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Abstract
Introduction: Cross-sectional methods can be used to estimate HIV incidence for surveillance and prevention studies. We
evaluated assays and multi-assay algorithms (MAAs) for incidence estimation in subtype C settings.
Methods: We analysed samples from individuals with subtype C infection with known duration of infection (2442 samples
from 278 adults; 0.1 to 9.9 years after seroconversion). MAAs included 1-4 of the following assays: Limiting Antigen Avidity
assay (LAg-Avidity), BioRad-Avidity assay, CD4 cell count and viral load (VL). We evaluated 23,400 MAAs with different assays
and assay cutoffs. We identified the MAA with the largest mean window period, where the upper 95% confidence interval (CI)
of the shadow was <1 year. This MAA was compared to the LAg-Avidity and BioRad-Avidity assays alone, a widely used LAg
algorithm (LAg-Avidity <1.5 OD-n + VL >1000 copies/mL), and two MAAs previously optimized for subtype B settings. We
compared these cross-sectional incidence estimates to observed incidence in an independent longitudinal cohort.
Results: The optimal MAA was LAg-Avidity <2.8 OD-n + BioRad-Avidity <95% + VL >400 copies/mL. This MAA had a mean
window period of 248 days (95% CI: 218, 284), a shadow of 306 days (95% CI: 255, 359), and provided the most accurate
and precise incidence estimate for the independent cohort. The widely used LAg algorithm had a shorter mean window period
(142 days, 95% CI: 118, 167), a longer shadow (410 days, 95% CI; 318, 491), and a less accurate and precise incidence esti-
mate for the independent cohort.
Conclusions: An optimal MAA was identified for cross-sectional HIV incidence in subtype C settings. The performance of this
MAA is superior to a testing algorithm currently used for global HIV surveillance.
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1 | INTRODUCTION

Accurate methods for estimating HIV incidence are critical for
HIV surveillance and for evaluating the effectiveness of HIV
prevention efforts [1]. Traditional longitudinal cohort studies
are costly and may not include or retain individuals at high
risk for HIV acquisition [2–4]. This is particularly true in south-
ern Africa, a subtype C endemic area [5] with high rates of
population migration [6].
Cross-sectional HIV incidence estimation offers an alterna-

tive to traditional cohort studies. Cross-sectional incidence
estimation uses biomarkers to identify individuals who are
likely to have recent HIV infection [4]. Most methods include
serologic assays that measure the antibody response to HIV

infection [4]. Use of a single assay approach to estimate HIV
incidence has been problematic, since viral suppression and
AIDS can cause these tests to have values that are associated
with recent infection [7]. In contrast, multi-assay algorithms
(MAAs) that combine serologic and non-serologic assays, such
as viral load (VL) and CD4 cell count, have been identified
that provide accurate incidence estimates in subtype B set-
tings [8–10]. These MAAs have been used to estimate HIV
incidence in clinical trials and cohort studies [10–13].
Many MAAs used in previous studies included the BED cap-

ture enzyme immunoassay (EIA) [14], which is being phased
out. A limiting antigen avidity assay (HIV-1 LAg-Avidity EIA,
SEDIA Biosciences Corporation Portland, OR and Maxim
Biomedical, Bethesda, MD) [15], is now widely used for HIV
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incidence estimation in surveillance and research studies. The
manufacturers of the LAg-Avidity assay recommend using the
assay in an algorithm where individuals with VL
<1000 copies/mL are classified as having non-recent infection
[16]. This algorithm is widely used to estimate HIV incidence
in cross-sectional surveys [17–19], and is currently being used
in large surveys conducted as part of the PEPFAR-supported
Population-based HIV Impact Assessment (PHIA, http://icap.co
lumbia.edu/global-initatives/the-phia-project/). Many countries
included in these surveys are in subtype C endemic areas [5].
HIV incidence estimates obtained using this approach were
recently presented for Zimbabwe, Malawi and Zambia (Con-
ference on Retroviruses and Opportunistic Infections; http://
www.croiwebcasts.org/p/2017croi/croi33590).
In this report, we evaluated the performance of assays and

MAAs for HIV incidence estimation in subtype C settings. An
optimal subtype C MAA was identified using pre-determined
performance criteria. We compared the performance of this
MAA to five other testing algorithms (the LAg-Avidity assay
alone, the BioRad-Avidity assay alone, a widely-used LAg algo-
rithm, and two MAAs previously optimized for subtype B set-
tings).

2 | METHODS

2.1 | Ethics statement

Written informed consent was obtained from study partici-
pants and studies were reviewed and approved by relevant
institutional review boards. This study used stored samples
from individuals who consented to future use of their speci-
mens for research. No new samples were collected for this
work. The institutional review board of the Johns Hopkins
University approved the study of cross-sectional incidence
testing using stored study samples. The research was con-
ducted in accordance with the principles expressed by the
Declaration of Helsinki.

2.2 | Samples used for analysis

The sample set used to identify an optimal MAA included
2442 samples from 278 participants with known duration of
infection (0.1 to 9.9 years after seroconversion, Table 1). The
samples were obtained from three studies that evaluated
interventions for HIV prevention. The first study evaluated a
vaginal microbicide in KwaZulu Natal, South Africa (CAPRISA)
[20]. The second study evaluated hormonal contraception and
HIV infection in Zimbabwe and Uganda (Family Health Inter-
national [FHI] 360); all but three of the samples from this
study were from Zimbabwe. The third study evaluated herpes
simplex virus type 2 treatment in Zambia (HIV Prevention Tri-
als Network [HPTN] 039) [21]. Participants in the three stud-
ies were HIV-uninfected at enrollment and were tested for
HIV infection at intervals ≤6 months; HIV RNA testing was
performed retrospectively at the visit prior to HIV serocon-
version to determine if participants had acute HIV infection at
that visit.
An additional sample set was obtained from an independent,

longitudinal cohort study that evaluated the impact of condi-
tional cash transfer on HIV acquisition in young women in

South Africa (HPTN 068) [22]. The study was conducted from
2012 to 2015. Samples collected in 2014 were used for
cross-sectional incidence estimation; results were compared to
the observed longitudinal incidence in the cohort. This analysis
included 1360 participants (1269 HIV-uninfected and 91 HIV-
infected participants; 61 participants were infected in 2013 or
earlier).

2.3 | Laboratory methods

The LAg-Avidity assay was performed according to manufac-
turer’s instructions [15] with one modification. Samples with
values <2.0 normalized optical density units (OD-n) were
tested in duplicate. The Johns Hopkins modified BioRad-Avidity
assay is based on the Genetic Systems 1/2 + O ELISA (Bio-Rad
Laboratories, Redmond, WA); testing was performed with this

Table 1. Study cohorts

Characteristic

Cohort

CAPRISA FHI-360 HPTN 039

Country of origin South Africa Zimbabwea Zambia

Number of samples 518 1839 85

Number of unique subjects 90 162 25

Range of duration of

infection in years

0.06 to 3.7 0.04 to 9.9 0.15 to 0.8

Mean samples per subject

(range)

6 (1 to 7) 12 (1 to 20) 4 (1 to 4)

Female sex, % of subjects 100% 100% 100%

Number samples from

subjects

on ART (%)

12 (2.2%) 220 (11.3%) 0 (0%)

Duration of infection in years

0.0 to 0.5 159 306 42

0.5 to 1.0 173 262 43

1.0 to 2.0 88 448 0

2.0 to 3.0 76 105 0

3.0 to 5.0 22 347 0

≥ 5.0 0 371 0

CD4 cell count

>500 228 685 54

500 to 200 271 822 26

<200 14 104 0

missing 5 228 5

Viral load (copies/mL)

>10,000 260 560 37

10,000 to 1000 161 278 26

<1000 92 227 19

missing 5 774 3

aAll participants from South Africa, Zimbabwe and Zambia were
assumed to have subtype C infection based on the prevalence of sub-
type C in those countries. The FHI-360 cohort included one individual
from Uganda with three samples. That individual was infected with
HIV subtype C based on subtype assessment of the pol region.
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assay as previously described [23]. Briefly, samples were
diluted 1:10 and tested in duplicate. Diluted samples were
incubated for 30 minutes at 37°C with or without the chaotro-
pic agent, diethylamine (DEA; diluted in deionized water). The
avidity index (AI) is calculated as the result for the DEA-treated
well divided by the result for the non-treated well, times 100.
LAg-Avidity and BioRad-Avidity testing was performed at Johns
Hopkins University in Baltimore, Maryland. HIV viral load and
CD4 cell count data were obtained from the primary studies.

2.4 | Statistical methods

The statistical methods used in this report are outlined below,
and are described in more detail in previous publications
[8,9,24]. A S3 provides further information, including a
description of statistical adjustments that were used to
account for missing data.

2.4.1 | Identification of assay-positive and MAA-
positive samples

Assays and MAAs were used to identify individuals who were
likely to have been infected near the time of sample collection
(assay- or MAA-positive). For individual assays (LAg-Avidity
assay, BioRad-Avidity assay), samples were classified as assay-
positive if the test result was above (VL and CD4) or below
(LAg-Avidity and BioRad-Avidity) cutoffs.
A range of possible cutoffs were evaluated. Twenty-six cut-

offs were evaluated for the LAg-Avidity assay: 0.5 OD-n to 3
OD-n in increments of 0.1 OD-n. Eight cutoffs were evaluated
for the BioRad-Avidity assay: 30%, 35%, 40%, 80%, 85%, 90%,
95% and 100% Avidity Index (AI); BioRad-Avidity cutoffs
between 40% and 80% were not evaluated, since the assay
has poor reproducibility in this range. Eight cutoffs were eval-
uated for CD4 cell count: 50, 100, 150, 200, 250, 300, 400
and 500 cells/mm3. Nine cutoffs were evaluated for viral load:
400, 600, 800, 1000, 1500, 2000, 3000, 5000 and
10,000 copies/mL. The cutoff of 400 copies/mL HIV RNA was
chosen because that was the lower limit of detection for the
viral load assay used for analysis. A viral load cutoff of
1000 copies/mL is another important variable to consider
when evaluating MAAs, since it is the lower limit of detection
for viral load testing from dried blood spots (DBS). For MAAs,
all possible combinations of these cutoffs were evaluated.

2.4.2 | Performance characteristics of assays and
MAAs

The performance characteristics of individual assays (LAg-
Avidity alone; BioRad-Avidity alone) and MAAs were evaluated
by estimating the proportion of samples classified as assay- or
MAA-positive, as a function of time after seroconversion, [de-
noted /(t)]. The values of /(t) depend on the assay/MAA being
evaluated. Estimating this function required first imputing
each participant’s seroconversion date, which is only known to
be sometime in the interval between the last HIV-negative
visit and first seropositive visit (the “seroconversion window”).
If HIV RNA testing indicated that the participant was acutely
infected at the last HIV-negative visit, the seroconversion date
was estimated as 28 days after that visit. For all participants,
infection times were sampled from a uniform distribution over

the seroconversion window. Logistic regression models with
cubic polynomials were then used to estimate /(t) for each
assay or MAA. The seroconversion dates were imputed 1000
times per subject, and the coefficients of the resulting /(t)
curves were averaged.
The estimated /(t) function was then used to calculate the

mean window period (i.e. the average duration of time an indi-
vidual was MAA positive) and the shadow, which measures
how far back in time incidence is measured [25]. Confidence
intervals (CIs) for these two characteristics were obtained
using a bootstrap procedure, which was stratified by cohort
and clustered by individual to account for correlations between
samples drawn from the same person over time [8]. An assay
or MAA was considered suitable for HIV incidence estimation
only if the predicted proportion of individuals classified as
assay- or MAA-positive 9.5 years after seroconversion was
<0.001. An optimal MAA was selected using the following cri-
teria: highest estimated mean window period among the MAAs
that had an upper 95% CI for the shadow of <365 days. CIs
for differences between the mean window period and shadow
in MAAs were also constructed by bootstrapping.
The statistical accuracy of an algorithm for determining cur-

rent incidence can be assessed by the variance and bias of
the incidence calculated from the algorithm [25]. We have
previously shown that the variability is minimized by a crite-
rion that selects the algorithm with the largest mean window
period. However, that criterion must be balanced by the
desire to estimate current incidence rather than incidence in
the distant past. We have shown that the shadow can be used
to determine how far back in the past incidence is measured
[7,9,25]. To estimate incidence within 1 year of the survey, we
required that the upper 95% CI for the shadow of each algo-
rithm was less than 1 year. Among algorithms that met this
requirement, we selected the algorithm that had the largest
mean window period [7,9,25].
Individual assays and MAAs were further evaluated by

estimating HIV incidence using cross-sectional data from an
independent cohort study (HPTN 068). This sample set was
only used to compare cross-sectional incidence estimates
obtained with MAAs to the incidence observed in this
longitudinal cohort. In this analysis, the cross-sectional
incidence estimator was (in % per year)ICS ¼ number of
samples classified as assay or MAA positive=ðnumber of HIV-
negative samplesÞ�ðmean window period in yearsÞ � 100%
[7,26]. The CIs calculated for these estimates accounted for
uncertainty in the mean window periods [3]. The percent
error of the cross-sectional incidence estimates was deter-
mined by comparing these results to the observed longitudi-
nal incidence estimate in the HPTN 068 cohort (Icohort),
using the formula Error ¼ Ics�Icohortj j

Icohort
� 100% . The two avidity

assays and four MAAs were included in this evaluation
(Figure 1).

3 | RESULTS

A set of 2442 subtype C samples from individuals with known
duration of infection was used to evaluate assays and MAAs
for cross-sectional HIV incidence estimation in subtype C set-
tings. A total of 23,400 different algorithms were evaluated,
687 of these MAAs did not converge to zero during the
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period evaluated. Of the 22,713 MAAs that did converge,
3213 were excluded because their shadow was >1 year. The
window periods and shadows for different testing algorithms
evaluated are presented in the S1. Additional information for
selected algorithms is presented in the S2. Among the remain-
ing 19,500 algorithms, the one with the largest window period
and highest single serologic cutoffs were further evaluated.
For individual assays, the highest cutoff values that yielded
shadows with an upper 95% confidence limit of <1 year were
0.7 OD-n for the LAg-Avidity assay and 40% AI for the
BioRad-Avidity assay.
Six testing algorithms were compared (Figure 1): (A) the

LAg-Avidity assay alone with an optimized assay cutoff (>0.7
OD-n); (B) the BioRad-Avidity assay alone with an optimized
assay cutoff (<40% AI); (C) a widely used LAg algorithm; (D) a
2-assay MAA previously optimized for incidence estimation in
subtype B settings [24]; (E) a 4-assay MAA previously opti-
mized for incidence estimation in subtype B settings [24]; and
(F) the optimal subtype C MAA identified in this report. The
optimal subtype C MAA was selected from among 23,400
MAAs that included 1 to 4 assays with different assay cutoffs.
The optimal MAA, based on the longest window period and a
shadow <1 year, included the LAg-Avidity assay, the BioRad-
Avidity assay, and viral load (Figure 1F). Figure 2 shows the
proportion of samples classified as assay- or MAA-positive as
a function of time after seroconversion for each testing algo-
rithms; the proportion converged to zero by 5 years for all six
algorithms.
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Figure 1. Assays and multi-assay algorithms for cross-sectional HIV incidence estimation. The figure shows the assays and cutoff used for
six different testing methods: two individual assays, the LAg-Avidity assay (A) and the BioRad-Avidity assay (B), the current testing algorithm
recommended for the LAg-Avidity assay (C), two MAAs previously optimized for incidence estimation in subtype B settings (D and E), and
the optimal subtype C MAA identified in this report (F). The units used for the assays were: LAg-Avidity assay: normalized optical density
units (OD-n): BioRad-Avidity assay: avidity index (%); viral load: HIV RNA copies/mL; CD4 cell count: cells/mm3. Individuals with the follow-
ing results were classified assay- or MAA-positive: (A) LAg-Avidity <0.7 OD-n; (B) BioRad-Avidity <40%; (C) LAg-Avidity <1.5 + viral load
(VL) >1,000; (D) LAg-Avidity <2.8 OD-n + BioRad-Avidity <40%; (E) LAg-Avidity <2.9 OD-n + BioRad-Avidity <85% + VL >400 +
CD4 > 50; (F) LAg-Avidity <2.8 OD-n + BioRad-Avidity <95% + VL >400.
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Figure 2. Modeled probabilities of an individual being classified as
assay- or MAA-positive as a function of duration of infection. The
figure shows modeled probability curves of samples being classified
as assay-positive using the LAg-Avidity assay or BioRad-Avidity
alone, or multi-assay algorithm (MAA)-positive using one of four
MAAs.
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The performance characteristics of the six testing algo-
rithms are summarized in Table 2. The optimal subtype C
MAA had the highest mean window period: 248 days (95%
CI: 215, 282); this was significantly higher than the mean win-
dow period for a LAg-viral load algorithm (algorithm C):
142 days (95% CI: 118, 167). The shortest mean window per-
iod was obtained for the LAg-Avidity assay alone: 71 days
(95% CI: 57, 86). The shadows for five of the six testing algo-
rithms were <1 year, and the CIs for many of the algorithms
overlapped. The shadow for the current LAg algorithm (C)
was 410 days (95% CI: 318, 491), which was greater than a
year. The optimal MAA (F) and the current LAg algorithm (C)
had overlapping CIs for their shadows; however, the window
period was significantly larger for the optimal MAA.
Each of the six testing algorithms was also used to estimate

HIV incidence in an independent cohort, HPTN 068. During
the 2014 survey in this study, the observed incidence based
on longitudinal follow-up (seroconversion) was 1.9% per year
(95% CI: 1.3, 2.7). The number of individuals classified as
recently-infected for each algorithm was: A: 9, B: 13, C: 12, D:
13, E: 17 and F: 18. The point estimates of incidence obtained
using the six testing algorithms ranged from 2.1% to 3.7%
(Table 2); these estimates were all higher than the observed
longitudinal incidence estimate. The optimal subtype C MAA
had the most accurate incidence estimate (2.1%, 95% CI: 1.2,
3.5), which was within 10% of the observed longitudinal inci-
dence. This MAA also provided the most precise incidence
estimate, with the smallest CIs.

4 | DISCUSSION

We used a large set of subtype C samples from individuals
with known duration of infection to identify an optimal MAA
for HIV incidence estimation in subtype C settings. The opti-
mal subtype C MAA, which included the LAg-Avidity assay, the
BioRad-Avidity assay, and viral load, had a mean window per-
iod of 248 days. This is >100 days longer than the mean win-
dow period for a LAg algorithm (LAg-Avidity assay <1.5 OD-n
+ viral load >1000), which is widely used for incidence esti-
mation in surveillance and other studies. Longer window peri-
ods for incidence assays identify a greater number of recently

infected individuals and provide more accurate incidence esti-
mates. In our study, Algorithm A identified nine recently-in-
fected subjects in the HPTN 068 confirmation cohort, while
Algorithm F identified eighteen. Algorithms with larger win-
dow periods would allow for greater precision of incidence in
national surveys, the potential for regional analysis within
these surveys, and the analysis of factors associated with
recent infection. The optimal subtype C MAA had a shadow
<1 year, indicating that it estimates incidence for a period
within a year of sample collection. This optimal clade C algo-
rithm provided the most accurate and most precise estimate
of incidence in an independent, longitudinal cohort. Because
the optimal MAA does not include CD4 cell count, it can be
used to estimate incidence using stored plasma or serum sam-
ples. The PEPFAR PHIA surveys collect data for the LAg-Avid-
ity assay and viral load; the optimal subtype C MAA identified
in this report could be used to refine incidence estimates from
those studies by testing a subset of the stored samples with
the BioRad-Avidity assay (i.e. those with LAg-Avidity <2.8 and
viral load >400). The mean window period for the optimal sub-
type C MAA is 1.75 times longer than the window period for
the current LAg algorithm. Therefore, this MAA would identify
more individuals with recent infection and would provide
more precise incidence estimates. For these reasons, it may
be possible to use the optimal subtype C MAA to obtain
regional incidence assessments in the PHIA surveys or to
compare incidence among various groups within the survey
populations. The longer mean window period of the optimal
subtype C MAA would also allow for smaller sample sizes in
clinical trials evaluating interventions for HIV prevention [27].
Other studies have used the mean duration of recent infec-

tion (MDRI) to assess performance of methods for cross-sec-
tional incidence estimation. The MDRI and mean window
period are determined by the area under the probability
curve. Both determine the average time that individuals
appear to be recently infected. The values for the MDRI and
mean window period differ since the MDRI curve is typically
truncated at two years after seroconversion; in contrast the
mean window period is calculated as the area under the
entire curve. The mean window period we calculated for the
current LAg algorithm in this study (142 days) was nearly
identical to the 2 year MDRI for this algorithm that was

Table 2. Performance of HIV incidence testing algorithms

Algorithm Window perioda Shadowa HPTN 068 Estimateb Errorc

A LAg <0.7 71 (57, 86) 237 (162, 324) 3.7 (1.6, 7.2) 92%

B BioRad <40 151 (135, 169) 146 (112, 181) 2.5 (1.3, 4.3) 30%

C LAg <1.5 + VL >1,000 142 (118, 167) 410 (318, 491) 2.4 (1.2, 4.4) 28%

D LAg <2.8 + BioRad <40 126 (108, 144) 152 (114, 193) 3.0 (1.6, 5.2) 56%

E LAg <2.9 + BioRad <85 + VL >400 + CD4 > 50 191 (168, 217) 201 (159, 245) 2.6 (1.5, 4.2) 35%

F LAg <2.8 + BioRad <95 + VL >400 248 (215, 282) 306 (256, 356) 2.1 (1.2, 3.4) 10%

aThe window period and shadow are shown for each testing algorithm (A-F); these variables are presented in days with 95% confidence intervals
(CI) in parentheses. Units for assay cutoffs are: LAg-Avidity assay: normalized optical density units (OD-n); BioRad-Avidity assay: avidity index (%);
viral load: HIV RNA copies/mL; CD4 cell count: cells/mm3.
bCross-sectional estimates of annual HIV incidence in HPTN 068 in the 2014 survey year are shown for each testing algorithm; 95% CI are
shown in parentheses. The observed longitudinal incidence in HPTN 068 in the 2014 survey was 1.9% (95% CI: 1.3, 2.7).
cThe error of the cross-sectional HIV incidence estimate (compared to observed longitudinal incidence) is shown for each testing algorithm.
LAg: LAg-Avidity assay; BioRad: BioRad-Avidity assay; VL: viral load; CD4: CD4 cell count.
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calculated by the Consortium for the Evaluation of the Perfor-
mance of HIV Incidence Assays (CEPHIA; 141 days, 95% CI:
123 to 160 days) [28]; the CEPHIA estimate was based on a
sample set that was not limited to subtype C samples. A
recent report cited a much lower MDRI for the LAg-Avidity
assay (101 days) [29].
In this report, we also used the subtype C sample set to

analyse the performance of two MAAs that were previously
optimized for incidence estimation in subtype B settings in
low, medium and high incidence settings with different study
populations [9]. The optimal subtype B MAA provided a mean
window period for the subtype C sample set that was longer
than the mean window period for the widely-used LAg algo-
rithm and had shadows <1 year. In contrast, the current LAg
algorithm had a shadow of 410 days, indicating that it esti-
mates incidence for a period more than a year before sample
collection. The annual incidence estimate obtained for the
independent cohort study using the current LAg algorithm
was more accurate and more precise than the estimates
obtained using subtype B MAAs. However, it was less accu-
rate and less precise than the incidence estimate obtained
using the optimal subtype C MAA.
One limitation of this study is that all of the participants

included in this report were women. Furthermore studies are
needed to evaluate MAAs in subtype C cohorts that include
men. The incidence in the HPTN 068 cohort was also fairly
high (1.9% per year) and the population had a relatively low
HIV prevalence (6.7%). In addition, the confidence intervals of
all six algorithms overlapped, which was not surprising as the
results were not statistically independent. Simulation studies
could be used to validate the optimal MAA identified in this
report under conditions that vary HIV incidence [11]. Theoreti-
cally, algorithms with shadows >1 year may not perform well
in settings with decreasing and increasing incidence, since they
would over- and under-estimate incidence, respectively [30].
Confirmation cohorts with such conditions should be evaluated
to further validate cross-sectional incidence algorithms.
Furthermore research is also needed to identify MAAs for

use in settings with other prevalent HIV subtypes, with circu-
lating recombinant forms, and with mixed HIV strains (e.g. in
Asia, where HIV-1 B, CRF01_AE and many B-C recombinant
forms are observed [31]). Development and validation of
MAAs for use in East African settings may be particularly diffi-
cult, since individuals with subtype D infection have been
shown to have delayed antibody maturation compared to
other subtypes [32,33]. We previously demonstrated that HIV
diversity is a useful biomarker for cross-sectional incidence
estimation [34]. MAAs that include a combination of serologic
measures, diversity measures, and other non-serologic
biomarkers (e.g. viral load) may be needed to obtain accurate
incidence estimates in settings that include a high proportion
of subtype D infections. Furthermore, validation of MAAs
using DBS samples is critical, since DBS samples are easier to
collect and prepare than blood samples obtained by phle-
botomy. An initial study demonstrated that similar results
were obtained for serological incidence assays using plasma
and DBS samples stored at �80°C [35]. Additional studies are
needed to determine if the storage conditions of DBS samples
impacts the performance of serologic incidence assays.
In summary, we used a large sample set from individuals

with known duration of infection to identify an optimal MAA

for cross-sectional incidence estimation in subtype C settings.
This MAA has a mean window period of 248 days and pro-
vided accurate and precise incidence estimates for an inde-
pendent cohort. Because this MAA can be performed using
stored specimens without CD4 cell count data, it could be
used to refine incidence estimates from large population-level
surveys, such as those from the PEPFAR PHIA programme,
with minimal additional testing. Furthermore studies are
underway to evaluate this MAA in diverse study populations
with varied HIV incidence.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article:
Figure S1. THE figures shows the shadow and mean window
period for 23,997 ALgorithms evalated.
Table S1. The table shows the assay cutoffs and performance
characteristics of testing algorithms A through F, and 26 addi-
tional testing algorithms. VL: viral load (copies/mL); CD4: CD4
cell count (cells/mm3); values for the window period and sha-
dow are shown in days
Appendix S1. Supplementary material.
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