced? Do you want to move it around some more? 

F No. 

M But are you convinced already? 

F Yes, 1'm convinced (emphatically). 

M If I had to ask you how many percent convinced are you. what would you say? 

F 100% (emphatically). 

M You are a 100% convinced that no matter where you take the point P ... 

F The sum of the distances will still be the same. 

M Do you find this result surprising? 

F I didn't expect it. It is surprising 

M Now Floyd, you've established that you can place the point anywhere within the triangle and 

the distance is going to be a minimwn. I want you to tell me Floyd, whether you want to know 

why this is true? 

F Yes, I'd like to. 

M Do you think you would be able to give me a possible explanation? 

F Maybe. 

M Do you want to try? 

F Yes. 

M (After a while) Floyd, I've noticed that you've tried for quite a while now - have you come up 

with some form of explanation? 

F No. I've tried and I can't get an explanation. _. 
M Floyd, I'm going to give you a sheet which bas an-explanation. 1 want you to go through this 

sheet and see whether you can understand it firstly and then come up with an explanation. J 

would suggest that you go through El first (After a while) Have you got El Floyd? 

F Yes. 
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M E2 requires you to write expressions for the areas of the different triangles. 

F (After a while) Okay, that's done. 

M Do you have the 3 expressions. 

F Yes. 

M Can I have a look at them? ... That's okay. The next point E3 asks you to add the 3 areas and 

simplify them by taking out a common factor. 

F Yes .... (After a while).Okay. 

M (After a while) So you've taken out your common factor? Now can you tell me, Floyd, instead 

of writing it. How does the sum of the areas in E3 relate to the total area of the triangle? 

F I've divided the triangle into 3 different parts and I've found the area, ... I mean the height of 

each triangle ... 

M But my question is "how is the sum of the areas of the 3 triangles you've got there relate to the 

entire triangle"? 

F If you add the whole 3 triangles it will give you the sum of the whole thing. 

M So you're saying that the sum of the areas of the 3 triangles ... 

F . .. is equal to the area of the big triangle. 

M Now.I want you to use that and come up with some form of explanation. 

F (After a while) Okay, I've found the height of each of the triangles and I added them together 

and I've taken out a common factor and I found that hI + h2 + h3 = h which is the height of the 

whole triangle. 

M But what does it mean? hI + h2 + h3 = h. hat does it mean? 

F r found the area of ea.ch of the 3 triangles and found the sum hI + h2 + h3 = h. 

M What does it mean to you if it is equal to h? 

F Yes, when I move it around it does not change - hI , h2 and h3 . no matter how much I move it 

around .... 

M Are you saying that hI , h2 and h3 will not change? 

F hI , h2 and h3 will change, but when you add all three up, it will remain the same. 

M So you're saying that h1 , h2 and h3 changes, but when you add them up ..... . the sum is staying 

the same. 

F Yes. 

M And what is the value there? (moving the point around) 

F TIle sum of every height in the triangle is still the same. 

M What does this mean with respect to Sarah? 

F No matter where she builds her house on the island, the distance from her house to the beaches 

will still be the same. 

M When you say the distance you are referring to .... 

F The sum. 
, -

M One more question before you go. I want to know· if I grab this point of the triangle here and I 

make the triangle bigger or smaller, do you think the result will change? 

F Yes, the result will change. 

M When you say the result will change, are you saying that the sum will change? What do you 
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mean? 

F It will change because the distance from the house to the beach will be different ... 

M Are to saying - from the dilferent triangles ... ? 

F For the different triangles. 

M No, I'm asking if you made the triangle bigger or smaller ... I want to know whether the result 

in this triangle .... the result in this particular triangle? 

F No it will not change '" it will be the same. 

M What do you mean "the same"? 

F Wherever I move the house or hut ",ithio this triangle the sum will be thc samc. 

M So you're saying, irrespective of the size of the triangle ... 

F Irrespective of the size of the trimlgle, the sum of the distances will be the same. You qm build 

the house or hut anywhere. 

M Are you sure? 

F Yes, sir, I'm positive. 

M Wouldn't you want to check? 

F No. 

M Thank you. 

XXIX 



M == RESEARCHER K = KARISHMA 

M Karishma, you seem to understand the question. Before we begin, could you quickly tell me 

where you think Sarah should build her house? 

K In the centre. 

M Why in the centre? 

K It will be closer to all three beaches. 

M What 1 want you to do now is grab the point P and move it around within the triangle. Please 

observe what happens to PM, PL and PK At the same time I want you to observe the sum of 

those three distances, here. You may continue and stop when you are satisfied. 

K I'll stop now. 

M Are you satisfied? 

K Yes. 

M What's your observation? 

K PM, PL and PK changes but the sum remains the same. 

M So you're saying that wherever point P was moved in the triangle, the distances changed but 

the sum did not 

K Yes. 

M Do you think that if I moved point P to this apex, the sum will remain the same? 

K Yes. 

M Throughout the triangle? Are you quite convinced? 

K Yes. 

M If I had to ask you how many percent convinced are you, what would you say? 

K 100% 

M You have no doubt at all? 

K No. 

M Alright, what if I made this a smaller equilateral triangle. Do you think the result will hold 

true for that triangle as well? 

K Yes. 

M Are you positive? 

K Yes. 

M Why don't you just check? 

K (After a while). Yes it is still the same. 

M Do you desire an explanation for what is going on? 

K Yes. 

M Why do you think that there is a need? 

, K Because I'm cu.-:ous and I'd like to know what is going on. , 
M So, just out of curiosity you'd like to know what's going on'l Do you think that you would be 

able to come up with an explanation yourself? 

K No. 

M You don't want to try? 
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K No. 

M Okay, I've got a sheet which has a possible explanation. Please read through it. I'm going to 

ask you a few questions just now. (After a while). Did you understand what was written 

here? Would you like to briefly explain to me what you read? 

K No. 

M Did you notice that the entire preamble is making a distinction between two things? 

K Yes. 

M What two things are they distinguishing between? 

K Explanation and exploration. 

M What do you think we were doing here? 

K We were exploring. 

M We were exploring, isn't that so? We were experimenting. Now what we want to do is find 

an explanation. At the bottom of the sheet you find steps EI to E6. Work through each step 

and then let us see what you come up with. 

K After a while). I added the areas of the three small triangles and equaled it to the area of the 

big triangle. 

M What did you actually get? 

K Y2 a as a common factor. 

M What have you finally arrived at? What is the last statement that you've got? 

K h = hi + h2 + h3. 

M So what ean we say? ... I mean what does that result tell us? • 
K (Silence). 

M You've got h = hi + h2 + h3, what does it mean to you? 

K (Silence). 

M Okay, what do you know about hi, h2 and h3 when you moved the point around? 

K The distances changed. 

M What did we notice about the sum of the distances? 

K It remained the same. 

M That is fine. What do we know about this h here, the height of the triangle? 

K It's constant. 

M So we are saying that no matter what the distances are, the sum will always be equal to h? 

what docs that mean? 

K It means that that would also be .... The sum would also be constant. 

M Now what does that mean in terms of Sarah's house? 

K She ean build her house anywhere. 

M Tell me do you think that this is a good explanation? 

K Yes. 

M Did you enjoy working with it? Did you find it insightful? 

K Yes. 

M Thank you. 
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M == RESEARCHER N==NATASHA 

M Natasha, you seem to understand the question. Before we begin would you like to tell me 

where you think Sarnh should build he house? 

N In the middle. 

M Why in the middle? 

N It will be equal for her to come from C and B. 

M We are not looking at equal distances to the beaches, we're looking at the smn of those 

distances. So you think the middle will be most appropriate. What I want you to do now is 

grab this point and move it around within the triangle. At the same time observe these 

distances on the left band side. Also observe the sum of those distances. Do that now and I -

when you stop I will know that you are finished. (After a while) What do you observe? 

N It's changing everytime ... everytime I move it. 

M What changes? 

N These values here (pointing to the distances) that is, the distances are changing. 

M What happened to the smn? 

N It remained the same. 

M I noticed that you moved it for a fairly long time. So are you convinced that this is true? Are 

you saying, that you would not be able to find a spot within this triangle where the smn might 

cllaqge? 

N No it won't change. 

M Are you sure? Are you confident of your answer? ... You're looking unsure. 

N No, I'm quite confident that it won't change. 

M Do you want to try it again? You moved it around the centre only, you did not move it 

around the comers? 

N (After a while) It remains the same. 

M So you're fairly convinced? What would happen now if I made lhe lriangle bigger, I drew a 

bigger equilateral triangle? I want to know, will the results you obtained for this triangle be 

the same for the bigger one? Will it work for the larger triangle? 

N Yes. 

M Why don't you check? 

N (After a while) Yes, it is the same. 

M You're fairly convinced? What I want to know then is how many percent convinced are you? 

N 70% 

M This indicates that you're not so convinced about it. Do you want to try again to convince 

yourself some more? 

N Yes. (Aft{;.i':; while) I'm a 100 % convinced now. 

M Are you sure? What would have convinced you to a loG' Yo now? 
... -

N Everytime I am moving this mouse only the distances are changing and the total is not 

changing. 

M Are you surprised with this result? 
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N Yes. 

M Now that you are 100 % convinced do you think it's necessary to have some sort of 

explanation as to why that result is true? 

N Yes. 

M Why do you think that there should be an explanation? 

N Out of interest, I would want to know why. 

M Do you think you would be able to come up with an explanation on your own? 

N No. 

M What I do have hcre is a sheet which contains a possible c"1>lanation. At the bottom of the 

sheet you will find steps EI to E6. Now El says you must label, if you look at the diagram 

that is appearing on the sheet that I have given you, it says label the sides. I want you to draw 

a diagram on a page and then work through these steps. Do that now. (After a while) Can 

you read out to me what you have written there? 

N I've got Y2 a (hI + h2 + h3) 

M The next step required you to find a relationship between the sum of the areas of the small 

triangles to the area of the large triangle. 

N It will make up the big triangle. 

M When you say "make up the big triangle" are you saying the sum of the areas of the 3 small 

triangles is equal to the area of the big triangle? 

N Yes. 

M Now I want you to write an expression for the area of the big triangle. 

N (After a while) I got Y2 a as a common factor. I've removed Y2 a and I got h = hI + h2 + h3 • 

M What does this mean to you? What can you conclude from that? 

N No matter how much hI , h2 and h3 changes h will remain the same. 

M hI , h2 and h3 are changing, but what can we say about the sum? 

N The sum d~'t change. 

M So you're saying that no matter how much hI , h2 and h3 change, the sum does not change. 

Why do youthink that is the case? 

N Because h is the sum and h is constant 

M How does it relate to Sarah's house? Where do you think she should build her house? 

N Tn the centre ... anywhere. 

M Is it th~ centre or anywhere? 

N Anywhere because no matter where she builds it the sum will always be the same. 

M Looking at the work we have done, do you think the explanation was good? Did it enlighten 

you? 

N Yes. 

M Did it improve your understanding? 
-N Yes. -

M 1bank:you. 
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M = RESEARCHER A=ANSUYA 

M Okay Ansuya, now that you understand the question, where do you think that Sarah should 

build her house? 

A In the middle of the equilateral triangle. 

M You seem quite convinced that it is the middle, why? 

A Because it seems the easiest way to get to any of the beaches. 

M 1 want you to test that. Grab the point P and move it around within the triangle. 1 want you to 

observe as you move the point around the values I have on the left here - these are the 

distances from Sarah's house to the beaches - and at the same time observe the sum of the 

dislances here. (After a while) You've SLOpped. Wllal did you observe? 

A The distances of the smaller lines in it are changing but the total distance is the same. 

M When you say "smaller line" are you actually talking about PL, PK, PM which represents the 

distances from the house to the beaches. They don't change, you say? 

A Well they change but the total doesn't change. 

M But I noticed you only moved it around the centre, are you convinced? Do you want to try 

again? 

A Yes. (After a while) It's the same. 

M Are you convinced? 

A Yes. 

M If you are so convinced then I just want to know what would happen if I made this a larger 

equilateral triangle. Do you think your result will still hold? 

A Yes. 

M Are you convinced? 

A Yes. 

M Do you want to check? 

A Yes. (After a while) It's the same. 

M If I asked you how many percent convinced are you, what would you say? 

A 98 %-99% 

M So you' re fairly convinced. Do you fwd the result surprising'! 

A Yes. I thought it would change. 

M Did you enjoy that? 

A Yes. 

M The next thing that I'd like to know is whether you have any desire for an explanation? Do 

you think there is a need to find an explanation for this result? 

A Y es ~t was surprising. 
I 

M Why do you think there should be an explanation"7 
,-

A I thought like there would be a specific point but it's anywhere. 

M Do you think you would be able to come up with an explanation on your own? 

A No, 1 don't think so. 
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M I'm giving you a sheet now that bas an explanation. I want you to read through that now. 

There are steps El to E6. Work through that and when you stop I'll ask you some questions. 

(After a while) Can you describe to me what you have done? 

A I've added the areas of the smaller triangles up and I've decided that Y2 a is common so I put 

Y2 a (hI , h2 , h3). 

M When you say hi , h2 , h3 I presume you' re saying hi + h2 +h3 as it is written in your sheet. 

A Yes. 

M Okay, then the next thing here says, how does this sum that you have established relate to the 

area of the large triangle? 

A The sum of the 3 small areas is equal to the sum of the area of the large triangle. 

M So you really mean the sum of the areas of the smaller triangles is equal to the area of the 

large triangle? Is that what you're saying? 

A Yes. 

M 1 want you to find the relationship between the area of the large triangle and the sum of the 

areas of the 3 smaller ones. (After a while) How did you get h = hI + h2 + ~? 

A Y2 was common. 

M Was only Y2 common? 

A Y2 a was common. 

M Yes, you've got it written down correctly. What does this mean to us? 

A When you add the heights of the smaller triangles you get the height of the larger triangle. 

M What can we conclude about h of the larger triangle? 

A It's the same. 

M When you say "same" do you mean conslanl.? 

A Yes. 

M Then what can we say about hi , h2 and h3? 

A They change when you move point P. 

M So what conclusion can we draw from that? 

A While h stays the same the heights of the smaller triangles change. 

M In terms of Sarah's house, what does it mean? 

A Wherever she builds her house the sum of the distances will be the same. 

M Do you find this explanation enlightening? 

A Yes. 

M Thank you. 



M = RESEARCHER N = NIRVANA 

M Now that you understand the question where do you think that Sarah should build her house? 

N In the centre. 

M Why? 

N Eh .. . eh .. . 

M Are you just saying the centre or do you have a reason for saying so? 

N I'm just guessing. 

M Okay I want you to grab point P and move it around Observe the distances PM, PL and PK 

and at Ule same Lime observe Ule sum of Utese distances. (Aller a while). Okay Nirvana, you 

seemed to have moved it to a number of points. What is your observation? 

N The distances are changing and the sum ... 

M Which distances are changing? 

N All of them and the sum remains the same. 

M Do you think that this is the case throughout the triangle? 

N Throughout the triangle. 

M Do you think Lhat if I moved Ute point P to Ute comer Utere Ute sum will remain Ute same? 

N Yes! 

M Are you convinced? 

N Yes! 

M You don't want to try? 

N I'll try ..... yes it remains the same. 

M So no matter where you moved it in the triangle the result will be the same? 

N Yes. 

M If I asked you how many percent convinced are you, what would you say? 

N 100%. 

M That means that you are highly convinced that there is no point within the triangle for which 

the sum will change? 

N (nodding her head) 

M You are shaking your head - is it yes or no? 

N No. 

M TIlere is no point? 

N No. 

M What if I changed this to a larger equilateral triangle, do you think the result will still hold? 

N Yes. 

M Do you think if I added up all the distances from any point within a larger equilateral triangle 

I the sum will be the same-? 
._--

N It will, yes. (Hardly audible). 

M Do you find the result surprising? 

N Yes. 

M Now that you are so convinced, do you think that there is a need for an explanation? 



N Yes. 

M Why is there such a need? 

N (Silence). 

M Why? .... 

N I don't know. 

M But you still think that there should be an explanation? 

N Yes. 

M Do you think that you would be able to come up with an explanation? 

N No. 

M On this sheet there's a possible explanation. Read through it 

TAPE F AU' .... TY 

M Nirvana I notice that you've written out the entire explanation. Can you tell me what you've 

done in this part here? 

N I've added the areas of these small triangles and I got Y2 a hI + Y2 a h2 + Y2 a h3, and I found 

the common factor and I got Y2 a (hI + h2 + h3)' 

M What is the relationship between the areas of the three triangles and the area of the large 

triangle? 

N They are smaller. 

M If you take the areas of the small triangles and you add it up will it be smaller, equal or larger 

than the area of the big triangle? 

N Equal. 

M Are you sure? 

N Yes. 

M Tell me what you did thereafter. 

N I equated them I got Y2 a h = Y2 a (hI + h2 + h3). 

M I can see all of that but what have you got in the iast part? 

N I cancelled them. 

M And what have you got? 
. ' 

N I'vegolh=hl +h2 +h3. 

M What does this mean? 

N That Sarah can build her house anywhere. 

M What makes you say that from here? .. . what do we know about hI , h2 , h3 when you moved 

it around? 

N It changed. 

M What can you say about the height of the large triangle? 

N It remained the same. 

M So what does it mean? I 

N No matter where you move the point in the triangle the sum is a constant. 

M Do you think that this explanation helped with your understanding? 

N Yes. 

M Thank. you. 
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R = RESEARCHER M=MANIVASAN 

R Okay Manivasan, where do you think that Sarah should build her house? 

M In the centre 

R Why the centre? 

M Because everything will be equal. 

R What I want you to do right now is grab that point P and move it around. Please observe 

what happens to the distances here on the left and at the same time the sum of these distances 

at the bottom. Okay when you've stopped I'll know that you've finished. (After a while). 

Tell me what you observed. 

M PM, PL and PK is changing but the sum is not 

R Do you think that this is true throughout the triangle? 

M Yes. 

R Are you convinced? 

M Yes. 

R If I asked YOll how many percent convinced are you, what would you say? 

M 70 %. 

R So you are not so convinced? Do you want to try some more? Do you want to try or do you 

tlrinkkisnotnecessary? 

M I'll try. 

R (After a while). Wbatcanyou say? 

M I've tried allover and it still remains the same. 

R Do you think that you are more convinced now? 

M Yes. 

R How many percent convinced are you? 

M I'm sure a 100 % (emphatically). 

R If I made this a larger or smaller equilateral triangle, do you think the result will still hold? 

M Yes. 

R Are you sure about that? 

M Yes. 
1 - - - - - - . 

R Why don't you check? 

M (After a while). It is the same. 

R Do you find the result surprising? 

M Yes. 
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R Do you think that now that you are a 100 % convinced, that there is a need for an 

explanation? 

M Yes. 

R Would you want an explanation? 

M Yes. 

R Why? 

M So I can understand it. 

R Do you think that you would be able to come up with an explanation on your own? 

M No. 

R You don't want to try? 

M No. 

R Alright then, I've got a sheet which has a possible explanation on it. Go through the sheet 

and then we'll look at it together. (After a while). I can see what you've got, but just for the 

tape can you tell me what you have? 

M Ih a (hI + h2 + h3)' 

R Now look at the triangle you've drawn. How does the areas of the three small triangles relate 

to the area of the big triangle? 

M The three small ones are equal to the large one. 

R AIe you saying that each small one is equal to the large one? 

M No, it tpakes up the large one. 

R Write down the area of the large one and then find the relationship with the areas of the small 

ones. (After a while). What have you got? 

M Ih ah is common in both. 

R Ih ah is common to both? Is h also common on both sides? 

M No, only Y2 a. 

R Therea1l.er what have you done? 

M (Silence). 

R Okay, I can see that you removed it, and what have you arrived at? 

M h = hi + h2 + h3. 

R But what does that mean Manivasan? 

M It means that hi , h2 and h3 is .... (silence). 

R Continue. 

M .... is equal to the large triangle. 

R hi , h2 and h3 are equal to? Lets examine that. What can you say about h? 

M h is constant. 

R Does hi , h2 and h3 change as you move the point around? 

M Yes. 

R What can we say about the suffi~then?-

M The sum remains the same. 

R So what can you conclude? 

M You can change hi , h2 and h3, but Ute sum will not change. 
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R So what can you say about Sarah's house? 

M It can be built anywhere on the island. 

R Do you Ihink Ihal Uris was a good explanation? 

M Yes. 

R Did you find it insightful? 

M Yes. 

R Did you understood it well? 

M Yes. 

R You think so? 

M Yes. 

R Thank you. 
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M - RESEARCHER V= VlNOLLA 

M Okay Vinolia, I can see that you understand the question now. Where do you think that Sarah 

should build her house? 

V In the centre. 

M Why? 

V Because I think it is appropriate ... to attend all beaches. 

M Vinolia, 1 want you to test that But before you do, 1 want you to note that on the left hand 

side the distances from Sarah's house to the beaches are written and at the bottom we have 

the sum of these distances. As you move P around observe these distances and their sum. Try 

that now. (After a while). What have you got? 

V The total sum of the distances is the same but each distance on its own changes. 

M So you are saying that the things on the left are changing but this is not? 

V Yes. 

M Are you sure that this is true throughout because I noticed that you only moved it around the 

centre? 

V Okay I'll try again. (After a while). It still remains the same. 

M Are you convinced that it remains the same? 

V Yes. 

M Okay Vmolia, what would happen if I made this a larget or smaller equilateral triangie'IDo 

you think that the result will be the same? 

V Yes. 

M You are convinced? 

V Yes. 

M Why don't you check? 

V Okay ... it remains the same. 

M If I asked you how many percent convinced are you what would you say? 

V 99%. 

M So you arc fairly convinced. Do you find the result surprising? 

V Yes, it is. 

M Do you think that there is a need to know why this is true? Do you have any desire for an 

explanation? 

V Yes. 

M Why? 

V I'd like to .. .. go more ahead. 

M Do you think that you would be able to ('.orne up with an explanatio!' on your own? 

V - -No. 

M You wouldn't want to try? 

V No. 

M Okay Vinolia, I'm going to give you a sheet which has a possible explanation on it. There is 
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a lot to read Go through each step and when you are ready we'll discuss it. 

M (After a while). I can see that you have finished the first step. Can you briefly tell me what 

you 've got for the three triangles? 

V Area of APC = V2 BH = 'h ahl , area of APB = Y2 BH = Y2 ah2 and area of BPC = 'h BH - Y2 

ah~. 

M Now I want you to add thc c)'l'rcssions and simplify it. (After a while). Okay what havc you 

got'! 

V I wrote out the expression and I noticed that V2 a is common, and so I got 'h a and in brackets 

I got hI , h2 and h3 . 

M The nex.1 step requires you to establish some relationship which exists between the sum of the 

areas of the small triangles and the area of the large triangle. 

V The three small triangles make up the large equilateral triangle. 

M So what can we say about the sum of the areas of three triangles as compared to the area of 

the large triangle? 

V They are equal. 

M Write that down now and simplify it. (After a while). Can you describe what you've got 

there? 

V I've equalled the sum of the three triangles and I've related it to the big triangle and I noticed 

that 'h a is common and it leaves me with h = hI + h2 + h3. 

M Your calculations are correct but what does it mean? 

V The height of the three small triangles equals the height of the large triangle. 

M That is true. But from our observations, looking at the big triangle, what can we say about h? 

V It does change because the triangle is the same. 

M What can we say about hI , h2 and h3 when we point P around? 

V It does change. 

M So what can we say about the sum? 

V The sum is equal to the height of the ... (silence). 

M If the height of the large triangle does not change , what can we say about hI + h2 + h3? 

V They don't change. 

M Do you find that this explanation increased your understanding of the result obtained'! 

V Yes. 

M Did you enjoy iL? 

V Yes. 

M Do you think that the explanation we have here was done in a proper step-wise fashion? 

Were you able to follow it? 

V Yes, it is understandable. 

M Thank you. 
-- --_ .. 
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In yes tiga tion: Dis tances 
Sarah, a shipwreck survivor manages to swim to a desert island. As it happens, the 

island closely approximates the shape of an equilateral triangle. She soon discovers 

that the surfing is outstanding on all three of the island's coasts and crafts a 

surfboard from a fallen tree and surfs every day. Where should she build her hous~ P 

so that the total sum of the distances from P to all three beaches is a minimum? (She 

visits them with egual frequency). Before you proceed further, first write down your 

intuitlve guess in the space below where you think P should be placed for the total 

sum of the distances to be a minimum . 

••••• • •••••• , ••••••• • ••••••••••••••••••••••••• ••• ••••••••••• • •••• c ••••••••••••••••••• • •••• " .I ••• ' .• , •.••••••.••••••••.••••••••••••••••• •••.• ••••••••••• ••.• 

Sketch 

Step 1: 

Step 2: 

Sfep 3: 

Construct a dynamic equilateral triangleABC. 
,-;-

Construct a point P in the triangle. of 

Measure the distances from P to the three sides. 

Step, 4: Select the three distances and choose Calculate to add the three distances. 

Investigate 

Drag point P around the interior of the 

triangle. What do you notice regarding 

the, total sum of the distances? Drag A, B 

or C to change the size of the equilateral 

triangle and again drag point P around 

the interior of the triangle. What do you 

notice now? W~~t happens if P is dragged 

outside the triangle? 

- .. Conjecture 

Olstance{P to Segment k) - 1.15 em 
OIstance(P to Segment J) - 2.22 em 
Distance(p 'to Segment m) - 0.94 em 
OI$unce(P to Segment m)+[)istance(P to Segm.nt j)+ ... - 4.31 em 

c 

A B 

In the space below, write a conjecture regarding your observations above . 

......... ......................... , .......... ", .................................................................. , ..... ' .................................... . 

Explore more 

Construct any triangle ABC arid an arbritrary point P in~ide. Does your conjecture 

above still hold if you have, say, an isosceles, right, scalene or obtuse triangle? 

.'.1 •••••••• II I' II •••••••••• II •••••••••••• II II II II •• • •••••• • ••••• • •••••• • ••••••••••• • • I' II II I t ., ••••• • ••••••• 1 II II ••••••• • •••••• II II It I ••• • ••• , ••••••• • ••••• 

Preseut Your Plndlngs 

Discuss your results with your partner or group. To present your findings print some 

sketches with measures and captions to illustrate your conjecture and findings. 



I • . : - .. 

Distances: Explaining . " 

You are no doubt at this stage quite convinced that the total sum of the distances from 

a point P to all three sides of a given equilateral triangle is always constant. But can 

you explaIn why it is true? 

Although further exploration on Sketchpad may succeed -in convincing you even 

mon~' of the truth of your conjecture, it really provides no explanation; it only 

confirms its truth. For example, the regular observation that the sun rises every 

morning clearly does not constitute an explanation; it only reconfirms the validity of 

the observation. To explain something, one therefore has to try and explain it in 

terms of something else, e.g. the rotation of theearth around the polar axis. 

Recently. a mathematician named Feigenbaum made some new experimental 

discoveries in fractal geometry using a computer just as you have used Sketchpad 
. 1 . 

earlier to discover your conjecture. These discoveries were then later explained by 

Lanford and other mathematicians. ' Carefully read and comment on the following 

quotation in this respect: 

"Lanford and other maLhematicians lVere not Lrying La validate Feigenbaum's 

results any more thall, say, NelVtoll was trying to validate the discoveries of 

Kepler 011 the plalletaryorbits. '!If 'both cases tlH~ validity of the results was 
. . 

never 111 question. What was missing was · tile e~\:pJanatJon. ; Why were tIle 

6i'blts elllpses? .Wlly did tlley satisfy t/lese particular relailons7 ... there's a 

world of difference betweell validatillg and explaillillg." 

- D. Gale (1990) in The Mathematical Intelligencer, 12(.1), 4. 

Explain 

Here ' are some hints for plan11ing a possible. explanation. Read ~nd work through it if 

~·.you·wallt, or try to construct your OW11 explanation. 

EJ. Label all three sides as a and the distances from P to the sides 'AB~ BC: and CA 
respectively as hI' 1l2. and. "l' :. ! ,-', -

. E2: Write expressions for the areas of triangles PAB,' PBC andiCA in terms of the 

above distances. 

B .. ··· Add the three areas 'and simplify your expression' by taking out · a commc;H1 
factor . . 

E4. How does the sum in P3 relate to the total area of triangle ABC?· What can you 

conclude from this? 

ES. 
EG. 

Which property therefore explains why this result Is true? 

Discuss your explanation with your partner or group. 
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