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Abstract 

In meteor-burst communications systems, the channel is bursty with a continu­

ously fluctuating signal-to-noise ratio. Adaptive data rate systems attempt to use 

the channel more optimally by varying the bit rate. Current adaptive rate systems 

use a method of closed-loop decision-feedback to control the transmitted data rate. 

It is proposed that an open-loop adaptive data rate system without a decision feed­

back path may be possible using implicit channel information carried in the first 

few milliseconds of the link establishment probe signal. The system would have 

primary application in low-cost half-duplex telemetry systems. It is shown that the 

key elements in such a system would be channel predictors. The development of 

these predictors is the focus of this research. Two novel methods of predicting 

channel parameters are developed. 

The first utilises early fast Doppler information that precedes many long duration, 

large signal-to-noise-ratio overdense trails. The presence of early fast Doppler at 

the trail commencement is used as a toggle to operate at a higher data rate. Factors 

influencing the use of early fast Doppler for this purpose are also presented. 

The second method uses artificial neural networks. Data measured during trail 

formation is processed and presented to the neural networks for prediction of trail 

parameters. Several successful neural networks are presented which predict trail 

type, underdense or overdense, and peak trail amplitude from the first 50ms of the 

trail's lifetime. This method allows better estimation of the developing trail. This 

fact can be used to implement a multi-rate open-loop adaptive data rate system. 
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Chapter 1 Introduction, problem statement and thesis claims 

Chapter 1 

Introduction, problem statement and thesis 

claims 

1.1 Meteor-burst communications systems 

A connection between meteors and radio reflections was fIrst postulated by 

Nagaoka [1929]. His initial premise that these meteors would be impediments to 

radio communication was questioned by Pickard [1931] and Skellet [1932]. 

Skellet identifIed meteor ionisation columns as phenomena that could enable en­

hanced radio reflection to occur at very high frequencies (typically from 40 to 

90 MHz). The lower limit is defmed by the maximum usable frequency of the 

ionosphere and the upper limit by a decrease in reflected signal amplitude with 

increasing incident frequency. 

The use of naturally occurring ionization trails left by meteors ablating in the 

earth's upper atmosphere to communicate reliably and cheaply over long distances 

is now an established communication technique. Every day billions of meteors, in 

orbit around the sun, collide with the earth's atmosphere. The meteors, typically 

comparable in size to grains of sand, burn up at heights ranging between 80 and 

120 kilometres above the earth's surface forming trails of ionization tens of kilo­

metres long with an initial diameter of approximately one metre. These trails may 

be used to reflect radio waves between two points on the earth's surface. The 

curvature of the earth's surface limits the separation between two points to a maxi­

mum of approximately 2000 kilometres. Very high frequency radio waves, rather 

than high frequency radio waves, are typically used for communication purposes 
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to avoid interference caused by ionospheric reflections. The duration of the re­

flected signal is limited by diffusion of the ionized trail, but is sufficiently long to 

support burst-mode data communication. 

Table 1-1 below, based on a table presented by Schanker [1990] , allows for a 

perspective of meteor-burst communications in comparison with other systems. 

Table 1-1 Comparison of meteor-burst communications and other communica­
tions systems 

Type of System Telephone HFRadio Satellite VHF Radio Microwave Meteor-Burst 
Initial Cost Low to user Moderate HiJd1 Low/ moderate Very hiJd1 Moderate 

Operating Cost Usage Low to High Low Very high Low to 
dependent moderate moderate 

Frequency 300 - 3000 Hz 3 - 30 MHz Above 3 GHz 30 - 300 MHz Above 1.2 GHz 30- 50 MHz 
Range 

Throughput 0-28.8 kbps 300 bps Very high Currently 9600 High Currently 50 -
capacity currently 2400 - 4800 - 19200 bps 4000 bps 

bps possible 
Communication worldwide Typically 6000 worldwide 50- 200km 40-60km 2000km 

Range km between relavs 
Antenna Size N/A Dependent on typically Small, Moderate, Small/medium 

frequency and I-10m tower mounted tower mounted 
directivity 

Training Minimal Can be very Can be very Minimal to User training Minimal 
requirements extensive extensive moderate minimal, 

system 
operator 
training 

extensive 
Overall High Poor to Generally high Moderate Generally high Very high 

reliability moderate 
Other Features User has no Requires Vulnerable to Restricted to Approaching Not real time, 

control over continual satellite failure LOS without obsolescence transmission 
network frequency repeaters delays 
operation alteration 

A review of meteor-burst communications technology is found in [Melville & 

Fraser, 1992, 1993]. Developments in meteor-burst technology in Southern Af­

rica are presented in [Handley & Fraser, 1992, 1993]. 
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1.2 Problem statement 

Meteor-burst communication systems rely on protocols with decision-feedback to 

relay information regarding the signal-to-noise ratio of the channel to the sending 

station. The primary purpose is to determine whether a trail is present or not and 

whether the transmitted signal is above the required detection threshold. 

In addition, the feedback channel can be used to provide a near real-time measure 

of the channel so that the data rate being sent can be optimally matched to the 

maximum signal-to-noise ratio supported by the trail. Adaptive data rates are typi­

cally used in the higher data rate meteor-burst communication systems operating 

at full-duplex. 

Investigations by the author into current methods of adaptive data rate techniques 

has revealed the following shortcomings: 

• There appears to be very little information on any other technique 

other than closed-loop decision-feedback systems for adaptive data 

rate selection. 

• The vast majority of current adaptive data rate systems require full­

duplex capabilities for optimal use of their protocols. 

• There are no workable solutions or methodologies for prediction of 

meteor-burst communications trail characteristics from the limited 

information available in the fIrst few milliseconds of the trail's exist­

ence. Predictors of trail type, probable trail duration and trail peak 

amplitude are essential for an adaptive data rate system without a 

continuous decision-feedback loop (Le. open-loop control). 
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1.3 Thesis claims and summary 

This thesis attempts to answer some of the difficulties presented in the problem 

statement. The emphasis of the work is on the development of relevant and reli­

able methods of predicting future trail characteristics from information gathered 

during the first few milliseconds of its existence.. Two novel techniques were 

developed; the first uses the presence or absence of the early fast Doppler phe­

nomenon as a simple predictor of trail type. The second method uses artificial 

neural networks to estimate trail duration, peak amplitude and trail type, from 

metrics extracted from the first few milliseconds of trail life. Both techniques were 

successful. 

Each technique has trade-offs in simplicity and performance. The first method is 

simpler to implement but allows only bi-rate adaptation of the data rate. The sec­

ond method is considerably more complex but provides better estimation of trail 

development and therefore fmer control of the adaptive data rate. Even though it 

was not the author's intention to develop new protocols, possible inclusion of these 

methods in a basic protocol are presented. The use of these predictors, however, 

goes beyond their application to adaptive data rates and may include applications 

in trucking and defense systems where trail type and amplitude are important pa­

rameters. 

This thesis documents the steps taken to derive these techniques. Chapter 2 gives 

a brief review of current meteor-burst communication protocols and adaptive data 

rate systems. This serves as the basis for a proposed half-<iuplex open-loop adap­

tive data rate system to improve throughput of the meteor-burst communications 

channel by matching data rate to trail signal-to-noise ratio. The need for meteor­

burst communications parametric predictors is shown. 

The proposed predictors make use of the amplitude and phase data of the meteor­

burst communications link. The system which was used to capture the data from a 

test link is described in Chapter 3. 
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Chapter 4 introduces the early fast Doppler phenomenon. Early fast Doppler is 

then analysed from both an heuristic and statistical viewpoint for use as a trail type 

predictor. As a result of the investigations, early fast Doppler information is pro­

posed as a method of trail type prediction for bi-rate adaptive data rate protocols 

without the need for a decision-feedback loop. 

For systems requiring more than bi-rate signaling, a more sophisticated approach 

using artificial neural networks is presented in Chapters 5 and 6. Methods of data 

preparation and preprocessing are given which are essential for correct neural net­

work operation. Several neural network models are developed and proposed as 

predictors of trail type and peak trail amplitude in open-loop adaptive data rate 

schemes without decision-feedback. Parts of Chapter 5 may be omitted by readers 

with a knowledge of artificial neural networks. 

Finally, in Chapter 7 conclusions are drawn based on the fmdings. Recommenda­

tions for future work and possible extensions of the techniques within meteor­

burst communications "are presented. 



Chapter 2 Meteor-burst communication protocols 

Chapter 2 

Meteor-burst communication protocols 

2.1 Introduction 

This chapter reviews typical meteor-burst communication protocols and adaptive 

rate schemes. These closed-loop systems are compared to a proposed open-loop 

system which does not rely on the decision-feedback mechanisms of the former, 

but on channel prediction techniques developed in later chapters. 

2.2 Closed-loop meteor-burst communication protocols 

There are three types of data transfer protocols that are typical in meteor-burst 

communication systems: remote-to-master messaging, master-to-remote messag­

ing and master-to-all remotes broadcasting. Intrinsic to all these schemes is the 

automatic repeat request protocol (ARQ). A simple diagrammatic representation 

is given in Figure 2-1. 

There are many different protocols which have either been adapted for meteor­

burst communication use such as the AX25 protocol and the HX.25 protocol 

[Schanker, 1990] based on the CCITI X25 [Black, 1983] or specially developed 

such as the draft MIL-SID-188-135C [NCSOTS, 1989]. Details of the half-du­

plex (HDX) and full-duplex (FDX) MIL-SID protocol are shown in Figures 2-2 

and 2-3 [Schilling, 1993]. 
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Chapter 2 Meteor-burst communication protocols 

Both HDX and FDX protocols defme a three-stage process which involves chan­

nel probing, link acquisition and data exchange. The master station transmits a 

short repetitive probing signal to one or more master stations or remote stations. 

The probe (PRB) of 128 bit duration identifies the transmitting master station by a 

unique code and provides a signal correlation pattern to assist acquisition. If a 

usable trail is present between the transmitting and receiving station, the receiving 

station returns an acquire probe (ACQ) to the originating station. The ACQ signal 

identifies the station responding and control data. Once this has been correctly 

received at the originating station, an ACQ probe is sent to the respondent. Once 

both ACQ probes have been sent and correctly received, data transmission may 

begin. The data blocks (DTA) consist of a control frame and up to four message 

frames, each message frame consisting of 14 seven-bit characters and a two-byte 

checksum. The control frame indicates the last correct message received and 

points to the message currently being transmitted. This allows decision-feedback 

to take place in both directions. 

In the HDX system there is considerable wastage of useful trail time owing to the 

idle-time while waiting for responses. The FDX system makes better use of the 

available channel time but with a cost and complexity penalty. A hybrid combina­

tion of these schemes is useful in master-to-remote messaging and is called full­

duplex probe (FDX-probe). With FDX-probe, the remote station is capable of 

transmitting and receiving on two frequencies though not simultaneously. The 

advantage of this method over HDX is that the probe signals can be transmitted 

contiguously, eliminating the interprobe delay. This results in more channel time 

becoming available. The FDX-probe protocol is shown in Figure 2-4. 

Common to all these systems is closed-loop control to ensure acquisition, data 

flow control and acknowledgment. In low-cost telemetry applications, the higher 

cost of an FDX system force the use of HDX (or FDX-probe) operation despite 

their inherent inefficiencies. 
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2.3 Adaptive data rate protocols 

0.83 

0.7 

I IE 

Adaptive data rate schemes attempt to perform closer to the Shannon limit of the 

meteor-burst communication channel, by varying the bit rate to provide an effec­

tive continuous signal-to-noise ratio for the channel. This would maximise the 

number of bits transmitted at a desired error rate by varying the bit duration so that 

the energy per bit remained constant. This is illustrated in Figure 2-5 [Schilling, 

1993]. 

NI N 
o OPT IMAL SYSTEM 

- - - - - - - - - - - - - - - - - - - - - - - - - ---=.-,;..--;.;-~-

:FA V~ SY STEM 

, 

CONST ANT ~AT E SYSTEM 

~~~------~------------~ ~ /~ 
10 

no 
commun Icat Ion 

Po = power received 
at trail start 

PK= minimum 
acceptible power = 
Eb/Tb 

PO/PK = signal-to­
noise ratio 

N = number of bits 
sent without error 

No = total number of 
bits sent 

NINo = probability 
of errorfess 
communication 

Figure 2-5 Comparison of feedback adaptive variable rate (FA VR) and 
constant rate systems, Schilling [1993]. 

Several adaptive data rate schemes have been proposed and implemented. Cavers 

[1972] discussed variable rate systems for HF and troposcatter channels. The 

channel was modeled using a time-varying bit rate approach by Weitzen [1983, 

Weitzen et al. 1983, Weitzen et al. 1984]. Weitzen showed theoretically and by 

simulation, that a closed-loop variable rate meteor-burst system could achieve 

superior performance to a ftxed rate system. Abel [1986] derived two performance 

bounds, viz. the maximum number of bits that can be sent over a single burst under 

constant and continuously varying bit rates. However, his work failed to account 

for the channel statistics with varying trail types. A similar analysis was per-
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fonned by Larsen et al. [1990a, 1990b] which included simulations of adaptive 

rates using real data from a test link:. The feedback adaptive variable rate system 

(FA VR) [Schilling, 1993] highlights the need for accurate and timely detennina­

tion of the signal-to-noise ratio and communication of the bit rate infonnation 

between sites. Meteor Communications Corporation has implemented a feedback 

adaptive data rate system based on the signal-to-noise ratio at the receiving station 

[Smith & Donich, 1989]. The system provides a piecewise approximation to the 

signal envelope as shown below in Figure 2-6. For effective rate adaptation, all the 

systems and methods described required decision-feedback between stations un­

der closed-loop conditions. 

x 4 

Change in 
data rate 

x 2 

x 1 

x 0.5 
x 0.25 

<10 111-12 13·15 1S-11 >11 

Signal to Noise ratio 
[dB above noise floor] 

Figure 2-6 Meteor Communications Corporation's implementation of 
a signal-to-noise ratio-based variable data rate system, after Smith & 
Donich[ 1989] 

2.4 Open-loop meteor-burst communication protocols 

For both optimal usage of trail duration and effective feedback adaptive data rate 

systems, a full-duplex system is desirable. There can be near-instantaneous feed­

back of link: signal-to-noise ratio which reduces the granularity of the piecewise 

approximation of the trail amplitude envelope. However cost constraints for mul-
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tiple remote deployment particularly in telemetry applications preclude full-du­

plex in favour of half-duplex operation. In an HDX application, there are no near­

instantaneous feedback mechanisms to facilitate closed-loop adaptive rate 

signaling. The only mechanism that may be used is the acknowledgment frame 

following the data frames. However, compared to FDX, the piecewise signal-to­

noise ratio approximation would be considerably more coarse. 

As a basis for the development of meteor-burst channel predictors, it is proposed 

that an adapted form of the go-back N ARQ protocol is used in an half-duplex 

open-loop predictive manner. Open-loop means that no explicit decision-feed­

back path for data rate adaptation exists between sender and receiver. Figure 2-7 

shows the timeline of the proposed open-loop half-duplex predictive protocol: 

Master Remote 

Probe 1 

• 
Measure probe to 
predict the peak amplitude 

ACQ - and/or type of coming trail 

ACQ Acquire the channel 
convey the data rate chosen .. & number of data frames 

Data (M) to be sent to the master 

• 

Data 
Send data conti\1ously 

Data at chosen rate - frames 

Data 

Trail ceases 

Followin~ probe contains 
Probe 2 go-back MPointer to 

• previous frames 

Process repeats 

Figure 2-7 Half-duplex open-loop predictive go-back N ARQ protocol 
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In Figure 2-7 the Probe 1 signal is used to provide an estimate of the characteristics 

of the remainder of the trail based on the assumption of reasonable link reciprocity. 

The trail predictor measures the first few milliseconds of the probe. The probe 

amplitude envelope and/or carrier frequency offset are then processed to give peak: 

trail amplitude and/or trail type predictions. The predictions may be linked to data 

rate by a lookup table in the remote station. 

The ACQ signal from remote to master bears predicted optimal data rate informa­

tion in addition to the usual synchronisation data. A stream ofM data frames are 

then sent at the data rate appropriate to the predicted trail signal-to-noise ratio 

without the exchange of handshaking frames, thus saving channel time. 

The choice of the number of frames (M) per block may also be estimated at trail 

commencement. For example the block size would be larger and the data rate 

higher for a large signal-to-noise ratio overdense trail than a short, low signal-to­

noise ratio underdense trail. The receive terminal (master in this case) would up­

date a pointer to the number of correct packets received (M-N). This pointer would 

then form part of the following probe to the originating remote which would go­

back N data frames and recommence the same process. 

This scheme, while by no means optimal, provides an improvement over fIxed­

rate systems by trail-to-trail data rate adaptation in a half -duplex go-back N ARQ 

protocol without explicit feedback. Furthermore by using no acknowledgment 

(ACK) frames, channel time is saved. This protocol is ideal for telemetry applica­

tions and short messages in which the signal-to-noise ratio fluctuation is small. No 

further investigation and validation of this protocol was made since the major 

effort was towards the development of meteor-burst communication predictors. 
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Chapter 3 

Data measurement system 

3.1 Introduction 

The development of meteor trail predictors such as peak amplitude, trail type and 

trail duration, requires the amplitude and phase of signal reflections from real 

trails. A measurement system has been operational in South Africa for several 

years for the purpose of obtaining a large database of trail signal envelopes. The 

initial equipment for this test link was developed by Mawrey [1988]. It recorded 

the amplitude of meteor reflections on a continuous basis. Subsequently, it was 

replaced by equipment developed by the author as part of an MSc programme 

[Fraser, 1990, 1991a]. The data capturing system developed by the author in­

cluded both amplitude and phase measurement on a continuous basis. This system 

was used to obtain the data for development of the channel predictors. This chap­

ter briefly describes the measurement system. 

3.2 Measurement system details 

The measurement system consists of a forward-scatter mid-path illumination link 

operating between Pretoria (25.60 S 28.00 E) and Durban (29.50 S 31.00 E), South 

Africa (Figure 3-1). A second temporary link was operational for a few months 

between Pretoria and Cape Town (Arniston). This link was a long-path forward­

scatter link and was configured for both mid-path and end-path illumination. The 

data presented in this document was obtained from the shorter Pretoria-Durban 

link. 
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Pretoria 

• 

/a\~~ 

Figure 3-1 Data measurement links between Pretoria and Durban 
(550km) and Pretoria and Cape Town (1100km), South Africa 

The global specifications of the Meteor Monitoring Unit measurement system 

were defIned as follows [Fraser, 1990, 1991 a]: 

• Measurement of signal amplitude & frequency are required 

• Measurement of background noise is required 

• 5 ms sampling intervals of measured data 

• Continuous 24 hour per day data capture 

• Interface to IDM PC for data capture & processing 

• Equipment must be self -calibrating and self-testing 



Chapter 3 

5-eIemenI 
YaIj antema 

5OIoIHz BP FIlar 
5MHz 3dB BW 

* 

Data measurement system 

BroaIIland 2.5kHz LP Filar 
Diode-<Ing mIx8r 3.:I<Hz 3dB poirt 

veo 
9.0025MHz Fraquency Synthaoizar 

DUAL CONVERSION 
SUPERHETERODYNE 

VHF RECEIVER 
- - - - -- - - - - - ---- ---- - - -- - ---- ------ --- - -- - - - - - - - -

SIGNAL PROCESSING UNIT 

+ NoIse 

f'C.baJIIj I/O • 
AID 00INIII0I NoIse 

+------------4-----4 

Figure 3-2 Diagram of Meteor Monitoring Unit, Fraser [1991a] 
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A fixed frequency continuous wave (CW) carrier is transmitted from Pretoria and 

received at Durban. Two transmit frequencies are available, 50.050 and 50.055 

MHz. Custom designed VHF receiver and baseband circuitry was constructed by 

the author to meet the requirements of a Meteor Monitoring Unit. A block diagram 

for the Meteor Monitoring Unit system is shown in Figure 3-2. The design can be 

broken into two sections viz. the VHF receiver and the signal processing unit. 

The CW signal transmitted from Pretoria is received by a five-element Yagi an­

tenna of conventional design mounted 3 metres above the ground. The preampli­

fier mounted at the antenna includes a pre-selection fIlter to reduce interference 

from FM broadcast stations in the vicinity and thereby reduce possible intermodu­

lation products. The VHF receiver is a dual-conversion synthesized superhetero­

dyne design with good gain and frequency stability. Frequency synthesizers 

locked to an oven-controlled crystal oscillator (OCXO) in the receiver, provide a 

high-side oscillator signal of 58-62 MHz as the first local oscillator and a 9.0025 

kHz fixed frequency signal as the second. The baseband signal is a 2.5 kHz tone, 

the result of "detuning" the receiver off the CW carrier by 2.5 kHz. No limitations 

were placed on the length of signal receivable. 

The signal processing unit extracts the signal-pIus-noise amplitude, noise ampli­

tude and frequency shift information from the baseband tone. The measurement 

techniques employed for the signal-plus-noise channel, noise channel and trail 

detect monitoring are similar to those developed by Mawrey [1988]. The signal­

plus-noise amplitude of the 2.5 kHz tone was converted to the equivalent DC level 

by an RMS-to-DC convertor with a 60 dB dynamic range. For the noise channel, 

the long-term averaged wideband input noise power was represented by a corre­

sponding DC level. To exclude trail amplitudes from the noise average, the gated 

noise path was opened during the presence of a trail. This was achieved using a 

narrow-band tone decoder that triggered in the presence of a 2.5 kHz tone, opening 

the gates shown in Figure 3-2. Using this method, the errors caused by trail break­

through are less than 2% [Mawrey, 1988]. 
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As an indication of a valid trail, the level of the signal-plus-noise channel is com­

pared to the average noise level and if above a predetennined signal-to-noise ratio 

(usually 10-13 dB), the trail detect output is triggered. Once the trail has diffused, 

the trail detect output returns to its low state. 

Measurement of frequency shift in the received carrier used a variation of the 

continuous wave technique described by March [1966], Sander et al. [1966] and 

Stone et al. [1975]. The carrier is stabilized at the transmitter by a 5 MHz oven­

controlled crystal oscillator (OeXO) whose specifications claim a long-tenn drift 

in frequency of 0.015 Hz per day and 0.01 Hz per degree celsius temperature 

change. Short-tenn drifts in frequency were considerably less than these figures. 

A reference oexo with similar perfonnance was used in the Meteor Monitoring 

Unit receiver. March [1966] showed that the change in frequency of the received 

carrier reflected by a meteor trail is around I-2Hz for the body of the trail. For the 

system to resolve this change with an error of around 10%, the short-tenn stability 

of the reference oscillators would have to be better than 0.1 Hz. In the measure­

ment system, the oexo' s had short -tenn drifts which were at worst a factor of 1 00 

smaller than the minimum stability required. Temperature changes were mini­

mised by operating both transmitter and receiver in an air-conditioned environ­

ment. 

In the variation of March's technique that was used, the phase of the received 

signal is interpreted from the time rate of change of phase, i.e. frequency shifts. 

The received signal is frequency modulated by the rate of change of phase of the . , 
meteor trail reflection coefficient. A phase-locked loop acts as an FM demodula­

tor to produce a DC output proportional to the frequency offset from the centre 

frequency. The control voltage of the PLL' s veo represents the frequency offset 

from the 2.5 kHz centre frequency by ±1 00 Hz. 

Rather than using March's method of quadrature components to detennine 

whether the rate of change of phase was increasing or decreasing, the sign of the 
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frequency offset indicates this by a positive or negative prefIx respectively. Thus 

a sliding tone from 2.6 kHz to 2.5 kHz produces a negative value and hence a 

decrease in the rate of change of phase (Le. frequency). 

Similarly, a fIxed tone represents no variation in the rate of change of phase. Pro­

vided absolute phase knowledge is not required, measurement of received fre­

quency offset is simpler than direct phase measurements since these require the 

maintenance of phase-locked references at both transmitter and receiver. 

Finally in the Meteor Monitoring Unit, the signal-pIus-noise, noise and frequency 

offset channels are sampled at a rate of 200 Hz (5 ms intervals) by a PC-based 12 

bit analog-to-digital convertor for processing, display and storage. The sampling 

interval provided sufficient resolution of meteor-burst characteristics without the 

collection of vast amounts of redundant data. 

Software was developed by Rodman [1991] .in conjunction with the author to buff­

er, store and display amplitude, frequency and noise data and statistics. The soft­

ware also controlled Meteor Monitoring Unit functions such as system calibration 

and operating frequency selection. Table 3-1 gives the measured system parame­

ters. 

Elimination of bad data owing to noise or interference was achieved by two meth­

ods, viz. gating the signal (Figure 3-2) and by post-processing received data. Auto­

matic post-processing placed unusual data into one of two categories, "unknown" 

or "bad data" depending on the severity of the interference. These categories were 

removed from the data set. 
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Table 3-1 Measured Meteor Monitoring Unit performance, Fraser [1991a] 

Measured Parameter 
Transmit power 350W 
System centre 50 MHz tunable by ±4.5 MHz 

freauencv 
System bandwidth 550 Hz 

(3 dB) 
Spurious-free dvnamic ransze 70 dB 

Gain stability ±1.25 dB 
(50°C Rane:e) 
Measured gain 0.01 dB change per 

linearity 1 dB increment from -140 to -80 dBm at constant 
temperature 

Measured gain 0.2 dB change per 
stability 24 hours at constant 

temperature 
System frequency 0.75 Hz 

stabilitv over 50°C ransze 
System noise fie:ure 5.9 dB 
System noise floor -146.3 dBm 

Sensitivity (10 dB SIN) 0.14 uV 
3rd order intercept +20dBm 

InputVSWR 1.02:1 
Input filter rejection of broadcast siszoals 70 dB 

3.3 Measured data 

The measurement system was used to sample the received amplitude and fre­

quency offset signals of over 100000 trails. Software developed by Melville 

[1991a, 1991b] post-processed the sampled signals to provide a graphical view of 

the envelopes. It also helped to derive the statistics of the early fast Doppler and 

body Doppler regions of the trail envelope as well as the maximum frequency-off­

set from 2.5 kHz. Figure 3-3 represents the received amplitude of a CW signal 

reflected by a trail. For this figure only, the receiver was tuned exactly on fre­

quency to produce a zero hertz baseband. The baseband signal was stored using a 

Hewlett Packard low-frequency analyser. Therefore changes from the OV axis are 

caused by the amplitude and frequency modulation effects of trail reflection coef­

ficient. The sharp transition from the early fast Doppler period at trail commence­

ment to the body Doppler period in the rest of the trail can be clearly seen 100 ms 

after the signal rises above the noise. 
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Amplitude axis 
[-2 to +2V] 

500 mV 
per division 

Time axis [0 to 1000 ms] 
100 ms per division 

Figure 3-3 Received signal from the reflection of a CW carrier by a 
meteor trail. The signal is mixed to 0 Hz baseband to reveal the 
amplitude and phase characteristics of the MBC channel, Fraser 
[1991a]. 

Figures 3-4 and 3-5 show typical overdense and underdense trail amplitude and 

frequency-offset envelopes with time. Both exhibit a near-zero frequency-offset 

for the majority of their lifetime. This is characteristic of body Doppler. In order 

to show trail amplitude and phase characteristics in these diagrams, the received 

signal was referenced to the 2.5 kHz baseband signal. 

Figure 3-6 shows a long overdense trail with pronounced early fast Doppler at the 

trail commencement and thereafter very little frequency offset during the period of 

body Doppler. 

p,." .. ?1 
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Figure 3-5 Typical underdense trail, Fraser [1991a]. 
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Figure 3-6 Typical overdense trail, Fraser [1991a]. 

3.4 Conclusion 

The Meteor Monitoring Unit constructed perfonned according to specification 

and provided the data necessary for investigation of predictors in meteor-burst 

communication. In comparison to its predecessor, the Meteor Monitoring Unit 

provided five major improvements: 

• measurement of frequency offset and signal amplitude 

• detection of many more trails of smaller amplitude due to a narrower 

system bandwidth 

• compact, easily maintainable equipment 

• improved PC control of Meteor Monitoring Unit functions such as 

archiving and data processing 

• a greatly enhanced PC-based user interface. 
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Chapter 4 

Early fast Doppler for meteor-burst channel 
prediction 

4.1 Introduction to phase effects 

The phase characteristics of the meteor-burst communications (MBC) channel 

have been investigated by several researchers such as Stone & March [1975], 

Lovell & Clegg [1948], McKinley [1961], Kaiser [1953a, 1953b], Greenhaw & 

Neufeld [1956], Manning, Villard & Peterson [1952], and more recently Grossi & 

Javed [1978] and Weitzen et al. [1983]. Historically, trail phase aberrations were 

mostly used as a method of studying meteor phenomena. This led to most early 

work concentrating on back-scatter radar measurements. Later research empha­

sised the use of meteor trails as a communications medium with the focus on phase 

as a limiting factor in high speed meteor-burst data communications. The work 

performed by the author served to confmn and extend the results previously ob­

tained, and provide a basis for the prediction of meteor phase mechanisms, 

[Fraser, 1989a, 1989b, 1991a]. 

Any communications channel may be characterised in terms of amplitude and 

phase. For an ideal channel, the received and transmitted signals differ only in 

amplitude and phase. If, as is the case with the meteor-burst channel, the phase of 

the received signal changes with time, a frequency shift in the signal occurs. The 

instantaneous frequency ro(t) of the received signal is given by Equation (4-1) : 
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where 

Early fast Doppler for meteor-burst channel prediction 

d<p(t} I 
ro(t} = 2 1t/(t} = roc + ----at [rad.s ] 

roc is the carrier frequency of the signal [rad/s] 
/(t) is the carrier frequency of the signal [Hz] 
<p(t} is the time varying phase of the signal [rad] 

(4-1) 

The phase distortion of the signal may be found by taking the time integral of the 

received radian frequency (Equation (4-2)). This condition holds so long as the 

phase stability of the reference oscillator at the transmitter and receiver is far 

greater than that of the time varying channel. 

<p(t) = J (roc ± ro(t)} dt = roc t ± J ro(t} dt [rad] (4-2) 

The phase changes in meteor-burst communication are primarily a combination of 

early fast Doppler and body Doppler effects [Stone & March, 1975]. 

4.2 Phase mechanisms 

4.2.1 Early fast Doppler 

Early fast Doppler occurs at the commencement of meteor trail formation as the 

meteor transits the principal Fresnel zone. With respect to a fixed carrier signal, 

early fast Doppler produces a rapidly changing received frequency of a few tens of 

hertz. This transient effect may last up to 200 ms but is often more short-lived 

[Stone & March, 1975]. A typical phase-versus-time plot is shown in Figure 4-1. 
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Figure 4-1 Measured phase profile showing early fast Doppler during 
the first 200 ms, after Stone & March, [1975] 

The rapid change in phase attributable to early fast Doppler is clearly seen in the 

flrst 200 ms. Thereafter, the change in phase is small by comparison. Early fast 

Doppler is caused by the combination of three main effects: diffraction, head echo, 

and resonance. These combined produce the largest continuous rate of change of 

phase in the lifetime of the trail. 

Diffraction effects were flrst noted by researchers such as Lovell & Clegg [1948] 

who showed that the equations applicable to the diffraction of radio waves from a 

single reflection point at the head of a trail are analogous to those obtained from 

optical theory for the diffraction oflight at a straight edge. Their results, conflrmed 

by a backscatter radar experiment, show that the amplitude and phase of a ra­

diowave scattered from a meteor trail prior to the formation of the principal Fresnel 
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zone are governed by the solution of the Fresnel integral for geometrical diffrac­

tion. McKinley [1961] showed that the effects of diffraction found in backscatter 

radar measurements would also be present in forward-scatter links, but that the 

effects would be considerably attenuated. Thus if early fast Doppler is seen on a 

forward-scatter link, the trail will be of a high amplitude. The transformation be­

tween back- and forward-scatter is described by McKinley [1961]. The power 

received from an underdense trail over a forward-scatter link (Figure 4-2) is given 

by Sugar, [1964] and adapted to include the effects of diffraction (which produce 

amplitude and phase fluctuations early in trail lifetime ), [McKinley, 1961]: 

where (4-3) 

'\2 2 
I\, sec <p. h . f h fl . 

l' = 321t2d IS t e time constant 0 t e re ected SIgnal power 

-32 n2d 10. h . · ·1 d· b d·ff Ii = 'i 2 2 IS t e 10crease 10 tral ra lUS y I us ion 
I\, sec <p 

-81t2,-O 
n = A 2 2 is the loss caused by electron re-radiation when 

sec <p 

the radius of the trail at formation is comparable to the A 

PT and PR are the transmit and receive power [W] 
GT, GR is the transmit and receive antenna gain respectively 
A is the radio wavelength [m] 
q is the. electron line density [e-/m] 

re is the radius of an electron [~2.8xlO-15m] 

S/ is the antenna polarization factor described 
R I & R2 the distances of the transmitter and the receiver to the trail [m] 
<p is the half angle between R I and R2 [rad] 

~ is the angle between the trail axis and the plane containing the trans­
mitter, receiver and trail [rad] 

d is the radial diffusion constant of the meteor trail [m2/s] 
ro is the initial trail radius [m] 
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fx 7t ~ 
C is the cosine Fresnel integral = cos ----z- dx 

XI 

fx 7t x2 

S is the sine Fresnel integral = sin ----z- dx 
XI 

where x =--.jlo i 
s is the distance traveled by the meteor head in time t 
Ro is the perpendicular line from the transmitter to the trail 

z 

--~~--------------~~------------~~~------+x Transmitter 

Figure 4-2 Forward-scatter meteor trail reflection geometry 

Until the principal Fresnel zone is formed, a weak reflection comes from the part 

of the incomplete trail that corresponds to the shortest transmission path at that 

instant. lbis reflection is usually from the meteor at the head of the trail causing a 

shift in frequency due to the motion of the effective reflecting point. As the meteor 
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approaches the principal Fresnel zone, the frequency shift tends to zero and the 

received frequency decreases with time. 

A secondary effect which occurs early in the lifetime of under dense trails is reso­

nance which is caused by the restoring force of the electrons displaced from equi­

librium to positions normal to the trail [Kaiser, 1953a, 1953b, 1955]. However 

Greenhow & Neufeld [1956] showed that this effect is infrequent and can be ne­

glected. 

Of all the effects that occur before principal Fresnel zone formation, the dominant 

effect is that of reflection from the meteor itself at the head of the meteor trail. The 

effect of a "moving head" comes from small near-spherical regions of intense 

ionization surrounding the ablating meteoroid. 

4.2.2 Determination of Early Fast Doppler 

Determination of early fast Doppler is based upon the length of the principal Fres­

nel zone (see Figure 4-30 and the velocity of the meteor. The length of the princi­

pal Fresnel zone is also a function of the link geometry. By the time the principal 

Fresnel zone has been established, early fast Doppler ceases to exist. The fre­

quency spread caused during principal Fresnel zone formation is thus [James & 

Meeks, 1956], [Weitzen, 1983]: 

where 

+. Vm Vm s-I] 
JEFD=rr= I 

2 [ A RI R2 ]2 
(RI + R2) (1- siJi2<p co;~) (4-4) 

Vm is the meteor velocity [mls] 
L is the half length of the principal Fresnel zone [m] 
A is the wavelength [m] 

~ is the angle between the trail axis and the plane containing the trans­
mitter, receiver and trail [rad] 

R 1 and R2 are the distances from Tx and Rx to the trail [m] 
<p is the half-angle between Rl and R2 
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Meteor Trai 

Tx 
Time = to 

~~~~ipal Fresnel .. _ .......... ____ ........ ..-... -
Reflections differ ............. _.--- --------..... ------

by (A/4) ~ ... <:::;::;5 ~--... -..-:-.. ... 

" 
Rx Tx 

Time = to + t 

Figure 4-3 a) Meteoric head reflection, b) Meteoric trail reflection 
after principal Fresnel zone 

The system parameters which were used to estimate early fast Doppler and body 

Doppler spread are given in Table 4-1 . They represent the mean geometrical val­

ues for a mid-path forward-scatter link between Pretoria and Durban. A spread in 

values is expected owing to the velocity distribution of the meteors and changes in 

path length geometry. Figure 4-4 shows a meteor velocity profile as a percentage 

of meteor trails. 
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Figure 4-4 Meteor velocity profile, after McKinley, [1961] 

4.3 Predicted & measured early fast Doppler results 

The results of the comparison between predicted and measured early fast Doppler 

results are found in Table 4-1 for the mean path parameters of the Pretoria to 

Durbanmidpath link, [Fraser 1991a, 1991b, 1991c,Fraser& Broadhurst 1993b]. 

The results confmned the fmdings of previous researchers and revealed interesting 

properties of early fast Doppler. 

The spread in received early fast Doppler frequencies about the 38.7 Hz mean due 

to the velocity distribution of sporadic meteors can be expected. The measured 

body Doppler spread of 1.5 Hz (mean) is of minor importance to meteor-burst 

communications in comparison with early fast Doppler [Weitzen et at., 1983], 

[Weitzen, 1986], [Fraser, 1991a, 1991b, 1991c]). Early fast Doppler and body 

Doppler measurements correlated closely with the values predicted. 
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Table 4-1 Results of early fast Doppler measurement for the mean link 

Path I!eometrv oarameters for the mid-path forward-scatter test link 
Receiver position - Durban, South Africa 29.5° S 31.0° E 

Transmitter position - Pretoria, South Africa 25.6° S 28.0° E 
Mean normal distance from Tx to meteor - RJ 256 Ian (mid-path) 
Mean normal distance from Rx to meteor - R2 256 Ian (mid-path) 

Mean half internal angle between Rx & Tx to meteor - <p 71° 
Mean angle between trail axis and plane containing Tx Rx & trail - (3 56° 

Mean meteor velocity - V m 35 km/s 
Mean meteor heililit - h 95 Ian 
Radio wavelen!!th - A. 6m 

Measured and oredicted earlv fast Doooler for the mid-oath forward-scatter test link 
Measured Predicted 

Peak early fast Doppler deviation mean 38.7 Hz 33.9 Hz 
std. dev. 17.6 -

Early fast Doppler duration mean 89.3 ms 76.4 ms 
std. dev. 51.4 -

Early fast Doppler slope mean 433.3 Hzls -
std. dey. 292.4 -

Peak signal amplitude of trails exhibiting mean -103.9 dBm -
early fast Doppler std. dey. 5.9 -

Total duration of trails exhibiting early mean 1597.6 ms -
fast Doppler std. dey. 961.4 -

Early fast Doppler duration as a % of mean 5.6 % -
total trail duration in trails exhibiting 

early fast Doppler 
% of trails per hour exhibiting early fast 9.04% 

Doppler 
%of long trails with early fast Doppler 30.2% 

(>500 ms) 

4.4 Heuristic analysis of early fast Doppler for trail parame­
ter prediction 

The purpose of this section is to examine the use of early fast Doppler parameters 

e.g. frequency spread and duration to give an indication of the type of trail to 

follow, its peak amplitude and its duration. This basis of the analysis' is heuristic, 

i.e. learning by observation. This work is documented by the author in [Fraser, 

1991 d, 1992, 1993, Fraser & Broadhurst 1993b] 

4.4.1 Early fast Doppler occurrence and hourly meteor-burst commu­
nication duty cycle 

The sample set of trails (100000 in total) consisted of9.04 % trails which exhibited 

early fast Doppler and 90.96% trails without early fast Doppler. However, when 

comparing the trails which exhibit early fast Doppler to those which do not, it was 

PlIn,. ~? 
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found that the trails in which early fast Doppler occurs are generally long-duration 

and/or large amplitude trails. This means that out of the sample of long trails 

(arbitrarily defmed as being 500 ms or longer in duration), 30.2 % of these contain 

some early fast Doppler at their commencement. To determine whether early fast 

Doppler gave any indication of trail parameters, distributions of these parameters 

were plotted for trails exhibiting early fast Doppler phenomena. 

4.4.2 Trail amplitude distribution 

% of 
total 
trails 

The peak amplitude for trails in the data sample exhibiting early fast Doppler is 

shown in Figure 4-5. 

20 

o • I .1 I II I I 
-120 -103 .8 dBm -80 

Peak trail amplitude [dBm] 

Figure 4-5 Peak trail amplitude distribution in trails exhibiting early 
fast Doppler, mean = -103.8 dBm, horizontal step size 1 dB 
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It was found that the mean of the amplitude distribution was -103.9 dBm with a 

standard deviation of 5.9. The significance of this is that when early fast Doppler 

is detected, irrespective of its frequency spread or duration, a peak: signal ampli­

tude of about -104 dBm can be expected. This distribution of meteor amplitudes 

is Gaussian with a dB scale. The distribution for underdense trails was first de­

scribed by Weitzen et al. [Weitzen et al. 1990] and the distribution of under dense 

trail durations by Ralston et al. [1993]. The fmdings presented here include both 

overdense and underdense distributions. 

The effects of the standard deviation of 5.9 are reduced when considered against 

the mean background noise, which varied between 14 and 32 dB above the noise 

floor of -146.3 dBm [Fraser, 1991 a]. With a typical mean background noise level 

of -128 dBm, the signal-to-noise ratios of the large trails exhibiting early fast Dop­

pler would be about 25 dB (mean). 

The peak: received amplitude nonnally occurs at the tennination of early fast Dop­

pler effects [Stone & March, 1975]. This condition occurs when the reflection off 

the moving meteoric head becomes insignificant in comparison to the reflection 

from the trail body, which will reach a peak at the time offonnation of the principle 

Fresnel zone (see Figure 4-3). 

4.4.3 Trail duration distribution 

For all trail types exhibiting early fast Doppler, there is a very wide distribution of 

values for trail duration (see Figure 4-6). From this there appears to be little sig­

nificance in the use of early fast Doppler to predict trail length for all trail types. 

However, comparison between early fast Doppler presence and trail durations for 

specific trail families may be significant. It is still significant though, that early fast 

Doppler does not occur in small-amplitude, short duration trails but generally in 

those of 300 ms to 2500 ms duration. This is not to say that they do not occur in 

trails of greater than 2500 ms, only that in the dataset used, the longest trail with 

early fast Doppler was 2500 ms long. 
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Figure 4-6 Trail duration distribution in trails exhibiting early fast 
Doppler, mean = 1597 ms, horizontal step size 25ms 

4.4.4 Early fast Doppler frequency spread distribution 

Early fast Doppler frequency spread is defmed as the range of frequency deviation 

from the carrier centre frequency. Most times, the frequency offset due to early 

fast Doppler commences at a large deviation, say 30 Hz, and reduces with time till 

the deviation from the carrier is zero (ignoring body Doppler of 1-2 Hz). Thus the 

range or spread of early fast Doppler is said to be 30 Hz. 

The recorded data has a mean early fast Doppler spread of 3 8. 7 Hz and a standard 

deviation of 17.6. There is a band of frequencies between which the values fall. 

Referring to equation (4-4), the lower and upper bounds of the band are governed 

by meteors traveling at the escape velocity of the earth (approximately 11 km/s) 

and the escape velocity of the solar system (42 km/s at one A.U.) respectively. 
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In equation (4-4), for a fixed link geometry, cp, Rl and R2 can be asswned to be 

fixed. The values for Vm and B are however dependent on the meteor velocity and 

trajectory respectively. The variation in the early fast Doppler spread can be ac­

counted for by variations in both of these parameters as will be shown in section 

4.6. Figure 4-7 shows that the range of early fast Doppler values is wide and that 

there appears to be no significant shape to the distribution. 

'--- I······ 
o 100 

Early fast Doppler spread [Hz] 

Figure 4-7 Early fast Doppler frequency spread, mean = 38.7 Hz, 
horizontal step size 2 Hz 
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4.4.5 Early fast Doppler duration distribution 

% of 
total 
trails 

The early fast Doppler duration is given as the time from trail commencement to 

formation of the principle Fresnel zone. Thus for a given geometry, the length of 

the principal Fresnel zone can be calculated using (4-4). The time for the meteor 

to transit this region is then simply given as the ratio of the length of the principal 

Fresnel zone to the meteor velocity. The distribution of early fast Doppler duration 

for the trails measured yielded a mean of 89.3 ms with a standard deviation of 51.4 

(Figure 4-8). As with early fast Doppler frequency spread, the early fast Doppler 

duration is dependent on Vm and f3. With early fast Doppler duration and early fast 

Doppler spread, the standard deviations are both approximately 50% of the mean, 

indicating a similar statistical dependence on Vm and f3. 

20 

o 
o 300 

Early fast Doppler duration [rns] 

Figure 4-8 Early fast Doppler duration, mean = 89.3 ms, horizontal step 
size 5 ms 
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4.4.6 Early fast Doppler slope distribution 

% of 
total 
trails 

The ratio of the early fast Doppler spread to the early fast Doppler duration is 

termed the early fast Doppler slope (in HzJs). It is an indication of the rate of 

change with time of the received frequency with respect to a stable carrier fre­

quency. This distribution has a mean of 433.3 HzJs and a standard deviation of 

292.4 (Figure 4-9). Once again, there is a wide range of early fast Doppler slopes 

in trails exhibiting this phenomenon. 

Despite the wide range of early fast Doppler slopes, it is important to note that the 

slope generally does not change significantly for the period of early fast Doppler 

presence (see Figure 3-6). Thus it could be safely predicted that the slope meas­

ured during the first few milliseconds will be the same as that at the end of early fast 

Doppler. This implies that it may be possible to use the slope of the early fast 

Doppler to pre-categorize trails prior to the formation of their peak amplitude. 

10 

o 
o 1750 

Slope of early fast Doppler [Hz/s] 

Figure 4-9 Early fast Doppler slope distribution, mean = 513.9 Hz/s, 
horizontal step size 25 Hz/s 
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4.4.7 Conclusion 

From an heuristic point of view, early fast Doppler provides a rough estimation of 

the the peak amplitude of the trail that it precedes. As such the presence or non­

presence of early fast Doppler could be used as a toggle in real-time decision 

processes such as adaptive data rates (see section 4.7). The following section in­

vestigates whether any good statistical correlations between early fast Doppler and 

subsequent trail characteristics exist. 
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4.5 Statistical analysis of early fast Doppler for trail pa­
rameter prediction 

The purpose of the statistical correlation of early fast Doppler to trail parameters is 

to see whether early fast Doppler parameters can statistically predict either the 

types of trails to come or some parameter which may be used to increase data 

throughput. Scatter plots of the correlation between early fast Doppler and trail 

parameters were made and the correlation coefficient calculated. Only a repre­

sentative sample of the total database of trails is shown on the scatter plots. 

4.5.1 Early fast Doppler spread and trail duration correlation 

Correlation between the early fast Doppler frequency spread (in Hz) and the total 

trail duration (in ms) was performed to see whether trail duration was predictable 

from early fast Doppler. The correlation coefficient was particularly low at 0.112 

indicating very little dePendence of trail duration on early fast Doppler spread (see 

Figure 4-10). 

5000 .-------------------------------~ 

Trail duration 
[01s] linear 

. . fit 

~~ . .. . · .. .. . .. · . · . .. .. .. . . . . . ... . ... · .. · ! . .. · . . . . . .. . . • · . • . . · o ~----------------______________ ~ 
o 80 

Early fast Doppler frequency spread [Hz] 

Figure 4-10 Correlation between early fast Doppler frequency spread 
and trail duration 
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One of the most obvious reasons for the poor correlation is the fact that the early 

fast Doppler spread is based primarily on the meteor velocity and entry geometry 

whilst the trail duration is mainly dependent on the meteor mass or size [McKinley, 

1961]. Momentum of meteoric particles (Mx Vm) is not constant, since not all 

large particles travel slowly nor do all small particles travel at high speed. Thus the 

correlation between meteor velocity V m and meteoric mass M is poor and cannot 

be used for prediction of trail duration. 

4.5.2 Early fast Doppler duration and trail duration correlation 

Similarly it was found that there exists a correlation of only 0.44 between the early 

fast Doppler duration and the trail duration, (see Figure 4-11). Thus early fast 

Doppler duration appears to be unsuitable as a predictor of trail duration. 

5000 

Trail duration 
[ms] 

o 
o 

.. 
. . 

. . : . .. . 

Early fast Doppler duration [ms] 

linear 
fit 

mean 

300 

Figure 4-11 Correlation between early fast Doppler duration and trail 
duration 
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4.5.3 Early fast Doppler spread and trail peak amplitude correlation 

The relationship between early fast Doppler frequency spread and peak: trail am­

plitude shows an even poorer correlation of around 0.429 (see Figure 4-12). It 

seems too that early fast Doppler spread cannot be used for peak: amplitude predic­

tion. 

5000 

Trail amplitude 
[dBm] 

o 
o 

· . . . . . . · . .. . · . . 

~:\.: :.: .. :. : ; : . . . - . , .. 
.+.\+ .~ •• ...... + ... .... •• 

linear 
fit 

mean 

Early fast Doppler frequency spread [Hz] 

300 

Figure 4-12 Correlation between early fast Doppler frequency spread 
and peak trail amplitude 

4.5.4 Early fast Doppler duration and trail peak amplitude correlation 

This comparison yields the best correlation compared with the previous three at a 

figure of 0.51 (see Figure 4-13). Though not statistically significant, there does 

appear to be an increase in trail amplitude with increased early fast Doppler dura­

tion in the sample data. 
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Figure 4-13 Correlation between early fast Doppler duration and peak 
trail amplitude 

This is not entirely unexpected since the optimal geometrical trail orientation for 

longest principle Fresnel zone (and hence longest early fast Doppler duration) is 

the same as that for the optimal signal amplitude from an overdense meteor trail 

under forward scatter conditions. 

For example, assuming a mid-path link with Rl=R2, then the early fast Doppler 

duration will be large when: 

I 

'tEFD= 1 = 2 L = 2 [ A (Rl R2) p- [s] 
jEFD Vm -v,;; (Rl+R2) (I -siJl2<p coSZ~) J (4-5) 

is large. This occurs in the limit when: 

lim (I -sitf<p co~~) ~ 0 
q>~90,~~O 
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The approximate power available to a receiver on the ground from an overdense 

trail is given by the following equation [Hines & Forsyth, 1957]: 

The condition for maximum reflected power occurs in the limit when: 

lim (l-sirt<p co~~) ~ 0 
<p~90 , ~~O 

when <p < 90° 

This is the same condition for both early fast Doppler duration and trail peak am­

plitude. It is noted however that the early fast Doppler duration has a dependency 

on meteor velocity, which is itself, a non-normal distribution (see Figure 4-4). 

4.5.5 Conclusion 

The results of the four statistical correlations performed show no meaningful direct 

relationships which could be used to estimate trail parameters based on informa­

tion derived from early fast Doppler alone. Apart from the low correlation, there 

is a great degree of variation in the parameters involved, such as meteor velocity 

and trail orientation. These distributions greatly reduce the significance of statis­

tically based predictions of peak trail amplitude and trail duration based on either 

early fast Doppler frequency spread or duration. It appears that the use of earl y fast 
'. 

Doppler in prediction is limited to the heuristic approach of section 4.4 in which 

the presence of early fast Doppler is simply used to indicate a large amplitude trail 

being formed. In addition, because the slope of the early fast Doppler [HzJs] is 

nearly constant, measurements of early fast Doppler made early on in trail lifetime 

can provide a good estimate of when the early Fast Doppler would cease and hence 

when maximum trail amplitude would occur. 
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4.6 Physical factors influencing early fast Doppler 

If early fast Doppler is to be used as an heuristic estimator of trail type, trail dura­

tion or peak trail amplitude, there are several factors that must be investigated 

including meteor ionization height, velocity and path geometry that have a direct 

bearing on early fast Doppler properties, [Fraser & Broadhurst, 1992b]. 

4.6.1 The influence of ionization height and velocity 

The height at which a trail forms depends on meteor mass, velocity, and path 

orientation, as well as on the atmospheric density. McKinley [1961] has shown 

that radio echo heights increase with higher meteor velocities. This is because 

meteors of higher velocity will impart more energy to the particles in the upper 

atmosphere causing higher levels of ionization at greater heights, than meteors of 

a similar mass but traveling at lower velocities. U sing back-scatter radar a velocity 

profile is shown in Figure 4-4 and a height profile in Figure 4-14. 
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Figure 4-14 Meteor ionization height profile given as a % of trails, after 
McKinley, 1961. 
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It is interesting that both curves yield a similar shape and reveal a "saddle-point" 

just off centre. For stations in the middle latitudes of the earth, even a theoretically 

uniform radiant distribution will yield a "double-humped" type velocity distribu­

tion, due to the apex and antapex effects [McKinley, 1961]. Furthermore, there are 

small areas of the celestial sphere which are necessarily deficient in meteor radi­

ants because the corresponding orbits pass so close to the sun that the meteoroids 

are vaporized accentuating the "double-hump". An ecliptic concentration of orbits 

will also accentuate this feature (Figure 4-15). 

Direction of Earth's 
orbit around the Sun 

Geocentric 
ecliptic 
latitude ~g 

Geocentric 
ecliptic 
longitude Ag 

Meteor radiant R 

Meteor trail Earth ' s 

Figure 4-15 Geometric orientation of the earth with respect to the sun 
and meteors, after Mawrey, 1990 
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Meteor velocity directly influences the height at which ionization begins. Both 

meteor velocity and ionization height affect early fast Doppler duration and spread 

(equations 4-4, 4-5). However, a dominant effect on peak trail amplitude is ioniza­

tion height, (equations 4-3, 4-6). 

The height at which ionization occurs is influenced by the trajectory of the meteor 

(R I, R2, and <p for the path). This path geometry has a direct influence on the early 

fast Doppler spread and early fast Doppler duration as equations 4-4, 4-5 show. 

However, this influence is small. 

Consider a hypothetical meteor with flxed velocity and trajectory. A change in 

ionization height say from 65 km to 130 km (see Figure 4-14), would change the 

early fast Doppler frequency spread and duration by only about 4.5%. Thus in 

most considerations of the effects influencing early fast Doppler, changes in height 

can be neglected and the mean of 95 km (for meteoric head echoes) can be as­

sumed. 

4.6.2 The influence of f3 

As shown in Figure 4-2, ~ is defmed relative to the earth as the angle between the 

trail axis and the plane containing the transmitter, receiver and trail. This together 

with the distribution of velocities between 11 and 71 km/s yields the family of 

curves in Figure 4-16 as plotted for a 550 Ian mid-path link, [Fraser 1991 d, Fraser 

& Broadhurst 1992b]. 
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Figure 4-16 Early fast Doppler frequency spread on a 550 km mid-path 
link as a function of ~ and meteor velocity, [Fraser, 1991d]. 
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As can be seen, both meteor velocity and ~ playa large role in the early fast 

Doppler spread that is produced at the receiver. The ratio of maximum to mini­

mum early fast Doppler spread for velocities of72, 35 and 11 km/s are 2.7: 1, 2.4: 1 

and 2.3: 1 respectively. This indicates that the higher velocity meteors show a 

greater variation in early fast Doppler spread than those of lower velocity. In 

comparison to the results of Table 4-1 , the values from these nomographs compare 

very favourably with the measured early fast Doppler mean over the test link 

(~Iink = 56° ~ 45° for equations to be valid). 

It must also be borne in mind that the velocities depicted on the graph do not occur 

with the same probability but should be scaled in significance by the factors given 

in Figure 4-4. 

4.6.3 Path configuration and path length 

Figure 4-17 ·shows a family of curves plotted under similar conditions to those of 

Figure 4-16 but in a 550 kIn end-path configuration. In this case, the percentage 

change in early fast Doppler spread due to ~ is far smaller than that of the 550 kIn 

mid-path link but the figure shows a proportionately larger early fast Doppler 

spread for a similar meteor velocity. 

A comparison between short and long mid-path links is also useful as Figure 4-18 

shows. The longer path lengths show a greater variation in early fast Doppler 

spread with ~, but a lower average value of early fast Doppler spread than the 

shorter paths. Figure 4-19 gives curves for two commonly used links, Pretoria to 

Durban and Pretoria to Cape Town. 

D ___ Aft 



Chapter 4 Early fast Doppler for meteor-burst channel prediction 

Early fast Doppler frequency spread [Hz] 
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Figure 4-17 Early fast Doppler frequency spread on a 550 km end-path 
link as a function of ~ and meteor velocity, [Fraser, 1991d]. 
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Early fast Doppler frequency spread [Hz] 
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Figure 4-18 Early fast Doppler frequency spread on paths of varying 
length link as a function of ~ , (mean velocity of 34.5 km/s), [Fraser , 
1991d]. 
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Early fast Doppler frequency spread [Hz] 
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Figure 4-19 Early fast Doppler frequency spread on typical short and 
long paths as a function of~ , medium link - Pretoria-Durban, long link 
- Pretoria-Cape Town, mean velocity = 34.5 km/s, [Fraser, 1991d]. 
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4.7 Early fast Doppler as an heuristic in a simple adaptive 
data rate system 

In a simple adaptive data rate system, the presence of early fast Doppler is used as 

a toggle to a higher data rate on the pretext that early fast Doppler will precede a 

high signal-to-noise ratio long duration trail. If no early fast Doppler is detected, a 

lower data rate would be used. The lower rate would apply whenever there was no 

clear indication that early fast Doppler was present. The following brief comments 

give an estimate of the throughput improvements of such a system. 

4.7.1 Trail count and duration by trail type 

Histograms compiled of trail count and trail duration for each trail category using 

the captured data reveal certain facts that may not be immediately apparent (Fig­

ures 4-20 and 4-21). Category definitions are given in [Melville & Larsen, 1992]. 

Measured Trail Type Distribution 
Absolute Count 

o l.09 2l.8 327 436 545 654 763 872 98l. 

2 Short. Mid Peak 
3 Short Mush ..... . ......... . .. . . . 
4 Med- t i ... e Mid Peak f-Lo',"",..L.LL40LLAJ 

5 Flat Classic ........... ~,cn.~7'7'iM' 
6 Flat Bell ............. . .......... . 
7 S t ra ight-L ine Mush (M) ~~~~~?Z1ZlZZ?ZZ27Z(Z?ZZ2zz:?ZZ27Z~ l.086 
8 Straight-Line Mush (L) 
9 Class i c U/O ............. .. . . .... . . ~,cn.~7'7'i~"""~~"""~7'7'i~'71 

l.0 Classic U/O w Plateau ... . 
l.l. Round- T OP Class i c U/O ... . ~~5fL""..L.LL40""""'..L.LL40"""":..L.L..L.IL.L.L.o"" 
l.2 Class ic U/O Late Fa 11 . . . . 
l.3 Classic U/O Hotched Rise 
14 Classic U/O Bad Rise ..... . 
l.5 Be 11 ............. . ..... . . .. ............ . .. ~~~Zl7Z~ZlZZ2'Z~Zl7ZlZ4 
l.6 Multi-Plateau U/O .. . ........ . 

i~ ~~ ~~! -S.I.()J)t! .. ~~o. .. ::::::::: ::::::: ~~~ZZ;~2l 
l. 9 Square Root Sign ........... . .. ~~~~:':?22Z2Z! 
20 Recti~ied Sine Wave % ~ 

2l. Hon-S ine % . ... . . ................ ~~~~~?Z~~~~~7zd 
22 Gothic Rocker ... . . . . . . . . . . . . . .... ~ 
23 O/w Straight 1 ine Mush .... M-L.LA.....,.....L.LL40 ........ :..L.L~It.LoO~ 

24 Hazy Class ic ...................... ~~Zl~?Z~7Z~ZlZZ2'Z~ZlZZ;rzj 
25 Extens ion Mush .................. &0' 
27 Sinusoidal % . . . . .............. ~7o"h 

28 W ind-B lown % . . ... . . .. ..... . ... ~~~222Z?Z1Zl2Z?Z!Z27ZZL_i-~_.....i._J 
29 Hu ... p-Backed Class ic . .. . .... ~ 

Figure 4-20 Histogram representation of the percentage of trail counts 
for each particular trail type classified over a period of a day, [Melville 
& Larsen, 1992] 
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MaAsured TotAl Duration vs. Trail Typ. Oistribution 

2 Short. Mid Paak ............... . 
3 Short Mush ........................ .. 
4 Mac:t-t i". Mid Pa. .. ........ .. 
5 FlAt Cl4llssic .. .... .. ............ .. 

Absolute Ouration (seconds) 
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Figure 4-21 Histogram representation of the percentage of trail dura­
tions for each particular trail type classified over a period of a day, 
[Melville & Larsen, 1992] 

It can be seen from Figure 4-20 that the short, "mid-peak" trails, "extension mush" 

trails and "classic underdense" trails represent the greatest percentage of the total 

number of trails seen. However, the duty cycle of these trails (i.e. their total dura­

tion per hour) is not significant as Figure 4-21 shows. This makes them less suit­

able than the overdense trails mentioned for data transmission. 

The trails of particular importance to meteor-burst communication are "rectified 

sine" overdense and "non-sine" overdense types since they comprise the greatest 

useful duration even though fewer in number than the underdense type. The trails 

which carry the greatest amount of data per hour are the trails with the largest 

signal-to-noise ratios and durations. These trails also exhibit the greatest phase 

effects such as early fast Doppler and fading (see section 4.4.1 and Table 4-1). 
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4.7.2 Early fast Doppler occurrence and duty cycle 

Of the sample set of trails measured, 10-20 % exhibited early fast Doppler. How­

ever, in comparing the trails which exhibit early fast Doppler with those which do 

not, it is found that the trails in which early fast Doppler occurs, are often long-du­

ration or large-amplitude trails or both. This means that out of a sample of long 

trails (previously defmed as being 500 ms or greater in duration), 30.2 % of these 

contain early fast Doppler at their commencement. Considering that the large 

overdense trails (e.g. "sinusoidal overdense", "rectified sine" and "Gothic rocker") 

make up some 60 % of the hourly duty-cycle (Figure 4-19) for meteor-burst com­

munication, the fact that early fast Doppler gives prior indication of their occur­

rence with a probability of 0.302 is highly significant, [Fraser, 1991d, 1992, 

Fraser & Broadhurst, 1992a, 1993a]. If large overdense trails constitute around 

60% of the hourly meteor duration and some 30 % of those contain early fast 

Doppler, it means that around 20% (113 of 60%) of the hourly duty cycle can 

benefit from the use of the early fast Doppler to toggle between a lower base rate 

and a higher data rate. 

4.7.3 An estimate of the improvement in data throughput 

If a simple bi-rate adaptive data rate system is implemented based on the early fast 

Doppler toggle heuristic, an estimate of the improvement in data throughput is 

obtainable by considering the hourly duration that can make use of early fast Dop­

pler prediction: 

(4-7) 

where: 
dEFD is the fraction of the hourly duration using early fast Doppler 

heuristic 

11 is the ratio of the duty cycle of high signal-to-noise ratio, long dura­
tion trails to the total duration per hour 

~ is the estimate of the fraction of the high signal-to noise-ratio, long 
duration trails that exhibit early fast Doppler 

d is the fraction of the hourly duration not using the early fast Doppler 
heuristic 
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The average data rate D for the bi-rate system is then given by: 

Dave = [dEFD' b2 + d, bl] 

where: 
Dave is the average data rate [kb/s] 
bl is the base data rate [kb/s] 
b2 is the higher data rate [kb/s] 

(4-8) 

If, for example the base data rate was 8 kb/s and the higher data rate was 32 kb/s, 

the improvement in the average data rate using this simple scheme could be as 

much as 60%, There would of course be losses for "false" triggers and for the parts 

of the trail where the signal-to-noise ratio dropped beneath that required to sustain 

the higher bit rate. There is good potential for significant throughput enhancement 

in a half-duplex system using this scheme. 

4.8 Conclusion 

Based on the experimental results, the following deductions are a summary of the 

use of early fast Doppler for trail prediction: 

• The occurrence of early fast Doppler at the commencement oflarge 

amplitude and long duration trails is significant. 

• The trails in which early fast Doppler occurs are of major importance 

to the duty cycle of data throughput. 

• Trails which exhibit early fast Doppler have a mean amplitude -104 

dBm with a standard deviation of 5. 

• Trails which exhibit early fast Doppler have widely varying dura­

tions and exhibit little correlation between either early fast Doppler 

spread or early fast Doppler duration and trail duration. 
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• Early fast Doppler slope (early fast Doppler frequency spread / early 

fast Doppler duration) is constant and can be extrapolated linearly 

from 2-3 initial data points. 

• Statistical use of early fast Doppler as a predictor is not useful owing 

to poor correlation between early fast Doppler parameters and sub­

sequent trail parameters. 

• Heuristic use of early fast Doppler as a predictor by detecting early 

fast Doppler at trail commencement and using that knowledge in a 

decision process appear to have merit. 

• Any practical application of early fast Doppler predictors must take 

accomodate the effects of velocity and path configuration and to a 

much lesser extent meteor ionization height. 

In conclusion, the best use of early fast Doppler to improve data throughput ap­

pears to be heuristic rather than statistical. The correlations between early fast 

Doppler parameters and trail metrics such are amplitude and duration are poor. 

However, the mere presence or absence of early fast Doppler gives useful knowl­

edge about the developing trail very on in its lifetime. The presence of this phe­

nomenon is linked most closely to large amplitude, long duration trails. Therefore, 

its presence at their commencement serves as a useful indicator which may toggle 

data rates between a low rate (forunderdense and non-early fast Doppler trails ) and 

a higher rate (for long/large overdense trails). This heuristic toggle would aid 

around a third of the 10-20% large trails seen every hour. In numerical terms this 

would only be 3-6% of all trail types, but these large trails constitute a significant 

percentage of the total hourly duty cycle. This novel technique can provide a 

considerable data throughput enhancement to the smaller half -duplex systems. 
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Chapter 5 

Introduction to neural networks for 
meteor-burst communications 

5.1 Introduction 

Neural networks have several properties which make them ideally suited to the 

tasks of prediction and classification. As such, they are useful tools in communi­

cations [Cichocki & Unbehauen, 1993], [Yuhas & Ansari, 1994], [A/spector et aI. , 

1993]. 1bis introductory chapter on neural networks lays the foundation of the 

application of neural networks to meteor,.burst communications presented in 

chapter 6. The reader who is familiar with neural networks may omit sections 5.1 

to 5.4, but should include section 5.5 as this introduces the terminology of the 

specific neural network development environment used by the author. 

Artificial neural networks have evolved from mainstream artificial intelligence as 

an attempt at modeling learning in biological neural systems. Whereas rule-based 

expert systems, fuzzy logic and case-based reasoning rely on logical syntax for 

decision making (syntactical artificial intelligence), neural networks depend on a 

more abstract symbolic representation of data. Whereas traditional artificial intel­

ligence rests heavily on a rigorous set of IF-THEN rules, historical ptecedents or 

partial set membership, neural networks attempt to learn the underlying relation­

ships present in data without such formalism. They rely on the recognition of 

patterns latent in the data without being explicitly shown which patterns or which 

inputs to use in the association. 
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There are several distinguishing features of neural computing which differs from 

other artificial intelligence methods and more traditional techniques: 

Learning by example 

Neural networks generate their own rules by learning from examples which 
they have been shown. 

Distributed associative memory 

Neural networks store their information in a distributed way. This leads to 
an important capability of neural networks namely generalization of input 
data. Generalization allows "intelligent" responses to novel stimuli. 

Fault tolerance 

Unlike traditional systems which are rendered useless by even a small 
amount of damage to memory, neural networks are much more robust and 
fault tolerant. Fault tolerance extends to graceful degradation with in­
creased neural network corruption. 

Relative noise immunity 

The generalizing ability of neural networks allows a certain amount oftoler­
ance to noisy, missing or incomplete data. 

Pattern recognition 

Neural networks are much more adept at pattern recognition tasks than tra­
ditional techniques. Their ability to deduce complex relationships between 
data give them an edge of expert systems. 

Functional synthesis 

Certain neural networks are able to learn complex continuous non-linear 
mappings from one or more inputs to one or more outputs. 

Other advantages 

Certain neural networks are capable of adaptive learning which is useful in 
dynamically varying environments. neural networks are often cheaper and 
quicker to develop than other artificial intelligence techniques. A typical 
development cycle for neural networks is shown in Figure 5-1. 

5.1.1 Biological neurological basis for neural networks 

Animal brains consist of billions of neurons connected in a massively parallel 

manner. Each neuron, for example, typically has 10 thousand connections to its 

neighbours. The speed of signal propagation in the connections is around 1-100 

mis, not fast by digital computing standards. Similarly, the speed of each neuron 
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Figure 5-1 Neural Network development cycle 

in processing incoming data is relatively low. It can calculate the weighted sum of 

the signal strengths on these inputs in around 5 ms. The performance of a biologi­

cal brain is therefore dependent more on its parallel architecture than its elemental 

processing speed. 

An example of a simplified biological neuron is shown in Figure 5-2. The connec­

tions from thousands of neighbouring neurons enter through the axons which con­

nect to the cell body. The output of the neuron is via the dendrite to its other neural 

neighbours. Neurons trigger or "fIre" in response to the relative strength of the 

excitatory (+ve) or inhibitory (-ve) signals on its input. The decision whether to 

trigger or not is not based on a single event or a occurrence, but on the cumulative 

response of a network of neural elements to a stimulus. It appears that learning in 

biological systems takes place in the adjustment of the relative strengths of the 

incoming connections to each neuron; the greater the connection strength, the 

more important or influential that particular input is. Learning in which similar 
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Figure 5-2 Simplified biological neuron 

patterns strengthen connections is termed Hebbian learning after its discoverer 

Donald Hebb. 

Thus information in neural networks is stored in the connection strengths between 

the neurons and not in discrete locations. This distributed representation of the 

information learned represents a departure from localised knowledge and a greater 

level of knowledge abstraction than is found in other artificial intelligence meth­

ods. 

Artificial neural networks attempt to model biological neural systems in a very 

loose way. The biological metaphor is carried through into a multiplicity ofhighly 

interconnected artificial neurons. Each neuron provides the simple function of 

summing the input signals in proportion to their connection strength and passing 

this weighted sum through a non-linear transfer function. The processing power 

of artificial neural networks, like their biological prototypes, is found in their 

highly connected, massively parallel network structure. Artificial neural net­

works, however, differ considerably from biological neural networks in practical 

implementation. 
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5.2 Neural network structures 

5.2.1 Microstructure 

The microstructural basis of neural networks is the neuron, also known as the 

processing element. The neuron structure used in most synthetic neural networks 

is given in Figure 5-3. The incoming signals, called activations are either from 

preceding neurons or from the data source directly. Each activation is multiplied 

by its connection strength, or weight, and then summed. This weighted sum is then 

passed through a transfer function, the output of which connects to subsequent 

neurons. 

A bias signal is usually added to the weighted sum to provide a ftxed-level signal 

useful for shifting the operating point on the transfer function on all neurons 

equally, [after Maren et al., 1990]. 

Inputs 

1· ·········V· ·· · 
0.5· ····· ··· · .... . ... . . 

o--~~---

Transfer 
Function 

(Sigmoid or 
hyperbolic tan) 

Figure 5-3 Artificial neuron microstructure 

, 

Output 
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where 
Aj is the output activation ofneuronj 
Wij is the weight between neuron i and neuronj 
Aj is the incoming activation of neuron i 

8j is the bias signal for neuron j 

(5-1) 

Several fimctions are useful as the neuron transfer fimction. Non-continuous fimc-

tions are shown in Figure 5-4 (threshold logic) and Figure 5-5 (hard limit). The 

threshold logic is of limited use in neural networks, but the linear fimction with 

hard limits is useful in neural networks where a continuous-valued output is a 

required, such as general regression analysis: 

y=o (x<-8) (5-2a) 

x 1 
Y=W-+2" (-8 ~x ~ 8) (5-2b) 

y= 1 (x> 8) (5-2c) 

y y 

1 1 

x x 
0 0 

-1 

Mono-polar Bipolar 

Figure 5-4 Threshold logic neuron transfer function 
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y y 

-{) 0 e 
Threshold Threshold 

Mono-polar Bipolar 

Figure 5-5 Hard-limit neuron transfer function 

Continuous functions are much more useful and provide non-linearity to the neu­

rons. They are smooth over -00 to +00 and are in general monotonically increas­

ing. In addition, they must be asymptotic to limits in the extremes. The two most 

common functions are the sigmoid and the hyperbolic tangent shown in Figure 5-6 

and 5-7. The sigmoid is used for monopolar inputs scaled to be between 0 and 1, 

and the hyperbolic tangent for bipolar inputs scaled between -1 and + 1: 

Sigmoid: 

1 
f(x,a) = -ax 

1 + exp 

Hyperbolic Tangent: 

expCl x _ exp -a x 
f (x,a) = -=-::-------;::;-:: 

expCl x + exp -a x 

where a is the slope variable 

(5-3) 

(5-4) 

For the majority of input values, the functional output is near the asymptotes, i.e. 

either inhibitory or excitatory. The greatest effect of the functional non-linearity is 

on the small range of values clustered about zerfr. 
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The derivative of these functions yields a maximum at zero and a minimum at the 

extremes. This characteristic allows training of neurons as shown in section 5.3. 

y 

--~~~--~o---------+x--~------~----~~a-_x 

Sigmoid Derivative 

Figure 5-6 Sigmoidal neuron transfer function and its derivative 

y 

--------~~-------+x 

Hyperbolic Tangent 

Figure 5-7 Hyperbolic tangent neuron transfer function 
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5.2.2 Mesostructure 

The meso-structure of neural networks relates to their physical organization and 

the arrangement and connection of neurons. The mesostructure is the primary 

distinguishing feature of classes of neural network. Neural networks are classified 

by the following characteristics: 

• numberoflayers (also called slabs) 

• number of neurons (also called processing elements) per slab 

• the type of connections (forward, backward, lateral, implicit) 

• the degree of inter-neuron connectivity 

Based on these parameters, there are five major classes of structurally related neu­

ral networks. 



Chapter 5 Introduction to neural networks for MBC 

Multilayer feedforward neural network 

In multi-layer networks the inputs to the neural network are passed through a layer 

known as the input layer which merely serves to connect each input to every neu­

ron in the subsequent layer. The input layer performs no operation on the data. 

The output layer is a fully-functional layer of neurons whose outputs indicate the 

output vector in response to an input vector. Between the input and output layers 

there are several layers of neurons called hidden layers. There is usually one and 

very rarely more than three hidden layers. 

As indicated in Figure 5-8, signals propagate in the forward direction only. There 

are no feedback connections for each neuron, nor lateral or backward connections. 

The flow of information for decision making is in the forward direction only. The 

most famous and widely used neural network is the back-propagation neural net­

work. Back-propagation refers to the method of training the neural network and 

not the direction of information flow. It is still a feedforward neural network. 

General applications of feedforward neural networks include system modeling, 

prediction through non-linear general regression analysis, classification by pattern 

recognition and filtering. Details of the back-propagation neural network are 

given in section 5-3. 

Output vector 

Output layer 

Hidden layer 

Input layer 

Input vector 

Figure 5-8 Feedforward neural network structure. 
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Single layer laterally connected neural network 

These neural networks consist of a single layer of neurons with bi-directionallat­

eral connections (Figure 5-9). They are mainly used in auto-associative applica­

tions where the neural network is outputs a stored pattern in response to the same 

pattern appearing at its inputs most often partially complete or noisy. If the desired 

neural network output is the same as the input for all the input patterns it is termed 

auto-associative. If, however, the desired output is different to the input patterns it 

is termed hetero-associative. Single layer neural networks are sometimes pro­

vided with feedback on themselves via closed loops. This gives rise to a sub-class 

named recurrent neural networks. Examples of this class include the Hopfield 

neural network and the Brain-State-in-a-Box neural network. 

~ .s 
to) 
G,) 

> ... 
:::s a. ... 
:::s 
o 

Bidirectional 
lateral connections 

•••• t t t t 
Input vector 

Figure 5-9 Single-layer neural network structure (explicit connec­
tions), after Maren et al. [1990] 
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Single layer topographically ordered neural network 

This neural network has no explicit connections as in the previous neural network 

and is used in cases where distinct categories of classification are already known. 

Inputs to the neural network are grouped as vectors called neurodes. Each neurode 

represents a an individual from a representative selection of training vectors. They 

are topographically ordered with respect to one another by comparing their rela­

tive Euclidean vector distances in vector space. The shape of the neighbourhood 

of comparison and measures of distance are two prime parameters in designing 

these neural networks (Figure 5-10). 

Once the neurodes are organized according to their categorical similarity or dis­

similarity, a new vector, when presented to the neural network, will result in a 

projection into a region of vector space (category) with which it is most similar. 

This allows robust classification of data. Specific details of this method are con­

tained in the section on Learning Vector Quantization (section 5-4). 

Neighbourhood 

::I 
'C 
C -~ g ., 

Figure 5-10 Single-layer neural network structure (implicit connec­
tions), after Maren et al. [1990] 
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Bilayer feedforward/feedback networks 

These neural networks contain both feedforward and feedback connections in a 

multi-layer structure. A simplified generic structure of these neural networks is 

shown below (Figure 5-11). In these neural networks, the forward and reverse 

connections are not just the transpose of one another but usually have different 

connection strengths (weights) in each direction. Because of the bi-directional 

flow of information in these neural networks, they are also known as resonating 

neural networks. Patterns in each layer stimulate patterns in one another in a state 

of resonance until a stable state exists in each layer. 

The prime application of this class of neural network is in pattern recognition. 

Their advantage over other architectures used in pattern recognition is the ability 

to learn new patterns without losing memory of or degrading the recall perform­

ance of previously stored patterns. Examples of these neural networks are the 

Adaptive Resonance Theory (ART) networks of Carpenter and Grossberg 

[1987a, 1987b, 1988], and the Bi-directional Associative Memory (BAM) of 

Kosko [1987] . 

Output vector 
t t e e Output layer 

e Input layer 

t 
Input vector 

Figure 5-11 Bilayer feedforward/feedback neural network structure 
(resonating neural networks) , after Maren et al. [1990] 
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Multilayer co-operative/c,ompetitive neural networks 

Figure 5-12 shows schematically that these networks have lateral connections in 

addition to feedforward and feedback connections. The lateral connections allow 

individual neurons in the neural network to compete/co-operate for the opportu­

nity of passing information. The competitive (inhibitory) and co-operative (exci­

tatory) nature of these neural networks improves classification ability where a 

winner-takes-all strategy suppresses spurious classifications and enhances most­

likely classifications. Examples of these networks include the Probabilistic Neu­

ral Network of Specht [1988, 1990]. 

Output vector 

Output layer 

Hidden layer 

Input layer 

t 
Input vector 

Figure 5-12 Multilayer cooperative/competitive neural network struc­
ture, after Maren et al. [1990] 
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5.2.3 Macrostructure 

Often a single neural network is incapable of solving all aspects of a problem 

owing to the nature of the data and the problem involved. The solution is found in 

segmenting the problem into several neural networks each apportioned a separate 

task. This allows the neural networks to act independently yet combine their re­

sults either through a neural network or a logical function. In solving large prob­

lems, this "panel of experts" approach is often the only way of ensuring cohesive 

data processing, analysis and decision making. The parameters involved in the 

choice of macrostructure include, the number of neural networks, the sizes of these 

networks, the types of inter-neural network connection (feedback, feedforward, 

lateral etc.), the degree of connectivity and the logical gating or non-linear neural 

network-based opinion fusion. 

A generic structure of a multi-neural network system is shown in Figure 5-13. 

When designing such systems of neural networks the emphasis is to highlight the 

positive contributions of individual neural networks and reduce the effect of their 

weaknesses. Examples of these networks are the Hamming Network and the 

Counter-propagation Network. 

! 
I NN 1 I 

/ 1 ~ 
1 NN 2A 1 .. 1 NN 2B 1.1 NN 2C 1 

~ 1 / 
I NN3 I 

Figure 5-13 Multi-neural network structure (macrostructure), after 
Maren et al. [1990] 
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5.2.4 Neural network learning 

The Brittanica Dictionary defmes learning as: 

"the modification of behaviour following upon and induced by interaction 
with the environment and as a result of experiences leading to the estab­
lishment of new patterns of response to external stimuli" 

The ability to learn is what differentiates neural networks from other signal proc­

essing techniques and statistical methods. Learning in a network of neurons is an 

extension of the process of adjusting weights of individual neurons to meet a 

global criterion. The regime used to adjust the individual neuron weights in re­

sponse to a target is called the learning rule or paradigm. 

The process of learning commences with randomization of the neural network 

weights to small values around zero according to a Gaussian density function. The 

learning rule dictates the method of adjusting individual weights to minimize the 

global error between desired and actual response to input stimuli. In order to learn, 

training data must be presented to the neural network, so that it may extract the 

underlying relationship between the input and output vector. 

The training data are selected from the training data set randomly without replace­

ment. After several cycles of training data presentation and weight adjustment, 

target performance criteria are met and the weights stored. These represent the 

"knowledge" of the neural network. Once training is complete, the neural network 

may be tested on a separate set of test data with which it has not been presented 

before. 

Performance tests on the novel data reveal whether the neural network has suffi­

ciently abstracted the underlying relationships in the data or whether it has merely 

learnt the training data set. More on performance measures in sections 5-5 and 5-6. 
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There are three classes of learning in neural network, supervised, reinforcement 

and unsupervised learning: 

Supervised learning 

Supervised learning requires a teacher, that is a set of input -output pairs that repre-

sent the desired response of the neural network to particular input vectors. This 

data may be measured, or derived from a human (or rule-based) expert. In the fIrst 

instance, historical (input) data with its resultant (output) effect are used. For the 

second case, a human or a rule-based expert system may arbitrate on the correct 

action to take as a target response to a set of inputs. The fIrst method is most 

frequently used when dealing with problems when it is known or suspected that 

there is some deterministic relationship between several inputs and the neural net­

work output. 

In many cases, it is not possible to obtain input-output pairs of data, for example 

when one is unsure how many and how different categories of data should be. 

Figure 5-14 gives a schematic representation of supervised learning. The most 

famous supervised learning technique is the back-propagation paradigm. 

Output vector 

+ 
Output layer 

Hidden layer 

Input layer 

+ 
Input vector 

Figure 5-14 Supervised learning paradigm 
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Reinforcement learning 

Although similar to supervised learning, reinforcement learning is much slower. 

Reinforcement learning (also called Hebbian learning) attempts to emulate the 

biological method of global reward/punishment in response to inputs. Instead of 

showing the target response at the output of the neural network to aid learning, this 

process merely assigns a reward or punishment to the network as a whole. Many 

training trials are required for the neural network to assign the weights correctly. 

Compared to the supervised learning case where the learning process is more di­

rected, the reinforcement paradigm is more akin to a directed random search. Fig­

ure 5-15 indicates diagramatically how reinforcement learning works. An 

example of this technique is the Directed Random Search paradigm and Genetic 

Algorithm enhanced learning. 

Global reward signal 
,.. __ "",A~ __ .... 

Output layer 

Hidden layer 

Input layer 

+ 
Input vector 

Figure 5-15 Reinforcement learning paradigm 

Unsupervised learning 

Also known as self-supervised learning, this method allows the data to organize 

itself into regions of similar characteristics. Thus input vectors that were similar 

would be projected onto a common classification region, those that were dissimilar 

onto different classification regions. The two-dimensional plane containing these 

classification regions is commonly known as the Kohonen layer after its originator 

Tuevo Kohonen. Kohonen' s neural networks are known as self -organizing-maps 

or simply Kohonen neural networks. A related technique, though not totally unsu­

pervised is the learning vector quantization paradigm where the "regions" of simi-
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larity are uni-dimensional. Figure 5-16 shows a simple self-organising map neural 

network where similar and dissimilar vectors are matched to separate regions on 

the Kohonen layer. 

• • • • ] Kahanen 

• Layer 

• 
Input vector (3D) ] Input 
map~ed to a region Layer on t e 2D Kohonen 
layer 

Figure 5-16 Unsupervised (self-supervised) learning paradigm 

5.3 Back-propagation neural networks 

Back-propagation neural networks are feedforward multilayer type networks. 

The back-propagation relates to the method oflearning. Back-propagation neural 

networks rely on supervised training where the training set consists of discrete 

pairs of input -output vectors. Back-propagation neural networks form a mapping 

of the input vector to the output vector, the features of this mapping and the rela­

tionship between the input variables is learnt by the hidden layer/so The layers in a 

back-propagation neural network are usually fully connected. 

The back-propagation paradigm in a multi-layer neural network was co-invented 

by several researchers in the 1970's and 1980's, [Werbos, 1974, 1988], [Rumel­

hart & McClelland, 1986], [ Parker, 1985] . Back-propagation neural networks are 

currently the most popular neural network paradigm for real-world applications. 

Also see Neural Computing [1993]. . 

n ___ .,.~ 
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5.3.1 Learning in back-propagation neural networks 

Back-propagation learns by calculating an error between the desired and the actual 

neural network output in response to an input. This error is propagated backwards 

through the network to every neuron. The back-propagated error is used to drive 

the learning (i.e. weight adaptation) at each neuron. 

The rate at which these errors modify the weights is referred to as the learning rate 

or learning coeffiCient. Figure 5-17a shows a typical back-propagation neural net­

work structure and Figure 5-17b the notation used for each neuron in the back­

propagation neural network analysis. 

Considering the Figures 5-17a and 5-17b, the output of an individual neuron is 

given by [Werbos, 1988]: 

(5-3) 

where 
[ ] indicate the layer under consideration 

Xj [s] is the output activation of current neuronj in layer [s] 

Wji [s] is the weight on the connection between the ith neuron in layer 
[s-l] to the jth neuron in layer [s] 

Xi [s-l] is the incoming activation of neuron i in the previous layer [s-l] 

Ij [s]is the weighted sum of the input to thejth neuron in layer [s] 

lis the transfer functionj(z) = {1 + exp-Z)-1 for a sigmoid 
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5.3.2 Back-propagating the local error 

The neural network has a global error function E associated with it which is a 

differentiable function of all the connection weights of the neural network. The 

parameter that is passed back through the layers is: 

. [s] _ -BE 
e) - Blj [s] (5-4) 

where 

ej [s] is a measure of the local error at neuron} in layer [s] 

Using the chain rule twice gives a relationship between the local error at a particu­

lar neuron in layer [s] and all the local errors at in the following layer [s+ 1]: 

ej [s] = f'(lj [S]) . I (ek [s+I1. WIcj [S+I]) 

k (5-5) 

Note: this is used in all layers except the output layer (since it has no [s+ 1] layer). 

If the sigmoid transfer function is used in equation (5-5), then the derivative of the 

sigmoid is a simple function of itself: 

exp-Z 
f' (z) = j(z) . (1 - j(z» = [ J 

1 + exp-z (5-6) 

If the derivative is near zero (when j(z) is near 0 or 1), then the change in weights is 

small. These are two stable states. When the derivative is not near zero, there is a 

corresponding increase in weight change. 

If the transfer function is a hyperbolic tangent function, then its derivative may also 

be expressed with respect to itself: 

f'{z) = (1 + j(z)){1- j(z)) (5-7) 
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Using this equation (5-5) would be modified to: 

ej [s] = (1 + Xj [s])(1- Xj [s]) . L (ek [s+ll. wkj [s+l]) 

k (5-8) 

Continuing with the sigmoid transfer function, using (5-6), (5-5) can be re-written 

as follows (provided/is a sigmoid): 

ej [s] = Xj [S](1- Xj [S]) . L (ek [s+ll.Wlg' [S+I1) 

k (5-9) 

The summation term in (5-9) is which is used to back-propagate errors is analo­

gous to the summation term in (5-3) which is used to forward propagate the input 

through the network. Thus the main mechanism is to forward propagate the input 

and then back-propagate the errors from the output to the input using (5-9) or more 

generally (5-7). 

5.3.3 Minimizing the global error 

To fulfill the aim of minimizing the global error E by modifying the weights, use 

is made of the local error at each neuron. 

Given a current set of weights Wji [s] , we need to determine how to increment or 

decrement them in order to decrease the global error E. This error E may be visu­

alized as a multi':'dimensional surface in n-dimensional space. This may be 

achieved by using a gradient descent method of searching for an optimal mini­

mum. There are several other rules and heuristics which may be used in place of 

the gradient descent method to improve learning. These will be discussed shortly 

as improvements to the back-propagation algorithm. 

The gradient descent method gives a measure of changing the individual weights 

in response to the global error. This equation shows that weight changes are made 

in response to the size and direction of the negative gradient of the error surface: 
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[s] - f 8E J ~W)i - - lcae'l8Wji [s] (5-10) 

where lcael is a learning coefficient 

The partial derivatives in (5-10) can be calculated directly from the local error 

values. Using the chain rule and (5-4): 

8E ( 8E J (8T [s] J 
8Wji [s] = 8lj [s] . 8~i [s] 

- - e ' [s] x ' [s] - J 1 (5-11) 

Combining (5-10) and (5-11): 

AW " [S]-/ ,re · [s]x·[s - l] 
Ll ')1 - cae, J 1 (5-12) 

5.3.4 The global error function 

This function is needed to specify the local errors at the output layer so that they can 

be propagated backwards. Suppose vector i is presented to the input and vector d 

presented to the output as a training data pair. Let Q denote the actual output pro­

duced by the neural network with its current set of weights. Then a measure of the 

error in achieving the desired output is given by the square of the Euclidean dis­

tance between the two vectors (also known as the mean-squared error): 

E = i I [(dk - Ok)2 ] 
k (5-13) 

where k indexes the components of d and Q 
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Here the raw local error at each neuron of the output layer is: 

[] - BE 
ek a = Bh [0] 

- BE BOk 
= ---ao;; . Bh [0] 

ek [0] = (dk - Ok) Xk [0] (1 - Xk [0]) (5-14) 

Other error functions may be substituted for this standard one: 

E=j L I (dk- Ok)31 
k (5-15) 

E = { L [ (dk - Ok)4] 
k (5-16) 

These give local errors of: 

(5-17) 

(quadratic error function) 

(5-18) 

(cubic error function) 

(5-13) is for the global error for a particular (i,d) . An overall global error can be 

defmed as the sum of all the specific error functions. Then each time a particular 

(i,d) is shown, the back-propagation modifies weights to reduce that particular 

component of the overall error function. 
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5.3.5 Summary of the standard back-propagation algorithm operation 

Given an input vector i and a desired output vector d do the following: 

• Present i to the input and propagate it through the neural network to 

the output obtaining vector Q 

• As i propagates through neural network, it will set all the summed 

inputs Ij and output states Xj for each neuron 

• For each neuron in the output layer, calculate the scaled local error as 

given in (5-14) and then calculate the delta weight using (5-12) 

• For each layer [s], starting at the layer prior to the output layer and 

moving to the layer after the input layer, and for each neuron in [s] 

calculate the scaled local error as given by (5-9) then calculate the 

delta weight using (5-12) 

• Update all weights in the network by adding the delta weights to the 

corresponding previous weights. 
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5.3.6 Enhancements to the back-propagation algorithm 

Cumulative weight update 

In cumulative (batch) mode, back-propagation neural networks accumulate their 

weights over an epoch before they are applied to the neural network. The epoch 

size is a number less than or equal to the number of training vectors. Standard 

back -propagation uses an epoch size of one, i.e. the weight changes are applied as 

soon as they are calculated. Cumulative back-propagation may aid learning by 

"filtering out" minor changes in weights and updating general weight change 

trends instead. 

Momentum 

The difficulty with the gradient descent method is the setting of the learning coef­

ficient. This is because changing weights as a linear function of the partial deriva­

tive makes the assumption that the error surface is locally linear. While this 

assumption may hold in general, in regions of high curvature it does not and may 

lead to divergent behaviour if the learning coefficient is not sufficiently small. The 

drawback with a small learning coefficient is slow learning, therefore the concept 

of momentum is added to solve the dichotomy. Momentum simply indicates that 

if weights are changing in a certain direction, there should be a tendency for them 

to continue changing in the same direction. 

The delta weight is modified so that a proportion of the previous delta weight is fed 

through to the current delta weight: 

AWji [s] (current) = lcoe! ej [s] Xi [s - I] + momentum AWji [s] (previous) 

(5-19) 

Momentum allows for a smaller learning coefficient yet with faster learning. 
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Saturation and f' offset 

To improve the learning speed of the standard back-propagation algorithm, a small 

positive offset is added to the derivative of the sigmoid. The reason is that the 

incoming weights of a neuron can become so large that the activation values satu­

rate at their limits (either 0 & 1 or -1 & + 1). The derivative of these values on the 

transfer function is very near zero, so training at that neuron effectively stops. By 

adding the f' offset, this saturation problem is alleviated. 

Extended-delta-bar-delta learning heuristic 

The extended-delta-bar-delta heuristic was developed by Minai and Williams 

[1990] as an extension to the delta-bar-delta heuristic of Jacobs [1988]. The delta­

bar-delta rule uses past values of the gradientto infer the local curvature of the error 

surface. This leads to a learning rule in which every connection has a different 

learning rate which is automatically calculated. The extended delta-bar-delta heu­

ristic also calculates a momentum term for each connection, thus automating both 

learning rate and momentum choice. This paradigm is the paradigm of choice for 

back-propagation neural network development, though others such as Cascade 

Correlation [Fahlman, 1988] and the LogiconProjectionNetwork™ [Wilensky & 

Manukian, 1992] have particular strengths in specific applications. 

5.3.7 Back-propagation summary 

• It is a general purpose non-linear regression technique which at­

tempts to minimize global error. 

• Any multi-dimensional can theoretically be synthesized by a back­

propagation neural network . 

• ' It can provide a very compact distributed representation of complex 

data sets 
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5.4 Learning vector quantization neural networks 

The learning vector quantization neural network was originally suggested by Ko­

honen et aI., [1988] to assign vectors to one of several classes. A learning vector 

quantization network contains a Kohonen layer which learns and perfonns the 

classification. Learning vector quantization provides equal numbers of neurons 

for each class in the Kohonen layer. The basic learning vector quantization neural 

network trains and then uses the Kohonen layer as follows: 

• In the training mode, the distance of a training vector to each neuron 

is computed and the nearest neuron is declared to be the winner. 

• If the winning neuron is in the class of the training vector, it is moved 

toward the training vector. 

• If the winning neuron is not in the class of the training vector, it is 

moved away from the training vector (called repulsion). 

• During this training process, the neurons assigned to a class, migrate 

to the region associated with their class. 

• In the classification mode, the distance of an input vector to each 

neuron is computed and again, the nearest neuron is declared to be the 

winner. The input vector is then assigned to the class of that neuron. 

The basic learning vector quantization neural network suffers from several short­

comings and variants have been developed to overcome them. These include the 

addition ofa "conscience" mechanism to restrict operation of neurons which win 

too often and prevent others from participating, a technique to refme the bounda­

ries between classes, a method of including the Bayesian likelihood function and 

the elimination of the repulsion mechanism. Combined these fonn a very work­

able implementation oflearning vector quantization. More details oflearning vec­

tor quantization neural network are found in Neural Computing [1993]. 

'"" _ _ _ ""Ito 
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5.5 Neural network development environment 

The neural network development environment used was produced by Neural Ware 

Inc. of Pittsburgh U.S.A. The environment which allows cross-platform compati­

bility between IDM-type personal computers and workstations is called Neural­

Works Professional II+. This package supports development of28 major neural 

network paradigms with several variations on each. The back-propagation and 

learning vector quantization algorithms required for this thesis, were well sup­

ported. NeuralWorks Professional II+ allows building, training, refIning and de­

ployment of neural network's. Several features make it particularly useful in 

development, viz.: 

• InstaNet - a menu system to select neural network type and parame­

ters 

• FlashCode - ANSI standard C code generation of neural network for 

deployment 

• SaveBest - facility to prevent overtraining a neural network by regu­

larly saving a neural network (Le. memorization of training data caus­

ing loss of generalization ability with test data). 

• Prune - facility during training to eliminate neurons that do not con­

tribute to learning 

• ExplainNet - feature to explain why a neural network made its deci­

sions and which inputs are important 

In addition diagnostic tools such as classifIcation rate, RMS error, weight-histo­

gram etc. help in the development phase. All the features of the development 

environment are available from an intuitive graphical user interface. This elimi­

nates the need to hard-code neural network paradigms and training schedules. An 

example of the graphical user interface is shown in Figure 5-18. 
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Figure 5-18 NeuralWorks Professional 11+ graphical user interface 

There are several instruments available in NeuralWorks Professional 11+ which 

help in training and testing neural networks. Examples of these instruments are 

shown in Figure 5-19: 
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Figure 5-19 NeuralWorks Professional II+ instrumentation 

RMS error 

• used in prediction/regression analysis 

• indicates the error root-mean-square error of all the neurons in the 
output layer 

• gives a measure of the closeness of fit of desired to actual neural 
network response 

Weight histogram 

• used to check condition and spread of neural weights 

• provides a measure of the entire network 

• the height of the bars represents the number of weights in each weight 
category 

• for a well-trained, non-saturated neural network, the weights should 
be ideally Gaussian distributed about zero or evenly distributed 
across the weight range 
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Confusion matrix 

• used in classification/ranking problems 

• indicates the correlation of actual to desired to actual results for each 
category 

• the confusion matrix is a analogue of a scatter-plot where the height 
of the bars in each "bin" represent the number of "hits " within that bin. 

• ideally the bars should line up along the diagonal 

• the numerical figure indicates the correlation for each matrix 

Classification rate matrix 

• used in classification/ranking problems 

• similar to the confusion matrix, it provides a measure of correlation 
for the entire network 

• the figures on the diagonal represent the fraction of correctly classi­
fied training or test cases 

• the figure off-diagonal represent the fraction of misclassified classes 

• it can provide a measure of which classifications are overlapping or 
difficult to separate 

5.6 Practical issues in developing back-propagation neural 
networks . 

Number of input neurons 

The number of input neurons is determined by the type of data used. In other 

words, the more feature descriptors that are used, the larger the input layer will be. 

Generally it is better to commence with more feature descriptors and selectively 

delete those which have little or no effect on learning. 
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Number of hidden neurons 

The choice of this number is one of the most debated topics in neural networks. 

Fundamentally the number of hidden neurons depends strongly on the type of data 

used. That is, if the data is simple (e.g. easily separable) then fewer neurons are 

required than in the case of complex data sets. Basically, each hidden neuron 

provides an extra hyperplane to separate regions in multi-dimensional hyperspace. 

If the contour of distinction between categories, for example, is complex more 

hyperplanes will be needed to defme it. 

Widrow & Stearns [1985] recommend that the number of hidden neurons be re­

lated to the number of training samples available. They states that the ratio of the 

number of weights to the number of training samples should be at most 10%. In 

most instances, the number of input and output neurons are defmed by the type of 

problem, so calculation of the number of weights in a back-propagation neural 

network is simple. 

Several heuristics exist, but do not take into account a measure of data complexity. 

A better method is to use the designed experiments technique. This allows a scien­

tific, rigorous approach to choosing this number. A set of experiments is designed, 

neural networks constructed and tested with different numbers of hidden neurons 

and the optimal configuration selected. This method was used in neural network 

development in this thesis. 

Number of hidden layers 

In general it is advisable to start with a single hidden layer in the back-propagation 

neural network and only progress to two hidden layers when training became dif­

ficult. The need for three hidden layers is rarely found. 
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Choice of learning paradigm 

With back-propagation, it is usually best to use the extended-delta-bar-delta heu­

ristic for learning. It alleviates the need to set the momentum and learning coeffi­

cient terms interactively, by automatically selecting these parameters during 

training. The extended delta-bar-delta heuristic was used in all back-propagation 

neural networks designed in this thesis. 

Epoch size 

The number of training data passes that are allowed before cumulative update of 

weights is termed the epoch size. Ideally this should be as large as the number of 

training samples, however owing to the extensive training set available, the epoch 

size was limited, usually between 250 and 1000. The limit was required to im­

prove learning speed and allow the influence of training samples with a lower rate 

of occurrence to influence the weights. If the full epoch size had been chosen, the 

rarer data samples would have been eliminated in the generalization that occurs. 

Optimal epoch size can be chosen using a designed experiments method in which 

various sizes are tested for the highest correlation value. This is a more thorough 

approach yet had little effect on the large data set available for training. 

Weight initialization 

Weights were initialized randomly within a small range around zero. Typically 

the values were between -0.2 and +0.2. 

0 ___ ft.., 
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Chapter 6 

Neural networks for prediction and 

classification in meteor-burst communications 

6.1 Introduction 

Meteor-burst systems follow the laws of physics and are deterministic, i.e. they are 

sufficiently quantifiable to allow modeling and statistical prediction on the macro­

scopic level. However, individual meteor trails are sufficiently stochastic to defy 

traditional methods of predicting their attributes on a trail-by-trail basis as is seen 

in chapters 3 and 4. This characteristic makes meteor-burst communications ide­

ally suited to the application of neural networks. Neural networks are adept at 

generalising the data with which they are presented and therefore are able to inter­

polate results when presented with new and unseen data. This makes neural net­

work decision making extremely robust and insensitive to noise. Furthermore, the 

slight parametric changes that can be expected in data from a natural phenomenon 

are used constructively in the decision making process to refme predictions, rather 

than being considered as disturbances. 

In this chapter the novel techniques for classification and prediction in meteor­

burst communication are presented. Based on the trail amplitude data detailed in 

chapter 3, methods of data preparation are investigated. In particular meteor-burst 

communication trail classification by neural network and neural networks for pre­

diction of trail type, peak trail amplitude and trail duration are presented. This 

work is extensively documented by the author in Fraser [1993], Fraser & Melville 

[1992, 1993a, 1993 b] and Goldstein, Melville and Fraser [1992]. 
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6.2 Data preparation 

The raw data was obtained from the measurement system described in chapter 3. 

The data is stored in a format of header files and sample files. The header file 

consists of records, each of which contains information about a specific trail. 

Each record contains the positions in the sample file of the first and last samples of 

the current trail, background noise level, the time since the previous trail and the 

time and date. The sample file contains a stream of bytes, where each byte repre­

sents the magnitude of the signal at the sampling instant. A sampling frequency of 

200 Hz was used (samples spaced at 5 ms intervals). For this application, no early 

fast Doppler data was used. 

Based on the amplitude envelope of the signal received by the measurement sys­

tem of chapter 3, meteor trails may be classified into different trail families. The 

classification is based on shape features of the trail amplitude envelope. Classifi­

cation is an off-line procedure in which the entire trail data is used. The basis of 

trail classification comparison was the TrailStar rule-based expert system devel­

oped by Melville et al. [1989]. TrailStar was used to classify each trail into one of 

29 distinct trail categories or classes. Examples of the trail families classified by 

TrailStar are shown in Figures 6-1 to 6-29. The term "trail-type" is used for con­

sistency with previous research by this group. The more correct term as defmed by 

the LA.V. is "echo-type ' 

For the purposes of trail classification using neural networks, the classification 

decision of TrailStar was taken as correct, i.e. the classification of TrailStar would 

be the target decision of the neural network when training. The classification neu­

ral network may be viewed as a mapping of trail feature descriptors of an entire 

trail to a particular trail type. Instead of using the entire 29 categories, the data for 

the neural networks was subdivided into overdense and underdense categories 

(according to TrailStar), bad data (which was discarded) and "other" types (which 

TrailStar could not classify as either overdense or underdense). 

n ___ ftA 
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Figure 6-11 Trail type 11 - round-top classic underdense 
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Figure 6-20 Trail type 20 - rectified sine overdense 
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Figure 6-26 Trail type 26 - extension overdense 
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Figure 6-29 Trail type 29 - hump-backed classic 

Only the fIrst 50 or 100 ms of the trail amplitude envelope are used by the neural 

networks to predict parameters of the rest of the trail such as peak amplitude, 

duration and trail type. The target of the neural network during training, was the 

actual peak amplitude and the actual duration as measured. The target for predict­

ing the trail type required the trail classifIcation by TrailStar. The neural networks 

used for prediction may be viewed as mappings of trail feature descriptors for the 

fIrst 50 or lOO ms to either peak amplitude, duration or type. 
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6.2.1 Data preprocessing 

Different data preprocessing methods were used for each of the neural network 

types constructed. The preprocessing stage produced the outputs assumed to be 

"correct" and the data extraction stage produced the input feature vectors for the 

neural networks. Together they constitute the coupled input-output pairs of the 

training and testing data: 

Trail type classification - features extracted from the entire sampled trail 
envelope (inputs), TrailStar expert system classification of entire trail (out­
puts). 

Trail amplitude and duration prediction - features extracted from the first 
50 or 100 ms of the sampled trail envelope (inputs), peak trail amplitude of 
entire trail (outputs). The truncated trails of 50 or 100 ms represent the entire 
window on which neural network prediction must be made. 

Trail type prediction - features extracted from the first 50 or 100 ms of the 
sampled trail envelope (inputs), TrailStar expert system classification of 
entire trail (outputs). The truncated trails of 50 or 100 ms represent the entire 
window on which neural network prediction must be made. 

6.2.2 Data extraction 

A number of numeric routines were employed to determine particular features of 

the trails. These features formed the training and testing input vectors to the neural 

networks. For classification, these routines used the entire trail sample length. For 

prediction (truncated trails), these routines were used on the basis that feature de­

scriptors which had been relevant in the classification of entire trails would have a 

high likelihood of being relevant in the classification of just one part of the trail 

knowing that irrelevant features would be discarded by the neural network. The 

feature and numeric routines involved are described below (Figure 6-30), [Fraser, 

1992]. 

• Parameters Bo and Bl from the equation of the least squares linear 

regression of the entire trail (y = Bo x + Bl). 
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• The variance d2 aild standard deviation cr of the least squares linear 

regression of the entire trail. 

• The maximum Pmax and the minimum amplitude Pmin encountered 

in the entire trail. 

• The presence or absence of an upper plateau in the trail, together with 

the length of such a plateau 'tplat, if it exists. A plateau is defmed as a 

region in which three or more consecutive samples are within 2 dB of 

one another. 

• The number oflocal minima (fades) in the trail Nminima. A point is 

determined to be a local minimum if it is the lowest amplitude en­

countered as the trail follows a downward slope. The local minimum 

is validated when a a subsequent sample of>4 dB than the local mini­

mum value has been encountered. This increase indicates that the 

trail is now on an upward slope. This approach allows for straight 

line trails with samples varying by one or two dB not to be confused 

with a trail with many fades. 

• The number oflocal maxima (peaks) in the trail Nmaxima. A point is 

determined to be a local maximum if it is the highest amplitude en­

countered as the trail follows a upward slope. The local maximum is 

validated when a subsequent sample of <4 dB than the local maxi­

mum value has been encountered. This decrease indicates that the 

trail is now on a downward slope. This approach allows for straight 

line trails with samples varying by one or two dB not to be confused 

with a trail with many fades. 

• Parameters Bo and Bl from the equation of the least squares linear 

regression of the fall section of the trail (y = Bo x + Bl). This is de­

fmed as the section from the peak amplitude position to the end of the 

trail. 
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• The variance c? and standard deviation cr of the least squares linear 

regression of the fall slope. 

• Parameters Bo and BI from the equation of the least squares linear 

regression of the rise section of the trail (y = Bo x + BI). This is de­

fmed as the section from the beginning of the trail to the peak ampli­

tude position. 

• The variance c? and standard deviation cr of the least squares linear 

regression of the rise slope. 

• The sample nr at which the end of the rise is determined, and that at 

which the start of the fall nfis detennined. This is not necessarily the 

peak amplitude position, as there could be an upper plateau between 

end of rise and start of fall. 

• The variance c? of the trail from the best parabolic fit to the entire 

trail. 
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Figure 6-30 Hypothetical trail with line fits to derive trail metrics 
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6.2.3 Summary data processing procedure 

Processing over one hundred thousand trails into a fonn suitable for a neural net­

work was a difficult and time consuming task. A brief outline of the steps involved 

in preparing the data for neural network prediction is given below [Fraser & 

Melville, 1993a, 1993b]: 

• Process over one hundred diskettes containing pre-typed trails (i.e .. 
trails that had been already type-classified using the TrailStar pro­
gram). 

• Extract critical data - the first 10 or 20 samples of each trail plus a 
concise fonn of header infonnation that contains only the data that 
would be known regardless of trail samples (e. g.. background noise, 
wait time since last trail) together with the results that are to be used 
for training (full trail duration, full trail peak amplitude, trail type). 
The data from the diskettes were processed into two files, HEAD­
ERS.DTA and SAMPLES.DTA using a software routine called 
PREPROC. 

• Determine twenty-six feature descriptors for the 100000 trails, which 
are now seen as consisting of just 10 or 20 samples. Combine the 
feature descriptors with the three 'whole-trail' results in a summary 
file, NEIDATA. The software written to accomplish this was PRE­
PROC2. 

• Form a template file of the 26 feature descriptors (TEM­
PLATE. IDA) and three result files for duration prediction, peak am­
plitude prediction and trail type prediction respectively 
(NUMSAMPS.IDA, PEAKAMPS.IDA and TTYPES.IDA) using 
program GETEMPLT. 

• Reduce the trail types in TTYPES.IDA to 3 general groups - under­
dense, overdense and other - using program GETGENTP to produce 
GENTYPES.IDA. 

• For each result 

(i)Merge the result. IDA file with the TEMPLATE. IDA file to pro­
duce a NEIDATA.NNA file (using program MERGE). 
(ii)Extract test data from NEIDATA.NNA, placing every 25th trail 
in file NETTEST .NNA with the other 24 trails going to the training 
data file NE1TRAIN.NNA, using program GETTEST. 

The data for neural network classification requires a similar procedure but onI y the 

first three steps are required for the full-length trail samples. 
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A flow diagram of the data preparation procedure is given in Figure 6-31 . This 

process produced a training set of 96000 trails and a test set of 4000 trails. At this 

stage the training and test data needed for neural network development was ready. 

Raw data 

100 000 trails 

Extract 26 features 

Summary File 

TEMPLATE.TDJl~----~ 

26 feature 
descriptor 
template 

HEADERS. DAT 

SAMPLBS • nAT 

Durat/on, peak 
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trail types (30) 
data files 

Trail types (3) 

Merge any data 
file with template 
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--------
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ASCII file for 
neural networlc 
development 
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Figure 6-31 Flow diagram of data preparation procedure 
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For trail type prediction and classification, the decision of TrailStar was taken as 

the correct output of the data training pairs. The software preprocessor (GENTP) 

classified each trail, for neural network training purposes, as being of class 0, 1 or 

2. Class ° indicates the general overdense group, class 1 the general underdense 

group, and class 2 trails of types which cannot be conclusively determined to be in 

class ° or class 1. 

This latter group includes the initial 'unknown' type (type 22), the 'mush' group of 

trails which consist of short duration trails which appear as straight lines of various 

inclinations on a time-amplitude axis, and the 'bell' group. These appear as bell­

like shapes on a time-amplitude display. These trails initially seemed to exhibit 

underdense characteristics, but a matching study of trails received by two systems 

indicated that many of these bells are in fact the 'tops' of overdense trails. Thus it 

is still debatable whether these should be classified as underdense or overdense 

trails, and they were included in class 2 [Melville, 1991c]. 

Class 2 trails were excluded from training and testing of the neural networks, 

although it is expected that the neural networks in their current form would have 

the same problem as humans do in deciding whether these trails were underdense 

or overdense. 
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6.3 Neural networks for classification and prediction 

The work on meteor-burst communication trail classification using data from 

complete trails was the pilot application of neural networks to meteor-burst com­

munication [Fraser, Khan & Levy, 1992]. The success of these neural networks 

motivated further research into their use as trail characteristic predictors. In the 

classification application, data from entire trails was processed using the methods 

described above and used to categorize trails according to type. For prediction, 

however, data from only the first 10 or 20 amplitude samples (i.e. 50 or 100 ms 

respectively) were processed and used to predict trail duration, peak amplitude and 

type. Ideally the fewest number of samples possible should be used to predict and 

classify trails. However, to obtain reasonable accuracy this period should be as 

long possible. In any system, the smallest and shortest trails will rise and fall 

within the 50 ms window and are therefore unpredictable. However the bulk of 

useful trails have a peak amplitude which occurs between 50 and 100 ms. For 

these trails, a 50 ms decision window is sufficiently small to predict trail charac­

teristics which will be relevant for a high percentage of the remaining trail lifetime. 

6.3.1 Neural networks for trail classification 

In order to classify trails, features of the reflected signal such as shape, duration and 

amplitude are important. Current trail classification is performed off-line using 

the rule-based expert system TrailStar developed by Melville [1989]. TrailStar 

utilises characteristic trail features described in section 6.2.2 in order to classify 

trail reflections into 29 categories. The specific trail type is determined from the 

range within which the feature parameters fall. However, no two meteor trails are 

identical and the subtle variations between trails complicate classification via a 

rule-base approach. It is in this context that several neural networks were imple­

mented to differentiate between the two major trail types (i.e. overdense and un­

derdense). 

The inputs to the classification neural networks were a subset of the 26 feature 

descriptors (section 6.2.2). In some neural networks the first 20 normalised amp li-
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tude samples were included as inputs. The input parameters obtained and and their 

method of calculation is given below [Fraser, Khan & Levy, 1992]: 

Duration of trail 

This is easily obtained by multiplying the number of samples by the sam­
piing period (5 ms). 

Position and amplitude of the peak signals 
The peak amplitude is obtained from a scan through the samples. The time 
of its occurrence is calculated from its position in the sample file. 

Position and amplitude of the minimum signal 
The minimum amplitude is obtained from a scan through the samples. The 
time of its occurrence is calculated from its position in the sample file. 

Amplitude range 
The difference between the maximum and minimum amplitudes. 

Sample mean 
This is obtained for the total trail, for the rise and for the fall zones by aver­
aging the appropriate sample magnitudes. 

Standard deviation 

Once again this is obtained for the rise, fall, and total trail length. A straight 
line is interpolated through the appropriate points in each of these three re­
gions, using the method ofleast squares. The perpendicular distance of each 
sample point from this line is used to compute the standard deviation. 

Trail shape 

The sample values were thereafter normalised to a set of twenty points. The 
differences between consecutive sample values was then stored in an array. 
These values would then provide an indication of the trend of the data, i.e .. 
whether the slope was increasing, decreasing or whether a plateau occurred. 
Each element in this difference array would therefore correspond to a par­
ticular neuron. The samples are stored in chronological order, therefore a 
neural network would learn not only whether the slope was increasing or 
decreasing but also the position in the trail where this variation occurred. 
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There is considerable overlap between feature descriptors because the source of 

the features is common, i.e. trail amplitude samples. The benefit to the neural 

network of using feature descriptors instead of the raw data samples alone, is that 

the process of deriving them reduces the amount of abstraction required by the 

neural network. Thus the feature descriptor inputs reduce the non-linearity of the 

system and hence reduce the order of the inter-relationships that the neural net­

work must learn. This improves both learning speed and neural network accuracy, 

whilst reducing the number of neurons required in the hidden layers. Recall that 

the number of hidden neurons is proportional to the complexity (and order) of the 

input data. Fewer hidden neurons directly reduce neural network training time. 

The input data was checked for missing and bad data as well as for data extreme 

values (outliers) that could skew neural network training. Missing data were de­

tected by checking each field in every data record for missing entries and by sum­

ming the number of fields in each record. Bad or corrupted data was found by 

plotting histograms representing frequency of occurrence of each variable over its 

range of values. This method allows corrupted data and/or outliers at the extremes 

of the input range to be detected. However, to detect corrupt data within the nor­

mal range, a series of scatter plots of two inputs at a time were plotted. Abnonnal 

data is identified by inspection of the regions outside the normal clustering. Tradi­

tional mean and standard deviation calculations for each input also help to identify 

the bad data. Owing to the large number of training data available, records with 

entries missing or bad were simply removed. It is important that data checking 

occurs before neural network construction otherwise both the training and gener­

alisation ability of the neural network will be degraded. This filtered data then 

became the input to the neural networks. 

Feed-forward layered neural networks with back-propagation learning were used 

for all whole trail classification neural networks. Back-propagation learning is a 

supervised learning method requiring input-output training pairs. The output data 

to match each input vector was provided by TrailStar. The same inputs used to 
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train the neural networks were presented to TrailStar for rule-based classification 

into underdense and overdense trail types. Thus the training pairs consisted of 

feature descriptors as inputs and the associated TrailStar decision as outputs (neu­

ral network classification target). 

Neural network implementation for whole trail classification 

Several neural networks were implemented using California Scientific Software's 

BrainMaker software suite (pC DOS based). BrainMaker's back-propagation al­

gorithm is an adaptation of the standard layered feed-forward technique with con­

tinuously valued neurons. The standard sigmoidal neuron transfer function was 

used throughout the network and all initial weights randomized. The number of 

hidden layers was varied between 1 and 2, and the number of neurons per hidden 

layer between 12 and 45. The number of hidden neurons was initially kept small 

to reduce memorisation of the training facts and improve the generalising ability 

of the neural network. An increase in the number of hidden layers increased train­

ing time without a significant improvement in trained network performance. 

The training tolerance, additive noise present during training and network learning 

rate we also varied. Training tolerance is the range of neuron output levels which 

are considered to be correct. For example, the normal limits of the sigmoid are 0 

and 1. If an output of 0.8 is to be regarded as correct from the training data, a 

training tolerance of 0.1 means that any output from 0.7 to 0.9 is considered cor­

rect. A training tolerance of zero means the output must exactly match the training 

pattern to be considered correct. This is usually too strict a requirement resulting 

in non-convergence of the neural network. A 10% tolerance was found to produce 

a good compromise between decision accuracy and the ability of the network to 

converge during training. 

Noise added to the connections during training led to poorer network performance 

under test and was thus set to zero. The main reason for using noise during training 

is to improve neural network generalisation, particularly where limited data is 
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available. However, there was sufficient data to provide an even spread of inputs 

without the need for added noise. With the noise set at zero, the training times were 

greatly shortened. With a learning rate of 1, BrainMaker always converges on a 

local minimwn during training if convergence is possible. With a learning rate of 

4, training times were reduced by nearly 75%, though sometimes the network 

failed to converge at all because the training inertia would cause the neural net­

work to overshoot a suitable solution. To ensure convergence, a learning rate of 1 

was used until near the end of training after which a rate of less than 1 aided the 

completion of training. Various subsets of training data were also tried, each re­

quiring different nwnbers of input neurons. Training times varied from 5 minutes 

to over 1 hour corresponding to the nwnber of facts used in the training file and the 

nwnber of hidden neurons and layers employed. 

Results 

Network 

A 

B 
C 

D 

Network evaluation was performed by presenting to the network inputs with 

which it had not been trained, and verifying the corresponding outputs against the 

target output from TrailStar. The test data consists of data selected randomly from 

the total available data set. Around 4% of the data were reserved for test purposes, 

[Fraser, Khan & Levy, 1992] 

The percentage of trails correctly classified as underdense or overdense ranged 

from 33 to 97% for various network topologies. The network configuration and 

test results of four typical networks implemented are shown in Table 6-1. 

Table 6-1 Results of neural networks for whole trail classification 

Number of Neurons in first Neurons in Amplitude Percentage 
hidden layers hidden layer second hidden samples present correctly 

layer classified 

1 12 - NO 84% 
1 40 - YES 67% 
2 40 20 YES 64% 
1 32 - YES 97% 
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It was found that the network which best discriminated between trail types (97% 

success rate), utilized 32 inputs, 32 hidden neurons in a single layer and two out­

puts representing the choice of underdense or overdense trail type. The inputs 

consisted of 12 trail statistics and 20 nonnalised sample points corresponding to 

the fIrst 100 milliseconds of the received signal amplitude. These inputs were 

found to be the most accurate means of classifying the trails. 

Discussion 

The classifIcation accuracy of 97% proved conclusively that neural networks are 

capable of pattern recognition in meteor-burst communications and can perfonn 

many of the tasks of rule-based systems without the need to hard-code the rules. 

The traditional classifIcation methods are hampered by non-generalised rules, 

slow operation and intolerance to noisy or poor data. In comparison, the optimal 

neural network, once trained, was able to accurately classify underdense and over­

dense trails within milliseconds whereas the TrailStar expert system took several 

seconds. Both the speed of the neural networks and their ability to recognise sig­

nals in the presence of noise, make them ideal for signal classifIcation applications 

in meteor-burst communications. 
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6.3.2 Neural networks for trail type prediction 

For classification, the feature descriptors were derived for the entire trail and then 

used as the basis of trail typing. For prediction the entire trail was first processed 

to derive the relevant target variable (trail type, peak amplitude, trail duration). 

Then the feature descriptors were applied to the first 100 ms (20 samples) and the 

first 50 ms (10 samples) of the trail. To do this, the preprocessing package was 

used to truncate trails to appear as if they were only twenty or ten samples long. 

By comparing the performance of the neural networks with either 50 ms or 100 ms 

worth of input data, measures of the relative contribution of the amount of data to 

the decision process could be found. Naturally for optimal prediction, the best 

predictor would be the one which could use the fewest number of samples while 

maintaining sufficient accuracy. 

For neural networks to predict the trail type, it was decided, similar to the case of 

whole trail classification, to group the trails·into overdense, underdense and a third 

category "other". The last category was added to provide for trails which are not 

obviously underdense or overdense. Members of the "other" category may be 

trails which are difficult to classify as either of the two dominant categories. Fur­

thermore it allows graceful degradation of misclassifications; an important re­

quirement for proper neural network training. Without providing a "don't know" 

option for the neural network output, the neural network is unnecessarily con­

strained to providing an answer of overdense or underdense. This condition will 

force the neural network to accommodate a mapping of inputs to the two main 

classes even though there is no basis for either choice. The neural network will 

perform inferiorly in both learn and recall modes due to non-optimised weights. 

For trail type prediction, the procedure followed in section 6.2.3 was followed both 

for the 50 and the 100 ms case. The three categories were (Table 6-2): 
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Table 6-2 Three class categorisation of29 trail types 

Underdense - cate{wrv 0 Other - category 1 Overdense - cate20rv 2 
Classifica 
tion no. 

5 
9 
10 
11 
12 
13 
14 
16 
17 
18 

24 
29 

Name Classifica Name Classificat Name 
tion no. ion no. 

flat classic 1 unreasonable data 19 square root sign 
classic 2 short, mid-peak 20 rectified sine 

classic with plateau 3 short mush 21 non-sine 
round-top classic 4 medium time mid-oeak 26 extension 
classic late fall 6 flat bell 27 sinusoidal 

classic notched rise 7 strt-line mush medium length 28 wind-blown 
classic bad rise 8 straight-line mush Ion!!: lenl!:th 
multi-plateau 15 bell 
multi-slope 22 weird unknown tvoe 

twins 23 downward-tending straight-
line mush 

hazy classic 25 extension mush 
hump-backed classic 

As is seen in section 4.7.2, the relative number of overdense trails is around 20% 

that of the both underdense and "other" categories. For neural networks to recog­

nise different categories equally well, the relative contribution of each category to 

data should be similar. The statistical distribution of the categories must also be 

similar in both the training and the test data. There were two options to increase the 

number of occurrences of overdense trails. Firstly, classes 0 and 1 could both be 

reduced to 20% of their original size by random elimination of data. This was not 

considered as it would unnecessarily shrink the size of the training and test data. 

The second option chosen was to multiply the overdense data by five and insert 

them in the data randomly. This proved satisfactory. 

The fmal data manipulation converted the three categories to a one-of-n encoding 

scheme. Thus category 0 became 1,0,0, category 1 became 0,1,0 and category 2 

became 0,0,1. There are several benefits of this scheme. Instead of a single output 

neuron having to learn three classes, three output neurons are used. This increases 

the Hamming distance between each category and its binary structure allows for 

competition between output neurons. Furthermore, classification accuracy may 

be improved by thresholding so that an actual output of 0.2, 0.7, 0.4 could be 

resolved to 0,1,0 without ambiguity. 
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Neural networks for classification & prediction in MBC 

The following table (Table 6-3) shows typical outputs (from a back-propagation 

neural network) and their corresponding target outputs. 

Table 6-3 Target back-propagation neural network outputs and actual outputs 

(real sample) 

Target olill2uts Actual outputs 
0.000 1.000 0.248 0.276 0.428 
0.000 0.000 0.248 0.393 0.305 
1.000 0.000 0.151 0.528 0.311 
1.000 0.000 0.459 0.283 0.246 
0.000 0.000 0.655 0.202 0.170 
0.000 1.000 0.150 0.237 0.634 

Several hundred neural networks were implemented to fmd optimal parametric 

and paradigm choices. The learning vector quantization-type neural networks 

performed considerably better than other types such as the back -propagation neu­

ral network. The following three neural network structures were the most success­

ful: 

Back-propagation neural network (lOBPN4.NND) 

• neurons: 26 input, 50 hidden layer 1, 50 hidden layer 2, 
3 output 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling (inputs are scaled from their real val­
ues to a normal value of -1 to + 1, outputs are scaled back to their real 
values) 
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Learning Vector Quantization (J OL VQ2.NND & 20TRY3.NND) 

• neurons: 26 input, 102 Kohonen layer, 3 output 

• First LVQ1 with 10000 learning iterations and 0.06 initial learning 
rate followed by L VQ2 with 1000 learning iterations, 0.03 initial 
learning rate and 0.2 width parameter (width parameter is the sphere 
of influence of a vector over its neighbours). L VQ 1 and L VQ2 are 
two sub-paradigms within NeuralWare's implementation of the 
learning vector quantization algorithm 

• in-class winner always learns (i.e. the vector with the closest match to 
the input is still kept in contention during learning), 1.0 conscience 
factor (conscience is the scaling factor that allows the influence of the 
winning vector to weaken every time it wins, thus allowing other 
vectors to compete and learn) and 0.0010 frequency estimation (the 
constant for determining the in-class win frequencies) 

• MinMax input -output scaling (inputs are scaled from their real values 
to a normal value of -1 to + 1, outputs are scaled back to their real 
values) 

Results 

NNtype 
NN file 
name 

Overall 
classification 

rate . 

% classified 
as OlD 

% classified 
as "other" 

% classified 
asUID 

The following table (Table 6-4) indicates the performance of the three best neural 

networks using test data set to which they had not been previously exposed. 

Table 6-4 Trail type prediction results 

50 ms input data 50 ms input data lOOms input data 
Back -prop~ation LVQ LVO 

1OBPN4.NND 1OLVQ2.NND 20TRY3.NND 

54.1% 70.7010 73.1% 

Correct trail type ~ target) Correct trail type tarll:et) Correct trail tYoe I target) 
UID "other" OlD UID "other" OlD UID "other" OlD 
11.38 32.30 42.44 7.14 17.79 66.45 8.77 17.47 73.01 

8.98 40.37 30.23 10.99 63.80 17.42 12.28 67.47 17.79 

79.64 27.33 27.33 81.87 18.40 16.13 78.95 15.06 9.20 

The task of trail type prediction is one of classification. The most useful instru­

ment to monitor training and testirIg was the classification rate matrix. The overall 

classification rate is the combination of the individual classification rates for each 

trail class. The vertical columns indicate the correct trail type (target output) and 

the horizontal columns, the percentage of trails classified in each. 
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Discussion 

The results indicate that neural networks are able to discriminate between under­

dense and overdense trails very well on the basis of initial samples received (see 

Figure 6-32, 6-33). 

For the 10 sample case (50 ms), the back-propagation neural network was 16.70% 

worse on average classification than the corresponding learning vector quantiza­

tion neural network. The 70.70% classification accuracy of the lOLVQ2.NND 

learning vector quantization neural network was excellent considering the deci­

sions were only based on 10 samples. The accuracy of under dense prediction (at 

81 .87%) underscored the relative consistency of the underdense trail type com­

pared with 66.45% for the overdense trail type which exhibits more extreme de­

partures from a classical trail shape. For the lOL VQ2.NND neural network, 

misclassifications were not evenly spread between the other two categories. If 

either an underdense or an overdense trail were misclassified, it would have ap­

proximately twice the probability of being classified as an "other" trail than an 

overdense or underdense trail respectively. This emphasises the difficulty that 

exists for any system (including human experts) to correctly classify borderline 

trails. Another possibility is that TrailStar, being a hard-coded rule-based system, 

was unable to detect the subtle differences that a neural network can detect and 

forced a particular classification, which was irreconcilable with the data. 

It is significant that a doubling of the number of samples used from 10 to 20, 

resulted in an average classification increase of only 2.44% from 70.70% to 

73.14 %. This means that the many of the prime classification features occur early 

on in the trail lifetime. The differen~ between this level of prediction accuracy 

and classification accuracy for an entire trail is around 20%. Thus there are several 

trail features which only occur later on in the trail lifetime and cannot be used in 

prediction. It appears then that the practical limit for prediction is around 70-75% 

average classification accuracy. 
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Figure 6-32 10BPN4.NND back-propagation neural network for trail 
type prediction 
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Figure 6-33 lOLVQ2.NND Learning Vector Quantization neural net­
work for trail type prediction 
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The overdense classification accuracy is improved most of all by using more data. 

The reason is likely that the distinguishing characteristics of overdense trails mani­

fest themselves later than that of the underdense types. This can be seen in the 

correct classification increase for these trails from 66.45% (50 ms data) to 73.01 % 

(100 ms data). 

As a test of "transportability" of the trained neural networks across different me­

teor-burst communication links, the neural network 10L VQ2.NND was tested on 

data from the 1100 km Pretoria to Cape Town link. The two systems have mark­

edly different characteristics in a number of respects, including path length and 

antenna configurations. If a neural network trained on the one system could be a 

reasonable predictor for another then neural network implementation for purposes 

of adaptive data rates etc. would be a great deal simpler - the alternative being to 

train a neural network every time a new link is established. Earlier work on trail 

classification [Melville et ai., 1989] had shown that the same trail types could be 

expected across a wide variety of systems, but was unable to determine whether or 

not the proportions of the various types would be the same across systems, so the 

question was still open as to whether a neural network trained on one system would 

be effective on another. 

On testing this hypothesis, the results were very good. The accuracy of classifica­

tion on the 1100 km link varied by a maximum of 5% over the 550 km link on 

which the neural network had been trained. The greatest change was in the over­

dense trail category (which appeared more on the longer than on the shorter link) 

and the least change in the underdense category. Thus the neural network had 

generalised sufficiently well, recognising fundamental trail features while being 

tolerant of system variations. For this application at least, the neural network will 

be transportable across systems with minimum performance loss. For optimal 

classification, however, a neural network could be retrained further in the new link. 

In addition the benefits of thresholding as discussed in 6.3.2 would reduce the 

uncertainty in trail classification to near zero. 
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6.3.3 Neural networks for peak trail amplitude prediction 

Prediction of the peak trail amplitude is a regression problem unlike the prediction 

of trail type which is a classification task. Despite this fundamental difference in 

approach, neural networks in general, are pattern recognisers. This allows neural 

networks to recognise general trends and interpolate from them. It must be noted 

however that neural networks cannot extrapolate beyond the n-dimensional 

bounds of the data with which it has been trained. This emphasises the importance 

of representative and plentiful data for meaningful interpolated results. 

Again, the feature descriptors were derived for the entire trail and then used as the 

basis of peak amplitude prediction. For prediction the entire trail was first proc­

essed to fmd the peak amplitude. Then the feature descriptors were applied only to 

the first 100 ms (20 samples) and the first 50 ms (10 samples) of the trail. To do 

this, the preprocessing package was used to truncate trails to appear as if they were 

only twenty or ten samples long. 

For optimal prediction, the best predictor would be the one which could use the 

fewest number of samples while maintaining sufficient accuracy. In the peak am­

plitude case, the number of samples used must be kept purposefully small to pre­

vent the peak from occurring within the data presented to the neural network. This 

was remedied in two stages. Firstly the statistics of position of peak occurrence for 

the entire trail were calculated. The results are found in the table below (Table 

6-5): 

Table 6-5 Amplitude peak statistics for whole trails 

Mean position of trail peak from trail commencement u- 59.85 ms 
Standard deviation of position of trail peak 0=27.8 

Maximum neak amplitude (all trails) -80 dBm 
Minimum peak amplitude (all trails) -127 dBm 

Mean peak amplitude (all trails) U - -109 dBm 
Standard deviation of peak amplitude (all trails) 0-6 
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It can be seen that the majority of peaks occur between 50 and 100 ms from trail 

commencement. Thus for prediction only the 50 ms data should be considered. 

There are still many trails which have a peak before 50 ms as the standard deviation 

shows. To ensure that the neural networks correctly learn to predict and not merely 

to measure the peak amplitude within the 10 samples, the input relating to the 

maximum amplitude within the 50 ms data window and the position of this ampli­

tude peak are removed from the input feature vectors by disabling the relevant 

input neurons. This forced other trail feature descriptors to be used rather than 

those directly correlated to the position and magnitude of the peak. 

Several hundred neural network architectures and paradigms were implemented 

including back-propagation neural networks, probabilistic neural networks and 

general regression neural networks. The following three neural network struc­

tures were the most successful: 

Back-propagation NN (lOBPNl.NND) 

• neurons: 26 input, 50 hidden layer 1, 50 hidden layer 2, 
1 output 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling 

• inputs eliminated: peak amplitude within 50 ms data and position of 
peak within 50 ms (X's on relevant input neurons Figure 6-35) 
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Back-propagation NN (lOBPN2.NND) 

• neurons: 26 input, 50 hidden layer 1, 50 hidden layer 2, 
1 output (linear neuron transfer function) 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling 

Back-propagation NN (lOBPN5.NND) 

• neurons: 26 input, 100 hidden layer 1, 
1 output (linear neuron transfer function) 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling 

• inputs eliminated: peak amplitude within 50 ms data and position of 
peak within 50 ms (X's on relevant input neurons - Figure 6-37) 
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Results 

NNtype 
NN file 
name 

Confusion 
matrix~ 

RMS error 
Overall 

classification 
rate 

Amplitude 
related 
inputs 

eliminated 

The following table (Table 6-6) indicates the performance of the three best neural 

networks using test data set to which they had not been previously exposed. 

Table 6-6 Trail peak amplitude prediction results 

50 ms input data 50 ms input data 50 ms input data 
Back-propagation Back-prop~ation Back-prop~ation 

IOBPNl.NND IOBPN2.NND IOBPN5.NND 

0.7342 0.7671 0.8356 

10"10 7% 8% 

73.42% 78.3% 83.8% 

Yes No Yes 

Peak amplitude prediction is a regression problem. The most useful instruments to 

monitor training and testing were the confusion rate matrix and the RMS error. 

Figure 6-34 shows a scatter plot of target output (x-axis) and actual output (y-axis) 

of the best performing back-propagation neural network (lOBPN5.NND). The 

solid line y = x corresponds to perfect correlation. 
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Figure 6-34 Scatter plot of target output (x-axis) and actual output 
(y-axis) for peak amplitude prediction. Solid line y = x is perfect 
correlation. (50 ms data) 
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Figure 6-35 lOBPNl.NND back-propagation neural network for peak 
amplitude prediction 
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Figure 6-36 lOBPN2.NND back-propagation neural network for peak 
amplitude prediction 
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Figure 6-37 lOBPN5.NND back-propagation neural network for peak 
amplitude prediction 
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Discussion 

The back-propagation neural network (1 OBPN5 .NND) performed amplitude pre­

diction a correlation coefficient of 0.8356 which is excellent, especially since it is 

only based on 50 ms of data and all amplitude related inputs were eliminated. The 

scatter plot conceals the extent of the strong correlation around y = x due to the 

number of overlapping data points. However it can be seen that the correlation was 

good across the entire range of peak amplitude levels (on the scatter plot, the data 

points are aligned in vertical bars due to the 1 dB measurement granularity). 

The results indicate that the performance of the single layered neural network was 

superior to the of the two-layered neural network in this application. It was noted 

that for this, and many regression-type problems, the use of a linear transfer func­

tion in the output neuron is advantageous. 

Inputs which had the greatest positive contribution to amplitude estimation were: 

the number of samples at peak amplitude and the line fit from the beginning of the 

trail to the peak. Several inputs had little effect, viz. the line fit to the entire trail 

(considered to be 50 ms long), the position where the rise to peak ends, the position 

where the fall begins, the position of the maximum difference to the straight line, 

and the parameters of the best parabolic fit to the concatenated trail. In practice, 

these small contributors can be eliminated from training, thus speeding up learning 

and enhancing accuracy. 
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6.3.4 Neural networks for trail duration prediction 

Prediction of the trail duration is a regression problem similar to the prediction of 

peak trail amplitude trail. Once again, the feature descriptors were derived for the 

entire trail and then used as the basis of prediction. For prediction the entire trail 

was fIrst processed to derive the duration. The feature descriptors were then ap­

plied to the fIrst 100 ms (20 samples) and the fIrst 50 ms (10 samples) of the trail. 

The preprocessing package was used to truncate trails to appear as if they were 

only twenty or ten samples long. 

As in the previous two prediction cases, the best predictor would be the one which 

could use the fewest number of samples while maintaining sufficient accuracy. 

However, it has been shown in chapter 4 that predicting duration based on the few 

initial samples would be difficult. Unfortunately, many trails, particularly the 

large ones such as rectifIed-sine overdense trails, repeat patterns many times be­

fore diffusion takes place. As such, there appears to be no way to predict how long 

the trails will be on the basis of 50 or 100 ms data alone. 

Several neural network architectures and paradigms were implemented including 

back-propagation neural networks, probabilistic neural networks and general re­

gression neural networks. The performance of the 100 ms data neural networks 

was so poor that no development of 50 ms data neural networks took place on the 

basis that they would not perform any better. 

An attempt to correlate the inputs with the target output yielded few feature de­

scriptors with a significant coefficient of correlation. A reduced training and test 

data set were produced by stripping the four most signifIcant inputs from the 26 

fIeld superset viz. the Bl parameter of the straight line fit to the trail, the position 

where the peak begins, the Bo parameter of the line fIt from the trail beginning to 

the peak, and the position where the rise to the peak ends. 
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The following two neural network structures were representative of the more suc­

cessful neural networks. Many neural networks failed to converge on any solution 

at all. 

Back-propagation NN (20BPNl.NND) 

• neurons: 4 input, 10 hidden layer 1, 1 output 

• reduced training and test data set (4 inputs only) 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling 

Back-propagation NN (20BPN2.NND) 

• neurons: 26 input, 58 hidden layer 1, 1 output 

• full training and test data set (26 inputs) 

• error propagation: back-propagation 

• learning rule: extended-delta-bar-delta 

• transfer function: hyperbolic tangent 

• training epoch size: 500 

• MinMax input-output scaling 
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Results 

None of the neural networks performed well, despite 100 ms worth of input data. 

The best performing neural network achieved a correlation of 0.38. Table 6-7 

below shows the results of the test data, to which they had not previously been 

exposed, on the two best neural networks. 

Table 6-7 Trail duration prediction results 

lOOms input data lOOms input data 
NNtvoe Back -propafZation Back-proPaJZation 

NN file name 20BPNl.NND 20BPN2.NND 
Confusion matrix correlation 0.208 0.380 

coefficient 
RMS error 8% 10% 

Overall classification rate 0.50 (meaningless) 0.50 (meaningless) 

Figure 6-38 shows a scatter plot of target OUtput (x-axis) and actual output (y-axis) 

of the best performing back-propagation neural network (20BPN2.NND). 
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Figure 6-38 Scatter plot of target output (x-axis) and actual output 
(y-axis) for duration prediction. Solid line y = x is perfect correlation. 
(100 ms data) 
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Figure 6-39 20BPNl.NND back-propagation neural network for dura­
tion prediction 
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Figure 6-40 20BPN2.NND back-propagation neural network for dura­
tion prediction 
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Discussion 

Neither of the better neural networks produced results of statistical significance. 

The best correlation coefficient of 0.38 fails to indicate any useful duration predic­

tion ability. The result is, however, not totally unexpected. 

It appears that duration prediction cannot be linked to parameters derived from 

amplitude features, e.g. peak amplitude, slopes, plateaus, maxima/minima etc. By 

comparing various trail types there are instances of both low and high signal-to­

noise ratio trails exhibiting short and long durations. For example, a small, but 

high velocity meteor provides an initial high peak signal-to-noise-ratio but does 

not last. A second meteor , much larger but of similar velocity also produces a large 

peak signal-to-noise ratio but lasts much longer owing to its greater mass. This 

cannot be simply determined from ground based measurements. Furthermore, the 

apparent signal-to-noise ratio is not representative of the true ionisation line 

density because of the relative geometry of the incident meteor with respect to the 

forward scatter link. A possible way around this difficulty is the use of a modular 

neural network structure in which a trail type prediction neural network prefilters 

the data for presentation to a duration neural network. This would allow groups of 

similar characteristic trails to learn duration data specific to them. Such a modular 

neural network would require considerable processing power. The amplitude data 

received would have to be processed to produce the trail features. After either 50 

or 100 ms, the features would be passed to a parallel array of 4 neural networks. 

The first would be a trail type predictor, and the other three an underdense-specific 

duration estimator, an overdense-specific duration estimator and an "other"-spe­

cific duration estimator. The first neural network would gate the three parallel 

neural networks depending on the trail type predicted. It is believed that such an 

arrangement may show more promise for duration prediction than the single 

mixed-type neural network considered here. 
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6.4 General conclusions 

The steps required to preprocess the raw meteor-burst communication data have 

been presented as well as relevant feature extraction procedures. It was observed 

that careful input conditioning and parameter selection greatly enhanced the abil­

ity ofthe neural networks to converge on useful solutions. Furthermore the quan­

tity of data is as important as the quality of data so that the statistical distribution of 

the input data matches the neural network application. For example, a neural net­

work with a small training data set with too few occurrences of rare events, will fail 

to recognise them in the learning procedure, owing to the cumulative update of 

weights. It was found that at least half of the neural network development time was 

spent on data preparation. 

Several neural networks were demonstrated which could perform classification 

and parametric prediction tasks. A neural network for trail type classification per­

formed underdense/overdense classification with a high degree of accuracy 

(97%). This was based on data from the whole trail. The result is important since 

it indicates that a neural network can perform the task of a rule-based expert system 

without explicit formalization of the rules. 

The neural network designed for trail type prediction used truncated trail data (50 

and 100 ms). It was able to correctly predict overdense trails 73% of the time, 

underdense trails 79010 of the time and "other" types 68% of the time. The signifi­

cance of these predictions is that for many trails they broadly predict the shape and 

amplitude of the coming trail, before the trail is completely formed. Furthermore, 

the positive results of testing the trail type prediction neural networks on data from 

another meteor-burst communication system showed that the neural networks had 

trained on largely invariant features of the trails rather than on data specific to a 

single link. 

The application of neural networks to peak trail amplitude prediction was also 

shown to be highly successful (83.56% correlation between predicted and actual 
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peak amplitudes). The success of these neural networks shows that sufficient fea­

tures for peak amplitude prediction are present in the early trail samples. In devel­

opment of these neural networks, steps were taken to ensure that the neural 

networks actually estimated the amplitude and didn't merely measure it. This 

included using only 50 ms worth of data and the elimination of inputs related to 

peak amplitude and position within the 50 ms data. 

Finally, neural networks designed to predict trail duration were trained on 100 ms 

data sets. Despite numerous efforts to get the neural networks to converge on a 

good solution, the best that was achieved was a correlation of 0.38 between the 

predicted and actual trail duration. A single neural network is unable to resolve 

dichotomies such as both large and small signal-to-noise ratio trails exhibiting 

similar durations and it is proposed that a modular neural network approach be 

taken to solve this problem. 

In conclusion, novel methods of classifying whole trails and predicting trail type 

and peak trail amplitude have been presented. They represent a successful ad­

vance on previous techniques such as rule-based expert systems. They have the 

potential to be used as predictors in open-loop adaptive data rate schemes and for 

trail pre-classification in military and trucking applications. 
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Chapter 7 

Conclusion 

7.1 Discussion and conclusions 

The standard technology for adaptive data rate meteor-burst communications is a 

full-duplex closed-loop decision-feedback system. The only alternative to closed­

loop decision feedback is open-loop predictive control of data rates. This is 

achieved by measuring the channel for a few milliseconds, predicting its charac­

teristics over its lifetime, and then transferring data at a rate commensurate with the 

predictions. This method has previously been unused because of a lack of ade­

quate predictors of trail characteristics. This thesis examined several possibilities 

for such predictors. 

In Chapter 2, current half -duplex and full-duplex meteor-burst protocols were re­

viewed. An adapted form of the go-back N ARQ protocol was proposed for use in 

an half-duplex open-loop predictive manner. This open-loop protocol has no ex­

plicit decision-feedback path for data rate adaptation between sender and receiver. 

Instead, channel predictors are used to estimate optimal data rates on a trail-by-trail 

basis. This scheme, while by no means optimal, provides a considerable improve­

ment over fIxed-rate systems. It is ideally suited to telemetry applications with 

short messages in which the signal-to-noise ratio fluctuates little and to low-cost 

half-duplex equipment. 

The main thrust of the research was directed towards the investigation of suitable 

predictors which would give an indication of future trail characteristics based on 
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data measured during the first few milliseconds of a trail's lifetime. Two different 

prediction techniques were developed: early fast Doppler to predict large over­

dense trails, and artificial neural networks to predict trail types, peak trail ampli­

tude and trail duration. The data for both techniques was provided by the 

measurement system described in Chapter 3. 

The early fast Doppler phenomenon was investigated in Chapter 4 for use as a 

predictor from two angles, viz. an heuristic and a statistical approach. The statisti­

cal correlation of early fast Doppler and trail parameters such as peak amplitude 

and duration yielded a poor result, i.e. there appeared to be no direct relationship 

between early fast Doppler and trail parameters. However, the heuristic approach 

of detecting the presence of early fast Doppler as an indication of trail type proved 

successful. It was found that early fast Doppler occurs at the commencement of 

roughly 30% of the large signal-to-noise ratio, long duration overdense trails. De­

spite the relatively low count of such trails each hour, they comprise a large frac­

tion of the hourly channel duty cycle. A novel technique using the presence or 

non-presence of early fast Doppler to toggle the data rate between a standard rate 

and a higher rate (for the long duration and/or large amplitude trails with early fast 

Doppler) was proposed. This would allow roughly 20% of the hourly duty cycle 

to benefit from a higher data rate. Such a system would be both cheap and simple 

to implement. This method would fmd application in cheaper bi-rate half-duplex 

remote stations such as are used for telemetry. 

For a multi-rate adaptive data-rate scheme without decision feedback, a more so­

phisticated approach was presented. Chapters 5 and 6 detailed a novel neural net­

work solution to the problem of trail prediction and classification. Using features 

extracted from the first 50 or 100 ms of the trail amplitude, neural networks were 

developed to predict trail characteristics (trail type, peak trail amplitude and trail 

duration). Several hundred neural networks were developed and the results of the 

best networks presented. 
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Trail type prediction based on 50 ms worth of data from the commencement of the 

trail was very successful. The correct prediction of under dense trails was 78.95%, 

overdense trails 66.45% and "other" trail types 63.80%. It was noted that the clas­

sification rate would be considerably improved through the use of thresholding. 

There was sufficient tolerance between each trail category to enable this technique 

to bring the classification rate closer to 100%. 

The success of neural networks for trail type prediction may open up many poten­

tial avenues of application. For example, if the first 50 ms can determine the trail 

type based on measurement of probe amplitude, then a remote unit operating under 

covert conditions could decide to use underdense trails rather than overdense trails 

which have a higher probability of interception owing to their large-footprint. 

This philosophy could be extended to cover other propagation modes such as spo­

radic E. A similar condition may apply in meteor-burst truck telemetry where 

underdense trails alone may be used to improve spatial diversity in a dense net­

work environment. Here again, fore-knowledge oflarge overdense trails by either 

early fast Doppler or neural network technique would be extremely valuable. 

Peak amplitude prediction yielded a best correlation between predicted and actual 

peak amplitude of 0.836 which was highly significant. This singular feature is of 

great value as an estimator of trail signal-to-noise ratio and hence optimum data 

rate. Instead of just using a binary toggle of data rate, the neural peak amplitude 

predictor would provide a far fmer estimate of the trail magnitude. Even if this 

were divided into five bands say, very small, small, medium, large and very large 

amplitude, would provide a closer "fit" to the actual trail signal-to-noise ratio than 

the sub-optimal bi-rate method. 

Prediction of trail duration was poor with a correlation of 0.380 for 100 ms worth 

of data. It was suggested that a modular neural network approach be taken in 

future for duration prediction instead of the single neural network approach. Four 

neural networks would be created, three of which would be optimised for duration 
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prediction on underdense, overdense and other trail types respectively, and the 

fourth, a trail type prediction neural network, used to gate their outputs. 

The positive results from the trail type and peak trail amplitude neural networks 

show that they would make excellent predictors in an open-loop half-duplex sys­

tem. As a solution, it would be more costly to implement than the early fast Dop­

pler method, but would provide information for multiple data rates to suit 

individual trail signal-to-noise ratios better. The neural network based predictors 

also generalised extremely well. They were trained on a particular test link, but 

when tested on another twice as long, their performance was degraded by a mere 

5%. This showed that the neural networks had learnt features of the trails them­

selves rather than features of a specific link. Provided the deployed systems are not 

vastly different, a neural network trained on one system should operate on a second 

with minimal error. 

It is the author's belief that this is the first successful development of practical 

meteor-burst communication predictors and that the aims of the thesis have been 

met using two novel predictive techniques. 

7.2 Future possibilities 

Many artificial intelligence solutions are frequently a fusion of methods. For ex­

ample, it may prove advantageous to combine both early fast Doppler and neural 

network methods for prediction by means of a hybrid neural network and rule­

based system. This combination would enhance decision making by including 

both conditional logic rules and neural network regression analysis. Other inputs 

such as link parameters and conditional probabilities such as diurnal variations 

could also then be applied. 

Similarly, the panel-of-experts approach of a modular neural network, may yield 

even further performance benefits. Each neural network could be trained on a 
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smaller subset of the total data to enhance individual neural network accuracy. 

Their outputs would then be combined either by another neural network or by 

means of a rule-based system. 

Another useful development may be an unsupervised learning neural network to 

classify trails based on their measured characteristics rather than using the decision 

of the TrailStar rule-based expert system. The benefit would be that similar trails, 

from the point of view of their descriptive feature vectors, would be clustered 

together, rather than forcing groupings according to strict underdense/overdense 

rule-based classifications. This would extend the classification of trails to "useful" 

and "non useful" trails on the basis of signal-to-noise ratio and duration and not on 

their shape features. 
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"You're kidding! I was struck twice by 
lightning too!" 

Alien(ated) rock on mayor's roof 
PORT ELIZABETH: Two rocks believed to be 
meteorites have been found in George - one of 
them on the mayor's roof. 

Workmen cleaning the roof of a business be­
longing to mayor Mr Louis van Rensburg, found 
one rock, which struck the roof with such force 
it left a cut in the zinc roof. The lump looks like 
a conglomerate of rock and is about the size of 

__ an egg. 

The other stone - which looks like solid metal­
was found in the garden of a local resident. 

Both stones will be sent to the · Council for 
Scientific and Industrial Research (CSIR), for 
analysis. . -

However the curator at the George Museum, 
Johan van Wyk believes its possibly a chip of 
fire block that fell from a jet and landed on the 
mayor's roof.-ECNA 
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