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Notation

A,AN Symmetric matrix of order N

C(k), C(k, l) Fourier coefficients

CN Complex space of n-tuples

D,DN Diagonal matrix of order N

f Vector or image matrix

f0 Even indexed components of a signal

f1 Odd indexed components of a signal

F Transform of f

F0 Transform of f0

F1 Transform of f1

F ,FN DFT matrix of order N

I, IN Identity matrix of order N

P,PN Permutation matrix of order N

RN Real space of n-tuples

U,UN SDFT matrix of order N

ω, ωN N th root of unity

∗ Hermitian conjugate

·∗ Element-wise multiplication

⊗ Convolution

‖ · ‖ Euclidean norm

.T Transpose of a matrix

〈·, ·〉 Inner product
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Abstract

Fourier transforms are mathematical operations which play a vital role in the

analysis of mathematical models for problems originating from a broad spectrum

of fields. In this thesis, we formulate a discrete transform based on Simpson’s

quadrature for 4m + 2 quadrature nodes and analyse its various properties and

provide detailed proofs thereof. In addition, we make applications to encryption

and watermarking in the frequency domain.
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Introduction

In chapter 1 we provide a brief literature survey of the Discrete Fourier Transform

and show how it arises from trapezoidal quadrature. In addition, we list some of

the important properties satisfied by the transform.

In chapter 2 we derive the Simpson Discrete Fourier Transform from Simpson’s

quadrature. We provide an expression for the transformation matrix as well as

an expression for its inverse. We investigate the effect of the transform on a real

signal.

In chapter 3 we provide detailed proofs for several properties satisfied by the

Simpson Discrete Fourier Transform. We use the duality property to obtain an

expression for the minimal polynomial. From the minimal polynomial we obtain

eight distinct eigenvalues for the transformation matrix.

In chapter 4 we derive a two dimensional Simpson Discrete Fourier Transform. We

use this transform to show the effect of the duality property in two dimensions. In

addition, we apply the transform to encryption and watermarking in the frequency

domain.
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Chapter 1

Discrete Fourier Transform

1.1 Introduction

Fourier analysis is a family of mathematical techniques, based on decomposing

functions into sinusoids. It is named after Jean Baptiste Joseph Fourier (1768-

1830), a French mathematician and physicist who claimed that any continuous,

periodic signal could be represented as the sum of properly chosen sinusoidal waves

[24]. By a signal, we mean any variable that contains some kind of information

about the behaviour or attributes of some phenomenon. Fourier analysis has

many scientific applications in physics, partial differential equations [10], image

and signal processing, numerical analysis and other areas [12]. The input signal

is said to be in the time domain while the transformed signal is said to be in the

frequency domain. The whole applicability stems from the ease of manipulation

in the frequency domain. The properties establish relationships between the time

and frequency domains.

The Discrete Fourier Transform(DFT) is the most important discrete transform

used to perform Fourier analysis in many practical applications [24]. The represen-

tation of signals and systems in the frequency domain is an important tool in the

study of signal processing, communication, and other fields. In many applications,

discrete-time signals and systems are characterized by finite-length sequences. A

widely used frequency domain representation of such a sequence is its DFT. It
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CHAPTER 1. DISCRETE FOURIER TRANSFORM

deals with signals that are discrete and periodic. When the DFT contains only

real numbers from an even function, the sine component of the the DFT is zero,

and the DFT becomes a Discrete Cosine Transform (DCT). The DCT is used to

compress data and this is particularly important for the storage and transmission

of images, since each image involves a large amount of data. Data compression

can be achieved in speech and video transmissions and for recording biomedical

signals such as Electroencephalography (EEGs) and Electrocardiography (ECGS)

[13].

The continuous Fourier transform is the source of all discretized Fourier trans-

forms, such as the DCT, DST (Discrete Sine Transform), DFRFT (Discrete Frac-

tional Fourier Transform) and the DFT. The DFT can calculate a signal’s fre-

quency spectrum. This is a direct examination of information encoded in the

frequency, phase and amplitude of the component sinusoids. The DFT can find a

system’s frequency response from the system’s impulse response, and vice versa.

This allows systems to be analyzed in the frequency domain just as convolution

allows systems to be analyzed in the time domain. The DFT can be used as an

intermediate step in more elaborate signal processing techniques. The DFT is

efficiently implemented using the Fast Fourier Transform (FFT), an algorithm for

convolving signals that are hundred times faster than conventional methods [8].

The discrete nature of the DFT results in spectral leakage which refers to the mis-

representation of the Fourier coefficients as a result of sampling and windowing

applied to signals which often result in blurring effect [11].

In recent developments, a fractional DFT has been defined by discretizing the

continuous fractional Fourier transform [7]. Another popular definition stems

from the use of projection operators [2].
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CHAPTER 1. DISCRETE FOURIER TRANSFORM

1.2 Derivation of the DFT

In this section, we introduce the Discrete Fourier Transform (DFT) and show how

it arises from numerical quadrature. Recall that the coefficients in a Fourier series

expansion for a continuous, 2π-periodic function f(t) have the form

C(k) =
1

2π

∫ 2π

0

f(t)e−iktdt. (1.1)

To obtain an approximation of the coefficients, we divide the interval [0, 2π] into

N equally spaced subintervals of length h = 2π
N

and label the nodes tj = jh,

j = 0, 1, · · · , N . Using the trapezoidal rule for numerical integration [4] in

(1.1) yields

C(k) ≈ h

4π

[
e−ikt0f(t0) + e−iktNf(tN) + 2

N−1∑
j=1

e−iktjf(tj)

]
(1.2)

=
1

N

N−1∑
j=0

e−iktjf(tj) (1.3)

=
1

N

N−1∑
j=0

ωkjf(j) (1.4)

where from (1.2) to (1.3) we have used f(t0) = f(tN) and e−ikt0 = e−iktN . Fur-

thermore, we adopt the notation f(j) = f(tj) and ω = e−
2πi
N , where the latter is

the N th root of unity.

Given these approximations to C(k) for k = 0, 1, · · · , N − 1, however, one may

recover f(j), j = 0, 1, · · · , N − 1. To see this, let

F (k) =
N−1∑
j=0

ωkjf(j), (1.5)

k = 0, 1, · · · , N − 1 so that C(k) ≈ F (k)
N

.

Multiply both sides of (1.5) by ω−kl, where l ∈ {0, 1, · · · , N − 1}, and sum over k

4



CHAPTER 1. DISCRETE FOURIER TRANSFORM

to get

N−1∑
k=0

ω−klF (k) =
N−1∑
k=0

N−1∑
j=0

f(j)ω(j−l)k

=
N−1∑
j=0

f(j)
N−1∑
k=0

ωmk (1.6)

where m = j − l is at most N − 1.

We require the following lemma:

Lemma 1.1. Let S =
∑N−1

k=0 ω
mk, then

S =

0 if m 6= 0

N if m = 0

Proof. When m = 0, the result is trivial.

When m 6= 0, then consider

S =
N−1∑
k=0

ωmk

ωmS =
N−1∑
k=0

ωm(k+1)

S(1− ωm) = 1− ωmN

S =
1− (ωN)m

1− ωm
= 0

The last step follows since ωN = 1 and ωm 6= 1.

Applying lemma 1.1 to (1.6), we obtain

N−1∑
k=0

ω−klF (k) = f(l)N

5



CHAPTER 1. DISCRETE FOURIER TRANSFORM

from which it follows that

f(j) =
1

N

N−1∑
k=0

ω−kjF (k), (1.7)

j = 0, 1, · · · , N − 1.

Equations (1.5) and (1.7) represents the DFT and its inverse transformation,

respectively. The system (1.5) can be written in matrix vector form F = Ff ,

where F = [F (0), F (1), · · · , F (N − 1)]T , f = [f(0), f(1), · · · , f(N − 1)]T and

F =



1 1 1 . . . 1

1 ω ω2 · · · ω(N−1)

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)


. (1.8)

Since F∗F = FF∗ = NI, this allows for the inversion f = 1
N
F∗F which is

equivalent to (1.7), where ∗ denotes the Hermitian conjugate. One can easily see

from (1.8) that F is symmetric.

1.3 Properties of the Discrete Fourier Transform

In this section we summarize some of the properties of the DFT [5].

Time Reversal

By this operation, we mean that a reversal in the time domain results in a corre-

sponding reversal in the frequency domain. That is, Ff(−k) is the transform of

f(−j), j = 0, 1, · · · , N − 1, where f(−j) = f(N − j) by the periodicity N of the

signal.
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Conjugation

The transform of the conjugate signal f implies a reversal and conjugation in the

frequency domain, that is,

Ff(k) = Ff(−k) (1.9)

k = 0, 1, · · · , N − 1.

Time Shift

The transform of a shifted signal f(j − n) in the time domain results in the

multiplication by a complex exponent ωkn in the frequency domain, that is

N−1∑
j=0

ωkjf(j − n) = ωknFf(k) (1.10)

Frequency Shift

A frequency shift, k0, in the frequency domain is equivalent to the transformation

of the signal ω−k0jf(j) in the time domain, that is

Ff(k − k0) =
N−1∑
j=0

ωkj
[
ω−k0jf(j)

]
. (1.11)

Definition 1.3.1. For two periodic signals f and g of same length N , the circular

convolution f ⊗ g is defined by

(f ⊗ g)(j) =
N−1∑
m=0

f(m)g(j −m)

for j = 0, 1, · · · , N − 1.

7



CHAPTER 1. DISCRETE FOURIER TRANSFORM

Convolution in Time Domain

The convolution operation in the time domain is related to a multiplication in the

frequency domain in the following manner

F(f ⊗ g) = Ff · ∗Fg (1.12)

where ·∗ indicates element by element product of components.

Convolution in Frequency Domain

The convolution operation in the frequency domain is related to a multiplication

in the time domain in the following manner

(Ff ⊗Fg) = NF(f · ∗g). (1.13)

Plancherel’s Theorem

Let f and g be periodic discrete-time signals with period N . Then

〈Ff ,Fg〉 = N
N−1∑
j=0

f(j)g(j)

= N〈f ,g〉 (1.14)

where 〈·, ·〉 denotes the inner product in CN . For f = g in (1.14), we obtain

Parseval’s identity

‖Ff‖2 = N‖f‖2. (1.15)

Duality

If the signal f is transformed, it results in a signal Ff in the frequency domain.

If the latter signal is transformed, it results in the reversal of the original signal f

in the time domain, namely

F2f(j) = Nf(−j). (1.16)

8
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1.4 Minimal Polynomial

Applying the duality property to (1.16) results in recovering the original signal,

that is F4f = N2f from which it follows that the DFT matrix satisfies the property

F4 = N2I. (1.17)

The minimal polynomial is given by

φ(λ) = λ4 −N2 (1.18)

Hence, the eigenvalues, obtained by setting φ(λ) = 0, are given by

√
Nei

π
2
l (1.19)

l = 0, 1, 2, 3, which are either real or purely imaginary.

For N > 4, the eigenvalues are therefore repeated. If the minimal polynomial

has linear elementary divisors, then the matrix is diagonalizable [15], hence, there

exists a linear independent set of eigenvectors of F that span CN . The eigenvalues

of a matrix play an important role in the spectral resolution of functions of the

matrix into their constituent components and their multiplicities gives the number

of linearly independent eigenvectors corresponding to each eigenvalue [15]. Mc-

Clellan and Parks [16] studied the eigenstructure of the DFT matrix in detail and

provided a means of numerically generating a linearly independent set of eigen-

vectors corresponding to the related eigenspaces. Much research has focussed on

generating an orthogonal set of eigenvectors by using matrices that commute with

the DFT matrix [9] and more recently a method based on complete generalized

Legendre sequence has been proposed [19].

9



Chapter 2

Simpson Discrete Fourier

Transform

2.1 Derivation of the SDFT

We now introduce [22] a transformation arising from the Simpson’s rule of nu-

merical quadrature [4]. Simpson’s rule applied to (1.1) to approximate C(k) with

even N gives

C(k) ≈ h

6π

e−ikt0f(t0) + e−iktNf(tN) + 2

N
2
−1∑

j=1

e−ikt2jf(t2j)

+ 4

N
2
−1∑

j=0

e−ikt2j+1f(t2j+1)


=

1

3N

2

N
2
−1∑

j=0

e−ikj
4π
N f(t2j) + 4

N
2
−1∑

j=0

e−ik(2j+1) 2π
N f(t2j+1)


=

2

3N

N
2
−1∑

j=0

ωk2jf(2j) +
4

3N

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1) (2.1)

where we have used the periodicity of f , that is, f(t0) = f(tN).

10



CHAPTER 2. SIMPSON DISCRETE FOURIER TRANSFORM

Define

F0(k) =
2

3

N
2
−1∑

j=0

ωk2jf(2j) (2.2)

and

F1(k) =
4

3

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1), (2.3)

then

F (k) = F0(k) + F1(k). (2.4)

For any vector f = [f(0), f(1), . . . , f(N − 1)]T of length N , define

f0 = [f(0), f(2), · · · , f(N−2)]T , f1 = [f(1), f(3), · · · , f(N−1)]T comprising of the

even and odd indexed components of f respectively and the discrete transforms

L0f0 by

L0f0(k) = F0(k)

=
2

3

N
2
−1∑

j=0

ωk2jf0(j) (2.5)

and L1f1 by

L1f1(k) = F1(k)

=
4

3

N
2
−1∑

j=0

ωk(2j+1)f1(j) (2.6)

with

F (k) = F0(k) + F1(k)

k = 0, 1, · · · , N
2
− 1.

Define F0 =
[
F0(0), F0(1), · · · , F0

(
N
2
− 1
)]T

and

11
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F1 =
[
F1(0), F1(1), · · · , F1

(
N
2
− 1
)]T

.

Theorem 2.1. The even indexed components f(2j) can be retrieved from the

inverse transform L−10 F0(j), where

L−10 F0(j) =
3

N

N
2
−1∑

k=0

ω−k2jF0(k).

Proof.

F0(k) =
2

3

N
2
−1∑

j=0

ωk2jf(2j) (2.7)

Multiply both sides of (2.7) by ω−k2p and sum over k to get

N
2
−1∑

k=0

ω−k2pF0(k) =
2

3

N
2
−1∑

k=0

N
2
−1∑

j=0

ω2k(j−p)f(2j) (2.8)

=
2

3

N
2
−1∑

j=0

N
2
−1∑

k=0

ω2k(j−p)f(2j) (2.9)

=
2

3

N
2
−1∑

j=0

f(2j)

N
2
−1∑

k=0

ω2k(j−p). (2.10)

If m = j − p, then

N
2
−1∑

k=0

ω−k2pF0(k) =
2

3

N
2
−1∑

j=0

f(2j)

N
2
−1∑

k=0

ω2km (2.11)

=
2

3
f(2p)

(
N

2

)
(2.12)

where from (2.11) to (2.12) we have used lemma 1.1. Solving for the even com-

ponents f(2p) we get

f(2p) =
3

N

N
2
−1∑

k=0

ω−k2pF0(k)

or equivalently

f(2j) =
3

N

N
2
−1∑

k=0

ω−k2jF0(k)

12
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for j = 0, 1, . . . , N
2
− 1.

Theorem 2.2. The odd indexed components f(2j + 1) can be retrieved from the

inverse transform L−11 F1(j), where

L−11 F1(j) =
3

2N

N
2
−1∑

k=0

ω−k(2j+1)F1(k)

Proof. The proof for this theorem is similar to the proof for theorem 2.1.

Hence, we note that the transformations in (2.5) and (2.6) are related to two

separate transforms arising from the trapezoidal rule, namely, one for the even

indexed components and one for the odd indexed components. These transforma-

tions satisfy a number of mathematical relationships that can be used to reduce

computational effort.

2.2 Relationships in the Frequency Domain

Theorem 2.3. The transform F0 has periodicity of N
2

.

Proof. For k ∈ Z

F0

(
k + N

2

)
=

2

3

N
2
−1∑

j=0

ω(k+N
2
)2jf(2j)

=
2

3

N
2
−1∑

j=0

ωk2jωNjf(2j)

=
2

3

N
2
−1∑

j=0

ωk2jf(2j)

= F0(k)

13
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Theorem 2.4. The transform F1 has anti-periodicity of N
2

.

Proof.

F1

(
k + N

2

)
=

4

3

N
2
−1∑

j=0

ω(k+N
2 )(2j+1)f(2j + 1)

=
4

3

N
2
−1∑

j=0

ωk(2j+1)ω
N
2
(2j+1)f(2j + 1)

=
4

3

N
2
−1∑

j=0

ωk(2j+1(−1)2j+1f(2j + 1)

= −4

3

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1)

= −F1(k)

It follows from theorem 2.3, theorem 2.4 and equation (2.4) that

F
(
k + N

2

)
= F0(k)− F1(k) (2.13)

Theorem 2.5. For a real signal f ,

F
(
N
2
− k
)

= F
(
N
2

+ k
)

Proof.

F
(
N
2
− k
)

= F0

(
N
2
− k
)

+ F1

(
N
2
− k
)

From equation (2.5) we obtain

F0

(
N
2
− k
)

=
2

3

N
2
−1∑

j=0

ω(N2 −k)2jf(2j). (2.14)

Conjugating (2.14) results in

14
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F0

(
N
2
− k
)

=
2

3

N
2
−1∑

j=0

ω(N2 −k)2jf(2j)

=
2

3

N
2
−1∑

j=0

ω−(N2 −k)2jf(2j)

=
2

3

N
2
−1∑

j=0

ωk2jf(2j)

= F0(k)

= F0

(
N
2

+ k
)

and the last step follows from theorem 2.3. We can similarly prove from (2.6) and

using theorem 2.4 that

F1

(
N
2
− k
)

= −F1(k) = F1

(
N
2

+ k
)
.

Hence, it follows that

F
(
N
2
− k
)

= F0

(
N
2
− k
)

+ F1

(
N
2
− k
)

= F0

(
N
2

+ k
)

+ F1

(
N
2

+ k
)

= F
(
N
2

+ k
)

Theorem 2.6. The transform F has periodicity N .

Proof.

F (k +N) = F0(k +N) + F1(k +N)

= F0

(
k + N

2
+ N

2

)
+ F1

(
k + N

2
+ N

2

)
= F0

(
k + N

2

)
− F1

(
k + N

2

)

15
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Using the periodicity N
2

of F0 and antiperiodicity N
2

of F1 we now obtain

F (k +N) = F0(k)− [−F1(k)]

= F0(k) + F1(k)

= F (k)

As theorem 2.5 holds for a vector f with real components, setting k = 0 implies

that F (N
2

) = F (N
2

) or F (N
2

) is real. Also setting k = N
2

implies F (N) = F (0),

but F (N) = F (0) from theorem 2.6, hence F (0) is also real.

These conclusions are illustrated for the real signal f = [2, 6, 8, 2, 5, 1, 3, 2, 7, 10]T

in table 2.1 where F is computed using MATLAB and tabulated.

Table 2.1: Transform of a
real signal

k F (k)

0 44.6667
1 14.3864 + 1.7171i
2 -1.4978 + 5.9485i
3 -8.7197 + 4.1961i
4 -14.1689 + 4.5526i
5 -11.3333
6 -14.1689 - 4.5526i
7 -8.7197 - 4.1961i
8 -1.4978 - 5.9485i
9 14.3864 - 1.7171i

16
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2.3 Matrix Representation of the Transform

Using theorem 2.3 and theorem 2.4, the transformation (2.4) can be written in

block matrix vector notation as

F =

 F0 + F1

F0 − F1

 =
2

3

 A 2DA

A −2DA

 f0

f1

 , (2.15)

where the
(
N
2
× N

2

)
symmetric matrix A is given by

A =



1 1 1 . . . 1

1 ω2 ω4 · · · ω(N−2)

1 ω4 ω8 . . . ω2(N−2)

...
...

...
. . .

...

1 ω(N−2) ω2(N−2) . . . ω(N
2
−1)(N−2)


(2.16)

and D = diag[1, ω, . . . , ω(N
2
−1)]. It follows that equation (2.15) can be written as

F =
2

3

 A 2DA

A −2DA

Pf (2.17)

since  f0

f1

 = Pf , (2.18)

where P is the (N×N) permutation matrix defined by its components Pj+1,2j+1 =

1 and PN
2
+j+1,2j = 1 for j = 0, 1, · · · , N

2
− 1. The effect of P is to group the even

indexed components and odd indexed components of f together. Hence,

F = Uf ,

17
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where the transformation matrix U is given by

U =
2

3

 A 2DA

A −2DA

P. (2.19)

Theorem 2.7. The matrix product AA∗ is diagonal and given by

AA∗ = N
2
IN

2

Proof.

(AA∗)pq =

N
2∑
l=1

AplA
∗
lq (2.20)

where Apq = ω2(p−1)(q−1). Hence,

(AA∗)pq =

N
2∑
l=1

ω2(p−1)(l−1)ω2(q−1)(l−1)

=

N
2∑
l=1

ω2(p−1)(l−1)ω−2(q−1)(l−1)

=

N
2∑
l=1

ω2(l−1)(p−q)

=

N
2∑
l=1

ω2(l−1)m,

where m = p− q.

If m 6= 0, that is p 6= q, then

(AA∗)pq = 0

follows from lemma 1.1.

If m = 0, that is, p = q,

(AA∗)pp =
N

2
.

18
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Corollary 2.3.1. The matrix A is normal.

Proof. The proof is similar to that of theorem 2.7 by exploiting the symmetry of

A.

The diagonal matrix D is unitary, that is, DD∗ = D∗D = IN
2

, which follows from

the fact that ωω = ωω = 1.

Theorem 2.8. The inverse transformation matrix U−1 is given by

U−1 =
3

2N
PT

 A∗ A∗

1
2
A∗D∗ −1

2
A∗D∗

 .
Proof.

UU−1 =
2

3

 A 2DA

A −2DA

P
3

2N
PT

 A∗ A∗

1
2
A∗D∗ −1

2
A∗D∗



=
1

N

 A 2DA

A −2DA

 A∗ A∗

1
2
A∗D∗ −1

2
A∗D∗



=
1

N

 AA∗ + DAA∗D∗ 0

0 AA∗ + DAA∗D∗



=
1

N

 NIN
2

0

0 NIN
2


= I

19



Chapter 3

Properties of the Simpson

Discrete Fourier Transform

The Simpson Discrete Fourier Transform (SDFT) and its inverse are transforma-

tions relating the time and frequency domains. We state and prove the important

properties of time reversal, conjugation, even time shift, frequency shift, convolu-

tion in time domain, convolution in frequency domain and Plancherel’s theorem.

By discarding 1
N

in (2.1), the Simpson Discrete Fourier Transformation may be

defined by

Uf(k) =
2

3

N
2
−1∑

j=0

ωk2jf(2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1), (3.1)

for k = 0, 1, . . . , N − 1.

The transpose UT of the transformation matrix U in (2.19) is represented by

UT =
2

3
PT

 A A

2AD −2AD

 . (3.2)

The effect of UT on a signal f is given by

UT f(2k) =
2

3

N−1∑
j=0

ωk2jf(j), (3.3)
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UT f(2k + 1) =
4

3

N−1∑
j=0

ω(2k+1)jf(j), (3.4)

where k = 0, 1, . . . , N
2
− 1.

3.1 Time Reversal

By this operation, it is meant that a reversal in the time domain results in a

corresponding reversal in the frequency domain, that is Uf(−k) is the transform

of f(−j), j = 0, 1, . . . , N − 1.

Proof.

Uf(−k) =
2

3

N
2
−1∑

j=0

ω−k2jf(2j) +
4

3

N
2
−1∑

j=0

ω−k(2j+1)f(2j + 1) (3.5)

=
2

3

0∑
j=−N

2
+1

ωk2jf(−2j) +
4

3

0∑
j=−N

2
+1

ωk(2j−1)f(−2j + 1) (3.6)

=
2

3

N
2∑
j=1

ωk2jf(N − 2j) +
4

3

N
2∑
j=1

ωk(2j−1)f(N − 2j + 1) (3.7)

=
2

3

N
2
−1∑

j=0

ωk2jf(N − 2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)f(N − 2j − 1) (3.8)

We have shifted the index in (3.8) since the arguments of both summations in

(3.7) have periodicity of N
2

[5]. Further, using the periodicity N of f we obtain

Uf(−k) =
2

3

N
2
−1∑

j=0

ωk2jf(−2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)f(−2j − 1). (3.9)

From equation (3.9) it follows that if f is an even signal, that is f(−j) = f(j),

j = 0, 1, . . . , N − 1 then Uf(−k) = Uf(k) and if f is an odd signal, that is

f(j) = −f(j), j = 0, 1, . . . , N − 1 then Uf(−k) = −Uf(k). Hence the transform

of an even signal is even and that of an odd signal is odd.
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3.2 Conjugation

The transform of the conjugate signal f(j) implies a reversal and conjugation in

the frequency domain, that is Uf(−k).

Proof. From (3.1) we obtain

Uf(−k) =
2

3

N
2
−1∑

j=0

ω−k2jf(2j) +
4

3

N
2
−1∑

j=0

ω−k(2j+1)f(2j + 1)

=
2

3

N
2
−1∑

j=0

ωk2jf(2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1). (3.10)

A signal f may be decomposed into an even and an odd part in the following

manner:

f(j) =
f(j) + f(−j)

2
+
f(j)− f(−j)

2
(3.11)

Define the even part fe by fe(j) = f(j)+f(−j)
2

and the odd part fo by

fo(j) = f(j)−f(−j)
2

, then

f = fe + fo.

Transforming the signal in (3.11) and using the time reversal property we get

Uf(k) =
Uf(k) + Uf(−k)

2
+

Uf(k)−Uf(−k)

2
. (3.12)

As a special case, consider a signal f ∈ RN . Equation (3.10) reduces to

Uf(−k) = Uf(k) (3.13)

From (3.12) and (3.13), this reduces to

Uf(k) = Uf e(k) + Ufo(k)
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=
Uf(k) + Uf(k)

2
+

Uf(k)−Uf(k)

2

= Re (Uf(k)) + Im (Uf(k)) (3.14)

Theorem 3.1. For any real even signal fe, the transformation Uf e is real, that

is

Uf e(k) = Uf e(k)

Proof.

Uf e(k) =
2

3

N
2
−1∑

j=0

ωk2jfe(2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)fe(2j + 1)

=
2

3

N
2
−1∑

j=0

ω−k2jfe(2j) +
4

3

N
2
−1∑

j=0

ω−k(2j+1)fe(2j + 1)

=
2

3

0∑
j=−N

2
+1

ωk2jfe(−2j) +
4

3

0∑
j=−N

2
+1

ω−k(−2j+1)fe(−2j + 1)

(3.15)

Replace j by j + N
2

+ 1 in the second summation in (3.15) to get

Uf e(k) =
2

3

0∑
j=−N

2
+1

ωk2jfe(−2j) +
4

3

−N
2
−1∑

j=−N

ω−k(−2j−N−1)fe(−2j −N − 1)

since fe is even and periodic in N , it follows that

Uf e(k) =
2

3

0∑
j=−N

2
+1

ωk2jfe(−2j) +
4

3

−N
2
−1∑

j=−N

ωk(2j+1)fe(−2j − 1)

=
2

3

N
2
−1∑

j=0

ωk2jfe(2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1)fe(2j + 1)

= Uf e(k) (3.16)

23



CHAPTER 3. PROPERTIES OF THE SIMPSON DISCRETE FOURIER
TRANSFORM

Theorem 3.2. For any real odd signal fo, the transformation Ufo is purely imag-

inary, that is

Ufo(k) = −Ufo(k).

Proof. The proof for this theorem is similar to the proof for theorem 3.1.

Hence from theorem 3.1, theorem 3.2 and (3.14) we conclude that for f ∈ RN ,

the transformation of the even part of f is the real part of the transformation

of f , that is, Uf e = Re(Uf) and the transformation of the odd part of f is the

imaginary part of the transformation of f , that is Ufo = Im(Uf).

3.3 Even Time Shift

The transform of an even shifted signal f(j − 2n) in the time domain results in

the multiplication by a complex exponent ω2kn in the frequency domain.

Proof.

ω2knUf(k) =
2

3

N
2
−1∑

j=0

ωk2(j+n)f(2j) +
4

3

N
2
−1∑

j=0

ωk(2j+1+2n)f(2j + 1)

=
2

3

N
2
−1−n∑
j=−n

ωk2(j+n)f(2j) +
4

3

N
2
−1−n∑
j=−n

ωk(2j+1+2n)f(2j + 1)

=
2

3

N
2
−1∑

j=0

ωk2jf(2j − 2n) +
4

3

N
2
−1∑

j=0

ωk(2j+1)f(2j + 1− 2n)

It must be stressed that it is only possible to effect an even time shift since

this shifts even indexed quadrature nodes to even indexed nodes and odd in-

dexed quadrature nodes to odd indexed nodes, being a characteristic of Simpson’s

quadrature. An odd time shift will not preserve this property.
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3.4 Frequency Shift

A frequency shift in the frequency domain is equivalent to the transformation of

the signal ω−k0jf(j) in the time domain.

Proof.

Uf(k − k0) =
2

3

N
2
−1∑

j=0

ω(k−k0)2jf(2j) +
4

3

N
2
−1∑

j=0

ω(k−k0)(2j+1)f(2j + 1)

=
2

3

N
2
−1∑

j=0

ω2kj
[
ω−2k0jf(2j)

]
+

4

3

N
2
−1∑

j=0

ωk(2j+1)
[
ω−k0(2j+1)f(2j + 1)

]
(3.17)

3.5 Convolution in Time Domain

The convolution operation in the time domain is related to a multiplication in the

frequency domain in the following manner

UT (f ⊗ g)(2k) =
3

2
UT f(2k)UTg(2k), (3.18)

UT (f ⊗ g)(2k + 1) =
3

4
UT f(2k + 1)UTg(2k + 1), (3.19)

where f and g are periodic signals of length N .

Proof. We prove the result (3.19). Using (3.4) we obtain

3

4
UT f(2k + 1)UTg(2k + 1) =

4

3

(
N−1∑
j=0

ω(2k+1)jf(j)

)(
N−1∑
p=0

ω(2k+1)pg(p)

)

=
4

3

N−1∑
j=0

N−1∑
p=0

ω(2k+1)(j+p)f(j)g(p) (3.20)
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Changing the index of the inner summation in (3.20) to l = j + p, we get

3

4
UT f(2k + 1)UTg(2k + 1) =

4

3

N−1∑
j=0

N−1+j∑
l=j

ω(2k+1)lf(j)g(l − j)

=
4

3

N−1∑
j=0

N−1∑
l=0

ω(2k+1)lf(j)g(l − j)

=
4

3

N−1∑
l=0

ω(2k+1)l

N−1∑
j=0

f(j)g(l − j)

=
4

3

N−1∑
l=0

ω(2k+1)l(f ⊗ g)(l)

= UT (f ⊗ g)(2k + 1). (3.21)

Similarly, we can prove (3.18).

3.6 Convolution in Frequency Domain

The convolution operation in the frequency domain is related to a multiplication

in the time domain in the following manner

Uf ⊗Ug = NU(̂f · ∗ĝ), (3.22)

where ·∗ denotes componentwise product of vectors and f̂(2m) =
√

2
3
f(2m) and

f̂(2m+ 1) =
√

4
3
f(2m+ 1) and ĝ is similarly defined.

Proof. We prove the result in (3.22) for the odd indexed components.

(Uf ⊗Ug)(2k + 1)

=
N−1∑
j=0

Uf(j)Ug(2k + 1− j)
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=
N−1∑
j=0

2

3

N
2
−1∑

p=0

ωj2pf(2p) +
4

3

N
2
−1∑

p=0

ωj(2p+1)f(2p+ 1)

 (3.23)

×

2

3

N
2
−1∑

m=0

ω(2k+1−j)2mg(2m) +
4

3

N
2
−1∑

m=0

ω(2k+1−j)(2m+1)g(2m+ 1)

 (3.24)

Equation (3.24) reduces to

4

9

N−1∑
j=0

N
2
−1∑

p=0

N
2
−1∑

m=0

ωj2pf(2p)ω(2k+1−j)2mg(2m)

+
16

9

N−1∑
j=0

N
2
−1∑

p=0

N
2
−1∑

m=0

ωj(2p+1)f(2p+ 1)ω(2k+1−j)(2m+1)g(2m+ 1) (3.25)

since the omitted products can be shown to be zero. The first term in (3.25) can

be written as

4

9

N−1∑
j=0

N
2
−1∑

p=0

N
2
−1∑

m=0

ωj2pf(2p)ω(2k+1)2mω−j2mg(2m)

=
2

3

N
2
−1∑

p=0

N
2
−1∑

m=0

ω(2k+1)2m2

3
f(2p)g(2m)

N−1∑
j=0

ω2j(p−m). (3.26)

The last summation in (3.26) is zero unless p = m (from lemma 1.1) and equation

(3.26) simplifies to

2

3
N

N
2
−1∑

m=0

ω(2k+1)2m

√
2

3
f(2m)

√
2

3
g(2m) =

2

3
N

N
2
−1∑

m=0

ω(2k+1)2mf̂(2m)ĝ(2m). (3.27)

Similarly, the second term in (3.25) may be shown to equal

4

3
N

N
2
−1∑

m=0

ω(2k+1)(2m+1)f̂(2m+ 1)ĝ(2m+ 1). (3.28)
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Adding (3.27) and (3.28), we finally obtain

(Uf ⊗Ug)(2k + 1)

= N

2

3

N
2
−1∑

m=0

ω(2k+1)2mf̂(2m)ĝ(2m) +
4

3

N
2
−1∑

m=0

ω(2k+1)(2m+1)f̂(2m+ 1)ĝ(2m+ 1)


= N

2

3

N
2
−1∑

m=0

ω(2k+1)2m(f̂ · ∗ĝ)(2m) +
4

3

N
2
−1∑

m=0

ω(2k+1)(2m+1)(f̂ · ∗ĝ)(2m+ 1)


= NU(̂f · ∗ĝ)(2k + 1). (3.29)

Likewise, it can be shown that (3.22) is true for the even indexed components.

3.7 Plancherel’s Theorem

For f ,g ∈ CN

〈Uf ,Ug〉 =
4N

9

N
2
−1∑

j=0

f(2j)g(2j) + 4

N
2
−1∑

j=0

f(2j + 1)g(2j + 1)

 . (3.30)

Proof.

〈Uf ,Ug〉 =

N
2
−1∑

k=0

Uf(2k)Ug(2k) +

N
2
−1∑

k=0

Uf(2k + 1)Ug(2k + 1). (3.31)

The second summation in (3.31) is by definition

N
2
−1∑

k=0

Uf(2k + 1)Ug(2k + 1)

=

N
2
−1∑

k=0

2

3

N
2
−1∑

j=0

ω(2k+1)2jf(2j) +
4

3

N
2
−1∑

j=0

ω(2k+1)(2j+1)f(2j + 1)


×

2

3

N
2
−1∑

p=0

ω−(2k+1)2pg(2p) +
4

3

N
2
−1∑

p=0

ω−(2k+1)(2p+1)g(2p+ 1)

 . (3.32)

28



CHAPTER 3. PROPERTIES OF THE SIMPSON DISCRETE FOURIER
TRANSFORM

Multiplying out (3.32), we get

N
2
−1∑

k=0

Uf(2k + 1)Ug(2k + 1)

=
4

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω2(2k+1)(j−p)f(2j)g(2p)

+
16

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω2(2k+1)(j−p)f(2j + 1)g(2p+ 1)

+
8

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω(2k+1)(2j−2p−1)f(2j)g(2p+ 1)

+
8

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω(2k+1)(2j−2p+1)f(2j + 1)g(2p). (3.33)

In the last term of (3.33), let m = 2j − 2p+ 1, m ∈ Z to obtain

8

9

N
2
−1∑

j=0

N
2
−1∑

p=0

f(2j + 1)g(2p)

N
2
−1∑

k=0

ω(2k+1)m. (3.34)

Since m 6= 0, it follows that (3.34) is zero from lemma 1.1. Likewise, it can be

shown that the second last term in (3.33) is also zero. Hence (3.33) simplifies to

N
2
−1∑

k=0

Uf(2k + 1)Ug(2k + 1) =
4

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω2(2k+1)(j−p)f(2j)g(2p) +

16

9

N
2
−1∑

j=0

N
2
−1∑

p=0

N
2
−1∑

k=0

ω2(2k+1)(j−p)f(2j + 1)g(2p+ 1)

(3.35)

If j 6= p, (3.35) vanishes. If j = p, (3.35) reduces to
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N
2
−1∑

k=0

Uf(2k + 1)Ug(2k + 1)

=
4

9

N
2
−1∑

j=0

f(2j)g(2j)
(
N
2

)
+

16

9

N
2
−1∑

j=0

f(2j + 1)g(2j + 1)
(
N
2

)

=
2N

9

N
2
−1∑

j=0

f(2j)g(2j) + 4

N
2
−1∑

j=0

f(2j + 1)g(2j + 1)

 (3.36)

Similarly, the first sum in (3.31) can also be shown to simplify to (3.36) from

which (3.30) follows.

For f = g in (3.30), we obtain Parseval’s identity

‖Uf‖2 =
4N

9

N
2
−1∑

j=0

|f(2j)|2 + 4

N
2
−1∑

j=0

|f(2j + 1)|2
 . (3.37)

3.8 Duality

The SDFT satisfies the duality property

U2f(2k) =
2

3
Nf(−2k)− 4

9
Nf

(
−2k − N

2

)
(3.38)

U2f(2k + 1) =
4

3
Nf(−2k − 1)− 2

9
Nf

(
−2k − 1− N

2

)
, (3.39)

which has been proven in [23].

For the signal f defined by f(j) = j + 1 for j = 0, 1, · · · , 9 and shown in fig-

ure 3.1 as a stem plot, the effect of the duality property on signal f for the DFT

as well as for the SDFT is shown in figure 3.2 and figure 3.3, respectively.

The DFT duality (1.16) reverses the signal from the beginning only, whilst the

SDFT duality reverses the signal from the beginning as well as from midway and

involves a linear combination of both according to equations (3.38) and (3.39).
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Figure 3.1: Original Signal

Figure 3.2: DFT Duality

Figure 3.3: SDFT Duality
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3.9 The Minimal Polynomial

In order to derive the minimal polynomial for the SDFT matrix, we require an

expression for U4f in component form. To obtain U4f we apply the duality prop-

erty to g where

g(2k) = U2f(2k) (3.40)

and

g(2k + 1) = U2f(2k + 1). (3.41)

From (3.38) and (3.39) we get

U2g(2k) =
2

3
Ng(−2k)− 4

9
Ng
(
−2k − N

2

)
(3.42)

In order to obtain g(−2k), we replace k by −k in (3.40) and (3.38) to obtain

g(−2k) =
2

3
Nf(2k)− 4

9
Nf

(
2k − N

2

)
. (3.43)

In order to obtain g(−2k − N
2

), we first observe that −2k − N
2

is odd. Replace k

by −k − N
4
− 1

2
in (3.41) and (3.39) to obtain

g(−2k − N
2

) =
4

3
Nf(2k + N

2
)− 2

9
Nf(2k). (3.44)

Substituting (3.43) and (3.44) in (3.42) we get

U2g(2k) = N2

[
44

81
f(2k)− 8

27
f
(
2k − N

2

)
− 16

27
f
(
2k + N

2

)]
. (3.45)

Similarly, it may be shown that
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U2g(2k + 1) = −2

9
Ng(−2k − 1− N

2
) +

4

3
Ng(−2k − 1)

= −2

9
N

[
−4

9
Nf(2k + 1) +

2

3
Nf

(
2k + 1 + N

2

)]
+

4

3
N

[
−2

9
Nf

(
2k + 1− N

2

)
+

4

3
Nf(2k + 1)

]
= N2

[
152

81
f(2k + 1)− 8

27
f
(
2k + 1− N

2

)
− 4

27
f
(
2k + 1 + N

2

)]
. (3.46)

Using the periodicity N of f in (3.45) and (3.46) we get

U2g(2k) = U4f(2k)

= N2

[
44

81
f(2k)− 8

9
f
(
2k + N

2

)]
(3.47)

and

U2g(2k + 1) = U4f(2k + 1)

= N2

[
152

81
f(2k + 1)− 4

9
f
(
2k + 1 + N

2

)]
(3.48)

for k = 0, 1, · · · , N
2
− 1.

Applying the duality property to (3.47) and (3.48) we obtain

U6f(2k) = N3

[
136

243
f(−2k)− 1040

729
f
(
−2k − N

2

)]
(3.49)

U6f(2k + 1) = N3

[
656

243
f(−2k − 1)− 520

729
f
(
−2k − 1− N

2

)]
(3.50)

A final application of the duality property to (3.49) and (3.50) yields

U8f(2k) = N4

[
4528

6561
f(2k)− 1568

729
f
(
2k + N

2

)]
(3.51)
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U8f(2k + 1) = N4

[
25696

6561
f(2k + 1)− 784

729
f
(
2k + 1 + N

2

)]
. (3.52)

Let r1 =
√
N
3

√
9 +
√

17 and r2 =
√
N
3

√
9−
√

17, then from (3.47) and

(3.51) it can be shown that the even components of the vector

[U8 − (r41 + r42)U
4 + r41r

4
2I]f

satisfy the equation

[U8 − (r41 + r42)U
4 + r41r

4
2I]f(2k) = 0. (3.53)

Likewise, it can be shown from (3.48) and (3.52) that the odd components satisfy

[U8 − (r41 + r42)U
4 + r41r

4
2I]f(2k + 1) = 0 (3.54)

for k = 0, 1, · · · , N
2
− 1.

Hence,

U8 − (r41 + r42)U
4 + r41r

4
2I = (U4 − r41I)(U4 − r42I)

= 0 (3.55)

From (3.55) we get the minimal polynomial

φ(λ) = (λ4 − r41)(λ4 − r42), (3.56)

from which we deduce that the spectrum σ(U) is given by

σ(U) =
{
r1e

il
π
2 , r2e

il
π
2 : l = 0, 1, 2, 3

}
. (3.57)

Thus we notice that the eigenvalues are either real or purely imaginary. In ad-

dition, the minimal polynomial has linear elementary divisors and hence, U is
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diagonalizable. Hence, the eigenvectors of U form a basis for CN .

For N = 14, the eigenvalues of the SDFT matrix U, computed in MATLAB,

are summarized in table 3.2 and agree with those calculated from (3.57).

Table 3.2: Eigenvalues of
U (14× 14)

-4.518154

-4.518154
4.518254
4.518254

-4.518154i
4.518254i
4.518254i

-2.754320i
-2.754320i

-2.754320
-2.754320
2.754320
2.754320

2.754320i

We note from (1.19) that the eigenvalues of the DFT matrix normalized with

respect to
√
N , lie on a unit circle. However, from (3.57), the normalized eigen-

values of the SDFT matrix lie on the circumference of concentric circles of radii

less than unity and greater than unity as depicted in figure 3.4 in the complex

plane.
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Figure 3.4: Normalized eigenvalues
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Chapter 4

2-D Simpson Discrete Fourier

Transform

Digital images are of vital importance in the application to ultrasound imaging,

magnetic resonance imaging, computer tomography, geophysics and astronomy

[13]. Images that are sinusoidally contaminated by noise are most easily cleaned by

denoising in the frequency domain by the application of suitable filters [14]. Image

compression in the frequency domain essentially ignores Fourier coefficients of

small magnitude thus resulting in a reduction of data storage without a significant

loss of image quality [18]. As a two dimensional (2-D) discrete Fourier transform is

obtained by an application of the trapezoidal rule in 2-D, here we similarly derive

a 2-D Simpson discrete Fourier transform using Simpson’s rule. A 2-D transform

is necessary for application to image processing. In this chapter we briefly apply

the 2-D SDFT to encryption and watermarking in the frequency domain [21].

4.1 Derivation of the 2-D SDFT

In order to formulate a 2-D SDFT we adopt the notation UN, where N denotes

the order of the square SDFT matrix U defined in (2.19). Then UN is defined by

UNf(k) =
2

3

N
2
−1∑

j=0

ωk2jN f(2j) +
4

3

N
2
−1∑

j=0

ω
k(2j+1)
N f(2j + 1), (4.1)
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where ωN = e−
2πi
N and k = 0, 1, · · · , N − 1.

The transformation is represented by the matrix

UN =
2

3

 AN 2DNAN

AN −2DNAN

PN, (4.2)

where the N
2
× N

2
matrix AN is defined by

AN =



1 1 1 · · · 1

1 ω2
N ω4

N · · · ω
(N−2)
N

1 ω4
N ω8

N · · · ω
2(N−2)
N

...
...

...
. . .

...

1 ω
(N−2)
N ω

2(N−2)
N · · · ω

(N
2
−1)(N−2)

N


, (4.3)

the matrix DN = diag
(

1, ωN , · · · , ω
N
2
−1

N

)
, the N ×N permutation matrix PN is

defined by its components PNj+1,2j+1
= 1 and PNN

2 +j+1,2j
= 1 for j = 0, 1, · · · , N

2
−1

with the inversion matrix defined by

U−1N =
3

2N
PT

 A∗N A∗N
1
2
A∗ND∗N −1

2
A∗ND∗N

 . (4.4)

The two dimensional Fourier series of a function f(x, y) periodic in the variables

x and y of period 2π is given by [6]

f(x, y) =
∞∑

l=−∞

∞∑
k=−∞

C(k, l)ei(kx+ly) (4.5)

where the Fourier coefficients

C(k, l) =
1

4π2

∫ 2π

0

∫ 2π

0

f(x, y)e−i(kx+ly)dxdy (4.6)

Approximating the double integral in (4.6) above by Simpson’s quadrature in the
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x-direction with the aid of a grid xn = 2πn
N

, n = 0, 1, · · · , N gives

C(k, l)

=
1

4π2

∫ 2π

0

[∫ 2π

0

f(x, y)e−ikxdx

]
e−ilydy

≈ 1

4π2

∫ 2π

0

hx
3

f(x0, y)e−ikx0 + f(xN , y)e−ikxN + 2

N
2
−1∑

n=1

f(x2n, y)e−ikx2n

+ 4

N
2
−1∑

n=0

f(x2n+1, y)e−ikx2n+1

 e−ilydy
=

hx
12π2

[∫ 2π

0

f(x0, y)e−ikx0e−ilydy +

∫ 2π

0

f(xN , y)e−ikxN e−ilydy

+ 2

N
2
−1∑

n=1

∫ 2π

0

f(x2n, y)e−ikx2ne−ilydy + 4

N
2
−1∑

n=0

∫ 2π

0

f(x2n+1, y)e−ikx2n+1e−ilydy


(4.7)

where hx = 2π
N
.

Combining the first three terms in (4.7) by using the fact that f(x0, y)e−ikx0 =

f(xN , y)e−ikxN gives

C(k, l) ≈ hx
12π2

2

N
2
−1∑

n=0

∫ 2π

0

f(x2n, y)e−ikx2ne−ilydy

+ 4

N
2
−1∑

n=0

∫ 2π

0

f(x2n+1, y)e−ikx2n+1e−ilydy


=

hx
6π2

N
2
−1∑

n=0

∫ 2π

0

f(x2n, y)e−ikx2ne−ilydy (4.8)

+ 2

N
2
−1∑

n=0

∫ 2π

0

f(x2n+1, y)e−ikx2n+1e−ilydy

 (4.9)

Consider (4.8) and define G(x2n, y) = f(x2n, y)e−ikx2ne−ily. Applying the Simp-

son’s quadrature rule in the y-direction with the aid of a grid ym = 2πm
M

, m =
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0, 1, · · · ,M and with hy = 2π
M

yields

∫ 2π

0

G(x2n, y)dy =
hy
3

G(x2n, y0) +G(x2n, yM) + 2

M
2
−1∑

m=1

G(x2n, y2m)

+ 4

M
2
−1∑

m=0

G(x2n, y2m+1)


=

hy
3

2

M
2
−1∑

m=0

G(x2n, y2m) + 4

M
2
−1∑

m=0

G(x2n, y2m+1)


=

2hy
3

M
2
−1∑

m=0

G(x2n, y2m) +
4hy
3

M
2
−1∑

m=0

G(x2n, y2m+1) (4.10)

substituting (4.10) in (4.8) gives

hx
6π2

N
2
−1∑

n=0

∫ 2π

0

G(x2n, y)dy

=
hx
6π2

N
2
−1∑

n=0

2hy
3

M
2
−1∑

m=0

G(x2n, y2m) +
4hy
3

M
2
−1∑

m=0

G(x2n, y2m+1)


=
hxhy
9π2

N
2
−1∑

n=0

M
2
−1∑

m=0

f(x2n, y2m)e−ikx2ne−ily2m

+
2hxhy
9π2

N
2
−1∑

n=0

M
2
−1∑

m=0

f(x2ny2m+1)e
−ikx2ne−ily2m+1 . (4.11)

The first term of equation (4.11) simplifies to

hxhy
9π2

N
2
−1∑

n=0

M
2
−1∑

m=0

f(x2n, y2m)e−ikx2ne−ily2m

=
4

9NM

N
2
−1∑

n=0

M
2
−1∑

m=0

f(2n, 2m)e−ik
2π
N

(2n)e−il
2π
M

(2m)

=
4

9NM

N
2
−1∑

n=0

M
2
−1∑

m=0

f(2n, 2m)ω2nk
N ω2ml

M (4.12)

where ωM = e−
2πi
M and we have adopted the notation f(xn, ym) = f(n,m).
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Define

S1(k, l) =
4

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N ω2ml

M . (4.13)

Consider the second term in (4.11). This simplifies to

2hxhy
9π2

N
2
−1∑

n=0

M
2
−1∑

m=0

f(x2n, y2m+1)e
−ikx2ne−ily2m+1

=
8

9NM

N
2
−1∑

n=0

M
2
−1∑

m=0

f(2n, 2m+ 1)ω2nk
N ω

(2m+1)l
M

=
8

9NM

N
2
−1∑

n=0

M
2
−1∑

m=0

f(2n, 2m+ 1)ω2nk
N ω

(2m+1)l
M (4.14)

and define

S3(k, l) =
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m+ 1)ω2nk
N ω

(2m+1)l
M . (4.15)

A similar approach is applied to (4.9) to obtain

S2(k, l) =
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω2ml

M (4.16)

S4(k, l) =
16

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m+ 1)ω
(2n+1)k
N ω

(2m+1)l
M (4.17)

where k = 0, 1, · · · , N − 1; l = 0, 1, · · · ,M − 1.

Define the Simpson Discrete Fourier Transformation in 2-D by

F (k, l) = S1(k, l) + S2(k, l) + S3(k, l) + S4(k, l), (4.18)

then the approximation for the Fourier coefficients are given by

C(k, l) ≈ F (k, l)

NM
.
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Summing (4.13) and (4.16) we get

S1(k, l) + S2(k, l)

=
2

3

M
2
−1∑

m=0

2

3

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N +

4

3

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N

ω2ml
M

=
2

3

M
2
−1∑

m=0

F̂ (k, 2m)ω2ml
M (4.19)

where

F̂ (k, 2m) =
2

3

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N +

4

3

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N (4.20)

Similarly

S3(k, l) + S4(k, l)

=
4

3

M
2
−1∑

m=0

2

3

N
2
−1∑

n=0

f(2n, 2m+ 1)ω2nk
N +

4

3

N
2
−1∑

n=0

f(2n+ 1, 2m+ 1)ω
(2n+1)k
N

ω(2m+1)l
M

=
4

3

M
2
−1∑

m=0

F̂ (k, 2m+ 1)ω
(2m+1)l
M (4.21)

where

F̂ (k, 2m+1) =
2

3

N
2
−1∑

n=0

f(2n, 2m+1)ω2nk
N +

4

3

N
2
−1∑

n=0

f(2n+1, 2m+1)ω
(2n+1)k
N , (4.22)

then equation (4.18) may be re-written as

F (k, l) =
2

3

M
2
−1∑

m=0

F̂ (k, 2m)ω2ml
M +

4

3

M
2
−1∑

m=0

F̂ (k, 2m+ 1)ω
(2m+1)l
M . (4.23)

Equations (4.20) and (4.22) are equivalent to the 1-D SDFT on the columns of

the N ×M matrix f , which consists of elements f(n,m) and may be represented

by F̂ = UNf whilst equation (4.23) represents the 1-D SDFT on the rows of F̂.

We need to transform rows of F̂. To do this, let us transform columns of F̂T to
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obtain

UMF̂T = UMfTUT
N.

Transposing to the original form, we get

F = F̂UT
M

= UNfUT
M (4.24)

which is the matrix form representing the 2-D SDFT of f .

From (4.18),

F (k, l) =
4

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N ω2ml

M +
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω2ml

M

+
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m+ 1)ω2nk
N ω

(2m+1)l
M

+
16

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m+ 1)ω
(2n+1)k
N ω

(2m+1)l
M (4.25)

for k = 0, 1, · · · , N − 1; l = 0, 1, · · · ,M − 1.

Equation (4.25) essentially represents Simpson’s quadrature over a 2-D mesh for

a periodic function. For an image f of size 6×10, the mesh (xn, ym) is represented

in figure 4.1 for n = 0, 1, · · · , N − 1; m = 0, 1, · · · ,M − 1.

0 1 2 3 4 5 6 7 8 9

5

4

3

2

1

0

(2n, 2m)

(2n, 2m+ 1)

(2n+ 1, 2m+ 1)

(2n+ 1, 2m)

Figure 4.1:
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In order to recover f(2p, 2q), we multiply both sides of (4.25) by ω−2pkN ω−2qlM and

summing over k and l, it can be shown from lemma 1.1 that the last three terms

are zero, leaving us with

N−1∑
k=0

M−1∑
l=0

F (k, l)ω−2pkN ω−2qlM =
4

9

N−1∑
k=0

M−1∑
l=0

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω
(2n−2p)k
N ω

(2m−2q)l
M


=

4NM

9
f(2p, 2q) (4.26)

Thus the inversion formula is

f(2p, 2q) =
9

4NM

N−1∑
k=0

M−1∑
l=0

F (k, l)ω−2pkN ω−2qlM . (4.27)

Similarly, it can be shown that

f(2p+ 1, 2q) =
9

8NM

N−1∑
k=0

M−1∑
l=0

F (k, l)ω
−(2p+1)k
N ω−2qlM (4.28)

f(2p, 2q + 1) =
9

8NM

N−1∑
k=0

M−1∑
l=0

F (k, l)ω−2pkN ω
−(2q+1)l
M (4.29)

f(2p+ 1, 2q + 1) =
9

16NM

N−1∑
k=0

M−1∑
l=0

F (k, l)ω
−(2p+1)k
N ω

−(2q+1)l
M (4.30)

Let S1 be the N
2
× M

2
matrix consisting of elements S1(k, l), k = 0, 1, · · · , N

2
− 1;

l = 0, 1, · · · , M
2
− 1.

Theorem 4.1. S1 has periodicity of N
2

in the first variable and M
2

in the second

variable.
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Proof. From equation (4.13)

S1(k, l) =
4

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N ω2ml

M

S1

(
k + N

2
, l + N

2

)
=

4

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω
2n(k+N

2 )
N ω

2m(l+M
2 )

M

=
4

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n, 2m)ω2nk
N ω2ml

M

= S1(k, l)

Let S4 be the N
2
× M

2
matrix consisting of elements S4(k, l), k = 0, 1, · · · , N

2
− 1;

l = 0, 1, · · · , M
2
− 1 then similarly it can be shown that S4

(
k + N

2
, l
)

= −S4(k, l)

and S4

(
k, l + M

2

)
= −S4(k, l).

Let S2 be the N
2
× M

2
matrix consisting of elements S2(k, l), k = 0, 1, · · · , N

2
− 1;

l = 0, 1, · · · , M
2
− 1.

Theorem 4.2. S2 is anti-periodic in the first variable and periodic in the second

variable.

Proof. From equation (4.16)

S2(k, l) =
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω2ml

M

S2

(
k + N

2
, l
)

=
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)(k+N

2 )
N ω2ml

M

=
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω

(2n+1)N
2

N ω2ml
M
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where ω
(2n+1)N

2
N = (−1)2n+1 thus,

S2

(
k + N

2
, l
)

= −8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω2ml

M .

= −S2(k, l) (4.31)

Also

S2

(
k, l + M

2

)
=

8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω

2m(l+M
2
)

M .

=
8

9

M
2
−1∑

m=0

N
2
−1∑

n=0

f(2n+ 1, 2m)ω
(2n+1)k
N ω2ml

M

= S2(k, l) (4.32)

Let S3 be the N
2
× M

2
matrix consisting of elements S3(k, l) for k = 0, 1, · · · , N

2
−1;

l = 0, 1, · · · , M
2
− 1 then similarly it can be shown that S3

(
k + N

2
, l
)

= S3(k, l)

and S3

(
k, l + M

2

)
= −S3(k, l). Hence S1(k, l) is periodic in the first and second

variables, S2(k, l) is antiperiodic in the first variable and periodic in the second

variable, S3(k, l) is periodic in the first variable and antiperiodic in the second

variable, whilst S4(k, l) is antiperiodic in the first and second variables. Then

(4.25) can be written in the block matrix form

F =

 S1 + S2 + S3 + S4 S1 + S2 − S3 − S4

S1 − S2 + S3 − S4 S1 − S2 − S3 + S4

 . (4.33)

For real f it is seen from (4.25) that the component F (0, 0) is real and is the

weighted sum of the elements of matrix f . This is referred to as the dc component.

Similarly, the frequency components F
(
0, M

2

)
, F

(
N
2
, 0
)

and F
(
N
2
, M

2

)
are real.

From (4.18) we obtain

F (0, 0) = S1(0, 0) + S2(0, 0) + S3(0, 0) + S4(0, 0) (4.34)
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F
(
0, M

2

)
= S1

(
0, M

2

)
+ S2

(
0, M

2

)
+ S3

(
0, M

2

)
+ S4

(
0, M

2

)
= S1(0, 0) + S2(0, 0)− S3(0, 0)− S4(0, 0) (4.35)

F
(
N
2
, 0
)

= S1(0, 0)− S2(0, 0) + S3(0, 0)− S4(0, 0) (4.36)

F
(
N
2
, M

2

)
= S1(0, 0)− S2(0, 0)− S3(0, 0) + S4(0, 0). (4.37)

Adding equations (4.34) - (4.37) gives

S1(0, 0) =
1

4

[
F (0, 0) + F

(
0, M

2

)
+ F

(
N
2
, 0
)

+ F
(
N
2
, M

2

)]
(4.38)

Adding (4.34) and (4.35) and then subtracting (4.36) and (4.37) gives

S2(0, 0) =
1

4

[
F (0, 0) + F

(
0, M

2

)
− F

(
N
2
, 0
)
− F

(
N
2
, M

2

)]
(4.39)

Adding (4.34) and (4.36) and then subtracting (4.35) and (4.37) gives

S3(0, 0) =
1

4

[
F (0, 0)− F

(
0, M

2

)
+ F

(
N
2
, 0
)
− F

(
N
2
, M

2

)]
(4.40)

Adding (4.34) and (4.37) and then subtracting (4.35) and (4.36) gives

S4(0, 0) =
1

4

[
F (0, 0)− F

(
0, M

2

)
− F

(
N
2
, 0
)

+ F
(
N
2
, M

2

)]
(4.41)

These are some of the relationships that aid in understanding the frequency spec-

trum.

Duality

We will illustrate the effect of the duality property on an image. Using MATLAB,

a three-leaved rose was generated. One leaf was generated from 3 cos 3θ for 7π
6
≤

θ ≤ 3π
2

and is shown in blue. Another leaf was generated from 2 cos 3θ for π
2
≤

θ ≤ 5π
6

and is shown in green. The last leaf is shown in red and is generated by

cos 3θ for −π
6
≤ θ ≤ π

6
. This picture is shown in figure 4.2.
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Figure 4.2: Original rose

The duality property for the 2-D DFT is applied in the following manner, namely

FN

(
FN fFT

M

)
FT

M (4.42)

This is done on each layer separately, namely, the R (red), G (green) and B (blue)

layers. The effect of the duality is to reflect the petals in the x and y axis which

is equivalent to a rotation of 180 ◦ about the origin. This is illustrated in figure

4.3.

Figure 4.3: DFT duality
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The duality property for the 2-D SDFT is applied in the following manner, namely

UN

(
UNfUT

M

)
UT

M (4.43)

This is done on each layer separately, namely, the R, G and B layers. The effect of

the duality in this case is to rotate the image by 180 ◦ about the origin as well as

leave residual images translated by N
2

in the y direction and M
2

in the x direction.

The background is as a result of the SDFT treating the pixel elements (2n, 2m),

(2n, 2m+ 1), (2n+ 1, 2m) and (2n+ 1, 2m+ 1) in the ratio 1 : 2 : 2 : 4 according

to (4.25). This is illustrated in figure 4.4

Figure 4.4: SDFT duality

4.2 Applications

Encryption in the Frequency Domain

Encryption is a process of encoding information in a way that an adversary cannot

read it. In an encryption scheme, the information referred to as a plain image, is

encrypted using an encryption algorithm turning it into an unreadable cipher im-

age. Image encryption is classified into two catergories: spatial domain methods
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and frequency domain methods. The spatial domain method is based on direct

manipulation of pixels in an image that usually destroys the correlation among

pixels and makes the encrypted image incompressible [1].

Frequency domain processing techniques are based on modification of the Fourier

transform of an image. Encryption in the frequency domain has the advantage

that the plain image can be recovered without loss of information.

Consider the plain image in figure 4.5 and the key image in figure 4.6.

Figure 4.5: Plain image

Figure 4.6: Key image
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The plain image is transformed using the 2-D SDFT and a fraction of it is added

to the 2-D SDFT of the key image resulting in the transform of the cipher image.

This transform is inverted to give the cipher image in figure 4.7.

Figure 4.7:

By adjusting the fraction, the plain image can be completely embedded in the

key image. This is illustrated in figure 4.8 and figure 4.9, which shows partial

embedding.

Figure 4.8: Figure 4.9:

Watermarking in the Frequency Domain

Watermarking is the method of embedding information like personal data or a

logo into digital contents like images , audio or video. It can be detected to verify
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the authenticity of the digital media. The watermarking is essentially used in in

copyright protection and ownership proving. The watermark can be embedded

into the image in the spatial domain or frequency domain. In spatial domain tech-

niques, the watermark is embedded directly into the pixel data [21]. In frequency

domain techniques, the image data is first converted to frequency domain using

Fourier transforms such as the DFT. The watermark is embedded in a particular

manner to the frequency domain coefficients and then the inverse transform is

performed to restore the watermarked image.

Consider the image f in figure 4.10. Its DFT amplitude spectrum
(∣∣FN fFT

M

∣∣
where | · | denotes the absolute value of the elements) is shown in figure 4.11. In

contrast, the SDFT amplitude spectrum |F| (see equation 4.24) is plotted in figure

4.12. The top left hand corners of both figures denote the dc component which

is always real and hence bright which in the SDFT case corresponds to F (0, 0)

from (4.25). The remaining three brighter corners in figure 4.11 and figure 4.12

is due to the periodicity of N and M in both transforms. The additional bright

spots in figure 4.12 corresponds to the region near F
(
0, M

2

)
, F
(
N
2
,M
)
, F
(
N, M

2

)
and F

(
N
2
, 0
)
. The bright region at the center in figure 4.12 is located around

F
(
N
2
, M

2

)
. These extra five bright regions in the SDFT spectrum arise because

of the periodicity and anti-periodicity in N
2

and M
2

. These nine bright regions are

characteristic of the SDFT amplitude spectrum.

We have extracted a 7 × 7 submatrix from the amplitude spectrum shown in

figure 4.12 (scaled by 10−6) and centred about |F
(
N
2
, M

2

)
|. This is shown in

(4.44) where the bold face entry corresponds to |F
(
N
2
, M

2

)
|.
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

0.1110 0.0739 0.0646 0.0602 0.1138 0.0614 0.0194

0.1035 0.0888 0.0328 0.0521 0.0876 0.0831 0.1109

0.2132 0.1238 0.2506 0.1333 0.1075 0.0631 0.1146

0.0734 0.2127 0.2669 3.5896 0.2669 0.2127 0.0734

0.1146 0.0631 0.1075 0.1333 0.2506 0.1238 0.2132

0.1109 0.0831 0.0876 0.0521 0.0328 0.0888 0.1035

0.0194 0.0614 0.1138 0.0602 0.0646 0.0739 0.1110


(4.44)

This matrix is centro-symmetric. This is true for all submatrices extracted in a

similar manner up to order (N−1)×(M−1). This property must be conserved in

watermarking in order to obtain a real image in the spatial domain. This restricts

the positioning as well as the types of watermarks that may be used.

Figure 4.10:

Figure 4.11: Figure 4.12:
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We have inserted a square watermark in F, which is visible in the amplitude

spectrum |F| in figure 4.13 . After inverting F we obtain the watermarked (in

the frequency domain) image in figure 4.14. This difference between the original

image in figure 4.10 and the watermarked image in figure 4.14 is visibly not dis-

cernible to the naked eye.

Figure 4.13: Figure 4.14:

Phase Effect

The Fourier coefficients F (k, l) represent the contribution due to different fre-

quencies. In order to illustrate the effect of the phase, we normalize each Fourier

coefficient by |F (k, l)|. This, in effect, gives each frequency the same contribution,

thus removing the effect of the amplitudes. Upon inversion, we obtain a feint im-

age which is basically an outline of the original image. This is illustrated in figure

4.15 below. This also illustrates the importance of the magnitude of the Fourier

coefficients as their relative contributions have been removed.
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Figure 4.15:
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Conclusion

Our aim in this thesis has been to put forth a relatively new transform, examine

its mathematical properties and show some areas of applications. This is by no

means exhaustive as wherever the DFT is applied so can the SDFT be applied.

We however, did not aim to pursue the efficiency of each of the transforms. It

is left as a future task to fully investigate the eigenbasis corresponding to the

SDFT transform. It is also possible to define a fractional SDFT by means of

projection operators using spectral theory [2]. In addition, it would be interesting

to define and examine new transforms based on different closed form Newton-

Cotes quadrature formulae. The 0(mod)4 case would be interesting to investigate

and compare to the 2(mod)4 case presented in this project.
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