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Abstract

Generalized linear mixed models (GLMMs) accommodate the study of overdis­
persion and correlation inherent in hierarchically structured data. These
models are an extension of generalized linear models (GLMs) and linear
mixed models (LMMs). The linear predictor of a GLM is extended to in­
clude an unobserved, albeit realized, vector of Gaussian distributed random
effects. Conditional on these random effects, responses are assumed to be in­
dependent. The objective function for parameter estimation is an integrated
quasi-likelihood (IQL) function which is often intractable since it may consist
of high-dimensional integrals. Therefore, an exact maximum likelihood anal­
ysis is not feasible. The penalized quasi-likelihood (PQL) function, derived
from a first-order Laplace expansion to the IQL about the optimum value of
the random effects and under the assumption of slowly varying weights, is
an approximate technique for statistical inference in GLMMs. Replacing the
conditional weighted quasi-deviance function in the Laplace-approximated
IQL by the generalized chi-squared statistic leads to a corrected profile quasi­
likelihood function for the restricted maximum likelihood (REML) estimation
of dispersion components by Fisher scoring. Evaluation of mean parameters,
for fixed dispersion components, by iterative weighted least squares (IWLS)
yields joint estimates of fixed effects and random effects. Thus, the PQL
criterion involves repeated fitting of a Gaussian LMM with a linked response
vector and a conditional iterated weight matrix. In some instances, PQL esti­
mates fail to converge to a neighbourhood of their true values. Bias-corrected
PQL estimators (CPQL) have hence been proposed, using asymptotic analy­
sis and simulation. The pseudo-likelihood algorithm is an alternative estima­
tion procedure for GLMMs. Global score statistics for hypothesis testing of
overdispersion, correlation and heterogeneity in GLMMs has been developed
as well as individual score statistics for testing null dispersion components
separately. A conditional mean squared error of prediction (CMSEP) has
also been considered as a general measure of predictive uncertainty. Local
influence measures for testing the robustness of parameter estimates, by in­
ducing minor perturbations into GLMMs, are recent advances in the study
of these models. Commercial statistical software is available for the analysis
of GLMMs.
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Chapter 1

Introduction

The early 1990s has seen the emergence of a new tool for data analysis in the
mathematical and applied statistics literature. The generalized linear models
(GLMs) (Nelder & Wedderburn 1972) and the linear mixed models (LMMs),
(see, for example, McCulloch & Searle 2001, Chapter 6, pp.156-186), have
been fused into a hybrid body of statistical theory and methodology known
as the generalized linear mixed models (GLMMs) (Breslow 2003). This new
class of models is useful for analyzing overdispersed and correlated discrete
data. In these models, a vector of unobserved, albeit realized, Gaussian dis­
tributed random effects, with mean zero and dispersion matrix with unknown
components of dispersion (to be estimated from the data) is introduced into
the linear predictor of a GLM. Responses from a hierarchical model are as­
sumed to be conditionally independent given the random effects. The condi­
tional means of the observations are related to the extended linear predictor
through a specified link function and their conditional variances are specified
by a variance function, known prior weights and a scale factor (see Breslow
& Clayton 1993; Clayton 1992).

The objective function for parameter estimation in GLMMs is an integrated l

quasi-likelihood (IQL) function (Breslow 2003). However, for complicated
problems, this function involves irreducibly high-dimensional integrals, of­
ten intractable (Breslow & Clayton 1993). Several researchers, for example,
Engel & Keen (1994), McGilchrist (1994), Schall (1991) and Wolfinger &
O'Connell (1993), have proposed approximate estimation procedures to cir­
cumvent this cumbersome integral. We shall describe the approach of Breslow
& Clayton (1993) and use their method in an application. Furthermore, we
outline and employ the technique of Wolfinger & O'Connell (1993) to illus­
trate overdispersion in a dataset where responses are discrete and correlated.

1We shall use the abbreviation IQL for the integrated quasi-likelihood function.
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The marginal likelihood for the observed data is obtained by taking a first­
order Laplace expansion to the IQL about the maximum value of the random
effects. Under certain assumptions, this approximation yields the penalized
quasi-likelihood (PQL) criterion. Application of Fisher scoring to PQL-based
estimating equations, for fixed values of the components of dispersion, yields
joint estimates of fixed effects and random effects (by IWLS). Further adj ust­
ments give standard REML estimating equations for dispersion components
(Breslow 2003; Breslow & Clayton 1993; Lin & Breslow 1996a). Thus, the
PQL procedure involves repeated fitting of a Gaussian LMM with a working
response vector and a (conditional) iterated weight matrix (Breslow 2003).
Although the PQL estimation procedure is appealing, estimates of the com­
ponents of dispersion, and hence of the regression coefficients, are biased,
in some instances. Correction procedures using asymptotic analysis for bias
reduction in PQL estimators have been proposed by Lin & Breslow (1996a)
for GLMMs with multiple components of dispersion, thereby extending the
work of Breslow & Lin (1995) in the case of a single dispersion component.
Simulation-based bias reduction in parameter estimates has been considered
by Pawitan (2001).

In the context of GLMMs, statistical tests for overdispersion, correlation
and heterogeneity have been proposed by Lin (1997). Using Laplace ex­
pansions to the IQL, she has proposed a global score statistic for testing
the hypothesis that all components of dispersion are null. Furthermore, Lin
(1997) provides a Laplace-approximated individual score test for testing dis­
persion components separately. Bias-corrected versions of these test statistics
are also available which account for the loss of degrees-of-freedom incurred
due to the estimation of fixed effect parameters. Booth & Hobert (1998)
have proposed a conditional mean squared error of prediction (CMSEP) as
a general measure of prediction variance. The application of local influence
analysis (Cook 1986) is the most recent research interest in GLMMs. Some
perturbation schemes have been considered by Xiang et al (2003) and Zhu &
Lee (2003).
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This dissertation is organised as follows:
Chapters 2 and 3 provide a review of GLMs and LMMs, respectively. Also,
Chapter 2 briefly outlines the concept of quasi-likelihood (Wedderburn 1974).
Some of the aspects of GLMMs, as mentioned above, are considered in Chap­
ter 4, wherein we consider the CMSEP of Booth & Hobert (1998) for the
hierarchical model of Breslow & Clayton (1993). In Chapter 5, we analyze
two datasets in binomial form. We compare estimates obtained with SAS
GLIMMIX macro and the supposedly 'true' ML estimates (Breslow 2003)
generated by PROC NLMIXED (Wolfinger 1999) using Version 8.2 of the
SAS System for SASjSTAT (SAS Institute 2001). Note that Breslow &
Clayton (1993) constrain the scale factor at unity in their PQL approach. In
illustrating overdispersion in one of the datasets, this extra-dispersion param­
eter is estimated using the restricted pseudo-likelihood2 (REPL)3 procedure
of Wolfinger & O'Connell (1993). We stress the fact that none of the authors
referenced herein have used the SAS System to analyze these datasets. In
Chapter 6, we propose an alternative formulation of a perturbation scheme
considered by Zhu & Lee (2003). Some remarks conclude Chapters 2 to 6.
Finally, some directions for further research are pointed out in Chapter 7.

2The pseudo-likelihood procedure estimates the scale factor and is an extension of the
PQL approach (Kuss 2002).

3REPL generates an REML-like estimate for the scale factor (Littell et all 996, p.436).
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Chapter 2

An overview of generalized linear
models

2.1 Introduction

The theory of classical linear models (LMs) has been studied extensively in
the literature. In LMs, responses are continuous and, are assumed to be inde­
pendently Gaussian distributed. Moreover, the assumption of homogeneity
among observations holds in LMs. Parameters are estimated by the method
of maximum likelihood. Searle (1971) is an excellent reference for LMs.

Discrete data have been analyzed using various transformation techniques
that depend on the nature of the data under study. The data is trans­
formed so that linearity and normality can be achieved, and parameters are
obtained by maximum likelihood procedures. In an attempt to unify the
seemingly different approaches for the analysis of discrete data, Nelder &
Wedderburn (1972) introduced a class of models known as generalized linear
models (GLMs).

In GLMs, the assumption that the responses are independently distributed is
maintained while that of normality is relaxed. The distribution of the obser­
vations is assumed to be a member of the exponential family. Fixed effects
are estimated by Fisher scoring and the scale factor is given by a moment
estimator. Moreover, observations may be heterogeneous. The deviance is
a measure of the adequacy of a specific model. When the parametric form
of the responses is unknown, the concept of quasi-likelihood (QL), in the
sense of Wedderburn (1974), is useful for statistical inference. QL is based
by positing a mean-variance relationship for the responses. It is also assumed
that the mean of each observation is some known function of fixed effect pa­
rameters.

In this chapter, we provide an overVIew of generalized linear models and
quasi-likelihood functions.
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2.2 Classical linear models

Let the vector y = (Y1, ... ,Yn)T denote realizations of a continuous random
variable y.1 Each datum Yi can be expressed as

(2.2.1)

where f-Li is the mean of Yi and Ei is a random disturbance term for i = 1, ... ,n.
Equation (2.2.1) is referred to as a classical linear model (LM) equation
(McCulloch & Searle 2001, p.16). Furthermore, each f-Li can be expressed as
a linear combination of explanatory variables Xij associated with fixed effects
[3j, j = 1, ... ,po Equation (2.2.1) can be rewritten as

P

Yi ~Xij[3j + Ei
j=l

or) in matrix notational form, as

(2.2.2)

y = X(3 + E (2.2.3)

where y is an n x 1 response vector, X is a model matrix of order n x p, (3
is a p x 1 vector of fixed effects and E is of length n. Following Wedderburn
(1976), we assume that X is of full rank p.

In LMs, elements of y are assumed to be independently Gaussian distributed,
and are homoscedastic with variance <Po. Thus, the E/S are uncorrelated and
it is traditional to assume that E has mean zero. Hence, we have

(2.2.4)

where r o - r(<po) = <PoIn> with In being an identity matrix of order n.

1 "Ve shall use y to denote a random vector and Y, a random variable.
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Therefore,

that is,
E(y) E(X{3 + E)

X{3 (2.2.5a)

where J..L, of length n, is the mean vector of y and the variance-covariance
matrix of y is given by

Var(y) = Var( E) = r(<Po) (2.2.5b)

(The notation Var(y) will be used throughout to denote the variance-covariance
matrix of y).

That is, y f'J N(X{3, r o). Let the parameter vector of interest be denoted by
'ljJT = ({3T, <Po). The likelihood function for the observed data has the form

L('IjJ) L({3, <Po)

= 121fr(<po)l-n
/

2 exp [-~(y - x(3)Tr-1 (<po)(Y - X(3)] (2.2.6)

It is straightforward to show that the maximum likelihood (ML) estimators
of {3 and <Po are given by

(2.2.7a)

and

(2.2.7b)

respectively. Stanner & Duffy (1989, p.290) hold <Po at 1 and state that iJ is
the unique maximum of the log-likelihood function l - l({3, <Po) = lnL('IjJ),
and hence of L('IjJ) , since l is strictly concave and where (XTXt 1 exists.
When no distributional assumption is made about y, the method of ordinaT'lj
least squares (OLS) or generalized least squares (GLS) may be employed to
estimate i-J (McCulloch & Searle 2001, p.1l6).

2.3 Generalized linear models

Suppose now that the vector y = (Yl' ... ,Yn)T denotes realizations of a ran­
dom variable Y. The assumption that the y/s are independently distributed
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is maintained, as in Section 2.2, while that of normality is relaxed. The prob­
ability function (Dobson 1990, p.27) of Yi is assumed to be a member of the
exponential family of distributions which, in its canonical form (McCulloch
& Searle 2001, p.138), is given by

(2.3.1)

where Ui is a known prior weight attached to Y-i' Bi is the natural parameter­
and cP, the scale factor- (i = 1, ... , n). Bi is specific to Yi whereas cP is common
to all y/s (Green & Silverman 1994, p.92).

Discrete data exhibit a non-linear relationship between JL and Xf3 (McCul­
lagh & Nelder 1989, Sections 1.2.3-1.2.9, pp.1O-17; McCulloch & Searle 2001,
pp.135-136). Linearity can be achieved by using the generalized linear- mod­
els (GLMs) methodology, originally propounded by Nelder & Wedderburn
(1972). In GLMs, the random component refers to Y and Xf3 is called the
systematic component. A monotonic2 and twice differentiable function 9
(Wedderburn 1976) applied to JL results in the following linear relationship:

(2.3.2)

or, more compactly, as
'f} = g(JL) = Xf3 (2.3.3)

where g(JL) = (g(f-td,··· ,g(f-tn)f, with JL = (J1l"" ,f-tnf (Lin & Breslow
1996a). g(-) is called the link function and 'f}, the linear- pr-edictor-. When
there exists a sufficient statistic X T y whose dimension equals that of f3 in
'f} = Xf3, g(-) is referred to as the canonical link function, for then () = 'f},

where () = (B l , ... , Bnf with Bi as defined under equation (2.3.1) (McCullagh
& Nelder 1989, p.32).

2.3.1 Mean and variance

Certain regularity conditions are required to derive the mean and variance of
Yi, i = 1, ... , n (McCulloch & Searle 2001, p.l40). Some of these conditions
are quoted without proof by Casella & Berger (2002, p.516). We use the re­
sults from Dobson (1990, Appendix A, pp.142-144) to find E(Yi) and Var(Yi)'

2The monotonicity of a function is discussed by Casella & Berger (2002, pp.50-51).
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Let li l(Bi , rjJ; Yi) denote the log-likelihood function for Yi· Then, from

equation (2.3.1), we have

li = rjJ-1udYiBi - b(Bi )] + C(Yi,rjJ)

8li . . b
The expected value of the score 8e

i
IS gIven y

o = E (~~:)

(2.3.4)

that is, (2.3.5)

where b' (e'i)

spect to ei is

8b(Bi
) The second-order partial derivative3 of L with re----ae;-' .

(2.3.6)

Now,

Hence

E(8li ) 2 = _ E(82l;)
8B· 8B·t t

(2.3.7)

where V(j..ti) = b"(Bi ) is called the variance function that depends on j..ti.
Thus, GLMs accommodate unequa.l variances among responses (McCullagh
& Nelder 1989, p.14 and p.29). Such a dependence is not observed for the

3Primes shall denote differentiation of a function with respect to the appropriate
parameter.

8



Gaussian distribution, a member of the exponential family (McCulloch &
Searle 2001, p.141).

For canonical link functions, where 'r}i = Bi and ~t = 1, we have
t

0)

(2.3.8)

It follows, from equation (2.3.8), that

(2.3.9)

(ii) From equation (2.3.5), we have Bi = a(/1i), where a(-) defines the inverse
of b'(-). If g(-) = a(·), then from equation (2.3.2), Bi = xTf3 (Green &
Silverman 1994, p.93).

9



2.4 Fisher scoring for maxImum likelihood estimation
of fixed effects

Most regularity conditions are satisfied by the exponential family of distri­
butions such that there exists a unique global maximum of the log-likelihood
function l((3; y). This maximum is given by solutions of the equations

.!!!:.- = 0
a(3

which are non-linear (and closed form solutions are unavailable). The Fisher
scoring, a numerical optimization technique and an amended form of the
Newton-Raphson method for solving non-linear equations, is used for the
estimation of fixed effects (Dobson 1990, pAO). We restrict our attention
to GLMs with canonical links whereby the Fisher scoring and the Newton­
Raphson method reduce to the same algorithm (McCullagh & Nelder 1989,
pA3) .

Fisher scoring for (3 has the form

(3(T+l) = (3(T) + [I((3(T»)r1V((3(T») (2.4.1)

where I((3(T)), the information matrix, and V((3(T»), the gradient vector, are
evaluated at the Tth iteration. Note that I((3(T») = - E(H(T»), where H

is the Hessian, and V((3(T») = aal I (McCulloch & Searle 2001, p.143;
(3 (3=(3(T)

Searle et al 1992, pp.292-295). It can be shown that the score function for
/3j is given by

~ = t Ui(Yi - f-L;)Xij

alBj i=l cP V(f-Li)g (f-Li)
For the elements of H, we have

a2z
a(3ka(3j

10
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1
x g'(P,i) Xik

for i = 1, ... ,n ; j, k = 1, ... ,po For canonical links, it has been shown in
Section (2.3.1) that V(P,'i) = [g(P,i)t 1. Therefore,

(2.4.4)

Substituting equation (2.4.4) in the numerator of the second term on the
right-hand side of the curly brackets in equation (2.4.3) yields

(Lin 1997). Thus,

(2.4.5)

In matrix form, equation (2.4.5) is written as

where W is an n x n diagonal matrix with elements

(2.4.6)

on the diagonal. Hence,

(2.4.7)

11



Now, consider the score equations given by

Oli O/-Li--
O/-Li OT]i

Ui(Yi - /-Li) 1

</J V (/-Li) gl (/-Li)

From equation (2.4.6) we have

(2.4.8)

(2.4.9)

Substituting equation (2.4.9) into equation (2.4.8) gives, after some simplifi­
cation,

Oli -1 1 ( ) ( )CJr]i = </J Wig /-Li Yi - /-Li

In matrix form, equation (2.4.10) becomes

Ol -1
- = </J WA(y - JL)
01]

(2.4.10)

(2.4.11 )

where A is a diagonal matrix of order n with elements gl(P,i) on the diagonal.

Therefore,
Ol

013

xT!!i
01]

</J-1 XTWA(y - JL)

12
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Also,

(
(j2l')-E _1.

ard

4>-21U;[g'(f.Li)]2E(Yi - f.Li)2

4>-21U;[g' (f.Li) ]24> ui1V (f.Li)

4>- l1U;ui1 V(f.Li) [g' (f.Li) j2

(2.4.13)

In matrix form, we have equation (2.4.13) as

(2.4.14)

Thus,

I(f3)

(2.4.15)

(2.4.16)

where f3, "1, Wand Ll are evaluated at the Tth iteration (Green & Silver­
man 1994, p.95; McCulloch & Searle 2001, pp.141-142). The asymptotic
dispersion matrix is the inverse of the information matrix and, for {3, is given
by

where W is evaluated at {3 (Green & Silverman 1994, p.97) and 4> is given
by a moment estimator (see Section 2.4.2).
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2.4.1 Iterative weighted least squares

Fisher scoring for (3, after substituting the appropriate identities for I((3(T))
and \7 ((3(T)) into equation (2.4.1) becomes

(2.4.17)

Multiplying the above equation by XTW(T)X throughout yields

(XTW(T)X)(3(T) + XTW(T)~ (T)(y - M(T))

XTW(T) [X(3(T) + ~(T)(y - M(T))]

(2.4.18)
where we define

(2.4.19)

Equation (2.4.18) has the normal4 equations form for using weighted least
squares and equation (2.4.19) is the adjusted dependent response vector or
linked response vector g(y) (Wolfinger & O'Connell 1993).

Moreover,
(2.4.20)

and

cPu; 1 V (I-t)) [g' (f-L~T)) F

cP Wi-1(T) (2.4.21)

From equations (2.4.20) and (2.4.21), it follows that «(T) "'-J N(X/3(T) , cP W-l(T)).

That is, equation (2.4.19) is an LM with E(T) = .6,,(T)(y - M(T)). The ML es­
timator of (3 is thus given by

/3 = (3(T+l)

= (XTW(T)X)-lXTW(T) «(T) (2.4.22)

4The word 'normal' in normal equations has no relation to the Normal distribution but
is related to the use of orthogonal projections in the development of the theory of least
squares (Jones 1993, p.33).
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We have illustrated that the Fisher scoring for evaluating the estimator of (3

is a weighted least squares (WLS) regression of the adjusted or working re­
sponse vector ((T) on X with a working weight matrix W(T). In general, ((T)

and WeT) depend on (3(T) (that is, ( and Ware updated at each iteration).
The procedure for finding /3 is referred to as iterative weighted least squares
(IWLS). See Dobson (1990, pp.40-41), Green & Silverman (1994, pp.94-95)
and McCullagh & Nelder (1989, pp.40-43).

2.4.2 Algorithm

Given y and X:

Step 1: Initialize iteration by setting (3(T) = (3(0), obtaining "l(O) = Xj3(O) .

Step 2: Evaluate ((0) and W(O). Substitute these values into equation
(2.4.22) to obtain (3(1).

Step 3: Test for convergence: If 1(3(T+1) - (3(T) 1---t 0, terminate iteration.
Set (3(T+1) = j-J. Otherwise, increment T by 1, and repeat steps
1 and 2.

The term rjJ vanishes in equation (2.4.1). However, rjJ can be estimated by
using a moment estimator (McCulloch & Searle 2001, p.154), which is given
by

(2.4.23)

_1_X2 (2 ).4.24
n-p

where X 2 is the (weighted) generalized Pearson chi-squared statistic (McCul­
lagh & Nelder 1989, p .34). If the model fitted is adequate, then equation
(2.4.24) is approximately unbiased for rjJ. This assertion holds provided p is
small relative to n (McCullagh & Nelder 1989, p.127). In the above algo­
rithm, to avoid singularities in the initial iteration, some modifications to the
data are required (Littell et al1996, p.507).
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2.5 Measures of discrepancy

A crucial aspect of statistical analyses is to assess the goodness- (or badness­
)5-of-fit of the models under study. The generalized likelihood ratio statistic
(Dobson 1990, p.56) is used for such an assessment and for GLMs is of the
form

A = L(y,cjJ;y)
L({.t, r/J; y)

or
InA = l(y,r/J;y) -l({.t,r/J;y) (2.5.1)

where l(y, cjy; y) is the maximum log-likelihood achievable under the saturated
model and l({.t, r/J; y) denotes the log-likelihood maximized over f3 for a fixed
value of r/J. Let ei - ei(Yi) and Bi == ()i(/li) be estimates of the natural
parameter ei under Yi and /li, respectively. From equation (2.5.1), we have

n

L r/J -lUi {[Yiei - b(ei)] - [YiBi - b(Bi)]}
i=l

n

LcjJ-1Ui {[Yi(ei - Bi)] - [b(ei) - b(ei)J}
i=l

The (weighted) scaled deviance is defined as

DS(y;{.t)
2[l(y,r/J;y) -l({.t,r/J;Y)]

n

2Lr/J- 1di
i=l

21n A

5See Nelder (2000).
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and the (weighted) deviance is given by

D D(y; jl)
cP Ds

n

2I:di
i=l

(2.5.4)

where the contribution of each di from Yi is referred to as the deviance incre­
ment (Green & Silverman 1994, p.96; McCullagh & Nelder 1989, pp.33-34).
By Theorem 10.3.3 of Casella & Berger (2002, p.490), the (scaled) deviance
converges asymptotically to a X2-distribution with n - p degrees-of-freedom.
Thus, the current model is rejected if and only if -2ln), ~ XJ!;Cl:' where
df = n - p and (x, the asymptotic size test, has to be defined.

The X 2-statistic is an alternative measure of discrepancy. Asymptotically,
both D and X 2 follow approximately a X2-distribution, and are exactly X2

­

distributed for normal theory LMs (McCullagh & Nelder 1989, p.34).

2.6 Quasi-likelihood functions

Consider the following argument:

ati aei--
aei afJi

Ui(Yi - fJi)

cP V (fJi)
(2.6.1)

Equation (2.6.1) depends solely on the first two moments of Yi, i = 1, ... , n.
Suppose that the distribution of Yi does not belong to the exponential fam­
ily. Such an assumption is reasonable in the absence of sufficient information
about Yi (McCullagh & Nelder 1989, p.324). It is then difficult to postulate
a likelihood function for statistical inference. Consequently, it becomes nec­
essary to define a likelihood-type function "with properties similar to those of
likelihood functions proper.

\i\Tedderburn (1974) argued that if a mean-variance relationship can be spec­
ified for Yi, then full parametric assumptions for the observed data can be
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relaxed. He defined a quasi-likelihood6 function Qi(Yi; Pi) by the relation

EJQi (Yi; Pi)

EJPi

Ui(Yi - Pi)

<P V (Pi)
(2.6.2)

where we attach weights Ui to each independent Yi' It is also assumed that
there exists a function g such that g(Pi) = xi{3, where g is as defined in
Section 2.3. On integration, equation (2.6.2) becomes

(2.6.3)

It can be proved that quasi-likelihood (QL) functions have properties similar
to those of log-likelihood functions. Furthermore, the log-likelihood function
for Yi is identical to the quasi-likelihood if and only if the distribution of Yi
is a member of the exponential family (Wedderburn 1974).

Maximum quasi-likelihood (MQL) estimates of j3 are evaluated via Fisher
scoring and the scale factor is calculated from the moment estimator which
is given by equation (2.4.23). See McCullagh & Nelder (1989, pp.327-328).

2.6.1 Quasi-deviance function

The (weighted) quasi-deviance function is defined as

(J.1.i Ui(Yi - s)
-2J

Yi
V(s) ds (2.6.4)

where di > 0 except at Yi = Pi. The total (quasi)-deviance D is the sum of
di over the observations. Moreover, D is a function that depends on Yi and

Pi only, and is independent of <P (McCullagh & Nelder 1989, p.327 ; Nelder
& Pregibon 1987). Breslow (2003) refers to equation (2.6.4) as the weighted
deviance. See also Nelder & Lee (1992).

6Strictly quasi-log-likelihood (Nelder 2000).
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2.7 Some remarks

In GLMs, hypotheses testing of fixed effect parameters can be done by using
the Wald statistic or the score statistic. These statistics are asymptotically
chi-squared distributed with degrees-of-freedom equal to the length of the
parameter vector. An alternative approach is to specify each hypothesis in
terms of a model. Deviances are then compared for competing models having
identical distribution and link function, but with unequal number of param­
eters. See Dobson (1990, pp.61-62).

An assessment of hypothesized link functions and testing of hypotheses of
nested subsets of covariates in the linear predictor of a GLM can be per­
formed by using the likelihood ratio or score tests. Although these tests can
be applied to Wedderburn's (1974) definition of a quasi-likelihood, they can­
not be used to compare different variance functions, as remarked by Nelder
& Pregibon (1987). These authors introduce an extended quasi-likelihood
(EQL) function which allows for the comparison of various forms of all the
components of a GLM and where the random component is specified by its
first two moments only.
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Chapter 3

An outline of linear mixed models

3.1 Introduction

A set of data may be classified in terms of factors, nested or crossed, that
identify the source of a data point. These factors often consist of several
different levels. For statistical inference, focus is then on the effects of these
levels on a response variable. Suppose there exists an infinite set of levels of
a factor: Effects due to its levels are called random effects. This is because
only a random sample of those levels of that factor are likely to occur in
the data. Therefore, random effects are random variables, assumed to be
independently distributed with mean zero. When fixed effects and random
effects simultaneously occur in a dataset, in addition to the random distur­
bance term, the resulting statistical model is referred to as a linear mixed
model (LMM) (McCulloch & Searle 2001, pp.2-4, p.9 and p.13).

In many practical situations, there are usually several random factors. It
is assumed that the levels of a factor are independent of each other, the lev­
els of other factors and the residual effects. The variance of an observation
is an aggregate of the variances of the levels of the different factors together
with the variance of the residual effects. These variances are termed variance
components (Harville 1977). In LMMs, responses are assumed to be Gaus­
sian distributed (Searle et al 1992, p.233). Also, responses with common
random (effect) terms are positively correlated (Engel & Keen 1994). How­
ever, given the random effects, conditional independence among responses
may be achieved (Breslow & Clayton 1993).

In this chapter, we provide an outline of LMMs. 1 We focus on the esti­
mation of components of dispersion by the method of restricted maximum
likelihood (REML) of Patterson & Thompson (1971). Estimators of fixed
effects and best linear unbiased predictors (BLUP) of random effects are ob­
tained from the (Henderson) mixed model equations (MMEs), which can be
used to iteratively evaluate REML (or ML) estimators of dispersion com-

lIn some sections we rely on ideas from Breslow & Clayton (1993) and Lin & Breslow
(1996a), with an identity link function, however.
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ponents (Searle et al, pp.275-286). We briefly comment on the concept of
penalized likelihood.

3.2 Linear mixed models

Let y = (Yl"" ,Yn)T denote the response vector of a continuous random
variable Y. Each data point Yi represents a response variable on the ith of
n units, which may be blocked as in the study of repeated measures. For
statistical modelling of random effects that occur in the data, Yi may be ex­
pressed, not only in terms of xI f3 and Ei (as in Section 2.2), but also as a
linear combination of a q X 1 vector of explanatory (or indicator) variables
Zi associated with random effects (Breslow & Clayton 1993). Thus, Yi can
be written as

(3.2.1)

or, more compactly, as
(3.2.2)

where Z is an incidence matrix of order n x q and 1 is a q x 1 vector of
random effects. The dimensions of y, full rank model matrix X, fixed effects
vector f3, and E are as defined in Section 2.2. Equation (3.2.2) is known as a
linear mixed model (LMM) equation - 'mixed' because of the simultaneous
presence of fixed effects f3 and random effects I, other than the random dis­
turbance term E.

By their nature, random effects are random variables and, in certain pre­
diction problems (see, for example, Robinson 1991), are assumed to be inde­
pendently Gaussian distributed with expectation zero - that is,

I r-v N(O, r) (3.2.3)

where r = Var(F). For ML estimation, y is assumed to follow a Gaussian
distribution because, in a practical sense, normality leads to mathematically
tractable methodology, even for unbalanced data (Searle et al1992, p.233).
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From the above assumptions, the mean and the variance of y are given by

and, with E I"V N(O, fa),

E(y) E(Xj3 + Z, + E)
Xj3

Var(y)
Var(E) + Z Var(J)ZT
fa + ZfZT

(3.2.4a)

(3.2.4b)

It is assumed that Cov(J, ET) = 0 (Harville 1977) - that is, I and E are
independent. Therefore) y I"V N(Xj3, W).

Analyses of hierarchically structured data may involve multiple, say c, sources
of random variation. For statistical inference, Z is partitioned as

(3.2.5a)

where the incidence matrix Zm, of order n x gm, is associated with the mttt
random effect lm having gm levels - that is, of order gm X 1 - from the
corresponding partitioning of the random effects vector I such that

T (T T)
I = 'l,··"'c (3.2.5b)

where m = 1, ... , c. Then, from equations (3.2.5), equation (3.2.2) becomes

y Xj3 + Zlll + ... + ZClc + E
c

(3.2.6)

It is further assumed, following equation (3.2.3), that the random effects lm
are independently Gaussian distributed with means zero - that is,

for m, k = 1, . . . , c (m :j:. k), and

lm I"V N(O, f m)

(3.2.7a)

(3.2.7b)

where f m == f(<Pm) = <Pm1q17l' with I q17l being an identity matrix of order gm'
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Lin (1997) notes that gm represents the amount of information available on
estimating dispersion component <Pm associated with fm'

Thus,
Varb) r(cp)

diag(r l , ... ,re)
diag(<pIIq], ... ,<PeIqJ (3.2.7c)

where t.p = (<PI, .. ' ,<Pcf (Lin & Breslow 1996a). Furthermore, the following
assumption holds (Seade et al1992, p.233):

Covbm, ET) = 0

for all m = 1, ... ,c. The parameter <Pm represents the common variance of
the levels of the mth random effect, whereas <Po is the common variance of
the residual effects E. Thevariances <Po, <PI, ... ,<Pc are called variance com­
ponents (Harville 1977) or dispersion components (McCullagh & Nelder 1989,
p.432) because they are the components of the variance of an observation Yi
(McCulloch & Seade 2001, p.161).

Let the parameter vector of interest be denoted by 'If;T = ((3T, t.p*T) , where
cp* = (<Po, <PI,··· ,<Pc)T. The likelihood function for the observed data has
the form

L('If;) L((3, W)
121f!-n/2Iw(cp*)!-1/2 exp [-~(y - X(3fw- l (cp*)(y - X(3)]

(3.2.8)
whereW w(cp*).

Differentiating I - I ('If;) = In L( 'If;) with respect to (3 and t.p*, and setting
first-order partial derivatives to zero, leads to score equations

(3.2.9a)

for fixed effects, and estimating equations

(3.2.9b)

for components of dispersion, where

(3.2.9c)
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for m = 0,1, ... ,c. Equation (3.2.9b) is non-linear in the dispersion compo­
nents and has to be solved numerically, by an iterative procedure.

Fisher scoring may be adopted for evaluating 'ljJ, and has the form

where

with

and

~ = ((~)T (~)T)Ta'ljJ af3' a<p*

(3.2.10)

(3.2.11a)

aat = -~tr(W-1ZmZ~) + ~(y - Xf3)TW-1ZmZ~W-l(y - Xf3) (3.2.11b)
<Pm

The information matrix for 'ljJ is given by

(3.2.11c)

for m, k = 0,1, ... ,c. Equations (3.2.11) are evaluated at the 7th cycle of
iteration. The iteration is initialized at 7 = 0 and continues until convergence
is achieved. The ML estimators of f3 and Ware denoted by 13 and \Ii == W(if?*),
respectively. Asymptotically,

Var(j3) ----t (XT\Ii-lxt 1

Cov (13 ,if?*) ----t 0

Var(ip*) ----t 2 tr(\Ii-lZmZ~\Ii-1ZkZk)

(3.2.12a)

(3.2.12b)

(3.2.12c)

In general, ML estimators are not unbiased but, in the limit, they are consis­
tent. Moreover, equations (3.2.12) are only exact as the sample size tends to
infinity and may, for small-sized samples of data, result in underestimation
of variances of the ML estimators (Searle et al1992, pp.234-240 and p.313).
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3.3 Restricted maximum likelihood

Estimators of components of dispersion are generally biased (in a down­
ward direction) when using the method of maximum likelihood (Harville
1977). This is due to the fact that ML does not take into account the loss
of degrees-of-freedom incurred due to the estimation of fixed effect parame­
ters. Patterson & Thompson (1971) rectified this bias by a modification of
the ML method, which is now known as the restricted maximum likelihood
(REML) method. It is a procedure that makes allowance for the evaluation
of unknown parameters in the mean by using null contrasts solely for the
estimation of dispersion components (Lee & Nelder 2003). In other words,
there exists a set of maximum linearly independent vectors k; such that
E(k;y) = O. This implies that k;Xj3 = 0 such that k;X = 0 for all {3.
Upon defining K = (k i , ... ,kr ), we have KTX = 0, with KT having full
row rank r = n - p, where p = rank(X) (McCulloch & Searle 2001, p.176;
Searle et al1992, pp.250-251).

Given y f',J N(Xj3, \]f), we have E(KTy) = 0 and Var(KTy) = KT\]fK.
Therefore, KTy f',J N(O,KT\]fK). The restricted log-likelihood function has
the form

l(\]f) = -!(n - p) log 121r1 - ! log IKT\]fKI

-!yTK(KT\]fKtlKTy (3.3.1 )

The non-linear estimating equations for the components of dispersion are
given by

(3.3.2)

for m = 0,1, ... , c, and P is as defined in equation (3.2.9c) and equals
K(KT\]fKt 1KT. Fisher scoring for solving equation (3.3.2) is given by

(3.3.3)

where

(3.3.4a)

and

(3.3.4b)
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for rn, k = 0,1, ... ,c. The asymptotic dispersion matrix of <p* is given by

Var(<p*) = [I(<p*)r 1 (3.3.4c)

At convergence of the Fisher scoring for evaluating the dispersion compo­
nents, the RElVIL estimator of <p* is denoted by cp*. Fixed effect parameters
are not evaluated by the REML method. However, with cp*) the GLS esti­
mator for fixed effects is given by

f3(cp*)
(XT\ir-l X)-l XT\ir-ly (3.3.4d)

where \iF _ w(cp*) (lVIcCulloch & Searle 2001, pp.308-310j Searle et al1992,
pp.252-254, p.256 and p.313).

Robinson (1987) recommends REML estimators when using dispersion com­
ponents to obtain better and more efficient estimates of other effects, while
Robinson (1991) states, from a classical point of view, that these estimators
seem to have the best credentials for unbalanced data. See McCulloch &
Searle (2001, Section 6.10, pp.177-178) and Searle et al (1992, Section 6.8,
pp.254-255) for some of the merits of REML estimators.
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3.4 Mixed model equations

In LMMs, elements of y are assumed to be Gaussian distributed. But
those Yi'S with co~mon random (effect) terms are positively correlated for
i = 1, ... ,n (Engel & Keen 1994). However, conditional independence
among responses can be achieved by conditioning y on the random effects f.
Following Breslow & Clayton (1993), but with g(-) as identity link function,
the conditional mean and conditional variance of yh are given by

J.1'
Xf3 + Z,

c

Xf3 + L:Zm'm
m=l

(3.4.1a)

and

(3.4.1b)

The joint2 density function of

Var(yh) = Var( E)
r o

respectively. Thus, yh rv N(Xf3 + Z" r o).
y hand , has the form

f(y, ,) = f(yl,)f(,)

exp { - ~ [y _X; _ Z-y ) T[~ ~0)-1 [y _X; _ Z-y ) } (3.4.2)

where f(-) and ill·) denote density function and conditional density func-
c

tion, respectively, and q = L: qm, the total number of random effects 'm'
m=l

m = 1, ... ,c. It can be shown that by maximizing f(y, ,) - that is, byequat-
ing to zero first-order partial derivatives of equation (3.4.2) with respect to
f3, first, then to " leads to the following equations:

X Tro1Xj3 + xTro1z, XTro1y (3.4.3a)

(3.4.3b)

2Equation (3.4.2) is not a likelihood function proper as I is unobserved, albeit realized
(Lee & Nelder 1996).
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Equations (3.4.3) are called mixed model equations (MMEs), and are ex­
pressed more compactly as

(3.4.4)

(McCulloch & Searle 2001, p.258; Robinson 1991; Searle et al1992, pp.275­
276).

The coefficient matrix

xTro1z ]

zTro1z + r-1 (3.4.5)

of the linear system (3.4.4) is symmetric positive definite or semidefinite, a
property that can be exploited for computational purposes (Harville 1977).
Assuming that the components of dispersion are known and equal to (jJ*,
solutions j3 and:Y, of j3 and 'Y respectively, to equation (3.4.4) are called mixed
model solutions. Furthermore, the variance-covariance matrix of estimation
errors

equals the inverse of expression (3.4.5), provided that the model matrix X is
of full rank (Robinson 1991).

It may occur, at some Tth cycle of an iterative procedure that one of the
elements of the dispersion components is zero. Having a null dispersion com­
ponent makes r non-invertible, so that r- 1 does not exist. To circumvent
this drawback, the following linear system may be used:

(3.4.6)

where 'Y = r,*. System (3.4.6) does not require inverting r (Harville 1977)
and its coefficient matrix is not symmetric (Searle et al1992, p.284).
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3.5 Best linear unbiased prediction

Consider equations (3.4.3): From equation (3.4.3b), we have

(3.5.1 )

Substituting equation (3.5.1) into equation (3.4.3a) gives

XTf a
lXj3 + XTfalZ(ZTfalZ + f-lrlZTfal(y - Xj3) = XTfaly

So
X T [fa

l - falZ(ZTfalZ + f-ltlzTfal] Xj3

= X T [fa
l - falZ(ZTfalZ + f-ltlzTfal] y

Thus
XTw- lXj3 = XTW-ly

where W- l = f a
l - falZ(ZTfalZ + f- l )-lZTfal.

Therefore, with W set equal to its ML estimate W, we have

(3.5.2a)

j3 (XT1If-lxt1XT1If-ly

j3(fjJ*) (3.5.2b)

Now replacingjZTfa1Z + r-ltlzTfal
yields, at W = W,

fZTW-l into equation (3.5.1)

Eh'ly)
rZT\iJ-l(y - X~)

'"'(((3)
'"'((j3(fjJ*))

(3.5.3)

'"'( m equation (3.5.3) is referred to as the best linear unbiased predictor
(BLUP) of'"'( (Searle et al1992, pp.276-277).

It is to be noted that ::y is a linear function of y (Robinson 1991). Since
'"'( is a random variable, the term predietor3 is often used to predict its real­
ized values. Furthermore, the criteria best and unbiasedness in the acronym

3See Robinson (199]) for a discussion on 'estimating' or 'predicting' realized values of
a random variable.
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BLUP respectively implies minimum mean squared error of prediction and
Ey(i) = Ey[E,ly(rly)] = E(r) (Searle et al1992, pp.261-262).

The elements of the MMEs can be used to evaluate ML and REML esti­
mates of components of dispersion. The REML estimating equations for
rpo, rpl,'" ,rpc are given by equation (3.3.2). For m = 0,

and for m = 1, ... ,c

where T mm is the (m,m)th submatrix of

T = (I + ZTSZn- 1

with

and
p = S - SZ(r- 1 + ZTSZtlZTS

evaluated at the 7th cycle of iteration.

3.5.1 Algorithm

Given y,X and Z:

(3.5.4a)

(3.5.4b)

(3.5.5)

Step 1: Initialize iteration by setting rp6T
) = rp6°) and rp~) = rp~), m =

1, ... ,c.

Step 2: Solve equation (3.4.6) for /3(0) and ,~O), then calculate ,(0)

r(O),~O) .

Step 3: Calculate T(O) from equation (3.5.5).
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Step 4: Determine 'P~l), 'Pil), ... ,'P~l) from equations (3.5.4).

Step 5: Test for convergence: If 1'P6T+1) - 'P~T) I -t 0 and 1'P~+l) - 'P~) I -t

. . . S (T+1) ~ d (T+1) - ~ W'tho termmate IteratIOn. et 'Po = 'Po an 'Pm - 'Pm· I
these REML estimates, compute j3(T+1) = (3, ,(T+1) = ;;Y and
T(T+I) = T. Otherwise, repeat steps 2, 3 and 4, by incrementing

T by 1.

The (REML) information matrix is determined at rpo, rp1, ... ,rpc and has the

form

I((jJ*) = !
n - q + tr(T2

)

~2

'Po

symmetry

c

tr(Tmm ) - 'l:tr(TmIT1m )
1=1

Dmdqm - 2tr(Tmm )] + tr(TmkT km )

'Pk'Pm

{
I for m = k

where Dmk = 0 for m -::j:. k (Searle et al1992, pp.282-286).

3.6 Penalized likelihood

Suppose there exists a twice-differentiable curve C defined on an interval
[a, b] of R The residual sum of squares

(3.6.1)
i=l

is an important criterion for assessing the goodness-of-fit of C to the data
Yi, i = 1, ... ,n. ti is called a knot and satisfies a < t 1 < '" < t n < b.
On that interval, C may be fluctuating rapidly. Therefore, some smoothness
conditions need to be placed on C to study the more slowly varying 'trend' in
the data, if there is any such trend. To compromise between goodness-of-fit
and the 'roughness' of CC on [a, b], there is a need to define a measure to
quantify roughness. This quantity is given by

(3.6.2)
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and is referred to as the integrated squared second derivative. The penalized
sum of squares is defined as

(3.6.3)

where a(> 0) is called a smoothing parameter and

(3.6.4)

is the roughness penalty term. C, the penalized least squares estimator, min­
imizes the functional S(C) over the class of all twice-differentiable functions
C. In the context of simple linear regression, any curve C interpolating the
data maximizes the likelihood function. The penalized log-likelihood junction
is given by

(3.6.5)

where A = a'Po 1
, with 'Po being the constant variance of the Yi'S. Maximizing

lp(C) is equivalent to minimizing S(C). iC is then called the maximum pe­
nalized likelihood estimator (MPLE) (Green & Silverman 1994, pp.4-5, p.lO,
p.50 and p.98).

By analogy to Theorem 2.1 and equation (4.4) of Green & Silverman 0994,
p.13 and p.65), but with weights equal to unity for all Yi'S, it can be deduced
that, for LMMs, the term ,Tr-1, in the 'joint' log-likelihood function (ig­
noring constant terms)

(Robinson 1991) is a penalty junction. This function prevents arbitrary values
of , from being selected and forces them to be near zero: This constraint is
called a shrinkage effect (McCulloch & Searle 2001, p.283).
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3.7 Some remarks

When fitting models with at least two dispersion components, predictors of
random effects are the natural generalization of the concept of residuals. Out­
lying values of certain random effects will indicate that groups of data points
may not fit a model. Thus, observing predictors can be regarded as a more
sensitive test for detecting outliers than simply observing residuals. More­
over, Robinson (1991) assumes that the components of dispersion are known
when estimating fixed effects and predicting random effects. The unbiased­
ness criterion holds when the dispersion components have to be estimated,
under the condition that these components are translation-invariant and are
even functions of y. In other words, 13 and i remain unbiased. In general,
therefore, predictors of I need not be changed. In contrast, their estimated
precisions have to be modified. However, in practical situations, Robinson
(1991) states that this modification is at times ignored or calculations based
on the best point estimate of the dispersion components are interpreted con­
servatively.

See Searle (1995) and Searle et at (1992, Section 6.4, pp.242-243) for com­
ments on the caveats pertaining numerical optimization when estimating
components of dispersion.
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Chapter 4

Some aspects of generalized linear
mixed models

4.1 Introduction

In Chapters 2 and 3, we provided a review of GLMs and LMMs, respectively.
These methodologies are now extended to form a new class of models known
as generalized linear mixed models (GLMMs). These models are useful for
the analysis of overdispersed and correlated discrete data. In a GLMM,
responses are assumed to be conditionally independent given a vector of
Gaussian distributed random effects. The assumption of moment conditions
suffice for the observations.

In this chapter, we provide some aspects of GLMMs, as briefly described
in Chapter 1.

4.2 Generalized linear mixed models

Let y = (Yl' ... ,Yn)T denote a vector of correlated discrete responses. This
supposition immediately relaxes the assumption of independence among re­
sponses in GLMs and that of normality in LMMs. Furthermore, it is as­
sumed that the (conditional) probabili ty function of each Yi need not belong
to the exponential family for i = 1, ... ,n. Thus, Wedderburn's (1974) con­
cept of quasi-likelihood, coupled with GLM and LMM methodologies, can
be adopted for the statistical modelling of the random vector y. Given a
vector of Gaussian distributed random effects " responses are assumed to
be (conditionally) independent with conditional means

(4.2.1a)

and conditional variances

Var(Y·d,) = </Yui 1 V(IL:) (4.2.1b)

where V (IL:) is referred to as the (conditional) variance Junction. The linear
predictor of a GLM is extended to include, and is expressed as

r/! = xif3 +zi, (4.2.2a)
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or, more compactly, as
r,--Y = g(J-t')

= Xf3 +Z, (4.2.2b)

Following the rationale behind equations (3.2.5), equation (4.2.2b) can be
rewritten as

c

'TJ' = Xf3 + L Zm'm
m=l

(4.2.2c)

In equations (4.2.1) and (4.2.2), the link function g(-), scale factor cjJ, known
prior weights Ui, dimensions of model matrices X (of full rank p) and Z,
lengths of fixed effects vector f3 and random effects vector, (hence of ,m)
are as appropriately defined in Chapters 2 and 3. See Section 3.2 for the
distributional and statistical properties of 'm' m = 1, ... ,c. Clearly, 'TJ' is
of order n X 1, in conformity with that of y. The class of models described
herein is an extension of GLMs and LMMs, and is referred to as general­
ized linear mixed models (GLMMs) (Breslow 2003; Breslow & Clayton 1993;
Clayton 1992; Lin & Breslow 1996a).

Let 'ljJT = (f3T, <pT), with cjJ constrained at unity, be the parameter vec­
tor of interest. The objective function for estimating 'ljJ has the form

L('ljJ) = exp[l(f3,<p)] ex 1r(<p)1-1
/

21.q exp [i~l Qi(YiiP,7) - ~,Tr-l(<p),] d,

ex 1r(<p)1-1
/

2
/ exp [-~t [-2 /11; Ui(~(-)S) dS] - ~,Tr-l(<p),] d,

Jm:.q i=l k, cjJ S

~ 127[I-q/2Ir(<p)1-1/2 1., exp [- 2~ ~d;(Y;; It;) - h Tr- 1(<ph] d-y

(4.2.3)

where

is the (conditional weighted quasi-)deviance function. Equation (4.2.3) is
referred to as the integrated quasi-likelihood function (IQL) (Breslow 2003;
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Breslow & Clayton 1993). An alternative formulation to equation (4.2.3) is
given by Lin & Breslow (1996a) and has the form

L('lj;) = exp[l(,6, cp)]

where

j 'J.L7 Ui(Yi - s)
li(,6; 'Y) <X Yi q,V(s) ds

is the conditional log- quasi-likelihood of ,6b·

(4.2.4)

L( 'lj;) in equation (4.2.3) involves a q-dimensional integral. A full likelihood
analysis when c = 1 has been performed by Breslow & Lin (1995) in a study
of a series of matched pairs of binary outcomes, where a one-dimensional
Gaussian quadrature is feasible (cf. Lin & Breslow 1996a). In contrast,
in complicated situations, the lQL becomes intractable (Breslow & Clayton
1993) - that is, an analytic solution to L('lj;) does not often exist (Zhu & Lee
2003). However, the Laplace expansion, employed by Breslow & Clayton
(1993), can be used to approximate L('lj;). Under some adjustments, this
approximation leads to estimating equations for ,6 and cp.
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4.3 Penalized quasi-likelihood function

The Laplace approximation to the IQL has the form

l('ljJ)

~ -~logI21f1-~loglfl

+ log I., exp [~Qi(Yi;!";r)- h Tr-
1('Ph] d"l

-~ log 121f1 - ~ log Ifl + log r exp[h(--y)]d,
J'Jt9

where
n

h(--y) = 'LQi(Yi;f.L:) - ~,Tr-l('P),
i=l

Now,

(4.3.1)

(4.3.2)

Substituting equation (4.3.3) into equation (4.3.1) yields
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where

o (4.3.5)

with i = i(j3, rp) being the solution to equation (4.3.5) that minimizes h(,).
By contrast to equation (2.4.6), we define W;l = 4>u;lV(j.i;)[g'(j.i;)j2 to be
the diagonal elements of W. 6. is as defined in Section 2.4, but with j.ii re­
placed by /J"; (i = 1, ... ,n; m = 1, ... ,e).

The matrix (of order q) of second-order partial derivatives of h(,) with re­
spect to , is given by
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(4.3.6a)

(4.3.6b)

since, for canonical links, the term

reduces to zero due to the fact that

Furthermore, E(REM) = 0, and consequently REM is of lower order1 in
probability as a function of n than the terms in equation (4.3.6b), thus neg­
ligible. We then have

02hb~ I ~ -(ZTWZ + r- 1)

0,0, ,=i

= -r-1(I + ZTWZr)

(4.3.7a)

(4.3.7b)

lWithout loss of generality, REM is of stochastic order Op(n1/ 2 ) (Booth & Hobert
1998).
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Substitution of equation (4.3.7b) into equation (4.3.4) gives

n

l,=1 ~ -~ log If! + ~Qi(Yi;fJ'/) - ~,Tr-1(cp),
i=l

n

~Qi(Yi;f-L/) - ~,Tr-1(cp),
i=l

-~ log ifl - ~ log 11 + ZTWZf! + ~ log ifl

n

~Qi(Yi; f-L/) - ~,Tr-1(cp), - ~ log 11 + zTwzrl
i=l

~~Edi(Yi;f-L/) - ~,Tr-1(cp), - ~log 11 + zTwzr! (4.3.8)
1.=1

where i maximizes the sums of the first two terms in equation (4.3,8). Under
the assumption that the weights Wi (at i) vary slowly (or not at all) as a
function of the mean, equation (4,3.8) becomes

n

l,=1 = -2~ ~di(Yi;f-L/) - ~,Tr-1(ep),
'i=l

(4.3.9)

where (3 is chosen to maximize the first term in equation (4.3.9) such that
l is maximized by the joint solutions ([3,i) = (!3(cp),i(cp)), with i(cp) =
i(!3(cp)) and cp being held fixed. Equation (4.3,9) is referred to as the (log­
)penalized quasi-likelihood junction (PQL) (Breslow & Clayton 1993; Lin &
Breslow 1996a; McCulloch & Searle 2001, pp.281-283). The assumption of
slowly varying weights require that the components of dispersion are rela­
tively small (Engel & Keen 1994),
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4.4 Fisher scoring for maximum PQL estimation of fixed
effects and prediction of random effects

The quasi-score equations for f3 and, are given by

and

(4.4.1a)

(4.4.1b)8Z I T '"V-I- = Z W ~(y - J..L J) - l' ,
8',=i

respectively. Fisher scoring for estimating f3 and predicting, has the form

XTW(T)Z ]-1
1'-1 + ZTW(T)Z

where

XTW(T)~(T)(y - J..L,(r)) ]

ZTw(r)~(T)(y - J..L'(T)) - 1'- 1,(r)

[

xTw(r)x xTw(r)z ]

zTw(r)x 1'-1 + zTw(r)z

(4.4.2)

(4.4.3)

is expression (3.4.5) with 1'01 replaced by W(T). Equations (4.4.2) and (4.4.3)
hold at , =;y.
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Multiplying equation (4.4.2) by the matrix of order p+q in expression (4.4.3)

[

XTW(T)X XTW(T)Z] [/3(T+l)]

ZTW(T)X r- 1 + ZTW(T)Z ,('1'+1)

[

XTW(T)6(T)(Y-J.1'(T») ]

+ ZTW(T)6(T)(y - J.1'(T») - r-1,(T)

We then have

and

= ZTW(T)X/3(T) + (r-1 + ZTW(T)Z),(T)

+ZTW(T)6(T)(y - J.1'(T») - r-1,(r)

Equations (4.4.4) can be simplified to

- xTw(r) [Xj3(T) + Z,(T) + 6(T)(y _ J.1'(T»)]

= XTW(T) ('1')
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and

ZTW(T)Xj3(T+1) + (r- 1 + ZTW(T)Z) ,,_/T+1)

_ ZTW(T) [Xj3(T) + Z,(T) + ~(T)(y - J-L,(T»)]

(4.4.5b)

where
((T) = Xj3(T) + Z,(T) + ~ (T) (y _ J-L,(T») (4.4.6a)

exists at i and E(T) = ,6. (T) (y - J-L'(T»). Equations (4.4.5) can be rewritten as

[

XTW(T) X XTW(T) Z ]

ZTW(T)X r- 1 + ZTW(T)Z

Therefore,

[

j3(T 1)] [XTW(T)((T)]

,(T+l) - ZTW(T) ((T)

(4.4.6b)

[

XTW(T) ((T) ]

ZTW(T)(CT)

(4.4.7)
The linked response ((T) in equation (4.4.6a) has the form of a Gaussian
LMM equation. Thus, at , = i,

(4.4.8a)

and

= Var(Yi _p,1(T»)[g'(p,7(T»)]2 + z[Var(,)zi

- <p'LL;lV(p,1(T») [g'(p,1(T)W + z[Var(,)zi

(4.4.8b)
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for i = 1, ... ,n. Equations (4.4.8) can be rewritten more compactly as

(4.4.9a)

and
Var(((T)) = W-1(T) + ZfZT = \lJ (4.4.9b)

Thus, ((T) rv N(X/3(T), \lJ) and E rv N(O, W-l(T)). Since ((T) is approximately
Gaussian distributed and equation (4.4.6b) corresponds to equation (3.4.4),
with f o1 replaced by W(T), we have

/3
/3(T+l)

(XT\lJ-lxt1 XT\lJ-l((T) (4.4. lOa)

for the maximum PQL estimator for fixed effects, with rjJ and <p held fixed,
and

(4.4.10b)

for the maximum PQL predictor for random effects. Equations (4.4.10) cor­
respond to equations (3.5.2b) and (3.5.3), respectively (with y replaced by
((T)) .

We have illustrated that the Fisher scoring described in Section 2.4.1 for
the evaluation of the estimator of fixed effect parameters can be extended
to obtain predictors of random effects via IWLS, with rjJ and <p held fixed
throughout the iterative procedure. Alternatively to equation (4.4.7), the
following system of equations may be used to iteratively evaluate j3 and i,
as cautioned in Section 3.4:

where, = f,*, and thus with j3,i = f-)'*. See also Breslow & Clayton
(1993) and Green & Silverman (1994, pp.106-107). Littell et al (1996, p.435)
refer to equation (4.4.6b) as the generalized mixed model equations.
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4.5 Corrected profile quasi-likelihood function for the
estimation of components of dispersion

Breslow & Clayton (1993) motivate an approximate profile log-quasi-likelihood
function for the estimation of dispersion components by substituting the
maximized PQL value from equation (4.3.9) into the Laplace-approximated
IQL given by equation (4.3.8), where W = W(j3(rp)/y(rp)). To draw a close
correspondence with the normal theory LM profile likelihood for ((T), they

n

replace the (conditional weighted quasi-) deviance increment 2:)i(Yi; p})
i=l

n

by the Pearson's X 2-statistic I>i(Yi - J.L;)2[V(J.L;)]-1 and ignore the de-
i=l

pendence of W 1=1 on rp. Furthermore, to take into account the loss of
degrees-of-freedom incurred due to the estimation of {3, Breslow & Clayton
(1993) parallel the profile likelihood correction of Cox & Reid (1987) for
normal theory LM and quote the REML formulation of Patterson & Thomp­
son (1971) for estimating rp. However, the orthogonality property of ({3, rp)
and the information matrix X T '1!-lX of fJ(rp) are not exact for GLMMs.
Moreover, equation (13) of Breslow & Clayton (1993) cannot be employed
as an objective function for solving their equations (14) and (15) since the
dependence of W 1=1 on rp is ignored in the evaluation of first-order partial

derivatives of Var(((T)) with respect to rpm, m = 1, ... ,c.

We adopt the REML formulation for estimating rp as summarized in Sec­
tion 3.3. The restricted profile log-quasi-likelihood function for ((T) has the
form (ignoring constant terms)

(4.5.1)

where \If = W:Y~1 + zrzT
. The profile (quasi- )score equations for rp are

given by

at = _ltr(PZ ZT) + ll"(T)TpZ ZT pl"(T)orp 2 m m 2'" m m ...

and the information matrix by
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where
p = W- 1 _ W-1X(XTW-1XrlXTW-l

Fisher scoring for solutions of t.p then has the form

(4.5.4)

(4.5.5)

where cP is held fixed at unity. The scale factor may be estimated if so desired
(see Wolfinger & O'Connell 1993).

4.6 Computing PQL estimators

We present an iterative procedure for the estimation of fixed effect parame­
ters and components of dispersion, and the prediction of random effects, by
following Breslow & Clayton (1993) and Green & Silverman (1994, p.107).

4.6.1 Algorithm

Step 0: Generating initial values

Under the assumption that the Yi'S are independent - that is, r = 0, a pre­
liminary estimate of j3(= j3(0») is obtained via the GLM iterative method
of Section 2.4. Thereafter, residuals are used to calculate initial values of
t.p(= t.p(0»). cP is fixed at 1. ,(= ,(0») is calculated from equation (4.4.10b).

Given cP = 1, y, X and Z:

Loop 1: Evaluation of fixed effect estimators and predictors of random effects

Step 1(1): Initialize iteration with starting values f3(r) = (3(O), ,(r) = ,(0),

and t.p(r) = t.p(0) (held fixed). Determine (r) = (0) (equation
4.4.6a) and w(r) = W(O).

Step 2(1): Calculate new estimates (3(l), then ,(1), via equations (4.4.1 0).
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Step 3(1): Test for convergence: If 1,6(7+1) - ,6(7) I~ 0

(=? 11'(7+1) - 1'(7) I ~ 0), terminate iteration. Otherwise, In­

crease T by 1 and, repeat steps 1(1) and 2(1).

Loop II: Estimation of components of dispersion

With ((7+1) and W(7+1) (both held fixed) from Loop I, and cp(O). as starting
value, a new estimate cp(1) of cp is calculated via a one-step Fisher scoring
(equation (4.5.5)). The one-step procedure is halved iff(cp(1») is not positive
definite.

Loop I is repeated with cp(l) held fixed and, ,6(7+1) and 1'(7+1) as initial
values. Cycling between loops I and Il, and updating the appropriate pa­
rameters within their corresponding loops, will eventually lead to estimators
73 of,6 and rp of cp, and predictors ::y of 1'.

4.6.2 Restricted pseudo-likelihood procedure for fitting GLMMs

The PQL approach, described in the previous section, is a subject-specific
(SS) approach where focus is on predictions of I' for individuals (subjects)
and their relation to the population parameters (3. This is in contrast to the
population-averaged (PA) approach where emphasis is on ,6 and variability
due to I' is treated as a nuisance parameter. See Wolfinger & O'Connell
(1993). In this section, we briefly outline the pseudo-likelihood (PL) pro­
cedure, developed by these authors, for estimation of model parameters in
GLMMs. They motivate their method via two analytic and one probabilistic
approximations.

The GLMM equation is written as

such that 9(M) = X,6 + ZI' and,

E( ElM) = 0 and Cov( ElM) = f~~2fof~~2

with foj.L being a diagonal matrix, evaluated at M, of a known GLM variance
function and f 0 is unknown. Variance modelling in I' and r is related to the
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SS approach, whereas modelling in r 0 corresponds to the PA r:r:ethod. The
first analytic approximation is based on the assumption that /3 and i are
known, with jl = g-l(X{3 + Zi), such that

E Y- jl- (g-l)/(X{3 + Zi)(X/3 - X{3 + Z, - Zi) (4.6.1)

where (g-l )/(X{3 +Zi) is an n x n diagonal matrix of the first derivative of
g-l evaluated at {3 and i.

E in equation (4.6.1) is a first-order Taylor approximation to E, where the
expansion is about {3 and i· In the probabilistic approximation, it is as­
sumed that

-1/3 N( r 1
/
Zr r 1

/
Z

) ( 6 2)E "rv 0, OJ1. 0 OJ1. 4..

The last (analytic) approximation involves substituting jl for JL in the co­
variance matrix. From the Gaussian approximation in (4.6.2), it follows that

where

( -1)/( T/3~ T~) 1
9 Xi + Zi' = --,---(~)

9 f-li

for each i = 1, ... ,n (g/(jl) is an n x n diagonal matrix). Upon defining

( = g(jl) + g/(jl)(y - jl)

it follows from (4.6.3) that

(4.6.4)

The above approximations yield a weighted Gaussian LMM with W =
r~j[g/(jl)t2, which reduces to ro~ for canonical link functions.
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The restricted pseudo-likelihood (REPL) function, which takes into account
the loss of degrees-of-freedom due to the estimation of (3, has the form

l == l(f~, f*; ()

-~ log 1'1'1 - (n; p) log !pTW-l pi

_~ log IXT W-1XI- (n; p) [1 + log (n2~ p)] (4.6.5)

where f~ and f* are reparameterized forms of fa and f, respectively. These
reparameterizations are in terms of ratios of the scale factor cP·

In equation (4.6.5),

and
p = ( _ X(XTW-lXtlXTW-l(

In general, estimates I'* and I'oare obtained by maximizing l numerically.
Thereafter, estimates of {3, , and cP are evaluated from

{3 (XT\if-l X)-lXT\if-l (
(4.6.6a)

I I'*ZT\if-lp
(4.6.6b)

cP
1 ~T\if-l~ (4.6.6c)--p p

n-p

Updated values of f and fa are obtained by maximizing l again using esti­
mates from equations (4.6.6). Iterating between equations (4.6.5) and (4.6.6)
yields the REPL method. See Wolfinger & O'Connell (1993, pp.238-239) for
their algorithm for fitting the above procedure. Furthermore, these authors
state that their PL/REPL approach allows non-trivial covariance structures
for both f and fa to be specified.
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4.7 Bias in parameter estimators under PQL

The dependence of the weight matrix W~~i (and hence of the linked re­

sponse (~~i) on the components of dispersion cp is ignored in the heuristic

argument leading to the corrected profile log-quasi-likelihood function for es­
timating <P (Breslow & Clayton 1993). Ignoring this dependence may have
statistical consequences (Pawitan 2001). Analyses of discrete data, in partic­
ular binary data, by PQL estimators are known to produce biased estimates
of f3 and cp (Lin & Breslow 1996b). The bias in cp stems from the fact that

;-(T) _ varies with respect to cp through (3 and i, where i = i((3(cp)). If <P
"''Y='Y
is far from the true parameter value <Po, then information about <Po is biased

when evaluating (~~i at cp. Also, the marginal variance \If of (~~i should

theoretically be independent of T However, this uncorrelatedness property
does not hold for GLMMs. Thus, the likelihood function for cp given (~~i'

and hence the estimating equations for cp: contain biased information (see
Pawitan 2001).

For GLMMs with canonical link functions and a single component of dis­
persion, Breslow & Lin (1995) analytically derive a correction factor and a
first-order corrected estimator to reduce bias in, respectively, <f?m(1 = m = c)
and f3 for estimation under PQL. Their asymptotic analysis involve Laplace
expansions to the IQL for small values of cp. For larger values, their cor­
rection factor performs reasonably well asymptotically, thus improving the
estimate of fixed effects. The correction procedures of Breslow & Lin (1995)
have been extended by Lin & Breslow (1996a) for the case 1 < m :S c.
The latter authors provide corrected PQL matrices2 for cp, first- and second­
order corrected PQL estimators for fixed effect parameters, and propose a
four-step algorithm to estimate these parameters. See Lin & Breslow (1996a)
for mathematical derivations of their correction procedures and comments on
the relative merits of the corrected PQL estimators. Lin & Breslow (1996b)
summarize the results of Lin & Breslow (1996a). Engel & Keen (1994) claim
that I-MINQUE, which is equivalent to REML, may reduce bias in <p when
'Y '" N(O, f) in contrast to ML.

2Under regularity condition II of Lin & Breslow (1996a, p.1011), the correction matrices
are not applicable to fully crossed designs.
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Bias correction of parameter estimators in GLMMs can also be performed by
simulation. This is done by Pawitan (2001), who exploits the quasi-likelihood
concept of Wedderburn (1974). He considers a pilot working vector and pro­
poses a two-stage estimation procedure for rpm (1 = m = c). He suggests
holding ( == ((3 {;Q ~ and 73 fixed in the second stage. The first stage

( ,,)=i,jJ,,)
for estimating <p is based on existing methods (see Section 4.6). Then, re-
estimate rpm by maximizing L(rp)3 as a function of rpm, where rpm enters L( rp)
through the marginal variance \]I only (in the second stage). The maximiza­
tion of L(rp) is achieved by employing numerical derivatives or derivative-free
techniques (see Kennedy & G~ntle 1980, pp.469-475). A new estimate rpm
is then obtained. Thereafter, (3 is updated via its corresponding estimating
equation.

Pawitan (2001) states that all less-than-full likelihood methods, including
analytical correction procedures, have an upper bound which is computa­
tionally increased by his proposition for estimating dispersion components
based on discrete data. In a simulation study of binomial data, the bias­
corrected L( rp) estimate is comparable to a full likelihood estimate when <p

is small to moderate. This is not the case for large values of rp, however.

3In bias correction procedures, either asymptotically or by simulation, it is sufficient to
employ ML estimating equations for ep (Lin & Breslow 1996a). See also Pawitan's (2001)
equation (11).

51



4.8 Generalized global score test for components of
dispersion

The degree of overdispersion, correlation and heteroscedasticity, as they occur
in GLMMs, is gauged by the magnitude of the components of dispersion !.p.
However, hypothesis testing of !.p is cumbersome in GLMMs since the IQL
may involve high-dimensional integrals. A global score test for the hypothesis
Ho : tp = 0, for all <Pm, m = 1, ... ,c, has been proposed by Lin (1997),
for the hierarchical model of Section 4.2. This test4 exists in closed form
and is appealing since it requires fitting ordinary GLMs. Furthermore, the
parametric assumptions for the random effects , are relaxed. Thus, the
global score test is, in a sense, robust. Relaxing the normality assumption
for , requires that the kurtosis is nearly null (Engel & Keen 1994). The IQL
has the form

L('lj;) - L((3,!.p)

exp[l((3,!.p )]

(4.8.1)

where li((3;,) is as defined in equation (4.2.4), with, following some zero
mean kernel distribution F(,; !.p) whose variance, in the notation of Hall &
Praestgaard (2001), is given by Var!.p(') = f(tp) and cP is assumed known.

In deriving the global score test, the score 8l({3, !.p) I is required. Ob-
o!.p !.p=O

taining this quantity from equation (4.8.1) is difficult since the integral may
be intractable. This difficulty is circumvented by taking an expansion of
l((3,!.p) about <p = 0 by using the Laplace approximation.

Lin (1997) expands equation (4.8.1), for small tp, by taking a quadratic ex-
n

pansion of '2)i((3; ,) about, = 0, the true means of" before integration.
i=l

4The global score test is applicable to both crossed and clustered designs, but not to
fully crossed designs (Lin 1997, p.315).
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A second-order Taylor expansion yields

n 8
2
[i((3; 0) T] }

+ t; &r]; ZiZi 1+ 0 111'11

Equation (4.8.1) can then be written as

= exp [t [i((3; 0)] {1 + ~tr [ZT (8l((3; 0) 8l((3~0)
;=1 8TJ 8TJ

53

(4.8.2)



8l(f3; 0) . . 8li (f3; 0) 82l(f3; 0)
where IS an n x 1 vector wIth elements ;:.)"., and 8 8 T =

~ V'H ~~

diag ( 82l~~; 0)) ,for i = 1, ... ,n. The marginallog-quasi-likelihood func-

tion is then given by

n

l (f3, cp) = I) (f3; 0)
·i=1

I [T (8l(f3; 0) 8l(f3; 0) 8
2
l(f3; 0)) ()] II II

+'2tr Z 8~ 8~T + 8~8~T zr cp + 0 cp

n

'I)i(f3; 0) + ~tr [(W~ -l(y - J-L)(Y - J-L)T~-lW - Wo)
i=1

(4.8.3)

where Lin (1997) defines

Wo =

with ei given by the second term in square brackets in equation (2.4.3).
Furthermore, Lin (1997) defines ~ =. diag(6i), with 6i = [g'(lLi)]-l and
W = E(Wo).
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The c x 1 efficient score vector Ucp(!3o) has elements

~ 8l ((3, 'P) I
Ucpm ((30) = a ~

CPm <p=o,(3=(3o

!tr { [wt,-l(y - p,)(y - p,)Tt,-lw - Wo] Za~m ZT}

~ { [(y - p,)T t,-lWZ a~mZTWt, -l(y - p,)]

- tr ( WoZ a~m ZT) }

(4.8.4)
where {30 is the ML estimator of (3 under <p = o. Ucpm'({30) in equation (4.8.4)
gives a comparison of the weighted actual and nominal observed covariance
of y = (Yl,' .. ,Ynf; m = 1, ... ,c.

Let the information matrix be partitioned as

(4.8.5a)

and

and

Lin (1997).
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It can be shown that

E(U<pmUepJ

1(t b7:b~irii -+- 2 ~bwb7i,rii')
i=l i<i'

(4.8.5b)

where Bm = Z:r ZT = (b7i\), with b m being an n x 1 vector with elements
'Pm

br;:', R is an n x n matrix with diagonal elements rii = wto;4 K4i + 2w; +
e;/'\,2i - 2W;Oi-2eiK.3i and off-diagonal elements rii' = 2WiWi', for i =I i'. J is a
vector of ones and G . H is the component-wise multiplication of conformable
matrices G and H. Now,

~E { [~XiWiO;l (Yi - ~i)]

x [~b~ [W;Oi- 2(Yi - ~i)2 - Wi - ei(Yi - ~i)]] }

~ {tXib~ [WY Oi- 3E(Yi - ~i? - wio;leiE(Yi - ~i)2]}
~=l

n

~I>iCib~
i=l

(4.8.5c)
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show that
I{3{3 = XTWX

Lin (1997) defines the efficient information matrix as

-re!f _ -r -rT -r-1'7"
1. - 1.epep - 1.j3ep1.j3/3 1.j3ep

The generalized global score statistic is then defined as

(4.8.5d)

(4.8.6)

for testing Ho : t.p = O. Under certain regularity conditions, and using
Slutsky's Theorem (Casella & Berger 2002, p.239), Lin (1997) proves that

(i) X~ is asymptotically chi-squared distributed with c degrees-of-freedom
under t.p = 0;

(ii) X~ is a locally asymptotically most powerful test (LAMPT) if c = 1,
and is a locally asymptotically most stringent test (LAMST)5 if c > 1.

Therefore, the null hypothesis Ho : <p = 0 is rejected if and only if X~ 2: X~;Ct'

where a is the asymptotic size test. A bias, when n is small, is incurred in
X~ due to the estimation of f3. Lin (1997) provides a bias-corrected efficient
score statistic U#'Prn (730), which is of the same form as in equation (4.8.4)
except that Wo is replaced by W #0, where

with hi being the ith diagonal element of the hat matrix

5See Bhat & Nagnur (1965).
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The corresponding bias-corrected global score statistic is then given by
2 ~ T ef f ~ -1 ~

X#G = (U#'P({3o)) (I ((3o)) (U#'P({3o))

where X~G is the bias-corrected form of X~·

According to a simulation study of binary data by Lin (1997), X~G per­
forms slightly better than X~ in terms of size and power. As t.p increases, the
powers of the tests converge to 1 rapidly. Furthermore, the performance of
X~ and X~G is high when the number of levels qm of each random effect is
moderate or large. For small qm, for example when qm < 15, critical values of
X~ and X~G are suspected to be less precise. Hall & Praestgaard (2001) state
that Lin's (1997) global score test has power in all directions from rp = 0
and can thus be regarded as an omnibus test.

4.8.1 Individual dispersion component score test

A drawback of the global score test statistic X~ is that it does not single
out particular <Pm's, m = 1, ... ,C, that do not conform with the hypothesis
Ho : rp = O. Thus, a statistic for testing the null hypothesis Ho : <Pm = 0
against a one-sided alternative hypothesis Ha : <Pm > 0 becomes necessary.
For such a test, parameter estimates of {3 and rp, without <Pm, are required.
These estimates can be obtained via Fisher scoring by dropping moment
assumptions for the random effects and introducing the stronger normality
assumptions. Efficient score and efficient information matrix for <Pm do not
have closed-form structures, and have to be approximated by Laplace expan­
sions. Moreover, it is well-known that, for small n, estimation of {3 results
in a loss of degrees-of-freedom. It is therefore recommended to use Laplace­
approximated efficient score and efficient information matrix for <pm under
R.EML to construct an individual score statistic for testing Ho : <Pm = 0
against Ha : <Pm > O. Under certain regularity conditions, the Laplace-based
score statistic for testing <Pm = 0 follows a standard normal distribution,
asymptotically (under Ho : <Pm = 0), and is a LAfvIPT. See Lin (1997) for
the mathematical derivation of the individual dispersion component test.

Simulation-based analysis of binary data by Lin (1997) indicates that the
bias-corrected individual score statistic for <Pm does not perform well. As the
binomial denominator increases, an improvement, in terms of size and power,
of this Laplace-approximated test becomes apparent.
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4.9 Conditional mean squared error of prediction

In the analysis of Gaussian LMMs, standard errors of prediction are tradi­
tionally calculated as the square root of an estimate of the unconditional
mean squared error of prediction (UMSEP). However, the UMSEP cannot
be adapted to GLMMs, where the conditional variance of the random effects
I depends on the data, as stated by Booth & Hobert (1998). These authors
have proposed a generaJ measure of prediction variance, the conditional mean
squared error of prediction (CMSEP), in GLMMs under full 'joint' distribu­
tional assumptions for the data and the random effects.

Booth & Hobert (1998) motivate their CMSEP for a two-level GLMM where
the distribution of y, given the random effects " belongs to the exponential
family and where random effects are Gaussian distributed with mean zero.
We formulate the CMSEP for the hierarchical model of Section 4.2 (with­
out the use of rigorous asymptotic analysis). In our attempt, we follow the
notation of Booth & Hobert (1998) by dropping the superscript, in Tli and
/-Li, i = 1, ... ,n. We assume that the scale factor q; is known. Furthermore,
when the conditional distribution of the responses belong to the exponential
family, the canonical parameter is given by

(Sinha 2004).

4.9.1 Conditional standard errors of prediction

We focus on standard errors of prediction for 'r/i of equation (4.2.2a). For
known 'ljJT = (f3T, <pT), a point predictor for 'r/i is

'r/i 'r/i ('ljJ; Yi)
E'ljJ ('r/i IYi)
x[f3 + z[E'ljJ (rIYi)
x[f3 + zT,('ljJ; Yi) (4.9.1a)

where a point predictor for, is its conditional mean ,('ljJ; Yi) = E'ljJ(rIYi),

59



i = 1, ... ,n. The prediction variance for 7), is given by

V 1. Vi ('I/J; Yi)
Var'I/J (7)i IYi)
Var'I/J [x;{3 +z;,('I/J; Yi)]
z; Var'I/J (,IYi)Zi (4.9.1b)

(4.9.2a)

When 'I/J is unknown, and if :;j; is a consistent (REML)6 estimate of 'I/J, equa­
tion (4.9.1b) becomes

Clearly, a point predictor for 7)i is then

if, 7)i (:;j;; Yi)
= x;13 + z;,(:;j;; Yi) (4.9.2b)

with associated standard error of prediction VV;. There exists a cav~t, how­
ever; Vi fails to account for the sampling variability associated with;jJ, and is
thus termed naive. Also, a bias is incurred by the substitution of'I/J into Vi.
It is assumed that as n, qm -7 00 (m = 1, ... ,c), the number of observations
at any level of any random effect is bounded for all n. Therefore, qm = O(n)
(Lin 1997, Condition 2, Appendix 2, p.323).

The CMSEP is defined as

CMSEP('I/J; Yi) E'I/J[(7)i -77i?IYi]

E'I/J {[(7)i - 7)i('I/J; Yi)) + (7)i('I/J; Yi) -77i)]2Iyd (4.9.3a)

In equation (4.9.3a), the predictor 7)i('I/J; Yi) is added and subtracted under
the assumption that 'I/J is known. Equation (4.9.3a) simplifies to

CMSEP('I/J; Yi) = E'I/J {[(7)i - 7)i('I/J; Yi))2!Yi]
+2[(7)i - 7)i ('I/J; Yi) ) (7)i ('I/J; Yi) - 77i) IYi]
+ [(7)i ('I/J; Yi) - 77i)21Yi]}
Var'I/J (7)i !Yi) + E'I/J [(7)i ('I/J; Yi) - 77i)2IYi]
Vi ('I/J ;y,) + corri ( 'I/J ;y,)

6Booth & Hobert (1998) use ML.
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A second-order Taylor expansion of 'Y(W; Yi) about W= :;P yields:

where, in equation (4.9.3b), the second term reduces to zero since

are conditionally independent (given Yi). The term corri(W;Yi) is a~non­

negative correction term that accounts for the sampling variability of W.

Now,

(4.9.4b)

Substituting equation (4.9.4b) into equation (4.9.4a) gives, after some rear­
rangement:

(4.9.5)

where
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(4.9.6a)

is the information matrix for 1/J based on the assumed GLMM, and is given
by equation (4.8 .5a) with corresponding elements that are given by equa­
tions (4.8.5b) - (4.8.5d).

I . (9) . . c a,(1/J; Yi) d a,(1/J; Yi) bn equatIOn 4..5 ) we reqwre expreSSIOns lor af3 an aip to e

evaluated at 1/J =:;p. Booth & Hobert (1998) define the conditional expec­
tation ,(1/J; Yi) by a function NI such that

M(,. 1/J) = 8t(,; 1/J) ~ 0, a,

where l(,; 1/J) is defined by equation (4.3.9). From equation (4.4.1b), we have

al(,;1/J) ~ ( ) '() -1a = Lt ZiWi Yi - f.Li 9 f.Li - r ,
, i=l

a,(1/J;Yi) ~ _ [aM]-l aM aNI (_ a2
l b ;1/J))

Now, af3 a, af3) where a, - a, a,T
equation (4.3.7a). Therefore,

(4.9.6b)

is given by

aM
af3

n

- "\'z·w·xT
Lt 2 t 't

i=l
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(4.9.6d)

(4.9.6e)

'Ne then have

o,('l/J; Vi) = -(ZTWZ + r-1t1zTWX
of3

Also O,('l/Ji Vi) ~ _ [OM] -1 aNI, where we use equation (4.9.6b) to obtain, ar.p a, ar.p

or-1---,
O'{Jm

Thus,

o,('l/J; Yi) = (ZTWZ + r-1t1 (r-1 or r-1) ,
O'{Jm o'{Jm

for m = 1, ... ,c. Furthermore, from equation (4.9.1b), we have the following
expression for Vi:

(4.9.6f)

An expression for the CMSEP can be obtained by taking a second-order
Taylor expansion of Vi about 'l/J (see Booth & Hobert 1998, equation (26)).
We conclude that the conditional standard error of prediction for rh at 'l/J = ;p
is given by

JVi - biasi(;P; Vi) + corri(;P; Vi) (4.9.7)

where biasi(;P; Yi)(= E'l/J[Vi - Vi('l/J; Yi)IYi]) is the parametric bootstrap (see

~rban Hjorth 1994) estimate of the conditional bias incurred in Vi through
'l/J. Moreover, the bias term should not be ignored if the sampling variability
of;P is of importance (Booth & Hobert 1998).
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4.10 Some remarks

Hall & Praestgaard (2001) have proposed an improvement of Lin's (1997)
global score test by concentrating this test into directions that are given by
constraining cp to form a positive semidefinite covariance matrix. They argue,
by simulations and theoretical justifications, that their projected or restricted
score test has more power than Lin's (1997) unrestricted test. However,
their restricted test is a mixture of chi-squared distributions with associated
degrees-of-freedom less than or equal to c. In their endeavour, Hall & Praest­
gaard (2001) specify a true density for the conditional distribution of yl,.
They recommend that the score statistic and information matrix, both bias­
corrected, be employed in a restricted, bias-corrected global score test for
homogeneity to achieve better performance in terms of size and power. This
particular test adjusts for the loss of degrees-of-freedom due to the estima­
tion of (3.

Lee & Nelder (1996) have proposed a broader class of models known as
the hierarchical generalized linear models (HGLMs), of which GLMMs are
a special case. In an HGLM, the distribution of the random effects is con­
jugate to that of the observed data y. For inference in HGLMs, Lee &
Nelder (1996) define a hierarchical or h-likelihood. By its definition, the h­
likelihood does not require obtaining the marginal likelihood, and therefore,
intractable high-dimensional integrals, usually associated with GLMMs, are
circumvented. Maximizing the h-likelihood leads, asymptotically, to efficient
fixed effect estimators that are equivalent to those obtained from the marginal
likelihood approach and to random effect estimates that are best unbiased
predictors. These estimators (predictors) are called maximum h-likelihood es­
timators (IVlHLEs). Components of dispersion are estimated by an adjusted
profile h-likelihood (APHL) procedure that takes into account the loss of
degrees-of-freedom due to the estimation of {3. A scaled deviance test has
also been proposed by Lee & Nelder (1996) to assess model adequacy. This
goodness-of-fit test, however, uses the conditional distribution of y given 'Y
only, and thus, cannot be used for testing components of dispersion. More­
over, they propose a test criterion to detect the absence of random effects
I m that is based on testing the null hypothesis Ho : <pm = 0, m = 1, ... ,c.
This statistic can also be used to test for the equality of random effects
against their independence. Recently, Lee & Nelder (2003) have considered
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extended-REML estimators, based on double EQL functions. They show that
this extension results in efficient estimation of dispersion components.

Lee & Nelder (1996) suggest the Wald7 test and the likelihood ratio test
for inference on fixed effects. The former test statistic is also available for
testing dispersion components. However, since null hypothesis testing of dis­
persion components places t.p on the boundary of the parameter space, these
statistics follow a mixed chi-squared distribution, under some regularity con­
ditions, instead of a chi-squared distribution (Lin 1997).

The method of simulated moments (MSM) has been proposed in the litera­
ture for the estimation of fixed effect parameters and dispersion components.
In brief, estimating equations based on the method of moments (MM) are
obtained by equating sample moments of sufficient statistics to their expec­
tations. However, the high-dimensional integrals involved in these expec­
tations hampers statistical inference in GLMMs. The method of simulated
moments provides an approximation to these integrals. Simulation results
indicate that MSM estimators of fixed effects and dispersion components,
though consistent, are quite inefficient (see Jiang 1998).

7Engel et al (1995) also suggest the Wald statistic for hypothesis testing of fixed effects.
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Chapter 5

Analysis of correlated binomial data
using a GLMM: The Logistic-Gaussian
model

5.1 Introduction

We mentioned in Chapter 4 that correlated discrete data exhibit overdis­
persion and heterogeneity. For the analysis of GLMMs, the SAS Institute
has implemented the necessary codes in the GLIMMIX macro to provide
solutions to the PQL algorithm of Breslow & Clayton (1993) and to the
pseudo-likelihood algorithm of Wolfinger & O'Connell (1993). However, it is
known that PQL estimators for components of dispersion, and hence for re­
gression coefficients, are biased, especially with binary outcomes (see Section
4.7). 'True' ML estimation for GLMMs is now feasible, a result of recent
developments in numerical integration (Breslow 2003).

The adaptive Gaussian quadrature, which is one of the best techniques to ap­
proximate integrated likelihood functions, is now implemented in SAS PROC
NLMIXED, where the approximation is maximized by a dual quasi-Newton
algorithm which is the default algorithm (Wolfinger 1999). However, it is to
be noted that this quadrature requires that the dimensionality of the inte­
grations be in the low single digits for the analysis of clustered data (Breslow
2003).

Schall (1991) presents a binomial dataset concerning an experiment that
measures the mortality of cancer cells under radiation and Smith et al (1995)
report a dataset, in binomial form, regarding an assessment of the effects of
antibiotics on the risk of respiratory tract infections in patients in intensive
care units. The latter dataset has been analyzed (in terms of log-odds ratios)
by Smith et al (1995) from a Bayesian perspective, and by Turner et at (2000)
from a classical point of view within the framework of multilevel modelling.
We note that Turner et at (2000) use the MLn (Woodhouse et at 1996) and
MLwiN (Goldstein et at 1998) software.
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In this chapter, we analyze the above-mentioned datasets and compare re­
sults to the parameter vector of interest 'l/J, with the GLIMMIX macro and
PROC NLMIXED. Vye model heterogeneity in the respiratory tract infections
data by constraining the scale factor at unity (Breslow & Clayton 1993) where
'l/JT = ({3T, <pT), whereas in the modelling of overdispersion in the cancer cells
data, it is estimated1 (Wolfinger & O'Connell 1993) where 'l/JT = ({3T, <p*T),
with <p*T = (cP, <pT). Note that, for the former dataset, we modify the SAS
statements of Brown & Prescott (1999, p.196) to parallel results generated
by PROC NLMIXED (see Wolfinger 1999).

5.2 The Logistic-Gaussian model

Let the vector y* = (Yi, ... ,y~f denote n binomial responses and let y =
(Yi, ... ,Yn)T denote the corresponding vector of observed proportions, where
Yi = ui iy; (i = 1, ... , n) with Ui being the binomial denominators. Con­
ditional on a vector of Gaussian distributed random effects (see equation
(3.2.3)), the data points Yi are assumed to he independent with (conditional)
means that are given by equation (4.2.1a) and (conditional) variances

(5.2.1)

The resulting GLMM (equation (4.2.2a) is then written as

r/! = g(f.L() = x;(3 +z;, (5.2.2a)

where g(f.L() is the (conditional) logit function (McCullagh & Nelder 1989,
p.31) such that

Therefore, we have
f.Ll = exp(x; j3 + z;,)

1 + exp(x;(3 + z;,)

In matrix notational form, equation (5.2.2a) is written as

logit(/L') = X{3 + Z,

(5.2.2b)

(5.2.2c)

(5.2.2d)

lThe GLlMMIX macro was written to fit the pseudo-likelihood algorithm of Wolfinger
& O'Connell (1993) which is an extention of the PQL algorithm of Breslow & Clayton
(1993) where the scale factor is estimated (see Kuss 2002).
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In the presence of multiple sources of random variation, equations (4.2.2c)
and (5.2.2d) become

c

10git(MI) = X{3 + L Zmlm
m=l

(5.2.3)

and is referred to as the Logistic-Gaussian model. Ignoring a constant term,
the term l.i({3; ,) in the IQL, viz. equation (4.2.4), has the form

(5.2.4)

(Lin & Breslow 1996b). Moreover, the Vi'S may be blocked to form clusters
(see Section 6.3.1 for the notation of a two-level GLMM).

5.3 Modelling heterogeneity in binomial clinical trials
data

Meta-analysis is increasingly used to assess the same treatments from a com­
bination of results from multiple clinical trials so that a more precise overall
estimate of treatment effects can be achieved. It is not plausible for a treat­
ment to vary across trials. However, if treatment estimates are related to
the circumstances and locations sampled by the trials, effects due to trial
and trial-treatment interaction should be fitted as random. This approach
increases the standard errors of treatment estimates to reflect heterogeneity
across trials. Furthermore, treating trial effects and trial-treatment effects
as random, respectively (i) increases the precision of treatment estimates
from the aggregation of information from both trial error and residual strata,
and (ii) allows modelling of variability at the observation level by the trial­
treatment dispersion component, which is retained in the model provided
that it is posi tive (although not 'proven' to be statistically significant), while
the scale factor is held fixed at unity.

See Brown & Prescott (1999, Chapter 5, pp.171-198) for a comprehensive
account of randomized clinical trials.
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5.3.1 Analyzing the risk of respiratory tract infections by selective
decontamination of the digestive tract

A suggested strategy in the prevention of infections acquired in intensive
care units (leU) is the selective decontamination of the digestive tract to pre­
vent carriage of potentially pathogenic micro-organisms from the oropharynx,
stomach and gut. A meta-analysis of 22 randomized trials was performed to
investigate the clinical benefits of such a strategy. In each trial, patients in
leU were randomized to either a treatment group, where they received dif­
ferent combinations of oral non-absorbable antibiotics, or to a control group,
where no treatment was received. Table 5.1 below (Table 1 in Smith et at
(1995)) reports the number of patients who were diagnosed with respiratory
tract infections in these groups.

Table 5.1 Respiratory tract infections in treated and control groups of 22 trials

Infectionsa /Total
'Il'ial Treated Control

1 7/47 25/54
2 4/38 24/41
3 20/96 37/95
4 1/14 11/17
5 10/48 26/49
6 2/101 13/84
7 12/161 38/170
8 1/28 29/60
9 1/19 9/20

10 22/49 44/47
11 26/162 30/160
12 31/200 40/185
13 9/39 10/41
14 22/193 40/185
15 0/45 4/46
16 31/131 60/140
17 4/75 12/75
18 31/220 42/225
19 7/55 26/57
20 3/91 17/92
21 14/25 23/23
22 3/65 6/68

a Our analyses are coded in terms of
patients who were not infected.
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Let yZt (k = 1, ... ,22 ; t = drug/control) denote the number of patients
who responded favourably to the ktth trial-treatment combination - clearly,
those who did not, is given by Ukt - YZt, where Ukt is the number of patients
assigned to the tth treatment at the kth trial. Moreover, let the proportion
corresponding to favourable responses be denoted by Ykt = YZt/Ukt (Littell
et al 1996, p .437). The YZt'S are assumed to be conditionally independent
(given ,) - that is,

(Booth & Hobert 1998). Also ,T = (,f, ,n, where

with '1 and '2 being random effects vectors corresponding to trial and trial­
treatment interaction, respectively. The Logistic-Gaussian model is then
given by

In ( f-L~,) = [30 + [31 X kt + '"'ilk + '"'i2kt
1 - f-Lkt

where Xkt is an indicator variable such that

(5.3.1)

Xkt = {
1, for drug
0, for control
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5.3.2 Results

Table 5.2 compares parameter estimates for the regression coefficients and
dispersion components obtained by fitting the respiratory tract infections
data with the GLIMMIX macro (PQL) and PROC NLMIXED (ML).

Table 5.2 Parameter estimates ± standard errors for the respiratory tract infections
data (p-values in parentheses)

Parameter GLIMMIX" (PQL)b NLMIXEDc (ML)

/30
0.6170 ± 0.2447 0.7397 ± 0.2182

(0.0188) (0.0029)

(Jl
1.3426 ± 0.1877 1.0535 ± 0.08898

« 0.0001) « 0.0001)

0.9644 ± 0.3737 0.9370 ± 539.80
<p\

(0.0049) (0.9986)

0.2501 ± 0.1205 0.07349 ± 14.3641
<P2 (0.0190) (0.9960)

"Scale factor constrained at unity; deviance = 15.9021.

bpQL estimation under REML.

C Scale factor and deviance not computed.
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The GLIMMIX macro produces a deviance of 15.9021. Relative to X6.95;42

= 58.12, there is no evidence of a lack-of-fit for the above Logistic-Gaussian
model (Littell et al1996, p.446). PQL parameter estimates are greater than
those obtained under ML, except for the intercept term. Standard errors
for (3 = ((30, (31 V under PQL are larger than those under ML. Hovvever,
standard errors for ep = (<PI, <P2V are very large under ML. We note that
the p-values, generated by the GLIMMIX macro, that are associated with (3
and ep are derived from the t-statistic and z-statistic respectively, whereas
those obtained from PROC NLMIXED are calculated from the t-statistic
for all parameters. Furthermore, the computed p-values for the respiratory
tract infections data indicate that estimates for PQL and ML regression co­
efficients, as well as PQL dispersion components, are statistically significant
at the 5% level of significance. Caution should be exercised when inter­
preting the p-values that are associated with ML components of dispersion
estimates since the sampling distributions of these components tend to be
skewed (Wolfinger 1999). We retain ML estimates for <PI and <P2 following
the comments in Section 5.3. Furthermore, the positive value of (31 implies
that the treatment (drug) significantly increases the chance of a favourable
cure (\Volfinger 1999).

PROC NLMIXED presumptively generates accurate results (Breslow 2003).
Therefore, we conclude that, for the respiratory tract infections data, the
GLIMMIX macro overestimates the model parameters, except for /30 .

5.4 Modelling overdispersion in binomial data

Schall (1991, Table 2, p.726) presents a dataset, in binomial form, that sum­
marizes the number of cancer cells that survived under radiation. We describe
the experiment below. The data was found to be seriously overdispersed.
The term overdispersion is used when the variance of the data under study
exceeds the theoretical binomial scale factor which equals one.
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5.4.1 Analyzing the mortality of cancer cells under radiation

The experiment involves measuring the mortality of cancer cells placed in
a radiation chamber. Three dishes, each containing 400 cells, were irradi­
ated at a time (or occasion). Thereafter, the number of surviving cells were
counted. Since cells die naturally, dishes with cells were placed in the radi­
ation chamber without being irradiated. The natural mortality of the cells
could therefore be established. Twenty-seven binomial responses on nine oc­
casions were available for analysis. Only the zero-dose effect was of interest.
The data for this experiment are shown in Table 5.3.

Table 5.3 Cell irradiation data

Occasion Dish Number of cells
survived/400

1 1 178
1 2 193
1 3 217
2 4 109
2 5 112
2 6 115
3 7 66
3 8 75
3 9 80
4 10 118
4 11 125
4 12 137
5 13 123
5 14 146
5 15 170
6 16 115
6 17 130
6 18 133
7 19 200
7 20 189
7 21 173
8 22 88
8 23 76
8 24 90
9 25 121
9 26 124
9 27 136
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5.4.2 Results

A preliminary analysis of the cancer cells data reveals a Pearson X2-statlstic
of 492.9681, with df= 27 - 1 = 26 degrees-of-freedom. The estimate cP =

18.9603 for the scale factor is well above the binomial scale factor of 1. This
is an indication that the data is highly overdispersed. To adjust for the
extra-binomial variation, a vector of Gaussian distributed random effects 11'
which measures the variability across occasions, is introduced into the linear
predictor on the logit scale such that

( ')Mki
In _ I = (Jo + Ilk

1 Mki

(5.4.1)

(5.4.2)

where i = 1, ... ,3 and k = 1, ... ,9. Overdispersion persists since cP = 1.8167.
A second vector of random effects 12 rv N(O, r(<,o2)), which measures the
variability between dishes, is introduced into equation (5.4.1). The resulting
model equation is

( I)Mki
In _ I = {Jo + 'Ylk + 12ki

1 Mki

REPL parameter estimates generated by the GLIMMIX macro and ML es­
timates obtained from PROC NLMIXED are shown in Table 5.4.

Table 5.4 Parameter estimates ± standard errors for the cancer cells data
(p-values in parentheses)

Parameter GLIMMIXa (REPL) NLMlXED b (ML)

00
-0.7522 ± 0.1662 -0.7527 ± 0.08989

(0.0014) « 0.0001)

0.2253 ± 0.1148 0.2004 ± 66.7178
<p]

(0.0248) (0.9976)

0.006431 ± 0.007741 0.01218 ± 1.1419
'P2

(0.2030) (0.9916)

"Scale factor = 0.9986 ± 0.0136 (-< 0.0001).

bScale factor not computed.
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The computed estimate for the scale factor by the GLIMMIX macro is 0.9986.
This is clear evidence that overdispersion in the cancer cells data has been
adjusted for by the incorporation of ''11 and '2 into the linear predictor on
the logit scale. The value of Po under the two procedures is almost identical
with a small difference between the standard errors. REPL estimates for the
dispersion components are very close to those obtained under ML. However,
the REPL estimate for <PI is larger and that for <P2 is slightly smaller than the
corresponding ML dispersion components estimates. Standard errors for <PI
and <P2 under ML are greater than those under REPL. The p-values associ­
ated with Po, under both REPL and ML, and that associated with <PI, under
REPL, indicate that these parameters are statistically significant at an ex size
test of 0.05. The p-value associated with the REPL estimate for <P2 can be
misleading~since the decision not to reject the null hypothesis Ho : <P2 = 0
results in rP being equal to 1.8167 - an indication of overdispersion in the
data. Moreover, following the cautionary note about the p-values generated
by PROC NLMIXED in Section 5.3.2, ML estimates for <PI and <P2 are re­
tained in spite of their associated p-values being nearly 1. Not rejecting the
null hypothesis Ho : <p = 0 under ML implies fitting an ordinary logistic
regression and not adjusting for overdispersion.

\1I/e analyzed the cancer cells data by coding the GLIMMIX macro in terms
of O's and 1'so In terms of the original model, the computed deviance, with
26 degrees-of-freedom is 21.4731, which is less than X6.95;26 = 38.89. Thus,
there is no evidence of a lack-of-fit for the conditional model given 11 and'2 (Littell et al1g96, p.446).

5.5 Some remarks

For PQL to perform adequately, a rule of thumb is that the expected num­
bers of 'successes' and 'failures' for each response should be at least 5. For
response probabilities in the mid-range, the binomial denominator should
therefore be greater than 10. Larger denominators are required if many of
the probabilities are near the boundaries in the interval [0, 1]. See Breslow
(2003) .

SAS codes for the analyses of the above datasets are to be found in Ap­
pendix B. Codes for Lin's (1997) x~-test and those for the CMSEP of Booth
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(5.5.1)

& Hobert (1998) are not implemented in the GLIMMIX macro. However,
regarding the datasets analyzed in this chc.pter, the hypothesis Ho : rp = 0
would be rejected at the 5% level of significance since the x~-statisticwould
then be greater than or equal to X695'c = 5.99, where c = 2. Moreover,
we would expect the CMSEP to be ~lightly larger than the (unconditional)
standard errors of prediction 'StdErrPred' printed by using the option 'out
=_pred' in the GLIMMIX macro (see also Booth & Hobert 1998, Table 6,
p.270). We note that values for the standard errors of prediction generated
by PROC NLMIXED are smaller than those computed by the GLIMMIX
macro for both datasets.

5.5.1 Further remarks

For binomial data, PQL performs well when the denominators are large, for
then the distributions of the responses are approximately Gaussian (Breslow
2003). Moreover, predicted values for responses in GLMMs depend on esti­
mates /3, for fixed effects, and predictors i, for random effects. Residuals for

individual outcomes are then given by Yi - fJ,/, where fJ,/ = g-l(X[/3 + z[i)
and i= 1, ... , n. However, these residuals are heteroscedastic and should
therefore be standardized (see Brown & Prescott 1999, p.134), and are thus
given by

AiYi - f-Li
reSi = .

j V(fJ,:)

where V(fJ,/) = fJ,/ (1- fJ,/). We shall refer to equation (5.5.1? as the (con­
ditional) Pearson residuals - 'conditional' in the sense that they explicitly
depend on i.

For LMMs, Brown & Prescott (1999, p.78) use Normal probability plots
to check the assumption of normality of residuals. Pawitan (2001) uses these
plots to illustrate the distribution of the linked response 9 (y) for a Logistic­
Gaussian model for different values of the dispersion components. Similarly,
we employ such plots in an attempt to verify the approximate normality of
binomial responses (as mentioned in the previous paragraph) by an examina­
tion of the ordered (conditional) Pearson residuals for the respiratory tract

2Zhu & Lee (2003, p.301) define reSi similarly.
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infections data and the cancer cells data using the GLIMMIX macro and
PROC NLMIXED. The plots are shown in Figures 5.1-5.4 .
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The Normal plot is markedly straight for the respiratory tract infections data,
and somewhat straighter for the cancer cells data, under ML than those un­
der PQL and REPL. Thus, we believe that PROC NLMIXED produces a
better fit for both datasets. Furthermore, we point out that the former
dataset contains many response probabilities that are in close proximity to
1, with one probability of 1, one near zero and one zero probability. We
suspect that these near-boundary values are the reason why PQL has not
performed well as opposed to the latter dataset where response probabilities
are in the interval [0.165,0.5425]. We suggest that an in-depth analysis be
performed to identify the effect of influential responses, and/or trials, on pa­
rameter estimates for the respiratory tract infections data (see Chapter 6 for
a theoretical proposition of local influence analysis in GLMMs).

The (conditional) Pearson residuals are defined as

,1
I _-=;:Y1='-==p.,=i:::;::::::res· =
1 J~ vu/I)

(5.5.2)

in the GLIMMIX macro. For the cancer cells data, ~-1/2 = 1.00070 ~ 1
and, therefore, the difference between equation (5.5.1) and equation (5.5.2)
is infinitesimal. Thus, the Normal plots in Figures 5.3 and 5.4 can be used
to assess the fit produced by the GLIMMIX macro and PROC NLMIXED.

We recommend that PROC NLMIXED be used in conjunction with the
GLIMMIX macro, especially for binomial data. Moreover, the SAS state­
ments should be coded in terms of O's and l's. In that way, the computed
estimate for the scale factor will indicate overdispersion (or underdispersion)
in the data. Thus, misleading results (see Section 5.4.2) can be avoided.
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Chapter 6

Local influence analysis for GLMMs

6.1 Introduction

Statistical models are often approximate descriptions of more complicated
(stochastic) processes that generate a set of data. As a consequence, these
models are, in many situations, not exact. Because of this inaccuracy, a study
of the variation in key results of an analysis, under minor perturbations of
the hypothesized models, is essential. If no influence on the results is de­
tected, then the sample is robust with respect to the induced perturbations.
Otherwise, there is cause for concern. See Cook (1986).

In the context of GLMMs, local influence measures to assess cluster influ­
ence on parameter estimates under several perturbation schemes have been
proposed by Xiang et al (2003). They follow the approach of Cook (1986)
and the GLMM formulation of McGilchrist (1994). In contrast, Zhu & Lee
(2003) consider local influence analysis for GLMMs based on a Q-function
associated with the conditional expectation of the complete-data likelihood
function in the EM algorithm (Dempster et al1977; McLachlan & Krishnan
1997), and where random effects are treated as missing data. Furthermore,
Zhu & Lee (2003) state that the Q-displacement function and the likelihood
displacement function of Cook (1986) have similar behaviours and statistical
properties.

Following Cook's (1986) methodology for local influence analysis and the
GLMM approach of Breslow & Clayton (1993), a perturbation scheme to as­
sess cluster-specific1 local influence on parameter estimates in GLMMs (Xi­
ang et al 2003) with canonical link functions is proposed in this chapter. It
is assumed that the conditional distribution of the responses, given Gaussian
distributed random effects, belongs to the exponential family.

1Simultaneous changes in weights of all clusters and random effects (Zhu & Lee 2003).
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6.2 Measuring local influence in GLMMs

The parameter vector of interest is denoted by 'ljJT = (!/J, f3T, If:?)' Let
the (maximum) penalized quasi-likelihood (PQL) estimate be 'IjJ and let
l('IjJ) denote the penalized (log-) quasi-likelihood function. Consider an r­
dimensional perturbation vector w = (Wl"" ,wr)T, where w is restricted
to vary in an open region D c ]R.r. Let ~w be the (maximum) PQL es­
timate given w. The corresponding perturbed PQL function is denoted by
l ('IjJ Iw) for a given wED. The following assumption holds: There exists a
point Wo E D such that l ('IjJ) = l ('IjJ Iwo) for all 'IjJ (w is chosen so that the
application is meaningful). Moreover, l('ljJlw) is assumed to be continuous
and twice-differentiable in ('ljJT,WT). The likelihood displacement function is
defined as

LD(w) = 2[l(~) -l(~w)] (6.2.1)

where LD(w) measures the amount of the displacement of ~w from ~ with
respect to the contours of the PQL function. Equation (6.2.1) can be regarded
in terms of the asymptotic uncertainty band for 'IjJ - that is,

where a is the level of significance of a chi-squared distribution with df =
1+P+ c degrees-of-freedom. A graph G(w) of LD(w) against w reveals the
influence of a particular perturbation scheme. G(w) is called an influence
graph and is a geometric surface generated by values of the (r + 1) x 1 vector
(wT , LD(w))T for varying wED. The behaviour of G(w) is analyzed using
geometric normal curvatures around Wo because it is not feasible to evaluate
LD(w) for every wED. The normal curvature at Wo is defined as

C(A) = 2 AT fJ2LD(w) A
8w8wT

where A is a non-null unit vector in ]R.r. It can be shown that

(6.2.2)

\;f>.. E D and 11>"11 = 1.
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82l('ljJlw) . . 82l('ljJlw) .
In equation (6.2.2), 8'ljJ8 T IS an r x (1 + P + c) matnx and T 1S

w 8'ljJ8'ljJ~

of order 1 + P + c. The local influence of the perturbation of w on 'ljJ, in
the direction of A, is given by C(A). The largest eigenvector Amax associ­
ated with C max , the largest eigenvalue, is the most important diagnostic. It
indicates the direction in which the greatest local change of LD(w) at Wo

can be achieved by a specific perturbation scheme. Amax reveals data points
influencing the sensitivity of LD(w). Therefore, plots of Amax suffice, in some
cases, for gauging influence irrespective of ICmaxl. See Cook (1986) and Xi­
ang et al (2003).

6.3 Cluster weights and random effects perturbation

6.3.1 Notation for a two-level clustered design

For clustered designs, the data are assumed to be arranged in a series of K in­
dependent clusters (Lin 1997). Let Yki denote the ith response (i = 1, ... ,nk)

from the kth cluster (k = 1, ... ,K), and let Ik be a q-dimensional vector of
Gaussian distributed random effects such that 'Yk rv N(O, r('Pk)) that is asso­
ciated with the kth cluster. Given the random effects, the conditional distri­
bution of the responses is assumed to be a member of the exponential family

• 1.- I' d' Ik - ('k) - T(3 T h lk - E( I )WItH mear pre Ictor "7ki - 9 f..tki - X ki + Zkilk were f..tki - Yki lk

and, Xki and Zki are p- and q-vectors of covariates associated with Yki, respec­
tively (Booth & Hobert 1998). Moreover, let Yk denote the nk x 1 response
vector from the kth cluster with nk x P model matrix X k associated with fixed
effects and nk x q incidence matrix Zk associated with random effects. Then,
the linear predictor becomes 'TJ~k = 9 (J1~k) = Xd3 +Zklk (Lin 1997). The
objective function for 'ljJ (ignoring constant terms) has the form

where
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and the PQL function l('ljJ) has the form

K [nk ]E ~[q)-1Uki(YkiBki - b(Bki )) + C(Yki, q))] - !,Tr-1(cp)'k -! log W(cp)1

(6.3.1)
,ob(Bki ) .

(2hu & Lee 2003), where f.1ki k = OB
ki

. In the followmg proposed pertur-

K

bation scheme, W6 = In, where n = Lnk' so that l('ljJlwo) = l('ljJ) (Xiang et
k=1

al2003). Bki should strictly be written as BJk. However, for convenience, we
avoid the latter notation.

6.3.2 Proposed scheme

A perturbation scheme for simultaneous changes in the weights of all clus­
ters and random effects is proposed, where the perturbation vector is w =

(W1,'" ,wKf. The perturbed PQL function l('ljJlw) has the form

Now,

o2l ('ljJlw) f [ -2 ( ) dC(Yki,,p)] (6.3.3a)
OWkOq)

=. -q) Uki YkiBki - b((hd + d
1.=1 q)

02l('ljJlw) nk q)-1 ( 'k) TL Uki Yki - f.1ki X ki (6.3.3b)
OWkOj3T i=1 V(f.1Zk)[gl(f.1Zk)J2

and

o2l ('ljJ Iw ) ~ (81('ljJlw))
OWkOCPk 0CPk OWk

l,T r-1 or r-1, _ ltr (r-1 or )
2 k 0CPk k 2 0CPk

~tr [r- 1:;k r-1bkY[ - r)] (6.3.3c)
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(6.3.4b)

Equations (6.3.3) together with the following second-order derivatives are
necessary for assessing local influence:

8
2
l("l/Jlw) = -XTWX

8f38f3T

where W = diag(W1 , ... ,WK), with W k = [<PUk/V(p,Zk)[gl(p,Zk)j2fl and

X T = (XI, ... ,Xl) (Zhu & Lee 2003),

(6.3.4c)
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1 { 0 (Tr- lOr r-L ) 0 (r-l or)}-tr -- I - 'I - -- --
2 Orpm Orpk k Orpm Orpk

1 {T 0 (-1 or -1) 0 ( -1 or )}
"2 tr Ik Orpm r Orpk r Ik - Orpm r Orpk

1 {T [or-1 or r- l r- l 0 (or) r- l-tr I -- -- + ----
2 k Orpm Orpk Orpm Orpk

or or-l] [or-l or 0 (or)]}+r~l--- Ik - -- -- +r- l __ --
Orpk Orpm Orpm Orpk Orpm Orpk

1 {T [ r-l or r-l or r-1 r- l o2r r- 1-tr I - -- -- +
2 k Orpm Orpk OrpmOrpk

1 {T ( 2r-l or r-l or r- l) r- l or r-l or-tr I - -- -- I + -- --
2 k Orpm Orpk k Orpm Orpk

{
Or or

!tr r- l_-r-1-r-l(-2, ,T +r)
2 Orpm Orpk k k

(6.3.4d)
for rn, k = 1, ... 1 K.
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Equations (6.3.3) and (6.3.4) are used to obtain measures for local influence.
The proposed perturbation scheme is similar to Scheme 4 of Zhu & Lee
(2003). Furthermore,;P may be obtained as outlined in Section 4.6. (In
deriving equations (6.3.3c) and (6.3.4d), we employed differential calculus
identities from McCulloch & Searle (2001, pp.297-299).

6.4 Some remarks

Xiang et al (2002) identify influential clusters by considering cluster-wise
deletion. Random effects are assumed to be independent. Therefore, deletion
of a particular cluster, say m, has no effect on ik' m le k. Thus, 'Yk' ({Jk and cP
can be regarded as nuisance parameters. The focus is then on the reg!ession
coefficients estimator. They propose a first-order approximation to f3(m) to

measure the influence of a deleted mth cluster on 73. This approximation is
used to derive a generalized Cook's distance. Furthermore, they investigate
masking effects in GLMMs via two procedures:

(i) Joint influence of paired cluster-wise deletion on 73 is assessed by a
generalized joint Cook's distance.

(ii) Conditional influence of cluster k, say, after deletion of cluster m, say)
on j3 is gauged by a generalized conditional Cook's distance.

A stochastic robust Monte Carlo Newton-Raphson (RMCNR) procedure,
which avoids the computational difficulties involving high-dimensional in­
tegrals often encountered in GLMMs, has recently been proposed in the
literature for bounded influence2 robust maximum likelihood (RML) estima­
tion of the parameter vector 'lj;T = ({3T) <pT) with cP = 1. Simulation results
indicate that the RML method is useful in downweighting influential data
points, which originate when a small proportion of the data deviate from
their 'true' underlying distribution and may come from an arbitrary distri­
bution, when evaluating these parameters. Furthermore, it has been shown
that the RML estimator for f3 is consistent and is asymptotically Gaussian
distributed under certain regularity conditions. Robust analysis is appealing
in the sense that no information on the data is completely lost since all the
observations are included in the study. See Sinha (2004) for details.

2The study of robust statistics is mathematically rigorous. See Hampel et al (1986) for
a treatment of the theory of robustness based on the notion of influence functions.
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Chapter 7

Conclusion

We indicate some directions for further research in the context of GLMMs.

The bias correction procedure of Lin & Breslow (1996a) for the PQL re­
gression coefficients in their equation (18) is a partial second-order corrected
estimator. Evaluating the difference between this equation and an exact
second-order corrected estimator should be investigated. Furthermore, for
binary data, corrected PQL estimators of regression coefficients may not be
necessary since uncorrected ones give satisfactory results under 'small dis­
persion asymptotics' (Breslow & Clayton 1993) - that is, when the binomial
denominator increases (Lin & Breslow 1996a). Bias correction via simula­
tion can be performed for multiple components of dispersion (Pawitan 2001).

In a fully crossed design, the number of observations at a particular level
of a specific factor is proportional to the number of levels of another factor.
In such a case, the global score test may not be applicable as the number
of responses and the number of levels tend to infinity. Thus, a study of the
asymptotic distribution of the x~-statistic for a fully crossed design is re­
quired. The performance of the individual dispersion component test based
on Laplace approximation is unsatisfactory for binary data. As the binomial
denominator increases, the Laplace approximation performs better, and so
does the approximate individual score test. It would therefore be worthwhile
to study the asymptotic bias of the Laplace approximation. See Lin (1997).

Properties of the tests proposed by Lin (1997), as well as the CMSEP of
Booth & Hobert (1998), when applied to the HGLMs of Lee & Nelder (1996)
should be studied. Lahiri & R.ao (1995) have shown that an estimate of the
UMSEP derived by Prasad & R.ao (1990) is at times valid when the assump­
tion of normality for the random effects is relaxed (cf. Booth & Hobert 1998).
It would be of interest to investigate the CMSEP based solely on moment
assumptions for the responses and the random effects.
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Uncertainty bands for predicted random effects may be constructed using
bootstrap techniques. However, there exists controversies regarding these
methods: They do not fully reflect the relevant uncertainties. These draw­
backs can be remedied by an examination of posterior distributions within the
Bayesian framework (Breslow & Clayton 1993). Order-restricted inference,
although theoretically and computationally complicated, increases efficiency
(Hall & Praestgaard 2001). It would be of interest to investigate such infer­
ential procedure when moment assumptions for the responses are relaxed.

PROC NLMIXED has been developed for fitting non-linear mixed models,
where random effects enter the models non-linearly. Because of this non­
linear relationship, the procedure has no direct analog to the REML method
and, therefore, only the ML method is available (Wolfinger 1999). Moreover,
when a very small number of correlated random effects is observed in each
cluster in the analysis of clustered data, PROC NLMIXED is still restricted
(Breslow 2003).

Our proposition for local influence analysis for GLMMs is motivated on
the basis that the conditional distribution of the observations, given Gaus­
sian distributed random effects, belongs to the exponential family. Cook's
(1986) idea for local influence analysis relies on a well-behaved likelihood
and makes use of log-likelihood contours for assessing local influence. Since
quasi-likelihood functions (Wedderburn 1974) share similar properties to log­
likelihood functions proper, it is expected that when parametric assumptions
are relaxed for the responses and the random effects, local influence measures
can be derived. In this context, LD(w) may be termed quasi-likelihood dis­
placement function. It would also be of interest to program the SAS GLIM­
MIX macro for local influence analysis in GLMMs.

Sinha's (2004) proposition for robust estimation of model parameters may
well be extended by assuming that moment conditions suffice for the re­
sponses. It would be worth investigating robust analysis for REML esti­
mation in GLMMs. The estimators may be called robust penalized quasi­
likelihood (RPQL) estimators. We note that Sinha (2004) does not place any
parametric form on the random effects.
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Finally, we conclude that the key paper by Breslow & Clayton (1993) was a
major breakthrough for the analysis of correlated discrete data. We believe
that further research should be envisaged within the framework of GLMMs
when the uncorrelatedness assumption for the random effects is relaxed, as
in the analysis of longitudinal data where random effects are often time­
dependent (Sinha 2004).
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Appendix A
Some results

A.I CUffiulants

Let f'\,r'i denote the rth cumulant of Yi (i = 1, ' , , ,n) which is defined as

(A,l.1)

where b(r)(Bi ) denotes the rth derivative of b(Bi ) with respect to Bi . When
r = 2,

f'\,2i = b(2) (Bi)a(cjJ)
= cjJU;l V (f-Li) (A.1.2)

where b(2) (Bi ) = V(f-Li) (and a(cjJ) = cjJU;l (McCullagh & Nelder 1989, p.29)).

The third and fourth cumulants of Yi are related to f'\,2i through the equation

(A.1.3)

for r = 2,3 (Lin 1997; McCullagh & Nelder 1989, pA5). Thus,

and

= (cjJu; 1)3V (f-Li) [V (f-Li) V" (f-Li) + V' (f-Li) V' (f-Li)]

- (cjJu; 1 )3V (f-Li) {V (f-Li) V" (f-Li) + [V'(f-Li)]2}
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A.2 Standard cumulants

The standard cumulants (McCullagh & Nelder 1989, p.351) are given by

2
2 "'3i

P -3i - -3
"'2i

= e/J -1 [V(j.ti)]2[V'(j.ti)]2
U

i [V (f-Li)]3

_ ", :-lV(.) [V'(j.ti)]2
'f'U~ j.t~ V (j.ti)

Thus,

P3i = Ve/JU;l V(j.ti) [8In8~:j.ti)]

and

_ ", :-1 V( .) {V(j.ti) V" (j.ti) + [V'(j.ti)]2}
'f' u~ j.t~ [V (j.ti)F

'" :-1{8
2
V(j.ti) V( .)[8InV(j.ti)]2}

- 'f' u~ 8 2 + j.t~ 8.j.ti j.t~

Equations (A.2.1) and (A.2.2) can be expressed as

e/JU;l 8V(j.ti)
V (j.ti) 8j.ti

and
_ -1 82V(j.ti) 2

P4i - e/J Ui 8 2 + P3ij.ti
respectively (McCullagh & Nelder 1989, p.361).
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A.3 A note on quasi-distributions

By using a suitable normalization, a quasi-likelihood Q can be transformed
into a quasi-distribution with frequency function

J
' - exp(Q)
Q- Jexp(Q)dy

and likelihood

lQ = Q -log (/ exp(Q)dy)

The ML equations are given by

8lQ _ 8Q 8 ( r )
8{3 - 8,e - 8{3log } exp(Q)dy

BlQ 8Q
The difference between 8{3 (= 0) and 8

,
e(= 0) is gi ven by

o = :{3 log (/ exp(Q)dy)

(A.3.1)

(A.3,2)

(A.3.3)

= :ft log (/ exp(Q)dy) ~~

1 (a J )a~= Jexp(Q)dy 8ft exp(Q)dy 8{3

8ft 1 /8(exp (Q))= -- dy
8{3 Jexp(Q)dy 8ft

8ft 1 / 8Q
8{3 Jexp(Q)dy exp(Q) 8ft dy

8ft J exp(Q) DQ
- -- --dy

8{3 Jexp(Q)dy 8ft

Oft J' Y - ft- ofJ JQcPV(ft)dy

Oft ft* - ft
(A.3.4)

8{3 cP V(ft)
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where 1-',* = JY IQdy IS called the quasz-mean (Nelder & Lee 1992) and

JIQ dy = 1.

The normalizing factor of such a quasi-distribution depends on the mean.
This dependence does not exist for GLMs. Therefore, MQL estimators and
those derived from a quasi-distribution do not coincide. If the normalizing
factor changes slowly with the mean, as is the case in general, then these two
estimators differ by a small amount. Thus, MQL estimates are expected to be
good approximations to ML estimates obtained from the quasi-distribution.
See Nelder (2000).

(In the derivation of equation (A.3.4), we have, for notational convenience,
suppressed subscript i in Yi, (i = 1, ... ,n) and j in {3j (j = 1, ... ,p), and the
integral is over (Yi, fJi)' We have also omitted the weights Ui)'

In GLMs, cumulants are obtained from derivatives of b(e). The third and
fourth cumulants of a quasi(-likelihood) distribution are usually well approxi­
mated by formulae derived from b(e) that would hold if an exact GLM exists.
The choice of a non-Gaussian quasi-likelihood implies assuming that the dis­
tribution of the data errors is skew (Nelder 2000). Given a variance function,
Lee & Nelder (1999) recommend the use of the MQL estimator for fixed
effects on the basis of its robustness and conservatism. 1

1 Conservatism implies minimizing a maximum risk (Lee & Nelder 1999, p.321).
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Appendix B
SAS codes for the analyses of the
respiratory tract infections and the
mortality of cancer cells datasets
!*PQL ANALYSIS OF RESPIRATORY TRACT INFECTIONS DATA (SMITH ET AL 1995) UNDER REML*!
!*Include GLIMMIX macro*!
data resp_infec;

input trial trt $ fav unfav;
nki=fav+unfav;

if fav=O then fav=O.l!nki;
datalines;

1 drug 40 7
1 cntl 29 25
2 drug 34 4
2 cntl 17 24
3 drug 76 20
3 cntl 58 37
4 drug 13 1
4 cntl 6 11
5 drug 38 10
5 cntl 23 26
6 drug 99 2
6 cntl 71 13
7 drug 149 12
7 cntl 132 38
8 drug 27 1
8 cntl 31 29
9 drug 18 1
9 cntl 11 9
10 drug 27 22
10 cntl 3 44
11 drug 137 25
11 cntl 130 30
12 drug 169 31
12 cntl 145 40
13 drug 30 9
13 cntl 31 10
14 drug 171 22
14 cntl 145 40
15 drug 45 0
15 cntl 42 4
16 drug 100 31
16 cntl 80 60
17 drug 71 4
17 cntl 63 12
18 drug 189 31
18 cntl 183 42
19 drug 48 7
19 cntl 31 26
20 drug 88 3
20 cntl 75 17
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21 drug
21 cntl
22 drug
22 cntl

11 14
o 23

62 3
62 6

%glimmix(data=resp_infec,
procopt=covtest,
stmts=%str(

class trial trt;
model fav/nki=trt/ddfm=satterth;

random trial trial*trt;
estimate 'betaO' intercept 1 trt 1 0;

estimate 'beta1' trt -1 1;
parms (0) (0) (l)/eqcons=3;),
error=binomial,link=logit,out=_pred)

run;
proc print data=_pred(keep=trial trt mu reschi stderrpred);run;
legend across=l frame position=(bottom right inside) mode=share value=('o control * drug');
axis1 label=(angle=90 f=simulate '(Conditional) Pears on residuals');
axis2 label=(f=simulate 'Normal order statistics');
symbol1 color=black font=swiss value='o' repeat=l;run;
symbol2 color=black font=swiss value='*' repeat=l;run;
footnote 'Figure 5.1 Normal probability plot for respiratory tract infections data under PQL';
proc rank out=reschi normal=tukey;var reschi;ranks rank;
proc gplot data=reschi;plot reschi*rank=trt/legend=legend vaxis=axis1 haxis=axis2;run;
1*------------------------------------------------------------------------------------------*1
1*------------------------------------------------------------------------------------------*1

I*ML ANALYSIS OF RESPIRATORY TRACT INFECTIONS DATA (SMITH ET AL 1995)
WITH PROC NLMIXED (WOLFINGER 1999)*1

data resp_infec_NL;
input trial trt y n;
datalines;

1 1 40 47
1 0 29 54
2 1 34 38
2 0 17 41
3 1 76 96
3 0 58 95
4 1 13 14
4 0 6 17
5 1 38 48
5 0 23 49
6 1 99 101
6 0 71 84
7 1 149 161
7 0 132 170
8 1 27 28
8 0 31 60
9 1 18 19
9 0 11 20
10 1 27 49
10 0 3 47
11 1 137 162
11 0 130 160
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12 1 169 200
12 0 145 185
13 1 30 39
13 0 31 41
14 1 171 193
14 0 145 185
15 1 45 45
15 0 42 46
16 1 100 131
16 0 80 140
17 1 71 75
17 0 63 75
18 1 189 220
18 0 183 225
19 1 48 55
19 0 31 57
20 1 88 91
20 0 75 92
21 1 11 25
21 0 0 23
22 1 62 65
22 0 62 68
rtll1 ;

proc nlmixed data=resp_infec_NL;
parms betaO=0.6 betal=1.2 s2ul=0.95 cb12=0 s2u2=0.05;

eta=betaO+betal*trt+ul+u2;
expeta=exp(eta);
p=expeta/(l+expeta) ;

predict p out=p;
reschi=«y/n)-p)/(sqrt«p*(l-p»» /*Pearson residuals*/;

predict reschi out=reschi;
model y - binomial(n,p);
random ul u2 - normal([O,O]. [s2ul,cb12,s2u2])

sUbject=trial;id reschi;
run;
proc print data=p(keep=trial trt pred reschi stderrpred) ;run;
legend across=l frame position=(bottom right inside) mode=share value=('o control * drug');
axisl label=(angle=90 f=simulate '(Conditional) Pearson residuals');
axis2 label=(f=simulate 'Normal order statistics');
symboll color=black font=swiss value='o' repeat=l;run;
symbo12 color=black font=swiss value='*' repeat=l;run;
footnote 'Figure 5.2 Normal probability plot for respiratory tract infections data under ML';
proc rank out=reschi normal=tukey;var reschi;ranks rank;
proc gplot data=reschi;plot reschi*rank=trt/legend=legend vaxis=axisl haxis=axis2;run;
/*------------------------------------------------------------------------------------------*/
1*------------------------------------------------------------------------------------------*/
/*REPL ANALYSIS OF CANCER CELLS DATA UNDER RADIATION (SCHALL 1991)*/
/*Include GLIMMIX macro*/
data cells;

input occasion dish $ survived not_survived;
nki=survived+not_survived;

if survived=O then survived=O.l/nki;
datalines;

1 178 222
2 193 207
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1 3 217 183

2 1 109 291
2 2 112 288
2 3 115 285
3 1 66 334
3 2 75 325
3 3 80 320

4 1 118 282
4 2 125 275
4 3 137 263
5 1 123 277
5 2 146 254

5 3 170 230
6 1 115 285
6 2 130 270
6 3 133 267
7 1 200 200

7 2 189 211
7 3 173 227
8 1 88 312
8 2 76 324
8 3 90 310
9 1 121 279
9 2 124 276

9 3 136 264

/*Ordinary GLM*/
%glimmix(data=cells,

procopt=covtest,
stmts=%str(

class occasion dish;
model survived/nki=;
parms (l);)

run;
/*GLMM with one random effect due to occasion*/
%glimmix(data=cells,

procopt=covtest,
stmts=%str(

class occasion dish;
model survived/nki=;
random occasion;
parms (0) (l);)

run;

/*GLMM with two random effects (due to occasion and dish) computed in terms of O's and l's*/
data new;
set cells;
do i=l to survived;

y=l ;
output;

end;
do i=l to not_survived;

y=O;
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output;
end;

Xglimmix(data=new,
procopt=covtest,

stmts=Xstr (
class occasion dish;

model y=/ddfm=satterth ;
random occasion dish;),
error=binomial,
link=logit) ;
run;
/*Computing deviance with dispersion components obtaj.ned from 0-1 data(=new) */
Xglimmix(data=cells,

procopt=covtest,
stmts=Xstr(

class occasion dish;
model survived/nki=/ddfm=satterth;
random occasion dish;
parms (0.2253) (0.006431) (0.9986)/eqcons=3;),

error=binomial,link=logit,out=_pred)
run;
proc print data=_pred(keep=occasion dish mu reschi stderrpred) ;run;
axis1 label=(f=simulate angle=90 '(Conditional) Pearson residuals');
axis2 label=(f=simulate 'Normal order statistics');
footnote 'Figure 5.3 Normal probability plot for mortality of cancer cells data under REPL';
proc rank out=reschi normal=tukey;var reschi;ranks rank;
proc gplot data=reschi;plot reschi*rank/vaxis=axis1 haxis=axis2;run;
/*----------------------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------------------*/
/*ML ANALYSIS OF CANCER CELLS DATA UNDER RADIATION (SCHALL 1991) WITH

PROC NLMIXED (WOLFINGER 1999)*/
data cells;

input occasion dish y n;
datalines;

1 1 178 400
1 2 193 400
1 3 217 400
2 1 109 400
2 2 112 400
2 3 115 400
3 1 66 400
3 2 75 400
3 3 80 400
4 1 118 400
4 2 125 400
4 3 137 400
5 1 123 400
5 2 146 400
5 3 170 400
6 1 115 400
6 2 130 400
6 3 133 400
7 1 200 400
7 2 189 400
7 3 173 400
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8 1 88 400
8 2 76 400
8 3 90 400
9 1 121 400
9 2 124 400
9 3 136 400
r~;

/*GLMM with two dispersion components (due to occasion and dish)*/
proc nlmixed data=cells;

parms betaO=-0.7 s2u1=0.2 cb12=0 s2u2=0.05;
eta=betaO+u1+u2;
expeta=exp(eta) ;
p=expeta/(l+expeta) ;

predict p out=p;
reschi=«y/n)-p)/(sqrt«p*(l-p»»/*Pearson residuals*/;

predict reschi out=reschi;
model y - binomial(n,p);
random u1 u2 - normal([O,O] , [s2u1,cb12,s2u2])

subject=dish;id reschi;
run;
proc print data=p(keep=occasion dish pred res chi stderrpred) ;run;
axis1 label=(angle=90 f=simulate '(Conditional) Pearson residuals');
axis2 label=(f=simulate 'Normal order statistics');
footnote ' Figure 5.4 Normal probability plot for mortality of cancer cells data under ML';
proc rank out=reschi normal=tukey;var reschi;ranks rank;
proc gplot data=reschi;plot reschi*rank/vaxis=axis1 haxis=axis2;run;
/*----------------------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------------------*/
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1* NOTE

The GLIMMIX macro is available at

http://ftp.sas.com/techsup/download/stat/glmm800.html

SAS GLIMMIX codes used to compute parameter estimates are available in:

[lJ Brown & Prescott (1999, p.196)

[2] Kuss (2002)

[3] Littell et al (1996, pp. 439-440 , p.446 and p.600)

SAS codes used to generate the Normal probability plots are
available in:

[1] Brown & Prescott (1999, p.147)

[2] Cleveland (1993)

Download

http://home.nc.rr.com/schabenb/SASGraph.html#Adding'l.20a'l.20legend

[3] Schabenberger (1998)

Download

http://www.ats.ucla.edu/stat/sas/examples/vizdata/chapterl.htm *1
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