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ABSTRACT 

It is believed that the process-based model 3-PG (Physiological Principles Predicting 

Growth; Landsberg and Waring, 1997) can potentially play a useful role within South 

African forestry, both as an operational and a strategic tool. Strategic applications 

may include the prediction of potential productivity on a site-by-site basis; broad-

scale productivity estimates based on remote sensing and the spatial application of 

3-PG; identification of production constraints; and estimation of carbon fluxes to help 

address sustainability issues. Operationally, 3-PG could complement empirically-

based models or be used in conjunction with them as a hybridised product. 

The challenges of this study were therefore to see whether it is possible to adapt 3-PG 

to predict the growth and yield of E. grandis under South African conditions, test that 

model predictions are consistent with observed growth data and are biologically 

reasonable, and to assess the practicality of using 3-PG as either a strategic or 

operational tool. The main emphasis of this study was to understand the internal logic 

of 3-PG and how physiological processes are represented, and to develop methods to 

objectively parameterise and initialise the model. Thereafter a detailed model 

validation study was performed, ending off with selected potential applications of 

3-PG within the South African context. 

The sensitivity of predicted stand volume (SV) and leaf area index (LAI) to the values 

of the species-specific parameters in 3-PG was examined. These analyses enabled the 

development of three distinct parameter sensitivity classes: insensitive parameters (i.e. 

those that can be varied widely without affecting the outputs studied), sensitive 

parameters (i.e. those whose value strongly affects the outputs, and non-linear 

parameters (i.e. those for which the outputs depend in a non-linear manner on the 

parameter value). 

Minimum data requirements for the parameterisation and initialisation of 3-PG are 

considered in detail. Conventional methods used for the parameterisation of models, 

specifically 3-PG, are reflected upon. An automated parameter estimation technique 

was examined and used for the estimation of selected parameters. Species-specific 

parameters were categorised according to data source estimation and sensitivity 
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classes. Parameters describing allometric and age-dependent relationships were 

assigned values using observed data from biomass harvests. Critical parameters that 

could not be directly assigned using observed data were the ratio of foliage to stem 

allocation (i.e. P2 and p2o), allocation of net primary production (NPP) to roots (TJRX 

and T]Rn), optimum temperature for growth (7^,) and maximum canopy quantum 

efficiency (acx)- These were estimated using Parameter ESTimation, by fitting model 

output to corresponding observed growth data. 

As well as species-specific parameter values, mandatory inputs required by 3-PG 

include weather data, site-specific factors such as site fertility (FR) and physical 

properties of the soils, and stand initialisation data. Objective techniques to determine 

these site-specific factors and the initial values for the biomass pools were proposed. 

Most of these data are readily available for sites where experimental trials exist, or 

where monitoring networks are in place. However, this is the exception rather than the 

rule, so alternative data and information sources are required. These, together with the 

need for accurate weather inputs (especially monthly rainfall) and physical properties 

(especially soil texture, maximum available soil water and FR) of the sites being 

modelled were explored. 

3-PG was validated using four simple tests by comparing predicted versus observed 

SV. Results showed that 3-PG predictions are relatively consistent with observed 

stand data. Analyses performed using time-series data showed model predictions 

accurately tracked observed growth in response to erratic and fluctuating weather 

conditions. Results from the initial model validation showed production on high and 

low productivity sites was under- and over-predicted, respectively. Further results 

presented here show a similar, but less marked trend (i.e. over- and under-predictions 

are not as extreme), and individual biases are less than those from predictions made 

using another locally developed parameter set. 

The application of 3-PG showed that the model is able to make estimates of tree 

growth that are consistent with those used within the forestry site classification. This 

showed the considerable potential 3-PG has for strategic planning by the forest 

industry (i.e. projected wood supplies etc) and in research planning (refining existing 

site classifications). The model could be useful in predicting growth in various areas 
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where E. grandis is not grown, assisting in future decision making. 3-PG was able to 

identify growth constraints on a site-by-site basis and distinguish among them, and 

was able to identify environmental and site limitations to plantation growth, and how 

they vary in space and time. These results together with predictions of site 

productivity demonstrate the potential for 3-PG to be used to improve existing forest 

site classifications. The model comparison study between empirically-based models 

and 3-PG showed that although the empirical models made accurate predictions of 

volume under static climatic conditions, under fluctuating weather conditions 

empirical estimates of volume were less accurate than those made with 3-PG. 3-PG 

can therefore be used operationally with minimum input data to predict growth using 

enumeration data. This is useful in saving time and cutting costs. 

The use of process-based models (PBMs) in general, and 3-PG in particular, needs to 

be "championed'' to the South African forest industry. This is necessary for two 

reasons. Firstly, the model and the manner with which it describes physiological 

processes of growth need to be explained in layman's terms. This will demonstrate 

how and why a process-based model can work better in a fluctuating environment 

than empirically based models. Secondly the comparison between 3-PG and the local 

empirical models needs to be presented as an example of how 3-PG can be applied on 

an operational basis. It is accepted that much convincing is still required. 
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CHAPTER 1 

INTRODUCTION 

1.1 GROWTH AND YIELD MODELLING IN FORESTRY: AN 

OVERVIEW 

The type of information required by forest mangers and planners to make important 

decisions is becoming increasingly complex and presents a new challenge to these 

managers. This together with the ability to understand tree growth dynamics and to 

make reasonable predictions of growth and site productivity underpins sustainable 

forest management (Louw, 2003). Such knowledge can be gained through the use of 

process-based models (PBMs) that will provide new solutions to these complex 

problems. However, these models are a relatively new concept and have not yet been 

widely accepted in South Africa. Empirical models on the other hand are currently used 

to aid in such decisions. 

Empirically based growth and yield (G&Y) models are central to plantation 

management and planning (Vanclay, 1994; Korzukhin et al., 1996; Makela et al., 2000; 

Johnsen et al., 2001). In general estimates of plantation G&Y and forecasts of stand 

inventory have traditionally been obtained through the use of statistically derived or 

empirically based stand-level models. Such methods provide acceptable predictions but 

lack generality in that they are limited to regions and management scenarios for which 

they were originally developed. Furthermore, these conventional methods cannot 

respond to dynamic changes in the environment, especially with respect to predicting 

growth in response to fluctuating weather patterns and the impacts of implementing 

site-specific management. Another approach to forest ecosystem management is 

process-based modelling which allows the detailed description of the various 

components in the ecosystem to be defined and modelled (Korzhukin et al., 1996; 

Landsberg and Waring, 1997), along with their interaction with the environment. Until 

recently, these models have not been widely adopted as management tools due to the 

complex nature of the required input information. However, the last few years have seen 
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the development and more widespread application of PBMs specifically developed as 

part of forest management strategies. 

Process-based forest growth models range in resolution, complexity, generality and 

applicability (Battaglia and Sands, 1998a) from highly detailed models embracing many 

processes to quite simple models developed primarily to calculate forest productivity. 

Generally, the structure (i.e. spatial and temporal resolution, physiological detail, and 

the nature of the input data and model outputs) of PBMs is largely related to the 

intended use of the model (Stapper, 1986; Sands, 1988). Highly parameterised models 

describing physiological processes in great detail are often used purely as research tools 

to understand the cause and effect of changes in the system. The development of such 

complex models requires theoretical and applied research spanning several years, and 

the models do not directly address questions of interest to forest managers. CABALA is 

a possible exception to the lack of application amongst this class of model (Battaglia et 

ah, 2004). Consequently, much simpler PBM's have been developed, e.g. 3-PG 

(Physiological Principles Predicting Growth; Landsberg and Waring, 1997) and 

PROMOD (Battaglia and Sands, 1997). Each of these has been used to complement 

traditional forest management tools by various agencies (research, government, 

commercial forestry and private consultants, especially in Australia) for diagnostic 

services, decision making and economic analysis (Sands, 2003). 

The books authored by Landsberg (1986), and Landsberg and Gower (1997) provide a 

detailed overview of physiological knowledge and understanding of processes involved 

in tree growth, cover aspects of modelling tree growth, and the application of ecosystem 

process models to forest management. Detailed appraisals surrounding the role of PBMs 

in forest management are covered by Battaglia and Sands (1998a) and Makela et al., 

(2000). Publications specific to the development and description of the 3-PG model 

include those written by Landsberg and Waring (1997); Sands and Landsberg (2002) 

and Landsberg et al. (2003). Later chapters provide a more in depth review of relevant 

literature. 
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1.2 BACKGROUND TO CURRENT RESEARCH 

3-PG is a relatively simple PBM requiring easily obtained input data and species-

specific parameter values. The model calculates total carbon (C) produced from 

photosynthetically active radiation (PAR) intercepted by the canopy of the plantation 

whilst simultaneously accounting for temperature, water, vapour pressure deficits and 

nutritional constraints on tree growth. 3-PG was initially developed with the end user 

(forester and plantation manager) in mind and is accompanied by extensive 

documentation and a user manual which are freely available, as is the model code. The 

main reasons for the success of 3-PG are that firstly, the model and code are freely 

available on the internet and secondly, being a simple model its use was promoted. The 

model has been extensively used in countries other than its country of development and 

tested on a wide range of eucalypt and pine species. These countries include Australia, 

Canada, Great Britain, Brazil, Chile, Vietnam, China, New Zealand and South Africa 

(e.g. Almeida et al, 2003; Coops and Waring, 2001a; Dye, 2001; Dye et al, 2004; 

Landsberg et ah, 2001; Sands and Landsberg, 2002; Waring, 2000). The potential and 

usefulness of 3-PG has been shown at Aracruz Celulose, Brazil where it is currently 

being implemented as the central component of a new GIS-based management system 

(Almeida et al, 2003; Almeida et al., 2004a). Locally, besides the testing within the 

Institute for Commercial Forestry Research (ICFR), 3-PG is also being implemented as 

a forest management tool through the South African Government Innovation Fund 

Project (NRF, 2002). 

Based on these facts it is envisaged that 3-PG is a potentially useful tool for strategic 

(e.g. potential site productivity, growth constraints etc.) and operational (e.g. growth 

prediction and projection) applications. The main challenges are therefore: (i) to see 

whether it is possible to adapt 3-PG to predict growth and yield of Eucalyptus grandis 

under South African conditions; (ii) to check that model predictions are biologically 

reasonable and accurate; and (iii) to compare predictions of stand volume with those 

made using locally developed empirical models. With these problems in mind, the 

following project objectives were formulated: 
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• Identify species-specific parameters in the model that need to be accurately 

determined; 

• Develop standard techniques to parameterise and initialise 3-PG; 

• Evaluate the predictive ability of 3-PG and test whether predictions are 

biologically realistic; 

• Consider several strategic and operational applications of 3-PG for use in 

South Africa. 

The aim of this project is to assess whether 3-PG is a useful tool for understanding tree 

growth dynamics, to interpret between-site productivity differences, to identify 

constraints which limit growth and how these change seasonally, and assess whether it 

can be used to complement empirical models, and aid in forest planning and scheduling 

harvest operations. 

1.3. THESIS STRUCTURE 

The thesis comprises eight chapters. An assessment of existing process-based G&Y 

models is carried out in Chapter 2, followed by a comparison of several PBMs and 

justification for the selection of the 3-PG model. A brief description of 3-PG is 

presented. For the unfamiliar reader, the publication by Sands and Landsberg (2002) is 

included in the Appendix. Using a preliminary set of parameters for E. grandis, the 

performance of 3-PG is evaluated. This evaluation of the model performance is 

preliminary and is expanded upon in later chapters. 

A sensitivity analysis of model outputs with respect to changes in model parameters is 

presented in Chapter 3. This analysis helped in the understanding of tree growth 

dynamics and how complicated physiological processes have been simplified and 

depicted within the 3-PG model. Parameters that must be accurately determined if 3-PG 

is to make accurate predictions of tree growth are also identified. Guidelines necessary 

for the parameterisation of 3-PG were developed in Chapter 4. Issues surrounding data 

availability, parameter estimation techniques and the parameterisation of 3-PG for E. 

grandis are also covered in Chapter 4. 

4 



The use of inadequate weather data, site factors and stand data for initialising the model 

are explored in Chapter 5. Methods to assign values to the site fertility rating (FR) are 

investigated, and techniques to initialise 3-PG are developed. These techniques are 

based on the availability of observed inventory data. 

Using the parameter set developed for E. grandis and the methods developed to 

initialise 3-PG, a detailed model validation is presented in Chapter 6. The validation is 

performed using data distinct from those used in the parameterisation, and the biological 

realism of predictions is examined. Model predictions in response to fluctuating weather 

conditions are also tested. 

Chapter 7 looks at some strategic and operational applications within the South African 

context. A comparison between 3-PG and locally developed empirical models is 

included. 

Chapter 8 is the final discussion and conclusion in which an overview of preceding 

chapters is presented. 

1.4 GROWTH AND YIELD MODELLING TERMINOLOGY 

An explanation of some common terminology and abbreviations used throughout this 

thesis are summarised below. 

3-PG (Physiological Principles Predicting Growth; Landsberg and Waring, 1997) is the 

PBM used in this research. 

3PGPJS is the implementation of 3-PG as a Microsoft Excel workbook that supplies all 

3-PG input data and to which results are written, and an Excel add-in containing the 

3PGPJS and 3-PG code. 

Model parameters are constants in equations and in the case of 3-PG they are species 

and site-specific. With respect to empirical models the parameters referred to here are 

called model coefficients. 
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Model inputs, also known as driving variables, refer to inputs such as temperature, 

rainfall, vapour pressure deficit and solar radiation. 

State variables refer to model components whose values are predicted over time and 

they characterise the condition of the system being modelled. The foliage, root and stem 

biomass, and the soil water content make up the state variables in 3-PG. 

Empirically-based models (EBMs) are statistically based and developed using observed 

tree growth data, with the emphasis on statistical relationships rather than physical ones 

(Jeffers, 1988). 

Process-based models (PBMs) are defined as a representation of a system and their 

behaviour at various levels of complexity (Landsberg, 1986; Landsberg, 2003), 

describing levels of organisation and processes in terms of mechanisms (Sands, 1988) 

underlying the responses of the system under study to changes in environmental factors 

or management interventions (Landsberg and Gower, 1997). 

Model validation/verification, and model parametersationlcalibration are pairs of 

terms that are used interchangeably in modelling literature. Sections 6.1.1 and 6.1.2 are 

therefore dedicated to these terms where they are defined and elaborated upon in a great 

deal of detail. 
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CHAPTER 2 

FOREST GROWTH AND YIELD MODELS 

2.1 INTRODUCTION 

A "model' describes any system comprising a collection of interrelated objects, which 

themselves are elemental units upon which observations can be made (Haefner, 1996). 

More specifically Landsberg (1986) defines models as "formal and precise statements, 

or set of statements, embodying our current knowledge or hypothesis about the 

workings of a particular system and its responses to stimuli''. Models have been 

classified according to the types of relationships depicted (Stapper, 1986; Sands, 1988), 

the level of detail incorporated (Vanclay, 1994; Gadow and Hui, 2001), the internal 

structure and type of problem to be solved (Haefner, 1996), and intended model users 

(Landsberg, 2003). In a similar fashion to Landsberg (1986), Haefner (1996) places 

models in a conceptual, diagrammatic and mathematical framework, with the latter used 

to make quantitative predictions surrounding the behaviour of the system. From the 

perspective of forestry and forest management, such mathematical representations of a 

system are generally classified as: empirical models (whole stand, size class or single 

tree models) used to predict growth and yield (G&Y) of plantations; process models 

used to predict patterns of growth as a function of weather inputs and physiological 

processes (Korzukhin et ah, 1996); hybrid simulation approaches, which are a 

combination of the latter two model types (Kimmins et ah, 1990); and succession 

models used to simulate species succession (Vanclay, 1994). Hybrid and succession 

models are beyond the scope of this study and will not be discussed further. 

Empirically-based models (EBMs), or traditional G&Y models, as they are often called, 

are statistically based and developed using observed tree growth data, with the emphasis 

on statistical relationships rather than physical ones (Jeffers, 1988). Empirical models 

describe tree growth in relation to age, site index (SI) and other easily observed 

variables or stand treatments (Ek et ah, 2003). As long as the conditions under which 

these models are applied are similar to those under which the basic data were collected, 

these models are robust tools for the prediction of future yield (Mohren and Burkhart, 
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1994; Corona et al., 2002). However, they are not generic across all sites, are not 

dynamic, and lack flexibility especially with respect to predicting growth in response to 

fluctuating weather patterns and the impacts of site-specific management. In particular, 

statistical models cannot provide "more knowledge about a system than is contained in 

the data and even the most cunning manipulation will not extract additional information 

from the data sets" (Landsberg, 1986). Despite these disadvantages, EBMs are very 

widely used, and from the point of view of the forest manager they are simple and 

practical tools. For instance, stand level empirical models are used for planning, 

estimating timber volumes and tree size distribution, organising harvest scheduling and 

optimising timber supplies to mills (Almeida, 2003), and in South Africa they are 

extensively used in the forecasting of stand inventory. The books by Vanclay (1994) 

and Landsberg and Gower (1997) have very good overviews of methods for the 

modelling of forest G&Y. Empirically-based models are elucidated upon further in 

Section 7.4 where a comparison of growth predictions between empirical and process 

models is presented. 

2.2 PROCESS-BASED MODELS 

Process-based models (PBMs), on the other hand, have the potential to be far more 

flexible than empirical relationships, and can be used in the heuristic sense to 

understand the workings of a system and the response thereof to stimuli {i.e. forest 

management; Landsberg and Gower, 1997). Bossel (1991) has described PBMs as 

explanatory, in contrast to EBMs which are descriptive by nature. Furthermore, Bunnell 

(1989), cited by Vanclay (1994), distinguishes between models for prediction 

(empirical) and models for understanding (process-based). In light of these statements a 

PBM can be defined as a representation of a system and its behaviour at various levels 

of complexity (Landsberg, 1986; Landsberg, 2003), describing levels of organisation 

and processes in terms of mechanisms (Sands, 1988) underlying the responses to change 

of the system under study (Landsberg and Gower, 1997). 

Effects of environmental factors on plantation distribution, canopy structure, biomass 

relationships and physiological processes are well documented. This knowledge of 

processes has, in the past two decades, led to the development of more mechanistic 
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forest growth models designed to couple water, C and nutrient cycles (Waring, 2000). 

There are two families of mechanistic models: "bottom-up" and "top-down" models. 

The bottom-up type of model is essentially a research tool which simulates growth 

using the actions and interactions of the physiological processes contributing to it 

(Landsberg, 1986). In contrast, top-down models use simplifications and assumptions to 

account for complex physiological processes and the response thereof to one or more of 

the driving variables. Such top-down models make up a full spectrum of forest PBMs 

ranging in resolution, complexity, generality and applicability (Battaglia and Sands, 

1998a). Central to these models are common elements linking the atmosphere, 

vegetation and soils (Waring, 2000). Climatic variables and factors describing the site 

and initial state of the vegetation are required to drive the models. Such models were 

primarily developed to calculate forest productivity (Landsberg and Waring, 1997), but 

are also used as research and management tools (Johnsen et al., 2001). Figure 2.1 is a 

schematic representation of a mechanistic model of tree growth. The different 

physiological/physical processes may vary in complexity and would be represented as 

sub-models or routines. 

The structure {i.e. spatial and temporal resolution, physiological detail, and the nature of 

the input data and model outputs) of PBMs is largely related to the intended use of the 

model (Stapper, 1986; Sands, 1988). Many highly parameterised models describing 

physiological processes in great detail are used purely as research tools to understand 

the cause and effect of changes in the system. The development of such complex 

models requires theoretical and applied research spanning several years, and often these 

models do not directly address questions of interest to forest managers. 
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Figure 2.1. Schematic representation of detailed mechanistic model of tree growth 
(Landsberg, 1986). 

Recently developed, simpler models capture the essential components of the system and 

allow for the quantification of system fluxes over a range of conditions. Required 

parameters are easily measurable either directly or indirectly. Such models are used as 

both research and management tools (Johnsen et ah, 2001) and therefore assist decision­

making. In a bench-mark publication, Battaglia and Sands (1998a) discuss the potential 
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usefulness of these models in forest management as follows: (1) the prediction of G&Y 

from existing plantations; (2) selection of plantation sites or site-specific species; (3) 

identification of site limitations to productivity; (4) risk assessment, and (5) answers to 

questions for which "real time" experiments are not feasible, such as long-term impacts 

of climatic change on plantation production. Examples of simple PBMs include 3-PG 

(Physiological Principles Predicting Growth; Landsberg and Waring, 1997), ProMod 

(Battaglia and Sands, 1997) and Cabala (Battaglia et al., 2004). Each of these has been 

used to complement traditional forest management tools by various agencies (research, 

government, commercial forestry and private consultants) and also, especially in 

Australia, for diagnostic services, decision making and economic analysis. (Sands, 

2003). 

Many PBMs have not been implemented as management tools by the forest industry 

because they were developed as research tools. Such models are complex, difficult to 

parameterise and not easy to validate. Furthermore, these models do not address 

questions of interest to forest managers, their implementation and documentation are 

incompatible with the needs of the manager, and model development usually takes too 

long (Sands et al., 2000). Sands (1988) laid out the following guidelines which enhance 

the probability of the model being used by those other than the model developer: the 

model (i) is constructed in collaboration with intended end users; (ii) has a simple 

transparent structure; (iii) is simple to operate and appropriately documented; (iv) uses 

readily available input data; and (v) is supported by expert advice and services. 

Similarly, Landsberg (2003) proposed that operational models (used by forest 

managers), need to be scientifically sound and relatively simple with few input 

parameters. The primary aim of such models is to produce information needed by 

managers, and they must be easy to calibrate and test against readily available data. 

With these points in mind, models developed in the past decade are simpler, easier to 

operate and are therefore more practical tools (for example ProMod (Battaglia and 

Sands, 1997) and 3-PG (Landsberg and Waring (1997)). 
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2.2.1 Overview of existing process-based models 

The most appropriate model to meet the project objectives was sought (Chapter 1). The 

model needs to be simple, yet physiologically sound and able to determine plantation 

growth, yield and water use. Furthermore, the model should exhibit flexibility allowing 

modifications to be easily made. Current PBMs were reviewed and inspected with 

respect to two sets of criteria defined below. 

An overview of models ranging in resolution (spatial and temporal scale), complexity 

(environmental variables and processes reflected in model) and generality (situations 

and systems to which model can be applied) are presented in Table 2.1. The models are 

categorised in terms of intended model users and grouped according to the forest 

industry, broader public community, and academic and scientific communities 

(Landsberg, 2003). Forest industries include individuals and organisations concerned 

with the management of plantations, the broader public community related to 

community groups and politicians (both regional and local governments), and academic 

communities consisting of research institutions. Generally speaking, the models 

developed for research and public use are complex and operate on smaller temporal and 

spatial scales than those developed specifically as forest industry management tools. It 

is therefore reasonable to say that models developed primarily for either research or 

public-related purposes would be of limited use in this project. 
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Table 2.1. Tabulation of models reviewed showing the intended users (R= Research, P= 
Broader public community and 1= Forest industry. Abbreviations are as 
follows: net primary production (NPP, tDM ha"1); gross primary production 
(GPP, tDM ha"1); leaf area index (LAI, m2 m"2), diameter at breast height 
(DBH, cm) and mean annual increment (MAI, m3 ha"1 y"1); stand volume 
(SV, m3 ha"1 y"1), nitrogen (N), and carbon (C). 

Model 

CENTURY 
Parton et al. 
(1987) 

Makela & 
Hari model 
Makela and 
Hari (1986) 

ForGro 
Mohren 
(1987) 

FOREST-
BGC 
Running and 
Coughlan 
(1988) 

BIOMASS 
McMurtrie et 
al. (1990) 

Bex 
Bonan(1991) 

MAESTRO 
Wang and 
Jarvis (1990) 

Intended 
user 

P 

I 

R 

I,P 

R 

R 

R 

Brief model overview 

Monthly time-step, simple procedures to handle plant 
growth, soil organic matter dynamics in response to 
climate and management. 
Inputs: soil texture / depth, rainfall and temperature, 
vegetation types and C02 levels. 
Outputs: C and N fluxes, NPP and soil organic matter. 

Hybrid model developed for Pinus sylvestris, simulates 
stand growth and competition between trees focusing 
on needle biomass and canopy closure. 

Daily time-step, detailed C-balance model, includes 
photosynthesis, respiration, phenology, hydrology 
(detailed and partly empirical), nutrient cycling 
(mechanistic), forest growth (detailed and partly 
empirical), and forest structure development. 
Inputs: tree physiology, site characteristics, stand 
structure. 
Outputs: potential growth in managed forests. 

Daily and annual time-step, can be linked to remote 
sensing systems, simulates the flow of water, C and N, 
complete stand water balances (canopy interception, 
evaporation, transpiration, drainage). 
Inputs: temperature, radiation and rainfall. 
Outputs: C balance, photosynthesis, respiration, above 
and below ground NPP, litterfall, decomposition and 
LAI. 

Daily time-step, C balance model, describes radiation 
absorption, canopy photosynthesis, allocation of 
photosynthate, litterfall and stand water balance. 
Inputs: LAI, temperature, humidity, radiation and 
rainfall, vegetation. 
Outputs: C, water and nutrient fluxes, NPP and yield. 
Daily time-step, simulates fluxes of C, water and C in 
boreal forests. Inputs: averages of temperature, 
humidity, air pressure, wind speed, cloudiness, 27 
physiological parameters. 
Outputs: above ground NPP. 

Daily / seasonal time-steps, determines photosynthesis 
and transpiration for individual trees, effects of climate 
and canopy architecture on canopy photosynthesis. 
Great detail of input data and parameters required. 

References 

Landsberg and 
Gower(1997); 
Gabele (1998) 

Landsberg 
(2003) 

Titak and 
Grisven 
(1995); 
Gabele (1997) 

Running and 
Coughlan 
(1988); 
Landsberg and 
Gower (1997); 
Hoff etal. 
(2002); 
Landsberg 
(2003) 
Landsberg and 
Gower (1997); 
Bergh et al. 
(1998); 
McMurtrie et 
al. (1990) 

Landsberg and 
Gower (1997) 

Landsberg and 
Gower (1997); 
Sonntag 
(1997a); 
Medlyn 
(2001); 
Landsberg 
(2003) 
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Model 

FORCYTE 
Kimmins et 
al. (1990) 

TreeGro 
Weinstein et 
al. (1991) 

G'DAY 
Comins and 
McMurtrie 
(1993) 

TREENYD3 
Bossel (1996) 

3-PG 
Landsberg 
and Waring 
(1997) 

ProMod 
Battaglia and 
Sands(1997) 

HYBRID 
Friend et al. 
(1997) 

CenW 
Kirschbaum 
(1999) 

CABALA 
Battaglia et 
al. (2004) 

TRIPLEX 
Peng et al. 
(2002) 

Intended 
user 

I 

P 

P 

R 

I ,P,R 

I,P 

R 

R 

I ,P,R 

P 

Brief model overview 

Intended to be of value for forest managers; immensely 
complicated. 
Inputs: very detailed. 
Outputs: impact of harvesting and fire. FORCYTE II 
determines stand yield prediction and long term 
impacts of management on site productivity. 
Hourly time-step, explicit representation of 
photosynthesis processes, predicts growth and patterns 
of C allocation expected for an isolated tree exposed to 
various levels of ozone, nutrient stress, and water 
availability. 
Annual time-step, describes how photosynthesis and 
nutritional factors interact in determining the 
productivity of forests growing under N-limited 
conditions, insights into relationships between N and 
atmospheric C02. 
Daily, weekly or annual time-step, simulates tree 
growth, C and N dynamics. 
Inputs: photosynthesis, respiration, climatic data (air 
temperature, radiation); Outputs: height, DBH, leaf 
biomass, number of trees. 

Monthly time-step, dynamic in that stand and canopy 
development predicted. Inputs: soil water capacity, 
texture and fertility ranking, monthly climatic data, 
stand initialisation values. Latitude. 
Outputs: dynamic variation of LAI, DBH, SV, other 
outputs of use to forest managers. 

Daily and monthly time-step, range outputs relevant to 
management scenarios. Inputs: soil water capacity, 
soil factors, latitude, daily or monthly climatic data. 
Outputs: peak MAI and canopy LAI, water use and 
limiting factors, NPP. 

Daily / annual time-step, part of gap family of models, 
predicts impact of climate change in terms of GPP, 
NPP, soil respiration, latent heat flux, C biomass and 
maximum LAI, regeneration and mortality of 
individual trees that differ in age and size. 
Daily time-step, links flows of C, energy, nutrients and 
water in trees and soil organic matter; C gain simulated 
considering physiological factors, biomass pools, site 
factors, and soil organic matter; simulates the effects of 
silvicultural treatments 
Daily and monthly time-step; provides silvicultural 
decision support for managers. 
Inputs: daily or monthly weather data, soil factors, tree 
spacing. Outputs: SV, LAI 
Hybrid monthly time-step model of forest growth and 
C dynamics; Integrates 3-PG, TREENYD3 and 
CENTURY; used for G&Y prediction; quantifying C 
budgets, climate change. 

References 

Kimmins et al. 
(1990); 
Landsberg 
(2003) 

Titak and 
Grisven 
(1995); 
Sonntag 
(1997b) 

Sonntag 
(1997c); 
Landsberg 
(2003) 

Sonntag 
(1997d) 

Landsberg and 
Waring 
(1997); Sands 
(2000); Sands 
and Landsberg 
(2002); 
Landsberg et 
al. (2001); 
Landsberg 
(2003) 
Battaglia and 
Sands (1997); 
Sands et al. 
(1999); 
Landsberg et 
al. (2001) 

Sonntag 
(1997e); 
Landsberg 
(2003) 

Kirschbaum 
(1999); 
Landsberg 
(2003) 

Battaglia et al. 
(2004) 

Peng et al. 
(2002) 
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Consequently the Makela and Hari model (Makela and Hari, 1986), Forest-BGC 

(Running and Coughlan, 1988), Forcyte (Kimmins et al, 1990), 3-PG (Landsberg and 

Waring, 1997), ProMod (Battaglia and Sands, 1997) and CenW (Kirschbaum, 1999) 

models appeared to be acceptable choices. A more detailed critique was performed 

based on the following criteria aligned with those presented in Sands (1988): 

• Intended model user; 

• Forest management tool; 

• Ability to simulate water use; 

• Should preferably operate on a monthly time-step (daily time-step increases 

model complexity and the number of parameters required by the model); 

• Easy to use, with a transparent structure and simple input data and 

parameters; 

• Tested and evaluated on pine and eucalypt stands (as opposed to boreal 

forests). 

Models satisfying these criteria were further subjected to a second set of criteria: 

• Model used in countries other to the one in which it was developed {i.e. a 

measure of its popularity); 

• Source code is freely available with adequate, scientifically-based and easy to 

understand documentation; 

• User support is available; 

• Model was developed in collaboration with intended end users. 

Of the 17 models rigorously scrutinised only four (ProMod, CABALA, TRIPLEX and 

3-PG) have been tested on eucalypt species. As expected, the remainder of the models 

comprise those predominantly developed for research purposes and of limited value to 

this project. Despite the simple input data mandatory to the operation of ProMod and 

CABALA, and the representation of detailed physiological processes and silvicultural 

regimes depicted, an inherent shortcoming of these models is that they are parameter 

intensive. TRIPLEX, on the other hand, shows some promise since the strengths of 
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three different models (of which two are complex models) is exploited. This is achieved 

by integrating the forest production model of 3-PG, G&Y model of TREENYD3 and 

the soil-carbon-nitrogen model of CENTURY which is highly complex to parameterise. 

However, TRIPLEX is of limited value as it has been specifically developed to simulate 

climate change scenarios (although it can also predict G&Y) and in addition has only 

been tested in Canadian boreal pine forests. 

Of all these models, only 3-PG has been extensively used in countries other than its 

country of development and tested on a wide range of eucalypt and pine species. These 

countries include Australia, Canada, Great Britain, Brazil, Vietnam, China, New 

Zealand and South Africa (e.g. Almeida et al, 2003; Coops and Waring, 2001a; Dye, 

2001; Dye et al, 2004; Landsberg et al, 2001; Sands and Landsberg, 2002; Waring, 

2000). Moreover, not only was 3-PG developed with the end user in mind, but extensive 

documentation and a user manual are freely available, as is the model code. A good 

foundation for communication exists between the Institute for Commercial Forestry 

Research (ICFR)/Council for Scientific and Industrial Research (CSIR) and Dr J. 

Landsberg (original developer of 3-PG), and with Dr P. Sands of the Commonwealth 

Scientific and Industrial Research Organisation/Co-operative Research Centre for 

Sustainable Production Forestry (CSIRO/CRC-SPF) with which the ICFR has a formal 

collaborative agreement. The main reasons for the success of 3-PG are that firstly, the 

model and code were made freely available on the internet (http://www.ffp.csiro.au/fap/ 

3pg/index.htm), and secondly, the fact that it is a simple model encourages its use. This, 

in turn has encouraged model users to give feedback to its developers who in response 

have made appropriate corrections and additions. For these reasons 3-PG has gone 

through many transformations with a beta version 2.4 having been released in May 

2004 (Sands, 2004b). It was therefore decided that the 3-PG model could be used to 

fulfil the objectives of this project. 

2.3 THE 3-PG MODEL 

3-PG (Landsberg and Waring, 1997) is a "simple" PBM of forest growth based on a 

number of well-established principles and requires as inputs, parameter values and 

readily available data. It is claimed that the model is generic and should not be site-
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specific, but it does need to be parameterised for individual species and is applicable 

only to plantations of even aged trees (Landsberg et ah, 2003). It was explicitly 

developed to bridge the gap between conventional empirical, mensuration-based G&Y 

models, and process-based C balance models (Landsberg and Waring, 1997). Sands 

(2004a) has reported that 3-PG "appears to be the de facto PBM for use as a forest 

management tool, not because it is technically superior to other models, but because (a) 

it is simple, and (b) it is freely available". As such 3-PG has been widely applied to 

various species within several forest/plantation types across a range of climate regions. 

Since the initial publication of 3-PG (Landsberg and Waring 1997), several structural 

modifications have been made, and the manner in which various relationships between 

parameters are depicted has been changed to make the parameters more intuitively 

meaningful (Sands and Landsberg, 2002). 3-PG has been implemented as a Microsoft 

workbook (3PGpjs) that supplies all 3-PG input data and to which results are written, 

and an Excel add-in containing the 3PGpjs and 3-PG code. The input spreadsheets 

facilitate easy modification of site and climatic data, parameter values and run-time 

options. Guidelines to parameterise the model were developed (see Sections 4.2.1 and 

4.2.2) and further model updates and modifications were made and included in 3PGpjs 

version 2.4 (Sands, 2004b). These include a mortality function (described as a 

probability of death function), improvements in the prediction of S V and the prediction 

of mean tree height (HT, m). The improved mortality function assumes a small 

probability that any tree will die, which generally depends on stand conditions, stand 

age, or climatic or other stress factors. Both SV and HT are based on an allometric 

relationship with either the mean DBH or the quadratic mean DBH (qDBH, cm) and 

stocking or stems per hectare (SPH, stems ha"1). The qDBH refers to the diameter of the 

tree of mean basal area (BA, m2 ha"1) and is a stand attribute. The DBH on the other 

hand pertains to individual trees. For the purpose of this work these allometric 

relationships are parameterised with respect to the qDBH. 

To date, there has been a total of 31 publications in peer-reviewed journals concerning 

the application of 3-PG, in one form or the other. The potential and usefulness of 3-PG 

has been shown at Aracruz Celulose, Brazil where it is currently being implemented as 
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the central component of a new GIS-based management system (Almeida et al., 2003; 

Almeida et al, 2004a; Almeida et al, 2004b). 3-PG is also being evaluated as a forest 

management tool in South Africa to predict the productivity of several commercially 

important species (NRF, 2002). Locally, the model has also been used to predict growth 

and water use of Pinus patula (Dye, 2001) and Eucalyptus plantations (Dye et al., 

2004). Other benchmark studies include spatial applications of 3-PG using remotely 

sensed inputs and GIS (Coops et al., 1998, Coops et al., 2001; Coops and Waring, 

2001a, Coops and Waring, 2001b; Tickle et al., 2001 and White et al., 2000). Sands and 

Landsberg (2002) present a methodology detailing the parameterisation of the model. 

This has been updated (Sands, 2004a) following the linking of the Parameter 

ESTimation (PEST) software with 3PGpjs (see Sections 4.2.2 and 4.3.2). Rigorous 

model validations have been performed using experimental data in Australia, New 

Zealand, Britain, USA, South Africa and Sweden (Landsberg et al., 2001; Landsberg et 

al., 2003). The comparison between 3-PG and a classical empirical approach for 

predicting stand G&Y has also been carried out in Brazil (Stape et al., 2004). 

2.3.1 Model inputs and outputs 

Mandatory inputs required by 3-PG include weather data, site factors, a description of 

the initial conditions (Table 2.2) and species-specific parameters (Table 2.3). Weather 

inputs (see Sections 5.1, 5.2 and 5.4) required by 3-PG are monthly average values of 

daily solar radiation (SR, MJ m"2 d"1), monthly mean temperature (TAV, °C) separated 

into monthly mean daily maximum and minimum temperature (Tx and TN, °C), vapour 

pressure deficit (VPD, mbar), total monthly rainfall (R, mm month"1) and frost days per 

month. The model can be run for any number of years, using actual monthly weather 

data or long-term monthly averages. Using historical long-term averages is the normal 

procedure unless there is particular interest in specific events, such as droughts 

(Landsberg et ah, 2003). In this case 3-PG can account for changing and fluctuating 

growth patterns as a result of climatic variability. This makes 3-PG a powerful tool, 

allowing the user to set up various scenarios to ask "what if questions (see Sections 

6.4.4, 7.2 and 7.3). 
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Table 2.2. Mandatory inputs of weather data, site factors and initial stand conditions 
required by 3-PG. 

Inputs 

Weather 
data 

Site factors 

Stand Initial 
conditions 

Type of input 
Temperature (Tx, TN,) 
Solar radiation (SR) 
Rainfall (R) 
Vapour pressure deficit (VPD) 
Latitude 
Available soil water (9Sx 1 #Sn) 
Soil class 
Fertility rating (FR) 
Year planted, first and last age 
Biomass pools 
(WRi, WFi, Wsd 
Initial soil water (9sd 
Stems per hectare (SPHi) 

Units 
°C 
MJ m"2 d"1 

mm 
mbar 
deg 
mmm" 

tDM ha" 
mm 
stems ha"1 

Description 

Long term monthly mean or 
actual monthly 

Used to determine day length 
Field capacity - wilting point 
Soil texture 
Nutrition of site 

Stem, foliage and root 
biomass 

Number of trees 

Site factors (see Section 5.3) describing the physical properties of the site include 

latitude, a site fertility rating (FR), maximum and minimum plant-available soil water 

capacity (6sx and 6s„, mm) and a general descriptor of soil texture. The FR accounts for 

the nutrition of the site, and varies between "poor" (FR = 0) and "optimaF (FR = 1). 

Landsberg et al. (2001) further qualify the FR and explain that FR = 0 is a baseline 

condition and does not imply that the soil is devoid of nutrients. This baseline value will 

impact on the modified canopy quantum efficiency (ac) to a relatively large extent 

leading to a low value of etc- Not only will this reduce the GPP, but a high proportion of 

the NPP will be allocated below ground rather than to the above ground components. 

Increasing the FR will increase ac (increasing the fertility modifier and hence the GPP). 

These dynamics apply only if the fertility parameters are enabled to do so (see Sections 

3.2.3, 3.4.4, 5.3.2, 6.4.4, 7.2 and 7.3). For example, when^0 = 1, the effect of site 

nutrition on the canopy quantum efficiency is not accounted for. This modifier,^ (FR), 

is proportional to the site FR and is represented in 3-PG as/y (FR) =fm + (1 -fm) FR 

where fN0 is the value of fN when FR=0 (Sands and Landsberg, 2002). If these 

parameters are disabled then only root allocation is affected by the specified FR. 

The stand initialisation data, also known as initial conditions (Table 2.2) include the 

year and month planted, and the first and last stand ages. Also required at the starting 

age, are the foliage, root and stem (WFi, WRi and WSi, tDM ha"1) biomass, available soil 

water (dsi), and stand stocking (SPHi). 
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Species-specific parameters in 3-PG (Table 2.3, Appendix 1) characterise biomass 

partitioning and turnover, maximum NPP (via GPP and growth efficiency, light or 

radiation use efficiency (GE, g MJ"1)), stomatal conductance and their environmental 

modifiers, stem mortality and thinning, canopy structure and processes, wood density 

and stand properties, and several conversion factors. These parameters affect 3-PG 

outputs in various ways: some affect only a sub-set of outputs; many affect most 

outputs, and in some cases combinations of parameters interact in their effects on an 

output (see Sections 3.2.1, 3.3.2, 3.4, 3.4.2, 3.4.3 and 3.4.4). 

Table 2.3. Species-specific parameters of 3-PG. Numbers in parenthesis refer to the 
total number of parameters within the parameter sub-class (e.g. three 
parameters make up the specific leaf area parameters which form part of 
canopy structure and processes). The full list of parameters inherent to 3-PG 
is provided in Appendix 1. 

Parameter class 

Biomass partitioning and 
turnover 

NPP & conductance modifiers 

Stem mortality & self-diinning 

Canopy structure and processes 

Wood density and volume 
growth 

Conversion factors 

Parameter sub-class 
Allometric relationships & partitioning (6) 

Litterfall & root turnover (4) 

Temperature modifier (3) 

Frost modifier (1) 

Soil water modifier (2) 

Fertility effects (3) 

Age modifier (3) 

(9) 
Specific leaf area (3) 

Light interception (4) 

Production and respiration (2) 

Conductance (4) 

Branch and bark fraction (3) 

Basic wood density (3) 

Stem height allometric (3) 

Stem volume allometric (3) 

(4) 

Some of the more common monthly or annual outputs generated by 3-PG comprise 

foliage, root and stem biomass (WF, WR, WS, t ha"1), LAI, available soil water (8s, mm), 

and stand attributes such as SV, BA, DBH and qDBH, stocking (SPH), and evapo-

transpiration (ET, mm month"1). The full list of 3-PG outputs is presented in Appendix 
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2. A full description of the 3-PG model inputs, outputs and parameters is given in Sands 

(2004b). 

2.3.2 Main components of 3-PG 

Many authors have presented detailed descriptions of 3-PG, processes represented and 

the manner in which calculations are performed (see Landsberg and Waring, 1997; 

Landsberg et al, 2001; Sands and Landsberg, 2002; Landsberg et al, 2003, Sands, 

2004b). Rather than repeating these details, a simplified overview of the model structure 

is presented instead. However, with the permission of the authors, the publication by 

Sands and Landsberg (2002), which details the important relationships represented by 

3-PG is included in Appendix 3. This publication has not been changed in any way. 

Where necessary, more detail pertaining to the structure of 3-PG and processes 

represented are outlined, especially where such details help in the explanation of results 

(e.g. Sections 6.4.3, 6.4.4, 6.4.5, 7.2 and 7.3). Essentially 3-PG comprises five main 

components (Landsberg et al., 2001): biomass production, biomass partitioning, stem 

mortality, water balance and stand properties (Figure 2.2), with the main calculations 

pertaining to those processes that lead to biomass production and those that partition 

this biomass between the components of the tree which ultimately describes the tree 

growth. 

Biomass production within 3-PG is based on the calculation of radiation interception, 

GPP via photosynthesis, the estimation of NPP and the allocation of the incremental 

biomass to the individual tree components. Gross primary production is reduced 

through the ac, which is represented as the product of the theoretical maximum canopy 

quantum efficiency (acx) and environmental modifiers which take into account growth 

limitations imposed by VPD, air temperature, soil water availability and nutritional 

status of the site (fD, fT, fe, /N)- The physiological multiplier, <p, is calculated as the 

minimum (or most limiting) of the modifiers fo and fe and used to reduce both the 

maximum canopy conductance (gcx, m s"1) and ac- Net primary production is calculated 

as a constant fraction of GPP to account for respiration, and carbohydrate is then 

allocated on a mean-tree basis to roots, stem and foliage. 
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The coefficient that determines below ground allocation to the roots is calculated first 

and is influenced by soil water deficits and nutrient limitations. The remainder of the 

carbohydrate is allocated to the above ground biomass components in accordance with 

the ratio of derivatives of the allometric relationships describing leaf and stem mass in 

terms of DBH. This above ground allocation satisfies the condition that 3-PG is a 

conservation of mass model (Landsberg et al., 2003) implying that no more 

carbohydrate is allocated than is produced. Using the current period SPH and the 

cumulative sum of all monthly stem biomass (Ws comprising bole, branches and bark), 

mean-tree stem mass (ws, kg stem"1), represented as an allometric relationship of qDBH, 

is determined. This allometric equation is algebraically rearranged so that the 

relationship between qDBH and ws determines BA, SV and HT for any time. 

Stem mortality in 3-PG is calculated using the self thinning rule (Landsberg and Gower, 

1997) and a density independent probability of death function (Sands, 2004a; Sands, 

2004b). The self thinning rule is a -3/2 power law based on the largest tree size (greatest 

individual stem mass) likely to be attained at the current stem populations (Landsberg, 

1981 cited by Landsberg, 1986). The density independent mortality assumes a small 

probability that any tree will die, which generally depends on stand conditions, stand 

age, or climatic or other stress factors. Parameter values intrinsic to the mortality 

function were established by trial and error to reproduce the data modelled using the 

Clutter and Jones (C-J) model (Clutter and Jones, 1980). The C-J model represents tree 

survival per hectare for an age as a function of trees per hectare. An advantage of the 

3-PG mortality function over the C-J function is that the parameters in the former have a 

more intuitive meaning and can be readily assigned from observed data (Sands, 2004a). 

Thus, the seedling mortality rate (yNo) and the mortality rate for older stands (yNj) are the 

mortality rates at planting and for mature trees, respectively. 

Soil water balance is based on a single soil layer model with losses through ET 

determined from the Penman Monteith equation. Evapo-transpiration is directly affected 

by VPD and SR with the gCx determined by the LAI and VPD. Inputs of soil texture are 

required as they reflect differences in the hydraulic characteristics of the soil and are 

used to determine they,?. 
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Figure 2.2 shows the main structural and causal components described. Causal loops are 

essentially diagrams that portray the information feedback at work within the system 

being modelled (see Section 3.4.3). These representations are simple and powerful tools 

to examine conceptually the stability of any model, and the likely behaviour of the 

model's output to perturbations in parameters or other input data. 
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2.3.3 Assumptions, simplifications and limitations of 3-PG 

Compared with most simple PBMs 3-PG is based on five important simplifications of 

relationships describing complex physiological processes as follows (Waring and 

McDowell, 2002; Waring, 2000): 

• A constant ratio of net to gross primary production (NPP/GPP or Y); 

• Canopy conductance approaches a maximum above a LAI of 3; 

• The ratio of actual to potential photosynthesis decreases in response to the 

most restrictive environmental constraint (i.e. 6s or VPD), represented in 

3-PG as (p, which is also assumed to affect C allocation to the roots; 

• The fraction of production not allocated to roots is partitioned between the 

above ground biomass in accordance with species-specific allometric 

relationships with qDBH; 

• Canopy quantum efficiency increases linearly with soil fertility, implying that 

FR can be quantified. 

A major limitation of the model is the simplistic fashion in which FR is represented. As 

already mentioned, fertility is a potentially important variable since it may affect ac as 

well as C allocation to the below ground biomass. Landsberg et al. (2001) comment that 

"despite many years of research effort all over the -world, our ability to describe soil 

nutrient status in terms usable in quantitative models of plant growth is extremely 

limited. The FR, while based on the best information available, including expert 

opinion, therefore remains a somewhat problematical and unsatisfactory albeit 

pragmatic approach". They postulate that FR can also be used as a tuneable parameter 

in the model, and in this mode holds out some prospect of providing information about 

effective site fertility. Other model weaknesses include the manner in which C is 

allocated as a function of tree size and poor predictions of canopy development and 

mortality (Sands, 2003). 

Several key model modifications have been identified, which if implemented should 

help improve the accuracy of 3-PG predictions (NRF, 2002). These modifications 

include: sub-models for stress related litterfall; improved modelling of canopy rainfall 
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interception and soil water balance on a daily time-step through a multiple-layer soil 

profile; access of groundwater (GW); a system for objectively assigning meaningful site 

fertility indices (see Section 5.3.2) and a system for assigning realistic stand 

initialisation data (see Section 5.4). In light of these proposed modifications it is 

pertinent to take cognisance of Occam's razor, also known as the principle of paucity, 

which is to not complicate things more than necessary (Landsberg, 2003). Secondly, 

Battaglia and Sands (1998a) comment that "Every input or process added to a model 

increases the error in the model's predictions, particularly if the increased complexity 

is based on processes that are difficult to observe or requirements that are difficult to 

measure". 

Despite these limitations and shortcomings, strengths of 3-PG include the ease with 

which the model can be used, the simple inputs required, the range of species for which 

it can be used and the generation of outputs which are especially of interest to the forest 

manager (Appendix 2). The model can also be linked to spatial information, enabling 

broad scale predictions of productivity. 

2.3.4 Preliminary evaluation of 3-PG for use in South Africa 

The performance of 3-PG (see Chapter 6) was tested using a set of parameters 

developed for E. grandis in Kwa-Zulu Natal, South Africa, based on data from two 

contrasting sites (site index of 15.5 m and 26 m; Gush, 1999). Site index is used as a 

measure of site productivity and is determined as the top height at a particular reference 

age, which in this case is five years (SI5, m). Model testing helps build user confidence 

and provides insights into the model outputs (Hamming, 1962 cited by Haefner, 1996). 

At the time of this evaluation, carried out by Esprey and Smith (2002), several other 

validation studies had been performed on E. grandis plantations in Esppirito Santo, 

Brazil (Almeida, 2000) and Queensland, Australia (Williams and Ryan, 2000) and pine 

plantations in Oregon, USA (Keenan et al., 2000) and parts of the United Kingdom 

(Waring, 2000). Results from all these studies demonstrated the ability of 3-PG to 

simulate observed data with useful accuracy. 
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Site information for these research trials used in this preliminary model evaluation are 

given in Table 2.4. The data from this model evaluation were drawn from various 

research trials conducted by the ICFR. The trials used vary in age from 4.5 to 11 years, 

and are located across a broad range of sites ranging in altitude from 15 to 1427 m and 

productivity from 14 to 51 m3 ha"1 y . They show a highly variable climate with mean 

annual precipitation (MAP, mm) ranging from 780 to 1400 mm, 7> from 22 to 27°C and 

TN, from 9 to 17°C. Weather inputs, site factors and initial biomass pools used in the 

model validation are the same as those used in the parameter sensitivity analysis (see 

Section 3.2.1, Table 3.1). 

Table 2.4. General site and climatic information for the 31 ICFR research trials used in 
the preliminary model evaluation and sensitivity analysis in Chapter 3. MAP 
and MAT refer to the mean annual precipitation and mean monthly 
temperature, respectively. 

Site 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Trial 
Number 

Kl 
K2 
K3 
K4 
T10 
T12 
T15 
T24 
T2 
T5 
T8 
T13 
T17 
SSP1 
SSP2 
SSP7 
SSP8 
SSP9 
SSP10 
SSP13 
SSP15 
SSP17 
SSP21 
SSP23 
SSP24 
SSP25 
M2 
M3 

Location 

Shafton 
Crofton 
Nseleni 
Kwambonambi 
Shafton 
Glenbain 
Baynesfield 
Highflats 
New Hanover 
Glendale 
Anhalt 
Bloemendal 
Ifafa 
Glendale 
Shafton 
Ncalu 
Mtunzini 
Kwambonambi 
Nyalazi 
Fernleas 
Toverton 
Iswepe 
Frantzinas Rust 
Venus 
Waterhoutboom 
Sabie 
Windy Hill 
Amangwe 

Final 
age 
(y) 

8.58 
6.58 
5.92 
5.83 
10.75 
-
10.25 
8.58 
-
10.50 
-
10.75 
8.67 
5.08 
5.92 
5.67 
4.83 
5.92 
5.83 
5.83 
5.00 
4.50 
4.58 
4.83 
4.83 
3.83 
10.92 
9.83 

Longitude 

30° 12' 
30° 12' 
32° 04' 
32u 12' 
30u 16' 
30° 04' 
30° 19' 
30u 13' 
30" 30' 
30° 40' 
30° 45' 
30° 28' 
30° 37' 
30" 40' 
30° 14' 
30° 04' 
31° 51' 
32u 08' 
32u 22' 
32u 16' 
30° 49' 
30° 30' 
30" 52' 
30° 54' 
30u 53' 
30° 46' 
30u 33' 
32° 05' 

Latitude 

-29° 27' 
-30° 13' 
-28u 42' 
-28u 34' 
-29u 25' 
-29u 35' 
-29u 46' 
-30u 13' 
-29u 15' 
-29u01' 
-27° 04' 
-29u 33' 
-30° 25' 
-29u 00' 
-29° 24' 
-30° 14' 
-28° 52' 
-28u 42' 
-28u 16' 
-28u 16' 
-27° 22' 
-26u 45' 
-25u 46' 
-24" 59' 
-24u 56' 
-25u 06' 
-29° 31' 
-28° 39' 

Altitude 
(m) 

1192 
979 
54 
66 
1076 
1300 
838 
1002 
932 
1145 
1231 
799 
121 
1243 
1226 
955 
97 
32 
39 
15 
1042 
1427 
960 
889 
1040 
1132 
884 
50 

MAP 
(mm) 

1008 
784 
1116 
1174 
1089 
946 
828 
817 
1031 
1017 
900 
875 
1011 
814 
920 
874 
1403 
1191 
1068 
860 
816 
859 
921 
1185 
1347 
1017 
1004 
1050 

MAT 
(°C) 

16.3 
16.5 
21.6 
21.6 
16.9 
15.8 
17.8 
16.5 
18.3 
16.3 
17.1 
18.0 
20.4 
15.9 
16.1 
17.2 
21.1 
21.6 
21.9 
21.8 
18.1 
16.3 
18.8 
18.7 
18.1 
18.0 
17.8 
21.6 
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Site 

29 
30 
31 

Trial 
Number 

M4 
M5 
M6 

Location 

Kia-Ora 
Tanhurst 
Baynesfield 

Final 
age 
(y) 

9.75 
9.00 
11.00 

Longitude 

30° 08' 
30° 26' 
30° 21' 

Latitude 

-30u 06' 
-30° 17' 
-29u 45' 

Altitude 
(m) 

780 
610 
780 

MAP 
(mm) 

881 
917 
891 

MAT 
(°C) 

17.4 
18.1 
17.9 

The performance of 3-PG as a tool for predicting SV was evaluated by comparing 

predicted and observed SV data for 28 of the sites shown in Table 2.4. Other data 

required for a proper validation, such as WF and WR biomass data (Sands and 

Landsberg, 2002), were not available. For each site, SV for the final stand age was 

predicted separately (a) with the stands initialised using WFi WRi Wst, biomass typical of 

a two-year old stand, and (b) stands initialised at time zero using seedlings allocated a 

total mass 1 g. Figure 2.3 shows that the quality of fit is very similar in both cases, and 

that although the slope of the regression line is close to unity, 3-PG accounted for 65% 

of the variation in SV across all 28 sites. Generally these results are promising and 

demonstrate that 3-PG provides credible predictions of SV at 28 diverse sites, and over 

an observed range from 70 to 420 m3 ha"1 (see Sections 6.2, 6.3 and 6.5). 
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Figure 2.3. Comparison of the observed and predicted stand volume for 28 sites from 
Table 2.4 when simulated stand growth is initialised (a) using site-specific 
two-year biomass data and (b) seedlings with 1 g biomass. One-to-one line 
is shown as ( ), and ( ) is the regression line. 

Other results (discussed fully in Chapter 6) show that: 
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• Residuals between predicted and observed SV are overpredicted on lower 

productivity (<25 m3 ha"1 y"1) sites with the reverse on medium productivity 

(25 to 45 m3 ha"1 y"1) sites and to a lesser extent on high productivity 

(>45 m3 ha"1 y"1) sites. Of the 28 sites modelled, 13 sites fell within 20% of the 

observed data. 

• Predicted current annual increment (CAI, m3 ha"1 y"1) tracks observed CAI 

reasonably well, especially during periods of drought (see Section 6.4.2). Such 

physiological dynamics in response to drought are well documented by Jones 

and Corlett (1992) showing that drought changes the efficiency of conversion of 

intercepted light into dry matter. Moreover, drought results in a significant 

decrease in plant biomass, LAI and specific leaf area (SLA, m2 kg"1), resulting in 

drought-induced leaf shedding (Pita and Pardos, 2001). 

• Predictions of peak LAI vary between 5 and 10 (see Section 6.4.3) for each of 

the 31 trial sites, compared with observed values of 2 and 3 for three and nine 

year old stands of E. grandis in South Africa, respectively (Dye, 1996). 

Although higher values of LAI have been reported by Myers et al. (1996) who 

measured values ranging from 4.9 to 5.7, these were taken in irrigated 

plantations at an age of 36 months. The over-prediction of LAI is important 

since LAI determines radiation interception which in turn affects C assimilation 

(GPP) and canopy transpiration. It is therefore essential to ensure that the 

maximum LAI produced and the time course of LAI are consistent with 

observations (Landsberg et al., 2001). This is especially true when comparing 

observed and predicted data to ensure that model predictions are correct for the 

"right" reasons. Since SLA and WF biomass (and litter-fall) are important 

determinants in the calculation of LAI, errors in estimation of these input 

parameters will seriously affect the estimation of LAI which "drives" the model. 
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2.4 DISCUSSION AND CONCLUSION 

This chapter highlighted the types of growth and yield (G&Y) models that have been 

developed (i.e. empirical, process and hybrid models). Some background on process-

based models (PBMs) is presented, followed by the appraisal of 16 models ranging in 

resolution, complexity and generality. The purpose of this exercise was to select the 

most appropriate model that would meet the objectives of this study. This selection 

process revolved around a set of 10 criteria, to which ratings or scores were associated 

(not shown). These criteria included, inter alia, the specific purpose of development, 

species to which the model is applicable, the international popularity, the availability of 

documentation and whether the model was developed with the end user in mind. 3-PG 

satisfied most of the criteria, followed closely by ProMod. This appraisal showed that 

the strength of 3-PG lies in the fact that the model has been used in 8 different countries 

(ProMod in 6) and has source code which is readily available, and has adequate and 

scientifically based documentation. 

Using a set of parameter values developed for E. grandis (Gush, 1999), 3-PG was 

subjected to a preliminary model evaluation using observed data from 31 sites. Results 

of this evaluation show the considerable potential of 3-PG for predicting forest 

productivity. However, predictions of plantation productivity using 3-PG and the 

parameter set used in these calculations tend to over-predict productivity of E. grandis 

which may be due to an over-estimation of leaf area index (LAI). Thus there is a need to 

develop a more accurate and robust parameter set to increase the predictive ability of the 

model. 

However, before doing so, it is imperative to perform a parameter sensitivity analysis 

(Chapter 3), which Jeffers (1978) states to be essential to discover how models behave 

within the full range of variation of their parameters. In order to understand the model 

and to identify those parameters and site factors that need to be accurately determined 

for reliable applications of the model to plantation-grown E. grandis, a detailed 

parameter sensitivity analysis of the 3-PG was performed. 
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Another important issue in applying models such as 3-PG to predict the temporal 

pattern of growth is the availability of data that describes the initial state. Sands and 

Landsberg (2002) showed for Eucalyptus globulus that although stem growth rates for 

mature stands were independent of initial stand data over a reasonable range, early 

canopy growth and later-age stem volumes were affected by these data. Although in this 

preliminary evaluation a pragmatic approach to stand initialisation was adopted, it is 

necessary to develop a more robust method to assign initial values and site fertility 

rating (FR). These issues are revisited in Chapter 5. 
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CHAPTER 3 

PARAMETER AND INPUT SENSITIVITY ANALYSIS 

OF3-PG1 

3.1 INTRODUCTION 
Haefner (1996) postulates that the performance of a model can be assessed by actively 

manipulating input values or model components and observing the change in 

corresponding outputs. Such a manipulation is a sensitivity analysis and is defined as a 

systematic investigation of model responses to changes in model inputs and parameters 

(Huang et al., 2003), and whether such changes produce large or small variations in the 

performance of the model (Jeffers, 1978). Sensitivity type analyses can also be used as a 

"what-if analysis (Huang et al., 2003) to decipher the "black-box" (model) and 

understand its behaviour under varying conditions. A distinction can be made between 

parameter sensitivity and component or structural sensitivity. McCuen (1973) defines 

parameter sensitivity as a measure of the change in output resulting from a change in a 

parameter value, whereas a component sensitivity analysis considers the effect of 

changing sub-routines, such as, for example, the biomass production, partitioning or 

water balance routines, on model output (Battaglia and Sands, 1998b). Non-linearity, on 

the other hand, is a change in response that is not proportional to the change in input, or 

equivalently, where the change in response to a given change in input depends on the 

value (level) of the input. Non-linear relationships are ones that show a strong positive 

feedback in one interval of the domain of the function and a strong negative feedback in 

another interval (Berryman and Millstein (1989), cited by Haefner (1996)). For example 

a non-linear response is one that shows a different sensitivity on increasing or 

decreasing the value of the parameter. 

Knowledge of the sensitivity of model outputs to parameters, and of the non-linearity of 

output with respect to these parameters, is useful for modellers to better understand the 

correspondence between the model and the processes being modelled (McCuen, 1973). 

1 Major sections of this chapter are published in Esprey et al. (2004), Appendix 4. 
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A sensitivity analysis gives an appreciation of the role and significance of input and 

parameters in the transformation of the model input to output (Bacchi et al., 1989), and 

provides a powerful method of exploring issues surrounding uncertainties in model 

structure and parameters (Battaglia and Sands, 1998b). It is also possible to determine 

the degree to which inaccuracies in assumed parameter values can lead to serious errors 

in prediction. The sensitivity analysis requires a set of model runs where values of the 

model input variables and parameters are changed. The resulting output is carefully 

evaluated especially when it varies for input variations that are within the bounds of 

realism (Huang et al., 2003). Many techniques employed to perform a sensitivity 

analyses are highly mathematical and theoretical in nature. Huang et al. (2003) suggests 

using a sensitivity index and graphical techniques to conduct a sensitivity analysis. 

The objective of this chapter is to perform an analysis in which the sensitivities of 

selected model outputs (SV and LAI) to variations of each parameter or input are 

calculated and used to assess the sensitivity of 3-PG to changes in its parameter and 

input values. Such an analysis helps the user/modeller understand individual parameters 

and how processes are modelled, identifies those parameters that need to be accurately 

determined, provides insight into the limitations of the model, and most importantly, 

builds confidence in the use of a model. This analysis enables guidelines, necessary for 

the subsequent model parameterisation, to be formulated. 

The site data used in the sensitivity analysis were from 31 is. grandis research trials in 

regions where commercial plantations have been established in two provinces in South 

Africa. The analysis examined the sensitivity of SV and LAI (arbitrarily chosen) to 24 

3-PG parameters. In addition, the sensitivity of SV and WR to R and TAV, FR and 8Sx 

were tested. Non-linearity of model outputs with respect to the parameters was also 

investigated. 
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3.2 METHODS 

3.2.1 Data used for sensitivity analysis 

The data used in the sensitivity analysis were from 31 ICFR E. grandis research trials, 

grown either as a single species or in combination with other eucalypt species, at 

distinct sites in South Africa. Each trial received high quality silvicultural management 

comprising full weed control, fertilisation and blanking {i.e. replanting of areas where 

seedlings had died) to maximise survival during the early establishment phase. Details 

of the sites and trials are given in Table 2.4 (see Section 2.3.4) and Table 3.1. 

Mandatory climatic inputs, site factors and parameter values required for 3-PG were 

obtained as follows: 

Long-term Tx, TN, and SR data were obtained from the 1' x 1' latitude by longitude 

digital database developed by Schulze (1997a). Actual R data for the duration of each 

trial was used in the 3-PG model predictions. Where such data were missing or 

unavailable, representative rainfall data was selected using the "driver station 

approach" outlined in Schulze et al. (1994). According to this approach four criteria are 

used in the selection of the most representative data set as follows: (a) the driver station 

is as close as possible or within the catchment; (b) its altitude is close to the mean 

altitude of the catchment; (c) it has a long continuous record with a minimum of missing 

data; and (d) where data are missing, the next best driver station is used to estimate the 

missing rainfall. 

Of the required site factors, latitude and soil texture were directly available for each site. 

Maximum available soil water was derived as the product of available soil water 

capacity (AWC, mm m"1) and soil depth (m). The former was based on relationships 

between soil water holding capacity and soil texture (or soil class (SC): clay (c); clay-

loam (cl); sand (s); and sand-loam (si)) for South African forest soils (Smith et al, 

2001), and soil depth was based on a broad correlation between parent material and 

depth (Smith et al, 2005). 
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The assignment of site FR was based on whether the trial had received fertiliser or not. 

Trials 14 to 26 were not fertilised since the original objectives of these trials were to 

elucidate climatic and site factors important in driving productivity. All the other trials 

received fertiliser applications based on existing ICFR recommendations for E. grandis 

for the respective site conditions. In general, optimum economic response in South 

African eucalypt plantations is achieved with a single fertiliser dose at the time of 

planting (du Toit, 1998). Because of this, and since preliminary work has demonstrated 

3-PG outputs to be highly sensitive to FR (Esprey and Smith, 2002), values of 0.6 and 

0.4 were assigned for trials that had been fertilised and un-fertilised respectively (Table 

3.1, see Section 5.3.2). 

Species-specific parameters in 3-PG characterise canopy structure and canopy quantum 

efficiency, allometric relationships and biomass partitioning, branch and bark fractions, 

basic wood density, litterfall and root turnover rates, and various environmental 

modifiers (see Appendix 1 and Section 2.3.1). Table 3.2 lists the parameters studied in 

this analysis, along with their initial ascribed values. These parameters affect 3-PG 

outputs in various ways: some affect only a sub-set of outputs, many affect most 

outputs, and in some cases combinations of parameters interact in their effects on an 

output. In general, 3-PG outputs are non-linear functions of the species-specific 

parameters. At the time of this study parameter values had already been developed for 

E. grandis in Kwa-Zulu Natal, South Africa, using data from two contrasting trial sites 

having a SI5 of 15.5 m and 26 m (Gush, 1999). Parameters related to the allometric and 

other biomass relationships were derived from data from destructive harvests over an 

age sequence at both sites. Parameters that had not been, or could not be directly 

measured for E. grandis were gleaned from a range of literature sources, many of which 

pertain to Australian plantations (Bray and Gorham, 1964; Shepherd, 1985; Coetzee et 

al, 1996; Landsberg and Waring, 1997; Coetzee, 1998). Full details of this preliminary 

parameterisation of 3-PG for E. grandis are outlined in Gush (1999). 

3-PG was applied at an age of two years with typical biomass data at that age. All runs 

were made to the ages given in Table 3.1. The biomass data required to initialise the 

stand at age two years were assigned using a pragmatic approach, as follows, (a) Each 
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stand was allocated one of five productivity classes according to its site index estimated 

using a SI5 model for E. grandis at age five years (Coetzee, 1999) developed 

independently from the data presented here, (b) This model also allowed an 

approximate W$ at age two years to be assigned, (c) Data from various sources 

(Bradstock, 1981; Turner, 1986; Christie and Button, 1991; Cromer et al, 1993; 

CSIRO, 1995; Myers et al, 1996; Binkley et al, 1997; du Toit et al, 1999; Gush, 1999) 

indicated that partitioning of biomass between Wpt WR and Ws was related to site quality, 

e.g., on better sites the foliage:stem ratio was lower than on poor sites, (d) Once initial 

Wst was assigned, Wm and WRi were estimated from these typical biomass ratios 

observed for stands aged about two years. 

Table 3.2. Meaning and reference values for the 3-PG E. grandis parameters subjected 
to the sensitivity analysis. See Appendix 1 for the full list of parameters. 

Name 

as 
ns 

Pi 

P20 

VRx 

7*1 
T • 
* mm 
'•opt 

T 
M max 
fm 
tx 

7FX 

gCx 

Lex 
kg 
gB 

°o 
Ol 

k 

O-Cx 

Y 

PBBO 

PBBI 

p* 

Value 

0.095 
2.4 
1 
0.15 
0.6 
0.25 

3 
23 
35 
1 

30 

0.035 
0.02 
3.33 
0.05 
0.2 

12 

6 

0.5 
0.06 
0.47 

0.15 

0.15 
0.5 

Units 

-
-
-
-
-
-

°C 
°C 
°c 
-

years 

month"1 

m s"1 

-
mbar"1 

ms"1 

m2 kg"1 

m'kg 1 

-
-
-
-

-
tm"3 

Definition 

Constant in stem allometric relationship 
Power in stem allometric relationship 
Foliage:stem partitioning ratio for DBH = 2 cm 
Foliage:stem partitioning ratio for DBH = 20 cm 
Maximum fraction of NPP to roots 
Minimum fraction of NPP to roots 

Minimum temperature for growth 
Optimum temperature for growth 
Maximum temperature for growth 
Parameter that controls the effects of FR on ac 

Maximum stand age as used in age modifier 

Maximum litterfall rate 
Maximum canopy conductance 
LAI for max. canopy conductance 
Stomatal response to vapour pressure deficit 
Canopy boundary layer conductance 

Specific leaf area at age 0 

Specific leaf area for mature leaves 

Extinction coefficient 
Maximum canopy quantum efficiency 
Ratio of NPP: GPP 

Branch and bark fraction at age 0 

Branch and bark fraction for mature stands 
Mean stemwood basic density 

37 



3.2.2 Calculation of sensitivity measures 

The relative sensitivity A](X, p) of a given model output X with respect to a parameter, 

site factor or model input p, was defined by Brylinsky (1972) as: 

X dP (3.1) 

This is the change 5x in X produced by a change 8P in/? relative to the original values of 

Xandp. Relative sensitivity is zero ifXis independent of/?, and is positive or negative 

depending on whether an increase in p results in an increase or a decrease, respectively, 

inX. By analogy with Equation 3.1 the relative non-linearity fa of Xwith respect top is 

defined by: 

* X dp2 
(3.2) 

and this is zero if the variable X depends linearly on p. Finite-difference approximations 

to fa and fa are obtained using: 

2 

A2(X,p) = ^X+~2?2
0+X-

X° SP (3.3) 

where 8P is a change inp, and X.- X(p0-Sp), Xo = X(po) andX+ = X(po + Sp). 

3.2.3 Parameter sensitivity analysis 

The relative sensitivity and non-linearity of SV and LAI were determined for each site 

in Table 3.1 by running the model with the reference values of each parameter (p) from 

Table 3.2, and with each/? varied 30% either side of its reference value. The variation of 

p by ±30% was arbitrarily chosen and, except for variables that are strong non-linear 

functions of/?, it has no affect on A] and fa. The resulting 3-PG outputs were then used 
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in Equations 3.3 to approximate /L; and A2, and general measures of mean sensitivity 

(JUJ) and mean non-linearity (jxi) of SV and LAI to each parameter were calculated by 

averaging X; and X2, respectively, over all sites. The coefficient of variation, expressed 

as a percentage, of the Xi around their site-mean (JUJ) was calculated as an indication of 

the environmental or between-site variation (JUJXE) of sensitivity. 

When the default parameter set is used, the effects of FR on ac are disabled because the 

parameter defining^ when FR = 0 (fN0) is set to 1, but FR does nonetheless affect 

biomass partitioning to roots. However, possible effects of FR on ac were taken into 

account in the sensitivity analysis because the analysis of sensitivity tofN0 was based on 

fm = 0.7 and 1.3 as well asfm = 1. 

Predicted values of SV and LAI at two contrasting sites were also plotted as a function 

of selected parameters. These sites are: Mtunzini (high productivity, deep soils, low 

water stress and high temperatures) and Toverton (low productivity, high water stress 

and cooler temperatures); see sites 17 and 21 in Table 3.1. The parameters considered in 

this way were: fN0, which controls the effects of FR on ac', the optimum (Topt, °C) 

temperature for growth; acx which affects the radiation use efficiency (GE, g MJ"1); rj^ 

which regulates the maximum fraction of NPP allocated to roots; the foliage: stem 

partitioning ratio for mature trees (P20)', the LAI required for maximum canopy 

conductance (LCx, m
2 m"2); and the constant and power in the stem mass versus DBH 

allometric relationship (as and ns). 

3.2.4 Model outputs as a function of site factors 

The sensitivities of SV and WR, to the FR, 6Sx, and MAP and MAT were also examined 

at the same two sites. Rainfall, temperature and 6Sx were varied by ± 30%, and FR was 

assigned the values 0, 0.3, 0.6 and 0.9. In each case, SV and WR were plotted as a 

function of these site factors at contrasting sites, Mtunzini and Toverton. 
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3.3 RESULTS 

3.3.1 Model outputs as a function of parameter values and site factors 

Predicted SV and LAI at Mtunzini and Toverton (Table 3.1, sites 17 and 21, 

respectively) are shown as a function of selected parameters in Figure 3.1. This 

illustrates the various degrees of sensitivity found in this study. The slope of the plot of 

output versus parameter increases with increasing sensitivity, e.g. at both sites LAI, but 

not SV, is sensitive to the foliage:stem partitioning ratio (j>2o) at a mean stem diameter 

of 20 cm. In general, if the plot of output (X) versus parameter (p) is not a straight line, 

then X is non-linearly related to p. Figure 3.1b shows that both LAI and SV are non­

linear with respect to Topt. 

Figures 3.2a and 3.2b show that increasing FR increases biomass partitioning to the 

stem and decreases partitioning to roots. Figures 3.2c and 3.2d show that at both sites 

there is only a slight response of SV and WR to changes in #&. Figures 3.3a and 3.3b 

show that increasing R increases both SV and WR at both sites, and that the increase in 

SV is greater at the more productive site, Mtunzini, than at Toverton. Figures 3.3c and 

3.3d show that increasing the mean temperature reduces both SV and WR, and that the 

reduction is greater at the warmer site (Mtunzini). 
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Figure 3.1. Predicted stand volume (•, A; left-hand scale) and LAI (o, A; right-hand 
scale) as a function of parameters: (a) effect of FR on ac (/NO), (b) optimum 
growth temperature (Topt), (c) maximum canopy quantum efficiency (acO, 
(d) maximum root partitioning ratio (/fat), (e) foliage:stem partitioning ratio 
of large trees (P20), (f) LAI required for maximum canopy conductance 
(LCx), (g) constant (as) in stem allometric relationship, and (h) power (ns) in 
stem allometric relationship. Sites are Mtunzini («,o) and Toverton (A, A). 
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Figure 3.2 Predicted stand volume and root dry mass as a function of the site factors: (a 
and b) fertility rating (FR) and (c and d) maximum available soil water ((fax) 
for sites Mtunzini (•) and Toverton (A). 
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Figure 3.3. Predicted SV and root dry mass as a function of climatic factors: (a-b) 
rainfall and (c-d) mean temperature for sites Mtunzini (•) and Toverton 
(A). 

In their application of 3-PG to E. globulus, Sands and Landsberg (2002) showed that 

although variation of initial stand biomass data could strongly affect early stand 

development, it often had little effect on predicted stem growth rates. This finding was 

confirmed here. It was also found that variation in available soil water at the time of 

stand initialisation had little effect on SV, WR and LAI at the stand ages given in Table 

3.1. Neither of these results is shown in detail. 

3.3.2 Relative sensitivity and environmental variation 

A comprehensive summary of the results from the parameter sensitivity analysis is 

given in Table 3.3. This shows the mean sensitivity (jui) and non-linearity (JJ.2), and 
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environmental variation of sensitivity (ju/xE) for both SV and LAI predicted at the stand 

ages given in Table 3.1. Sensitivity has also been ranked using a simple scheme based 

on the distribution of individual values (Battaglia and Sands, 1998b), thus isolating 

those parameters to which SV and LAI are or are not sensitive. Ranked values (0 to 3) 

indicate the range from insensitive to highly sensitive. 

Table 3.3 Results from sensitivity analysis of SV and LAI predicted by 3-PG. aRanking 
refers to the ranking scheme used by Battaglia and Sands (1998b) and is 
appended to this table. 

Parameter 

gB 

T • 

t* 

PBBO 

Lex 

<*o 

PBBI 

kg 
T 
Amax 

P2 

ftJO 

iRn 

iRx 

k 

as 
lopt 

acx 
p* 

Y 

gCx 

TFO 

ns 

Ol 

P20 

Sensitivity 

(Mi) 

SV 

0.05 

-0.02 

0.01 

-0.01 

0.06 

0.01 

-0.17 

-0.16 

0.21 

0.00 

0.50 

-0.36 

-0.45 

0.26 

-0.01 

-0.26 

0.98 

-1.14 

0.98 

-0.76 

-0.10 

-0.16 

0.14 

-0.03 

LAI 

0.04 

-0.01 

0.01 

0.00 

0.02 

0.01 

0.00 

-0.14 

0.18 

0.17 

0.43 

-0.30 

-0.37 

0.21 

0.33 

-0.24 

0.85 

0.00 

0.84 

-0.62 

-1.02 

1.85 

1.13 

0.79 

Non-linearity 
(M2) 

SV 

-0.02 

0.00 

-0.01 

0.00 

0.02 

0.00 

0.00 

-0.01 

-0.26 

0.00 

0.00 

0.09 

0.10 

-0.17 

0.01 

-0.63 

0.04 

0.55 

0.00 

0.23 

-0.01 

-0.01 

-0.04 

-0.03 

LAI 

-0.02 

0.00 

-0.02 

0.00 

0.01 

0.00 

0.00 

-0.01 

-0.24 

-0.03 

-0.02 

0.06 

0.06 

-0.15 

-0.06 

-0.57 

-0.04 

0.00 

-0.07 

0.14 

0.35 

-0.04 

0.01 

-0.08 

Between-site 
variation 

ifiixE) 

SV 

52 

-55 

93 

-83 

133 

162 

-8 

-44 

89 

-312 

17 

-18 

-26 

40 

-126 

-109 

12 

-21 

11 

-25 

-46 

-67 

39 

-102 

LAI 

57 

-59 

99 

0 

262 

176 

0 

-48 

89 

48 

19 

-8 

-31 

41 

11 

-78 

7 

0 
7 
-27 

-21 

13 

4 

17 

Ranking8 

fti 

sy 
0 
0 

0 
0 

0 

0 
1 

1 

1 

0 
2 

2 

2 

2 

0 

2 

3 

3 

3 
3 
1 

1 

1 

0 

LAI 

0 
0 

0 
0 

0 

0 

0 

1 

1 

1 
2 

2 
2 

1 

2 
1 

3 

0 
3 

3 
3 

3 

3 

3 

fi,xE 

sy 
I 
I 
2 

2 

2 

3 

0 

1 

2 

3 

0 

0 

1 

1 

2 

2 

0 

0 

0 

1 

1 

1 

1 

2 

LAI 

1 

1 

2 

0 

3 

3 

0 

1 

2 

1 

0 

0 

1 

1 

0 

2 

0 

0 

0 

1 

0 

0 

0 

0 

Ranking value 

111 

|ilxE 

0 
|H, |< 0.075 
j (J.,xE | < 25 

1 
0.075 < |n,|<0.25 
25 < | \iixE | <75 

2 
0.25 <||xi| <0.4 
75 < | a,xE | < 150 

3 
0.4<|u,| 
150< |u ixE | 

For each parameter the mean sensitivity fij and non-linearity JU2 are the average of the relative sensitivity 
ki and non-linearity X2 across 31 sites. The environmental variation (u/xE) is the coefficient of variation 
(expressed as a percentage) of 1/across all sites. The parameters have been ordered in increasing 
maximum ranking of//; for SV and LAI, and then in order of increasing maximum ranking of ///xE for 
SV and LAI. 
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Stand volume is seen (Table 3.3) to be highly sensitive to the ratio (Y) of NPP: GPP, 

acx, maximum canopy conductance (gCx) and basic wood density (p*), with a moderate 

sensitivity to the maximum {r/Rx) and minimum (?]Rn) fractions of biomass allocated to 

roots, the effect of site fertility on canopy quantum efficiency (fm), the optimum growth 

temperature (Topt), and the extinction coefficient (k). The remaining parameters in Table 

3.3 have a sensitivity ranking of 0 or 1, and as such are not influential in the 

determination of SV. The sensitivity of SV displays a large environmental variation to 

the foliage:stem partitioning ratio (p^) and specific leaf area of seedlings (er0), but the 

actual sensitivities are very low. However, the sensitivity of SV displays moderate 

environmental variation to the foliage:stem partitioning ratio (p2o) and specific leaf area 

of mature trees (ai). 

On the other hand, Table 3.3 shows that LAI is highly sensitive to a subset of these 

parameters (Y, gCx and acx), to the power (ns) in the allometric relationship between stem 

mass and mean diameter, and to the maximum litterfall rate (YFX), specific leaf area (oi) 

and foliage: stem partitioning ratio fao) of mature trees. LAI is moderately sensitive to 

fm, r/Rx and rjRn, and also to ns . Stand volume and LAI are seen to have a high {p.2 * 

0.6) degree of non-linearity with respect to Topt and moderate (jU2 * 0.15-0.25) non-

linearity with respect to k, gCx and Tmax. 

3.4 DISCUSSION 

The results presented above constitute a comprehensive analysis of the sensitivity of 3-

PG output to species-specific parameters of the model. The sensitivity of 3-PG outputs 

to stand initialisation data and to site and climatic factors was also studied. The results 

are invaluable in aiding the parameterisation of 3-PG for new species, and in particular, 

in a subsequent re-parameterisation of 3-PG for E. grandis in South Africa (See Chapter 

4). The 3-PG output variables on which the sensitivity analysis was based were a key 

determinant of stand growth (canopy LAI), a key economic output (SV) and root 

biomass (WR). However, effects on soil water or stand water use were not considered. 

The discussion below refers in particular to two contrasting sites (Mtunzini and 

Toverton), but the conclusions are typical for all sites. 
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An important issue in applying models such as 3-PG to predict the temporal pattern of 

growth is the availability of data that describes the initial state. Sands and Landsberg 

(2002) showed for Eucalyptus globulus that although stem growth rates for mature 

stands were independent of initial stand data over a reasonable range, early canopy 

growth and later-age stem volumes were affected by these data. This finding was 

confirmed here, so a pragmatic approach to stand initialisation was adopted (see Section 

3.2) that allowed the allocation of site-dependent foliage, stem and root biomass {WFi, 

Wsi and WRi) data for a two year old stand that was realistic, but dependent on a pre­

existing assessment of site quality. However, despite differences at individual sites, 

there was little difference between the overall agreement between predicted and 

observed SV at the stand ages listed in Table 3.1 when stands were initialised with 

realistic biomass data at age two years. This, and the fact that sensitivity is calculated 

from differences between predicted outputs, means that the sensitivity measures are 

relatively insensitive to initial stand conditions. Although the approach used here to 

initialise the model and assign the fertility rating (FR) is pragmatic, more objective 

methods are required (see Section 5.3.2).. 

Of the potential applications outlined in Sections 2.1 and 7.1 the most useful within the 

South African context is to estimate final standing volume towards the end of the 

rotation. Such predictions are required for harvest scheduling, planning and to estimate 

the potential supply to the mill and are generally made using either empirically-based 

models (EBMs) or using inventory information immediately before clear-felling. 

Empirically-based models are circular and work reasonably well but are limited to areas 

and conditions under which they were developed and performing inventory assessments 

are labour intensive, time consuming and expensive. Process-based models (PBMs) 

have, therefore a potentially important role to play. Under these circumstances model 

initialisation is relatively straightforward especially since inventory data is collected at 

some point during the rotation. Using such information, simple methods have been 

devised to initialise 3-PG (i.e. FR and biomass pools); these are presented in Chapter 5. 
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This study also showed that initial available soil water (0a) had no effect on simulated 

mature-age stands. This was because the amount of water used in early stand growth, 

did not exceed inputs from monthly rainfall (R) and hence available soil water (0S) 

quickly attained a state independent of 0Si. However, this might not be the case at very 

dry sites and at sites at which there is significant competition by weeds for water. 

3.4.1 Sensitivity measures 

Definition of relative sensitivity and non-linearity by Equations 3.1 and 3.2 ensures that 

A] and Xi are independent of the units employed for both X and p. They are thus suitable 

measures for comparing sensitivity and non-linearity of different outputs to a range of 

different parameters or factors, and even between distinct models. However, their 

values do depend on the value of both X and/). Thus, even ifXis a linear function ofp, 

Xi is not constant and varies slightly with X and p. For this reason fa, which is zero when 

X(p) is linear, was introduced as a measure of non-linearity. 

For models that are inherently non-linear, such as 3-PG, Xj may vary from site to site 

(and with the value ofp) and therefore the averages JUJ and fi2 of fa and X2 over all 31 

sites have been used as indicators of the inherent sensitivity and non-linearity of an 

output with respect to a parameter. In addition, the coefficient of variation (JUJXE) ofX; 

about its mean JUJ is an effective indicator of the environmental variation of sensitivity 

i.e. of how sensitivity varies between sites. 

The results presented in Table 3.3 are powerful guides to the accuracy with which 

parameters need to be determined when 3-PG is adapted to a new species. The basic 

rules are as follows: 

• Parameters with a low ranking in sensitivity can be assigned generic values. 

• Parameters with a high ranking in sensitivity must be assigned species-

specific values. 

• Parameters with a moderate sensitivity ranking but with a high non-linearity 

or site variation, require special attention as particular circumstances of the 

47 



current parameter values or site factors might be hiding potential high 

sensitivity. 

The accuracy dp with which a parameter or factor must be assigned so as to obtain a 

particular accuracy dx in the output variable can be obtained from the relevant relative 

sensitivity through the relation dp < (pdx/X)Xi. Conversely, if a parameter can only be 

determined to the accuracy dp, the likely error 5^ in the output variable is dx * 

{X6p/p)ki. 

3.4.2 Parameter sensitivity analysis 

The parameter sensitivity analysis highlighted the existence of classes of: insensitive 

parameters, i.e. those that can be varied widely without affecting the outputs studied; 

sensitive parameters, i.e. those whose value strongly affects the predicted outputs; and 

non-linear parameters, i.e. those for which the outputs depend in a non-linear manner on 

the parameter value. Because this study considered the variation of sensitivity of each 

parameter across a wide range of sites, it also identified potential site-dependence of 

parameter sensitivity. 

Parameters in Table 3.3 are listed in order of increasing maximum ranking of/// for SV 

and LAI, and then in order of increasing maximum ranking of JUJXE for SV and LAI. 

Ranking on the basis of both outputs reflects the understanding that although SV is an 

output of economic importance, LAI is a major determinant of growth and productivity. 

The following discussion, therefore, focuses on both outputs. 

It is expected that the values currently assigned to insensitive parameters (i.e. those 

ranked 0-1: gB to p2 in Table 3.3), with the possible exception of Tmax, can be used in a 

subsequent re-parameterisation of 3-PG, especially for E. grandis. However, closer 

attention will need to be paid to those parameters with moderate sensitivity (i.e. those 

ranked 2:fN0 to Topt), and especially to those with the highest ranking (i.e. those ranked 

3: etc* to p2o)- In addition, attention needs to be paid to non-linear parameters with low 

to moderate sensitivity, as a change in their value could make an insensitive parameter 

sensitive, and conversely: e.g. Topl and Tmax, and to a lesser extent k. Parameters of 

moderate sensitivity, but with strong site-dependence also need close attention if the 
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parameter set is to be applied across a wide range of site conditions. The relevant 

parameters here are Topt and Tmax, but not parameters such as Lex, Go and p2 because 

although they have a very high JUJXE, their sensitivity is very low. 

It is also important to note that some parameters have different sensitivity rankings 

depending on the particular output variable considered. For instance, basic density (p*) 

directly and strongly affects S V, but has no effect on the biomass components or canopy 

LAI. Both the allometric parameters as and rts strongly affect LAI, and in all 

environments, whereas they have little effect on SV. On the other hand the maximum 

litterfall rate (YFX) and the mature-age specific leaf area (c\) directly and strongly affect 

LAI, and because this affects primary production and hence overall growth, these 

parameters also affect SV. 

In summary, the following parameters will require accurate determination because they 

have a moderate or high sensitivity ranking for SV or LAl:fm, as, ns, UR^.^RX., «cx.> 

P*>Y, gcx, JFX, ojandp2o- In addition Tmax and Topt require close attention because they are 

highly non-linear and have a moderate sensitivity ranking. The light extinction 

coefficient (k) can probably be assigned a generic value (typically 0.5), although its 

sensitivity ranking is moderate. This is because inaccuracies in k affect light capture for 

all stands at all times and will be absorbed into inaccuracies inherent in the assignment 

of a value to other parameters, e.g. acx-

Sands and Landsberg (2002) noted that many of the parameters in the list requiring 

close attention essentially affect primary production and stem growth multiplicatively, 

and hence uncertainties in one affect the determination of values for the others. The 

only resolution to this problem is to estimate parameters by fitting observed time-series 

data for WF, WR and Ws biomass to data predicted by 3-PG. In the case of Sands and 

Landsberg (2002) such data were available for foliage and stem biomass but not root 

biomass, whereas Almeida et al. (2004b) also had access to coarse root biomass. In our 

case, no time-series data were available. 
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3.4.3 Dependence of outputs on parameter values 

The values of SV and LAI shown in Figure 3.1 as a function of selected parameters can 

be explained by considering how each parameter affects the calculation of SV and LAI. 

Net primary production (NPP) is the product of Y (a constant), ac and intercepted 

radiation, and hence is indirectly related to the parameters Top„ Tmax andfm through the 

temperature and nutrient modifiers used in the calculation of ac- Because biomass 

increments are proportional to primary production, these parameters affect both SV and 

LAI, (Figures 3.1a-b), and in particular SV and LAI are strongly influenced by etc* 

(Figure 3.1c), and Y. However, since the temperature modifier also depends on the site 

temperature, the sensitivity of SV or LAI to the value of Topt can vary significantly from 

site to site, and as Topl is within the annual range of site temperature, outputs such as S V 

and LAI vary non-linearly with Topt (Figure 3.1b). 

Increasing the biomass partitioned to roots reduces both LAI and SV at all sites. Figure 

3. Id shows the sensitivity of LAI and SV to TJRX, and similar results pertain for T]Rn. The 

ranking of environmental variation for these two parameters found in this study {i.e. 1 

and 0, Table 3.3) may be under-estimated because the variation of FR and the range of 

mean annual precipitation (MAP) are limited at the study sites (Table 3.2). The 

foliage:stem partitioning ratio affects the balance between canopy development and 

accumulation of stem volume (V). But because, in 3-PG, foliage biomass is a balance 

between growth and litterfall, whereas stem growth is purely accumulative, the 

foliage: stem partitioning ratios p2 and P20 have more effect on foliage biomass, and 

hence on LAI, than on SV (Figure 3.1e). 

Leaf area is a function of the specific leaf area (SLA), and hence LAI would be 

expected to vary with parameters that affect SLA. However, SLA. essentially attains a 

constant value {i.e. o"i) by a stand age of four years so LAI is insensitive to seedling 

specific leaf area (oo) but is strongly affected by SLA in mature trees, o\ (Table 3.3). LCx 

is used in the calculation of canopy conductance and transpiration and hence affects 

available soil water. It follows that SV and LAI could be sensitive to LCx when soil 

water is limiting production. However, sensitivity with respect to LCx is inherently low 

(Table 3.3 and Figure 3.If). 
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Both stem allometric parameters as and ns affect LAI, and the effect of ns is quite 

marked (Figures 3.1g-h), but their effects on SV are small or negligible. These effects 

are mediated through the effects the allometric relationship has on stem diameter, and 

hence on biomass partitioning to stems and foliage. It might be surprising that the effect 

on LAI is so strong, especially in the case of ns, while that on SV is so weak. This can 

be explained by considering the causal links between as and ns on the one hand and LAI 

and SV on the other (Figure 3.4). 

foliage: stem 
partitioning ratio 

* foliage biomass 
partitioning 

"s 

as 

I-
mean stem 
diameter 

stem biomass 
partitioning 

w + 

w + 

V • primary 
production 

Figure 3.4. Causal loop diagram showing influence of the stem allometric parameters 
(as and ns) on stem volume (V, m3 tree"1) and LAI. A—»B indicates that 
variable A has an influence on variable B, and the sign (+,-) indicates a 
positive or enhancing effect (+), or a negative or diminishing effect (-). 

In a causal loop diagram such as Figure 3.4, A—»B indicates that variable A has a direct 

influence on variable B, and the sign (+,-) indicates a positive or enhancing effect (+), 

or a negative or diminishing effect (-). Closed loops such as A—»B—>A. (and where B 

may comprise several steps) are known as feedback loops and are important controls on 

the dynamics of the system. Loops such that an increase in A feeds around the loop to 

further increase A comprise positive feedback, and loops such that an increase in A 

feeds around the loop to cause a decrease in A comprise negative feedback. 

First, for a given V, an increase in as or ns causes a decrease in DBH because V is 

proportional to asBnS and ns > 1. Next, it can be seen from Figure 3.4 that an increase in 

DBH will increase stem biomass partitioning (nS) and hence increase SV and DBH; this 
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is a positive feedback loop. On the other hand, an increase in DBH will also decrease 

foliage biomass partitioning (rjF) and hence decrease LAI, which in turn leads to a 

decrease in NPP and hence in V and ultimately in DBH; this is a negative feedback 

loop. So an increase in as or ns causes an increase in LAI, as is seen in Figures 3.1g-h. 

However, an increase in as or ns can cause either an increase or a decrease in V, 

depending on the loop followed in Figure 3.4, and the two effects cancel or result in a 

milder response. 

3.4.4 Sensitivity to site and climatic factors 

The sensitivity of 3-PG stand-level outputs to site and climatic factors was also studied, 

and results are summarised in Figures 3.2 and 3.3. Increased fertility increases SV, and 

decreases WR (Figure 3.2a and 3.2b). It is generally agreed that biomass partitioning to 

roots declines with increasing site fertility (Vogt et al., 1997), and this is seen here. 

However, since fm = 1 in the parameter set used here, FR has no affect on canopy 

quantum efficiency, and so NPP and total stand biomass are not directly affected by FR. 

This situation differs from that found for effects of site R (see below) because the latter 

does increase production. Changes in the maximum available soil water (6sx, see 

Figures 3.2c and 3.2d) have no effect on SV or WR. 

Both SV and WR show a substantial response to increasing site R (Figures 3.3a and 

3.3b). Because water stress reduces a c and hence growth, this response suggests that at 

these sites NPP is limited to some extent by soil water. Water stress also increases 

partitioning to roots, but this effect is much less than the effects of increased R on NPP 

and hence both SV and WR increase with increasing R, but at different rates. However, 

an increase in monthly mean temperature results in a reduction of SV and WR at both 

sites (Figures 3.3c and 3.3d), and the effect is more pronounced at the warmer site 

(Mtunzini). A decrease in SV and WR is predicted because temperatures generally 

exceed the optimum temperature (Topt) for growth and hence increased temperature 

reduces etc- However, increased transpiration rates and the subsequent onset of tree 

water stress may also play a role in reducing NPP and hence overall growth. 
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3.5 CONCLUSION 

The analysis presented is a comprehensive sensitivity analysis for the forest growth 

model 3-PG. The results have identified parameters that need to be accurately 

determined if 3-PG is to be used with confidence as a management tool for E. grandis in 

South Africa. They also provide general information that will facilitate a sound 

parameterisation of 3-PG for other species or under other conditions. This work 

therefore satisfies the first objective (see Section 1.2). The analysis also examined the 

sensitivity of the model to site initialisation data, and to site and climatic factors. These 

results illustrate the accuracy with which site and climatic factors need to be 

determined, and the general impacts of these on stand growth. A useful by-product of 

this study is greater understanding of the functioning of 3-PG, and of its strengths and 

weaknesses. This will enhance its potential as a tool to predict plantation productivity 

and to identify factors that limit growth, leading ultimately to its use as a component of 

a management system for commercial forestry. 
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CHAPTER 4 

ADAPTATION OF 3-PG TO EUCALYPTUS GRANDIS -

SPECIES-SPECIFIC PARAMETERS 

4.1 INTRODUCTION 
3-PG parameters comprise site and species-specific parameters which characterise the 

canopy structure and canopy quantum efficiency, allometric relationships and biomass 

partitioning, branch and bark fractions (PBB), basic wood density (p*, t m"3), litterfall 

and root turnover rates, and various environmental modifiers. This chapter describes the 

development of a parameter set for E. grandis for 3-PG. 

Model parameterisation or calibration (see Section 6.1.2) is the process whereby 

selected parameters of the model are adjusted so that model outputs match observations 

(Schulze, 2003). Several studies outlining the parameterisation of 3-PG for a range of 

species and regions have recently been published (Table 4.1). Parameter estimation in 

many of these studies was achieved using a stepwise approach where parameter values 

were adjusted until the fit of model predictions to experimental data was no longer 

improved. Hopkins and Leipold (1996) argue that such parameter adjustments can be 

defended by the following: (i) the circumstances under which the original parameter 

values were determined might not be similar or consistent with the system being 

modelled; (ii) if the parameter values have been determined over several locations there 

could well be a range of values; and (iii) if a model is to be used in management and 

planning it should at least reproduce some reasonable results. 
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Table 4.1. Methods used to assign parameter values for several tree species based on a 
series of publications regarding the parameterisation of 3-PG. Abbreviations 
for species are: GU - E. grandis x urophylla; and GC - E. grandis x 
camaldulensis. 

Methods to assign parameter values 
Generic default parameter values based on a range of studies and 
publications. 
Progressive adjustment of parameter values within biological 
realistic bounds + default values. 
Benchmark paper in which parameters made more intuitively 
meaningful. These were adjusted in stepwise fashion to give best 
fit to observed data. 
Assigned using destructively harvested data, physiological 
measurements and default values. 
Assigned from direct observation. Remainder of parameters 
estimated through manual adjustments until best fit obtained. 
Selected parameters assigned using field measurements and 
default values for E. globulus. 

Species 
many 
species 
E. globulus 
E. grandis 

E. globulus 

GU 

E. grandis 
hybrids 

GC 

Author 
Landsberg and Waring 
(1997) 

Morris (2000) 

Sands and Landsberg (2002) 

Stape et al. (2004) 

Almeida et al. (2004b) 

Dye et al. (2004) 

However, Hopkins and Leipold (1996) caution against such logic giving reasons why 

such parameter adjustments should not be done. "At the root of this belief is the 

assumption that substantial disagreement between model predictions and experimental 

data indicates a serious error. Such an error could be in the parameter values, the 

model equations, or the experimental results. If the error is in one or more of the 

parameter values, it is not clear how one would choose the right parameter value(s) to 

adjust. Particularly with complex models characterised by many parameters, it is likely 

that values other than the incorrect one(s) could be adjusted to improve the fit. If the 

error is in the model equations or the experimental data, it might still be possible to 

adjust away the lack of fit. And finally, parameter values optimised for a particular set 

of experimental conditions might give worse model predictions than the unadjusted 

parameters when an attempt is made to model a different set of experimental 

conditions." These cautions are noted and accepted. Nevertheless, in most practical 

applications parameter adjustments may well be necessary because of a lack of data, 

problems of scaling, and/or a poor understanding of processes (Makela et al., 2000). 

Sands (2004a) maintains that manually assigning parameter values can provide initial 

values suitable for the automated process, and aids in understanding the process. 
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4.2 DATA SOURCES AND CLASSIFICATION OF PARAMETERS 

To parameterise and test the 3-PG model, data should preferably come from sites 

covering a range of site qualities (e.g. low, medium and high productivity). It is highly 

desirable that good biomass data come from one or more sites that are not limited by 

either fertility or ds, as this averts the need to be concerned with the soil and nutrient 

modifiers, and also from sites limited by water only or fertility only. At least some of 

the individual items of data should comprise a significant time-series and should include 

foliage (WF and/or LAI), stem (Ws and/or SV) and/or DBH/qDBH, and WR and leaf 

litter-fall over a period of time (Sands, 2004a). In general, age-series data are not as 

suitable as time-series data as they come from different sites often having distinct 

management and climatic histories. The data typically required to parameterise and test 

3-PG can be classified as biomass harvest, field, literature, mensuration and 

physiological data (B, F, L, M or P) as shown in Table 4.2. 

Table 4.2. Data source classes for data required for parameterisation. 

Data source class 

Biomass harvest 

Field data 

Literature 

Mensuration 

Physiological 

B 

F 

L 

M 

P 

Description 
Data from direct measurement of harvested trees, e.g. biomass data (foliage, stem, 
root), leaf area, wood density 
Data not routinely obtained from an inventory assessment, e.g. soil samples, 
litterfall, soil water, specific leaf area, leaf area index 
Data obtained from the literature 
Data from an inventory assessment, e.g. measured stem height and diameter, 
volume or other data inferred from statistical relationships 
Results of physiological experiments, e.g. gas-exchange analyses 

Individual species to which 3-PG is applied are characterised by a set of species-specific 

parameters. The use of 3-PG for forest management depends on the ability to obtain 

reliable values for parameters characterising several eucalypt, acacia, pine and other 

species. Although 3-PG has been applied to a wide range of species and clones, in only 

a few cases have the species-specific parameters been rigorously determined, and this 

has been largely by a process of trial and error (e.g. Morris (2000); Sands and 

Landsberg (2002); Almeida et al. (2004b) and Table 4.1). Therefore, a systematic 

protocol for assigning species-specific parameters was required. This was made possible 

by understanding the meaning of the model parameters, and the sensitivity of 3-PG 

outputs to these parameters (Chapter 3). 
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As a general rule, parameter values should always be assigned by direct measurement, 

either as the direct result of some experimental measurement, or indirectly by regression 

analysis of experimental data, or by analogy with other species (Sands, 2004a). Failing 

this, parameters can be estimated by adjusting their values to optimise the fit of 3-PG 

output to observed data. For this case, software for fitting model output to observed data 

is available. Estimation by adjusting parameter values to optimise the fit between 

observed and predicted data is effective, but should be the last choice. These 

observations are reflected in the classification of parameters by their estimation class 

(Table 4.3). This classification serves only as a formal guide of how a particular 

parameter might be assigned a value. Sensitivity analysis of key model outputs (e.g. 

LAI, SV) to the species-specific parameters in a model (see Section 3.4.2; Battaglia and 

Sands, 1998b) provides a classification of parameters according to the accuracy with 

which they must be assigned. These estimation and sensitivity classes are presented for 

3-PG in Table 4.3. The estimation classes are default, observed, estimated (D, O or E), 

and the sensitivity classes are low, medium and high (L, M or H). This classification, 

and the data source classes (Table 4.2) were applied to the 3-PG parameters as shown in 

Table 4.4. These reflect current judgement for E. globulus (Sands and Landsberg, 2002) 

and provide guidance for parameter estimation for a range of species. 

Table 4.3. Parameter estimation and sensitivity classes (see Section 3.3.2, Table 3.3). 

Estimation class 

Default 

Observed 

Estimated 

D 

0 

E 

Sensitivity class 
Low 
Medium 

High 

L 
M 

H 

Description 
The parameter can be assigned some generic value, e.g. based on work with other 
species, or from a priori knowledge 
The parameter can be directly measured, e.g. via gas-exchange analysis, or 
determined by analysis of experimental data, e.g. by regression analysis 
The parameter can only be estimated indirectly, e.g. by adjusting its value to 
optimise the fit of some output to observed data 

Description 
Outputs are essentially independent of the parameter value 
Outputs depend moderately on the parameter value 
Outputs depend strongly on the parameter value, or their sensitivity varies 
significantly across sites 

Default parameter values (D), comprise, inter alia, environmental modifiers and 

conversion factors such as the molecular weight for wood and the conversion of SR to 

photosynthetically active radiation (PAR, MJ m"2 d"1). Examples of sensitivity class L 

are parameters related to the canopy boundary layer conductance (gB, m s"1), specific 
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leaf area for young stands, and branch and bark fraction (PBBO and PBBI) (see Section 

3.4.2, Table 3.3). Such insensitive parameters can be assigned a value common to other 

species, which is especially helpful when parameters are not experimentally accessible 

(Sands, 2004a). However, parameters representing processes that are experimentally 

accessible should be assigned values using observed data (estimation class O), e.g. 

allometric parameters. Where such parameters cannot be assigned values directly 

(estimation class E), values have to be estimated {e.g. acx, pi and/?2o )• 

A distinction between parameter assignment and parameter estimation is made as 

follows: Assigning parameter values is done through direct measurement. In contrast, 

parameter estimation is the process whereby parameter values indirectly ascribed or 

adjusted according to some observed data or by analogy with other species. 
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4.2.1 Guidelines for assigning parameters values 

The following guidelines, taken from Sands (2004a), were followed when assigning 

species-specific 3-PG parameters for E. grandis: 

• First assign values to all parameters that can be directly observed, or can be 

given default values, or by analogy with other species. 

• Of the remaining parameters, identify those that cannot be assigned, by fitting 

to observed data because suitable data are not available, and reconsider these 

with a view to assigning them default values. 

• Estimate the remaining parameters by fitting model output to appropriate 

observed data, taking into account any a priori information, e.g. on the 

permissible range for the parameters. This may be by either manually 

adjusting parameter values, or by using appropriate software, or both, and it 

may be an iterative process. 

• It is important that the fit be based on observations of as many distinct 

variables as possible, and from sites covering a wide range of conditions. 

• There is no point in basing a fit on more than one set of observed data that are 

correlated, e.g. SV, Ws, DBH and qDBH are highly correlated. 

When parameter values have been established, the following basic checks must be 

performed on both the parameters and the subsequent outputs of the model: 

Check that all parameter values are biophysically or biologically reasonable. 

Perform at least a basic sensitivity analysis of observed and assigned values 

in the context of the final parameter set (Chapter 3). If they are of low 

sensitivity, they should not need to be considered further; otherwise their 

values will have to be carefully examined for reasonableness (Chapter 3). 

Verify that the behavior of all outputs is reasonable, especially those not used 

in the estimation process, e.g. canopy LAI is often predicted to be very high 

within the first two years of canopy development. Should an output behave 

unreasonably, repeat the estimation with a bound placed on the output in 

question. 
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4.2.2 Guidelines for estimating parameter values 

Parameter estimation is a systematic process in which the fit of model outputs to 

observed data is optimised either manually (stepwise adjustment) or automatically 

(estimation software). Optimisation is accomplished by minimising the merit function 

through the adjustment of selected parameters. The merit function, usually the residual 

sum of squares, measures the agreement between model predictions and observed data 

when changing the values of a subset of parameters, and is conventionally arranged so 

that small values represent a good agreement (Press et al., 1992). Best-fit parameters are 

realised by iteratively adjusting model parameters until a minimum in the merit function 

is reached (Press et al., 1992). Many algorithms exist to minimise the merit function 

(Sands, 2004a), with the Marquardt algorithm being one such example (e.g. Marquardt, 

1963, and Draper and Smith, 1981 cited by Sands 2004a). This algorithm is 

implemented by the freeware package PEST (Parameter ESTimation, Doherty, 2002). 

PEST which is a non-linear parameter estimator, is widely used with hydrological 

models to infer aspects of reality that may not be amenable to direct measurement 

(Waterloo Hydrogeologic, 2002). 

The primary purpose of PEST is to assist in data interpretation through the estimation of 

system properties from observed data sets, and for model parameterisation and 

predictive analysis (i.e. once a parameter set has been determined, it is reasonable to ask 

whether another parameter set exists). PEST operates by "taking controF of the model 

that is being parameterised and executes it as many times as is necessary to minimise 

the merit function and determine the optimal set of parameters. Using the Marquardt 

algorithm, PEST adjusts model parameters until the fit between model outputs and field 

observations are optimised in the least squares sense. An additional feature of PEST is 

the analysis of non-unique parameter values and the repercussions of these values on 

predictions made by the model. 

Early attempts to use PEST to estimate 3-PG parameters were difficult because 3-PGPJS 

as an Excel spreadsheet, had to be transformed into an executable file. This meant that 

the user no longer had the flexible access nor the power of the commonly used 

spreadsheet implementation of 3-PG (Sands, 2004a). A spreadsheet-based technique 
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that allows the use of PEST with spreadsheet-based models was developed (NRF, 

2002). This tool allows parameter estimation for any Excel-based model and eliminates 

the tedious preparation of PEST control files. In addition, it gives confidence limits or 

standard errors on the parameter estimates, and the correlation between estimates. These 

are invaluable additional results from the estimation that are not readily available from 

manual estimations. Sands (2004a) took this spreadsheet technique a few steps further 

and developed PEST X L which has a user-friendly interface and "wizard" that allows the 

3PGpjs user to access and apply PEST without knowledge of, or the need to see PEST 

XL, its self. 

With respect to parameter estimation the following guidelines were therefore adhered to 

(Sands, 2004a): 

• A successful estimation should be repeated with different initial parameter 

values. This will test the robustness of the estimated parameter set, and 

possibly avoid convergence to a local optimum. 

• It is advisable to simultaneously use data spanning a wide range of site 

conditions. However, an initial estimation based on a single or few sites can 

quickly highlight problems such as correlation between parameters, or 

parameters or model output variables going out of range. 

• Parameter estimation software packages also provide confidence intervals or 

standard errors for the estimated parameters. If the confidence interval is 

large it is often worth fixing the parameter mid-range to reduce the number of 

parameters being estimated. 

• If the confidence interval encompasses the value of a parameter that in 

practice turns some process or effect off, consider repeating the estimation 

with the parameter fixed at that particular value. 

• Software packages for estimation also provide the correlation matrix between 

parameter estimates. If two or more parameters are highly correlated, 

estimation can often be aided by holding one constant whilst estimating the 

others. 
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• A difficult estimation can often be aided by successively estimating groups of 

parameters. It is then worth trying to refine the entire parameter set by 

estimating all the parameters with their new values as initial values for the 

full estimation. 

Several other important considerations, specific to the parameter estimation of 3-PG, are 

documented in Sands (2004a). Of these, two very important issues are firstly, the use of 

surrogate data in the absence of state variable measurements, and secondly, the 

importance of interacting parameter groups. As highlighted, parameter estimation 

should ideally be based on observed values of WF, WR and Ws biomass, SPH and soil 

water contents. The reasons for this, according to Sands (2004a), are because the 

primary variables predicted by 3-PG are strongly related to the internal structure of the 

model. Where these data are not available, surrogates may be used. There are no simple 

surrogates for WR\ however, many exist for WF {e.g. LAI) and for Ws {e.g. DBH, HT or 

SV). 

Understanding the interaction effects of groups of parameters on the behaviour of 3-PG 

is essential, especially when using estimation packages such as PEST. This aspect of 

model parameterisation is highly complex and therefore an explanation around the 

parameter interactions in 3-PG is quoted from Sands (2004a). "Three interacting 

parameter groups are (a) maximum canopy quantum efficiency (acy), (b) parameters 

controlling biomass allocation (i.e. foliage stem partitioning ratios (p2 and P20) and 

below ground allocation (rjRx and nR,J and (c) those controlling the growth modifiers. 

These groups interact because growth of each biomass pool is the product ofNPP and 

the corresponding allocation ratio. The goal is to find values for a.cx, P2, P20, VRX and r]R„ 

that apply to all stands, irrespective of the degree of growth limitation, and for the 

parameters characterising the modifiers. Groups (a) and (b) strongly interact, and can 

be uniquely estimated if biomass data from all pools are available at sites free of major 

growth limitations. Group (c) interacts with the others to a lesser extent, and their 

estimation requires data from sites with significant growth limitations. However, site 

fertility usually does not vary significantly during a rotation, and unless growth data is 

available from a range of sites with widely varying fertility, including sites free of 
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fertility limitations, the product acx and fertility cannot be separated into acx and the 

effect of fertility on NPF". As with other mechanistic models, selected parameter 

groupings affect model outputs (e.g. Sievanen and Burk, 1993; Sievanen and Burk, 

1994; Sands and Landsberg, 2002). 

Parameter estimation is a powerful but often abused technique, which can readily lead 

to erroneous results. To help avoid this, parameter estimations must be tempered by 

judgement and only be undertaken with a sound understanding of the model and the 

purpose of each parameter. Furthermore, final parameter values and model predictions 

must be checked for biological reality (see Section 6.4.3). 

Accordingly, 3-PG was parameterised for E. grandis using a methodology similar to 

that of Sands and Landsberg (2002) except where they estimated parameters by "trial 

and error", PEST X L was used to estimate optimum parameter values. Initially 

parameters that could be directly observed or given default values were assigned values. 

The remaining parameters comprised those that could not be assigned values because of 

limited or no data (e.g. root data), and those that cannot be directly estimated using 

observed data (e.g. p2 and/^o). For these, either default values were used or values were 

estimated by fitting model output to observed data. When parameters were estimated it 

was important to set biologically reasonable ranges within which the parameters could 

vary. Parameter assignment and estimation specific to E. grandis is outlined next. 

4.3 ASSIGNING/ESTIMATION OF PARAMETER VALUES FOR 

E. GRANDIS 

Using the information presented in Table 4.2 and the parameterisation guidelines, 

default parameter values were gleaned from Landsberg and Waring (1997) and selected 

literature sources (e.g. Sands and Landsberg (2002); Gush (1999)). Since no 

physiological data were collected during this study appropriate values were gleaned 

from the literature. 

Fourteen destructive harvesting studies were performed within South Africa. At each 

site only aboveground biomass data were collected. Of these sites, 10 came from the 31 

65 



research trials used in the model evaluation (see Section 2.3.4) and parameter sensitivity 

analysis (Chapter 3). These sites were selected according to the following criteria: (1) 

trees were originally planted as seedlings; (2) the stocking at harvest was at least 70% of 

the initial stems per hectare; (3) trials were situated relatively close to sites to be used in 

subsequent model verification studies; (4) the sites had contrasting water and climatic 

environments, and (5) climatic data were available. Furthermore, sites spanning a range 

of ages and productivities, measured as the MAI, were required. Four age classes (1-3 

yr; 4-6 yr; 7-9 yr and >10 yr) and three MAI-based productivity classes namely low, 

<25 m3 ha"1 y"1, medium, 25-40 m3 ha"1 y"1, and high, >40 m3 ha"1 y"1 were therefore 

selected (Table 4.5). These trials had received high quality silvicultural management, 

particularly during the early establishment phase. 

Table 4.5. Description of the E. grandis trials at which selected trees were destructively 
harvested for the collection of aboveground biomass components. 
Abbreviations are: Tx and TN, - mean monthly maximum and minimum 
temperature; MAT - mean annual temperature; and MAP - mean annual 
precipitation. 

Trial 

T15 
Kl 
SSP7 

CSP1 

B24 
K2 
SSP1 

SSP13 

A69 
SSP23 
K4 
SSP10 

SSP8 
W162 

Age 
(years) 
12 
11 
7 
3 
2 
9 
6 
7 
6 
6 
8 
7 
6 
1.5 

Initial 
stocking 
1667 

1667 

1600 

1680 

1667 

1667 
1667 

1600 

1666 

1976 
1389 

1600 

1600 
1333 

Final 
stocking 
1302 

1480 

1328 

1680 

1440 
1417 

1242 

1342 

1468 
1304 

972 
1216 
1144 

1328 

Altitude 
(m) 

780 
1192 

955 
1260 

880 
979 
1243 
15 
900 
889 
66 
39 
97 
66 

Tx 

(°C) 
24 
22.6 

23.3 

22.3 
-
22.3 

21.6 

27.2 
-
25.1 
26.6 

26.8 

25.8 
26.6 

TN 

(°C) 
11.6 

10.1 

11.1 
9.6 
-
10.7 
10.2 

16.4 
-
12.3 
16.6 

16.9 
16.4 

16.6 

MAT 
(°C) 

17.8 

16.3 

17.2 

15.2 

17.5 

16.5 

15.9 

21.8 
17.4 

18.7 
21.6 

21.9 
21.1 

21.6 

MAP 
(mm) 
891 
1008 

874 
950 
829 
784 
814 
860 
895 
1185 
1174 

1068 
1403 

1174 

Productivity 
class 

Low 
Low 
Low 
Low 
Low 
Medium 
Medium 

Medium 
Medium 

High 

High 
High 

High 

High 

The DBH of approximately 196 trees (14 rows by 14 trees) were measured within the 

control treatment of each trial. To ensure representative sampling, the measured DBHs 

were stratified from the largest to the smallest tree and divided into 12 size classes from 

which the median tree of each class was selected. The methodology described was 

replicated on all trees across all sites {i.e. approximately 14 sites x 12 trees). Each 
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selected tree was felled into cleared areas to minimise leaf and branch loss, then 

measured for total height to the first live branch and height to the canopy base. The 

over-bark diameter (OBD) at 1 m increments along the length of the bole to 5 cm OBD 

was recorded. The aboveground biomass components, i.e. foliage, capsules, branches 

(living and dead), bark and stemwood, were separated and the total wet mass of each 

determined. The wet masses of sub-samples from each component were determined 

before returning to the laboratory where additional measurements (stemwood volume 

and leaf area) were completed and samples were oven dried to a constant mass. The leaf 

area of the foliage sub-sample was determined using the LI-COR 3100 Leaf Area 

Scanner (LI-COR Inc, Lincon, Nebraska, USA) and together with the oven-dried mass, 

was used to calculate SLA. Application of the water displacement method to measure 

the volume of wood (TAPPI, 1985) enabled the inference of basic wood density. Using 

the ratio of wefcdry mass of each sub-sample, the total dry mass for each component at 

the tree scale was determined. 

Data and information relating to the field data source class (Table 4.2) comprised LAI 

measurements, monthly litterfall collection and soil samples. At the time of harvesting 

the plant area index (PAI, m m~) at 9 sites was measured using the LICOR 2000 Plant 

Canopy Analyser (PCA, LI-COR Inc, Lincon, Nebraska, USA). Using the calibration 

curve (LAI = 1.54 x PAI) developed by Cherry et al. (1998), corresponding LAIs for 

each site were determined. Between May and August 2002 four litter-traps, each 

occupying 6 m2, were randomly established at 12 of the sites. Litter was collected at 

monthly intervals, taken to the laboratory and sorted into woody and leafy components 

prior to oven drying. Although litter traps at 5 of the sites were lost due to theft, the 

quality of the litter fall data was sufficient to estimate litterfall rates required by 3-PG. 

Soil samples from each of the harvested trial sites were analysed in the laboratory and 

characteristics describing the organic matter and soil texture were determined. 

Stand-level mensuration data comprised qDBH, DBH and HT measurements from all 

the trials. Using these data and observed tree volume (based on the mass and density of 

each 1 m section of the bole) of all harvested trees, a generic set of coefficients 

applicable to the Schumacher-Hall (S-H) volume function as described in Coetzee 
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(1992) was derived. By applying this generic S-H function, annual time-series data of 

SV were calculated for six site-species-productivity (SSP) trials, and used for the 

parameter estimation work described in the following sections. 

4.3.1 Parameter assignment 

The 3-PG parameters and their values for E. grandis determined both by Gush (1999) 

and in this study, are presented in Table 4.6 (see Table 4.4 for accompanying symbols 

and units). Note that in some cases, where there were no data available, the suggested 

estimation class (Table 4.4) has been changed accordingly. Allometric and age-

dependent relationships used in 3-PGPJS are assigned values using biomass and field 

data. Unless otherwise specified, default parameter values are from Landsberg and 

Waring (1997). 
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Table 4.6. 3-PG parameter values for E. grandis (this chapter) and from Gush (1999). 
See Table 4.4 for accompanying symbols and units. 

Description 

Allometric relationships & partitioning 
Ratio of foliage:stem partitioning at DBH = 2 cm 
Ratio of foliage:stem partitioning at DBH = 20 cm 
Constant in stem mass v diameter relationship 
Power in stem mass v diameter relationship 
Maximum fraction of NPP to roots 
Minimum fraction of NPP to roots 
Litterfall and root turnover 
Litterfall rate at t = 0 
Litterfall rate for mature stands 
Age at which litterfall rate has median value 
Average monthly root turnover rate 
Environmental modifiers 
Minimum temperature for growth 
Optimum temperature for growth 
Maximum temperature for growth 
Number of days production lost for each frost day 
Value of m when FR = 0 
Value of/jv when FR = 0 
Power of (1-FR) in/y 
Defines stomatal response to VPD 
Moisture ratio deficit which gives^ = 0.5 
Power of moisture ratio deficit in fg 
Maximum stand age used to compute relative age 
Power of relative age mfase 

Relative age to give7aee = 0.5 
Conductance 
Maximum canopy conductance 
Canopy LAI for maximum canopy conductance 
Canopy boundary layer conductance 
Stem mortality 
Seedling mortality rate (t = 0) 
Mortality rate for older stands (large t) 
Age at which mortality = XA that for seedlings and older stands 
Shape of mortality response 
Specific leaf area (SLA) 
Specific leaf area at stand age 0 
Specific leaf area for mature aged stands 
Age at which SLA= lA that for young & older stands 
Rainfall interception 
Maximum fraction of rainfall intercepted by canopy 
LAI for maximum rainfall interception 
Light interception, production and respiration 
Extinction coefficient for PAR absorption by canopy 
Age at full canopy cover 
Maximum canopy quantum efficiency 
Ratio NPP/GPP 
Branch and bark fraction 
Branch and bark fraction at stand age 0 

Estimation 
class3 

E 
E 
O 
0 
D' 
D1 

D 
O/E 
O 
D 

D1 

E 
D1 

D 
D 
D 
D 
L1 

D 
D 
D1 

D 
D 

L1 

D 
L1 

O 
O 
0 
0 

o 
o 
o 
D 
D 

O/D2 

D 
E 
E/D 

O 

Gush 
(1999)" 

1 
0.15 
0.095 
2.4 
0.6 
0.25 

0.001 
0.035 
24 
0.015 

3 
23 
35 
0 
0 
1 
0 
0.05 
0.7 
9 
30 
4 
0.95 

0.02 
3.33 
0.2 

na 
na 
na 
na 

12 
6 
2 

0.15 
0 

0.5 
0 
0.06 
0.47 

0.15 

This 
studyc 

0.75 
0.11 
0.044 
2.771 
0.6 
0.25 

0.001 
0.075 
24 
0.015 

3 
23 
35 
1 
0 
1 
0 
0.05 
0.7 
9 
30 
4 
0.95 

0.02 
3.33 
0.2 

2 
2 
4 
1 

13 
7.7 
2.25 

0.15 
0 

0.5 
2 
0.064 
0.47 

0.6 
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Description 

Branch and bark fraction for mature aged stands 
Age at which pBB = VS that for young & old trees 
Basic density 
Minimum basic density - for young trees 
Maximum basic density - for older trees 
Age at which density = x/i density of old and young trees 
Stem height allometric relationship 
Constant in stem height relationship 
Power of qDBH in stem height relationship 
Power of stocking in stem height relationship 
Stem volume allometric relationship 
Constant in stem volume relationship 
Power of qDBH in stem volume relationship 
Power of stocking in stem volume relationship 
Conversion factors 
Intercept of net radiation v solar radiation relationship 
Slope of net radiation v solar radiation relationship 
Molecular weight of dry matter 
Conversion of solar radiation to PAR 

Estimation 
class* 

O 
O 

0 
O 
O 

O 
0 
O 

O 
0 
0 

D 
D 
D 
D 

Gush 
(1999)" 

0.15 
1.5 

0.5 
0.5 
4 

na 
na 
na 

na 
na 
na 

-90 
0.8 
24 
2.3 

This 
study' 

0.131 
1.945 

0.53 
0.32 
5.66 

0.84 
1.15 
0 

3.1 x 10-5 
3.094 
1 

-90 
0.8 
24 
2.3 

a Effective estimation class resulting from this study; 
b Parameter values developed in Gush (1999);c Parameter values developed in this study. 
D: parameter values taken from Sands and Landsberg (2002) and Landsberg and Waring (1997); 
D : parameter values taken from Gush (1999); 
D : Parameter exhibiting large environmental variation therefore default value used; 
L Parameter value taken from Dye (1987). 

Allometric relationships 

Three biomass allometric relationships with respect to qDBH are used in 3-PG. These 

are: (i) the mean single tree biomass (ws, kg tree"1) calculated from Ws /SPH, depicted 

as a function of qDBH; (ii and iii) SV and HT, both as functions of qDBH and SPH, 

shown in Equations 4.1, 4.2 and 4.3 respectively. These allometric relationships were 

parameterised with respect to the qDBH as follows: 

ws = asB
n-

SV=avB
nrB Nny* 

HT = aHBn"B Nn,m 

(4.1) 
(4.2) 

(4.3) 

where the allometric parameters as, ay and aH are multipliers; ns, tiys, HBH and HVN, KHN 

are the powers of B (referring to qDBH) and N (referring to SPH) respectively. Only 

parameter values parameterised with respect to qDBH are reported. For a given site, 3-
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PG predicts woody biomass per hectare (Ws), from which ws is calculated. Equation 4.1 

is re-arranged and solved for B, which in this case is the DBH. This calculated qDBH is 

used to calculate BA, SV (Equation. 4.2) and HT (Equation. 4.3). The relationship 

depicted in Equation 4.1 is therefore an important one (of which the parameters have a 

moderate sensitivity rating; see Section 3.3.2, Table 3.3). As such, the allometric 

parameters, as and ns need to be accurately determined. 

Using the biomass data collected from the destructive harvests, Equation. 4.1 was 

parameterised by first applying the single-tree allometric relationship (based on ws and 

DBH derived from each of the 12 harvested trees) to all the 196 trees measured at each 

site. For example, 14 site-dependent allometric relationships were developed using the 

12 harvested trees at each of the 14 sites. These individual allometric relationships were 

used at their corresponding sites to calculate the individual tree mass as a function of the 

measured DBH for each of the 196 trees at each site. The average ws and qDBH of the 

196 trees at each site were calculated. These ws and qDBH pairs (14 pairs of values, one 

pair for each site) were combined to develop a stand-based allometic relationship which 

is representative of all sites. In a similar fashion the allometric relationships shown in 

Equations 4.2 and 4.3 were developed. According to Duursama and Robinson (2003), 

the development of allometric relationships in this way (i.e. as a function of qDBH 

rather than arithmetic mean DBH, and by using stand level biomass data) circumvents 

two valid criticisms of the way 3-PG is used. Firstly, as and ns are established using 

stand level relationships rather than on the basis of single tree data (which would be 

inconsistent with what 3-PG assumes and actually does), and secondly, the calculation 

of BA using qDBH is unbiased (whereas there is bias when BA is calculated from the 

arithmetic mean DBH). Across the 14 sites the derived relationship was qDBH = 

1.058*DBH(r2 = 0.985). 

Parameters for the relationships given by Equations 4.1 to 4.3 were determined using 

Solver (a simple optimisation tool in Microsoft Excel) by minimising the sums of 

squares between observed and model predicted values. Calculations in Solver are 

performed using untransformed data compared with ln-transformations used in Excel's 

power function trend-lines. 

71 



Figure 4.1 shows tree stem biomass and height as a function of qDBH for E. grandis 

stands of differing ages and MAIs across all 14 harvested sites. The allometric 

parameter values estimated from these relationships and accompanying statistics are 

presented in Table 4.7. 

The allometric parameters for the ws and SV relationships give an excellent fit 

accounting for 96% of the variation of the observed data. Since stocking information 

was inadequate, neither HHN nor HVN were estimated and were set as 0 and 1 respectively. 

This relationship therefore applies to stands having a stocking of between 1000 and 

1600 stems per hectare. 
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Figure 4.1 Allometric relationships between qDBH and (a) mean single-tree stem 
biomass (vvs), and (b) tree height, HT, for high (0), medium (A) and low (o) 
productivity sites. The line ( ) is the fitted relationship used in 3-PG 
where the parameters for mean single-tree biomass (ws) are as = 0.044 and 
ns = 2.771 and for HT are an = 0.84, nHB =1.15 and HHN = 0. 
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Table 4.7. Parameter values assigned to the allometric relationships in 3-PG where the 
quadratic mean diameter (qDBH) is used as the measure of stem size. 
Statistics shown include the standard error (SE) and 95 % confidence 
intervals of parameter estimates, and the r2 of the observed versus predicted 
data. 

Relationships 
Stem mass 
(kg tree"1) 

Stand volume 
(m3 ha"1) 

Height 
(m) 

Parameters 

n, 
ay 

nvB 

HYN 

nHN 

qDBH 
0.044 
2.771 
3.1 x 10-5 
3.094 
1 
0.84 
1.15 
0 

SE 
0.016 
0.12 
1.1 x 10-5 
0.116 
na 
0.17 
0.076 
na 

95% CI 
±0.031 
±0.23 
±2.1x10-5 
±0.23 
na 
±0.33 
±0.15 
na 

r1 

0.96 

0.96 

0.91 

Age-dependent relationships 

Specific leaf area, pBB, wood density and tree mortality are described in 3-PG by 

functions of stand age, and are represented as Gaussian functions having a non-zero 

asymptote (Sands and Landsberg, 2002). Using Solver, parameter values characterising 

SLA, PBB and p* relationships were determined in a similar fashion to the allometric 

parameter values. 

Parameter values intrinsic to the mortality function were established by trial and error to 

reproduce the data modelled using the C-J model (Clutter and Jones, 1980). The C-J 

model represents tree survival per hectare for an age as a function of trees per hectare at 

an earlier age. An advantage of the 3-PG mortality function over the C-J function is that 

the parameters in the former have a more intuitive meaning and can be readily assigned 

from observed data, and these were therefore used (Sands, 2004a). Thus, the seedling 

mortality rate (yN0) and the mortality rate for older stands (jN1) are the mortality rates at 

planting and for mature trees respectively. 

3-PG calculates monthly leaf litterfall per month using an age-dependent litterfall rate, 

which increases from a low value (ym) to a maximum (yFx) at approximately three years 

of age (Sands and Landsberg, 2002). Sands and Landsberg (2002) have shown that 

given observed litterfall, LAI and SLA, the monthly leaf litterfall rate can be 

approximated. Using observed litterfall rates, LAI and SLA, values for yFx were 
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calculated for each of 10 sites. Values for the maximum litterfall rate were shown to 

vary (ranging between 0.04 and 0.13) from stand to stand in response to local 

conditions. An average value of 0.075 was therefore assigned. Since no litterfall 

information for young stands were available and Ym has a low sensitivity rating (see 

Sections 3.3.2 and 3.4), a default value of 0.001 was used. All parameter values 

assigned to the age-dependent relationships and r2 between observed and predicted 

values are given in Table 4.8. 

Table 4.8. Parameter values assigned to the specific leaf area (SLA), branch and bark 
fraction (PBB), density, mortality and litterfall age-dependent relationships. 
The coefficient of determination (r2) of the observed versus predicted data is 
given. Definitions of parameters are given in Table 4.6. 

Relationships 

SLA 
(m 2 kg ' ) 

Branch and bark 
fraction 

Wood Density 
(tm-3) 

Mortality 

Litterfall 
(per month"1) 

Parameters 

PBBO 

PBBI 

IBB 

PI 

Po 
to 

YNO 

Ym 
tyN 
IlyN 

YFx 

Value 

13 
7.7 
2.25 

0.6 
0.131 
1.945 
0.53 
0.32 
5.66 
2 
2 
4 
1 

0.075 

rJ 

0.85 

0.92 

0.71 

0.99 

-
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Figure 4.2 Age-dependence of (a) specific leaf area and (b) branch and bark fraction for 
all harvested sites. The symbols shown refer to high (0), medium (A) and 
low (o) productivity sites with lines ( ) depicting curves fitted. 
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Figure 4.3. Observed and modelled variation in wood density with age across 14 sites of 
high (0), medium (A) and low (o) productivity. 

Figure 4.2 illustrates how SLA and PBB decline with age. Figure 4.2a shows a decline 
9 1 9 1 

from 10.8 m kg" at age 2 years to 7.7 ± 1.3 m kg" for stands aged between 6 tol2 

years and reproduces the observed SLA with r2 = 0.85. Figure 4.2b shows PBB declines 

from 0.36 at age 2 years to 0.14 for the older stands (r2 = 0.92). On the other hand wood 

density, shown in Figure 4.3 increases with age (i.e. 0.36 t m"3 to 0.48 t m"3) over a 10 

year rotation and is also site-specific with densities ranging between 0.39 t m"3 and 0.42 

75 



t m at age 6 years. Compared to observed values the predicted wood density has an r 

of 0.71. 

Figure 4.2b shows the values of PBB to be highly variable between sites. This finding is 

similar to that of Sands and Landsberg (2002). Since SV is highly sensitive to pBB (see 

Section 3.3.2, Table 3.3) and the between-site variation mpBB is large, it is very easy to 

get erroneous predictions of SV. For instance, at four of the sites of age 6 years PBB is 

observed to vary between 0.24 and 0.13, but using the parameter values in Table 4.8 it 

is predicted to be 0.17 at an age of 6 years. Using a wood density of 0.43 t m"3 at age 6 

years (Figure 4.3) and a W$ of, say, 100 t ha"1, predicted SV (calculated as W$ x (1 -

PBB) I p*) would be 193 m3 ha"1. Using this prediction of PBB at age 6 years would 

therefore over-estimate SV at the site where observed PBB was 0.13 (202 m3 ha"1) and 

under-estimate SV at sites where observed pBB values of 0.24 (176 m ha" y). Due to 

these inaccuracies in predicting pBB and wood density, it is preferable to base predicted 

SV on the allometric relationship with qDBH and SPH (Equation 4.2). 

The 3-PG mortality relationship with a probability of death (yN0) set as 2% per annum 

was as accurate as the prediction when using the C-J function (e.g. a decline in SPH 

from 1666 to 1377 and to 1361 when using the C-J and 3-PG function respectively) 

over a 10-year period respectively. 

Other par am eters 

Apart from the PAI determined using the LICOR 2000, additional measurements made 

by the instrument include the fraction of sky visible to the sensor (I/I0, where I and Io 

are the flux densities below and above the canopy, respectively). Using I/I0 and the LAI 

of the stand, the light extinction coefficient (A) can be determined (Monsi and Saeki 

(1953) cited by Linder (1985)). By re-arranging I = I0e"*LAI, values for k were 

determined across all nine measured sites. Results showed k to be site-specific with a 

mean value of 0.45 (SE = 0.04). Due to the site-specifc nature of A; and since values of A: 

are well known from the literature, a default value of 0.5 was assumed. 
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It is known that canopy conductance can respond to VPD. Parameters characterising 

canopy conductance were gleaned from results of a study of transpiration in E. grandis: 

Dye (1987) estimated 0.0625 mbar"1 for proportional stomatal response to vapour 

pressure deficit (kD), and found the ranges 0.01-0.025 m s"1 for maximum canopy 

conductance (gCx) and 0.22-0.07 m s"1 for the boundary layer conductance (gB). 

Accordingly, the standard values of 0.02 m s"1 and 0.2 m s"1 were retained for these last 

two parameters. 

Where parameters could not be assigned a value directly from observed data, either 

because suitable data were not available, or unnecessary due to low sensitivity ratings, 

default values were taken from Landsberg and Waring (1997), Sands and Landsberg 

(2002) and Gush (1999). Critical parameters that could not be directly assigned using 

observed data included foliage: stem partitioning ratios (p2 and/^o), fractions of NPP to 

roots (f]Rx and %„), optimum temperature for growth (Topt) and maximum canopy 

quantum efficiency (acx)- These should then be estimated by fitting to observed growth 

data (see Almeida et ah, 2004b). However, since no root data were available, default 

values were used for TJRX and r/Rn. A default value for Topt was also used because of its 

high correlation with acx- The final set of parameters is shown in Table 4.6, which 

includes those assigned by observation, given default values, or estimated using PEST 

as described below. 

4.3.2 Estimation of parameter values for E. grandis 

Parameter estimation was performed using PEST, in conjunction with PEST X L (see 

Section 4.2.2). Sands (2004a) strongly recommends that parameter estimation should be 

based on observed values of WF, WR and Ws biomass and 6s, as these are the state 

variables of the model and are implicitly associated with the internal dynamics and 

processes of the model. Since it is not always possible to have such observed data, 

acceptable surrogates such as qDBH and LAI can be used in the place of Ws and WF. 

However root data necessary for the estimation of T]RX and T]Rn were not available so 

default values were used for these parameters (Table 4.6) 
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Estimation of P2, P20 and acx was based on a single measurement of LAI and time-series 

data for Ws at each of six selected sites. Of the sites presented in Table 4.5, two from 

each productivity class were selected: Kl, K2, SSPl, SSP7, SSP8 and SSPIO. A total of 

29 observations across these sites made up the observed data used in the estimation 

process. Site information and weather data required for 3-PG simulations were the 

same as those used in Chapter 3. The stand was initialised with Ws and WF data from the 

earliest observations at each site. Initial WR was assumed to be 25% of the total tree 

biomass (Shephard, 1985). 

As discussed in Section 4.2.2 several model parameters are correlated, i.e. a change in 

one parameter can be offset in terms of the quality of fit by a coordinated change in 

other parameters. Table 4.9 gives the correlation coefficients calculated using PEST for 

a number of parameters and based on the data available for use in parameter estimation. 

The values of the correlations depend on the combination of parameters included, the 

parameter values, and the quality of fit. This table shows that for the default parameter 

values used in this analysis, changes in acx are very highly correlated with changes in 

Top„ gcx and kD, and moderately correlated with p2o, Vox and yFx. These correlations can 

be readily explained with reference to a sound understanding of the model (see Sections 

3.3 and 3.4; Sands, 2004a). 

Table 4.9. Correlations between selected parameters calculated using PEST. 

Parameter 
name 

P2 

P20 

aCx 

T\Rx 

T0Dt 

YFx 

gCx 

kD 

P2 

1.00 
0.20 
-0.14 
-0.20 
0.01 
0.36 
-0.40 
-0.19 

P20 

1.00 
-0.21 
-0.13 
-0.06 
0.98 
-0.54 
-0.43 

acx 

1.00 
0.31 
0.84 
-0.22 
0.71 
0.96 

VRx 

1.00 
0.28 
-0.15 
-0.07 
-0.17 

I opt 

1.00 
-0.06 
0.27 
0.74 

7FX 

1.00 
-0.58 
-0.44 

gCx 

1.00 
0.84 

kD 

1.00 

Correlations such as these mean it is very difficult with the available data to 

simultaneously estimate certain groups of parameters. Accordingly, only p2,P2o and acx 

were estimated by fitting predicted Ws and LAI to corresponding observed data, with 
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the other parameters given default values as in Table 4.6. Biologically plausible bounds 

were placed on each of these parameters in the estimation process. It was found that the 

resulting estimates of p2 and P20 were highly correlated, and any value for p2 between 

the imposed lower bound of 0.5 and the default value of 1 gave equivalent results; the 

value 0.75 was selected. Table 4.10 shows the resulting values for these parameters, and 

the standard error and correlation coefficients for each estimated value. 

Table 4.10. Values, standard error and correlation coefficients of p2, P20 and acx 

estimated using PEST. 

Parameter 
name 

P2 

P20 

Ocx 

Estimated 
value 

0.75 
0.11 
0.064 

Imposed 
range 

0.05 to 5 
0.01 to 1 
0.05 to 0.07 

Standard 
error 

1.4 
0.03 
0.001 

Correlation coefficients 
P2 

1.00 
-0.84 
-0.14 

P20 
-
1.00 
-0.09 

O-Cx 
-
-
1.00 

Canopy development is naturally sensitive to litterfall, which is controlled in 3-PG by 

the parameter yFx: reducing /FxWill increase LAI. The observed value of yFx used in these 

estimations was 0.075 and was based on data from a specific 12-month period of time, 

whereas Gush (1999) used 0.035 averaged over the life of the stand. Accordingly, yFx 

was reduced to 0.035 and the estimation of the parameters in Table 4.10 was repeated. 

This leads to a slight improvement in the fit to observed LAI, but with a reduction of P20 

to 0.043 (a rather low value) and acx to 0.061. As a result, the apparent under-prediction 

of canopy LAI remains a concern. 

At two sites (SSP1 and SSP10) stem growth rate was observed to decline markedly 

from age 6 years, but this decline was not reproduced in the simulations, irrespective of 

parameter values. It is expected this might be a site-specific effect, e.g. loss of fertility 

or low stored water that has not been taken into account in the site specification. 

4.4 DISCUSSION AND CONCLUSIONS 

This study established a more refined set of 3-PG parameter values to use in the 

prediction of stand attributes useful to the forest manager, and for use of the model as a 

research and management tool for Eucalypt plantations in South Africa. Many key 

parameters were assigned specific values based on sound data obtained from biomass 
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harvests. However, specific key parameters had to be estimated by fitting model outputs 

to observed data. The software tools Parameter ESTimation (PEST) and PEST X L were 

invaluable aids in this process. A useful by-product, is the formulation of a set of 

guidelines for the successful parameterisation of 3-PG. These guidelines classify the 

model parameters according to their sensitivity class, data source class and estimation 

class. Greater appreciation of the quality and type of data required for model 

parameterisation was developed, and it is clear that further work is required to unravel 

some of the intricacies and unknowns associated with the data and sites used in this 

study. Additional analyses and data would be invaluable to guide refinement of 

parameters that had to be simply assigned default values by analogy with other species. 

Besides the improved parameter set for E. grandis, a major spin-off of this study was 

the development and application of PESTXL, which has been shown to be a powerful 

parameter estimation tool. Using this tool, and given the availability of good observed 

data, parameterisation for additional species will be facilitated, allowing comparisons 

between eucalypt, pine and acacia species to be made. Using a knowledge of the 

physiological differences between these species, it is anticipated that inferences between 

parameter sets may be possible and help circumvent the requirement for "difficult to 

obtain data" such as root biomass, thus short-circuiting the parameterisation process. 

The development of standard techniques to parameterise the 3-PG model satisfies part 

of the second project objective presented in Chapter 1. The second part of this objective 

is concerned with methods to set up and initialise 3-PG. These are explored next in 

Chapter 5 
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CHAPTER 5 

SETTING UP 3-PG - MODEL INPUTS AND 

INITIALISATION 

5.1 INTRODUCTION 
Besides species-specific parameter values (Chapter 4), 3-PG requires three types of 

information as inputs (Table 5.1): (1) weather data; (2) site information, and (3) stand 

initialisation data. Ideally these data should come from the site(s) of interest, where 

experimental trials exist, and/or where monitoring networks are in place (see Almeida, 

2004a). However, this is the exception rather than the rule, so alternative data and 

information sources are required. Table 5.1 shows suggested sources from which these 

data can be accessed. 

Table 5.1. Mandatory inputs required by the 3-PG model showing ideal and alternative 
sources of data. Abbreviations are: Tx and TN, - mean monthly maximum 
and minimum temperature (°C); R - Monthly rainfall (mm); SR - Solar 
radiation MJm"2d_1); $& - maximum available soil water (mm); GPS -
geographic positioning system; FR - site fertility rating; W$i, Wpt, Wm -
initial stem, foliage and root biomass (toM ha"1); SPHi - initial stems per 
hectare; dm - initial available soil water (mm); WP - wilting point (mm m" 
); and FC - Field capacity (mm m"1). 

Weather data 

Site factors 

Stand initial 
conditions 

Mandatory 
Inputs 

Tx, TN, 
R 
SR 

Latitude 
Soil texture 

FR 

WFi 

wm 
SPHi 
0Si 

Ideal source 

Observed/measured 
Observed/measured 
Observed/measured 

Trial register/GPS 
Soil survey 
WP- FC x soil depth 
Soil survey chemical 
Observed 
Observed 
Observed 
Observed 
50% of total 6Sx 

Alternative source 

Gridded mean monthly derived and 
interpolated from a network of stations 
Also gridded but as a function of 
temperature 

Geological and soil maps 

Different approaches dependent on data 
available 
Apply mortality to initial stocking 
50%of6»5x 
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Fortunately, the ICFR is the custodian of extensive experimental trial information and 

weather data for major parts of southern Africa. This site information plus edaphic and 

topographical data have been disseminated into the ICFR forest site classification (FSC) 

documented in Smith et al., (2005). The FSC is based on climate, geology and soils and 

comprises three levels. The first level is based on MAT, which influences the climatic 

and disease risks for a given species. This level comprises three climatic zones 

corresponding to general snow and frost risk across the landscape (cool temperate), frost 

risk confined to low-lying areas only (warm temperate), and frost-free (sub-tropical). 

Since rainfall is associated with productivity and drought risk, the second level of the 

classification incorporates MAP namely dry, moist and wet. Due to ET demands 

varying according to temperature, the MAP thresholds vary according to each MAT 

class. The third level of the classification relates to factors that affect soil water storage 

and soil resilience. The FSC serves as a useful framework and allows for several model 

inputs to be determined, especially when observed data are not available (e.g. site 

information and initial biomass pools). 

This chapter considers objective techniques to determine values for the initial biomass 

pools and ways in which the model inputs can be derived. Several methods to estimate 

the site fertility are also explored. 

5.2 WEATHER DATA INPUTS 

A direct relationship between rainfall and growth has been shown in many species-site-

growth studies in South Africa (Schonau and Wilhelmij, 1981; Schafer, 1988a; Schafer 

1988b; Louw, 1995; Zwolinski et al., 1998; Strydom, 2001; du Plessis and Zwolinski, 

2003). Rainfall is also highly variable in its temporal and spatial distribution, which 

influences the temporal pattern of soil water content, canopy interception, infiltration, 

runoff and deep drainage (Mummery and Battaglia, 2004). The use of actual rainfall 

data is therefore recommended. Moreover, Almeida et al. (2004a) express the 

importance of using actual rather than average weather data so the impact of climatic 

fluctuations on stand productivity can be evaluated (i.e. retrospective modelling). For 

predictive purposes (or to answer "what if questions) long term average mean data may 

be used. 
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Observed daily rainfall data for 14 000 stations across southern Africa are readily 

available from a locally developed database (Lynch, 2003). Where rainfall data are 

missing, the rainfall record is patched using representative rainfall, selected using the 

"driver station approach" outlined in Schulze et al. (1994). Four criteria are used in the 

selection of the most representative data set as follows: (a) the driver station is as close 

as possible to or within the catchment of interest, (b) its altitude is close to the mean 

altitude of the catchment, (c) it has a long continuous record with a minimum of missing 

data, and (d) where data are missing, the next best driver station is used to estimate the 

missing rainfall. 

Long-term monthly average values of SR, Tx and TN, and R, are also routinely available 

in a database comprising a minute of a degree latitude by longitude digital database 

developed by Schulze (1997a). However, extractable SR is not based on actual data but 

is calculated using the Clemence (1992) equation, based on extraterrestrial daily solar 

radiation, maximum air temperature and the daily temperature range. 

5.3 INPUTS RELATED TO SITE INFORMATION 

Site information required by 3-PG include the latitude of the site, soil class {i.e. clay, 

clay loam, sand loam or sand), the dsx and FR. 

5.3.1 Maximum available soil water and soil texture 

Johnston (1973), cited by Smith et al. (2005), defines the important factors determining 

the potential water supply as: 

• The water retained by the soil that is available to a root system, commonly 

referred to as the available water capacity (AWC, mm m"1) calculated as the 

difference between field capacity (FC, mm m"1) and wilting point 

(WP, mm m"1). 

• The depth of soil available for root growth and the species rooting patterns. 

• The ease with which roots may access that water which is influenced by soil 

structure and texture. 

• Stoniness. 
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Therefore, the total potential soil water storage capacity or $sx as depicted in 3-PG, is 

calculated as the product of the AWC and the soil depth. If the observed soil depth and 

soil texture, from which the hydraulic characteristics (i.e. FC and WP) are derived, are 

not available, default values can be used. Defaults of AWC have been estimated for any 

soil using the soil form (soil horizon sequences), soil texture and organic C (Smith et 

ah, 2005). Alternatively, AWC can be determined directly from geological maps using 

the dominant lithology to derive the soil texture and soil depth (Smith et al, 2005), 

which is then converted to 8sx- Of course if soil survey information is available, 

observed values of texture and &sx should be used. 

5.3.2 Site fertility rating (FR) 

Forest nutrition is an important factor contributing to biomass production and plantation 

growth (Cromer et al, 1993), and the maintenance of the nutrient supply is crucial for 

sustaining productivity (Folster and Khanna, 1997). According to Landsberg (2000) soil 

fertility affects tree growth by altering: 

• Leaf photosynthetic rate; 

• Biomass allocation to foliage (and roots), which affects the amount of energy 

captured and nutrient uptake; 

• The efficiency of energy conversion to carbohydrates; and 

• Patterns of internal re-translocation. 

Quantifying site nutrition is very difficult (Landsberg and Waring, 1997), and according 

to Landsberg and Gower (1997) there is a plethora of fertiliser studies, yet 

understanding of nutrition dynamics and the ability to consistently predict these 

dynamics are very limited. Nutritional processes in 3-PG are therefore based on broad 

information about the soil chemistry and organic matter, and do not include nutrients in 

any mechanistic sense (Landsberg, 2003). They are depicted as a FR (0 to 1) where 

nutrients are either limiting (FR<1) or non-limiting (FR=1) to growth, which, "while 

based on the best information available, including expert opinion, remains a somewhat 

problematical and unsatisfactory, albeit pragmatic approach" (Landsberg et al., 2001). 

Despite the empirical and subjective nature of this important model input, the parameter 
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and input sensitivity analysis showed FR to have a moderate to high sensitivity rating 

(see Section 3.3.2, Table 3.3). Consequently it is important that the FR is assigned 

realistic values; however, Landsberg (2000) reviewed the problem of estimating FR for 

3-PG simulations, and concluded that there is still no objective way of measuring the 

FR in soils. 

Landsberg and Waring (1997) acknowledged that the estimation of FR is very difficult 

and suggested that FR is assigned on the basis of litterfall N content or N mineralisation 

rates or soil phosphorous (P) content. N mineralisation is the process by which nutrients 

are released and made available through microbial action. Since that benchmark 

publication, numerous approaches have been suggested. These include: 

• Landsberg (2000) considered observed versus simulated MAI for 19 

Tasmanian sites. The FR for each stand was adjusted until the best fit to 

observed MAI was achieved. These "estimated'' FR values showed a degree 

of correlation to the SI at an age of 20 years. Over a SI range of 10 to 25 m, 

FR varied from 0.1 to 0.9. 

• Williams et al. (2002) created a FR as a weighted, linear combination of 

selected soil attributes known to directly influence soil fertility. These 

attributes are total P at 0 to 10cm, organic C at 0 to 10cm, subsoil cation 

exchange capacity (CEC) at 50 to 60cm and subsoil exchangeable sodium 

percentage at 50 to 60cm. 

• Stape (2002) developed a soil fertility index based on CEC, P and potassium 

(K) concentrations based on growth responses to site fertilisation. 

• Louw and Scholes (2002) developed an empirical model for predicting N 

mineralisation which can be used as a surrogate for FR. 

• The SNAP model (Paul et al, 2002) provides a practical means of assessing 

site fertility (Landsberg, 2003). SNAP uses a baseline N mineralisation value 

(determined by laboratory incubation), which is then modified by soil water 

and soil temperature to predict N availability. 

• Almedia (2003 calculated the FR using a degree of soil limitation factors 

(natural fertility, potential fertility, water and oxygen limitation and 
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management impediment) which was further varied with respect to stand age 

and regeneration practice. 

For this study several of these approaches were considered. These were (1) the use of a 

soil fertility score (Fey, 1993 cited by Schulze, 1997a; Kunz et al., 1995) based on the 

clay content and base status of the soil; (2) the employment of litterfall N as an indicator 

of potential nutrient limitations and (3) the Louw and Scholes (2002) model to 

determine the N mineralisation potential from soil organic matter, and (4) a method 

which relates FR to the MAT and soil organic content of the site. 

Assigning FR using the soil fertility score 

The first method {i.e. the soil fertility score) is based on the base cation condition of 

soils and therefore does not consider N, P and K in the soil. It is a good general method 

and particularly useful for agricultural soils, but is not all that applicable to forestry soils 

(du Toit, pers. comm2). This approach was therefore not used. 

Assigning FR using litterfall Nitrogen as an indicator 

The second method considered was the potential to measure the concentration or 

content of limiting nutrients remaining in litterfall (after internal re-translocation has 

taken place). The latter has been shown to be a powerful indicator of potential nutrient 

limitations in the stand (du Toit, pers. comm2.). However, few reliable data sets of 

litterfall exist for plantations in southern Africa; nevertheless, litterfall data collected in 

this project was thought to provide an ideal opportunity to determine litterfall N 

concentration as a surrogate for site fertility. However, the sites initially chosen were 

selected in accordance to key criteria (see Section 4.3), specific to the objectives of 

identifying litterfall parameters required by 3-PG. Consequently it was resolved that N 

concentration determination in this fashion (i.e. from this limited set of sites) would not 

be representative of the site productivities found in southern Africa and therefore would 

be of limited use. 

2 Mr B. du Toit, Institute for Commercial Forestry Research, Pietermaritzburg, 3201. 
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Assigning FR using the N-mineralisation potential 

The third possibility was the application of the statistical model of Louw and Scholes 

(2002), developed for the higher altitude areas of the Mpumalanga Province, using in 

situ N mineralisation rates. The model uses easily measured and clearly defined 

independent variables, i.e. mean annual temperature, total N in the topsoil (as an 

optional variable) and geological substrate, to investigate N mineralisation patterns over 

a wide range of site conditions over which P. patula is planted. Although relatively 

robust, Louw and Scholes (2002) warn that specific environmental factors responsible 

for differential N supply are not clearly understood and, furthermore, the importance in 

seasonal variation in the N cycle needs to be addressed. Most N mineralisation models, 

such as SNAP (Paul et ai, 2002), use baseline (or potential) N mineralisation developed 

in the laboratory. This potential N mineralisation is modified for temperature and water 

to determine the actual N mineralisation. Since no actual in situ N mineralisation data 

were available (only laboratory incubated N mineralisation) this method was not of use. 

Assigning FR using the MAT and organic carbon of the site 

Site fertility, better described as the availability of nutrients to tree stands, is complex, 

and influenced by soil, climatic and site management factors. For example research has 

shown that early, intensive silvicultural operations have the potential to trigger short-

term increases in nutrient availability to tree stands (Schonau, et al., 1981; Schonau, 

1989; du Toit et al, 1999; Little et al, 2002; du Toit and Dovey, 2005). Other studies 

have shown that: 

• Nutrient requirements of forest plantations change with stand age (Goncalves, 

1997). 

• The availabilities of N, P and to a lesser extent, K are crucial determinants of 

soil fertility on most southern African plantations as other nutrients are 

seldom in short supply (Campion and du Toit, 2003; du Toit and Oscroft, 

2003). 

• Both the quantity of soil organic matter and the rate of nutrient release from 

this pool are important indicators of fertility (du Toit et al., 2001). 
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• N and P availability to trees are strongly (but temporarily) increased by 

management practices, in particular surface soil tillage or disturbance, In­

fixing species, slash burning and obviously fertilisation (du Toit and Dovey, 

2005). 

Using this knowledge and the premise that N mineralisation rate is strongly affected by 

temperature, a method linking FR values to MAT ranges and soil organic C content was 

considered. Both the MAT and organic content, accessible from the site classification 

(Smith et al., 2005), makes it possible to assign FR values for each potential 

productivity zone. The link between FR and these variables is presented as a 

relationship between the nutrient status of a site, the size of the potentially available 

nutrient pool, and the rate of nutrient release (or N mineralisation). A slow turnover 

within a big nutrient pool may yield similar nutrient availabilities as compared to a 

rapid turnover within a small pool. Sandy soils with small pools of organic matter (less 

than 0.3% organic C in the topsoil) are likely to provide inadequate supply rates of 

nutrients to tree stands and warrants a very low rating (du Toit et al., 2001). However, 

most sites with larger pool sizes are probably governed primarily by the rate of organic 

matter mineralisation rather than by the pool size. The method developed is a two-step 

approach as follows (du Toit and Esprey, 2005, unpublished results): 

• A baseline FR based on MAT and organic C is determined; 

• The modification of FR based on management influences. 

A conceptual diagram shows the effect of silvicultural management inputs on the FR 

and how it may change over time (Figure 5.1). 
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3-PG 
Fertility 
Rating 

0 

Increase in baseline fertility 
in response to management 

Baseline Fertility 

Decrease in baseline fertility 
in response to poor weed control 

Stand Age 

Figure 5.1. Conceptual diagram showing the baseline fertility rating of a site and the 
temporary modification thereof with respect to silvicultural operations or 
poor weed control (after du Toit and Esprey, 2005). 

Although the method described here is not directly based on empirical data, it is 

founded on general findings and results of ICFR trials. Although this approach is 

conceptually correct, no evidence supporting these values can be provided. Without 

such a link it cannot be said with certainty what the range of FR is. 

In light of the above discussion values for FR are pragmatically assigned and based on 

whether a trial has or has not received fertilisation: i.e. 0.4 and 0.6 respectively (see 

Section 2.3.4). This method is the same as that used in Section 2.3.4 and Chapter 3. 

5.4 INITIALISATION DATA 

Analogous to model parameterisation, model initialisation refers to the estimation of 

numerical values for the 0Si, SPHi, as well as WRi, WFi and WSi at some initial stand age. 

There are no publications in the public domain that document or develop approaches to 

initialise 3-PG. Generally, researchers using 3-PG have initialised the model with data 

from the first inventory assessment (Dye, 2001; Landsberg et al, 2001; Landsberg et 

al, 2003; Dye et al, 2004; Almeida et al, 2004b). Sands and Landsberg (2002) 

assigned values for SPHi and W® using early observations. In the absence of observed 

WF, values that reproduced the first observed canopy LAI were assigned. Root biomass 
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was given values corresponding to expected root biomass data. It is emphasised that 

there is no feedback from WR to 3-PG processes which implies that the model is not 

sensitive to Wm. Almeida (2003) proposes that a strategy based on simple inventory data 

(either DBH or HT) be developed to estimate biomass distribution. However, such a 

method would require many destructive harvesting studies over a range of site and 

species types. Not only is this a laborious task but also time consuming and costly. 

In sections 2.3.4 and 3.2, biomass data required to initialise the stand at age two years 

were assigned using a pragmatic approach. This approach used site index models and 

biomass ratios gleaned from the literature. This method worked well but placed too 

much emphasis on the biomass ratios. The lack of an objective method to assign values 

to initial biomass pools presents a huge gap in our knowledge and highlights the need to 

develop more practical methods. 

The problem of model initialisation is addressed in two ways: (1) consideration of 

potential applications of 3-PG within the South African context, and (2) additional 

sources of observed growth data. Growth prediction from existing plantations and the 

understanding or exploration of growth constraints are probable applications of 3-PG in 

South Africa (see Sections 7.2, 7.3 and 7.4). If the model is to be used in these ways 

there is greater likelihood that early growth measurement data {i.e. DBH and HT, from 

which S V can be determined) will be available. Other sources of observed data useful to 

initialise the model are those available from via inventory or enumeration assessments. 

In South Africa three types of growth plots are distinguishable with respect to a 

measurement time frame. 

(i) Permanent sample plots (PSPs), also known as re-measured plots, are 

used to monitor G&Y over the rotation and form part of a normal 

plantation inventory program (du Plessis et al, 1997). The plots are 

generally measured after one year of growth and then re-measured three 

to four times over the rotation (Gadow and Hui, 2001; Morley, pers. 

comm .). Permanent sample plots are essential for the development, 

Mr T. Morley, Institute for Commercial Forestry Research, Pietermaritzburg, 3201. 
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calibration and testing of growth and make provision for the examination 

of the stability of site index measurements. These data are also of value 

for model validation purposes (see Chapter 6). 

(ii) Temporary or enumeration plots are measured at mid-rotation and then 

again just before clear-felling (Kassier, 2005, pers. comm4.) and provide 

age-based information about relative variables required by G&Y models 

(Gadow and Hui, 2001). Although these enumerated data appertain to 

mid-rotation stands (four to six years) they are nevertheless very useful 

for model initialisation purposes. Furthermore it is common practice to 

collect such data, which means that it is a cost effective method to use 

such data rather than re-measuring at another age. 

(iii) Interval plots provide the average rate of change in response to a given set 

of conditions (Gadow and Hui, 2001). Such plots are measured twice 

within the interval which is long enough to account for short term effects 

of climatic extremes. Silvicultural practices are not carried out during this 

time period. 

5.4.1 Initial stem biomass (WSi) 

A method to assign Wst has been devised based on the availability of observed data and 

a series of questions and actions dependent on what observed data are available (Figure 

5.2). 

If for example, estimates of SV are available, qDBH can be calculated by rearranging 

Equation 4.2 given in Section 4.3.1 as 

qDBH = 
SV 

JY"^ 

i 

(5.1) 

The parameterised values for the multipliers (ay) and powers (nvN and nyB) as presented 

in Table 4.7 (see Section 4.3.1) would be used. 

4 Dr H. Kassier, Forestry Consultant, Pietermaritzburg, 3201 
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If no SV data are available, but mean dominant height (dHT) of the stand is, BA and 

qDBH can be determined (Kassier, pers comm5). Basal area (BA) is estimated using the 

empirical model of Pienaar and Kotze (2001) (Equation 5.2) 

BA - exp J30 +-&-+02 *\n(SPH)+j3i *ln(dHt)+/34 *ln(<SPH^ 
age age +A* 

InjdHt) 

age 
(5.2) 

using the age at which the BA is required, SPH for that age, dHT for the above age and 

a set of coefficients (Po, Pi, P2, P3, P4, Ps)- Sets of coefficients are available for a 

selection of species and different regional groupings. However, for the purpose of this 

study the generic model for E. grandis is used. All coefficients are available from the 

Mensuration Modelling Research Consortium (MMRC, unpublished report). Using the 

estimated BA, qDBH is calculated using 

qDBH = sqrt 
BA 40000 * 
N 3.14159 (5.3) 

where qDBH is in cm. 

Where no observed data are available, the SI is estimated using the MAP and MAT of 

the site {i.e. from the FSC. The dHT is estimated as a function of the age at which dHT 

is required (agei), site index reference age (agex) and coefficients Pi and p2 (MMRC, 

unpublished report) using 

dHt=SI* 
\-eKp{px*agex) 

\-Qyjp{Px*agex) 
(5.4) 

The BA is calculated using Equation 5.2, followed by the calculation of qDBH using 

Equation 5.3. Individual tree stem-mass is then determined using the allometric 

equation describing the single-mean tree stem mass in terms of qDBH (see Section 

4.3.1, Equation 4.1). Initial stem biomass (Wsi) is determined as the product of ws and 

Dr H. Kassier, Forestry Consultant, Pietermaritzburg, 3201 
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SPH. Essentially this initialisation approach estimates the W®, which reproduces the 

first observed value, in a manner similar to the method Sands and Landsberg (2002) 

describe for assigning foliage biomass. 

Calculation of quadratic mean diameter 

* Calculate qDBH using Eq.5.1 

Calculate BA (Eq 5.2) 
Calculate qDBH using Eq 5.3 

Use MAT, MAP assign productivity 
Read-off SI 
Calculate dHt using Eq. 5.4 
Calculate BA (Eq 5.2) 
Calculate qDBH using Eq 5.3 

Calculation of SLA and LAI 

'LAI 
SLA, 

No 

Calculate SLA using Eq.5.5 
Stand age 2-3 years, LAI =4 
Stand age > 3. LAI = 2.8 

LAI 
SLA 

qDBH 
SPHi 

Calculation of Biomass Pools (Ws. Wf. Wr) 

Calculate ws using Eq. 4.1 
Calculate WSi as ws x SPH 
Calculate WFi using Eq. 5.6 
Calculate WRi as 25% of total biomass (Eq. 5.7 

Figure 5.2. Decision flow diagram showing steps to be followed to estimate values for 
initial biomass pools. Abbreviations are as follows: qDBH - quadratic mean 
diameter; dHT - dominant height; BA - basal area; SV - stand volume; 
SLA - specific leaf area; LAI - leaf area index; wS - single-mean tree 
biomass; SPHi - initial stems per hectare; Wpt, Wm, Wsi - initial foliage, root 
and stem biomass. 

The methods used to determine qDBH as a function of data availability were tested 

using data from 48 E. grandis PSP trials (see Table 7.6 in Section 7.4). Observed data 

from these trials comprise time-series growth data of SV, SPH, dHT and qDBH. Using 

observations corresponding to the first measurement (i.e. column 4 in Table 7.6) across 

all sites (i.e. SV, dHT and SI5) corresponding values for qDBH were calculated using 

the methodology outlined in Figure 5.2. These calculated values of qDBH were 
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compared to observed data (Figures 5.3a to c). Statistics of these comparisons show that 

the proportion of the variance in the observed values accounted for by the simulated 

values (r2) are all greater than 0.8. Mean biases (predicted qDBH - observed qDBH) 

expressed as a percentage of observed qDBH were small (-6.4%, -2.6% and 1.09% 

respectively), indicating that deviations are relatively normally distributed. 

Table 5.2. Basic statistics for the observed and predicted qDBH across 48 sites. 

Statistics 

n 

Mean 

Standard error 

Standard deviation 

r2 

Bias (%) 

Observed qDBH 
(cm) 

48 

12.4 

0.29 

1.98 

Predicted qDBH 
(from volume) 

48 

11.7 

0.31 

2.12 

0.96 

-0.64 

Predicted qDBH 
(from height) 

48 

12.0 

0.23 

1.61 

0.81 

-2.60 

Predicted qDBH 
(from SI) 

48 

12.1 

0.37 

1.88 

0.83 

1.09 

LSD = 0.8 

Additional analyses on these results were performed using GENSTAT® Version 4.2 

(Lane and Payne, 1996). A general one-way analysis of variance (ANOVA) waxs 

performed to statistically analyse differences between the means of observed qDBH and 

predicted qDBH. Results showed no significant differences (P < 0.001) between the 

three sets of predicted qDBH and observed qDBH values. This result suggests all 

methods can be used to adequately predict qDBH. 
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Figure 5.3. Comparison of predicted and observed qDBH for 46 sites. Predicted qDBH 
was derived from observed a) stand volume, b) dominant height (dHT) and, 
c) site index at an age of five years. One-to-one lines are shown as ( ) and 
(—) is the regression line. Accompanying basic statistics are presented in 
Table 5.3. 

5.4.2 Initial foliage and root biomass (WFiand WRl) 

Foliage biomass is predicted by 3-PG and is used to infer LAI as a function of SLA and 

WF (Sands and Landsberg, 2002). Specific leaf area is represented in 3-PG as an age-

dependent function (Section 4.3.1, Figure 4.2a and Table 4.8). Consequently, if the LAI 

and SLA of the stand are known, WF can be determined. 

If SLA is not known it can be estimated using the age-dependent Gaussian function 

with a non-zero asymptote used in 3-PG to describe the age-dependent decline in SLA 

(Sands and Landsberg, 2002). 
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SLA = ax +(a0 - a , ) ^ 0 " 2 * " ^ (5.5) 

where the parameter values are given in Table 4.8. 

The LAI that can be sustained by the stand is determined by the availability of water 

and nutrients, which can be manipulated through the affects of management impacts on 

the LAI and site productivity (Beadle, 1997). Several studies have shown that in 

temperate climates, early intensive silviculture results in rapid early growth and canopy 

closure in several eucalypt species (Cromer et ah, 1993; Stape, 2002; Almeida et ah, 

2004a; Goncalves et ah, 2004; du Toit and Dovey, 2005;). Data combined from these 

studies show peak LAI to vary between 3.5 and 4.8 at two and three years of age 

(Section 6.4.3, Figure 6.6). Thereafter, as resource competition sets in, LAI tends to 

decline to an average value of 2.8 (2.5 to 3.2). Sands and Landsberg (2002) and Section 

3.3.1 show that irrespective of initial biomass values in 3-PG, after 10 to 15 years of 

stand growth LAI converges to common values. Under South African conditions, and in 

short rotation stands, this convergence generally occurs after seven to nine years (data 

not shown). This suggests that final volume production is fairly insensitive to early LAI 

values, implying that the aforementioned approach to estimate initial LAI is reasonable. 

These studies have focused on fast growing eucalypts under high initial stocking and 

intensive early silviculture; therefore the above argument is applicable to South African 

E. grandis. 

Consequently, if the age at which 3-PG is to be initialised varies between two and three 

years, an average LAI value of 4 is used. For stands older than 3 years, an LAI of 2.8 

can be used. Using these values for initial LAI and calculated SLA, initial WF is 

calculated using Equation 5.6. 

WF = 
LAI 

SLA0A 
(5.6) 

Besides the lack of good WR data, there are no internal feedback loops involving root 

biomass in 3-PG (Sands and Landsberg, 2002) and hence initial WR is not very 
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important. A value for WR is, however, required and has been assumed to be 25% of the 

total tree biomass (Shephard, 1985). It follows that 

WR = (WS+WF)/3 (5.7) 

Due to the lack of foliage and root biomass data it was not possible to test methods to 

assign these initial biomass pools. However, because of the way predicted time-series of 

LAI converges to common values and since no internal feedback loops involving initial 

root biomass occur in 3-PG (Sands and Landsberg, 2002), it was felt the consequences 

of errors would not be significant. 

5.3.3 Initial stocking and soil water (SPH{ and 0Si) 

Stocking information is normally obtained from an inventory or enumeration. It can be 

otherwise determined using an estimate of the mortality, which can be inferred from the 

initial stocking at planting. Initial soil water on the other hand has very strong feedbacks 

that pull it into line very quickly and as such it is acceptable to use any value and for the 

purposes of this study it was assumed to be 50% of the #&. 

5.4 DISCUSSION AND CONCLUSIONS 

The accuracy of model predictions is affected by the model structure as the well as 

accuracy of the input data. Although a generic model, the performance of 3-PG is 

improved when detailed knowledge of a tree species is available from the environment 

in which it is growing (Waring, 2000). Errors in input data are often the cause of poor 

model performance in validation studies. Furthermore, the model may give reasonable 

answers but for the wrong reasons, which could lead to significant errors and costly 

decisions (Schulze, 1997b). The importance of using accurate model input values is 

under-rated and is not frequently mentioned in the ecological modelling literature. 

Rykeil (1996) points out that models cannot provide results that are more accurate and 

precise than the data that are used as inputs. Consequently it is critical to use the best 

available data and to check that these data are error free. 
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To understand the need of using good quality input data, or the implications of poor 

input data, it is necessary to reflect on some important aspects of 3-PG. Central to the 

model is the calculation of gross primary production (GPP) depicted as a function of the 

radiation intercepted by the canopy and the efficiency with which this radiation is 

converted to carbon (C) in response to prevailing environmental conditions. This 

intercepted solar radiation (SR) is a function of canopy leaf area index (LAI) and 

canopy cover, and is calculated from Beers law. The canopy cover is of little 

consequence because 3-PG is generally initialised during the post canopy closure stage. 

The radiation use efficiency (GE) on the other hand, is calculated as the product of the 

maximum canopy quantum efficiency (acx) and the vapour pressure deficit (VPD)- soil 

water- nutrient-and temperature-(/o, fg, fit and ff) dependent modifiers, each of which 

vary between 0 and unity, the molecular weight of dry matter and a factor which 

converts SR to photosynthetically active radiation (PAR). As VPD increases stomatal 

conductance is assumed to decrease exponentially. The soil water constraint on stomatal 

conductance is a non-linear function of available soil water (<9S), and dependent on the 

water retention characteristics associated with different soil textures (Waring and 

McDowell, 2002). With respect to the VPD-and soil water-dependent modifiers, the law 

of the minimum applies (i.e. the physiological modifier (cp) = min (fo, fg)). The 

temperature-dependent modifier accounts for the variations in mean temperature with 

respect to the pre-determined parameter values for cardinal temperatures (i.e. Tmin, Topt 

and Tmax) for photosynthesis. Growth is therefore constrained as ambient temperatures 

depart from the optimum temperature required for growth. Based on published 

information, the canopy quantum efficiency is a linear function of FR (Landsberg et al, 

2003). However, since it was assumed in this study that the fertility rating (FR) has no 

direct effect on quantum efficiency (i.e. fm— lt see Sections 2.3.2 and 3.2.3 and Table 

4.6), GPP and total stand biomass are not directly affected by FR. 

In Sections 3.3.1 and 3.4.4 it was shown that stand volume (SV) has a high sensitivity to 

inputs of monthly rainfall (R), maximum and minimum temperature (7> and 7V) and 

FR. Accurate inputs of weather (SR, R, TAV and VPD) and physical factors (soil texture, 

maximum available soil water (9sx) and FR) of the sites being modelled is therefore 

emphasised, particularly if 3-PG is to be used to predict response to climatic 
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fluctuations (e.g. years with an above average rainfall or during periods of drought). 

Almeida et al., (2004a) stresses the importance of using actual rather than average 

weather data to help evaluate the impact of climatic fluctuations on stand productivity. 

Furthermore the sensitivity analysis of climatic factors showed marked responses to 

changes in both R and temperature (see Section 3.3.1 and Table 3.3). However, average 

climatic data can be useful for the estimation of potential production, limits imposed by 

site fertility (Almeida et al, 2004a), different management options, production in 

unafforested areas, and to consider "what if' scenarios. 

Observed daily rainfall data are available for most parts of southern Africa. Long term 

records of monthly mean temperature are also available but not as often as are R data, 

and there are no observed records of SR or VPD. Long-term monthly SR is therefore 

calculated using the Clemence (1992) equation (see Section 5.2) which has been shown 

to perform particularly well in the winter rainfall region and explains 73% of the 

variances of observed SR (Schulze, 1997a). This implies that predictions of SR in the 

summer rainfall region are not as accurate, and, according to Schulze (pers. comm6.), 

plots of predicted and observed solar radiation show a great deal of scatter around the 

one-to-one line. Vapour pressure deficit on the other hand can be computed internally 

by 3-PG as a function of Tx and TN. Almeida and Landsberg (2003) present an excellent 

piece of work evaluating methods to estimate SR and VPD. Results indicate that VPD 

determined as a function of Tx and TN, is under-estimated by between 13 to 50% (in 

Brazil). Under-estimation of temperature could result in an over-estimation of 

calculated VPD and hence an under-prediction of the growth constraints especially 

when there are no soil water constraints on growth. In such instances tree growth will 

be over-predicted. 

Where long term averaged temperature data are used as a surrogate for observed 

monthly temperature, model predictions are affected. Temperature inputs are used to 

determine the effect temperature has on constraining growth as a function of the 

cardinal temperatures. The fr approaches zero as the monthly temperature approaches 

6 Dr R.E. Schulze, School of Bioresources Engineering and Environmental Hydrology. University of 
Natal, Pietermaritzburg. 
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the minimum/maximum temperature values. At such time growth via the ac is 

constrained by temperature. Intuitively, during periods of drought the daily or monthly 

average daytime temperatures will be greater than the long-term monthly temperature. 

In such cases model predictions will be higher during times of drought than they ought 

to have been since long-term monthly estimates do not reflect these temperature 

extremes. 

With regard to site information required by 3-PG, soil texture and maximum available 

soil water capacity (0Sx) are also important since they are both used directly in 

determining the^. If soil survey information is not readily available these factors can be 

inferred from existing geological (via the forestry site classification (FSC)) and soils 

maps. Fertility rating on the other hand is a more complicated problem (see Section 

5.3.2) but because of the way the model has been parameterised (i.e. fM = 1) the value of 

FR does not affect the efficiency of resource use (i.e. the fertility modifier defaults to a 

value of 1). Consequently values for FR are pragmatically assigned and based on 

whether a trial has or has not received fertilisation and values of. 0.4 and 0.6 

respectively will be used (see Section 2.3.4). 

Initial biomass pools can be thought of as "the launch pad" from which a "rocket" must 

be launched; if the launch pad is in the wrong area the rocket will miss the target. For 

instance if the initial biomass pools in 3-PG are too large or too small production can be 

over-or under-predicted respectively (see Figure 8 in Sands and Landsberg, 2002). 

These biomass pools (WFU Wjy, WSi) should be assigned using observed data. In the 

absence of such data other methods are available (see Section 5.4). These include 

assigning values for Ws using qDBH, determined empirically as a function of basic 

stand variables (i.e. SV or dHT) or using the site index (SI) of the site. Foliage biomass 

is inferred using an age-dependent relationship for the specific leaf area (SLA) and 

typical values for LAI, and root biomass as a fraction of the above biomass. 

The work presented here satisfies the second project objective (see Section 2.1), which 

is to develop standard techniques to parameterise (Chapter 4) and initialise the 3-PG 

model. Using the parameter set developed for E. grandis (Chapter 4) and methods to 
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initialise the model, validation studies are performed next. Testing the model 

performance is imperative to build user confidence in the accuracy of model. This study 

will give further insights into the strengths and weaknesses of both the empirical and 

process-based modelling approaches. 
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CHAPTER 6 

EVALUATING THE PERFORMANCE OF 3-PG 

6.1 INTRODUCTION 

An assessment of the predictive ability of 3-PG was carried out using a series of simple 

tests. Figure 6.1 shows a general approach used to evaluate models. Particular attention 

is drawn to: 

• Conceptual validation justifies that the assumptions underlying the model, 

and that the representation of the system, its structure, logic, mathematical 

and causal relationships are reasonable and consistent with the intended use 

of the model (Rykeil, 1996); 

• Operational or whole-model validation is concerned with the quality of the 

model predictions compared with reality, and the extent to which model 

output meets the performance standards required for the intended use; 

• Data validation is necessary to check that quality of model inputs are 

adequate (see Chapter 5). 

Testing any model in such a fashion has a number of outcomes. The credibility of the 

model is established (Huang et al, 2003), the user gains confidence that the model is 

working properly and that its predictions reflect the most likely outcome in reality 

(Amaro et. al., 2003), and limitations of the parameter set are identified. There have 

been several key publications concerning the first two approaches outlined above, e.g. 

Chapter 3 of this thesis, Almeida et al. (2004b), Landsberg and Waring (1997), Waring 

(2000), Sands and Landsberg (2002) and Landsberg et al, 2003). Many other 

evaluations have also been performed using 3-PG. The objectives of this Chapter are to 

highlight some of these past studies and to test the operational validity of 3-PG. 

102 



SIMULATION 

OPERATIONAL-. 
VALIDATION 

PARAMETERISATION 

PROBLEM 
Objectives 

and 
Requirements 

DATA 
'VALIDITY 

CONCEPTUAL 
VALIDITY 

ANALYSIS AND 
MODELLING 

Simulation Model 
COMPUTER IMPLEMENTATION 

COMPUTER 
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Figure 6.1 Representation of the modelling cycle and the position of operational, 
conceptual and data validation processes (after Rykeil, 1996 and originally 
cited from Sargent, 1984). 

An overview of some common modelling terminology and semantics is presented next 

including definitions and explanations of terms such as validation/verification, and 

parameterisation/calibration. Many authors use these pairs of terms interchangeably, 

which has led to much confusion. A distinction between model validation and model 

verification, and parameterisation and calibration is therefore necessary. 

6.1.1 Validation or verification? 

The terms model testing, model validation and model verification are not used 

consistently or uniformly in the literature. What is one modeller's verification may be 

another modeller's validation (Shepherd and Geter, 1995 cited by Schulze 1997b). The 

Oxford English Dictionary defines "validate" as "make valid, ratify, confirm, well 

founded and applicable'". Verify on the other hand is to "establish the truth or 

correctness of by examination or demonstration". According to Schulze (1997b), 
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verification is a measure of the performance of the model, which is what I was taught as 

an undergraduate in Hydrology. However, Rykeil (1996) defines verification as the 

confirmation that the computer coding accurately reflects the model, and validation as 

the process of confirming that a model reflects reality. Landsberg et al. (1991) confirms 

these definitions by defining model validation as an evaluation of the performance of 

the model either in relation to a set of measurements, or to alternative calculations. 

However, Landsberg et al. (1991) are not convinced that the semantics are sufficiently 

important to assert differences between these words, which lead to "grey areas'" and 

confusion. The inconsistencies in these terms are important to identify, and possibly 

stem from the frequent adoption by ecologists of techniques and technologies from 

other disciplines (Gardner and Urban, 2003). Prisley and Mortimer (2004) highlight 

differences between these concepts and accept that model evaluation encompasses 

various aspects of confirming the reliability and the usefulness of a model. In order to 

be consistent with the ecological literature, the term model validation is used in this 

Chapter to mean the performance of the model with respect to a set of observations. 

6.1.2 Calibration or parameterisation? 

Model calibration and parameterisation are often used interchangeably, especially in the 

literature pertaining to the 3-PG model {e.g. Almeida et al. (2004b); Landsberg et al. 

(2003)). Calibration is the adjustment of model parameters so as to improve the 

agreement between predictions and observations (Rykeil, 1996). In particular 

calibration can be used to estimate parameter values that are unknown or difficult to 

measure (Rykeil, 1996). With respect to 3-PG, Landsberg et al. (2003) talk about the 

calibration of the model as the fitting of model outputs to individual sets of 

observational data. For instance the model is run and outputs are compared to 

predictions. Parameter values are then adjusted to improve the fit and the model is re­

run. Successive adjustments lead to better fits between predicted and observed data, 

especially if there are many observed and predicted pairs of data sets (Landsberg et al., 

2003). This description of calibration is identical to the description of model 

parameterisation used here (Section 4.1) as the assignment or estimation of parameter 

values performed manually or iteratively using optimisation techniques. 
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Several authors use the terms model tuning and model calibration interchangeably. 

Model tuning is a procedure which appears to be similar to calibration, but according to 

Landsberg et al. (2003) is used when appropriate observed data are not available {e.g. 

root data necessary to assign values to nRx and nj}n) or as a final step to improve the 

agreement between predictions and observations. For example Landsberg et al. (2003) 

identify FR and 9$* as tuneable parameters because they can take on a range of values. 

Similarly, Stape et al. (2004) tuned the coefficient of stomatal response to VPD even 

after the model was calibrated. Because of the uncertainties involved with "tuning" a 

model in such a fashion no model tuning has been used in this study. 

6.1.3 Evaluation of model performance 

Most of the several dozen papers written on techniques to evaluate model performance 

suggest dissimilar methods. The interested reader is referred to Amaro et al. (2003) and 

Huang et al. (2003) who provide an excellent overview of procedures and methods for 

model validation. See also Rykeil (1996), Loehle (1997), and Prisley and Mortimer 

(2004) who present overviews of model evaluation terminology (Section 6.1). 

There should at least be an ideal validation procedure that could serve as a standard or 

consistent method. Huang et al. (2003) states that there are no standard statistical 

techniques used in model validation studies, thereby making validation one of the most 

"convoluted and paradoxical topics" associated with model building. There are many 

statistical methods that can be used to assess the goodness of fit between model 

predictions and observations. Some common methods include regression analysis of 

predicted versus observed values, ANOVA, paired t-test, regular and non-central chi 

tests and various F-tests. Using a set of criteria, Huang et al. (2003) examined the 

usefulness of these various methods, and showed that each statistical method met one or 

more of the pre-defined criteria, but none of the methods achieved all criteria. This 

result implies that selection of a statistical test can give an answer you want. This of 

course has no scientific founding and boarders on pseudoscience. Kleppner (1992) cited 

by Schulze (1997b) states that "care should be taken not to apply sophisticated 

statistical tests to reassure ourselves that the... output,... is of high quality/consistent -

if we do not understand the meaning of the statistics we merely fool ourselves in a 
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highly sophisticated manner". This is corroborated by Huang et al. (2003) who confirm 

the need for a general strategy for model validation which should look at how well a 

model fits new data, rather than using statistical tests to decide whether the model is 

good enough. These statements support my view to keep things simple and perform 

tests only where necessary. 

Amaro et al. (2003) recommend that model validation studies should encompass some 

of the following elements: independent validation sets; dynamic and structural validity; 

performance of individual components; model generality; model simplicity and 

operability; biological realism; visualisation and validation statistics. For instance 

model validation must be based on data sets independent from those used in the model 

parameterisation; dynamic and structural validity is concerned with how the model will 

be maintained and improved upon so that it will represent the real dynamic system 

being modelled; performance of individual components as well as an overall model 

performance and the assessment of the model generality which could, for instance, give 

useful insights on regions where the model works best, or does not work well, 

indicating our lack of understanding of the basic processes. While it would be useful to 

include such elements in validation studies there is a data availability problem. This 

problem is more prevalent with respect to the observed biomass data, required for 

testing the biomass production and allocation components of the model. 

A conundrum that has been faced throughout this project has been the lack of suitable 

data. This is not a unique phenomenon, and Sands (2003) reports that in the early 1980s, 

Landsberg would often remark that forestry research organisations have cabinets 

"stuffed with data that had not been properly looked at and analysed''. However, this 

largely empirical data (i.e. data from spacing and fertiliser trials, etc) which is of limited 

use for application in PBMs. Nothing has changed since then: the ICFR has large 

amounts of mensuration data, very few biomass data and even less physiological data. 

Consequently, a detailed model validation such as Amaro et al. (2003) suggests is not 

possible. 
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However, many independent validation studies have been performed (e.g. Sands and 

Landsberg, 2002; Landsberg et. al., 2003; Almeida et. al, 2004b; Dye et. al, 2004). In 

a local study, Dye et al. (2004) used observed data from 12 stands of E. grandis x 

camaldulensis (GC) hybrid clones to parameterise 3-PG. 3-PG was then calibrated (or 

tuned) by iteratively varying the Bsx and FR until a reasonable match between predicted 

versus observed data was were obtained. Results showed that reasonable estimates of 

tree growth can be made over a wide range of rotation ages and growing conditions. 

Results from the other studies have shown 3-PG to be robust and reliable, predicting 

within an acceptable degree of confidence. Keeping these results in mind, and the 

premise that 3-PG is generic, it is reasonable to conclude that 3-PG should perform 

adequately under South African conditions. 

Despite these data availability problems, the best use of in-house ICFR data (DBH, HT 

and therefore SV) has been made and 3-PG was evaluated using four simple tests: 

predicted versus observed SV using (1) the parameter set developed by Gush (1999) 

compared to the newer E. grandis parameter set (see Chapter 2; Section 6.2); (2) the 

new parameter set and data sets independent to those used in the model parameterisation 

(see Section 6.3); (3) observed time-series data (see Section 6.4); and (4) data from a 

fertilised and irrigated experiment (see Section 6.5). 

6.2 NEW VERSUS OLD PARAMETER SETS 

The purpose of this test is to determine whether the parameter set developed in Chapter 

4 produces more accurate and realistic predictions than those of Gush (1999) described 

in Section 2.3.4. Using both parameter sets, two sets of model predictions were made 

and compared to observed SV data from the six trial sites used in the parameter 

estimation process in Section 4.3.2. These sites were used because observed LAI data 

were available. Initial biomass pools used in this analysis were derived using the 

pragmatic approach as described in Section 3.2.1. At the time of this analysis the 

improved method to assign initial biomass pools (see Section 5.4) had not yet been 

developed. All other model inputs were those used in Sections 3.2.1 and 4.3.2. 
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Observed and predicted Ws, qDBH and canopy LAI are compared in Figure 6.2. Each 

data point is the final observation from each of the six sites, differing in age between 6 

and 9 years. These show reasonable and improved fits between observed and predicted 

data when using the parameters developed in this study as compared to those based on 

Gush (1999). It is significant that reasonable predictions of LAI are obtained with the 

new parameters whereas LAI values based on Gush (1999) were frequently over­

estimated (see Sections 2.3.4 and 2.4). The emphasis placed on the final observations 

across each site tends to bias the regression lines because of the slowing in observed 

growth late in the rotation at several sites that is not being predicted by 3-PG. The 

reasons for this are not known, but probably are in response to some change in site 

conditions late in the rotation that have not been captured in the available site data. 

Another reason that 3-PG does not reflect this downturn in site production could be due 

to the age-dependent modifier which describes the physiological decline in growth in 

response to a possible decline in hydraulic properties (Ryan et al, 1997). Details 

concerning this age modifier are discussed in more detail in Section 6.4.2. 

Although stand LAI is much better predicted with the new parameter set (Figure 6.2c), 

there is a tendency for LAI to be under-predicted. This may be due to an observational 

error, or due to a deficiency in the parameter set (see Section 6.4.3). Experimentation 

with parameters that had been left at their default values (Table 4.6) showed that 

changes in some of these, e.g. LCx, gcx, VRX and rjRn can affect both the values estimated 

for p2, P20 and acx, and the quality of the predictions of LAI. However, they also affect 

other variables, e.g. soil water usage and root biomass, for which no observed data are 

available. 
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Figure 6.2.Comparison of observed and predicted (a) stem biomass, (b) quadratic mean 
stem diameter, (c) stand LAI, and (d) stem height at the oldest stand age at 
the six sites used in the parameter estimation. Predictions used the 
parameter set developed by Gush (1999) (0) and the new parameter set (•). 
One-to-one lines are shown as ( ), and ( ) and ( ) are regression 
lines for predictions using parameter values from Gush (1999) and from this 
study. Stem height and quadratic mean stem diameter are not available with 
the Gush (1999) parameter set. The corresponding regression equations are 
shown in normal and bold type. 

Results indicate the predictions using the new parameter set are realistic, and an 

improvement on predictions made with the parameter set of Gush (1999). This is 

especially the case for LAI (Figure 6.2c), which was shown to be over-predicted (see 

Section 2.2.4) using Gush (1999). The improved prediction of LAI suggests the model's 

predictions are internally self-consistent and there is thus a greater chance that the right 

answers are attained for the right reasons! 

Figure 6.3 shows predicted Ws and HT using the new parameter set across all sites and 

all observations. Overall, there is little bias. A more detailed analysis of the predicted 

time-course of stem biomass, stand LAI, and stem volume, diameter and height shows 
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overall good agreement with observations at 5 of the 6 sites, except for the later-age 

observations at sites where there has been a significant cessation of growth. These data 

and trends are not shown here as they are considered in more detail in Section 6.4.3. At 

one site, the prediction of LAI is a gross under-estimate, despite good prediction of stem 

growth (see Sections 6.4.3 and 6.6). Height is an important model output that was not 

available with the Gush (1999) parameter set. Figure 6.2d and Figure 6.3b show this is 

relatively well predicted for 5 of the 6 sites. 
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Figure 6.3 Comparison of observed and predicted (a) stem biomass, (b) stem height at 
all ages at the six sites used in the parameter estimation. Predictions (•) used 
the new parameter set, one-to-one lines are shown as ( ), and (—) are 
regression lines. The corresponding regression equations are shown in bold 
type. 

6.3 TESTS USING INDEPENDENT DATA SETS 

The performance of 3-PG was tested over a wider range of sites than used in Section 

6.2, using data from 18 trials of age 5 tol 1 years and site productivities (MAI) between 

14-51 m ha" y" . These sites are representative of South African conditions, and show a 

highly variable climate with MAP ranging from 780 to 1400 mm, Tx from 22 to 27 °C 

and TN, from 9 to 17 °C. These sites are a subset of those used in the initial model 

validation (see Section 2.3.4) and sensitivity analysis (see Section 3.1) and are 
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independent of those used for the parameterisation (see Section 4.1.1). The observed 

data consist of SV, either part of the way through the rotation or as final SV at clear 

felling. 

The site data were identical to those used in the sensitivity analysis (see Section 3.2.1). 

3-PG was initialised at two years of age using the methods outlined in Sections 5.2, 5.3 

and 5.4. Values for Wsi were assigned using site indices attained from the FSC (Section 

5.4.1). Simulations were performed from age two years and terminated at those ages for 

which observed data were available (see Tables 2.4 and 3.1). 

Regression of predicted versus observed SV for these 18 validation sites has an r2 of 

0.77 (Figure 6.4) compared to 0.94 achieved using 6 research plots (Figure 6.3a). Apart 

from six markedly different sites, predicted SV are within 25% of observed volumes. 

Although the mean bias is -7.9%, relatively large individual biases are indicative of 

deviations that are not normally distributed. Similar results were reported in Landsberg 

et al. (2003). The results presented here show the agreement between predicted and 

observed volume diminish as the duration of the model simulation increases from 1.8 to 

9 years. The optimal prediction length is 4 years (slope and r2 of the regression 0.91 and 

0.84 respectively). After 7.5 years the slope and r values decrease to 0.6 and 0.63 

respectively indicating that a low proportion of the variance in the observed volumes is 

accounted for by the predicted values. 
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Figure 6.4 Comparison of observed and predicted volume at the 18 sites used in the 
model validation study. Predictions (•) using the new parameter set; one-to-
one line are shown as (- - -), and (—) is the regression lines. The 
corresponding regression equation is shown in bold type. 

Results from the initial model validation (see Section 2.3.4) showed high and low 

productivity sites to be under-and over-predicted respectively. Results presented here 

show a similar, yet less marked trend (i.e. over-and under-predictions are not as 

extreme) and individual biases are less than those from predictions made using the 

parameter set of Gush (1999). To understand these results, detailed investigations on a 

per site basis are warranted. 

6.4 TESTS USING TIME-SERIES DATA 

Testing the model output against time-series data provides an opportunity to evaluate 

the biological reasonableness of 3-PG and ensures that model predictions "make sense". 

For example biologically reasonable models would differentiate between sites of 

varying growth potential or between sites exhibiting environmental constraints 

compared to those that do not. 
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3-PG was tested against data from five mensurational trials. These trials, called the M-

series, were established by the ICFR during the 1980s. The objective of this suite of 

trials was to evaluate the effects of initial stand density on the G&Y of short rotation, 

fast-growing species. Each trial has six stocking treatments ranging from 830 SPH to 

2222 SPH, and each received full weed, pest and insect control, and fertilisation where 

necessary. Blanking (replanting of dead plants) was carried out in the first few months 

to achieve full stocking for each treatment. Each trial was consistently measured on an 

annual basis and therefore detailed observed time-series data are available. The trials 

cover a wide range of growing conditions and potential productivity. Site and climatic 

details are provided in Table 6.1. 

Table 6.1: Site information for the five E. grandis M-series spacing trials. Abbreviations 
are: MAP - mean annual precipitation; MAT - mean annual temperature; 
FSC - forestry site classification. 

Trial 

M2 

M3 

M4 

M5 

M6 

Region 

KwaZulu-Natal 
Midlands 

Zululand 

KwaZulu-Natal 
Midlands 
KwaZulu-Natal 
South coast 
KwaZulu-Natal 
Midlands 

Latitude/ 
Longitude 

29° 31' 
30°33' 
28" 39' 
32°05' 
30u06' 
30°08' 
30°17' 
30°26' 
29°45' 
30°21' 

MAP 
(mm) 

992 

1154 

752 

962 

735 

Depth 
(cm) 

>120 

>120 

60 to 80 

60 to 110 

70 to 100 

MAT 
(°C) 

17.8 

21.2 

17.4 

18.1 

17.9 

Using data from the 1666 SPH (commonly used stocking in South Africa) treatment 

across all sites, 3-PG was initialised using first observations of SV for each trial, 

converted to the appropriate biomass pools for that age (see Section 5.4.1). Weather 

data were extracted as explained in Section 5.2. Observed monthly temperature data 

were not available for sites M2 and M6 so long-term monthly averages were used. 

Similarly, long term monthly SR averages was used for each site. Site information was 

extracted from the trial register for each trial. These input data are summarised in Table 

6.2. Model runs were made from the first age at which observed data are available and 

terminated at the end of the rotation. 
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Table 6.2. Site factors and initialisation data for sites M2 to M6. Abbreviations are: FR 
- site fertility rating; Soil texture: CL - clay-loam; S - sand and C - clay; 
Qsx - maximum available soil water; WFi, Wm and W& - initial biomass 
pools; 6si - initial soil water content of the soil profile. 

Site 

M2 
M3 
M4 
M5 
M6 

Site Factors 
Date 

planted 
1986/4 
1986/5 
1986/12 
1988/3 
1990/2 

Latitude 

-29 
-28 
-30 
-30 
-29 

FR 

0.6 
0.6 
0.6 
0.6 
0.4 

Soil 
Texture 

CL 
S 

CL 
CL 
C 

Osx 
(mm) 
390 
300 
130 
195 
130 

Initialisation data 

w„ i 
(tDM ha"1) 

3.7 
3.8 
3.8 
3.7 
4.3 

wm 
(tDM ha"1) 

12.1 
17.7 
6.5 
9.0 
7.9 

(tDM ha"1) 
32.9 
49.8 
15.9 
23.7 
19.7 

(mm) 
195 
150 
65 
97 
65 

6.4.1 General results 

Basic statistics comparing predicted versus observed SPH and qDBH are shown in 

Table 6.3. This method of analysing data was used by Landsberg et al. (2003). 

However, because time-series data are serially correlated it is not consistent with the 

assumptions of independence of observation upon which regression analysis is based. 

Correlated data have little or no additional contribution over and above that of the other 

(McConway et al., 1999). Nonetheless these statistics help describe the agreement 

between predicted and observed data: the observed variance accounted for by the 

predicted qDBH is > 0.91 and that of SPH > 0.87. Although the mean bias between 

predicted and observed SPH is relatively low, predicted SPH declines more rapidly than 

the observed SPH {i.e. mortality as predicted by 3-PG was greater than observed 

mortality). This can be explained by the fact that these trials were managed to achieve 

full stocking by high quality early silviculture. Furthermore, data used in the model 

parameterisation came from commercial stands, which undergo very little or no 

management prior to planting which can lead to higher mortality rates. As a matter of 

interest, predicted stem number using the -3/2 self-thinning power law showed the 

stands would self-thin after 12 years of age, by which time clear-felling would already 

have taken place. For short rotation stands self-thinning does not apply, and it is 

necessary to use the newer mortality function (see Section 2.3). 
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Table 6.3. Comparison of predicted and observed stems per hectare and quadratic mean 
DBH (qDBH) for the spacing trials M2 to M6. Basic statistics given include 
the mean bias (predicted - observed)/observed expressed as a percentage, 
and the r2 which shows the variance of the observed data accounted for by 
the predicted outputs. 

Sites 

M2 

M3 

M4 

M5 

M6 

SPH 
(Predicted) 
SPH 
(Observed) 
qDBH 
(Predicted) 
qDBH 
(Observed) 
SPH 
(Predicted) 
SPH 
(Observed) 
qDBH 
(Predicted) 
qDBH 
(Observed) 
SPH 
(Predicted) 
SPH 
(Observed) 
qDBH 
(Predicted) 
qDBH 
(Observed) 
SPH 
(Predicted) 
SPH 
(Observed) 
SPH 
(Predicted) 
SPH 
(Observed) 
qDBH 
(Predicted) 
qDBH 
(Observed) 

Growth Year 

3 

1387 

1361 

11.7 

13.7 

1556 

1611 

14.0 

13.9 

1551 

1556 

7.6 

8.2 

1646 

1646 

1639 

1639 

7.6 

8.1 

4 

1359 

1334 

13.2 

15.7 

1528 

1570 

15.3 

15.5 

1520 

1528 

9.3 

10.7 

1614 

1646 

1607 

1528 

9.1 

9.2 

5 

1334 

1306 

14.3 

16.8 

1495 

1556 

16.7 

16.4 

1490 

1528 

10.9 

12.7 

1582 

1646 

1575 

1473 

10.4 

9.8 

6 

1308 

1292 

15.4 

17.5 

1465 

1542 

17.9 

17.0 

1460 

1528 

12.5 

13.9 

1550 

1625 

1544 

1389 

11.7 

11.3 

7 

1282 

1278 

16.0 

17.6 

1436 

1514 

18.7 

17.2 

1431 

1528 

13.3 

14.2 

1519 

1625 

1513 

1389 

13.0 

12.7 

8 

1257 

1264 

16.9 

18.0 

1408 

1514 

19.4 

17.6 

1403 

1514 

14.6 

14.6 

1489 

1625 

1483 

1389 

14.1 

13.6 

9 

1232 

1236 

17.8 

18.1 

1380 

1500 

20.0 

18.1 

1375 

1514 

15.2 

14.9 

1460 

1625 

1454 

1389 

15.0 

14.1 

r2 

0.93 

0.91 

0.94 

0.98 

0.73 

0.93 

0.74 

0.87 

0.99 

Bias 
(%) 

0.3 

-8.9 

-5.3 

5.1 

-6.0 

-4.6 

-5.9 

7.22 

2.8 

6.4.2 Model predictions in response to fluctuating weather patterns 

Visually, the results from these model predictions are promising. Figure 6.5 shows the 

predicted time-course of SV across all sites in relation to the observed data. The shaded 
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bars represent annual rainfall totals for each calendar year (not growing season) and 

show the climatic variability over the simulation period at each site. With respect to 

these predicted and observed SVs, and the prevailing drought during the 1991/1992 

growing season, the following observations can be made: 

• The impact of drought differs at each site and is dependent on the age of the 

stand at which the drought occurs and is less on the older stands. 

• Tree growth at similar aged sites, subsequent to 1992, is reduced to 

approximately half of that before the drought (i.e. there is a long-term effect 

of the drought. 

• This reduction in growth rate continues for up to two years after 1992. 

• M6, which was two years of age at the time of the drought, never seems to 

recover as shown by very low average growth rate over the remainder of the 

trial. 

With respect to the growth rates for predicted and observed SV, i.e. the slope of the SV 

curve in Figure 6.5, the following observations and explanations can be made: 

• Predicted growth rates at between 2 and 5 years tend to be lower than the 

observed growth rate. Landsberg (2001, pers. comm7) made a similar 

observation which he attributed to the fact that 3-PG cannot account for the 

range of growth rates on different soil types iffm = 1 (see Section 2.3.2). 

• Generally the observed growth rates diminish towards the end of the rotation 

leading to over-predictions in the final SV. This lower observed growth rate 

is probably due to a reduction in GE or a decline in site resources (Gower et 

al., 1996). If the parameter maximum stand age in the age-related growth 

modifier is reduced from 30 years to 15 years, the agreement between 

predicted versus observed final volume is vastly improved. For example 

predicted versus observed SV pairs for sites M2 to M5 are 387 and 381 n^ha"1, 

421 and 414 m3 ha"1, 233 and 245 m3 ha"1, 268 and 260 m3 ha"1, and 216 and 
•5 1 

173 m ha" . However, since there is no biological reason to change this 

7 Dr J. Landsberg, Landsberg Consulting, Canberra, Australia. 
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parameter value it is not acceptable to do so unless of course such an 

adjustment is seen as model calibration! 

• The degree to which these values decline is more apparent in the CAI data 

which show annual observed increments to drop below 20 m3 ha"1. Since 

early predicted growth rates are less than observed rates, predicted CAI does 

not correspond well with observed CAI. However, predicted CAI does follow 

a similar trend to these data and tracks the observed data reasonably well. 

With the exception of M6, predicted CAI is less than observed for young 

trees and higher than observed for older trees. 

• It is interesting that observed tree growth across all sites show a lagged 

response to the 1991/1992 drought with CAI data declining only in the 

following year. This trend is replicated by 3-PG. 

• Observed and predicted CAI accurately reflects growing conditions. Growth 

increases during favorable conditions and declines as environmental 

constraints are imposed (i.e. temperature, water and/or VPD limitations). 

More details are presented later in Section 6.4.5. 
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Figure 6.5. Predicted (—) and observed (A) data pertaining to stand volume and current 
annual increment (CAI) over the rotation for trials M2, M3, M4, M5 and 
M6. Annual rainfall is depicted as shaded bar plots. 
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6.4.3 Biological realism in model predictions 

Another important process in model validation is to check that predictions are obtained 

for the right reasons. This is essentially a check of the biological realism of the model. 

For example, canopy LAI determines the canopy conductance and the amount of 

radiation intercepted by the canopy. Therefore biological realism requires that predicted 

maximum LAI and the general trend thereof throughout the rotation should be realistic 

and consistent with observed data for E. grandis. Since no LAI data were available for 

these six sites (Table 6.1), LAI values typical of sites in South Africa were used as a 

check. 

Du Toit and Dovey (2005) have shown that LAI reaches a maximum in developing 

stands followed by a rapid decline after canopy closure. Thereafter, LAI reaches an 

equilibrium (Beadle, 1997), but may show seasonal variations as a response to 

fluctuating environmental conditions (Gower et al., 1993). Local data indicate 

maximum LAI to occur at between 2.5 and 3 years and to vary between 4.0 and 5.3 at 

canopy closure (du Toit and Dovey, 2005; Campion et al, 2005). Average LAI values 

of 4.1 and 3.8 at two and three years respectively, have also been shown (Dovey and du 

Toit (2005). Thereafter, as resource competition sets in, LAI declines to an average of 

2.8 (see Section 5.4.2). Other studies by Dye et al. (1997) show maximum LAI in the 

Zululand area {e.g. M3) is approximately 3, while at other sites this value does not 

exceed 1.5. Generally, LAI takes on values between 2 and 3.5 (Dye et al, 2004). 

Predicted LAI at the study sites are shown in Figure 6.6. Superimposed on these data 

are peak LAI data from Du Toit and Dovey (2005) and Campion et al. (2005). Although 

the LAI predicted at M3 (dotted line) is greater than at other sites, predicted trends are 

consistent with the others shown in Figure 6.6. However, using the work done by Dye et 

al. (1997) as a reference, peak LAI at M3 is over-predicted. 
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Figure 6.6. Predicted time-course of LAI for all study sites (M2 to M6). Symbols A and 
• represent observed LAI at two separate sites of several treatments each in 
the Kwa-Zulu Natal Midlands (Campion et al. 2005); du Toit and Dovey, 
2005). The dotted line (- -) represents the M3 site and solid lines (—) 
representing M2, M4, M5 and M6 sites. 

Model outputs tend to reflect reality and show good signs of biological realism. 

Predicted LAI over the range of sites tested correspond to peak LAI and general trends 

that have been recorded in other E. grandis studies. However, at M3 predicted LAI is 

not consistent with values for E. grandis under local conditions. For example, at M3 the 

maximum LAI is predicted to be over 5 m2 m"2 rather than 3 m2 m"2 as shown by Dye et 

al. (1997) (see Section 6.4.3). This means that 23% more SR is intercepted (using Beers 

law, LAI values of 3 and 5.5 equate to light interception values of 0.77 and 0.93 

respectively). Despite these unrealistically high values of LAI (and subsequently higher 

intercepted SR) SV predicted at M3 at this age is less than observed. This is very 

puzzling and a result that cannot easily be explained. This result could be explained by 

the work done by Binkley et al. (2004), which suggests that more productive sites have 

a higher efficiency of resource use than less productive sites. 

120 



Leaf area index is estimated by 3-PG from WF and SLA which is calculated as an age-

dependent function using parameters pertaining to the SLA of young and mature trees 

{i.e. ao and o\). It is therefore possible to change the LAI calculated by changing these 

parameters. Biomass allocation studies in the vicinity of the M3 trial revealed that for 

young and mature trees SLA is 7.5 and 4 m kg" respectively (see Figure 4.2, Section 

4.3.1). Using these values for c^and at produces more acceptable LAI values for the M3 

site but then LAI values are under-predicted at the remaining sites. Since 3-PG is a 

generic model which uses one set of parameter values, these values for SLA cannot be 

changed as suggested. The problem may lie in the efficiency of light resource usage at 

these Zululand sites and that 3-PG does not account for this. 

Absorbed PAR is another very important component of 3-PG and is determined using 

Beers law and the canopy cover of the stand. The parameter set developed here assumes 

that canopy closure takes place at 2 years. Following that 3-PG assumes that the canopy 

is uniform. However, this is not necessarily true for stands with significant mortality. In 

such instances 3-PG will reflect larger amounts of intercepted radiation which will 

result in erroneous calculations of dry mass production (Landsberg and Waring, 1997). 

Implications of this are best described using an example. If a stand is 5 years of age 

(canopy cover =1) and the LAI is 3, then of the total incoming radiation, 77% will be 

intercepted (via Beers law). Since the canopy cover is unity the full 77% of the light 

intercepted is available for use in carbohydrate production. If, however, the canopy is 

not uniform and a value for canopy cover was, for example, 0.85 then only 65%, instead 

of 77% of the SR will actually be used in photosynthesis. This example illustrates the 

potential for 3-PG to over-predict intercepted incoming SR, which leads to an over-

prediction of NPP. Coupled with these errors are reduced growth efficiencies towards 

the end of the rotation that 3-PG is not able to replicate (Figure 6.5). 

6.4.4 Improvement in model predictions 

The possibility of further improving these predictions by varying selected parameters 

and initialisation values was explored. Selected parameters were the maximum NPP 

allocated to roots (TJRX), the theoretical maximum canopy quantum efficiency (acx) and 

parameters related to the fertility modifier (fN). Minimum available soil water capacity 
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was varied to emulate a phreatic surface or GW table. Besides these parameters having 

moderate to high sensitivity rankings (see Section 3.3.2, Table 3.3), the reasons their 

values were varied are highlighted as follows: 

• Below ground carbohydrate allocation as a proportion of NPP is regulated by 

soil water deficits and nutrition. As such the process is an important one and 

if in error will affect the amount of carbohydrate allocated aboveground. 

Since no observed root data were available it was impossible to determine 

how root allocation varies between poor and good growing conditions. 

Default values of 0.6 and 0.25 are therefore used for rjgx and TJR„, respectively 

(see Section 4.3.1). Incorrect values for these parameters have a considerable 

effect on monthly production. For example a value of 0.5 for T]RX implies that 

during times of stress 10% less NPP will be allocated below ground than if a 

value of 0.6 had been used. Similarly, t]Rn = 0.3 means that under good 

growing conditions 5% more NPP would be allocated belowground than if 

0.25 were used. 

• The parameterised value for acx is 0.064 (see Section 4.3.2) and is 

comparable to the value of 0.07 given by Landsberg et al. (2003). However, 

because this parameter has a very high sensitivity ranking very small changes 

in its value have a large effect on modelled output. For instance if a value of 

0.07 is used instead of 0.064, SV at a typical site in the Kwa-Zulu- Natal 

Midlands could, in the absence of growth constraints, increase by as much as 

130 m ha" over the full rotation. 

• Default values were assigned for FR determining how fertility affects 

production and allocation, because no objective method was available. When 

7M) ^ 1, the effect of site nutrition on the canopy quantum efficiency is not 

accounted for. This modifier,/AT (FR), is proportional to FR and is represented 

in 3-PG as fN (FR) = /NO + (1 -/NO) FR wherefyo is the value offN when 

FR=0. Landsberg et al. (2003) found that fm = 0.5 was suitable when the 

model was calibrated against growth data from a range of soil types and 

hence FR values, while Almeida et al. (2004b) set fNo to a value of 0.6. 
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• During periods of below average rainfall, deep rooted eucalypts are able to 

maintain transpiration by accessing water from deep in the profile or from a 

water table (Knight, 1999). Work done by Dye and Poulter (1992) in the 

Eastern Transvaal showed that water use by E. grandis can exceed annual 

rainfall. This suggests that the rate of tree growth can continue unimpeded by 

climatic fluctuations where water tables are prevalent. Soil water deficits 

during the 1991/1992 drought did not cause severe stress in E. grandis trees 

and failure of these trees to respond to drought and soil water deficits can be 

attributed to the ability of the trees to extract soil water to a depth of at least 

8m (Dye, 1996). Such access to deep water is possible because of the 

dimorphic nature of eucalypt root systems which consist of wide-spreading 

surface roots, tap roots in young trees and sinker roots in mature trees 

(Knight, 1999). In a study to investigate the rooting strategies of E. grandis 

on deep sands in Zululand, isotopes were used to trace the source of water 

and therefore distinguish between soil water and GW. Generally GW was 

detected between 4 and 8m of depth (Scott, 1993). It is reasonable to assume 

the possibility of GW access especially when tree growth continues 

unimpeded during periods of sub-optimal rainfall or drought. To test the 

likely consequence of such access, 3-PG was set up to account for the 

presence of a GW store. This was done by setting the 6sx = 6sn- The 6$n was 

also varied so that GW access was restricted to periods when current monthly 

9s was approximately 50% of the $sx-

The parameter values were altered as follows: (1) r/Rx reduced from 0.6 to 0.5; (2) acx 

increased from 0.064 to 0.07; and (3)^ 0 reduced from 1 to 0.5. For each alteration new 

sets of SV predictions were made and compared to observed data of trials M2 to M6 

(see Section 6.4, Table 6.1). Observed and predicted growth rates over a five year time 

period are shown in Table 6.4 and Figure 6.7. The nominal predictions were based on 

the original (i.e. unaltered) parameter values (see Section 4.3, Table 4.6). The other 

predictions refer to the growth rates in response to the changes in parameter values and 

access to GW by changing the minimum available soil water. With respect to altering 
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parameter values the changes in growth rate are not consistent between sites. For 

instance a decrease in 77^ and an increase acx have a greater effect on production at M2 

and M3 than at M4, M5 and M6. On the contrary, setting îvo = 0.5 consistently improves 

stand production over the entire course of the rotation at M6. This improvement is not 

consistent with the other sites therefore suggesting that the FR modifier may either be 

site-specific or M6 exhibits FR limitations that do not occur at the other sites. 

Table 6.4. Observed and predicted SV growth rates (GR) over a five year time frame 
across all sites. Column 3 shows predicted (nominal) growth rates when 
unaltered parameter values are used (i.e. TJ^ = 0.6; acx = 0.064 andfm =1). 
Columns 4 to 8 show growth rates across all sites in response to changing 
parameter values individually (i.e. only one at a time: rjfa = 0.5; acx = 0.07 
and^vo = 0.5) and the minimum available soil water. GW (1) and GW (2) are 
two scenarios where full GW access is activated and access permitted only 
during periods of water stress. See also Figure 6.7. 

Sites 
M2 
M3 
M4 
M5 
M6 

Average stand volume growth rate (over five years, m3 ha"1 y"1) 
Observed 

48 
53 
30 
26 
9 

Nominal 

35 
40 
21 
19 
17 

GR in response to changes in parameter values and site 
information 

tlRx 
38 
43 
22 
20 
19 

<*Cx 

40 
45 
23 
20 
19 

/NO 

26 
30 
16 
15 
12 

GW(1) 
61 
56 
54 
53 
46 

GW(2) 
47 
46 
38 
37 
25 

Access to groundwater (GW1) by setting 8sx=0sn produces very large predicted volumes 

especially at sites where soil water is limiting, or over prolonged periods of drought. If, 

however, groundwater access (GW2) is limited only to periods where 9s is a fraction of 

Qsx (fe - 0.5) emulating temporary water constraints to growth, tree growth rates are 

more realistic with volumes showing a better agreement with observed data across most 

sites. 

The results outlined here demonstrate the possibility of improving model predictions by 

varying selected parameter values and site factors. However, such changes to parameter 

values cannot be done on an ad hoc basis with no real justification. If additional site 

information, such as the presence of GW or soil nutrition inferred from soil analyses are 
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available then it may be possible to vary model parameter and site information. Where 

such information is not known it is not acceptable to vary such parameters or site factors 

to improve the model prediction. 

M2 M3 M4 M5 M6 

Figure 6.7 Growth rates over a 5 year simulation period for predicted (shades of black 
and grey) and observed (solid) stand volume for sites M2 to M6. 
Abbreviations in the legend pertain to the different model simulations 
performed as described in Table 6.4. Nominal refers to growth rates when 
unaltered parameter values are used (i.e. TJ^ = 0.6; acx

 = 0.064 andfN0 =1). 
These three parameters and reference to groundwater (GW) shown in the 
legend (and columns 4 to 8 in Table 6.4) refer to growth rates across all sites 
in response to changing parameter values (i.e. TJRX = 0.5; a.cx = 0.07 andfm = 
0.5) and the minimum available soil water. GW (1) and GW (2) are two 
scenarios where full GW access is activated and access only during periods 
of water stress. 

6.4.5 Detailed 3-PG monthly outputs 

This section considers detailed monthly 3-PG output (as opposed to annual model 

output) as a means to evaluate and understand growth responses to climatic fluctuations 

and growth constraints. These model simulations are performed at M2 which was 

arbitrarily chosen (see Section 6.4, Table 6.1) and use parameter values developed in 

Chapter 4, but with both (i) actual monthly and (ii) long term average weather data. 

Results from these simulations are presented for 1993, 1994 and 1995 in Figures 6.8 

and 6.9 respectively. Each of these figures comprises three charts which show: (a) the 

• Observed 

• Nominal 

BctCx 

• fNO 

• GW(1) 
QGW(2) 
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prediction of monthly R, 0S, TAv and VPD; (b) soil water, VPD and temperature 

modifiers (fg,fo and/r); and (c) the modified canopy quantum efficiency (ac), root and 

stem partitioning coefficients (pa and ps). 

In order to effectively interpret these results the following points must be kept in mind: 

• fr is a function of cardinal temperatures and TAV each month; fg is a function 

of current 0s, 9sx and soil texture; fo is a function of monthly average VPD 

and the stomatal response to VPD (kD). 

• ac is calculated monthly and takes into account these environmental 

modifiers and any constraint imposed by the site fertility (if/NO < 1). 

• fg andfD are applied as a law of the minimum and applied as the physiological 

modifier. 

• Using this modified value, the molecular weight of dry matter and a 

conversion factor for SR to PAR (both of which are set as constant values in 

3-PG) the GE is calculated. 

• Gross primary production produced is the product of intercepted SR and ac, 

and is reduced by respiration to produce NPP. 

• Net primary production is partitioned to roots and above ground biomass. 

Root allocation is based on environmental conditions and if limitations to 

growth exist root allocation increases. The ratio of foliage to stem allocation 

declines with increasing tree size. 

During 1993 annual rainfall was 729 mm, approximately 70% of the amount in 1995. 

Final SV at age 11 years predicted using actual weather data is 457, compared to 433 m3 

ha"1 predicted using long term averaged weather data. 

Figures 6.8a and 6.9a show that simulated soil water decreases during winter and 

months having lower than average R, increasing following very wet events and over 

summer. It is evident that predicted soil water (Figure 6.8a) is responsive to fluctuating 

R as shown between 1994 and 1995. Average temperatures and VPD also fluctuate 

seasonally. VPD shown here is not based on relative humidity and temperature data but 
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calculated from Tx and TN, and may be under-estimated (see Sections 5.2 and 5.4). 

Nevertheless the trends shown here are reasonable and respond in an expected manner. 

Figure 6.9a show similar trends to those shown in Figure 6.8a except that each year is 

characterised by identical weather patterns because these data are long term means. On 

these grounds the monthly modifiers shown in Figure 6.9b are replicated on an annual 

basis in accordance with the weather data shown in Figure 6.9a. 

Figure 6.8b shows how the environmental modifiers respond to the prevailing weather 

conditions. For example during 1993 the available soil water decreases in response to 

decreased R amounts. The soil water modifier follows a similar trend. Figure 6.8b 

shows that during time of drought^ <fo. Because growth is limited by the minimum of 

these modifiers, growth is therefore limited by soil water, not VPD, during such periods 

of water stress. During the winter months temperature does limit growth, but as the 

weather warms up and R increases in summer the temperature (and soil water) 

limitations on growth are reduced. 

3-PG uses the growth modifiers to reduce the quantum efficiency ac from its unlimited 

value of 0.064 mol mol"1 (see Figures 6.8c and 6.9c). It is interesting how monthly 

values of ac tracks those of/0 (6.8b and 6.9b) during the winter months and temperature 

and VPD during the remainder of the year. These very low values of ac indicate severe 

growth constraints which impact negatively on above ground allocation. In these cases 

more carbohydrate is allocated to roots as shown in Figure 6.8c. However, during 

favourable months {e.g. February to September 1994) allocation to roots is very low. 

These results demonstrate how predictions can better reflect reality when actual weather 

input data are used because itv is these data that allow for site constraints to growth to 

be recognised. 
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Figure 6.8. Detailed model output from site M2 for 1993, 1994 and 1995 when using 
actual weather data, (a) shows monthly rainfall totals (mm/ month, solid 
bars), mean temperature ( C, ) and VPD (mbar, — ) as determined by 
Tx and TV, and monthly predicted 6s contents (mm per total soil depth, —); 
(b) shows the temperature ( ), soil water (—) and VPD modifiers (—), 
and (c) the canopy quantum efficiency (—) taking into account the 
environmental modifiers, and the root ( ) and stem (—) partitioning 
coefficients (pR and p$). 
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Figure 6.9. Detailed model output from site M2 for 1993, 1994 and 1995 when using 
average weather data, (a) shows monthly rainfall totals (mm/ month, solid 
bars), mean temperature (°C, ) and VPD (mbar, — ) as determined by 
Tx and TN, and monthly predicted 6S contents (mm per total soil depth, —); 
(b) shows the temperature ( ), soil water (—) and VPD modifiers (—), 
and (c) the canopy quantum efficiency (—) taking into account the 
environmental modifiers, and the root ( ) and stem ( ) partitioning 
coefficients (p« and^) . 
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6.5 TESTS AGAINST RESULTS FROM A FERTILISATION 

TRIAL8 

As part of an independent validation, 3-PG was tested against growth data from an 

irrigated and fertilised E. grandis stand in the KwaZulu-Natal Midlands. This model 

validation forms part of the work conducted by Campion (2005), and has been 

published as Campion et al. (2005). A brief overview of this work is presented here. 

The interested reader can refer to Appendix B where the paper by Campion et al. (2005) 

is attached. 

The site has a MAP and MAT of 919 mm and 16.6°C respectively. The soils have a clay 

loam texture and range between 0.5 and lm in depth. The trial has 16 plots consisting 

of a control, irrigated, fertilised and irrigated-fertilised treatments. Predictions were 

made using the parameter values developed in Chapter 4, weather data collected from 

an on-site weather station and detailed site information. The model was initialised with 

early observations of Ws and WF. The model was used to predict foliage and stem 

biomass, and LAI from an age of two until four years of age. 

Results showed a good correlation with growth data across all treatments (see Figure 1 

in Campion et al., 2005, Appendix B). At 3.9 years, predicted LAI over all treatments 

ranged from 3.8 to 5.1, similar to the observed range of 4.3 to 4.9. Predicted SV at 3.9 

years ranged from 79 to 121 m3 ha"1 across all treatments, compared to observations of 

100 to 118 m3 ha"1. After three years 3-PG tends to under-predict SV in the non-irrigated 

treatments. Campion et al. (2005) attribute these discrepancies to (1) potential access to 

ground water not accounted by 3-PG; (2) errors in soil water and, and hence 

transpiration because of the simplistic manner that soil water is calculated (i.e. simple 

one layer soil water budget, and (3) under allocation of NPP to stemwood (i.e. too much 

being allocated to root biomass in response to erroneous measures of VPD and soil 

water constraints). 

More details regarding this validation study is presented in Appendix 5, published as Campion et al. 
(2005). 
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6.6 CONCLUSIONS 
This chapter looked at the performance of 3-PG using four different tests each using 

different data sets. Results showed: (1) that the use of the new parameter set provides 

accurate and realistic predictions of stand volume (SV) and leaf area index (LAI); (2) 

predictions are reasonable over a wide range of growing conditions, but tend to over-

predict on low productivity sites and under-predict on high productivity sites; (3) model 

predictions in response to fluctuating weather patterns show that general growth trends 

(e.g. CAI) reflect reality. Absolute values of current annual increment (CAI) did differ 

as a result of errors in model input data highlighting the need to have accurate site and 

weather inputs (see Section 5.4); and (4) 3-PG predictions are able to capture 

differences between irrigated and fertilised sites (i.e. treatment differences). 

Under certain conditions model predictions are in error. These include: 

• The over-prediction of LAI in Zululand. This can be rectified by either 

changing the parameters that describe the relationship between specific leaf 

area (SLA) and stand age or the way in which the canopy cover of the stand 

is calculated. If the canopy cover is made to either decline over the life of the 

stand (i.e. an age-dependent relationship), or made site-specific, LAI 

predictions could be improved upon especially in commercial stands where 

tree mortality is high. 

• The over-prediction of SV towards the end of the rotation. Reasons for this 

are not clear, and could be in response to a change or decline in site resources 

not captured by the model, or due to an incorrect value used for the parameter 

describing the physiological decline over the age of the stand (age modifier). 

• The over-and under-predictions that generally occur over low and high 

productivity sites. These trends could be in response to the weather having an 

intrinsic error attached (see Sections 5.2 and 5.4). For instance, solar radiation 

(SR) data are long-term means and hence would not reflect conditions 

experienced during periods of above average monthly rainfall (R) as the 

cloudy conditions reduce incoming SR. In addition, production will be over­

estimated during wetter periods (i.e. fg> fD) because vapour pressure deficit 
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(VPD) (see Sections 5.2 and 5.4) is over-estimated by virtue of the method by 

which it is calculated (via Tx and TN). The effect of this will be more 

pronounced when VPD is more limiting than available soil water (6s). 

Despite these shortcomings results from this rigorous model validation show that 3-PG 

generally performs well, and predictions made are biologically reasonable and capture 

seasonal growth constraints. These results suggest that 3-PG works reasonably well for 

South African conditions and could be a useful tool to understand the implications of 

drought on tree growth. This study has helped achieve the third objective of this study. 

With the confidence in model predictions gained here, Chapter 7 considers some 

possible applications of 3-PG applicable within the South African context. In closing, 

the following quote from Dirac (1963) cited by Hopkins and Leipold (1996) is 

appropriate: 

"/ think there is a moral to this story, namely that it is more important to have beauty in 

one's equations than to have them fit experiment .... If there is not complete agreement 

between results of one's work and experiment, one should not allow oneself to be too 

discouraged, because the discrepancy may well be due to minor features that are not 

properly taken into account and that will be cleared up with further developments of the 

theory.'" 
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CHAPTER 7 

POTENTIAL APPLICATION OF 3-PG IN SOUTH AFRICA 

7.1 INTRODUCTION 
Several benchmark publications have recently been written about the implementation 

and application of PBMs in forest management (for reviews see Battaglia and Sands 

(1998a); Makela et al. (2000); Sands et al. (2000); Battaglia et al. (2004); Sands 

(2003)). Potential applications of PBMs, highlighted by McMurtrie et al. (1990); 

Battaglia and Sands (1998a); Landsberg (2003), include: (1) the prediction of G&Y on 

existing plantations; (2) site-species matching; (3) identification and the understanding 

of site limitations to productivity; (4) risk assessment; (5) questions for which results 

from long term experiments are not feasible. Current applications of PBMs have 

become more diverse than they were in the past when they were used mainly for 

research, or in the prediction of economic and volume yield. Although PBMs are still 

extensively used for research purposes and understanding stand growth dynamics, they 

are now also being used to help in the management of risk, provide insights into 

sustainability of forest management practices, isolate the consequence of environmental 

factors on growth, and for understanding potential effects of climate change on tree 

growth (Battaglia and Sands, 1998a). 

The role of 3-PG in South Africa is uncertain due to a lack of understanding of the 

model and its potential applications, and misgivings surrounding the accuracy and 

reliability of predictions made using PBMs in general. The validation of 3-PG in 

Chapter 6 showed promising results, and that the model can give reasonable and 

realistic predictions of S V over a range of growing conditions. It is therefore believed 

that 3-PG could potentially play a useful role within South African forestry, both as an 

operational and a strategic tool. Strategic applications may include the: (1) prediction of 

potential productivity on a site-by-site basis; (2) broad-scale productivity estimates 

based on remote sensing and the spatial application of 3-PG; (3) identification of 

production constraints; and (4) estimation of C fluxes to help address sustainability 

issues. Operationally, 3-PG could complement EBMs or be used in conjunction with 
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them as a hybridised product. EBMs are currently used to predict final standing volume 

for scheduling harvest operations. These predictions are based on inventory data 

collected several years before clear-felling age. However, if weather conditions during 

this prediction window differ significantly from the average then model predictions will 

be in error, because EBMs are based on average conditions (see Section 7.4). 3-PG on 

the other hand could be initialised using this inventory data and used to make 

predictions of final SV. 

The objective of this chapter is to present three potential applications of how 3-PG 

could be used in South Africa. These are the determination of potential site productivity, 

the identification of factors limiting growth, and the use of 3-PG to predict SV at the 

end of the rotation. These applications are presented within the framework of the 

forestry site classification (FSC) which categorises sites into cool temperate, warm 

temperate and sub-tropical zones as shown in Table 7.1 (see Section 5.1). 

Table 7.1. Classification of sites, according to site mean annual precipitation (MAP) and 
mean annual temperature (MAT), showing regions best suited to growing E. 
grandis (Smith et al., 2005). 

Climate 
Zone 

Cool 
Temperate 

Warm 
Temperate 

Sub-
Tropical 

Class 

CT1 - CT3 
CT4 - CT6 
CT7 - CT9 

WT1 - WT3 
WT4-WT6 
WT7-WT9 
ST1 - ST3 
ST4 - ST6 
ST7 - ST9 

MAT 
(°C) 

10 to 14 
14 to 15 
15 to 16 
16 to 17 
17 to 18 
18 to 19 
19 to 20 
20 to 21 
21 to 22 

MAP 
(mm) 

<700, 700-800, >800 
<800, 800-900, >900 
<825, 825-925, >925 
<850, 850-950, >950 
<875, 875-975, >975 

<900, 900-1000, >1000 
<925, 925-1025, >1025 
<950,950-1050, >1050 
<975, 975-1075, >1075 

Suitable for E. 
grandis 

No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Smith et al. (2005) assessed the productivity of E. grandis using stand-level growth and 

inventory data from approximately 90 PSP E. grandis sites. These growth data were 

grouped according to the MAP and MAT of each site and estimates of site potential 

made. These estimates showed: site index at five years (SI5), maximum MAI (MAIX), 

and age at MAIx (MAIxage) were limited by the quality and type of observed data 

available. For instance, estimates of S V are in general based on observed HT and DBH. 

Furthermore, these growth data are representative of only one climatic window in space 
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and time (i.e. that associated with each PSP and its rotation) during which time there 

may or may not have been a drought or other significant event such as insect attack. 

Due to these uncertainties in the climatic (and growth) data it is believed that 3-PG can 

give additional estimates of productivity (e.g. LAI or GE) and better estimates of 

productivity encompassing a range of climatic conditions, significant events and 

management scenarios. 

7.2 PREDICTING POTENTIAL PRODUCTIVITY 

The purpose of this section is to use 3-PG to make estimates of potential site 

productivity, and to compare these estimates to those made by Smith et al. (2005) for 

selected site classes. Growth in response to theoretical scenarios (e.g. access to GW, or 

optimal nutrient conditions) is also explored. Five sites representing the CT9, WT4, 

WT6, ST1 and ST9 classes (Table 7.1), shown in Table 7.2, were selected. So as to 

capture a wide range of site productivity, the observed weather data for 1950 to 1999 

were used and 3-PG was used to simulate all possible eight-year rotations over this 

period (i.e. as if trees were planted each year and grown till the end of the rotation). Site 

and soil factors were the same as those used in Sections 2.3.4 and 3.2.1. Initial biomass 

pools at age two years were determined using SI data from the FSC (see Section 5.4). 

Summary weather data for sites representative of these FSC areas are provided in 

Table 7.2. 

Table 7.2. Summary weather data for the five sites used to estimate productivity for the 
climatic zones of the site classification. Total rainfall and solar radiation 
give the ranges in totals over successive eight year rotations over the full 
climatic record. Abbreviations comprise: MAP - mean annual precipitation; 
MAT - mean annual temperature. 

Climate 
Zone 

CT9 
WT4 
WT6 
ST1 
ST9 

Location 

Glendale 
Baynesfield 
Windy Hill 
Bloemendal 
Amangwe 

Total 
rainfall 
(mm) 

6279-9350 
6534-8340 
7555-9418 
7453-9212 
9170-12916 

Total 
solar radiation 

(M J m2) 
2287 
2368 
2415 
2383 
2415 

MAP 
(mm y"1) 

868 
817 
969 
905 
1194 

MAT 
(°C) 

16.1 
17.4 
17.3 
19.1 
21.8 
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Total rainfall shown is an indication of the minimum and maximum total rainfall (and 

therefore the range in total rainfall) over successive eight year rotation periods between 

1950 and 1991. Similarly, total SR refers to totals over the entire rotation and is a single 

value because only mean radiation data were available (see Section 5.2). For example at 

Glendale the total rainfall between 1962 and 1970 amounted to 6279 mm compared to 

9350 mm occurring between 1983 and 1991. During these same periods an average of 

2287 MJ m"2 of SR was recorded. 

3-PG was initialised at an age of 2 years and run for successive eight-year periods (i.e. 

until a stand age of 10 years). Since, 3-PG was initialised at two years of age only 8 

years worth of climatic record were used for each model run (e.g. 1950-1958, 1951-

1959 etc). By performing model simulations in such a fashion, the full range of 

response to the 50 year climatic record is utilised and upper and lower ceilings to 

productivity were established. The estimates of site productivity were SI5; MAIX; 

MAIxage, SV, NPP and the GE, all of which are shown in Table 7.3. 

It is important to remember that the estimates presented here were developed using only 

one site per climatic class. The range in values presented is a consequence of modelling 

for several rotations at a single site. To provide more accurate estimates several sites 

representative of soils, fertility and weather extremes will need to be used. 

Estimates of SI5 reported in Table 7.3 are the average tree height at five years and serve 

as a rough estimate of the true site index (i.e. the dHT of the top 20% of trees at age 

five). The results shown are comparable to the estimates of SI5 presented within the 

FSC. The predicted range of MAIX and the MAIXage are realistic for each of the sites 

and comparable with observed data. The range of MAIx at WT6 and ST9 are not as 

extreme as those observed and may be due to 3-PG estimates being based on one site 

only. 
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Table 7.3. Estimates of potential productivity for six sites covering the full range of 
climatic zones. Values in parenthesis are estimates made using observed 
data depicted in the forest site classification. Abbreviations are as follows: 
SI5 - site index at a reference age of five years; MAIx and MAIXage - peak 
and age at peak mean annual increment; SV - final stand volume; NPP - net 
primary production; GE - radiation use efficiency. 

Estimate of 
productivity 

SI5 

(m) 
MAIx 

(m'haV) 
MAIxage 

(y) 
SV 

(m3ha"') 
NPP 

(tDM ha"1) 
Growth 

efficiency 
(gDM MP1) 

CT9 

14-17 
(15) 

19-27 
(20-40) 

6-9 
(10) 

156-235 

194-250 

0.70-1.73 

WT4 

15-17 
(14) 

19-25 
(16-35) 

6-9 
(11) 

184-237 

210-256 

0.7-1.6 

WT6 

17-20 
(18) 

32-44 
(24-49) 

5-9 
(9) 

313-411 

306-387 

0.7-2.3 

ST1 

15.5-17.7 
(14) 

21-28 
(-) 
6-9 
(10) 

207-257 

213-259 

0.89-1.06 

ST9 

20-24 
(22) 

47-68 
(33-85) 

4-9 
(6) 

455-595 

416-528 

1.09-2.6 

Net primary production provides a measure of the ability of the trees on the site to fix C 

because it constitutes the total C assimilated. Stand volume, on the other hand, is a 

measure of how much NPP is partitioned to the utilisable timber which is affected by 

environmental stress. The SV therefore varies in response to climatic and environmental 

growth constraints. This helps explain the large range shown in the values of SV. For 

instance, during periods of high soil water deficits, allocation to below ground 

increases, which results in less carbohydrate being available for stem growth. The GE is 

a very useful value to consider and is calculated as the product of the molecular weight 

of dry matter, conversion of SR to PAR and the etc- Since the former two variables are 

fixed parameter values (see Section 4.3, Table 4.6) the GE is directly proportional to 

site growth limitations (e.g. growth modifiers) reflected in «c. Larger GE values imply 

that available site resources are better used and environmental stress is low. 

The usefulness of 3-PG for exploring the effects of growth in response to theoretical 

scenarios was explored. Two contrasting sites, CT9 and ST9, were used and (i) 

"allowed''' to access GW during dry winter months and times of drought and (ii) given 

optimal nutritional conditions. 3-PG was set up to access GW during periods of soil 

water deficits by setting the 0s„ = 0Sx so that these sites are never constrained by water 
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deficits. When 6sn = 6sx additional water is added to the system such that 6S > 6sn-

Optimal nutritional conditions were emulated by setting FR to 1 which together with 

parameter values shown in Table 4.6 (i.e. /NO) only affects below ground allocation. 

Results from these scenarios are presented in Table 7.4. 

Table 7.4 Productivity estimates in response to groundwater (GW) access and optimal 
site nutrition for contrasting sites CT9 and ST9. Baseline estimates refer to 
normal site conditions (Table 7.3). Abbreviations are as follows: SI5 - site 
index at a reference age of five years; MAIX and MAIxage - peak and age at 
peak mean annual increment; SV - final stand volume. 

Productivity 

Sis 
(m) 

MAIX 

(m 'ha ' y 1 ) 
SV 

(m3 ha"1) 
NPP 

(tDM ha"1) 
GE 

( S D M M J - 1 ) 

CT9 
Baseline 

13-17 

15-25 

156-235 

185-268 

0.42-1.95 

GW access 

20-21 

41-45 

368-397 

386-416 

0.94-2.17 

FR=1 

15-19 

24-34 

236-314 

192-274 

0.42-1.80 

ST9 
Baseline 

20-24 

47-68 

455-595 

416-528 

1.09-2.6 

GW access 

24-25 

64-65 

636-654 

564-578 

1.25-2.6 

FR=1 

21-25 

55-77 

516-675 

429-539 

0.99-2.62 

At CT9 final SV and NPP increase substantially in response to access to GW. The 

increase in the lower threshold value of the GE (0.42 to 0.94) does indicate that in drier 

years GW access helps alleviate soil water deficit conditions. With respect to ST9 a 

similar result is apparent. 

On the other hand optimal site nutrition has a relatively small effect on overall 

production. This is important because only below ground allocation is affected by FR 

with the current parameter set (fm = 1). However, if fm is set to 0.5, then under baseline 

conditions, SV at CT9 and ST9 would have been 104-154 m3 ha"1 and 345-455 m3 ha"1 

respectively. In this case, full fertility would have had a large effect on production. 

7.3 IDENTIFICATION OF FACTORS LIMITING GROWTH 

Questions are continuously asked in the South African forest industry concerning the 

"true" production potential of forest plantations. These include whether or not site 
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potential is limited by genetics, silviculture, nutrition, water or a combination of these. 

It is commonly assumed, mainly by personal observation and empirical studies, that 

plantation productivity is constrained mainly by water. The value of PBMs is that they 

can determine constraints on growth, leading to important insights into factors limiting 

productivity. Such information is key to forest planning in that it enables the 

identification of areas where effort should be expended to maximise growth. 

The usefulness of 3-PG to predict measures of site productivity and the effects of 

possible scenarios on growth was explored in Section 7.2. Results from this study are 

intuitive to a certain extent, but to fully understand the growth dynamics it is necessary 

to consider constraints on growth. Constraints on growth in 3-PG are calculated using 

environmental modifiers, which describe how environmental stress limits production. 

These modifiers describe how 6s and VPD affect gc (and therefore ET), below ground 

allocation to roots, and ac', how TAV affects photosynthesis through modification of ac, 

and how FR affects ac% and below ground allocation. The physiological modifier (cp) is 

defined as the product between the age modifier (fage) and the minimum of/0 andfD, and 

affects both canopy conductance and etc-

The relative importance of these modifiers in limiting NPP was examined using 3-PG. 

Battaglia and Sands (1997) performed a similar study where they compared actual 

production against the theoretical maximum production (in terms of NPP) obtained 

assuming no factors were limiting growth. Those authors showed the relative 

importance of each potentially limiting factor (see Figure 9 in Battaglia and Sands, 

1997). 

Using the same five sites used in Section 7.2 (Table 7.2), a similar analysis to that of 

Battaglia and Sands (1997) was performed. By setting the FR = 1, <p = 1 and ac = aCx, 

the theoretical maximum NPP and volume growth were determined using the full 

climatic record across all sites. The average theoretical maximum NPP (on a per site 

basis) was calculated as the average of total NPP produced over all possible rotations 

over the full climatic record. 
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Figure 7.1 Effects of factors that potentially limit production across 5 site types, (a) 
Comparison of actual and theoretical maximum production at each site, (b) 
Relative importance of temperature, VPD, FR and soil water supply which 
potentially limit production. ST9 (GW) refers to a scenario where 
groundwater access is available. 

Actual production determined as the growth in response to all environmental limitations 

inherent in the 49 yr climatic record was also determined at each site. Figure 7.1a 

compares actual production and theoretical maximum production, which is seen to be 

approximately a third of the maximum. This is a big difference, and is largely because 

under South African conditions several factors combine to limit growth, especially soil 

water availability (see below). 
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A more realistic and meaningful approach to illustrating growth constraints on 

production looked at the relative effect of each environmental factor on stand 

production. Due to the computational complexity of getting these results, results are 

given for only one eight-year rotation for each of the five sites. These results therefore 

are in response to the prevailing climatic conditions of this single rotation and by no 

means reflect all possible permutations. The affect of each constraint on production was 

determined by altering the 3-PG computer code as shown in Table 7.5. 

Table 7.5. 3-PG coding changes made so that the relative contribution of each factor on 
total production could be calculated. Abbreviations are as follows: tp -
physiological modifier; fD,fd-,fage,fr and^y- modifiers expressing effects of 
vapour pressure deficit, soil water, stand age, temperature and site nutrition; 
FR - site fertility rating; acx and etc - theoretical maximum and modified 
canopy quantum efficiency. 

Limitation 
All limitations 
Theoretical maximum 
Soil water 
VPD 
Temperature 
Site fertility 

3-PG coding changes to emulate effect of site limitations 
FR = site fertility; cp = min (fD,fg)faee; ac = aCxfT IN <P 

FR= \;q>= l;ac=aCx 

FR= l;<p=ff,;ac = aCx<p 
FR= l;<p=fD;ac=aCx<p 
FR= \;<p= \;ac=aCxfT 

FR = site fertility; (p= 1; ac = aCxfN 

The effects of 8s, VPD, TAv and FR on actual production are presented in Figure 7.1b; 

the area occupied by each factor illustrates the relative importance of that factor in 

limiting growth for a particular site {i.e. the larger the proportion of the shaded area the 

greater that particular constraint). For example: at CT9, of the reduction in growth 

below the theoretical maximum, 7, 44, 27 and 21% of the reduction is due to limitations 

imposed by temperature, water, VPD and FR respectively. Soil water and VPD are the 

factors that have the greatest effect on growth across all sites. However, if access to 

groundwater is permitted at the Zululand site (shown as ST9 (GW)) the limitation to 

growth imposed by temperature, water, VPD and FR change from 2, 45, 29 and 23% to 

4, 7, 49 and 40% respectively, noting that the absolute reduction is different in both 

cases. This scenario demonstrates that in the presence of GW, soil water would not limit 

growth at this site. Temperature constraints on growth have the greatest effect on CT9 

and WT6. The results shown here are limited as they present a summary of growth 

constraints over only a single rotation. 
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Constraints on growth and their effects are seasonal and therefore change throughout the 

year. For instance, factors limiting production will differ between summer and winter 

months. In a similar fashion to what has just been described, the relative importance of 

each factor on overall production is plotted in Figure 7.2 as a function of stand age 2 to 

10 years for WT4, WT6, ST1 and ST9. These results show how each factor constrains 

growth and how these limitations are strongly seasonal. For example Figure 7.1 shows 

how #s at all the sites has a large effect on production. At ST9 ds deficits have a large 

impact on growth between month 58 and 94 (approximately 60% reduction in growth) 

and coincides with the drought during 1991/1992. It is important to understand that 

because <p = min (fo, fe), at some times water is the limiting factor, and at others it is 

VPD. For the same site the effects of TAV show a very slight limitation to overall 

production. These results are not expanded upon. 
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7.4 GROWTH PROJECTION 

In South Africa stand-level EBMs are generally applied to make predictions required 

for management planning and harvest scheduling purposes. These models make use of 

stand attributes (e.g. age and SI5) and comprise components to calculate dHT, BA and 

SPH. These components, linked together in a multi-component model framework, are 

implemented as G&Y simulators. Using inventory data, collected at ages between four 

and six years for E. grandis plantations, these models are initialised and used to predict 

final SV at stands earmarked for clear-felling. Such predictions can be fairly accurate 

and, provided they are applied on sites or under conditions similar to those used to 

develop the models, they provide more precise predictions of forest behaviour than do 

PBMs (Korzkhin et ai, 1996). However, since EBMs are purely statistical and therefore 

descriptive they cannot account for climatic fluctuations and changes in site and 

silviculture from rotation to rotation (Johnsen et ai, 2001; Korzukhin et al., 1996; 

Battaglia and Sands, 1998a). Inherent in them is also a degree of circular logic: the 

productivity of the site cannot be quantified until trees have been grown and been 

measured, at which point it is known how well they have grown (Landsberg and Gower, 

1997). 

Used in isolation EBMs are of limited use and therefore require additional data to 

provide useful information. Such information can be complied from three sources: area 

estimates of the plantation, stand level inventory of the plantation, and growth and 

harvesting models based on dynamic inventory data (Vanclay, 1994). It is worth 

mentioning that PBMs can complement EBMs within a hybridised framework. Hybrid 

modelling combines the strengths or "best features" of both PBMs and EBMs: the 

output from the PBM is used as an input into the empirical model. For instance, the 

power of a PBM is that it incorporates a mechanistic description of the stand interaction 

with the environment, while the power of EBMs is in using historical yield data to 

introduce site-specific determinants of yield that are difficult to interpret using PBMs 

(Battaglia and Sands, 1998a). Model hybridisation, which is still a relatively new 

concept, has yet to be accepted in South Africa, and as such it is not expanded upon 

here. 
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However, the first challenge is to demonstrate that PBMs are useful and can make better 

predictions (especially under a varying and fluctuating climate) that do EBMs. 

Accordingly, the hypothesis that 3-PG can make predictions that are comparable to, if 

not better than, traditional techniques was explored. 

Data used in this study were selected from the E. grandis PSP database. A total of 52 

representative sites from four physiographic regions (e.g. Lowveld, Zululand coastal 

and interior, and Natal midlands) and all zones covered by the FSC were chosen. These 

sites account for MAP (780-1400 mm) and MAT (15-22 °C) ranges that occur in South 

Africa and represent a range of site productivities (SI5 between 11 and 30 m). Details of 

these sites are presented in Table 7.6. 

Table 7.6. Information regarding the 52 PSP sites used for the comparison between 
empirical and 3-PG models. Shown are the physiographic region (1= 
Zululand coastal, 2= Zululand interior, 3= Midlands and 4= Lowveld), 
planting dates, measurement ages (first and final), mean annual precipitation 
(MAP), mean annual temperature (MAT) and forest site classification (FSC) 
zones (see Table 7.1). 

Site 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Region Planting Date 

Dec-93 
Feb-87 
Dec-93 
Oct-87 
Oct-87 
Sep-93 
Apr-89 
Apr-89 
Jun-89 
May-89 
Apr-89 
Apr-89 
Jun-89 
Jun-89 
Jun-93 
Jul-93 
Jul-93 

May-93 
Jul-93 
Apr-93 
Nov-93 

First 
age 
(y) 
1.63 
4.12 
2.82 
3.46 
3.46 
1.88 
3.21 
3.21 
3.04 
3.13 
3.21 
3.21 
3.04 
3.04 
2.13 
2.05 
2.05 
2.21 
2.05 
2.29 
2.90 

Last age 
(y) 

4.56 
6.37 
4.56 
5.71 
5.71 
3.88 
8.03 
8.14 
7.99 
7.31 
7.39 
7.39 
7.23 
7.74 
5.11 
4.98 
4.98 
5.19 
5.02 
5.23 
4.64 

MAP 
(mm) 

1040 
1040 
1040 
1061 
1157 
1157 
963 
1210 
1195 
1215 
1248 
1215 
1215 
1248 
1198 
1093 
1122 
1294 
1052 
1110 
1163 

MAT 
(°C) 

21.5 
21.5 
21.5 
21.5 
21.3 
21.3 
21.8 
21.1 
21.0 
21.1 
21.2 
21.1 
21.1 
21.2 
21.5 
21.6 
21.7 
21.0 
19.4 
21.6 
21.6 

FSC 
Zone 

ST8 
ST8 
ST8 
ST8 
ST9 
ST9 
ST2 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST9 
ST3 
ST9 
ST9 

14S 



Site 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

Region 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 

Planting Date 

Jun-88 
Jul-87 
Oct-87 
Sep-88 
Apr-93 
Nov-93 
Oct-93 
Jan-91 
Feb-89 
Jan-89 
Mar-89 
Sep-87 
Nov-93 
Mar-91 
Mar-91 
Feb-93 
Jan-90 
Jan-90 
Jan-90 
Sep-89 
Oct-95 
Jul-95 
Jan-80 
Jun-93 
May-93 
May-91 
Feb-90 
Jan-91 
Aug-95 
Jan-96 
Feb-91 

First 
age 
(y) 

5.38 
6.13 
5.22 
4.96 
3.61 
3.02 
3.11 
4.71 
7.74 
7.83 
5.55 
8.17 
2.00 
4.67 
4.67 
2.50 
5.58 
5.58 
5.58 
5.92 
1.83 
2.08 
5.67 
4.14 
1.67 
5.04 
3.00 
4.09 
2.70 
2.29 
5.27 

Last age 
(y) 

8.13 
8.81 
7.63 
6.71 
5.33 
4.72 
4.79 
7.56 
9.47 
9.56 
9.45 
10.84 
6.70 
9.38 
9.38 
7.40 
10.52 
10.48 
10.48 
10.81 
4.81 
5.02 
12.34 
7.10 
6.97 
8.99 
10.21 
9.29 
4.76 
4.34 
9.21 

MAP 
(mm) 

1170 
1024 
1010 
1036 
876 
810 
791 
787 
786 
784 
1024 
1285 
842 
921 
902 
919 
919 
814 
915 
840 
1314 
1280 
1227 
1357 
832 
1178 
1084 
1084 
1084 
962 
865 

MAT 
(°C) 

18.8 
17.7 
17.0 
16.6 
18.2 
17.7 
18.3 
14.9 
15.4 
15.1 
16.8 
17.0 
17.6 
18.0 
17.8 
17.1 
17.1 
17.9 
17.5 
17.9 
18.6 
18.8 
19.5 
18.5 
21.7 
21.6 
21.8 
21.8 
21.8 
21.9 
21.8 

FSC 
Zone 

WT9 
WT6 
WT6 
WT3 
WT7 
WT4 
WT7 
CT4 
CT7 
CT7 
WT3 
WT6 
WT4 
WT5 
WT5 
WT5 
WT5 
WT4 
WT5 
WT4 
WT9 
WT9 
ST3 
WT9 
ST7 
ST9 
ST9 
ST9 
ST9 
ST7 
ST7 

Predictions of final SV using EmpsA, a locally developed empirical model, were made 

for each site. As input, EmpsA uses components which determine the dHT, survival and 

BA for a particular stand. Components for these quantities are based on the Chapman-

Richards 3-parameter function (Brickell, 1969), Clutter and Jones difference form 

(Clutter and Jones, 1980), and a multiple regression model reported by Pienaar and 

Harrison (1989), respectively. Coefficients required for each of these functions are 

reported in Kotze (2000) and were developed using data sets from 335 PSPs over all 

physiographic regions. In order to make projections, these functional forms were 

converted to difference equations so that knowledge of tree height for a specific age can 

be used to project height to any given age. Final SV was calculated using predicted 
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dHT, survival and BA using a Max-Burkhart segmented polynomial function (Max and 

Burkhart, 1976). 

Two sets of EmpsA predictions are made, distinguished by the age of the observed data 

used to initialise the model: (1) using the first observed data (2-8 years), i.e. column 4 in 

Table 7.6 (EmpsAfirst), and (2) initialised using enumeration data at an age of 5 years 

(EmpsAenum)- The reason for amking this distinction is because empirical models are 

operationally initialised using enumeration data. 

Predictions of final SV across all sites were also made using 3-PG. The required 

weather data and site factors were collected in a fashion similar to that described in 

Sections 5.2 and 5.3. Since detailed information regarding soils and fertiliser application 

was not available, the FR was set at a constant value of 0.4. The initial biomass pools 

were derived using first observed estimates of SV as described in Section 5.4. Model 

runs were made for all sites until the last observation, and prediction duration varied 

between just under 2 years to 7 years in duration. 

3-PG accounted for 46% of the variation in observed SV across all 52 sites. Regression 

analysis across all these sites revealed two aberrant sites (Sites 44 and 46) where the 

predicted volume was double the corresponding observed data. These large SVs can be 

explained by the extraordinarily high observed mortality rates (50% of initial SPH). It is 

suspected that this low survival may be the result of drought. If these sites are omitted 

the agreement improves. Figure 7.3 shows predictions of SV for each site compared 

with corresponding observations. The agreement between 3-PG predictions and 

observed data (Figure 7.3a) is far better than predictions made with EmpsAfirst (Figure 

7.3b) with the latter exhibiting consistent model under-predictions. 

Wilmot (1982) suggests that the performance of models (and accuracy of predictions) 

can be evaluated and compared by calculating the root mean square error (RMSE). The 

RMSE can be statistically separated into the systematic (RMSES) and unsystematic 

(RMSEu) components. The RMSES quantifies the bias of the predicted volumes from 

the 1:1 relationship and the RMSEu describes the random variation of the observed data 
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from the predicted mean. A "good' model according to Wilmot (1982) will have a 

RMSEs that approaches zero and a RMSEu that should approximate the RMSE which 

itself should be low. 
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Figure 7.3. Comparison of predicted and observed final stand volume for predictions 
made using (a) 3-PG (A) and (b) empirical methods (A) across 50 PSP 
sites. One-to-one lines are shown as ( ) and ( ) are regression lines. 
Corresponding regression equations and RMSEs, RMSEu and RMSE are 
also shown. 

The RMSEs and RMSEu (Figure 7.3b) corresponding to the relationship between 

EmpsAfirst predictions and observed volume indicate a large degree of bias and error. 

Although a useful result (Figure 7.3b), the fashion in which EmpSA was applied is not 

how empirically models are generally applied in practice. Operationally, enumeration 

data would have been used to initialise EmpSA and predictions made over a shorter time 

period, which intuitively would be more accurate than predictions made, over an eight 

year period as done in the above example. 

EmpsA was initialised using enumeration data from 10 sites (Table 7.6, sites 7, 8, 9, 11, 

34, 35, 36, 40, 41 and 48), and predictions of final SV made. Figure 7.4 shows (a) 

predictions made when using first observations (EmpsAfirst as shown in Figure 7.3b), and 

(b) predictions made when using enumeration observations (EmpSAenum) for these 10 

sites. Despite the relatively large RMSE associated with both figures it is apparent that 
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the predictions made by EmpSAenum are more realistic and have less of an unsystematic 

error than does EmpsAfirst- The relatively larger RMSEs in Figure 7.4b can be explained 

by the climatic fluctuations experienced at several of the sites (see next) which 

EmpsAenum is unable to account for. 
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Figure 7.4. Predicted and observed stand volume for (a) predictions made when the 
empirical model (EmpsAfirst) is initialised using first observations, and (b) 
initialised using observations between 4 and 6 years of age (EmpSAenum)-
One-to-one lines are shown as (- -) and (—) are the regression lines. 
Corresponding regression equations and RMSEs, RMSEu and RMSE are 
also shown. 

For six sites of the 10 sites (i.e. sites 7, 8, 9, 35, 36 and 4) these same results are 

presented in Figure 7.5 as time-series showing successive model predictions as a 

function of stand age. These show annual predictions of SV made with 3-PG, EmpsAfirst 

and EmpsAenum, and observed SVs where available. Figures 7.5c-f shows that EmpSAfirst 

consistently under-predicts SV. 
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Figure 7.5. Time-series data showing observed volume data and predictions made using 
3-PG and empirical models for six sites of differing ages. Results shown are 
denoted as follows: (o) - observed data; (-A-) - 3-PG predictions; (-A-) -
EmpsAfirst predictions and ( ) predictions made using EmpsAenum when 
initialised using data of between 4 and 6 years of age. 
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In the examples shown, predictions by 3-PG are generally very similar to the observed 

data except for the site shown in Figure 7.5c. At this site the weather input data may not 

have been representative of the site conditions. The broken lines within each figure are 

those predictions made using EmpSAenum, and in certain cases (e.g. Figure 7.5a and d), 

these predictions track observed data in a far more realistic fashion than do those made 

with EmpsAfirst- The observed growth rate shown in Figure 7.5d is relatively constant. 

This indicates growing conditions were non-stressful, and explains the accurate 

empirical predictions. 

It is important to note that even though 3-PG is initialised at the date of the first 

observations, its predictions are closer to the observed volumes than are volumes 

predicted using the empirical model initialised using enumeration data. Where drought 

conditions are prevalent (e.g. Figure 7.5e and f) or wetter than normal periods occur 

(e.g. Figures 7.5b and c) empirical predictions are not accurate as they cannot account 

for fluctuating weather patterns and hence the variability of on site resources. 

7.5 CONCLUSIONS 

The objective of this chapter was to explore the practicality of using 3-PG as a strategic 

and operational tool. Results have shown that: 

• Estimates of potential site productivity are consistent with empirically based 

estimates. Furthermore, 3-PG was able to make additional estimates of 

productivity (i.e. net primary production (NPP) and radiation use efficiency 

(GE)) that empirical models cannot make. 

• 3-PG can simulate growth responses to different scenarios (or "what if 

questions), such as access to groundwater (GW) or conditions for nutrients 

are non-limiting. 

• 3-PG is able to explore site constraints which limit growth, and how these 

limitations change on a seasonal basis. 
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• 3-PG makes more realistic predictions of tree growth than empirical models 

do, especially under fluctuating weather conditions (see Sections 7.3 and 

6.4.2). 

• These outcomes demonstrate that 3-PG could be a useful tool for operational 

and strategic applications. It is suspected that this model will be used for 

research purposes (i.e. in understanding the growth dynamics of plantations) 

and as a complement to existing empirical techniques (see Section 8.4). 
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CHAPTER 8 

FINAL DISCUSSION AND CONCLUSIONS 

The 3-PG model has been widely tested and validated, and used for numerous 

applications involving several tree species, within a range of countries and locations. 

Validation studies have demonstrated that 3-PG is both robust and reliable, performing 

within an acceptable degree of confidence to predict growth in areas where trees have 

been grown (e.g. Sands and Landsberg, 2002; Landsberg et al, 2003; Almeida et. al, 

2004b; Dye et. al, 2004). The potential usefulness of 3-PG has been shown at Aracruz 

Celulose, Brazil where it is currently being implemented as the central component of a 

new GIS-based management system (Almeida et al, 2003; Almeida et al., 2004a; 

Almeida et al., 2004b). Locally, the model has also been used to predict growth and 

water use of Pinus Patula (Dye, 2001) and Eucalyptus plantations (Dye et al., 2004). 

Other applications include spatial applications of 3-PG using remotely sensed inputs 

and GIS (Coops et al., 1998, Coops et al., 2001; Coops and Waring, 2001a, Coops and 

Waring, 2001b; Tickle et al, 2001 and White et al, 2000). 

Using these applications as a reference, the use of 3-PG in South Africa was proposed. 

The primary aims of this project were to see whether it is possible to adapt 3-PG to 

predict growth and yield (G&Y) for E. grandis under South African conditions, and to 

test whether model predictions are biologically reasonable and accurate in relation to 

observed data. Using a previously developed parameter set for E. grandis the 

performance of the model was examined using data from 31 ICFR E. grandis research 

trials within Southern Africa (see Section 2.3.4). Main findings showed that stand 

volume (SV) is under-predicted on medium (25 to 45 m3 ha"1 yr"1) and high (>45 m3 ha"1 

yr"1) productivity sites, and over-predicted on the lower (<25 m3 ha"1 yr"1) productivity 

sites. Although predicted and observed volumes are highly correlated, leaf area index 

(LAI) greatly exceeded values normally observed over the rotation, thus suggesting the 

model gave the "right result but for the wrong reasons". 

These findings led to the formulation of a set of objectives to help develop the 3-PG 

model for use in South Africa (see Section 1.2). This thesis addressed these objectives 
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and answered various questions concerning the practical application of 3-PG in South 

Africa. Only the major conclusions are discussed below; more specific discussions are 

found in the relevant sections of each of the earlier Chapters. 

8.1 IDENTIFYING KEY MODEL PARAMETERS (OBJECTIVE 1) 

The sensitivity of predicted SV and LAI to the values of the species-specific parameters 

in 3-PG was examined in Chapter 3. These parameters tested characterise allometric 

relationships and biomass partitioning, canopy structure, branch and bark fractions, 

litterfall, canopy conductance and the effects of temperature, soil water and site 

nutrition on canopy quantum efficiency. The sensitivity of SV and LAI to variations in 

site and climatic inputs required by 3-PG was also examined (see Section 3.2.4). These 

analyses enabled the development of three distinct parameter sensitivity classes (see 

Sections 3.3.2 and 3.4.1): insensitive parameters (i.e. those that can be varied widely 

without affecting the outputs studied), sensitive parameters (i.e. those whose value 

strongly affects the outputs, and non-linear parameters (i.e. those for which the outputs 

depend in a non-linear manner on the parameter value). Because this study considered 

the variation of sensitivity of each parameter across a wide range of sites, it also 

identified potential site-dependence of parameter sensitivity (see Sections 3.3.2 and 

3.4.4). 

Results indicated that values currently assigned to insensitive parameters, with the 

possible exception of T^, can be used in any subsequent re-parameterisation of 3-PG 

for E. grandis. However, closer attention needs to be paid to those parameters with 

moderate sensitivity and especially to those with the highest ranking. In addition, 

attention needs to be paid to non-linear parameters with low to moderate sensitivity, as a 

change in their value could make an insensitive parameter sensitive, and conversely. 

Parameters of moderate sensitivity, but with strong site-dependence also need close 

attention if the parameter set is to be applied across a wide range of site conditions. In 

summary, the following parameters require accurate determination because they have a 

moderate or high sensitivity ranking for SV or LAl:fm as, its, VRn, VRX, aCx, P*, Y, gCx, 

YFX, &I and P20 (see Section 3.3.2). In addition Tmax and Top, require close attention 

because they are highly non-linear and have a moderate sensitivity ranking. 
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8.2 PARAMETERISATION AND INITIALISATION OF 3-PG 

(OBJECTIVE 2) 

Minimum data requirements for the parameterisation and initialisation of 3-PG are 

covered in Chapters 4 and 5. Conventional methods used for the parameterisation of 

models (see Section 4.1), specifically 3-PG, are reflected upon. An automated parameter 

estimation technique was examined and used for the estimation of selected parameters. 

Species-specific parameters were categorised according to data source estimation and 

sensitivity classes (see Section 4.2). Data source class is based on the source of data 

used to estimate the parameters, namely: biomass harvested data, field data, 

mensuration data, physiological data, and data from the literature. Estimation class 

provides an indication of how parameters can be assigned values, and comprise default, 

observed and estimated classes. Sensitivity class indicates the broad sensitivity of model 

outputs to parameters, i.e. low, medium and high sensitivity. Guidelines for the 

parameterisation of 3-PG were developed on the basis of results from this parameter 

sensitivity analysis and published work for E. globulus (Sands and Landsberg, 2002). 

Within Chapter 4 a distinction is made between parameter assignment and parameter 

estimation. Parameters describing allometric and age-dependent relationships were 

assigned values using observed data from biomass harvests. Critical parameters that 

could not be directly assigned using observed data were the ratio of foliage to stem 

allocation {i.e. p2 and P20), allocation of net primary production (NPP) to roots {TJRX and 

f?Rn), optimum temperature for growth (Topt) and maximum canopy quantum efficiency 

(aCx). These were estimated using parameter ESTimation (PEST, see Sections 4.2.2 and 

4.3.2), by fitting model output to corresponding observed growth data. However, since 

no root data were available, default values were used for TJRX and rjRn. A default value 

for Topt was also used because of its high correlation with acx- Where parameter values 

could not be assigned directly from observed data, either because suitable data were 

unavailable, or unnecessary due to low sensitivity ratings, default values were taken 

from Landsberg and Waring (1997), Sands and Landsberg (2002) and Gush (1999). 
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As well as species-specific parameter values, mandatory inputs required by 3-PG 

include weather data, site-specific factors such as site fertility (FR) and physical 

properties of the soils, and stand initialisation data (see Section 5.1). Objective 

techniques to determine these site-specific factors and the initial values for the biomass 

pools were proposed in Chapter 5. Most of these data are readily available for sites 

where experimental trials exist, or where monitoring networks are in place. However, 

this is the exception rather than the rule, so alternative data and information sources are 

required. 

Ideally, initial values for the biomass pools should be assigned using observed data. In 

the absence thereof other methods were developed (see Sections 5.4 and 5.4.1), based 

on a series of questions and actions dependent on what observed data are available. 

These include assigning values for stem mass using the allometric relationship with 

observed quadratic mean diameter (qDBH), or as given by an empirical function of 

basic stand variables or site index. Initial foliage biomass is inferred using an age-

dependent relationship for specific leaf area (SLA) to convert typical values for LAI 

into foliage mass (see Section 5.4.2). Initial root biomass is determined as a fraction of 

the aboveground biomass (see Section 5.4.2). Techniques developed to empirically 

determine qDBH were tested using observed time-series for SV, stems per hectare 

(SPH), dominant height (dHT), qDBH and site index at five years of age (SI5) over 48 

sites planted to E. grandis. Results showed no significant differences between the three 

methods of prediction (see Section 5.4.1). This result is very promising because it 

suggests that any one of the methods can be used to predict qDBH adequately. 

The need for accurate weather inputs (especially monthly rainfall (R)) and physical 

properties (especially soil texture, maximum available soil water (6Sx) and FR) of the 

sites being modelled is emphasised. This is especially true if 3-PG is to be used to make 

predictions in response to climatic fluctuations. Actual observed data are therefore used 

where possible. Where such data are not available alternate data or surrogates are 

suggested (see Sections 5.1, 5.2 and 5.3). 
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8.3 VALIDATION OF 3-PG IN SOUTH AFRICA (OBJECTIVE 3) 

Using the new 3-PG parameter set developed for E. grandis (Chapter 4) and methods to 

assign values to the mandatory input data (Chapter 5), the performance of 3-PG over a 

range of sites in South Africa was tested (Chapter 6). The importance of good quality 

observed data for model testing is emphasised. Despite a general shortage of quality 

data, the best use of existing ICFR data was made for four simple tests of the 

performance of 3-PG by comparing predicted versus observed SV using: (1) the 

parameter set developed by Gush (1999), compared with the newer E. grandis 

parameter set (see Sections 2.3.4 and 6.2); (2) the new parameter set and data sets 

independent of those used in the model parameterisation (see Section 6.3); (3) observed 

time-series data (see Section 6.4); and (4) data from a fertilised and irrigated experiment 

(see Section 6.5). 

These tests showed that 3-PG predictions are relatively consistent with observed stand 

data. Analyses performed using time-series data showed model predictions accurately 

tracked observed growth in response to erratic and fluctuating weather conditions. 

Results from the initial model validation (see Section 2.3.4) showed production on high 

and low productivity sites was under-and over-predicted, respectively. Further results 

presented here (see Sections 6.3 and 6.4) show a similar, but less marked trend {i.e. 

over-and under-predictions are not as extreme), and individual biases are less than those 

from predictions made using the parameter set of Gush (1999). 

Detailed observed time-series data from several sites enabled the biological realism of 

3-PG to be examined. Results from this test generally showed that 3-PG can reflect 

reality reasonably accurately (see Sections 6.4.2 and 6.4.3). However, it is noted that 

some weather input data have a degree of error attached (see Sections 5.2 and 5.4). For 

instance, solar radiation (SR) data are long-term means and they would not reflect real 

conditions that exist during wet periods and dry periods. Similarly, there is no term in 3-

PG that accounts for reflection within the canopy. Furthermore, the timing of rainfall 

events during a month is not accounted for by the actual R data. If long-term mean data 

are used as a surrogate for actual data then specific rainfall events will not be taken into 

account. 
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8.4 SOME APPLICATIONS OF 3-PG IN SOUTH AFRICA 

(OBJECTIVE 4) 

It is believed that 3-PG can potentially play a useful role within the South African 

forestry industry, both as an operational and a strategic tool. Strategic applications may 

include the: (1) prediction of potential productivity on a site-by-site basis; (2) broad-

scale productivity estimates of existing stands based on remote sensing and the spatial 

application of 3-PG; (3) identification of production constraints; and (4) estimation of C 

fluxes to help address sustainability issues. Operationally, 3-PG could complement 

empirically-based models (EBMs) or be used in conjunction with them as a hybridised 

product. EBMs are currently used to predict final standing volume for scheduling 

harvest operations. 

Three of these potential applications of 3-PG were tested in this thesis. These are the 

determination of potential site productivity (see Section 7.2); the identification of 

factors constraining growth (see Section 7.3), and the use of 3-PG to predict stand 

volume at the end of the rotation (see Section 7.4). The results of using 3-PG for growth 

projection were compared with corresponding predictions made with locally developed, 

empirical models routinely used for growth projection. These applications were 

presented within the framework of the forestry site classification (FSC). Results showed 

that: 

• 3-PG is able to make estimates of growth trends that are consistent with those 

used within the FSC. Furthermore, estimates other than potential mean annual 

increment (MAI) or SV were made (i.e. net primary production (NPP) and 

radiation use efficiency (GE)). This shows the considerable potential 3-PG 

has for strategic planning by the forest industry (i.e. projected wood supplies 

etc) and in research planning (refining existing site classifications). The 

model could be useful to predict growth in various areas where E. grandis is 

not grown, to assist in future decision making. Once 3-PG is parameterised 

for a range of species it may be useful for site-species matching. 

• 3-PG can identify growth constraints on a site-by-site basis and distinguish 

between them. 3-PG was able to identify environmental and site limitations to 

158 



plantation growth, and how they vary in space and time. These results 

together with predictions of site productivity demonstrate the potential for 3-

PG to be used to improve existing forest site classifications. 

• The usefulness of 3-PG to predict volume at the end of the rotation (i.e. 

growth projection) was also tested. This exercise was in the form of a study 

where output from an empirical model were compared with predictions by 3-

PG. Results showed that although the empirical models made accurate 

predictions of volume under static climatic conditions, under fluctuating 

weather conditions empirical estimates of volume were less accurate than 

those made with 3-PG. 3-PG can therefore be used operationally with 

minimum input data to predict growth using enumeration data. This is useful 

in saving time and cutting costs. 

8.5 RECOMMENDATIONS FOR FUTURE RESEARCH 

During this project many ideas came to mind regarding the manner in which 3-PG 

simulates processes and how these could be altered, along with modifications that could 

be made to improve predictions or provide additional outputs. 3-PG greatly simplifies 

complex processes and focuses on tree and stand growth development. For these 

reasons 3-PG is well suited for strategic and operational applications. Too many 

modifications would add more parameters making the model more complex and less 

desirable for use. The interested reader is referred to Almeida (2003) who outlines some 

modifications to 3-PG and recommendations for future research. Additional 

recommendations are presented as follows: 

• It would be useful to consider how the ratio of net primary production and 

gross primary production (NPP/GPP) declines with age. This is not 

unreasonable as bigger trees have a higher proportion of respiring, non-

photosynthetic tissue, than small trees. Allowing NPP/GPP to decline with 

age (rather than a fixed ratio used in 3-PG) may allow for the decline in 

production shown in observed data that is not predicted by 3-PG. 

• A measurement protocol should be developed consistent with the guidelines 

pertaining to minimum data requirements for parameterising and testing the 
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model. Such a protocol will identify those field, physiological, etc, data that 

should be collected, what variables should be measured {e.g. LAI, DBH, HT), 

and the frequency with which this should be done. This is especially 

important if 3-PG is to be parameterised for other commercial species. 

• Through the application of techniques used to assign and estimate model 

parameters, together with experience gained from the parameterisation of 3-

PG, a universal "shortcut" method to parameterise 3-PG for novel species 

needs to be developed. Such a method will allow any user of the model to 

develop a set of parameters for any new species. 

• It would be useful to compare predictions of stand production using the 

parameter set developed here and those developed for E. globulus (Sands and 

Landsberg, 2002), E. grandis hybrids (Almeida et al, 2004b) and E. grandis 

x urophylla (Stape et al, 2004). Such a study would test whether 3-PG is able 

to distinguish between species and whether the differences are biologically 

reasonable. Furthermore, results would give an appreciation of why species 

perform they way they do. 

• An objective, quantitative method to assign values to the site fertility rating 

(FR) is extremely important. Such a method would require a comprehensive 

review of existing nutritional trials in South Africa, in particular the 

relationship between nutritional response and physiological variables. Using 

ideas presented in see Section 5.3.2, and given observed data over a range of 

sites, it should be possible to develop an objective method to determine FR 

for South African conditions. 

• It would also be instructive to test the possibility of linking a nutritional 

model such as SNAP (Paul et al, 2002) to 3-PG. 

• Additional tests of the use of 3-PG to predict potential site productivity and 

growth constraints are recommended for all site types included in the forest 

site classification. This would allow for the modification of site classes or the 

development of a more rational approach than is currently used. Such a study 

will identify the true potential and usefulness of the 3-PG model. 

• Use 3-PGpjs (and the parameter set developed here) to verify (or ground 

truth) predictions made using the spatial version of 3-PG (3-PGS - not 
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covered in this thesis). This would be useful to test the accuracy of 3-PGS 

and identify gaps in our knowledge. 

• Evaluate the extent to which 3-PG can account for climate change and use 

this adaptation to predict how species spatial range and productivity may 

change in response to global warming. 

• Consider hybridising 3-PG with existing empirical models. 

8.6 CONCLUSIONS 

The challenges for this thesis were to see whether it was possible to adapt 3-PG to 

predict growth and yield of E. grandis under South African conditions, test that model 

predictions were consistent with observed growth data and were biologically 

reasonable, and to assess the practicality of using 3-PG as either a strategic or 

operational tool. These challenges were met by realising all the objectives (see Section 

1.2). Results demonstrated that 3-PG is a useful tool to understand tree growth 

dynamics, to interpret between-site productivity differences, and to identify constraints 

which limit growth and how these change seasonally. It was also shown that 3-PG can 

be used to complement empirical models as an aid to forest planning and scheduling of 

harvest operations. Practically, 3-PG was also shown to be a useful strategic and 

operational tool. 

An appreciation of the limitations of 3-PG, and of the minimum input data requirements 

for its use, was achieved. These led to the development of a prescription for the use of 

3-PG in South African conditions. If it is accepted that 3-PG and the current E. grandis 

parameter set are to be used only in areas for which the model has been tested then it 

can be said that the model is working reasonably well, and within acceptable ranges. 

However, and despite the fact that the model is generic, if 3-PG is to be used in other 

countries within Africa then it will need to undergo additional, i.e. local, validation 

tests. 

The use of process-based models (PBMs) in general, and 3-PG in particular, needs to be 

"championed" to the South African forest industry (see Esprey and Smith, 2005). This 

is necessary for two reasons. Firstly, the model and the manner with which it describes 



physiological processes of growth need to be explained in layman's terms. This will 

demonstrate how and why a PBM can work better in a fluctuating environment than do 

empirically based models. Secondly the comparison between 3-PG and the local 

empirical models needs to be presented as an example of how 3-PG can be applied on 

an operational basis. It is accepted that much convincing is still required. 

Several spin-offs from this study were also achieved. These are the development of a set 

of guidelines useful for the parameterisation of 3-PG, the appraisal and use of 

automated parameter estimation techniques, and objective methods to initialise the 3-PG 

model. 

The primary aim of this project was to become fully acquainted with 3-PG. This 

conscious effort to understand the model and the physiological processes represented, 

resulted in a greater appreciation of 3-PG. Finally, this project has also been hugely 

beneficial in that it has lead to a greater understanding and appreciation of the role 

physiological processes play in determining growth. This would not have been possible 

without the use of a 3-PG. 
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APPENDICES 1-5 



APPENDIX 1 

Description of 3-PG parameters, their symbols 

and 3PGpjs names 



Description of parameter Symbol 3PGPJS 
name 

Units 

Biomass partitioning and turnover 

Allometric relationships & partitioning 

Ratio of foliage:stem partitioning at B = 2 cm 
Ratio of foliagerstem partitioning at B = 20 cm 
Constant in stem mass v diam. relationship 
Power in stem mass v diam. relationship 
Maximum fraction of NPP to roots 
Minimum fraction of NPP to roots 

Litter/all & root turnover 

Litterfall rate at t = 0 
Litterfall rate for mature stands 
Age at which litterfall rate has median value 
Average monthly root turnover rate 

Growth modifiers 

Temperature modifier 

Minimum temperature for growth 
Optimum temperature for growth 
Maximum temperature for growth 

Frost modifier 

Number of days production lost for each frost day 

Fertility modifiers 

Value of m when FR = 0 
Value of/Jv when FR = 0 
Power of (\-FR) in fN 

VPD modifier 

Defines stomatal response to VPD 

Soil water modifier 

Moisture ratio deficit which gives_/e = 0.5 
Power of moisture ratio deficit in^e 

Age modifier 

Maximum stand age used to computer relative age 
Power of relative age infage 

Relative age to givefage = 0.5 

Conductance 
Maximum canopy conductance 
Canopy LAI for maximum canopy conductance 
Canopy boundary layer conductance 

Stem mortality and self-thinning 
Seedling mortality rate (t = 0) 
Mortality rate for older stands (large t) 
Age at which y ^ - '/KYAO+YM) 
Shape of mortality response 
Maximum stem mass per tree at 1000 trees/ha 
Power in self thinning law 

Fractions of foliage, root and stem biomass pools per tree on each 
dying tree 

P2 

P20 

as 

"s 
T?Rx 

r?Rn 

»D 

n* 
tyF 

YR 

pFS2 
pFS20 

stemConst 
stemPower 

pRx 
pRn 

gammaFO 
gammaFI 
tgammaF 
Rttover 

1 opt 

Tmin 
Topt 
Tmax 

kF 

month 
month"1 

month 
month"1 

°C 
°C 
°C 

days 

m0 

fm 
nfN 

kD 

ce 
ng 

tx 
Mage 
rage 

gCx 

Lex 
gB 

YNO 

YNI 

tyN 

HyN 

w&iooo 
nN 

mF 

mR 

ms 

mO 

mo 
fNn 

CoeffCond 

SWconst 
SWpower 

MaxAge 
nAge 
rAge 

MaxCond 
LAIgcx 
BLcond 

gammaNO 
gammaNx 
tgammaN 
ngammaN 

wSxIOOO 
thinPower 

mF 
mR 
mS 

-
-
-

mbar 

. 

-

yr 
-
-

m s"1 

m2m"2 

m s" 

yr"1 

yr"1 

yr 
-

kg/tree 
-
-
-
-



Description of parameter Symbol 3PGPJS 
name 

Units 

Canopy structure and processes 

Specific leaf area 

Specific leaf area at stand age 0 
Specific leaf area for mature aged stands 
Age at which specific leaf area = Vi{<3a+ax) 

Rainfall interception 

Maximum fraction of rainfall intercepted by canopy 

LAI for maximum rainfall interception 

Light interception, production and respiration 

Extinction coefficient for PAR absorption by canopy 
Age at full canopy cover 
Maximum canopy quantum efficiency 
Ratio NPP/GPP 
Wood and stand properties 

Branch & bark fraction 
Branch and bark fraction at stand age 0 
Branch and bark fraction for mature aged stands 

Age at which PBB = !/2(PBBO+/>BBI) 

Basic density 
Minimum basic density — for young trees 
Maximum basic density - for older trees 
Age at which p = Vi density of old and young trees 

Stem height allometric relationship 

Constant in stem height relationship 
Power of DBH in stem height relationship 
Power of stocking in stem height relationship 

Stem volume allometric relationship 

Constant in stem volume relationship 
Power of DBH in stem volume relationship 
Power of stocking in stem volume relationship 

Conversion factors 

Intercept of net radiation v solar radiation relationship 
Slope of net radiation v solar radiation relationship 
Molecular weight of dry matter 
Conversion of solar radiation to PAR 

Ob 
01 

k 

to 
OCX 

Y 

SLAO 
SLA1 
tSLA 

Maxlntcptn 
LAImax-lntcptn 

k 
fullCanAge 

alpha 
Y 

m2kg-' 

m ' k g 1 

yr 

2 -2 
m m 

yr 

PBBO 

PBB\ 

tBB 

A) 
A 

'P 

" H B 

«HN 

*v 
»VB 

«VN 

Qa 
Qb 

fracBBO 
fracBBI 

tBB 

rhoMax 
tRho 

aH 
nHB 
nHN 

aV 
nVB 
nVN 

Qa 
Qb 

gDMmol 
molPAR MJ 

F 

tm"-
tm"3 

yr 

Wm" 

g mol" 
mol MJ -l 



APPENDIX 2 

Names and description of 3PGpjs output variables 



Description of output variables Symbol 3PGPJS name Units 

Site and management attributes 

Soil class 
Fertility rating 
Maximum available soil water 

Minimum available soil water 

Climatic factors 

Day length (sunrise to sunset) 
Mean number of frost days per month 
Mean daily incident solar radiation 
Mean daily temperature 
Mean day-time VPD 
Mean monthly precipitation 
Applied irrigation 

Stand attributes 

Stand age 
Stand stocking 
Stand basal area 
Stand volume excluding branch & bark 
Stand-based mean DBH 
Mean annual volume increment 
Peak MAI of stand to the current stand age 
Stand age at which MAI peaked 
Long-term average stem biomass growth rate 

Canopy attributes 

Specific leaf area 
Fraction of ground area covered by canopy 
Canopy LAI 
Peak canopy LAI up to the current stand age 
Stand age at which LAI peaked 

Biomass pools 

Foliage biomass 
Root biomass 
Stem biomass, including branches and bark 
Total biomass 
Mean stem biomass per tree 
Basic density 
Fraction of stem biomass as branch and bark 
Accumulated litter fall 

Growth modifiers 

Age-dependent modifier 

VPD-dependent modifier 

Temperature-dependent modifier 

Frost-dependent modifier 

Soil water-dependent modifier 

Nutrition-dependent modifier 

FR 

®sx 

6sn 

h 
dF 

Q 
Ta 

D 

RP 

Ri 

t 

N 

A 

V 

B 

cr 

£ 
L 

W, 

wR 
Ws 

ws 

P 
PBB 

Jage 

fo 
ft 
fF 

fe 
fN 

SoilClass 

FR 

maxASW 

minASW 

DayLength 

FrostDays 

SolarRad 

Tav 

VPD 

Rain 

Irrig 

StandAge 

StemNo 

BasArea 

StandVol 

avDBH 

MAI 

MAlx 

ageMAlx 

ItStemGR 

SLA 

CanCover 

LAI 

LAlx 

ageLAlx 

WF 

WR 

WS 

TotalW 

AvStemMass 

Density 

fracBB 
TotalLitter 

fAge 

fVPD 

/Temp 

fFrost 

fSW 

fNutr 

-
-

mm 

mm 

sd"1 

d month"1 

MJ m"2 d_1 

°C 
mbar 

mm month"1 

mm month"1 

yr 
trees ha"1 

m2 ha"1 

m3 ha"1 

cm 

m3 ha"1 yr"1 

m3 ha"1 yr"1 

yr 
kg ha"1 yr"1 

m2kg"' 

-
m2m"2 

m2m"2 

yr 

tDM ha"1 

tDM ha" 

tDM ha' 

tDMha"' 

kgDM/tree 

tDM m"3 

tDM ha 

_ 

-
-
-
-
. 



Description of output variables Symbol 3PGPJS name Units 

Physiological modifier of canopy conductance 

Biomass production and allocation 

Gross primary production in current period 
Net primary production in current period 
Total solar radiation intercepted by canopy 
Canopy quantum efficiency after modifiers 
Light utilisation efficiency based on total biomass 
Light utilisation efficiency based on stem biomass 
Stem volume increment in current period 
FR modifier of root biomass allocation 
Fraction of NPP allocated to roots 
Fraction of NPP allocated to stems 
Fraction of NPP allocated to foliage 
Ratio of foliage to stem biomass allocation 
Current leaf litterfall rate 
Litter fall in current period 

Stem mortality 

Max. mean tree stem mass at current stocking 
Density independent mortality rate 
Number of stems dying in current period 

Water use 

"Supplementar irrigation to maintain 0S > Qsn 

Fraction of rainfall intercepted by canopy 
Rainfall intercepted by canopy in current period 
Canopy conductance 
Water use efficiency 
Evapotranspiration rate in current period 
Monthly transpiration rate in current period 
Available soil water 

PhysMod 

p, 

Pn 

<*C 

E 

£s 

m 

r\t 

% 
T\F 

PFS 

IF 

*>Sx 

YN 

h 

gc 

CO 

ET 

e, 

GPP 

NPP 

Radlnt 

alphaC 

Epsilon 

StemEpsilon 

CVI 

m 

pR 

pS 

PF 
pFS 

gammaF 

Utter 

wSmax 

gammaN 

Mortality 

suplrrig 

fRainlnt 

Rainlnt 

CanCond 

WUE 

EvapTransp 

Transp 

ASW 

tDM ha"1 

tDM ha" 

MJ m"2 month" 

mol mol"1 

gDM MJ"' 

gDM MJ"' 

m3 ha"1 

-
-
-
-
-

month"1 

tDM ha 

kg tree"1 

month"1 

trees ha"1 

mm 

-
mm 

m s"1 

gDM mm"1 

mm 

mm 

mm 



APPENDIX 3 

Sands, P.J. and Landsberg, J.J. (2002). Parameterisation of 3-

PG for plantation grown Eucalyptus globulus. Forest Ecology 

and Management. 163: 273-292. 



APPENDIX 4 

Esprey, L.J., Sands, P.J. and Smith, C.W. 2004. 

Understanding 3-PGPJS using a sensitivity analysis. Forest 

Ecology and Management 193:235-250. 



APPENDIX 5 

Campion. J.M., Esprey, L.J. and Scholes, M.C. (2005). 

Application of the 3-PG model to a Eucalyptus grandis stand 

subjected to varying levels of water and nutritional 

constraints. Southern African Forestry Journal. 203: 3-14. 





Please note that appendices 3, 4 and 5 have inadvertently been omitted from 
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