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Abstract

The smallest Fischer sporadic simple group Fi22 is generated by a conjugacy class

D of 3510 involutions called 3-transpositions such that the product of any noncom

muting pair is an element of order 3. In Fi22 there are exactly three conjugacy classes

of involutions denoted by D, T and N and represented in the ATLAS [26] by 2A, 2B

and 2C, containing 3510, 1216215 and 36486450 elements with corresponding cen

tralizers 2·U(6,2), (2 x 2~+8:U(4,2)):2 and 25+8:(83 X 32:4) respectively. In Fi22 , we

have Npi22(26) = 26:8P(6,2), where 26 is a 2B-pure group, and thus the maximal

subgroup 26:8P(6, 2) of Fi22 is a 2-local subgroup.

The full automorphism group of Fi22 is denoted by Fi22 . In Fi22 , there are

three involutory outer automorphisms of Fi22 which are denoted bye, f and () and

represented in the ATLAS [26] by 2D, 2F and 2E respectively. We obtain that

Fi22 = Fi22 :(e) and it can be easily shown that Fi22 = Fi22 :(e) = Fi22 :(f) = Fi22 :(()).

As e, f and () act on Fi22 , then we obtain the subgroups CPi22 (e) rv 0+(8,2):83 ,

CPi22 (f) rv 8P(6,2) x 2 and CPi22 (()) rv 26:0-(6,2) of Fi22 which are generated by

CD(e), Cn(f) and CD(()) respectively.

In this thesis we are concerned with the construction of the character tables of

certain groups which are associated with Fi22 and its automorphism group Fi22 . We

use the technique of the Fischer-Clifford matrices to construct the character tables of

these groups, which are split extensions. These groups are 26:8P(6, 2), 26:0-(6,2)

and 27:8P(6, 2). The study of the group 26:8P(6, 2) is essential, as the other groups

studied in this thesis are related to it. The groups 8P(6,2) and 0- (6,2) of 6 x 6

matrices over GF(2), played crucial roles in our construction of the group 8P(6, 2) as

a group of 7 x 7 matrices over GF(2) which would act on 27 . Also the character table

of 25:86 , the affine subgroup of 8P(6, 2) fixing a nonzero vector in 26 , is constructed

by using the technique of the Fischer-Clifford matrices. This character table is used
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in the construction of the character table 26:SP(6, 2).

The character tables computed in this thesis have been accepted for incorporation

into GAP and will be available in the latest version of GAP.

-"
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Notation and conventions

Throughout this thesis all groups will be assumed to be finite, unless otherwise

stated. We will use the notation and terminology from the ATLAS [26] and [68].

N

Z

Q

R

C

natural numbers

integers

rational numbers

real numbers

complex numbers

G, N, H, K groups

le

H5:G

Hf'.JG

F

F*

(x, y)

N·G

N:G

hg

nX

o(g)
Ge(g)

the identity element of G

H is a subgroup of G

H is isomorphic to G

a field

F - {O}

the subgroup generated by x and y

an extention of N by G

a split extention of N by G

conjugation of h by 9

a general conjugacy class of G with representatives of order n

g1 is conjugate to g2

order of 9 E G

the centralizer of 9 in G



[g]

Nc(H)

Hg

X,Y,n

lrr(G)

lc

X(GIH)

XH
'l/JC

na, nb,

(Xi, Xj)

dim(V)

GF(q)

V(n, q)

SP(2n, q)

0+(2n, q)

0-(2n, q)

0-(6,2)

a conjugacy class of G with representative 9

the normalizer of the subgroup H in G

the right coset of H in G

sets

the cardinality of the set n
cycle structure of a permutation

the set of irreducible characters of G

the identity character of G

the permutation character of G on H

the restriction of the character X of G to the subgroup H

the induction of the character 'l/J of subgroup H to G

an irreducible character of G of degree n

the inner product of the characters Xi and Xj

the dimension of a vector space V

diheral group of order 2n

the symmetric group on n symbols

the Galois field of q elements

a vector space of dimension n over GF (q)

symplectic group of dimension 2n over GF(q)

the full orthogonal group leaving the form f+ on V = V (2n, q)
invariant

the full orthogonal group leaving the form f- on V = V(2n, q)
invariant

the full orthogonal group (simple) of dimension 8 over GF(2),
10+(8,2)1 = 212 X 35 X 52 X 7

the full orthogonal group of dimension 6 over GF(2),

10-(6,2)1 = 27
X 34 X 5, ATLAS [26]: U(4,2):2

an elementary abelian group of order 2n

vu
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Chapter 1

Introduction

Let D be a conjugacy class of involutions such that the product of any noncommuting

pair of elements of D has order 3. Elements of D are called 3-transpositions. A

group which is generated by the conjugacy class D of 3-transpositions is called a 3

transposition group and subgroups generated by elements of D are called D-subgroups.

B. Fischer in [39] introduced and studied the 3-transpQsition groups. Fischer classified

all finite 3-transposition groups with no non-trivial normal soluble subgroups. In the

process of classifying the 3-transposition groups, Fischer discovered three new groups

Fi22 , Fi 23 and Fi24 . The conjugacy class D is unique in each of the three groups

and these groups act as rank-3 permutation groups on D by conjugation. In each

of these groups there is a maximal set L of pairwise commuting elements of D with

lengths 22, 23 and 24 respectively. The elements of L are said to form a basic set

of transpositions. The subgroup generated by the basic set of transpositions is an

elementary abelian group. For more information on 3-transposition groups and D

subgroups, readers are referred to [3], [28], [34], [39], [40], [84], [87] and many other

relevant sources.

In Fi 22 there are exactly three conjugacy classes of involutions denoted by D,

T and N and represented in the ATLAS [26] by 2A, 2B and 2C, containing 3510,

1216215 and 36486450 elements respectively. The centralizers of elements correspond

ing to these conjugacy classes are 2·U(6, 2), (2 x 2~+8:U(4, 2)):2 and 25+8 :(83 x 32:4)

respectively. The 3510 involutions in D = 2A are the 3-transpositions of Fi22 . The 22

1



2 CHAPTER 1. INTRODUCTION

basic transpositions of D in Fi22 generate an elementary abelian group (L) of order

210 whose normalizer in Fi 22 is 21O :M22 . Under the action of 21O:M22 on D, we have

three orbits D 1 , D2 and D3 such that

(i) D 1 = L contains the 22 basic transpositions which generate 210.

(ii) D 2 contains 25 x 77 = 2464 transpositions each commuting with just one hexad

of the basic transpositions.

(iii) D3 contains 210 = 1024 transpositions which commute with none of the basic

transpositions.

The conjugacy class D of 3510 involutions in Fi22 generates Fi22 . The group

NFi22 ( (L)) = 210:M22 is a maximal subgroup of Fi22 and its automorphism group is

21O:M22 = 210:M22 :2 which is a maximal subgroup of Fi22 . The character tables of

210:M22 and 210:M22 were constructed by Moori in [80] and [81]. For more information

on Fi22 , see [3], [25], [33], [71], [66], [83], [85], [86], [88], [100], [118] and many other

relevant sources.

Theorem 1.0.1 The simple group Fi22 has exactly 14 conjugacy classes of rnaximal

subgroups as follows:

2·U(6,2)

0+(8,2):83
26:8P(6, 2)
83 X U(4,3):2
25+8 :(83 X A6 )

810 (two classes)

0(7,3) (two classes)

21O'M. 22
(2 X 2~+8:U(4,2) ):2
2F4 (2)'
3~+6:23+4:32:2

M 12

Proof This is part(i) in the Main Theorem of [71]. 0

From the work of [119], we obtain that Fi22 has an outer automorphism group

of order 2. The full automorphism group of Fi22 is denoted by Fi22 . In Fi22 , there

are three involutoryouter automorphisms of Fi22 which are denoted bye, f and B
and represented in the ATLAS [26] by 2D, 2F and 2E respectively. We obtain that

Fi22 = Fi22 :(e) and it can be easily shown that

Fi 22 = Fi22 :(e) = Fi22 :(f) = Fi 22 :(B)
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As e, ! and B act on Fi22 , then we obtain the subgroups CFi22 (e) rv 0+(8,2):83,

CFi22 (!) rv 8P(6,2) x 2 and CFi22 (B) rv 26:0-(6,2) of Fi22 which are generated

by CD(e), CD(f) and CD(B) respectively. The character table of 0+(8,2):83 was

calculated by Moori in [82]. For more information on the automorphism groups of

simple groups, readers are referred to [119].

Theorem 1.0.2 Fi22 has exactly 13 conjugacy classes of maximal $ubgroups as fol

lows:

Fi22
G2(3):2

0+(8,2):83 x 2

27:8P(6,2)

83 x U(4,3):22

25+8 :(83 x 86 )

M 12 :2

2·U(6,2):2

35 :(2 x U(4,2):2)
210 ·M ·2. 22·

(2 x 2~+8:U(4,2):2):2

2F4 (2)

3~+6:23+4:(83 x 83)

Proof This is part(ii) in the Main Theorem of [71]. 0

Most of the maximal subgroups of the sporadic simple groups are of extension

type. With the classification of finite simple groups being complete, more recent

work in group theory involves the study of other aspects of finite groups. The struc

tures and character tables of group extensions play important roles in these studies.

Character tables of finite groups can be constructed using various techniques. How

ever B. Fischer studied a technique which can be used to construct character tables

of group extensions. This technique, which is known as the technique of the Fischer

Clifford matrices, derives its fundamentals from the Clifford Theory and provides

very powerful information for constructing character tables. In this thesis, we use

this technique to construct the character tables of cetain subgroups of Fi22 and its

automorphism group Fi22 which are split extensions.

In Chapter 2, we discuss the general theory of group extensions. Since every group

extension is a short exact sequence of groups and homomorphisms, in Section 2.1 we

discuss the background theory of exact sequences, build up to short exact sequences,

and discuss the general theory of group extensions. In Section 2.2 we discuss the
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theory of sernidirect products and give a proof from [108] that every split extension

G of N by G is equivalent to a semidirect product of N by G. We also study a result

from [105] that every sernidirect product G of N by G realizes a homomorphism

e : G ~ Aut(N). In Section 2.3, we discuss the conjugacy classes of the elements

of group extensions. We also give some general results involving conjugacy classes in

finite groups. We then go on to discuss the technique of caset analysis for computing

conjugacy classes of group extensions G of N by G where N is an abelian normal

subgroup of G. This technique which works for both split and nonsplit extensions

was first developed and used by Moori in [80] and [81] and has since been widely

used for computing the conjugacy classes of group extensions in all cases where it is

applicable. For example it has also been used by Salleh in [106], Whitley in [116]. We

also developed two programmes in CAYLEY [17] which we call Programmes A and

B. These programmes can be used to compute the conjugacy classes and the orders

of the class representatives for split extensions G = N:G where N is an elementary

abelian p-group, (for prime p) on which a linear group G acts. Programme A is based

on the coset analysis technique. These programmes have been applied to the groups

that have been studied in this thesis, for example the group 26:SP(6, 2). For further

information and reading on gr~up extensions, we encourage readers to consult Hall

[55] and Humphreys [57] and other relevant books on group theory.

In Chapter 3, we present some results on group characters which are used in the

later chapters. We inostly concentrate on those results which would be useful for

the technique of the Fischer-Clifford matrices that is fully discussed in Chapter 5.

In this thesis, we construct character tables of certain groups associated with the

smallest Fischer sporadic simple group Fi22 and its automorphism group Fi22. We

start by discussing the general theory of representations and characters, and go on to

discuss the restricted, induced and permutation characters, which will be used in the

later chapters for constructing the character tables of the groups that are studied in

this thesis. The characters being studied are ordinary complex characters. We give

a proof that the permutation character of any group G acting on the cosets of its

subgroup H is the character induced from the identity character of H. We use the

notation x(GIH) to denote this permutation character and we use lc to denote the

identity character of any group G. So with this notation we have X(GIH) = (lH )c.
We also give a proof from [60] of the Frobenius Reciprocity Theorem, which gives a
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relationship between restricted and induced characters and their constituents. For a

finite group G and H ::; G, then the relationship between the characters of G and

those of H is of fundamental importance. For further reading on representations and

characters, readers are encouraged to consult [2], [4], [7], [12], [23], [24], [35], [61], [63],

[64], [67], [72], [74], [90], [101], [109], [110], [114] and many other relevant sources.

In Chapter 4, we shall concentrate on symplectic groups. We discuss the gen

eral theory of symplectic groups and their affine subgroups. One particular affine

subgroup 25 :S6 of the symplectic group SP(6,2) has been studied in this thesis and

is discussed in Chapter 6. The symplectic groups are constructed by defining some

bilinear form on the underlying vector space and then taking all the form-preserving

automorphisms of the space. Two of the groups studied in this thesis are split ex

tensions of elementary abelian 2-groups by the symplectic group SP(6,2) and are

maximal subgroups of the smallest Fischer sporadic simple group Fi22 and its auto

morphism group Fi 22 respectively. The other group studied in this thesis is a split

extension of an elementary abelian 2-group by the orthogonal group 0-(6,2), where

0-(6,2) is a maximal subgroup of SP(6,2) of index 28. For further reading and

information on symplectic groups, readers are encouraged to consult [10], [19], [29],

[32], [51], [58], [57], [59] and [115].

In Chapter 5, we shall discuss the theory behind the technique of the Fischer

Clifford matrices. We shall however begin by discussing the Clifford Theory and then

go on to discuss the theory of the Fischer-Clifford matrices. Given a group extension

G = N·G such that every irreducible character of J\T can be extended to its inertia

group then for each class representative 9 E G, we are able to construct a matrix M(g)
called the Fischer-Clifford matrix. By using these matrices together with the fusion

maps and character tables of some subgroups of G which are inertia factors of the

inertia groups in G, we are able to construct the complete character table of G. The

technique of the Fischer-Clifford matrices has also been discussed and used in [30],

[31], [41]' [42]' [43], [75], [76], [98], [106] and [116]. In the subsequent chapters, we will

use this technique and other group theoretic and character theoretic information that

have been discussed in the previous chapters to construct the character tables of the

groups which have been studied in this thesis. For the Fischer-Clifford matrices, we

shall follow the work of Whitley [116] very closely. Sometimes additional information
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given in the introduction of Chapter 6, together with other methods such as the

character restri.ctions, have to be used to compute the entries of M (g ).

In Chapter 6 we study the group 26:SP(6, 2) which is a maximal subgroup of the

smallest Fischer simple group Fi22 of index 694980. Let G = 26:SP(6, 2) be the split

extension of N = 26 by G = SP(6,2), where N is the vector space of dimension 6

over GF(2) on which G acts naturally. We construct the character table of G using

the technique of the Fischer-ClifIord matrices. This character tabl~ will be divided

row-wise into blocks where each block corresponds to an inertia group Hi = N:Hi ,

where the Hi'S are the inertia factors. The character table of G can be constructed

by finding the Fischer-ClifIord matrix M (g) for each class representative 9 of G and

using the character tables of the inertia factors. We use the properties of the Fischer

ClifIord matrices which are discussed in Section 5.2.2 of Chapter 5 to compute their

entries. In some cases we need to use the following additional information to compute

these entries:

(i) For X a character of any group H and h E H, we have IX(h)1 ::; X(lH), where

lH is the identity element of H.

(ii) For X a character of any group Hand h a p-singular element of H, where p is

a prime, then we have X(h) =x(hP)mod(p).

(iii) For any irreducible character X of a group H and for hi E Gi then di = b~(}Zil is

an algebraic integer, where Gi is the i-th conjugacy class of Hand bi = IGil =

[H : GH(hi )). Obviously if di E Q, then di E Z.

We also study a group of the form 25 :86 which is maximal and affine in 8P(6,2) of

index 63. We construct the character table of this affine subgroup using the technique

of the Fischer-ClifIord matrices. This character table is necessary since it will be used

to construct the character table of G. In the process we also construct the character

table of 32:D4 which is maximal in 86 of index 10. This character table is used in

the construction of the character table of 25:S6 . The Fischer-Clifford matrices and

the character table of 26:8P(6, 2) are given in Section 6.4. In Sections 6.5 and 6.6 we

deal with the fusion of 26 :SP(6, 2) into Fi22 and the permutation character of Fi22

on 26 :SP(6, 2) respectively.
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In Chapter 7, we study the group GFi22 (B) r-..J 26:0-(6,2) which is a maximal

subgroup of 26:SP(6, 2) of index 28. We determine its Fischer-Clifford matrices and

hence construct its character table. We use the properties of the Fischer-Clifford

matrices which are discussed in Chapter 5 (Section 5.2.2) and in some cases we also

use the additional information discussed in the introduction of Chapter 6, to compute

the entries of the Fischer-Clifford matrices. Motivation for this problem came from

Moori's papers [83] and [85]. Moori in [83] obtained the generators for the groups

GFi22 (e), GFi22 (f) and GFi22 (B), where

From [83] we obtain that the above groups are D-subgroups of Fi22 generated by

GD(e), GD(f) and GD(B) respectively. The complete fusion map of 26:0-(6,2) into

26:SP(6, 2) will be fully determined. Our computations by using GAP [107], show

that the group 26:0-(6,2) does not sit inside any other maximal subgroup of Fi22.

In Chapter 8, we study the group 27:SP(6,2) which is a maximal subgroup of

Fi22 of index 694980. The maximal subgroup 26:SP(6,2) of Fi22 , where 26 is a

2B-pure group and that NFi22(26) = 26:SP(6,2), is a 2-local subgroup of Fi22. We

have 26:SP(6,2) ::; NFi22 (26:SP(6, 2)) and since Fi22 is simple, the maximality of

26:SP(6, 2) in Fi22 implies that NFi22 (26:SP(6, 2)) = 26:SP(6, 2). In Fi22 , we obtain

that 26:SP(6, 2) ::; NPi22 (26:SP(6, 2)), but NPi22 (26:SP(6, 2)) =1= Fi22 , Fi22 . By Theo

rem C in [118] and the results of [71], we deduce that NPi22 (26:SP(6, 2)) = 27:SP(6, 2)

and hence 27:SP(6,2) = (26:SP(6,2)):(e). In Chapter 6, the conjugacy classes

and the Fischer-Clifford matrices of the group 26:SP(6,2) have been computed. In

this chapter, the conjugacy classes and the Fischer-Clifford matrices of the group

27 :SP(6,2) will be computed. We shall use the technique of the Fischer-Clifford

matrices to construct the character table of 27:SP(6, 2). We shall use the proper

ties of the Fischer-Clifford matrices which are discussed in Chapter 5 (Section 5.2.2)

and in some cases we shall also use additional information discussed in the introduc

tion of Chapter 6, to compute their entries. For example the Fischer-Clifford matrix

M(2D) in 27 :SP(6,2) had 70 possible candidates of which we had to eliminate 69.

This elimination was achieved by using the additional information and methods. The

fusion map of this group into Fi22 will be fully determined. However the fusion

map of 26:SP(6, 2) into 27 :SP(6, 2) will be crucial in determining the fusion map
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of 27:SP(6,2) into Fi22 . This will help to determine those classes of elements of

27:SP(6,2) that fuse into Fi22 . Those conjugacy classes of elements of 27:SP(6, 2)

which contain classes of 26:SP(6, 2) will fuse into Fi22 and the others will fuse into

Fi22 - Fi22 . Using the permutation character of Fi22 on 26:SP(6, 2), which was de

termined in Chapter 6, we will be able to identify those irreducible char:acters of Fi22

that are involved in the permutation character of Fi22 on 27:SP(6,2). Hence this

permutation character will be completely determined.

All the computations were carried out with the aid of CAYLEY [17] and GAP

[107] running on a SUN GX2 computer. For notation on the conjugacy classes of

elements and permutation characters, we follow the notation used in the ATLAS

[26] and the ATLAS of BRAUER CHARACTERS [68]. All our groups and sets are

finite unless otherwise specified. Programmes A for 25:86 , 32:D4 , 26:0- (6,2) and

27:8P(6,2) that have been used to compute the conjugacy classes of of these groups

will be given in t~e Appendix A, just before the Bibliography. The character tables

computed in this thesis have been accepted for incorporation into GAP and will be

available in the latest version of GAP. The consistency and accuracy of the character

tables have been verified by the GAP team at Aachen.



Chapter 2

Group Extensions

Most of the maximal subgroups of the sporadic simple groups are of extension type.

The groups studied i~ this thesis are all split extensions and hence in this chapter

we discuss the general theory of the group extensions. Since every group extension

is a short exact sequence of groups and homomorphisms, in Section 2.1 we discuss

the background theory of exact sequences, build up to short exact sequences, and

discuss the general theory of grQUP extensions. In Section 2.2 we discuss the theory

of semidirect products and give a proof from [108] that every split extension G of

N by G is equivalent to a sernidirect product of N by G. We also study a result

from [105] that every sernidirect product G of N by G realizes a homomorphism

B : G ~ Aut(N). In Section 2.3, we discuss the conjugacy classes of the elements

of group extensions. We also give some general results involving conjugacy classes in

finite groups. We then go on to discuss the technique of coset analysis for computing

conjugacy classes of group extensions G of N by G where N is an abelian normal

subgroup of G. This technique which works for both split and nonsplit extensions

was first developed and used by Moori in [80] and [81] and has since been widely

used for computing the conjugacy classes of group extensions in all cases where it is

applicable. For example it has also been used by SaHeh in [106], Whitley in [116].

We also developed two CAYLEY Programmes A and B. These programmes can be

used to compute the conjuagacy classes and the orders of the class representatives for

split extensions G = N:G where N is an elementary abelian p-group, (for prime p) on

which a linear group G acts. Programme A is based on the coset analysis technique.

9
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These programmes have been applied to the groups that have been studied in this

thesis, for example the group 26:SP(6,2). For further information and reading on

group extensions, we encourage readers to consult Hall [55] and Humphreys [57] and

other relevant books on group theory.

2.1 Exact Sequences and Group Extensions

Definition 2.1.1 Let { ... ,An-I,An,An+1 , ... } and {... ,Qn-l,Qn,Qn+l"'} be sets

of groups and homomorphisms respectively. Then we call

On-l A On A On+l A
. .. ~ n-l ~ n -t n+l ~ ...

a sequence of groups and homomorphisms. We say that the sequence (*) is exact if

ker(Qn) = Im(Qn-l) for each successive pair (an-I, an)'

Theorem 2.1.2 Let A and B be groups, aI, a2 and a3 be homomorphisms. Then

(i) The homomorphism A ~ B is one-to-one if! the sequence {I} ~ A ~ B is

exact.

(ii) The homomorphism A ~ B is onto if! the sequence A ~ B ~ {I} is exact.

(iii) The homomorphism A ~ B is an isomorphism if! the sequence {I} ~ A ~

B ~ {I} is exact.

Proof (i) Suppose that the sequence {I} ~ A ~ B is exact. Then ker(a2) = Im(al)'

However Im(al) = {I}. Thus ker(a2) = {I} and hence a2 is one-to-one.

Conversely suppose that A ~ B is one-to-one. Then ker(a2) = {I}. However from

the sequence {I} ~ A ~ B we have that Im(al) = {I} = ker(Q2) and hence

sequence is exact.

(ii) Suppose that A ~ B ~ {I} is exact. Then ker(a3) = Im(a2)' However

ker(a3) = B and thus Im(a2) = B and hence a2 is onto.

Conversely suppose that A ~ B is onto. Then we have that Im(a2) = B. However

from A ~ B ~ {I}, we obtain that ker(a3) = B = Im(a2)' Hence the sequence is
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exact.

(iii) Suppose that {I} ~ A ~ B ~ {I} is exact. Then ker(a2) = Im(al) = {I}.

Thus a2 is one-to-one. Also from the exactness of sequence we have that ker((3) =
B = Im(a2)' Hence a2 is onto and hence an isomorphism.

COllversely suppose that a2 is an isomorphism. Then we obtain that ker((2) = {I}

and Im(a2) = B. Thus from the sequence {I} ~ A ~ B ~ {I} we obtain that

ker(a2) = {I} = Im(al) and 1m(a2) = B = Ker(a3) and hence the sequence is

exact. D

Definition 2.1.3 A short exact sequence of groups and homomorhisms is an exact
6 - a .

sequence of the form {I} ~ N ~ G ~ G ~ {I}.

Definition 2.1.4 If {I} ~ N ~ G ~ G ~ {I} is a short exact sequence, then we

say that G is an extension of N by G.

Remark 2.1.5 If G is an extension of N by G given by the short exact sequence

{I} ~ N ~ G ~ G ~ {I}, then

Gj8(N) = Gjker(a) f'J G and 8(N) f'J N

Definition 2.1.6 An extension {I} ~ N ~ G ~ G ~ {I} is said to be equiva

lent to the extension {I} ~ N ~ Gl !:4 G ~ {I} if there exists a homomorphism

<p : G ----t G 1 such that the diagram

N 8__.... G a • G

comrnutes.

Using the five lemma it can be shown that <p is an isomorphism between G and

G l · It is also easy to prove that the equivalence of group extensions defined above is

an equivalence relation.
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Remark 2.1.7 If {I} ~ N ~ G ~ G is an exact sequence and B is the homo

morphism of G into Aut(o(N)) given by 8(g) = Bg l£5(N) , where 8g is the inner au

tomorphism of G induced by g, then the rnap T : G --4 Aut(N) given by the rule

T(g) = (0 iN )-18go is a homomorphism. Moreover if a : N --4 Aut(N) is the homo

morphism given by a(n) = an, where an is the inner automorphism of N induced by

n, then

N, O G

Aut(N)

commutes.

Definition 2.1.8 Let G and N be groups and a : N --4 Aut(N) as in Remark 2.1.7.

A factor system of N by G is a pair (B, j3) of functions, where B : G ---7 Aut(N) and

j3 : G x G ---7 N such that if we let B(i) = i', j3(i, j) = Ci,j, then we obtain that

Definition 2.1.9 Suppose that (8, j3) is a factor system, of N by G. We say that (8, j3)
£5 - u -belongs to an extension {I} ~ N ~ G ~ G ~ {I} and a function A : G ---7 G

'Such that a A = IG if and only if 8 = TA, where T is defined in Remark 2.1. 7 and

(A(i))(A(j)) = (A(ij))(O(Ci,j)) \:j i,j E G. The factor system (B,{3) of N by G is

equivalent to the factor system (()*, {3* ) of N by G if there is a function , : G ---7 N

such that \:j i, j E G,

The function, is a~ equivalence of (B, (3) with (B*, (3*).

£5 - uIt can be shown that for an extension {I} ~ N ~ G ~ G ~ {I} and the map

A : G ---7 G such that a A = IG there is a unique factor system (B, (3) belonging to

the extension and A.
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Theorem 2.1.10 Let Nand G be groups and (B, (3) be a factor system of N by G.
- - 6

Then there is a group G and a homomorphism A : G ---+ G such that {1} ~ N ~

G ~ G ~ {1} is an extension, erA = I G and the factor system (B, (3) belongs to the

extension and A.

Proof See Theorem 9.4.5 of [108]. D

. 6
Theorem 2.1.11 Let the factor system (B, (3) belong to the extension {1} -+ N -+

G ~ G ~ {1} and the map A : G ---+ G and let the factor system (B*, (3*) belong to
61 - U -

the extension {1} ~ N ~ GI .4 G ~ {1} and the map Al : G ---+ GI . Then the

extensions are equivalent iff the corresponding factor systems are equivalent.

Proof See Theorem 9.4.6 of [108]. D

2.2 Semidirect Products and Split Extensions

Definition 2.2.1 Let G be a group and N, G be subgroups of G such that

(i) N is normal in G

(ii) G = NG

(iii) N n G = {1}

then G is called a semidirect product of N by G. The subgroups Nand G are said to

be complementary.

Remark 2.2.2 If both subgroups Nand G are normal in G, then G is a direct

product of Nand G.

For G a semidirect product of N by G, then every element in G can be expressed

uniquely in the form ng, where n E Nand g E G and the multiplication of elements

of G is given by
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where ng = gng- l . Also there is a homomorphism B : G ---+ Aut(N) given by

B(g) = Bg, where 9 E G, Bg : N ---+ N is defined by Bg(n) = gng- l and Bg is an

automorphism of N. Hence G acts on N.

Definition 2.2.3 Let G, Nand G be as defined above and B : G ---+ Aut(N). Then

the semidirect product G of N by G is said to realize B if Bg(n) = ng Vn E N, 9 E G.

Remark 2.2.4 For G a semidirect product of N by G, then G is isomorphic to a

semidirect product of N by G that realizes B for some B : G ---+ Aut(N).

Theorem 2.2.5 Let Nand G be groups, BE Hom(G,Aut(N)),G = N x G as a set

with multiplication defined by (nI, gl)(n2, g2) = (nlBg1 (n2), glg2). Let 8, a and A be

functions given by 8(n) = (n, le), a(n, g) = 9 and A(g) = (IN, g). Then

(i) {I} ~ N ~ G ~ G ~ {I} is an extension of N by G

(ii) 8 is an isomorphism of N with a subgroup NI of G

(iii) A is an isomorphism of G· with a subgroup Gl of G

(iv) G is a semidirect product of NI by Gl that realizes a homomorphism 'ljJ satisfying

['ljJ(A(g))](8(n))-= 8(Bg(n)), for all nE N,g E G

(v) aA = f e .

Proof See Theorem 9.2.1 of [108]. 0

Definition 2.2.6 An extension {I} ~ N ~ G ~ G ~ {I} is called

(i) abelian if G is abelian

(ii) central if fm(8) = 8(N) C Z(G)

(iii) cyclic if G is cyclic

(iv) split if there is a monomorphism A : G ---+ G such that a A = le.
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Remark 2.2.7 If an extension is abelian, central or cyclic, then so is every equivalent

extension.

Theorem 2.2.8 [108] If an extension splits, then so does any equivalent extension.

Proof Let {I} -7 N ~ G ~ G -7 {I} be a split extension such that it is equivalent

to the extension {I} -7 N ~ Cl ~ C -7 {I}. Let <p be the homomorphism that gives

the equivalence. Then there is a monomorphism A: C~ G such that (jA = le. Let

Al = <pA, then Al : G~ Cl is a monomorphism such that (j1A1 = (j1<PA = rJA = le.

D

We say that a factor system (B, (3) splits if a corresponding extension splits. Hence

the above Theorem 2.2.8 implies that a factor system equivalent to a factor system

which splits also splits. We also obtain the following theorem.

Theorem 2.2.9 Let (B, (3) be a factor system of N by C. Then the following state

ments are equivalent

(i) (B, (3) splits

(ii) (B, (3) is equivalent to another factor system (B* , (3*) such that B* E Hom(C, Aut(N))

and ci,j = IN V i,j E C.

Proof See Theorem 9.5.3. of [108]. D

Theorem 2.2.10 [108] Every split extension of N by G is equivalent to a semidirect

product of N by G.

Proof Let G be a split extension of N by G. Then by Theorem 2.2.9, there is an

equivalent split extension Gl , a map Al and a factor system (()*, (3*) belonging to

the pair (G l , AI) such that ()* E Hom(G, Aut(N)) and ci,j = IN V i,j E G. By

Theorem 2.1.10, there is an extension G2 and a map A2 such that (B*, (3*) belongs to

(G2, A2)' By Theorem 2.2.5 G2 is a semidirect product of N by G which realizes the

homomorphism ()*. Hence by Theorem 2.1.11 C and G2 are equivalent. Hence the

result. D
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From the above theorem, we have that every ~plit extension G of N by G is

equivalent to a sernidirect product of N by G. Hence the terms split extension and

sernidirect product can be used interchangeably to mean one and the same entity.

From now on by an extension G of N by G we mean that N is a normal subgroup of

G and GIN rv G. Thus an extension G of N by G is a short exact sequence of the

form

such that ker(1r) = Nand Im(1r) = G. If G is an extension of N by G, we simply

write G = N·G. In the case where G is a split extension we use the notation G = N:G.

Theorem 2.2.11 Let N be a group, Gl and G2 be subgroups of Aut(N). Then there

is an isomorphism a from N:Gl onto N:G2 such that a(N) = Nand a(Gl ) = G2 if

and only if Gl and G2 are conjugate in Aut(N).

Proof See [56]. D

If N is a finite abelian group, Gl and G2 are cyclic subgroups of Aut(N), then

Holmes in Theorems 2 and 3 of [56] gives conditions op N, Gl and G2 for which N :Gl

and N:G2 will be isomorphic.

Definition 2.2.12 Let G = N·G and {l} ~ N ~ G ~ G ~ {l} be the correspond

ing short exact sequence. Let 9 E G and 9 E G such that 1r(g) = g. Then 9 is called

a lifting of 9 in G.

Lemma 2.2.13 ([105},[116}j Let G be an extension of N by G where N is abelian.

Then there is a homomorphism e:C -----+ Aut(N) such that Bg(n) = gn(g)-l, n E N

and B is independent of the choice of liftings {g I g E G}.

Proof Let a E G and Ta denote conjugation by a. Since N is a normal subgroup of

G, Ta lN E Aut(N) and the function J.L : G -----+ Aut(N) defined by J.L(a) = Ta lN is a

homomorphism. If a' E N, then since N is abelian we have J.L(a) = IN. Thus there is

a homomorphism J.L* : GIN -----+ Aut(N) which is given by J.L*(Na) = J.L(a). However

G rv GIN and for any lifting {g I 9 E G}, the function <jJ : G -----+ G/ N defined by

<jJ(g) = Ng is an isomorphism. If {gl I 9 E C} is another choice of liftings, then
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9 91-1 E N for every g E G and thus Ng = Ng1. Therefore the isomorphism q; is

independent of the choice of liftings. Let e : G --t Aut(N) be the composition J-l* 0 q;.

For g E G and 9 a lifting of g, then e(g) = J-l*(q;(g)) = J-l*(Ng) = J-l(g) E Aut(N) and

thus for n E N, we have eg(n) = J-l(g)(n) = gn(g)-l. Hence the result. 0

Remark 2.2.14 [116] Let G be an extension of N by G where N is abelian and for

each g E G let 9 be a lifting of g. We identify G with G/ N under the isomorphism

g f----+ Ng. Thus {g I g E G} is' a right transversal for N in G and thus every x E G

has a unique expression of the form x = ng where n E Nand g E G.

Definition 2.2.15 Let G be an extension of N by G, where N is abelian and let

e : G --t Aut(N) be a homomorphism. Then G is said to realize e if eg(n) = ng for

every n E N and every lifting 9 of g in G.

Lemma 2.2.13 asserts that every extension G of N by G, where N is abelian

determines a homomorphism B which is realized by G and B describes the normality

of N in G.

Let G be an extension of N by G. Then we obtain the short exact sequence

{I} ~ N ~ G ~ G ~ {I}. A choice of liftings 9 for each g E G defines a function

A : G --t G, where A is not necessarily a homomorphism, such that 7rA = IG. The

range of A is called a transversal for N in G or a complete set of coset representatives

for N in G since it contains exactly one representative from each coset of N.

Definition 2.2.16 Let G be an extension of N by G and A be as defined above.

Define a function (3 : G x G --t N by

j3(X, y) = '\(x)'\(y)['\(xy)]-l

Then j3 is called a factor set or a cocycle of G.

Remark 2.2.17 A factor set or cocycle depends on the choice of a transversal for

N in G. If G is a semidirect product of N by G, then the map A given by A(X) = x

for all x E G is a transversal making (3(x, y) = xy(xy)-l = IN, for all x, y E G. In

general, by using Definition 2.2.16 we can deduce that A is a homomorphisrIl if and

only if (3(x, y) = IN for all x, y E G. Hence we can regard a factor set as a measure

of the extent of deviation of G from being a sernidirect product.
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2.3 The conjugacy classes of group extensions

The conjugacy classes of elements of a group provide vital information about the

structure of the group. Butler in [16] states that given a group G and considering

each prime p dividing IGI, the classes of elements of order pT, for all possible values of

r are determined by computing a Sylow p-subgroup, analyzing its classes of elements

and then determining their fusion into G. Furthermore the classes of composite order

pTt, where (p, t) = 1 are determined by computing the centralizer Gc(g) for each class

representative g, where o(g) = pT and analyzing the classes of the centralizer or the

classes of the centralizer modulo a normal p-subgroup such as (g). The computation

of the centralizers plays an important role in the determination of the conjugacy

classes of elements of a finite group. Recently several authors studied the properties

of conjugacy classes and parallelism between results on characters and results on

conjugacy classes. For example the following result of Fulman [46] deals with the

number of conjugacy classes of elements of order n in a finite group G.

Theorem 2.3.1 Let G be a finite group and Pl,P2, ... ,Pm be the distinct primes

dividing some n E Z. Then the number of conjugacy classes in G of elements of

order n is a multiple of

IT Pi - 1 .
i=l gcd(IGI,Pi - 1)

Proof See [46]. 0

Let G be a finite group, and 9 E G. We denote by ac(g) the set of all prime

divisors of [G : Gc(g)], the length of the conjugacy class of g. We define a* (G) =

max{lac(g)1 : 9 E G}. Let 7r(G) be the set of all primes dividing the order of G and
for p E 7r(G) we denote by Gp a Sylow p-subgroup of G and define

If G is nonabelian, then by [20] we have

a *(G) > ~ n p ( G) - 1 () I~ and 2a* G > ~(G)I . -
pEl:1(C) np ( G)

Chillag and Herzog [22] described the groups with a* (G) = 1. They showed that

a* (G) = 1 if and only if G = A x H, where A is abelian and
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(i) H is a nonabelian p-group ( for some prime p), or

19

(ii) H = Oq(H)P with Pap-group ( p and q are distinct primes), Oq(H) and P
abelian and HjOq(H) a Frobenius group.

Casolo in [21] studies finite groups with a* (G) ::; 3. In the following we list some

elementary properties of ae(g) and a*(G). For proofs, see [22].

(i) Let x, Y E G such that xy = yx and (o(x), o(y)) = 1. Then

ae(xy) ~ ae(x) U ae(Y)

(ii) Let H be a normal subgroup of G, x E Hand y E G. Then

(a) aH(x) ~ ae(x) and a*(H) ::; a*(G).

(b) aejH(Hy) ~ ae(Y) and a*(GjH) ::; a*(G).

Before going into the detailed discussion of the coset analysis teclmique, which is

the main part of this section, we would like to state the following relevant results.

Theorem 2.3.2 Let G be a finite group

(i) Suppose that Cl and C2 are two conjugacy classes of G such that Cl =1= [le] and

Cl = C2 for some integer n ~ 2, where

Then there exists some normal subgroup N of G and 9 E G - N such that Cl

is the coset N g and the map x t---+ x n is a bijection from Cl onto C2 .

(ii) If G has a normal subgroup Nand 9 E G - N such that the coset N 9 is a

single conjugaGY class of G, and such that for some n E Z the map x r----+ x n

for x E N 9 is a monomorphism, then N gn is a conjugacy class of G and

(Ng)n = Ngn.

Proof See [11]. D
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Proposition 2.3.3 Let G = N·G, 9 E G a lifting of 9 E G, C be the centralizer of

Ng in G and C be the complete preimage in G of C. Then

(i) the union of the cosets Nx which are conjugate in G to Ng, is the union of the

conjugacy classes L}, L 2 , ..• ,Lr of G

(ii) C acts on the coset Ng by conjugation

(iii) C has r orbits in its action on Ng and the orbit representatives gl' g2' ... ,gr
are representatives of the conjugacy classes LJ.' L 2 , ... ,Lr of G

(iv) the centralizer Cc(gJ for 1 ::; i ::; r is the stabilizer of gi in C in its action on

Ng.

Proof See [15]. 0

We now discuss the technique of coset analysis which is used for determining the

conjugacy classes of elements of group extensions G = N·G where N is an abelian

normal subgroup of G. The technique works for both split and nonsplit extensions

and was developed and first used by Moori in [80]. For each conjugacy class [g] in G

with representative 9 E G, we analyse the coset Ng, where 9 is a lifting of 9 in G and

G= UNg
gEG

To each class representative 9 E G with lifting 9 E G, we define

Cg={XEG I x(Ng) = (Ng)x} .

Then Cg is the stabilizer of Ng in G under the action by conjugation of G on Ng,

and hence Cg is a subgroup of G.

Remark 2.3.4 It is not difficult to see that N is a normal subgroup of Cg.

Lemma 2.3.5 [116} Cg/N = CCjN(Ng).



2.3. THE CONJUGACY CLASSES OF GROUP EXTENSIONS

Proof Consider Nk, where k E G. Then

. Nk E CC/N(Ng) {::} Nk(Ng)(Nk)-l = Ng

{::} NkNgNk- 1 = Ng

{::} NkNgk- 1 = Ng

{::} NkNngk-1 = Ng tin E N

{::} N kngk-1 = Ng , tin E N

{::} kngk-1 E Ng , tin E N

{::} k E C-g

{::} Nk E C-g/N .

Thus we obtain that C-g/N = CC/N(Ng). D

21

Remark 2.3.6 Using Remark 2.3.4 and Lemma 2.3.5 we deduce that C-g = N,CC/N(Ng).

For 9 a lifting of 9 E G in G, we can identify CC/N(Ng) with Cc(g) and write

C-g = N·Cc(g) in general. If G = N:G then we can identify Cg with Cg = {x E

G I x(Ng) = (Ng)x}, where the lifting of 9 in G is 9 itself since G :::; G in the case

of a split extension.

Corollary 2.3.7 IfG = N:G, then Cg = N:Cc(g).

Proof We have that N is a normal subgroup of Cg • Now we show that Cc(g) :::; Cg

and that oN n Cc(g) = {I}. Let x E Cc(g). Then we obtain (Ng)X = x(Ng)x-1 =
xNgx-1 = Nxgx- 1 = Ng. Thus x E Cg and hence Cc(g):::; Cg • Since NnCc(g):::;

N n G = {le}, then we have that N n Cc(g) = {le}. Hence the result. 0

The conjugacy classes of G (recall that G = N·G where N is abelian) will be

determined by the action by conjugation of C-g, for each conjugacy class [g] of G, on

the elements of Ng. To act C-g on the elements of Ng, we first act N and then act

{h I h E Cc(g)}, where h is a lifting of h in G. We outline this action in two steps as

follows:

STEP 1: The action of N on Ng: Let CN(g) be the stabilizer of gin N. Then

for any n E N we have
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{::} xnx- 1xgx- 1 = ng

{::} n(xgx-1
) = ng, since N is abelian

{::} xgx-1 = 9

{::} x E GN(g).

Thus GN(g) fixes every element of Ng. Now let IGN(g)1 = k. Then under the action

of N, Ng splits into k orbits Ql, Q2,' .. ,Qk, where.

for i E {I, 2, ... , k}.

STEP 2: The action of {h I h E GG(g)} on Ng: Since the elements of Ng are

now in the orbits Ql, Q2,"" Qk from Step 1 above, we need only act {h I h E GG(g)}
on these k orbits. Suppose that under this action fj of these orbits Ql, Q2, ... ,Qk

fuse together to form one orbit l::1 j , then the f/s obtained this way must satisfy

and we have

Thus for x = djg E l::1 j , we obtain that

I[x]cl - 1l::1j I x I[g] G I
1Nl IGI

- fj x T x IGG(g)1

IGI
- fj x kIGG(g)1

and thus we obtain that

IGc(x) I = IGI = IGI x kIGc(g)1 = kIGG(g)1
I[x]cl fjlGI fj

Thus to calculate the conjugacy classes of G = N·G, we need to find the values

of k and the f/s for each class representative 9 E G.
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Remark 2.3.8 However in the case of G = N:G a split extension, we analyse the

coset N 9 instead of Ng since in this case G :::; G. Under the action of N on N g, we

always assume that 9 E Ql. Also instead of acting (h I h E Ge(g)} on the k orbits

Ql, Q2, ... ,Qk we just act Ge(g) on these orbits. Since 9 E Q1, then Ge(g) always

fixes Q1 and thus we will always have 11 = 1. Hence

j m

where the sum is taken over all m such that 9 ~ Qm'

In the following we prove and discuss techniques that are useful in the determi

nation of the orders of the elements of G = N:G.

Theorem 2.3.9 Let G = N:G and dg E G where dEN and 9 E G such that

o(g) = m and o(dg) = k. Then m divides k.

Proof We have that

Since G acts on N and dEN, we have d, d9 , d92
, ••• ,d9k

-
1

E N. Hence dd9 d92
.•• d9k

-
1

E

N. Thus we must have that dd9 d92
... d9k

-
1 = IN and gk = le. Hence m divides k.

o

Theorem 2.3.10 Let G = N:G such that N is an elementary abelian p-group, where

p is prime. Let dg E G where dEN and 9 E G such that o(g) = m and o(dg) = k.
Then either k = m or k = pm.

Proof Since N is an elementary abelian p-group and dEN, then we have that

o(d) = I or o(d) = p. Suppose that d f IN, then o(d) = p. Now we observe that

Since gm = le , we deduce that (dg)m E N. If (dg)m = IN, then k must divide m

and Theorem 2.3.9 implies that k = m. If (dg)m f IN, then o((dg)m) = p and hence
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(dg)pm = IN. Thus we obtain that k I pm and hence pm = kx for some positive

integer x. However from Theorem 2.3.9 we have k = mb for some positive integer b.

Since o(dg) = k and we assumed (dg)m =I IN, we must have m =I k and hence b =I 1.

Now pm = kx and k = mb imply that pm = mbx, so that p = bx. Since p is a prime

and b =I 1, we must have p = b and x = 1. Therefore we obtain that k = pm. Hence

the result. D

Remark 2.3.11 Let G = N:G, where N is an elementary abelian p-group. Let

dg E G with dEN, 9 E G such that o(g) = m and o(dg) = k, then we observe that

(d )m - d dg d92 dg=-l m9 -. . .. ... g.

Since gm = le, we obtain that (dg)m = w, where wEN and it is given by

- d dg dg=-lw- . ..... .

By Theorem 2.3.10 above, we have that if w = IN then k = m and if w =I IN then

k=pm.

We have used the method of coset analysis discussed above ( outlined in Steps 1

and 2 ) together with Theorems 2.3.9 and 2.3.10 and Remark 2.3.11 in developing

Programmes A and Bin CAYLEY which are applied for the computation of conjugacy

classes and the orders of the class representatives of the extension G = N:G where

N is an elementary abelian p-group for prime p on which a linear group G acts.

For example consider G = N:S where S is a matrix group, with generators

AI, A2 , ... ,At acting on the vector space N = V(n, q) with orbits 0 1 , O2 , ... ,Ok'
on V*(n, q). Then the first part of Programme A computes the orbits Ql, Q2,' .. , Qk

for each conjugacy class of S while the second part acts the centralizers of elements of

S on {Q1' Q2,"" Qk} to determine the I/s, ~/s and the corresponding d/s, where

djg is a representative of the ~j, as described in Step 2. The Programme B computes

the elements wEN which are used in determining the orders of djg E G, as required

by Remark 2.3.11.
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PROGRAMME A

V : vector space(n, GF(q));

S : matrix group(V);

S.generators : AI, A2 , ... ,At;

c : classes(S);

0 1 : matrix orbit(S, vec(al,' .. ,an), false);

O2 : matrix orbit(S, vec({31' ... ,(3n), false);

Ok' : matrix orbit(S, vec(81, . .. ,8n), false);

o : 0 1 join O2 join· .. join Ok';

for i = 1 to n(c) do;

print c[i], '$N';

e = null;

w = vec(O) of V;

while 0 - e ne [ ] do;

d = null;

for each x in 0 do;

y = [x + w + (x * cri])];

d = d join y;

end;

print d, '$N';

print' * * * * * *';
e = d join e;

if 0 - e ne [ ] then;

w = setrep(O - e);

end;

end;

r = null;

u = vec(O) of V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(S, cri]) do;

25
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l=[u*g];

m = m join l;

end;

print'A block for the vectors under the action of centralizer :';

print m;

r = mJmn r;

if 0 - r ne [ ] then;

u = setrep(O - r);

end;

end;

print' * * ** ** ** ****** ******** *** * ***** *';
end;

PROGRAMME B

V : vector space(n, GF(q));

S : matrix group(V);

S.generators : AI, A2 , . .. ,At;

c : classes(S);

9 = cri];
d = vec(Ql, ... ,Qn);

W = d + ~ *9 + d * (g2) + d * (g3) + ... + d * (gm-I);

print w;

In Programme B we have o(g) = m and 9 E S is a class representative, for

1 :s j :s n, aj E GF(q), d * 9 = d9 , and + signifies the operation in V and dg E G is

a class representative from the coset N g.

In [15] and [16], Butler gives various algorithms which can be used for computing

conjugacy classes in finite groups and in permutation groups respectively. In [16],

Butler gives the inductive schema for computing the conjugacy classes in permutation

groups. This schema is given as Algorithm 1 in this paper.



Chapter 3

Group Characters

In this chapter, we present some results on group characters which are used in the

later chapters. We mostly concentrate on those results which would be useful for

the technique of the Fischer-ClifIord matrices that is fully discussed in Chapter 5.

In this thesis, we construct character tables of certain groups associated with the

smallest Fischer sporadic simple group Fi 22 and its automorphism group Fi 22 . We

start by discussing the general theory of representations and characters, and go on to

discuss the restricted, induced and permutation characters, which will be used in the

later chapters for constructing the character tables of the groups that are studied in

this thesis. The characters being studied are ordinary complex characters. We give

a proof that the permutation character of any group G acting on the cosets of its

subgroup H is the character induced from the identity character of H. We use the

notation X(GIH) to denote this permutation character and we use Ic to denote the

identity character of any group G. So with this notation we have X(GIH) = (IH)c.
We also give a proof from [60] of the F'robenius Reciprocity Theorem, which gives a

relationship between restricted and induced characters and their constituents. For a

finite group G and H ~ G, then the relationship between the characters of G and

those of H is of fundamental importance. For further reading on representations and

characters, readers are encouraged to consult [2], [4], [7], [12], [23], [24], [35], [63],

[61], [64], [67], [72], [74], [90], [101], [109], [110] and many other relevant sources.

27
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3.1 Representations and Characters

Definition 3.1.1 Let G be a group, F a field and GL(n, F) the general linear group

which is the multiplicative group of all nonsingular n x n matrices over F for some

integer n. Then a homomorphism P : G ----+ GL(n, F) is called a repre~entation of G

over F or simply an F -representation. The representation P is said to have degree n.

The function X : G ----+ F given by X(g) = trace(p(g)) is called the F -character of G

afforded by the F -representation p. The degree of X is the same as that of p.

Two F-representations PI and P2 of G are said to be equivalent if there exists

p E GL(n, F) such that PI(g) = Pp2(g)P-1 for all 9 E G. An F-representation P of

G is said to be reducible if it is equivalent to a representation a which is given by

a( ) = ((3(g) ,(g))
9 0 8(g)

for all 9 E G, where (3",8 are F-representations of G. If P is not reducible, then it

is said to be iTreducible. Since similar matrices have the same trace, then it follows

that equivalent representations afford the same character. The character afforded by

an irreducible representation is called an irreducible character. Sums and products of

characters are themselves characters.

Theorem 3.1.2 (Schur's Lemma) Let PI : G ----+ GL(n, F) and P2 : G ----+

GL(m, F) be two irreducible representations of a group G over a field F. Assume

that there exists a matrix P such that P PI (g) = P2 (g) P for all 9 E G. Then either P

is the zero matrix or P is nonsingular so that PI(g) = P-Ip2(g)P.

Proof See Theorem 1.8 of [89]. 0

Corollary 3.1.3 [89} If P : G ----+ GL(n, F) is an irreducible representation of a

group G over an algebraically closed field F, then the only matrices which commute

with all matrices p(g), g E G are scalar matrices aIn , where a E F and In is the n x n

identity matrix.
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Proof Let P be an n x n matrix such that Pp(g) = p(g)P for all 9 E G. Then for

any a E F we have that

(aIn - P)·p(g) = p(g)·(aIn - P), Vg E G . (1)

Let m(x) = det(xIn - P) be the characteristic polynomial of P. Since m(x) is a

polynomial over F and F is algebraically closed, then there exists al E F such that

m(ad = OF. Hence det(a1In - P) = OF and thus alI~ - P is singular. Then from

relation (1) above and Schur's Lemma, we obtain that a1In - P = 0 and hence

alIn = P. 0

Definition 3.1.4 Let G be a group, F a field and cP : G~ F be a function which

is constant on conjugacy classes. Then cP is called a class function of G.

From the above definition, we observe that every character is a class function. We

shall use the notation I rr(G) to denote the set of all irreducible characters of the

group G.

From now on, we will consider representations and characters of a finite group G

over the complex field C.

We can show that every class function cP of G can be uniquely expressed in the

form cP = LXElrr(G) bxX, where bx E C. Moreover cP is a character if and only if all

bx E IN U {O} and cP =I O. We can also show that the following properties hold:

(i) Two representations of G have the same character if and only if they are equiv

alent.

(ii) The nurnber of irreducible characters of G is equal to the number of conjugacy

classes of elements of G.

(iii) Any character of G can be written as a SlfIll of irreducible characters.

Definition 3.1.5 Let G be a group, X be a character ofG and Irr(G) = {Xl, X2,· .. ,Xr}

such that X = L~=l niXi, where ni E N U {O}. Then those Xi for which ni > 0 are

called the irreducible constituents of X. In general, if'IjJ is a character of G such that

X - 'IjJ is a character or is zero, then 'IjJ is a constituent of x.
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Theorem 3.1.6 (Generalized Orthogonality Relation) Let G be a group and

Irr(G) = {Xl, X2,"" Xr}. Then the following holds for every h E G.

1 ~ ) (-1) Xi(h)-IGI LJ Xi(gh Xj 9 = Oij .(1 )
gEG Xt G

Proof See Theorem 2.13 of [60]. D

Let G be a group, p be a representation of G which affords the character X. Let

9 E G such that o(g) = n. Then the following conditions hold

(i) p(g) is similar to a diagonal matrix diag(cl, C2, ... , cr)

(ii) cf = 1

(iv) Ix(g)l::;; X(lG) = degree ofX

(v) X(g-l) = X(g), where X(g) is the complex conjugation of X(g)·

The above conditions are proved as Lemma 2.15 in [60].

Definition 3.1.7 Let X and 'lj; be class functions of a group G. Then the inner

product of X and'(jJ is defined by

1 -
(X, '(jJ) = -IGI L: X(g)'(jJ(g)

gEG

The following theorems are derived from the generalized orthogonality relation

and are called the first and second orthogonality relations respectively.

Theorem 3.1.8 (60j{First Orthogonality Relation) Let G be a group and Irr(G) =
{Xl, X2, ... ,Xr}' Then
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Proof Using the generalized orthogonality relation ~nd taking h = 1c , then the result

follows immediately. 0

Theorem 3.1.9 (60j(Second Orthogonality Relation) Let G be a group and

Irr(G) = {Xl,X2,'" ,Xr} and {gl,92,'" ,gr} be a set of representatives of the con

jugacy classes of elements of G. Then

~ . X(gi)X(gj) = 8ij ICc (gi) I
XElrr(C)

Proof Let X be the character table of G. Then viewed as a matrix, X is an r X r

matrix whose (i,j)-th entry is given by Xi(gj)' Let Ci be the conjugacy class which

contains gi and D be the diagonal matrix with entries 8ij ICi I. Then by the first

orthogonality relation, we obtain that

r

IGI8ij = ~ Xi(g)Xj(g) = ~ ICtlxi(gt)Xj(gt)
gEC t=l

Then we obtain a system of r 2 equations which can be written as a single matrix

equation as follows

where I is the identity r x r matrix and X
T

is the transpose of X. Since X is a

nonsingular matrix, then we obtain that

IGII=DXTX

Rewriting the above matrix system as a system of equations yields

r

IGI8ij = L ICiIXt(gi)Xt(9j)
t=l

Hence we obtain that

~ X(9j )X(gi) = ICC(gi) 18ij

XElrr(C)

o
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3.2 Normal Subgroups

Let G be a group and X be a character of G afforded by a representation p. Then we

define

ker(x) = {g E G I X(g) = X(lc)} .

It can be shown (for example see Whitley [116]) that ker(x) = ker(p) and hence

ker(x) is a normal subgroup of G. If Irr(G) = {Xl, X2,"" Xr}, then every normal

subgroup of G is the intersection of some of the ker(Xi)' .

Theorem 3.2.1 Let G be a group and N be a normal subgroup of G. Then

(a) If X is a character of G and N ~ ker(x), then X is constant on the cosets of

N in G and the function X defined on GIN by X(Ng) = X(g) is a character of

GIN.

(b) If X is a character of GIN, then the function X defined by X(g) = X(Ng) is a

character of G.

(c) In both (a) and (b) above, X E Irr(G) if and only if X E Irr(GIN).

Proof See Theorem 2.2.2. of [116]. 0

If N is a normal subgroup of G and p is representation of G such tha.t N ~ ker(p),

then there exists a unique representation p of GIN defined by p(N g) = p(g). Thus

knowing p, we can obtain pand vice versa. We also obtain that p is irreducible if and

only if p is irreducible. Hence p and pcan be identified. If p affords a character X of

G, then p affords a character Xof GIN and also X and Xcan be identified. Under

this identification, we obtain that

Irr(GIN) = {X E Irr(G) I N ~ ker(x)}

Thus the irreducible characters of GIN are precisely those irreducible characters of

G which contain N in their kernels.

Definition 3.2.2 Let G be a group, N a normal subgroup of G and X be a character

of GIN. Then the character X of G defined by

X(g) = x(Ng)
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is called a lifting of X to G.

33

Thus given characters of G/ N, we can obtain some characters of G by the lifting

process. The character Xand its lifting X have the same degree.

3.3 Restriction of Characters

Definition 3.3.1 Let G be a finite group and H :s; G. If P is a representation of

G, then the restriction of P to H is a representation of H. This representation is

denoted by PH. If X is a character of G afforded by P, then the restriction of X to H

is denoted by XH and is a character of H afforded by the representation PH such that

XH = L k1/J'ljJ ,
1/JElrr(H)

where k1/J E IN U {O}.

The characters XH and X take on the same values on the elements of H. If XH

is irreducible, then X is irreducible in G but the converse is not true in general.

Karpilovsky in [70] proves a theorem (Theorem 23.1.4) due to Gallagher(1966) that

if H :s; G, X E Ir1~(G) such that X(g) =1= 0 V g E G - H, then XH is irreducible

and for any g E G - H, X(g) is a root of unity. We also observe that (see [67])

every irreducible character of H is a constituent of some irreducible character of G

restricted to H.

Theorem 3.3.2 [67} Let G be a group, H :s; G, X E Irr(G) and Irr(H) = {'ljJI, 'l/J2, . .. ,'l/Jr}'
Then

r

XH = L:ki'l/Ji ,
i=l

where ki E IN U {O} ,satisfy the following relation

r

L k; :s; [G : H]
i=l

Moreover, equality in the above relation holds if and only if X(g) = 0 for all 9 E G - H.
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Proof We obtain that
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1 =

Since X is irreducible, then we have that

. 1 -
(X, X) = -IGI L X(g)X(g)

gEG

1 - 1 -
- -IGI L X(h)X(h) + -IGI L X(g)X(g)

hEH g~H

IHI r 2

- lGT tr ki +K

where

1 -
K = -IGI L X(g)X(g)

g~H

Since K 2:: 0 we have that

Efl~ k~ = 1 - K < 1
IGI ~ t -

t=l

Hence
r

Lk;~[G:H]
i=l

The equality holds if and only if X(g) = 0 for all 9 E G - H. 0

Theorem 3.3.3 Let G be a group, H be a normal subgroup of G and X E Irr(G).

Then all the constituents of XII have the same degree.

Proof See Proposition 20.7 of [67]. 0
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3.4 Induced Characters
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Let G be a group and H ::; G such that the set {Xl, X2, ... ,xr} is a transversal for H

in G. Let cj) be a representation of H of degree n. Then we define cj)* on G as follows:

cj)*(g) =

cj)(XIgXll ), cj)(XIgX"2 I), , cj)(XIgx;l)

cj)(X2gxll) , <jJ(X2gx"2 I), ,<jJ(X2gx;l)

where cj)(Xigxjl) are n x n submatrices of <jJ*(g) satisfying the property that

Then we can show that cj)* is a representation of G of degree n.

Definition 3.4.1 Let G, H, <jJ and cj)* be as above. Then the representation <jJ* ~s

called the representation of G induced from the representation <jJ of H and we denote

this by writing cj)* = cj)c.

If 'ljJ is a representation of H which is equivalent to cj), then it can be shown that

'ljJc is equivalent to cj)c. Thus the induction process preserves equivalence between

representations.

Definition 3.4.2 Let G be a group and H ::; G. Let X be a class function of H.

Then we define XC as follows:

where

XO (h) = { X( h) if h E ~
o otherw'tse

Then XC is a class function of G, called the induced class function of G induced from

X. Also we have that deg(xC ) = [G : H]deg(x).
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Theorem 3.4.3 [60}(Frobenius Reciprocity Theorem) Let G be a group, H ~ G

and suppose thg,t X is a class function of Hand </J is a class function of G. Then

Proof We obtain that

G 1 G - 1 1 """' """' 0 -1 -
(X ,</J) = -'GI I: X (g)</J(g) = -IGI-IHI LJ LJ X (xgx )</JJg)

gEG gEG xEG

Putting y = xgx-1 and since </J is a class function, then we obtain that </J(y) = </J(g).
Hence we have

1 1 0 -1 - 1 1 0-

- -'GI-IHI I: I: X (xgx )</J(g) = -'GIIHI I: I: X (y)</J(y)
gEG xEG yEG xEG

1 -
- -,HI I: X(y)</J(y) = (X, </JH)'

yEH

Hence the result. D

Let H ~ G and </J be a representation of H th.at affords a character X of H.

Then XG is a character of G afforded by the induced representation </JG of G. The

character XG is called the induced character of G. The induction and restriction

processes do not necessarily preserve irreducibility of characters. For further reading

on induced characters, readers are encouraged to consult [5], [6], [64], [91] and many

other relevant sources.

Theorem 3.4.4 Let G be a group and H ~ G. Let X be a character of H, 9 E G
and {Xl, X2, ... , xm } be a set of representatives of the conjugacy classes of ele"ments

of H which fuse i;'to [g] in G. Then we obtain that

G() I ()I~ X(Xi)
X 9 = CG 9 8 IC~(~.)I '

where we have that XC (g) = 0 whenever H n [g] = 0.

Proof We have that
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If H n [g] = 0, then xgx-1 tt H and thus XO(xgx- 1
) = 0 V x E G and hence

XG(g) = O. Now if H n [g) # 0, then let h E H n [g]. Then as x runs over G, then

xgx-1 = h for exactly ICG(g)1 values of x. Hence we obatin that

G 1 ~ -1 ICG(g)1 ~ ~ X(Xi)
X (g) = -IHI LJ X(xgx ) = IHI LJ X(h) = ICG(g)1~ IC (x.)1

xEG hEHn[g] t=l H t

Hence the result. D

Definition 3.4.5 Let G be a group H ~ G and X be a character of G such that

X = .AG for some linear character .A of H. Then X is called monomial. If G is such

that every X E I rr(G) is monomial, then G is called an M -group or a monomial

group.

It can be shown that every nilpotent group is an M-group (see [94]). According

to the Taket.a Theorem (see Theorem 52.5 in [27]), every M-group is solvable. For

further results on M-groups we encourage the readers to consult [60]. For a group

theoretic characterization of M-groups, see Parks [99].

Theorem 3.4.6 Let G be a group, Hand K be subgroups of G such that H ~ K.

Let X be a character of H. Then we obtain that XG = (XK)G.

Proof Let {Xl, X2, ... ,xn } be a complete set of representatives of the conjugacy

classes of H which fuse into [g], g E G and let {YI, Y2, ... ,Ym} be the representatives

of the conjugacy classes of K which fuse into [g] in G. For any [z] in K which

fuses into [g] in G for which there is no Xi E H such that [Xi] fuses into [z], then

we set XK (z) = O. Thus since H ~ K, suppose without loss of generality that

{YI' Y2, ... ,Ym} is a complete set of representatives of the conjugacy classes of K
which fuse into [g] in G for which :3 Xi E H such that [Xi] fuses into [Yj] in K. Then

n 2: m and we obtain that
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where the summation is taken over all i for which [Xi] fuses into [Yj] in K. Then we

obtain that

Hence the result.

Theorem 3.4.7 Let G be a group, H :::; G and {Xl, X2,' .. ,Xn} be a set of characters

of H. Then
n n

(LXi)C = LX?
i=l i=l

Proof Let {Xl, X2,"" xm } be a set of representatives of the conjugacy classes of H

which fuse into [g] of G. Then we obtain that

n

(L Xi)C(g)
i=l

Hence the result.

IGc(g)1 f (2:~=1 Xi? (Xj) = IGc(g)1 f 2:~=1 Xi(Xj)
j=l IGH(Xj)1 j=l IGH(Xj)1

m n Xi(Xj) n m Xi(Xj)
ICG(g)If;~ ICH(Xj)1 = ~'CG(g)'f; ICH(Xj)1
n

- LX?(9)
i=l

D

The above theorem asserts that the induction process of characters of a subgroup

to the parent group is an additive operation. If H :::; G, X a character of Hand

{91' 92, ... , 9n} is a transversal for H in G, then for any 9 E G, we obtain that
n

XC(g) = L XO(gigg;l) .
i=l

Definition 3.4.8 Let G be a group, 9 E G and p be a prime. If p l o(g), then 9 is

called p-regular. If p I o(g), then 9 is called p-singular.

Theorem 3.4.9 [27} Let G be a group and p be a prime. Then every 9 E G can be

uniquely expressed as 9 = g1g2, where gl, g2 E G, gl and g2 commute, gl is p-regular

and g2 is p-singular of order a power of p.
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Proof Suppose that 0(9) = pnq for some n E IN U {O} and q E IN such that (p, q) = 1.

Let a, b E Z such that

apn + bq = 1

and that 91 = 9apn and 92 = 9bq . Then we have that 91,92 E G, 9192 = 9apn+bq = 9

and that 91 and 92 commute since they are both powers of 9. Moreover we obtain

that 0(9d = q and 0(92) = pn. Hence 91 is p-regular and 92 is p-singular. Thus we

have established at least one decomposition of 9. Now suppose that- 9 = 9394, where

93,94 E G, 93 and 94 commute and that 93 is p-regular and 94 is p-singular of order

a power of p. Then (0(93),0(94)) = 1 and thus we obtain that 0(9394) = 0(93) .0(94).

Hence 0(g3) = q and 0(g4) = pn. However we have that

since 94 and 9i1 commute with 9. Hence we obtain that

apn _apn apn
9 -g 9 -9 -g3- ·4 - - 1·

Similarly we obtain that

apn+bq bq (-1 )bq ~bq bq bq
94 = 94 = 94 = 93 9 = 93 ·9 = 9 = 92

This establishes the lmiqueness of the decomposition of 9 E G. Hence the result.

o

Definition 3.4.10 Let G be a group and p be a prime. Let H ~ G such that H =
A x B, where A = (a) and a is a p-regular element of G, and B is a p-subgroup of

G. Then H is called a p-elementary subgroup of G.

Lemma 3.4.11 [27) Let G be a group and p be a prime. Then every cyclic subgroup

of G is a p-elementary subgroup.

Proof Let H = (9),9 E G. Since we have that 9 = 9192, where 91,92 are the p-regular

and p-singular components of 9 respectively as given by Theorem 3.4.9, then we can

write H = (g) = (gl) X (92). Hence result. 0
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From the above lemma and Definition 3.4.10, we can deduce that if H is a subgroup

of G such that H = A x B, where A is an arbitrary cyclic group and B is a p-group,

then we have that

H = A x B = (g) x B = (gl) X ((g2) x B) ,

where gl, g2 are the p-regular and p-singular components of 9 respectively, such that

((g2) x B) is a p-group. Hence H is a p-elementary subgroup of G.

Theorem 3.4.12 (Brauer's Theorem on Induced Characters) Every complex

character of a group G is a Z -linear combination of characters induced from linear

characters of p-elementary subgroups of G, for some prime p.

Proof See [27]. D

Brauer's theorem on induced characters asserts that every complex character X of

a group G satisfies the following relation

where ki E Z and 'l/Ji are linear complex characters of p-elementary subgroups of G.

Thus X is a Z-linear combination of monomial characters induced from p-elementary

subgroups of G. In [113], Van Der Waall proved that every nonidentity irreducible

character of a finite group G is a Z-linear combination of monomial characters of G

none of which contains the identity character of G as an irreducible constituent.

3.5 Permutation Characters

We say that a group G acts on a set X if there is a homomorphism q; : G ---+ Sx,

where Sx is the symmetric group on X. We say that G acts faithfully on X if q;
is a monomorphism. In this case G can be identified with a subgroup of Sx and G

becomes a permutation group on X. In this section we assume that X is a finite set.

Definition 3.5.1 Let G be a group acting on a set X such that for any two k-tuples

(X1,X2,'" ,Xk) and (YI,Y2,'" ,Yk) of k distinct elements of X, there exists 9 E G for

which XI = Yi for i = 1,2, ... ,k. Then we say that G is k-transitive on X.
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If G is I-transitive on X, then we say that G is transitive. In this case G has only

one orbit on X.

If G acts on X, we define a representation 'Tr : G ~ GL(n, C), where n = IXI.
Let X = {Xl,X2" .. ,xn}. For each 9 E G we define 'Trg = (aij) by

{
I if xf = Xj

aij = 0 otherwise

Then 'Tr9 is a permutation matrix of the action of g. The representation 1r defined

above is called the permutation representation of G obtained from the action of G on

X,

Definition 3.5.2 Let G be a group and X be a set such that G acts on X. Then we

denote the character afforded by the permutation representation 'Tr by X(GIX). This

character is called the permutation character of G associated with the action of G on

X. It is not difficult to show that for 9 E G we have

x(GIX)(g) = I{x E X Ixg = x} = the number ,of points of X fixed by 9

Suppose that G acts transitively on X and Gx is the stabilizer of x EX. Then

the action of G on X is the same as the action of G on the cosets of H = Gx' Hence

V 9 E G, x(GIX)(g) also gives the number of cosets of H = Gx which are fixed by

9 E G and in this case we denote this number by X(GIH) (g), Due to the fact that

the action of G on X is the same as the action of G on the cosets of H, then we can

write X(GIH) = x(GIX).

Theorem 3.5.3 Let G be a group acting transitively on a set X. Let ex E X, H = Go

and X(GIH) be the permutation character of this action. Then

Proof We have that
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Now if xgx- l E H, then xg E Hx. Thus Hxg = Hx and hence Hx is fixed by 9 E G.

However the summation is taken over all x E G such that xgx- l E H. Hence the

summation is taken over all x E G for which the coset Hx is fixed by 9 E G. But

VY E Hx, Hx = Hy and thus we obtain that

L 1 = IHII{Hx I Hxg = Hx}1
xEG,xgx-1EH

and hence we obtain that
1 -

(IH)G(g) = 1HI,HII{Hx I Hxg = Hx}1 = I{Hx I Hxg = Hx}1 = X(GIH)(g)

Hence the result. D

From the above theorem, we deduce that the permutation character of a group

acting on the cosets of its subgroup is monomial since it is induced from the identity

character of that subgroup. Thus a permutation character provides an example of a

monomial character. Let X(GIH) be a permutation character of G. Then we obtain

that X(GIH) = E AiXi, where Ai E IN U {O} and Xi E Irr(G). If Ai E {O, I},

then we say that X(GIH) is multiplicity-free. Breuer and Lux in [13] classified all

the multiplicity-free permutation characters of the sporadic simple groups and their

automorphism groups. As we will see in the later chapters, the permutation characters

of Fi22 on 26 :SP(6, 2) and Fi22 on 27 :SP(6, 2) are multiplicity-free.

The following result will be used in later calculations to determine the conjugacy

class fusions of subgroups of G.

Corollary 3.5.4 Let H :::; G. Let 9 E G and let Xl, X2,' .. ,Xm be representatives of

the conjugacy classes of H that fuse to [g]. Then

X(GIH)(g) = f IGc(g)1
i=l IGH(Xi) I

Proof This follows from Theorem 3.4.4. D

Corollary 3.5.5 Let G act on X and x(GIX) be the permutation character of the

action. Let Xl, X 2 , . '.• ,Xk be the orbits of G on X and Hi = GXi be the stabilizer of

Xi E Xi and xi(GIHi) be the permutation character of G on the cosets of Hi. Then
k

x(GIX) = LXi(GIHi)
i=l
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Proof From the stabilizers HI,' .. ,Hk , we obtain that

k

x(GIX)(g) = L I{Hix I Hixg = Hix}1
i=l

k

L I{Hix I Hixg = Hix, X E G, xgx- l E Hi}1
i=l

k

- L xi(GIHi)(g)
i=l

Hence the result. D
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Theorem 3.5.6 [60] Let G be a group acting on a set X with X(GIX) as the per

mutation character of the action. If X splits into k orbits under the action of G,

then

(X(GIX),Ic ) = k

Proof Suppose that the k orbits of X under the action of G are {Xl,' .. ,Xk }. Then

we obtain that
k

X= UXi
i=l

Let Xi E Xi and Hi be the stabilizer of Xi E Xi' Also let Xi(GIHi) be the permutation

character of G on the cosets of Hi. Then we obtain that

k

x(GIX) = LXi(GIHi) where xi(GIHi) = (IHJ c
i=l

By the Frobenius reciprocity theorem, we obtain that

Hence we obtain that
k k

(x(GIX), le) = ~(xi(GIHi)' Ic ) = ~ 1 = k
i=l i=l

Hence the result. 0

From the above theorem, we observe that if G is a group acting on a finite set

X and X(GIX) is the permutation character associated with this action, then G is

transitive on X if and only if (x(GIX), Ic ) = 1.
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Let G act transitively on X. Then all subgroups Gx of G, for x E X are conjugate

in G. If r is the number of orbits of Gx on X, then we say that the rank of G is r. It

is clear that G is 2-transitive if and only if the rank of G is equal to 2.

Corollary 3.5.7 Let G act transitively on X and X(GIX) be the permutation char

acter of the action. Let x EX, H = Gx be the stabiliz~r of x and r be the number of

orbits of H on X. Then we obtain that

(X(GIH), X(GIH)) = r

Pr-oof By the F'robenius reciprocity, we obtain that

Hence the result. D

In the Corollary 3.5.7 if we let X(GIX) = le + L:i AiXi, where Xi E I rr(G), then

we have

r = rank of G = 1 +L A; .

In particular G is 2-transitive on X if and only if x'(GIX) = le+X for some irreducible

character X =f le·

In the following, we present without proof, some properties of permutation char

acters. These properties have been proved as Theorem 2.5.6 in [116]. Let G be a

group, H ~ G and X = X(GIH). Then the following properties hold

(i) deg(x) divides IGI.

(ii) (X, 'ljJ) ~ deg('ljJ) for all ~) E I rr(G).

(iii) (X, le) = 1.

(iv) X(g) E N U {O} for all 9 E G.

(v) X(g) ~ X(grn) for all 9 E G and mEN U {O}.

(vi) x(g) = 0 if o(g) does not divide IGI/deg(x).
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(vii) X(g)~ is an integer for all g E G.

45

Theorem 3.5.8 Let K be a proper subgroup of H where H .is a proper subgroup of

G. The set of all conjugates of K in G which are also subgroups of H splits into r

conjugacy classes of subgroups of H. Let K I , K 2 , • .. ,Kr be representatives of these r

conjugacy classes of subgroups of H. Then the number of conjugates of H in G which

contain K is given by

Proof See [38] and [50]. 0

Corollary 3.5.9 [50) Let G be a finite group and H be a subgroup of G containing a

fixed element x. Then the number h of conjugates of H in G which contain x is given

by

where Xl, X2, ... ,Xm are representatives of the conjugacy classes of elements of H

which fuse into [x] in G.

Proof The number of conjugates of x in G and Hare [G : Cc(x)] and [H : CH(x)]
respectively. However H contains L:~dH : CH(Xi)] conjugates of x in G. Then the

result follows immediately by the previous theorem. 0

Theorem 3.5.10 [50) Let G be a finite group and H be a subgroup of G containing a

fixed element x such that (o(x), [Nc(H) : H]) = 1. Then the number h of conjugates

of H in G which contain x is X(GINc(H))(x). In particular

where Xl, X2,'" ,Xm are representatives of the conjugacy classes of elements ofNc(H)
which fuse to [x] in G.
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Proof Let n be the set of all conjugates of the subgroup H in G. Then G acts

transitively by.conjugation on 0 and the point stablizer GH = Nc(H). Thus the

permutation character of G acting on 0 is given by X(GINc(H)) = (ING(H))G. By

definition

gives the number of fixed points of x in O. Let x be the image of x under the natural

homomorphism Nc(H9)~ Nc(H9)/H9. Since (o(x), [Nc(H9) : H9]) = 1, it follows

that o(x) = 1 and hence x E H9. Therefore X(GINc(H))(x) = I{H9 I x E H9}1. We

also have that

T C ~ IGc(x)1
X(GI1\c(H))(x) = (ING(H)) (x) = (:r IGNG(H) (Xi) I '

where [x]c nNc(H) = U:1[Xi]NG(H). D

Given a group G, then G acts on the cosets of all its subgroups H such that the

permutation character associated with that particular action is given by X(GIH) =

(IH )c. In view of this fact, the most natural questions to ask are as follows:

(i) Given two subgroups H, K ~ G, is it possible to have (IH)C = (IK)C?

(ii) If the answer to question (i) is in the affirmative, then if H, K ~ G such that

(IH)C = (IK)C, is H conjugate to K in G?

Indeed, the answer to question (i) is in the affirmative. However two subgroups

Hand K of a group G inducing the same permutation character does not necessarily

guarantee that the two subgroups are conjugate in G. It can however happen under

certain circumstances that Hand K would be conjugate in G but there is no guarantee

in general. The work of Caranti, Gavioli and Mattarei in [18] addresses question (ii)

for finite p-groups, where p is prime. Feit in [36] and Guralnick in [54] established that

if H, K ::; G satisfy (IH)C = (IK)C and have index a prime or the square of a prime,

then they are conjugate with exceptions that can be described quite satisfactorily.

Based on these results it follows that if G is a p-group for p prime and [G : H) ~ p2,

then Hand K are conjugate. Guralnick in [54] provides an example of a finite p

group of order pS with two subgroups of index p3 that are not conjugate but induce
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the same permutation character. In [18], the authors give a construction that for an

odd prime p, there exists a p-group G, IGI = p7 with H, K S; G of index p3 where H

is nonabelian and K is abelian such that they induce the same permutation character

in G.



Chapter 4

Symplectic Groups

Classical linear groups are divided. into three main categories, namely the symplectic,

orthogonal and unitary groups. In this chapter, we shall concentrate on symplectic

groups. We discuss the general theory of symplectic groups and their affine subgroups.

One particular affine subgroup 25:86 of the symplectic group 8P(6, 2) has been studied

in this thesis and is discussed in Chapter 6. The symplectic groups are constructed

by defining some bilinear form on the underlying vector space and then taking all the

form-preserving automorphisms of the space. Two of the groups studied in this thesis

are split extensions of elementary abelian 2-groups by the symplectic group 8P(6, 2)

and are maximal subgroups of the smallest Fischer sporadic simple group Fi22 and

its' automorphism group Fi22 respectively. The other group studied in this thesis is

a split extension of an elementary abelian 2-group by the orthogonal group 0-(6,2),

where 0-(6,2) is a maximal subgroup of 8P(6, 2) of index 28. For further reading

and information on symplectic groups, readers are encouraged to consult [10], [19],

[29], [32], [51], [58], [57], [59] and [115].

4.1 Symplectic Forms

Definition 4.1.1 Let V be a vector space over a field F and let f : V x V ~ F be

a junction such that for all u, v, w E V and all a, (3 E F we have

48
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(i) f(au + f3v, w) = af(u, w) + f3f(v, w)

(ii) f(w, au + f3v) = af(w, u) + f3f(w, v)
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Then f is called a bilinear form on V. If f is a bilinear form on V such that for all

u E V we have f(u, u) = 0, then f is called an alternating (symplectic) form on V.

If f is a symplectic form on V such that for all u E V" u =1= 0, there exists v E V for

which f(u, v) =1= 0, then f is said to be non-degenerate.

Let V be a vector space and f be a symplectic form on V. Then we obtain that

for all u, v E V

f (u + v, u + v) = f (u + v, u) + f (u + v, v) = f (u, u) + f (v, u) + f (u, v) + f (v, v)

However we have that

f(u + v, u + v) = f(u, u) = f(v, v) = 0

and thus we obtain that f(u, v) = - f(v, u).

4.2 Symple.ctic Spaces

Definition 4.2.1 Let V be a vector space over a field F and f be a bilinear form on

V such that

(i) f(u, u) = 0 \:j u E V

(ii) f(u, v) = - f(v, u) \:j u, v E V

Then the pair (V, f) is called a symplectic space over the field F.

Remark 4.2.2 If char(F) =1= 2, then the properties (i) and (ii) in the above definition

are equivalent. Moreover the symplectic space (V, f) becomes non-degenerate if f is

non-degenerate.
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Let (V, f) and (W, g) be symplectic spaces over the same field F, then we say that

V rv W if and only if there exists T E L(V, W) an isomorphism such that \;f u, v E V

f(u, v) = g(T(u), T(v))

If T E L(V, V) is an isomorphism such that \;f u, v E V

f(u,v) = f(T(u),T(v))

then T is called an isometry on (V, f).

Definition 4.2.3 Let (V, f) be a symplectic space and U be a subspace of V. Then

we define
U1- = {v E V I f(u,v) = 0, \;fu E U}

Then U1- is called the perpendicular space of U.

Note that for all u E U we have

f(O,u) = f(u - u,u) = f(u,u) - f(u,u) = 0 - 0 = 0 ,

so that 0 E U1-. It is not difficult to show that U-l is a subspace of V.

Let (V, f) be a symplectic space and define R(V) by R(V) = V 1-. Then we call

R(V) the radical of V.

Theorem 4.2.4 Let (V, f) be a symplectic space. Then R(V) = 0 iff f is non

degenerate.

Proof Suppose that R(V) = O. Let u E V, u =f O. Then u t/. R(V) and hence there

is v E V, such that f (u, v) =f O. Hence f is non-degenerate.

Conversely suppose that f is non-degenerate. Then for u E V, u =f 0, there is v E V

such that f (u, v) =f O. Hence u F/. R(V), for all u E V, u i- O. Thus we obtain that

R(V) = O. D

Let (V, f) be a symplectic space and U be a subspace of V. Then we obtain that

unu1-=R(U)
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Definition 4.2.5 Let V be a vector space over a field F and f be a bilinear form on

V such that for.. u, v E V

f(u, v) = f(v, u)

Then f is called an orthogonal form.

Let (V, f) be a symplectic space and {VI, V2, •.. , Vn } be subspaces of V such that

and that f(Vi' Vj) = 0 for all Vi E Vi, Vj E ltj for which i =1= j. Then we say that V is

an orthogonal sum of the subspaces {VI, V2 , ... , Vn } and we denote this by writing

Theorem 4.2.6 Let (V, f) be a symplectic space and {VI, V2, .•. ,Vn } be subspaces of

V such that

Then

Proof. We have that R(V) is a subspace of V. Now let v E R(V), then we obtain that

\j u E V, f(u, v) = O. Since V is an orthogonal sum of {VI, V2, ... ,Vn } and v E V,

then we obtain that

where Vi E Vi \j 1 :::; i :::; n. Then we obtain that for all u E V

Now for all u E Vi, we have f(u, Vj) = 0 \j i =1= j and hence

0= 0 + 0 + ... + f(u, Vi) + 0 + ... + 0

So that Vi E R(Vi). Hence we obtain that v E R(Vi) + R(V2) + ... + R(Vn ). Hence

R(V) = R(Vi) + R(V2) + ... + R(Vn ). However since R(Vi) is a subspace of Vi and V

is a direct sum of the Vi's, 1 :::; i :::; n, then we obtain that

VinL:ltj=o
j#i
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and hence we obtain that

Therefore
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R(Vi) n L: R(Vj) = 0
j#i

If Vi E R(Vi) and Vj E R(Vj), then Vi E Vi and Vj E Vj. Thus we obtain that

R(V) = R(Vi) -L R(~) -L ... -L R(Vn )

Hence the result D

Remark 4.2.7 Let (V, f) be a symplectic space and U be a subspace of V. Then we

can also show that (see [58])

1. dim(U-l) ~ dim(V) - dim(U).

2. if V is non-degenerate, then dim(U-l) = dim(V) - dim(U).

3. if V is non-degenerate, there exists a linear isomorphism B : V ~ V given by

x()(y) = f(x, y), where V is the dual space of V.

4. if U is non-degenerate, then V = U -L U.1.

Definition 4.2.8 Let (V, f) be a symplectic space and u, V E V such that f(u, v) = 1.

Then the vectors u, v E V are called a hyperbolic pair and the 2-dimensional subspace

of V generated by {u, v} is called a hyperbolic plane.

Remark 4.2.9 It is not difficult to see that every hyperbolic plane is non-degenerate.

Theorem 4.2.10 [32) Let (V, f) be a non-degenerate finite dimensional symplectic

space over a field F. ,If U is a subspace of V such that un U-l = 0, then V = U (f) U-l .

Proof Since V is finite dimensional, then U is finite dimensional. Let {Ul, U2, ... ,Uk}

be a basis for U. Then U.1 will be the collection of all vectors v E V for which

f(Ui,V) = 0, 1 ~ i ~ k. Since V is non-degenerate, then dim(U-l) = dim(V) -
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dim(U) and thus we obtain that dim(V) = dim(U1.) + dim(U). Since Un u1. = 0,

then we obtain that

V=UEBU1.

o

Theorem 4.2.11 Let (V, f) be a symplectic space over a field F such that dim(V) =

nand dim( R(V)) = r, then we obtain that

V = HI .1 H2 .1 ... .1 Hm .1 R(V)

where Hi, 1 ~ i ~ m are hyperbolic planes and we further have that n - r = 2m.

Proof We have that R(V) is a subspace of V. However if R(V) = V, then m = 0

and thus n - r = 0 = 2 x 0 and the proof is complete. Thus W. L. O. G. suppose

that R(V) =I V. Then let u E V - R(V). Since u ~ R(V), the :3 w E V such that

f(u,w) =I o. Thus we can choose v E V such that f(u,v) = 1 and thus {u,v} is a

hyperbolic pair. This is true, because if f(u, w) = k =I 0, then for v = iw we have

f(u, v) = 1. Now suppose that HI is the hyperbolic plane generated. by {u, v} and

that Ht = VI' Since HI is a hyperbolic plane, then it is non-degenerate and thus we

obtain that V = HI .1 VI and we also have that R(HI) = 0 and hence

R(V) = R(HI) 1- R(Vi) = R(Vi)

We now apply induction on dim(V) = n. Since HI = (u, v), then dim(HI) = 2

and thus we obtain that dim(V) = n = dim(HI) + dim(VI). Thus we obtain that

dim(Vi) = n - 2 < dim(V) and thus by induction hypothesis we obtain that

where Hi, 2 ~ i ~ m are hyperbolic planes and that 2(m - 1) = n - 2 - r, thus we

get 2m = n - r. Since R(Vi) = R(V) and V = HI .1 VI, then we obtain that

and that n - r = 2m. Hence the result. 0

The following result shows that the dimension of a non-degenerate symplectic

space must be even.
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Corollary 4.2.12 Let (V, f) be a non-degenerate symplectic space of dimension n

over a field F. Then

where Hi, 1 ::; i ::; m are hyperbolic planes and n = 2m.

Proof By above theorem, we obtain that

V = HI 1- H2 1- ... 1- Hm 1- R(V)

However V is non-degenerate and thus R(V) = O. Hence we obtain that

and dim(V) = n = 2m. D

Let (V, f) be a symplectic space over a field F with dim(V) = 2m and let the set

B = {Ul' VI, U2, V2, ... ,Um , vm } be a basis for V such that {Ui' Vi} is a hyperbolic pair

for all 1 ::; i ::; m and also such that for all i =I j, i, j E {1, 2, ... ,m} we have

Then we call the set B a hyperbolic basis for V and we have that every non-degenerate

symplectic space has °a hyperbolic basis.

Theorem 4.2.13 Let (V, f) be a non-degenerate symplectic space and {Xl,"" xr }

be a linearly independent set of elements of V such that f(Xi,Xj) = 0 V i,j. Then

there is a linearly independent set {Yl' Y2, ... ,Yr} of elements of V such that

where VI is a subspace ofV and Hi, 1 ::; i ::; r are hyperbolic planes and 2r ::; dim(V).

Proof· Since V is non-degenerate, R(V) = O. Hence Xl tt R(V) and as in Theorem

4.2.10 there is YI E V such that f(XI,YI) = 1. Let HI = (XI,YI)' Then HI is a

hyperbolic plane. Since HI is non-degenerate, V = HI 1- Ht. Now 0 = R(V) =
R(HI) 1- R(Ht) implies that R(Ht) = O. Hence Ht is non-degenerate. Since
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f(xI,xi) = 0 for 2 ~ i ~ r, Xi E Ht· Hence {X2,X3, ... ,Xr} ~ Ht. Since dim(Ht) =
dim(V) - 2 ~ dim(V), by induction there exists {Y2, Y3, ... ,Yr} ~ Ht such that

where Hi = (Xi,Yi),2 ~ i ~ r. Since V = HI 1.. Ht, we have

Therefore dim(V) = 2r + dim(VI) and hence 2r ~ dim(V). D

Theorem 4.2.14 [58j(Witt's Theorem) Let (V, f) be a non-degenerate symplectic

space and UI, U2 be two subspaces of V and T : UI ~ U2 be an isometry. Then there

exists an isometry S : V ~ V such that S lUl = T.

Proof We have that

where Hi, 1 ~ i ~ m are hyperbolic planes. Thus we obtain that

and HI is a hyperbolic plane in U2• We also obtain that T'(R(Ud) = R(T(UI )) =
R(U2 ). Thus we obtain that

Suppose that

H = HI ..L H2 1.. ... 1.. Hm and H' = H~ 1.. H~ 1.. ... 1.. H!m ,

then we obtain that
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Since Hi, H: , 1 ::; i ::; m are hyperbolic planes, th~n they are non-degenerate and

hence R(Hi) = R(HD = 0 VI::; i ::; m. Thus we obtain that R(H) = R(H') = 0

and hence H, H' are non-degenerate. Therefore we obtain that

v = H 1- H.l = H' 1- (H').l

However since V is non-degenerate, then R(V) = 0 and thus

R(V) = R(H) 1- R(H.l) = R(H') 1- R((H').l)

and hence we obtain that R(H.l) = R((H').l) = 0 and thus H.l, (H').l are non

degenerate. Since H ~ Ul and H' ~ U2, then R(Ul ) ~ H.l and R(U2) ~ (H').l. Let

{Xl, X2, ... ,Xk} be a basis for R(Ul ). Then f(Xi' Xj) = 0 V i, j. Thus by Theorem

4.2.12 there exists a linearly independent set {Yl' Y2, ... ,Yk} such that

H.l = K l 1- K 2 1- ... 1- K k 1- L

where L is a subspace of H.l and Ki = (Xi, Yi) such that f(Xi' Yi) = 1. Since T is an

isometry, then {T(Xl), T(X2),"" T(Xk)} is a linearly independent set in T(R(Ul )) =
R(U2) and we also obtain that 0 = f(Xi' Xj) = f(T(Xi), T(xj))' Again by Theorem

4.2.12 there exists a linearly independent set {Y~, Y~ ... Y~} such that

(H').l = K~ 1- K~ 1- ... 1- K~ '1- L'

where K: = (T(Xi), Y~) such that f(T(Xi), yD = 1. Thus we obtain that

V - HI 1- H2... 1- Hm 1- K l 1- K 2... 1- K k 1- L

- H~ 1- H~ ... 1- H!m 1- K~ 1- K~ ... 1- K~ 1- L'

and thus we obtain that R(L) = R(L') = 0 and

dim(V) = 2(m + k) + dim(L) = 2(m + k) + dim(L')

Thus we obtain that dim(L) = dim(L'). Hence there exists an isometry M : L~ L'.
Define a linear transformation 8 : V ~ V by

8(17,) = T(h) V h E H, 8(Xi) = T(Xi) 1::; i ::; k

8(Yi) = Y~ 1::; i ::; k, 8(P) = M(P) V PE L

Then 8 is an isometry on V and 8 1U
1
= T, where

Ul = HI 1.. H2 1.. ... 1.. Hm 1.. (Xl, X2,' .. , Xk)

o
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4.3 Symplectic Groups
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Let (V, f) be a non-degenerate symplectic space of dimension 2n over a field F. Then

the set of all isometies of V forms a group which is called a symplectic group and is

denoted by SP(2n, F). If F = GF(q) is a Galois field of q elements, where q = pr for

some rand p is a prime, then we denote SP(2n, F) by SP(2n, q). We further obtain

that S P(2n, F) ::; GL(2n, F).

Theorem 4.3.1 SP(2n, F) is a transitive permutation group on the set of all hyper

bolic pairs.

Proof SP(2n, F) has a permutation representation on the set of all hyperbolic pairs

{u, v} given by T ~ TI, where T E SP(2n, F) and

T _ ( {u,v} )
I - {T(u), T(v)}

Let {UI,VI}, {U2,V2} be two hyperbolic pairs. Then we have that

Thus there is a linear automorphism T such that T(UI) = U2 and T(VI) = V2. Let

Then we observe that T : HI ---+ H2 is an isometry. By Witt's Theorem, there is an

isometry S E SP(2n, F) such that S lH1 = T. Hence SP(2n, F) is transitive on the

set of all hyperbolic pairs. D

Theorem 4.3.2 [58} Let (V, f) be a non-degenerate symplectic space of dimension

2n over GF(q). Then the number of hyperbolic pairs of V is q2n-I.(q2n -1).

Proof We observe that IVI = q2n. Let {u, v} be a hyperbolic pair. Then we have

that f(u,v) = 1 and hence u E V*. Thus we have that dim((u)) = 1 and hence we

obtain that dim( (u)J...) = 2n - 1. Therefore the number of elements of V which are
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not in (u)..l is q2n - q2n-l. Since IF* I = q- 1, the number of elements v E V for which

f (u, v) = 1 is given by q2n;~:n-l. Thus the number of hyperbolic pairs is given by

2n 2n-1 1
(q2n _ 1).(q - q ) = (q2n _ 1).q2n-I(~) = q2n-I.(q2n - 1)

q-1 q-1

o

Theorem 4.3.3 [32] Let (V, f) be a non-degenerate symplectic space of dimension

211. over GF(q). Then

n

ISP(2n,q)1 = qn
2

II(q2i -1)
i=1

Proof Since V is non-degenerate, then there is a hyperbolic basis for V. Let

{UI' VI, U2, V2,' .. ,Un, vn} be a fixed hyperbolic basis for V. Let T E SP(2n, q) and

since T is an isometry, we have {T(UI)' T(VI), T(U2), T(V2),"" T(un), T(vn)} is a hy

perbolic basis for V. Thus we obtain that ISP(2n, q)1 is the number of hyperbolic

bases for V. Then we apply induction on 11., to count the number of ways of choosing

hyoerbolic bases for V. There are q2n-I.(q2n - 1) ways of choosing a hyperbolic pair

UI, VI E V. Let HI = (UI' VI), then the restriction] of f to Ht is non-degenerate

and thus making (Ht, 1) into a non-degenerate symplectic space. Thus the remaining

vectors of the hyperbolic basis for V may be chosen as a hyperbolic basis for (Ht, ]).

Since dim(Ht) = 211. - 2, the number of hyperbolic bases for (Ht,]) is equal to

ISP(2n - 2, q)l. Hence we obtain that

ISP(2n,q)1 q2n-I.(q2n -1).ISP(2n - 2,q)1
n-I

_ q2n-I.(q2n _ 1).q(n-I)2 IT (q2i - 1)
i=1

n

_ qn2IT(q2i -1).
i=1

Hence the result. 0

If V is a 2n-dimensional non-degenerate symplectic space over a field F, and

SP(2n, F) the symplectic group of isometries of V, then the centre Z(SP(2n, F)

of SP(2n, F) consists of the transformations T = kI, where k = ±1. This is
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true since a symplectic transformation necessarily has determinant 1. The factor

group SP(2n, F)/Z(SP(2n, F)) is called the projective symplectic group and is de

noted by PSP(2n, F). The projective symplectic groups are generally simple. In fact

they are all simple except for PSP(2,2) = PSL(2,2), PSP(2,3) = PSL(2,3) and

PSP(4, 2). If F = GF(q), then SP(2n, F) and PSP(2n, F) are denoted by SP(2n, q)

and PSP(2n,q) respectively. In this case Z(SP(2n,q)) = {I} if char(F) = 2 and

Z(SP(2n, q)) = {I, -I} if char{F) =I 2. Thus

1 n2 n

q IT 2iIPSP(2n, q)1 = (2 _ 1) x ISP(2n, q)1 = (2 _ 1). (q - 1)
,q ,q t=l

If V is a vector space of dimension nand H is a subspace of V of dimension n - 1,

then we say that H is a hyperplane of V. If F = GF(q) and H is a hyperplane in V,

then H contains qn-1 points.

Definition 4.3.4 Let V be a non-degenerate symplectic space over a field F and

T E SP(2n, F), T =I I such that for some hyperplane H of V, we have

(i) T(h) ~ h V h E H

(ii) T(x) - x E H Vx E V - H

Then T is called a symplectic transvection of V.

Theorem 4.3.5 (58) Let T be a symplectic transvection with hyperplane H. Then

there is a non-zero w E V such that H = (w)J.. and for all v E V we have T(v) =
v + cf(w, v)w for c E F. Conversely for w =I 0, w E V and 0 =I c E F define

T : V ~ V by T(v) = v + cf(w, v)w for all v E V. Then T is a symplectic
transvection with hyperplane (w)J...

Proof Let x E V-H. Since T is nonidentity, T(x) - x =I O. Let y E H such that

y =I 0 and T(x) - x = y. Since H is a hyperplane and x rf.- H, V = (x) EB H. Then

dim(HJ..) = 1 and hence HJ.. = (w) for some w =I O,w E V. Define 4J : V ~ F

by 4J(v) = 4J( Ax + h) = A and it can be shown that cP is a linear functional, so there
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is z E V such that zO = cjJ, where e : V ---+ 11 is the linear isomorphism given in

Remark 4.2.7 part 3. For all v E V, cjJ(v) = ZO(v) = f(z, v),

T(v) T(Ax + h) = AT(x) + T(h) = AT(x) + h = A(Y + x) + h

- Ay + AX + h = v + Ay = v + cjJ(v)y = v + f(z, v)y.

Now for all h E H,

f(h, x) = f(T(h), T(x)) = f(h, x + y) = f(h, x) + f(h, y)

So f(h, y) = 0 for all h E H, that is y E Hi-. Since H = (w)i- then y E (w), so that

y = ClW for some Cl E F. Since y =f 0, then Cl =f O. Therefore T(v) = v + clf(z, v)w.

Since 0 = cjJ(h) = f(z, h) for all h E H, z E Hi- and thus z = C2W for some C2 E F.

Hence T(v) = v + ClC2f(w, v)w.

Conversely for 0 =f C E F and 0 =f w E V, define T : V ---+ V by T(v) = v +
cf(w, v)w for all v E V. It can be shown that T E SP(2n, F). Let H = (w)i- then for

hE H, T(h) = h+cf(w,h)w = h+O = handifv E VthenT(v)-v = cf(w,v)w = kw
for some kEF. Since (w) ~ (w)i-, then T(v) - v E (w)i- = H. Therefore T is a

symplectic transvection with the hyperplane H = (w)i-. D

If T is a transvection, then by theorem 4.3.5 there exists c E F* and w E V* such

that T = Tc,w' For T = Tc,w we say that T is a transvection in direction w. Let X

be the set of all symplectic transvections of V. Then it can be shown that (X) is

transitive on V* and on hyperbolic pairs. (See [58])

Theorem 4.3.6 [58] SP(2n, F) is generated by the set of all symplectic transvec
tions.

Proof For n = 1, we obtain that SP(2, F) f'V SL(2, F) and that SL(V) = (X) by

Proposition 2.4.6 of [10] and the proof is complete. Suppose that n > 1 and let {x, y}
be a hyperbolic pair and S E SP(2n, F). Then {S(x), S(y)} is also a hyperbolic pair.

Since (X) is transitive on hyperbolic pairs, then there exists T E (X) such that

T(x) = S(x) and T(y) = S(y)

Let P = T-lS ; {x, y} ---. {x, y} and H = (x, y). Then V = H ..1 Hi-. Since

P fixes H, then P(Hi-) = Hi- and thus P also fixes Hi.. Thus we obtain that
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P lH.L= pi is an isometry on HJ.... Now suppose th~ result is true for all symplectic

spaces whose dimensions are less than 2n. Since dim(HJ...) = 2n - 2, then by the

induction hypothesis

pi = IIT:

where T;'s are symplectic transvections of H 1.. • Now we define Ti : V ~ V by

Ti(h + hi) = h + T:(h' ) V h E H, hi E HJ... and all indices i. If T: is a transvection

with hyperplane (hDJ... n HJ..., where h~ E HJ..., then Ti will also be a transvection with

hyperplane HJ...((h~)J... n HJ...). Since

pl=IIT: and P=T-1S,
i

then we obtain that

s = IIT7i
i

and thus S E (X). Hence the result. D

Corollary 4.3.7 SP(2n, F) is transitive on V*.

Proof The result follows immediately since SP(2n, F) is generated by the set of all

symplectic transvections of V. D

All elements of SP(2n, F) have determinant 1. We can also show that SP(2n, F)

is perfect except for the cases SP(2, 2), SP(2, 3) and SP(4, 2) '" S6' The isomorphism

between SP(4,2) and S6 has been discussed in some detail in [58].

Theorem 4.3.8 Let q be a power of an odd prime p. Then SP(2n, q) has irreducible

characters'l/Jl and'l/J2 of degrees (qn + 1)/2 and (qn - 1)/2 respectively. Moreover

for all x E SP(2n, q) and V = V(2n, q) is the natural module of SP(2n, q).

Proof See Theorem 4.8 of [59). D
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4.4 The Affine Subgroups of Symplectic Groups

Let V be a vector space of dimension 2n over GF(q), where q is a power of a prime

p. Then SP(2n, q) is transitive on the nonzero points of V. Then we consider the

subgroup of SP(2n, q) which is a stabilizer of a nonzero vector of V and study the

structure of this subgroup.

Definition 4.4.1 Let {el, e2,' .. ,e2n} be a basis for V and f be anon-degenerate

symplectic form f : V x V ~ F defined by f(ei' ej) = 8(i,2n + 1 - j), where

i ::; j. Then (V, f) is a non-degenerate symplectic space of dimension 2n. Let T be

an isometry of (V, f) and

G(n) = SP(2n,q) = {T I f(T(x),T(y)) = f(x,y) Vx,y E V}

Then G(n) acts transitively on V* . . Let a E V* and A(n) be the stabilizer of a in

G(n). Then we obtain that

A(n) = {T E G(n) IT(a) = a}

Then A(n) ::; G(n) and A(n) is called the affine subgroup of G(n).

Remark 4.4.2 In any finite dimensional non-degenerate symplectic space (V, f) we

can find a suitable basis such that f can be given as in Definition 4.4.1 above.

Since A(n) ~ G(n), then we obtain that [G(n):A(n)] = q2n - 1 and A(n) is the

subgroup of G(n) that fixes a nonzero vector a E V*.

Let G be a group. Then the intersection of all maximal subgroups of G is itself a

subgroup of G. We denote this intersection by 4>(G) and write

4>(G) = n M
max

M::;G

Then 4> (G) is called the Frattini subgroup of G. However we have that 4> (G) is a

normal subgroup of G. Now suppose that G = P is a p-group. Then P' ~ 4>(P).

We say that P is a special p-group if we have that Z(P) = P' = <I>(P) is elementary

abelian.
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Lemlna 4.4.3 {53} Let q be a power of an odd prime p. Then A(n) is a split extension

of a special p-group P(n) of order q2n-l by a subgroup H of G(n) such that H rv

G(n - 1) rv SP(2n - 2, q).

Proof We have that the symplectic form f can be given by f(ei' ej) = 8(i, 2n+ 1- j),
where i ::; j and {el, e2, ... ,e2n} is a suitable basis for V. Since G(n) acts transitively

on V*, then we let A(n) to be the stabilizer of el in G(n). Thus we have A(n) =
{T E G(n) I T(el) = ell. Let P(n) be the subg~oup of A(n) consisting of elements

T E G(n), such that

2n
T( e2n) = L {3i ei

i=l

where (3l is arbitrary and

2::;j::;n
n < j ::; 2n - 1

Let H be the subgroup of A(n) which fixes e2n' Then H fixes both el and e2n

and acts on W = (e2' e3,' .. ,e2n-l) as G(n - 1) and we obtain that H rv G(n - 1) rv

SP(2n - 2, q). It can be shown that H is a complement of P(n) in A(n). Hence we

obtain that

A(n) =P(n):H = P(n):SP(2n - 2, q)

o

Remark 4.4.4 It is not difficult to see that if p = 2, then P(n) is an elementary

abelian 2-group.

Theorem 4.4.5 {53} Let q be a power of an odd prime p. Then for any i E Z

satisfying 1 ::; i ::; n-1, A(n) has non-faithful irreducible characters of degree (q2n-2_

1)··· (q2n-2i - 1). The kernel of these characters is the centre Z(P(n)) of P(n).
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Proof The existence of these characters follows by induction similar to the proof of

Theorem 1 in [53]. G(n - 1) acts transitively on the non-identity linear characters

of P(n) and thus we can take the subgroup fixing such a character to be A(n - 1).

Z(P(n)) sits in the kernel of any of the characters. However P(n)/Z(P(n)) is the

unique minimal normal subgroup of A(n)/Z(P(n)) and P(n) cannot be contained in

the kernel of any character. Hence these kernels cannot be larger than Z(P(n)) and

therefore they must be equal to Z(P(n)). Hence the result. D

For q a power of an odd prime p, then P(n) has q - 1 irreducible characters of

degree qn-l and these are all invariant under the action of G (n - 1).

Theorem 4.4.6 Let q be a power of 2. Then A(n) has non-faithful irreducible char

acters of degree (q2n-2 - 1) ... (q2n-2i - 1) for any i E Z satisfying 1 :::; i :::; n - 1.

Proof The proof is similar to Theorem 4.4.5 for the odd characteristic case although

the subgroup P(n) is now elementary abelian. D

Let q be a power of 2. Then there are two different quadratic forms, denoted by f+

and f- which can be defined on V. The two groups leaving these forms invariant are

denoted by O+(2n, q) and O-(2~, q) respectively and they are subgroups of GL(2n, q)

which sit maximally in SP(2n, q). The groups O+(2n, q) and O-(2n, q) are orthogonal

groups.

Since A(n) = P(n):G(n - 1), where G(n - 1) rv SP(2n - 2, q), then the two

orthogonal groups which sit inside G(n - 1) are O+(2n - 2, q) and O-(2n - 2, q).

Hence we can obtain two characters of A(n) of degree [G(n - 1) : O+(2n - 2, q)] and

[G(n-1) : O-(2n-2, q)]. These characters are irreducible with degrees ~qn-l(qn-l+l)

and ~qn-l(qn-l-1) respectively. (See Theorem 4 of [53]). We can also obtain further

characters of A(n) by using the characters of O+(2n - 2,q) and O-(2n - 2,q). For

example these orthogonal groups have each a character of degree q(n-l)(n-2) which is

known as the Steinberg character. Using the Steinberg character of these groups, we

can obtain characters of A(n) of degrees ~q(n-l)2(qn-l + 1).

Remark 4.4.7 Let q = 2k for some k E IN. Then P(n) is an elementary abelian

2-group. The group A(n) has 2q orbits ~1, ,~2q on P(n) such that

I~ll = 1~21 = = I~ql = 1
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l~q+11 = l~q+21 = ... = 1~2ql = q2n-2 - 1

Furthermore the action of A(n) on Irr(P(n)) produces 2q orbits fl, ... ,f2q such that

Ifll = 1 and If21 = q2n-2 - 1

1
If3 1 = If4 1 = ... = \fq+11 = 2qn- l (qn-1 + 1)

1
Ifq+21 = Ifq+3 1 = ... = If2q l = 2qn- l (qn-1 - 1)

'with corresponding stabilizers as:

G(n - 1); A(n - 1); O+(2n - 2, q), q - 1 copies; O-(2n - 2, q), q - 1 comes

The corresponding indices of these stabilizers in G(n - 1) are:



Chapter 5

The Fischer-Clifford Matrices

Character tables of finite groups can be constructed using various teclmiques. How

ever B. Fischer studied a teclmique which can be used to construct character tables of

group extensions. This technique derives its fundamentals from the Clifford Theory.

This technique which is known as the technique of the Fischer- Clifford matrices, pro

vides very powerful information for constructing character tables. In this thesis we

apply this technique mainly to split extensions. Given a group extension G = N·G

such that every irreducible character of N can be extended to its inertia group then

for each class representative 9 E G, we are able to construct a matrix M (g) called

the Fischer-Clifford matrix. By using these matrices together with the fusion maps

and character tables of some subgroups of G which are inertia factors of the inertia

groups in G, we are able to construct the complete character table of G. In this

chapter, we shall discuss the theory behind the teclmique of the Fischer-Clifford ma

trices. We shall however begin by discussing the Clifford Theory and then go on to

discuss the theory of the Fischer-Clifford matrices. Then the character table of G

can be constructed using these matrices and the character tables of factor groups

of the inertia groups. This technique has also been discussed and used in [30], [31],

[41), [42], [43], [75], [76], [98], [106] and [116]. In the subsequent chapters, we will

use this technique and other group theoretic and character theoretic information that

have been discussed in the previous chapters to construct the character tables of the

groups which have been studied in this thesis. For the Fischer-Clifford matrices, we

shall follow the work of Whitley [116] very closely.

66
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5.1 The Clifford Theory
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Definition 5.1.1 Let C be a group, H ::; C and B be a character of H. Then for

g E C, we define B9 : gHg- 1 --+ C by B9(t) = B(gtg-1 ) for all t E gHg- 1 . Then B9

is said to be a C-conjugate of B. If H is a normal subgroup of C and B9 = B for all

9 E C, then B is said to be C -invariant.

If H ::; C and 9 E C, then B9 is a character of gHg-l. However if H is normal in

C, B9 becomes a character of H.

Remark 5.1.2 Let C be a group, H a normal subgroup of C and Ba character of H.

Then for 9 E C, it is not difficult to see that B9 E Irr(H) if and only if B E Irr(H).

Theorem 5.1.3 !60}(Clifford's Theorem) Let C be a group, H a normal subgroup

of C and X E I rr(C). Let B be an irreducible constituent of XH and that B1, B2 , ... , Bn

are the distinct conjugates of B in C such that B1 = B. Then
n

XH = e I: Bi, where e = (XH, B)
i=l

Proof We have that for h E H

BG(h) = I~I L BO(xhx-
1

) = I~I L BX(h)
xEG xEG

Thus we obtain that

(BG)H = I~I L B
X

xEG
Let cf; E Irr(H) such that cf; <t {B i 11 ::; i ::; n}. Then we obtain that

and hence ((BG) H, cf;) = O. However by the Frobenius reciprocity, we obtain that

(XH, B) = (X, BG). Hence X is an irreducible constituent of BG. Since ((BG)H, cf;) = 0,

then (XH,cj;) = O. Thus cP is not an irreducible constituent of XH' Hence all the

irreducible constituents of XH are among the Bi and thus we obtain that
n n n n

XH = L(XH, Bi)Bi = L(XH, B)Bi = (XH, B) L Bi = e L Bi ,
i=l i=l i=l i=l
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where e = (XH, B). Hence result D

Clifford's Theorem asserts that for H a normal subgroup of G, X E I rr(G) and

B E Irr(H) an irreducible constituent of XH, then every G-conjugate of ewill also be

an irreducible constituent of XH'

Theorem 5.1.4 [70} Let G be a group, K, H ~ G such that K ~ H :S G and X be a

character of K. Then for all 9 ~ G we have

(i) (XH)9 = (X9)9- 1 H9

(ii) (X9 )C = Xc.

Proof (i) Let T be a transversal for K in H. Then gTg- 1 is a transversal for gKg- 1

in gHg-l. Define XO as follows

O(x) = {X(X) x E K
X 0 xrf-K

Let A = X9 -
1

, then define A° similarly as follows

We obtain that x E gKg-l if and only if g-l xg E K and thus we obtain that

,xO(x) = (XO)9-1(X) = XO(g-l xg ) for all x,g E G. Thus for any x E gHg-1, we obtain

that

,x9H9-1(x) _ L ,x°((gtg- 1)x(gtg-1 ) -1) = L XO (g-l (gtg- 1 )x(gtg-1)-1g)
tET tET

LxO(t(g-l xg )t-1) = XH(g-l xg ) = (X H)9-
1
(X)

tET

Hence we obtain that (XH)9-1(X) = ,x9H9-1(X) = (X9-1)9H9-1(X), for all x,g E G and

therefore we have that (X H)9 = (X9)9-1H9. Hence (i) is established.

(ii) We know that XG = (XH)c. Thus

1
XC (x) = IJ(\ L XO(txt- 1

)

I tEG
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where txt- 1 E K. Also we obtain that

Taking t = yg, then we obtain that

69

1
(XG)9(X) = - L XO(txt- 1) = XG(x)

IKI tEG .

Thus we obtain that (XG)9 = XG. However by (i) above, we have that (XG)9 =

(X9 )9-
1G

9 = (X9 )G. Hence we obtain that (X9 )G = XG and (ii) is established. 0

Let cjJ be a representation of G and a an automorphism of G. Then cjJO: is a

representation of G given by

for x, y E G. If the representation cjJ ~ffords a character X of G, then the representation

cjJO: affords a character xO: of G which is given by XO:(x) = X(xO:) for x E G. Then the

representation cjJO: and the character xO: are called the algebraic conjugates of cjJ and

X respectively induced by the automorphism a. Let X = (Xi(Xj)) be the character

table of G, where Xi E I rr (G), "1 :s; i :s; n and x j, 1 :s; j :s; n are representatives of

the conjugacy classes of elements of G. Then the automorphism a of G induces a

permutation on the c.onjugacy classes of G and thus induces a permutation on the

columns of X. For each Xi E I rr(G), we deduce that xf E I rr(G). Hence a induces a

permutation on the irreducible characters Xi of G and thus induces a permutation on

the rows of X. Moreover since xf(xj) = Xi(Xj), then the matrices obtained from X

by these two operations are identical. Hence we obtain the following theorem known

as Brauer's Theorem.

Theorem 5.1.5 [52j(Brauer's Theorem) Let G be a group and K be a group of

automorphisms of G. Then the number of orbits of K as a group of permutations on

the irreducible characters of G is the same as the number of orbits of K as a group

of permutations on the conjugacy classes of G.

Proof Let X be the character table of G. Then as a matrix, X is square and

nonsingular. Let a be an automorhism of G such that a E K. Then a induces a
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permutation on the conjugacy classes of C and thus induces a permutation on the

columns of X. Hence K acts on the conjugacy classes of C. Since a E K, then to

each character X of C, we obtain a character XQ of C such that XQ E Irr(C) whenever

X E Irr(C). For y E C, we obtain that XQ(y) = X(yQ). Thus a induces a permutation

on the rows of X. Hence K acts on the irreducible characters of C. Let XQ denote

the image of X under a. Then we obtain that

P(a)X = X Q
= XQ(a) ,

where P(a), Q(a) are appropriate permutation matrices which are uniquely deter

mined by a E K. Suppose that a, (3 E K. Then \ve obtain that XQ!3 = (X
Q)!3. Also

we have that

P(a{3)X = X Q!3 = (XQ )!3 = (P(a)X)!3 = P({3)P(a)X

and hence P(a{3) = P({3)P(a). We also have that XQ!3 = XQ(a{3) and (XQ)!3 =

(XQ(a))!3 = XQ(a)Q({3). Since XQ!3 = (-",yQ)!3, we obtain that XQ(a{3) = XQ(a)Q({3).
The nonsingularity of X implies that Q(a{3) = Q(a)Q({3). Define mappings 71"1

and 71"2 on K by 71"1(a) = (P(a))t and 71"2(a) = Q(a), where t denotes the trans

pose operation on matrices. Then 71"1 and 71"2 are permutation representations of K.

Let el and e2 be the permutation characters afforded by 71"1 and 71"2 respectively.

Since X-I P(a)X = Q(a), P(a) and Q(a) are similar and thus have the same trace.

Since trace(P(a))t = trace(P(a)), we have that trace(P(a))t = trace(Q(a)). Hence

e1 = e2 and 71"1 and 71"2 are equivalent. Let dl , d2 be the number of orbits of K on the

irreducible characters and on the conjugacy classes of C respectively. Thus we observe

that d1 is the number of orbits of 71"1 (K) in its action as a group of permutations. Also

d2 is the number of orbits of 71"2(K) in its action as a group of permutations. Since

e1 is the permutation character of K acting on the irreducible characters of C, \ve

obtain that (el, IK ) = d1. Also for e2 , we obtain that (e2 ,IK ) = d2 . However e1 = e2

and thus (el, IK ) = (e2 , IK ) and hence d1 = d2. Hence the result. D

Definition 5.1.6 Let G be a group and H ~ G. Then for a character' X of H, we

define

Ic(X) = {g E Nc(H) I xg
= X}
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and we call Ic(X) the inertia group of X in G. If H .is normal in G, then

Ic(X) = {g E G I X9 = X} .
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We observe that Nc(H) acts on the characters of H by g : X ~ X9 for all

g E Nc (H). Then the inertia group of X is the stabilizer of X in Nc(H). Hence

Ic(X) ~ Nc(H) ~ G and it is not difficult to see that H is a normal subgroup of

Ic(X)·

Theorem 5.1.7 [60} Let G be a group, H a normal subgroup of G, B E Irr(H) and

T = Ic(B). Let

A = {VJ E Irr(T) I ('l/JH, B) =I O}

B = {X E Irr(G) I (XH, B) =I O}

Then

(a) If'l/J E A, then 'l/Jc E Irr(G).

(b) If'l/Jc = X and'l/J E A, then ('l/JH, B) =-(XH,()).

(c) If'l/Jc = X and'l/J E A, then'l/J is the unique irreducible constituent of XT which

sits in A.

(d) The· map 'l/J~ 'l/Jc is a bijection of A to B.

Proof (a) Let 'l/J E A and X be an irreducible constituent of 'l/Jc . Then 'l/J is an

irreducible constituent of XT' Since B is an irreducible constituent of 'l/JH' B is an

irreducible constituent of XH and thus X E B. Now suppose that ()1, B2 , ... ,Bn are the

distinct conjugactes of B in G, where B1 = e. Then we obtain that [G : T] = n and by

Clifford's theorem, we obtain that XH = e L~=l Bi for some e E IN, where e = (XH, B).
Since Bis invariant in T, Bis self-conjugate in T. Hence by Clifford's theorem (applied

to T, Hand 'l/J) we get that 'l/JH = kB for some k E IN where k = ('l/JH, B). Since 'l/J is

an irreducible constituent of XT, then we obtain that k ~ e. Hence we have
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and thus equality holds throughout. In particular, from this equality we obtain that

'ljJC(lc) = X(lc) and hence we obtain that 'ljJc = X. Therefore 'ljJc E Irr(G).

(b) We have that (XH, e) = e and ('ljJH' e) = k and from the equality in part(a),

we obtain that k = e and thus (XH, e) = ('0H, e).

(c) Let cP E A, cP =1= 'ljJ and cP is an irreducible constituent of XT. Then we obtain

that

which is a contradiction by part(b). Hence the result.

(d) The map 'ljJ ~ 'ljJc is well-defined by part(a). Also we obtain that for any

'ljJ E A, 7jJc E B by part(b). By the uniqueness assertion given by part (c), the map

'ljJ ~ 'ljJG is one-to-one. Then suffices to show that the map is onto B. Let X E 13.
Then e is an irreducible constituent of XH and hence there exists an irreducible

constituent 'ljJ of XT such that ('ljJH, e) =1= O. Thus 'ljJ E A and we have that X is an

irreducible constituent of 'ljJG. Hence we obtain that X = 'ljJc since 'ljJc E I rr(G) by

part(a). D

Remark 5.1.8 By Theorem 5.1.7 we deduce that induction to G maps the irreducible

characters of T that contain ein their restriction to H faithfully onto the irreducible

characters of G that contain e in their restriction to H.

Definition 5.1.9 Let G be a group, H a normal subgroup of G, e E Irr(H) and

T = Ic (e). Since H is normal in T, then the factor group T / H is called the inertia

factor ofT.

Let G = N:G. Then for all B E Irr(N), define

H = {x E G I ex = e} = Ic(e)

H = {y E G I BY = e} = IG (e)

Then it can be shown that H = N:H.

Remark 5.1.10 The inertia factor H /N ~ H can be regarded as the inertia group

of e in the factor group G/ N rv G.



5.1. THE CLIFFORD THEORY 73

Definition 5.1.11 Let G be a group, H a subgroup ofG, eE Irr(H) and X E Irr(G)

such that XH = e. Then e is said to be extendible to an irreducible character of G.

If e is extendible to an irreducible character of G, we will simply say that e is

extendible to G. There are various conditions which have to be satisfied in order

that e can be extended to G. For our purposes, the cornerstone of those conditions

is given in Mackey's Theorem which will be proved later. Readers can also consult

[47], [48], [69] and many other relevant sources for further reading and information

on extendibility of characters.

Definition 5.1.12 Let G be a group and F be a field. Then the map p : G --t

GL(n, F) such that

(i) p(lc) = I, where I is the identity n x n matrix.

(ii) for all x, y E G, there exists a map a : G x G --t F* such that

p(x)p(y) = a(x, y)p(xy) where a(x, y) E F* .

Then p is called a projective representation of G over F of degree n. The map a is

called the factor set associated with p.

From the above definition, we observe that

a(x, y) = p(x)p(y)(p(xy))-l

Thus for the factor set a associated with p, if a (x, y) = 1F for all x, y E G, then we

obtain that

p(xy) = p(x)p(y)

and hence p becomes an ordinary representation of G. Sometimes a pair (p, a) is used

to indicate a projective representation p and its associated factor set a.

Theorem 5.1.13 (70] Let N a normal subgroup of G, F = C, X E Irr(N), where X

is G- invariant and let r be a matrix representation of N which affords X. Then
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(i) there exists a projective representation P of G such that r(n) = p(n) and

(p(g) )0(9) = I, for all 11. E N, 9 E G where I is the identity matrix.

(ii) If G = N·H for some H ::; G and if PH is an ordinary representation of H,

then X can be extended to G.

Proof (i) Let 9 E G. Since X is G-invariant, then the representations rand r g of N

are equivalent. Hence there is an invertible matrix O(g) such that (O(g))-lr(n)O(g) =
r 9 (n), \\rhere 9 E G,n E N. We may assume that 0(11.) = r(n) for all 11. E N. We have

that 0 : G --+ GL(k, F), where k = deg(r), and that ON = r. Now let gl, g2 E G,

then we obtain that

(0(91g2))-lr(n)0(glg2) r 9192 (n)· (r91 )92(n) = (0(g2))-lr91 (n)0(g2)

- (0(g2)) -1 (O(gl)) -1r( 11. )O(gl )0(g2)'

So that

Thus for all 11. E N, 0(gl)0(g2)(0(glg2))-1 commutes with r(n) and thus by the

Corollary 3.1.3, we can define a function a : G x' G --+ F* such that 0(gl)0(g2) =
a(gl,g2)0(glg2). Since r is a representation of N, then we obtain that O(IN) =
r(IN) = I. Hence 0 IS a projective representation of G with associated factor set a.

Let o(g) = m and if 9 E N, then we obtain that (O(g))m = I. However if 9 E G - N,

then since O(gm) = O(lc) = I, then there exists )..(g) E F* such that (O(g))m = )..(g)I.

Now let /1(g) E F* such that (/1(g))m = ()..(g))-1 and let /1(11.) = IF for all 11. E N.

Then the projective representation p of G given by p(g) = J-l(g )O(g) is such that

p(n) = J-l(n)O(n) = O(n) = r(n) for all 11. E N. Also 'we have that

Hence property (i) is established.

(ii) Let T be a transversal for N n H in H containing IH. Then every 9 E G has

a unique expression of the form 9 = tn, where t E T,n E N. Now let gl E G, gl =1= 9

be given by gl = t 1nl, where t 1 E T,nl E N. Since t, t1 E T, then t, t 1 E Hand
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hence tt l E H. Now let tt l = t2n2, where t2 E T and n2 E N n H. Define'ljJ on C by

7jJ(g) = p(t)p(n). Since n2fllntlnl E N, we obtain that

Also we have

'ljJ(g)'ljJ(gl) - p(t)p(n)p(tl)p(nl) = p(t)p(tl)(p(tl))-lp(n)p(tl)p(nl)

p(t )p(t l ) [(p(t l )) -1 p(n)p(tl)]p(nd.

However from the proof of part(i) above we have that (p(g))-lr(n)p(g) = r 9 (n) and

p(n) = f(n) for all n E N, 9 E C. Since t;lntl E N, then we obtain that

Since by the assuruption p is an ordinary representation on H we have p(tt l )

p(t)p(tl ) since tt l E H. We deduce that

'ljJ(g)'ljJ(gl) p(t)p(n)p(tl)p(nl)

p(t)p(tl )(p(t l ))-1 p(n )p(tl)p(nl)

- p(t) p(t l )[(p( t l )) -1 p(n) p(t l )]p(nl)

p(t)p(tl)p(t;lntl)p(nl) = p(ttdp(t;lntl)p(nl)

p(t2n2)p(t;lntl)p(nl) = p(t2)p(n2t;lntlnl)'

Hence we obtain that 7jJ(ggl) = 'ljJ(g)'ljJ(gd. Therefore'ljJ is an ordinary representation

of C. However V n E N, we obtain that 'lj)(n) = p(n) = r(n) and thus the character

afforded by the representation 7jJ of C, extends X to C. Hence the result. D

Theorem 5.1.14 [70] Let C = N·G where N is a normal subgroup of G, and G ::; G

such that N n G ~ N'. If B is an irreducible G-invariant character of N such that

(deg(B), ICI) = 1, then B can be extended to C.

Proof For a detailed proof which uses the previous theorem, see Corollary 7.1.2 of

[70] 0
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Theorem 5.1.15 (!27},f116})(Mackey's Theorem) Let N be a normal subgroup of

G and 8 be a G.-invariant irreducible character of N. If N is abelian and G splits

over N, then 8 can be extended to G.

Proof Let G = N:G. Since G is a sernidirect product of N by G, then any x E G

can be expressed uniquely as x = ng, where n E N, g E G. Define X on G by

x(ng) = 8(n). Since N is abelian, 8 has degree 1 and thus is linear .. The invariance

of 8 in G implies that 8(n) = 8(xnx- l
) for all x E G. Now let Xl = n19l, X2 = n292

be elements of G. Then we obtain that

X(X1X2) - x(n1g1n292) = x(nln~lg1g2) = 8(nln~1)

- 8(nd8(n~1) = 8(nl)8(n2) = X(X1)X(X2).

Therefore X is a linear character of G such that XN = 8. 0

Remark 5.1.16 We give a different proof of Mackey's theorem by applying Theorem

5.1.14. Let G = N:G. Since N is abelian, then N' = {I} and de9(8) = 1. Also since

extension is split, we have N n G = {I}. °Thus we obtain that N n G ~ N' and

(deg(8),IGI) = 1. Thus the conditions of Theorem 5.1.14 are satisfied and hence 8

can be extended to G.

Another extension result is given in the following theorem proved by Gagola in

[47].

Theorem 5.1.17 Let N be a normal subgroup of a finite group G and 8 be an irre

ducible character of N which is invariant in G, then 8 is extendible to a character of
-. - ~

G if ([G : N], deg(B)) = 1.

Proof See [47]. D

Theorem 5.1.18 Suppose G is a splitting extension of a normal subgroup N, then

any linear character 8 E Irr(N) can be extended to its inertia group Ic(8).
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Proof Let G = IV:G and B E Irr(N) be linear. Let H = Ic(B), then we obtain

that H = N:H, where H = Ic(B). Since H is a split extension, we obtain that

N n H = {I} S; N'. Also we have that (deg(,J) , IHI) = (1, IHI) = 1 and clearly B is

H-invariant. Thus the conditions of Theorem 5.1.14 are satisfied and hence B can be

extended to H. D

TheorerIl 5.1.18 is proved in a different way as Lemma 2.2 in [102]. Also Mackey's

theorem is reinforced by Theorem 5.1.18 since for N abelian, all its irreducible char

acters are linear and hence are extendible to their inertia groups.

Theorem 5.1.19 ([48},[60},[116})(Gallagher's Theorem) Let N a normal sub

group of G, B E Irr(N) and H = Ic(B). If B can be extended to 'ljJ E Irr(H)

then as j3 ranges over all the irreducible characters of H which contain N in their

kernels, j3'IjJ ranges over all the irreducible characters of H which contain B in their

restriction to N.

Proof Since H = Ic(B), then B is self-conjugate in H and thus by Clifford's theorem

we obtain that (BH)N = fB for some positive integer f. Comparing degrees we

have (BH)N = [H : N]B and so (BH,BH) = (B, (BH)N) = [H : N]. Now we claim

that BH = ~/3 j3(lc )j3'ljJ, where j3 ranges over all the irreducible characters of H that

contain lV in their kernels. Both BH and ~/3 j3(lc )j3'ljJ are zero off N since for 9 (j.

N, xgx-1 (j. N for all x E G and thus BH (g) = O. Also for 9 (j. N, by the orthogonality

of the columns of the character table of H/N we have that ~/3{3(lc)(j3'ljJ)(g) =
[~/3j3(lc)j3(g)]'ljJ(g) = O. We also have that (BH)N = [H : N]B = (~/3j3(lc){3'ljJ)N

since for 9 E N, ~/3{3(lc)j3(g)'ljJ(g)= ~/3(j3(lc))2'ljJ(g) = [H: N]'ljJ(g) = [H: N]B(g).
Hence we obtain that eH = L:/3 j3(lc )j3'ljJ. So we have

[H : N] = (B H,BH) = (2: j3(lc )j3'ljJ, LT(lc )T'IjJ) = 2: j3(lc )T(lc )(j3'IjJ, T'ljJ)
{3 T /3,T

The diagonal terms contribute at least ~(j3(lc))2 = [H : N], so the j3'IjJ are irreducible

and distinct, and are all the irreducible constituents of BH and so are all the irreducible

characters of H that contain Bin their restriction to N, since for <P E Irr(H) such that

(<PN, B) i= 0, we obtain that (<PN, B) = (<p, BH) which implies that <P is an irreducible

constituent of BH and hence is of the form j3'IjJ. D
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5.2 The Fischer-Clifford matrices

Let G = AT·G such that every irreducible character of N is extendible to its inertia

group. We have that G permutes Irr(N) by x : 0 t----+ Ox, where x E G and 0 E

Irr(N). Now let 01 , O2 , ... , Ot be representatives of the orbits of G on Irr(N), Hi =
IC(Oi) , 1 ::; i ::; t, 'l/Ji E Irr(Hd be an extension of Oi to Hi and (3 E Irr(Hi) such

that N ~ ker({3). Then by Gallagher's theorem, Theorem 5.1.7 and Remark 5.1.8 all

irreducible characters of G will be of the form ({3'l/Ji)C, 1 ::; i ::; t. So·

t

Irr(G) = U{({3'l/Ji)G I (3 E Irr(Hi), N ~ ker({3)}
i=l

Hence the irreducible characters of G will be divided into blocks, where each block

corresponds to an inertia group Hi.

5.2.1 Definition and Preliminaries

Let G = N·G with the property that every irreducible character of N can be extended

to its inertia group. Let 9 E G be a lifting of 9 E G under the natural homomorphism

G ~ G and [g] be a conjugacy class of elements of G with representative g. Let

X(g) = {Xl, X2,"" Xc(g)} be a set of representatives of the conjugacy classes of G

from the coset Ng whose images under the natural homomorphism G ~ G are in

[g] and we take Xl = g. Let {Ol ' O2, ... ,Ot} be a set of representatives of the orbits

of G on I rr( N) such that for 1 ::; i ::; t, we have Hi = Ic(Oi) with Hi = Hi/ N ::; G

and that 'l/Ji E Irr(Hi) is an extension of Oi to Hi. Then without loss of generality

suppose that 01 = IN is the identity character of N. Then HI = G and HI = G. Now

choose Yl, Y2, ... ,Yr to be the representatives of the conjugacy classes of elements of

Hi which fuse into [g] in G. Since Yk E Hi for 1 ::; k ::; r, then we define Ye
k

E Hi
such that Yek ranges over all the representatives of the conjugacy classes of elements

of Hi which map to Yk under the homomorphism Hi ~ Hi whose kernel is N. Let

(3 E I rr(Hi) such that N ~ ker({3). Then (3 is a lifting of ffi E I rr(Hi) such that

(3(Yek ) = ffi(Yk) for any lifting Yek E Hi of Yk E Hi. Then we obtain that
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where ~e' is the summation over all f for which Yf.k rv Xj in G. Now we define a

matrix Mi(g) by Mi(g) = (auv ), where 1 :::; u :::; rand 1.:::; v :::; c(g), and

Then we obtain that

('ljJd3)G(Xj) = L auvb(Yk)
l::;k::;r

By doing this for all 1 :::; i :::; t such that Hi contains an element in [g] we obtain the
matrix M(g) given by

M(g) =

Mt(g)

where M i (g) is the submatrix corresponding to the inertia group Hi and its inertia

factor Hi' If Hi n [g] = 0, then M i (g) will not exist and M (g) does not contain Mi (g).

The size of the matrix M (g) is p x c(g) where p is the number of conjugacy classes of

elernents of the inertia factors II/s for 1 :::; i :::; t which fuse into [g] in G and c(g) is

the number of conjugacy classes of elements of G which correspond to the coset Ng.

Then M (g) is the Fischer- ClifJord matrix of G corresponding to the coset Ng. We

will see later that M (g) is a c(g) x c(g) nonsingular matrix. Let

and we note that Yk runs over representatives of the conjugacy classes of elements of

Hi which fuse into [g] in G. Following the notation used in [43] and [116] we denote

M(g) by writing M(g) = (a)i'Yk)), where
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with columns indexed by X(g) and rows indexed by R(g). Then the partial character
table of G on the classes {Xl, X2,"" Xc(g)} is given by

Cl (g)M l (g)
C2 (g)M2 (g)

where the Fischer-Clifford matrix M(g) is divided into blocks with each block cor

responding to an inertia group Hi and Ci (g) is the partial character table of Hi

consisting of the columns corresponding to the classes that fuse into [g] in G. We can

also observe that the number of irreducible characters of G is the sum of the numbers

of irreducible characters of the inertia factors Hi'S.

5.2.2 Properties of Fischer-Clifford matrices

We shall discuss the properties which are useful in the computation of the Fischer

Clifford matrices. These properties have been discussed in [41], [75], [76], [106], [98],

[116].

Let K be a group and A :::; Aut(K). Then by Brauer's theorem A acts on the

conjugacy classes of elements of K and on the irreducible characters of K resulting

in the same number of orbits.

Lemma 5.2.1 Suppose we have the following matrix describing the above actions:

1 = Il I2 Ij It

SI 1 1 1 1

S2 a2l a22 a2j a2t

Si ail ai2 aij ait

St at} at2 atj att

where alj = 1 for j E {I, 2, ... , t}, Ij's are lengths of orbits of A on the conjugacy

classes of K, Si'S are lengths of orbits of A on Irr(K) and aij is the sum of Si

irreducible characters of K on the element Xj, where Xj is an element of the orbit of
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length lj. Then the following relation holds for i, i' E {I, 2, ... , t}:

2:~=1 aijai1jlj = IKl s i 6ii"
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Proof This result has been proved as Lemma 2.2.2 in [106] and as Lemma 4.2.2 in

[116]. 0

Let Xj E X(g) and define mj = [Cy : Cc(Xj)]' The Fischer-Clifford matrix M(g)
is partitioned row-wise into blocks, where each block corresponds to an inertia group.

The columns of M (g) are indexed by X (g) and for each Xj E X (g), at the top of the

columns of M(g), we write ICc(Xj)1 and at the bottom we write mj' The rows of

M(g) are indexed by R(g) and on the left of each row we write ICHi(Yk)l, where Yk
fuses into [g] in G. Then in general we can write M(g) with corresponding weights

for rows and columns as follows, where blocks corresponding to the inertia groups are

separated by horizontal lines.

ICc(xdl ICC(X2)1 ICc(xc(g») I
ICc(g)!

a(l,g) a(l,g) a (l,g)
1 2 c(g)

ICH2 (Yl)1 a(2,Yl) a(2,Yl) a(2,Yl)
1 2 c(g)

ICH2 (Y2)1 a(2,Y2) a(2,Y2) a(2,Y2)
1 2 c(g)

ICHi (Y1)1

ICHi (Y2)1

ICHt(ydl
ICH" (Y2)1

mc(g)
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From the theory of coset analysis for computing the conjugacy classes of elements

of G = N·G where N is abelian, we observe that

Remark 5.2.2 It can be shown that the Fischer-Clifford matrix M(g) satisfies com

plex conjugation.

The following result gives the orthogonality relation for M (g ). Its proof was

obtained from Whitley [116], Proposition 4.2.3.

Proposition 5.2.3 [116j(Column orthogonality) Let G = N·G, then

2:: ICHi(Yk)laY'Yk)a)~'Yk) = bjj'ICc(Xj) I
(i,Yk)ER(g)

Proof The partial character table of G at classes Xl, ... ,xc(g) is given by

Cl (g)MI (g)
C2(g)M2(g)

By column orthogonality of the character table of C, we have

t

ICc(xj)lbjj l = L L ( L aY,Yk){3i(Yk)) ( L a;~IY~){3i(YU)
i=l/3iElrr(Hi) Yk:(i,Yk)ER(g) y~:(i,y~)ER(g)

t

- 2:: 2:: (2::aY'Yk)a;~'Y~){3i(Yk){3i(Yk) +
i=l/3iElrr(Hi) Yk

L 2:: aY'Yk)a;~'Y~){3i(Yk){3i(YU)
Yk Y~=lYk
t __

- L(L aY,Yk) a)~'Yk) L (3i(Yk){3i(Yk) +
i=l Yk /3iElrr(Hd

L L aY'Yk)a;~'Y~) L (3i(Yk){3i(YU)
Yk y~=lYk /3iElrr(Hd
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t --

- ~(~aY'Yk)a;~'Yk)IGHi(Yk)1 + 0)
i=l Yk

L aY'Yk)a)~'Yk)IGHi(Yk)l·
(i'Yk)ER(g)

o

Theorem 5.2.4 a?,g) = 1 for all j = {I, 2, ... , c(g)}

Proof For Yf.k f'.J Xj in G, we have IGc(xj)1 = IGH1 (Yf.k)I· Thus we obtain that

a)l,g) = ~' IGc(xj)1 'l/Jl(Yf.
k

) = ~/1 = 1
f. ICH1 (Yl k)1 f

Hence the result. 0
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Proposition 5.2.5 ([75), [116)) The matrix M(lc) is the matrix with rows equal to

the orbit sums of the action of G on Irr(N) with duplicate columns discarded. For

this matrix we have ay,lc) = [G : Hi], and an orthogonality relation for rows:

Proof The (i, 1c),jth entry of M(lc) is given by

where we sum over representatives of conjugacy classes of Hi which fuse into [Xj] in

G. Therefore ay,lc) = 'l/JF(xj). By Theorem 5.1.7 we have 'l/JF E Irr(G) and we obtain

that (('l/J()N, Bi ) = (('l/Ji)N, Bi ) = 1. Therefore by Clifford's theorem ('l/JF)N = 2:0 Ba,

where the summation is taken over all Ba E Irr(N) such that Ba is conjugate to Bi.

So for Xj E N we obtain that ay,lc) = 2:0 Ba(xj). The orthogonality relation follows

by Lemma 5.2.1. 0

As a consequence of Lemma 5.2.1, Proposition 5.2.3 and the results proved by

Fischer in [43], the Fischer-Clifford matrix M(g) satisfies the following properties:
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(a) IX(g)1 = IR(g)1

CHAPTER 5. THE FISCHER-CLIFFORD MATRICES

(d) M (g) is square and nonsingular.

If N is elementary abelian, then we obtain the following additional properties of

M(g).

Remark 5.2.6 Suppose that N is an elementary abelian p-group. Let 9 E G. Then

the map ch : n f---7 71,g71,-1(g)-1 defines an endomorphism of N. It is not difficult to

see that Im(ch) and ker(ch) are Cgsubmodules of N. Let Im(ch) = M. Then N
acts on Ng by conjugation and M acts on Ng by left multiplication such that the

resulting orbits of the two actions are the same. Hence the action of Cg on the orbits

of N acting on Ng is the same as the action of Cg on the module N / M. Thus the

orbits of the action of M on Ng can be identified with the elements of N / M. Let

()i E Irr(N), 't/Ji E Irr(Hi) and't/Ji be an extension of ()i to Hi. Then't/Ji is constant

on the orbits of N acting on Ng. So we may define a class function I-L on N / M by

I-L(M71,jg) = 't/Ji(njg), where 71,j E N,71,jg E Qj is a representative of the j-th orbit of N

acting on Ng and 71,1 = IN' Then I-L(Mg) = 't/Ji(g). Let it be an extension of I-L to the

inertia group of /-L in Cg. Then induction of it to G evaluated on the elements of Ng
is equivalent to the induction of it to Cg/M evaluated on the elements of N/M. If G
is a split extension, then it can be shown (see [75]) that the Fischer-Clifford matrix

at a nonidentity coset of N in G is the matrix of orbit sums of Cg acting on the rows

of the character table of N / M with duplicating columns discarded. However for G a

non-split extension, it may happen that I-L is not a character of N / M. Then ~/-l' will

be a character of N / M, where ~ is an appropriate p-th root of unity. Thus for G

a non-split extension, the Fischer-Clifford matrix is the matrix of orbit sums of Cg

acting on the rows of the character table of N / M with duplicate columns discarded
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and with each row multiplied by an appropriate p-th root of unity. It may happen

that the p-th root of unity for each row is 1. (For more details see [75]).

Proposition 5.2.7 If N is elementary abelian and M = Im(4)g), then [N : M] = k

wh~re k is the number of elements of N fixed by a class representative 9 of G.

Proof We have that the orbits Ql, Q2,"" Qk of N acting on Ng are. the same as the

orbits D1 , D2 , . .. , Dk of M acting on Ng by left multiplication. Also the the orbits

D1 , D2 , ... , Dk can be identified with the elements of N/M. Then it immediately

follows that IN/MI = [N : M] = k. D

Remark 5.2.8 If N is an elementary abelian p-group, then from the theory of coset

analysis for the group G = N·G, we obtain that k = pm for 0 ::; m ::; n, where

IN I = pn and k is the number of elements of N fixed by a class representative 9 of G.

Suppose for some class representative 9 E G that we obtain orbits Q1, Q2,' .. ,Qk of

N acting on Ng. Then for h E Gc(g) and h being a lifting of h in G, suppose that on

acting {h I hE Gc(g)} on the orbits Q1, Q2,"" Qk, we obtain f1 = f2 = ... = fk = 1

and that the entries of the first column of M (g) are 1. Then in this case, the Fischer

Clifford matrix M (g) coincides with the character table of the abelian group N / M of

order k = pm, where M = Im(4)g) as defined in Remark 5.2.6.

Let G = N:G be a split extension and N be an elementary abelian 2-group. Then

for 9 E G, a lifting of 9 is 9 itself. Then Gg acts on N/M where M = Im(<j)g). By

Remark 5.2.6 the Fischer-Clifford matrix M(g) is given by

1 1 1 1 1

d21 d22 d23 d2j

~(g) =
di1 di2 di3 d ..tJ

dtl dt2 dt3 dtj

where di/s are the orbit sums of Gg acting on the rows of the character table of N/M.
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Proposition 5.2.9 di1 E IN for all i E {2, 3, ... ,t}.

Proof By Remark 5.2.6, we obtain that

di1 = :L X(l N / M )

xELli

where ~/s are the orbits of C9 acting on I rr(NIM). Since X(l N / M ) = deg(x), we

have di1 E IN ViE {2, 3, ... ,t}. 0

For j ~ 2, we obtain that

dij = :L X(Xj)
XELli

where Xj E NIM is a representative of the j-th orbit under the action of C9 on the

elements of NIM. Since X(Xj) E {-I, I}, we have dij E Z.

Proposition 5.2.10 dij - di1(mod 2) for all j ~ 2.

Proof Since N is an elementary abelian 2-group, then NIM is also an elementary

abelian 2-group. We obtain that

d i1

dij - :L X(Xj) = :L ±1
xELli r=l

- 1+1+· .. +1+-1-1- .. ·-1
, I , .I

V v
mij -times nij -times

However we have that 0 :::; mij, nij :::; di1 and that mij + nij = di1 . Thus we obtain

that

Hence we deduce that

dij =di1 (mod 2) .

o
Since dij E Z, we deduce that the Fischer-Clifford matrix M(g) will have integer

entries dij such that di1 ~ Idijl and dij =di1(mod 2). If di1 = n for some n E IN, then

for j ~ 2 we have dij E {±1, ±3, ... ,±n} if n is odd and dij E {O, ±2, ±4, ... , ±n} if

n is even. It is easy to see that for a fixed n there are n + 1 possible values for each

dij with j ~ 2. We also notice that Li di1 = 1NlMI = k.
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Proposition 5.2.11 For any j-th column of M(g) for which j ~ 2, we obtain that

L:i dij = O.

Proof For any j-th column of M(g), where j ~ 2, we have that

2: dij=2:(2:X(Xj))= 2: X(Xj) =0
i XE~i XElrr{N/M).

by the orthogonality of the columns of the character table of N / M.· 0



Chapter 6

A maximal subgroup of Fi22

In this chapter WB study the group 26:SP(6, 2) which is a rnaximal subgroup of the

smallest Fischer simple group Fi22 of index 694980. Let G = 26:SP(6,2) be the

split extension of N = 26 by G = SP(6,2), where N is the vector space of di

mension 6 over GF(2) on which G acts naturally. Although the character table of

26:SP(6,2) is known, it was however constructed using a different method and its

Fischer-Clifford matrices had not been determined. We therefore use the technique of

the Fischer-Clifford matrices to reconstruct its character table. This character table

will be divided row-wise into blocks where each block corresponds to an inertia group

Hi = N:Hi , where the H/s are the inertia factors. The character table of G can be

constructed by finding the Fischer-Clifford matrix M (9) for each class representative

9 of G and using the character tables of the inertia factors. We use the properties of

the Fischer-Clifford matrices which have been discussed in Section 5.2.2 of Chapter

5 to compute their entries. In some cases we need to use the following additional

information to compute these entries:

(i) For X a character of any group H and h E H, we have IX(h)1 ::; X(lH), where

1H is the identity element of H.

(ii) For X a character of any group Hand h a p-singular element of H, where p is

a prime, then we have X(h) - x(hP)mod(p).

88
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(iii) For any irreducible character X of a group H and for hi E Ci then di = b~({~i/ is

an algebr?-ic integer, where Ci is the i-th conjugacy class of H and bi = ICil =
[H : CH(hi)]. Obviously if di E Q, then di E Z.

We also study a group of the form 25:86 which is maximal and affine in 8P(6, 2) of

index 63. We construct the character table of this affine subgroup using the technique

of the Fischer-Clifford matrices.· This character table is necessary since it will be used

to construct the character table of G. In the process we also construct the character

table of 32:D4 which is maximal in 86 of index 10. This character table is used in

the construction of the character table of 25:86 . The Fischer-Clifford matrices and

the character table of 26:8P(6, 2) are given in Section 6.4. In Sections 6.5 and 6.6 we

deal with the fusion of 26 :8P(6, 2) into Fi22 and the permutation character of Fi22

on 26:SP(6, 2) respectively.

6.1 The conjugacy classes of G.== 26:SP(6, 2)

In this section we use the method of coset analysis discussed in Chapter 2, Section 2.3,

to determine the conjugacy classes of G. Let N = 26 and G = SP(6, 2) and let us view

N as the vector space of dimension 6 over GF(2) on which SP(6,2) acts naturally.

Then G has 30 conjugacy classes and thus for each [g] in G with representative 9 E G,

we analyse the coset N 9 to obtain the classes of G which correspond to the class [g]
of G. However G is generated by two 6 x 6 matrices over GF (2), namely

1 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0

and 13=
0 1 0 0 0 0

a=
0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 0 0 0

where o(a) = 2 and o({3) = 6. We also give the class representatives 9 E G in

terms of 6 x 6 matrices over GF(2) in the following table, where M is the matrix

which represents that particular class.
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I
[gJc Mj I[gJcl [gJc M I[g]cl

/ 1 0 0 0 0 o \ / 1 0 0 0 0 o \
0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0
2A

1 0 1 1 0 0
63lA 1

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0 1 0 1

1 0 0 0 0 0 1 1 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0
315 2C

0 0 1 0 0 0
9452B

1 0 0 1 0 0 0 0 1 1 0 1

1 0 0 0 1 0 0 1 0 0 1 1

0 1 1 1 1 1 0 0 0 0 0 1

0 1 0 1 1 1 0 1 1 0 1 1

1 1 0 0 0 1 0 1 1 0 1 0

2D
1 0 1 0 0 1

3780 3A
0 0 1 0 0 0

672
0 1 1 1 0 0 0 0 1 1 1 0

1 1 1 0 1 1 1 1 1 0 0 1

\ 1 1 0 1 1 0 1 1 1 0 1 0

0 0 1 0 1 1 0 1 1 1 1 1 \

0 1 1 1 0 1 0 0 1 1 0 1

3B
1 1 0 0 1 0

2240 3C
1 1 1 0 1 0

13440
0 1 0 1 1 1 1 1 0 1 1 0

1 0 1 1 0 0 1 0 0 0 1 1

1 1 0 1 0 1 0 1 0 0 0 1

/ 1 0 0 0 0 0 1 0 1 0 0 1

1 1 1 0 1 0 0 0 1 0 0 0

4A
0 1 1 1 0 0

3780
0 1 0 0 0 0

4B 7560
0 0 1 1 1 0 0 0 0 0 1 0

1 1 0 1 1 0 0 0 1 1 0 1
1 0 1 1 0 1 0 0 0 0 0 1

/ 0 1 0 0 1 1 1 0 0 0 0 0
1 0 0 0 1 1 1 0 0 1 0 0

4C
0 1 1 1 1 1 1 1 0 0 1 0

7560 4D 11340
0 1 1 0 1 1 0 1 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0
1 0 0 1 0 1 0 1 1 0 0 1

0 1 1 0 1 1 0 1 0 0 1 0
1 0 1 0 1 1 0 1 1 1 1 0

4E
0 1 0 1 0 0 1 1 0 0 1 1

45360 5A 48384
1 0 0 0 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 0 1 1 1

\ 0 1 0 0 0 1 / \ 1 1 0 1 0 o /
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[g]c M I[g]cl [g]c M I[g]cl
/ 0 1 0 0 0 1 \ / 1 1 1 0 0 o \

1 1 1 1 1 1 1 1 0 0 1 1

0 1 0 1 0 0
10080 6B

0 0 1 0 0 0
100806A

1 0 0 0 1 0 1 0 1 1 1 0

0 1 0 1 0 1 0 1 0 0 1 1

0 0 1 0 1 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1 1 1

0 1 1 0 1 0 1 0 1 1 1 0

6C
1 0 1 1 1 O'

20160 6D
1 1 0 1 1 0

30240
1 1 1 0 1 1 1 1 0 0 1 1

1 1 1 0 0 0 1 0 1 1 0 1

1 1 1 1 0 1 1 1 1 1 1 1

1 1 0 0 1 0 / 1 1 0 0 0 0

1 1 1 1 0 1 1 0 1 0 1 1

6E
1 0 0 1 1 1

40320 6F
1 0 0 0 1 1

40320
1 1 1 1 1 0 0 1 0 1 0 0

1 0 1 1 0 0 1 0 1 1 1 1

1 1 1 0 1 1 \ 1 0 0 0 0 1

1 0 1 0 1 1 0 1 0 0 1 0

1 1 0 0 1 0 1 0 0 1 0 1

6C
1 0 0 1 0 0

120960 7A
0 1 1 0 1 1

207360
0 1 0 0 0 1 1 0 1 0 0 0

0 1 0 1 0 0 1 0 1 1 0 1

0 0 0 1 0 0 1 1 1 0 0 0

1 0 0 0 0 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0 1 1 0 1

8A
1 0 0 1 0 0 1 1 0 1 1 1

90720 8B 90720
1 1 1 1 0 0 1 1 0 1 0 1

0 1 0 0 0 0 1 0 0 0 1 0

1 0 1 0 0 1 1 0 0 1 1 0

0 1 1 1 0 0 1 0 0 1 1 o \
1 1 0 1 1 1 0 0 1 0 1 1

9A
0 1 1 0 1 1 1 1 0 0 1 1

161280 lOA 145152
0 0 1 0 1 0 0 0 0 0 1 0
0 1 1 1 0 1 0 0 1 1 1 1
1 1 1 1 1 0 1 0 0 1 0 1

1 1 0 0 0 o \ 1 1 0 1 0 0
1 1 0 1 1 1 0 1 1 1 0 1

12A
1 0 1 1 1 1 1 0 0 1 0 0

60480 12B 60480
1 0 1 1 0 0 0 0 0 1 1 1
1 1 1 0 1 1 0 0 0 1 0 0

\ 1 1 1 1 1 o J \ 1 1 0 0 1 o /

91
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[g]c M I[g]cl [g]c M I[g]cl
I 0 1 0 1 0 o \ I 1 0 0 1 0 o \

1 1 0 1 0 0 1 0 0 0 0 0

120
1 0 0 1 0 0

120960 15A
1 0 0 0 1 0

96768
1 1 1 0 1 0 0 1 0 1 1 0

1 1 1 1 1 1 0 1 1 0 0 1

\ 1 1 1 0 0 1 / \ 0 0 1 1 1 o /

When G acts on N and invariably on the classes <?f N, then by Corollary 4.3.7

G fixes the zero vector and acts transitively on the remaining 63 nonzero vectors of

N. Thus we obtain two orbits of lengths 1 and 63 with two corresponding stabilizers

8 1and 8 2 of indices 1 and 63 respectively in G. Obviously 8 1 = G and 8 2 must sit

inside one of the maximal subgroups of G. However any maximal subgroup of G

which contains 8 2 must have its order divisible by 182 1 and its index in G must divide

63. From the ATLAS we obtain that up to isomorphism and conjugacy there is only

one maximal subgroup of G which would contain 82 and that subgroup is isomorphic

to 25:86 . However we have that 182 1 = 125:86 1 and thus 82 rv 25:86 . Let X be the

set of all non-zero vectors of N. Then G acts on X transitively with the stabilizer

Gx = 8 2, for x EX. The action of G on X is the same as the action of G on the

cosets of 8 2 and this action gives rise to a permutation representation which affords

a permutation character X(GI82 ) of degree 63. For each 9 E G, the number of fixed

points of 9 E G in N is equal to k = ICN (g) I. Since the zero vector of N is fixed by

every 9 E G, we have k = 1 + X(GI82 )(g) and hence we obta.in that

k = 1 + (la + 27a + 35b)(g) ,

where X(GI82 ) = la + 27a + 35b is written in terms of the irreducible charac

ters of 8P(6,2). However since CN(g) ::; N, we must have k = 2n , where n E

{D, 1,2,3,4,5, 6}. Hence we obtain the values of the k's for the various classes of G

and these are given below.

-
[g]c lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A

k 64 32 16 16 8 16 1 4 4 8 8 4 4 4 4

[g]c 6B 6C 6D 6E 6F 6G 7A 8A 8B 9A lOA 12A 12B 12C 15A

k 8142421221 2 2 2 1 1

Having obtained the values of the k's for the various classes of G, then we need
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to calculate the fj's corresponding to these various k's. For this purpose we use

Programme A given in Chapter 2, Section 2.3.

V : vector space(6, GF(2));

S : symplectic(6, GF(2));

c : classes(S);

o : matrix orbit(S, vec(l, 1, 1, 1, 1, 1), false);

for i = 1 to 30 do;

print c[i], '$N';

e = null;

w = vec(O) of V;

while 0 - e ne [] do;

d = null;

for each x in 0 do;

y = [x + w + (x * c[i])];

d = d join y;

end;

print d, '$N';

print' * * * * * *';
e = d join e;

if 0 - e ne [ ] then;

w = setrep(O - e);

end;

end;

r = null;

u = vec(O) of V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(S, c[i]) do;

l = [u *g];

m = m jain l;

end;

print 'A block for the vectors under the action of centralizer :';
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print m;

r = m JO'ln r; .

if 0 - r ne [ ] then;

u = setrep(O - r);

end;

end;

print ' * * * * * * * * * * * * * * *. * * * * * * * * * * * * * * * * *';
end;

From the programme output we calculate fj the number of orbits Q/s for 1 ~

i ~ k, which have come together under the action of Ca(g) to form one orbit D. j .

Having obtained the f/s, we therefore deduce that the group G = 26:SP(6, 2) has

altogether 67 conjugacy classes of elements. These values are listed in Table 6.1. In

this table we also list the d/s where djg is a representative of the D. j . Now for each

class representative 9 E G, we calculate the lengths of the corresponding classes [x]c
of G by using the theory of the conjugacy classes of the group extensions which has

been discussed in Chapter 2 (Section 2.3). For each [x]c' the order of Cc(x) is also

given. The conjugacy classes [x]c of G are listed in column 6 of Table 6.1.

For example if 9 = 2A, then k = 32, f1 = 1, f2 = 15 and f3 = 16. Hence we

produce three corresponding classes [Xl]C' [X2]C and [X3]C. For [X1]C' we have

ICc(X1)1 = kICa(g)1 = 32 x 23040 = 737280
f1 1

and

ICc (X2) I= kICa(g) I = 32 x 23040 = 49152
f2 15

and
IGI

I[X2]cl = ICc (X2)1 = 1890

Similarly for [X3]C, we have

ICc(X3)1 = kICa(g)1 = 32 x 23040 = 46080
f3 16
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and

For a class representative dg E G where d E 26 , 9 E SP(6,2) and o(g) = m, by

Theorem 2.3.10 and Remark 2.3.11 we have

( )
{

m if w = IN
o dg =

2m otherwise

To calculate the orders of the class representatives dg E G, we use Programme B given

in Chapter 2 to compute w for each dEN and each class representative 9 E SP(6,2).

For example for 9 = 2A and [XI]C we have

V : vector space(6, GF(2));

S : symplectic(6, GF(2));

c : classes(S);

9 = c[2];

d = vec(O, 0, 0, 0, 0, 0);

w = d + d *9 + d * (g2) + d * (g3) + ... + d * (gm-I);
print w;

Observe that 9 = 2A = c[2] is an involution of SP(6, 2) and thus m = 2. Then

we obtain that w = (0,0,0,0,0,0) = IN and hence o(dg) = 2 and we obtain the class

2B of G. For [X2]C we have

V : vector space(6, GF(2));

S : symplectic(6, GF(2));

c : classes(S);

9 = c[2];
d= vec(I,I,I,I,I,I);

w = d+d*g+d* (g2) +d* (g3) + ... +d* (gm-I);
print w;

Since 9 = c[2] and m = 2, we obtain that w = (0,0,0,0,0,0) = IN and hence

o(dg) = 2 and we obtain the class 2C of G. For [X3]C we have

V : vector space(6, GF(2));

S : symplectic(6, GF(2));
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c : classes(S);

9 = c[2];

d = vec(l, 1, 1, 1, 1,0);

w = d + d * 9 + d * (g2) + d * (g3) + ... + d * (gm-I);

print w;

Since 9 = c[2] and m = 2, we obtain that w = (1,0,0,1,0,0) =1= IN and hence

o(dg) = 2 x 2 = 4 and we obtain the class 4A of G. Table 6.1 belQw gives detailed

information about the conjugacy classes of G.

Table 6.1: The conjugacy classes of elements of 26:SP(6, 2)

[glG k /j dj w [xl~ I[xlr.-I ICr.-(x) I
lA 64 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) lA 1 92897280

12 =63 (1,1,1,1,1,1) (1,1,1,1,1,1) 2A 63 1474560

2A 32 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2B 126 737280

12 = 15 (1,1,1,1,1,1) (0,0,0,0,0,0) 2C 1890 49152

13 = 16 (1,1,1,1,1,0) (1,0,0,1,0,0) 4A 2016 46080

2B 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2D 1260 73728

12 = 12 (0,0,0,0,0,1) (0,1,1,1,1,0) 4B 15120 6144

13 =3 (1,1,1,0,0,0) (0,0,0,0,0,0) 2E 3780 24576

2C 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2F 3780 24576

12=3 (1,1,0,1,1,0) (0,0,0,0,0,0) 2G 11340 8192

13=4 (0,1,0,1,1,0) (0,1,1,0,0,0) 4C 15120 6144

/4 = 8 (0,1,0,0,1,0) (0,1,0,0,0,1) 4D 30240 3072

2D 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2H 30240 3072
12=3 (1,0,0,1,1,1) (1,0,0,0,0,1) 4E 90720 1024

13 =3 (0,0,1,0,0,1) (0,1,0,1,1,0) 4F 90720 1024

/4 = 1 (0,1,0,1,0,0) (1,1,1,0,0,1) 4G 30240 3072

3A 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3A 2688 34560
12 = 15 (0,0,0,0,0,1) (0,0,1,0,1,1) 6A 40320 2304

3B 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3B 143360 648

3C 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3C 215040 432
12=3 (1,0,0,1,0,0) (1,1,1,0,0,1) 6B 645120 144

4A 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4H 60480 1536
12=3 (0,1,0,0,1,1) (0,0,0,0,0,0) 41 181440 512

4B 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4J 60480 1536
12=3 (1,1,0,1. 1,0) (0,0,0,0,0,0) 4K 181440 512
13=4 (1,1,1,1,0,1) (0,1,1,0,0,0) 8A 241920 384



6.1. THE CONJUGACY CLASSES OF G = 26:SP(6, 2)

Table 6.1: The conjugacy classes of elements of 26:SP(6, 2) (continued)

[g]c k Ij dj w [x]r-- I[x]r--I ICr--(x) I
4C 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4£ 60480 1536

h =3 (0,1,0,0,0,0) (0,0,0,0,0,0) 4M 181440 512

f3 = 4 (1,1,0,1,1,0) (1,1,1,0,1,1) 8B 241920 384

4D 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4N 181440 512

12 = 1 (1,0,0,1,1,1) (0,0,0,0,0,0) 40 181440 512

f3 = 2 (0,1,1,0,1,1) (0,0,0,0,0,0) 4P 362880 256

4E 4 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4Q 725760 128

h =1 (1,0,1,0,0,0) (0,0,0,0,0,0) 4R 725760 128

h = 1 (0,0,1,0,0,1) (1,1,0,0,0,0) 8C 725760 128

14 = 1 (1,0,1,0,1,0) (1,1,0,0,0,0) 8D 725760 128

5A 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 5A 774144 120

h =3 (0,0,1,1,0,0) (0,0,0,0,1,1) lOA 2322432 40

6A 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6C 161280 576

12=3 (0,0,0,1,1,1) (1,0,1,1,0,1) 12A 483840 192

6B 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6D 80640 1152

h =3 (1,1,0, I, 1,0) (0,0,0,0,0,0) 6E 241920 384

h =4 (1,0,0,1,0,0) (0,1,0,0,0,1) 12B 322560 288

6C 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6F 1290240 72

6D 4 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6C 483840 192

h = 1 (0,1,1,1,1,0) (0, I, 1,0,0,0) 12C 483840 192

h =2 (1,1,1,0, 1,0) (0,0,1,0,0,1) 12D 967680 96

6E 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6B 1290240 72

12 = 1 (1,1,0,1,1,0) (0,0,0,1,0,1) 12E 1290240 72

6F 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 61 645120 144

12 =3 (1,1,1,0,0,0) (0,0,0,0,0,0) 6J 1935360 48

6C 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6K 3870720 24

12 = 1 (1,1, I, 1,1,0) (1,1,1,0,0,1) 12F 3870720 24

7A 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 7A 13271040 7

8A 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8E 2903040 32
12 = 1 (0,1,1,0,1,1) (0,0,0,0,0,0) 8F 2903040 32

8B 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8C 2903040 32
12 = 1 (1,1,0,0,1,0) (0,0,0,0,0,0) 8B 2903040 32

9A 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 9A 10321920 9

lOA 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) lOB 4644864 20
12 = 1 (1,1, I, 1,0,0) (1,0,0,1,0,0) 20A 4644864 20

97
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Table 6.1: The conjugacy classes of elements of 26:BP(6, 2) (continued)

[gIG k fj dj w [xlr.- I[xl73"1 ICr(x)1
12A 2 !I = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12G 1935360 48

12 = 1 (0,1,0,1,0,1) (0,1,1,0,0,0) 24A 1935360 48

12B 2 !I = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12H 1935360 48

12 = 1 (1,1,1,1,0,0, ) (1,1,1,0,1,1) 24B 1935360 48

12C 1 !I = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 121 7741440 12

15A 1 !I = 1 (0,0,.0,0,0,0) (0,0,0,0,0,0) 15A 6193152 15

6.2 The Inertia Groups of 26:SP(6, 2)

Since G has two orbits on N of lengths 1 and 63 respectively, then by Brauer's theorem

(Theorem 5.1.5) G acts on Irr(N) with the same number of orbits. Hence the lengths

of these orbits will also be 1 and 63 with corresponding point stabilizers HI and H 2

as subgroups of G such that (G : HI] = 1 and (G : H 2] = 63. Thus we obtain

that HI = BP(6, 2) and H2 = 25:B6 . Since H2 is a split extension, we construct its

character table using the technique of the Fischer-Clifford matrices.

6.2.1 The character table of H2 == 25:86

The group B6 acts naturally on a module of dimension 6 by permuting the basis

elements which generate the module. Let V be the 6-dimensional natural module of

B6 over GF(2), where V = (el, e2, e3 ,e4, e5, e6), and er = 1 for i E {I, 2, 3,4,5, 6}

where we regard Vasa multiplicative elementary abelian 2-group of order 26 .

Theorem 6.2.1 Let V be the natural module of B6 over GF(2). Then there exist

B6-invariant submodules Ail and M2 of V such that V ::> M2 ::> M I ::> 0 and that

dim(M2 ) = 5 and dim(Md = 1

Proof Let V = (el, e2, e3, e4, e5, e6) with er = 1 for i E {I, 2, 3, 4, 5, 6}. Then B6
acts naturally on V and this natural action results in the following orbits:

1. 00 = {Iv} and 1001 = 1 .
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2. 0 1 = {eil1 :Si :s 6}, 1011 = 6 .

3. O2 = {ei~j I 1 ::; i, j ::; 6, i ;6 j}, 1021= ( ~ ) = 15 .

4. 0 3 = {eiejekl1 ::; i, j, k ::; 6, distinct i,j, k}, 1031 = ( ~ ) = 20 .

5. 0 4 = {eiejekeel1 ::; i, j, k,£ ::; 6, distinct i,j, k, f}, 1041= ( :) = 15 .

6. Os = {eiejekeees 11 ::; i, j, k, f, s ::; 6, distinct i, j, k, f, s}, 10sl = ( ~ ) = 6 .

7. 0 6 = {el e2e3e4eSe6}, 1061 = ( : ) = 1 .

Thus 56 forms 7 orbits on V. Set M l = (ele2e3e4e5e6). Then Ml is an 56-invariant

submodule of V with dim(Ml ) = 1. Now set M2 = po U O2 U 0 4 U 0 6 . Then M2 is

an 56-invariant submodule of V and since IM2 1 = 32, we have dim(M2 ) = 5. Since

Ml = 0 0 U 0 6 , we obtain that V :) M 2 :) Ml :) O. 0

Remark 6.2.2 M 2 is not irreducible, however M 2 / Ml is an 56-invariant irreducible

module of dimension 4. Let M 3 = V/ Ml . Then M 3 is an 56-invariant module of

dimension 5. Thus we obtain two groups of the form 25:56 which are M 2:56 and

M3:56 , where M2 and M3 are regarded as elementary abelian groups of order 25 .

Theorem 6.2.3 The group M 2:56 is such that under the action of 56 on M 2 , there

are four orbits of lengths 1, 1, 15, 15.

Proof In the proof of Theorem 6.2.1, we set M 2 = 0 0 U O2 U 0 4 U 0 6 . So the orbits

of 56 acting on M 2 are 0 0 , O2 , 0 4 , 0 6 with

Thus we obtain four orbits of lengths 1, 15, 15, 1. Hence the result. D
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Remark 6.2.4 We observe that M2 = (e1e2, e1e3, e1e4, e1e5, e1e6). Call these vectors

,1 = e1 e2, "'(2 = e1 e3,,3 = e1 e4,,4 = e1 e5 and ,5 = e1 e6· However we have that

S6 = (a, (3), where a = (1 2) and (3 = (1 2 3 4 5 6). Then we obtain that

a : ,1 ~,1
,2 ~,1 +'2

,3 ~,1 +'3
,4 ~,1 +,4

,5 ~,1 +'5

and hence a can be represented by the following matrix

Similarly for (3 we have that

(3 ,1 ~,1 +'2

,2 ~'1 +'3
,3 ~,1 +,4

,4 ~,1 +'5

and we obtain (3 in matrix form as follows:

~=Uj j!D
The group H2 = 25 :S6 is a maximal subgroup of SP(6,2) which is isomorphic

to CSP(6,2) (x), where x is an element of the 2A-conjugacy class of SP(6,2). By

direct calculation within the group SP(6, 2) using CAYLEY and by the above results

relating to the group M2:S6, it is not difficult to see that H2 and M2:S6 can be

identified.
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We give the conjugacy class representatives of 86 in terms of 5 x 5 matrices over

GF(2) in the following table, where M is the matrix which represents that particular

conjugacy class.

[g]sc> M I[g]s61 [gJs6 M I[gJsr,1

U
0 0 0

D (!
0 1 1

D
1 0 0 0 1 0

lA 0 1 0 1 2A 0 1 0 15

0 0 1 0 1 0

0 0 0 1 1 0

U
0 0 0

D U
0 0 0

[J
1 0 0 0 1 0

2B 0 1 0 15 2C 1 0 0 45

0 0 1 0 0 1

0 0 0 0 0 0

(!
1 1 0

D (!
0 0 1

D
1 0 1 1 0 0

3A 1 0 0 40 3B 0 0 0 40

1 0 0 0 1 0

1 0 0 0 0 0

(!
1 0 1

D (!
1 0 0

D
1 0 0 0 0 1

4A 1 0 0 90 4B 0 1 0 90

1 0 0 0 0 0

1 1 0 0 0 0

(!
1 0 0

D ([
1 0 0

D
0 1 0 0 1 0

5A 0 0 1 144 6A 0 0 1 120

0 0 0 0 0 0
0 0 0 0 0 0

(!
0 1 0

D
0 0 0

6B 0 0 1 120

0 0 0

1 0 0

Theorem 6.2.5 Under the action of 86 on Irr(M2 ), we obtain four orbits of lengths

1, 6, 10, 15.

Proof We know from Theorem 6.2.3 that 86 has four orbits on the conjugacy classes

of M 2 . Then by Brauer's theorem (Theorem 5.1.5), we obtain the same number of
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orbits of 86 on 1rr(M2 ). Suppose that V is the 6-dimensional natural module of

8P(6, 2) over GF(2) and let X be an irreducible Brauer character of 8P(6,2) over

GF(2) such that deg(x) = 6. Then XM2 can be expressed as a sum of six irreducible

characters of M2 . Moreover XM 2 is invariant under the action of 86 on 1rr(M2 ).

Thus we obtain an orbit of length 6. Hence we have two orbits of lengths 1 and 6.

Then using the indices of the maximal subgroups of 86 listed in the ATLAS, the only

possibility for the two remaining orbit lengths are 10 and 15. Hence the result. D

Remark 6.2.6 Since we obtain four orbits from the action of 86 on 1rr(M2), then

we obtain four inertia groups l i = M2:1i in M2:86 , where i E {I, 2, 3, 4} of indices 1,

6, 10, 15 respectively such that

11 = 86 ,12 = 85 ,13 = 32:D4 ,14 = 84 X 2 ,

where D4 is the dihedral group of order 8.

We had that when 86 acts on the classes of M 2, this action gives rise to four

orbits of lengths 1, 1, 15, 15 ,vith the corresponding stabilizers 86,86,84 X 2,84 X 2

respectively. Now let x(86125) be the permutation character of 86 acting on 25
. Then

we obtain that

x(86 125
) = 1 + 1 + 1::x2 .+ 1::x2 ,

where 1::X2 is the identity character of 84 x 2 induced to 86 , However both 1::x2

are the permutation' characters of 86 of degree 15 which we denote by XPi' where

i E {1,2}. Then from the ATLAS, we obtain that

XPi E {la + 5a + 9a, la + 5b + 9a}

Then we obtain that

x(8
6

125 ) = { la + la + XPl + XP2 if XPl =1= XP2
la + la + 2XPi where i E {I, 2} and XPl = XP2

Now using the character table of 86 we obtain

[g]56
la + 5a + 9a

lA 2A 2B 2C 3A 3B 4A 4B 5A 6A 6B

15 3 7 3 0 3 1 1 0 0 1

la + 5b + 9a 15 7 3 330 1 1 o 1 o
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However if x(86 125
) = la + la + XPl + XP2' then x(86 125)(2A) = 12 =f 2n for any

n E IN" U {O}. TIlls contradicts the fact that x(86 125 )(g) = 2n for all 9 E 86 and some

n E {O, 1,2,3,4, 5}. Thus we must have

Hence we obtain that

Therefore we obtain the following possible values of x(86 125
) on the classes of 8 6 .

lA 2A 2B 20 3A 3B 4A 4B 5A 6A 6B

32 8 16 8 2 8 4 4 2 2 4

Thus the values of x(86 125 ) give us the values of the k's which we need for

computing the conjugacy classes of H2 = 25:86 for the various classes of 86 (see

Chapter 2, Section 2.3). In Remark 6.2.4 we constructed the group 86 as a matrix

group over GF(2) generated by 5 x 5 matrices ex and {3. Using the action of 86 on

M2 = ('1' ,2, ... "5)' and. the method developed in Chapter 2, Section 2.3, we are

able to compute the exact values of the k's which are listed in the following table.

[g]S(j lA 2A 2B 20 3A 3B 4A 4B 5A 6A 6B

k 32 8 16 8 2 8 4 4 2 2 4

and we deduce that x(86 125
) = 4 x la + 2 x5a + 2 x 9a. We again use Programme

A from Chapter 2, Section 2.3, to obtain the fj's and hence the conjugacy classes of

elements of 25:86 • See Appendix, Programme A for 25:86 •

We then obtain the values for the fj's, the corresponding vectors dj's and w's.

Table 6.2 provides detailed information for the conjugacy classes [X]H2 of elements of

H2 = 25 :86 .
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Table 6.2: The conjugacy classes of €lements of 25:86

[g]S6 k Ij d j W [X]H2 I[X]H21 ICH2(X)1

lA 32 h = 1 (0,0,0,0,0) (0,0,0,0,0) lA 1 23040

12 =1 (1,1,1,1,1) (1,1, l, 1, 1) 2A 1 23040

13 = 15 (1,1,1,1,0) (1,1, I, 1,0) 2B 15 1536

14 = 15 (0,0,0,0,1) (0,0,0,0,1) 2C 15 1536

2A 8 h = 1 (0,0,0,0,0) (0,0,0,0,0) 2D 60 384

12 = 1 (1,1,1,1,1) (0,0,0,0,0) 2E 60 384

13 =6 (1,1,1,1,0) (0,1,1,0,1) 4A 360 64

2B 16 h = 1 (0,0,0,0,0) (0,0,0,0,0) 2F 30 768

12 = 1 (1,1,1,1,1) (0,0,0,0,0) 2G 30 768

13 =4 (0,0,1,1,1) (1,0,0,0,0) 4B 120 192

14 = 4 (1,0,0,0,1) (1,0,0,0,0) 4C 120 192

Is = 6 (0,0,0,1,1) (0,0,0,0,0) 2H 180 128

2C 8 h = 1 (0,0,0,0,0) (0,0,0,0,0) 21 180 128

12 =1 (1,1,1,1,1) (0,0,0,0,0) 2J 180 128

13 = 1 (0,1,0,0,0) (0,1,1,0,1) 4D 180 128

14 = 1 (1,1,0,1,1) (0,1,1,0,1) 4E 180 128

Is = 4 (0, I, 1, 1, 1) (0,0,0,0,1) 4F 720 32

3A 2 h = 1 (0,0,0,0,0) (0,0,0,0,0) 3A 640 36

12 = 1 (1,0,1,1,1) (1,1,1, I, 1) 6A 640 36

3B 8 h =1 (0,0,0,0,0) (0,0,0,0,0) 3B 160 144

12 =1 (1,1,1,1,1) (1,1,1,1,1) 6B 160 144

13 =3 (1,1,1,0,0) (0,1,0,0,0) 6C 480 48

14 = 3 (1,1,1,1,0) (1,1,1,1,0) 6D 480 48

4A 4 h = 1 (0,0,0,0,0) (0,0,0,0,0) 4G 720 32

12 =1 (1,1,1,1,1) (0,0,0,0,0) 4H 720 32

13=2 (0,0,0,1,1) (0,1,1,0,1) 8A 1440 16

4B 4 h = 1 (0,0,0,0,0) (0,0,0,0,0) 41 720 32
12 =1 (1,1,1,1,1) (0,0,0,0,0) 4J 720 32
13 =2 (0,1,1,1,1) (1,1,0,1,1) 8B 1440 16

5A 2 h =1 (0,0,0,0,0) (0,0,0,0,0) 5A 2304 10
12 =1 (1,1,1,1,1) (1,1,1,1,1) lOA 2304 10

6A 2 h = 1 (0,0,0,0,0) (0,0,0,0,0) 6E 1920 12
12 = 1 (1,1,1,1,1) (0,0,0,0,0) 6F 1920 12

6B 4 h = 1 (0,0,0,0,0) (0,0,0,0,0) 6G 960 24
12 = 1 (0,0,0,1,0) (0,0,0,0,0) 6H 960 24
13 = 1 (1,0,1,1,1) (0,1,0,0,1) 12A 960 24
14 = 1 (0,0,1,1,1) (0,1,0,0,1) 12B 960 24

Table 6.2 shows that H2 = 25:86 has altogether 37 conjugacy classes of elements.
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6.2.2 The inertia groups of 25:86

105

We proved that when 86 acts on 1rr(25 )) then we obtain four orbits of lengths

1,6,10,15. Thus we obtain four inertia groups l i = 25:Ii for 25:86 where i E {I, 2, 3, 4}

of indices 1, 6, 10, 15 respectively in 25:86 such that 11 = 86 ,12 = 85,13 = 32:D4 and

14 = 84 X 2. We observe that 13 is a split extension and thus we compute its character

table using the Fischer-Clifford matrices.

We construct the group D4 as a group of 2 x 2 matrices over GF(3), that is as a

subgroup of G£(2, 3) so that it acts on "\tT = 32. Then D4 is generated by two 2 x 2

matrices over GF(3) as follows

a=U~) and b=(~ n'
where o(a) = 4 and o(b) = 2 such that bab = a-I. We observe that D4 has five

conjugacy classes of elements. We give the conjugacy class representatives of D4 in

terms of 2 x 2 matrices over GF(3) in the following table, where M is the matrix

which represents that particular conjugacy class.

lA 1 2A 1

2B (~n 2 2C U~) 2

4A 2

Lemma 6.2.7 The action of D4 on 32 gives rise to three orbits of lengths 1, 4, 4.

Proof We observe that 32:D4 = (32:4):2 where 32:4 is a maximal subgroup of A6 of

index 10. Thus when 4 acts on 32, then it fixes the identity in 32• If again 4 fixes a

non-identity element say a E 32 , then a commutes with all the elements in 32:4 and

in particular a will commute wit.h the element {3, where ((3) = 4. Then we obtain an

element a{3 E A6 with o(a(3) = 12 which is a contradiction. Thus the possibilities for
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the orbit lengths under the action of 4 on 32 are {1,2,2,4}, {1,2,2,2,2} or {1,4,4}.

Suppose that we have the possibility {I, 2, 2, 4}, then (3 has the cycle type 1224 on 32.

So assume that (x y), where x, y E 32, is one of the 2-cycles in the cycle type of (3,

then (32 will fix both x and y. Then we obtain an element x(32 E A6 with o(x(32) = 6

which is a contradiction. Similarly {I, 2, 2, 2, 2} is not possible. Hencewe must have

the possibility {1,4,4}. Now we consider 32:D4 and the action of D4 on 32• Since

4 C D4 and under the action of 4 on 32 we have the orbit lengths {I, 4,4}, when D4

acts on 32 we get two possibilities of {1,4,4} or {1,8} for orbit lengths. Let P = 32•

Then P E Syl3(A6) and P E Syl3(S6)' Hence P contains representatives from all the

classes of S6 having elements of order 3. So we can assume that there exist x and y

in P such that x E 3A and y E 3B where 3A and 3B are conjugacy classes of S6'

We deduce that x and y are not conjugate in S6' Since D4 :S S6 and x, y E 32, the

elements x and y lie in two distinct orbits under the action of D4 on 32• Thus we

must have the orbit lengths {I, 4, 4}. 0

Lemma 6.2.8 The action of D4 on Irr(32 ) gives rise to three orbits of lengths 1, 4,
4·

Proof Since D4 acting on the classes of 32 produces three orbits, D4 acting on I rr(32 )

will also produce three orbits of lengths 1, t, z where t, zEIN such that 1+ t + z = 9.

However from the subgroup-indices in D4 , we obtain that t, z f/. {2, 6, 8}. Thus the

only possibility is t = z = 4. Hence the result. 0

We had that D4 acting on the classes of 32 produces three orbits of lengths 1,

4, 4. Then the point stabilizers corresponding to these orbits are D4 , Z2 and Z2
respectively. Now let x(D4 132

) be the permutation character of D4 acting on 32 •

Then we obtain that

x(D4 132
) = 1 + Ill;.2 + Ill;.2 '

where Ill;.2 is the identity character of Z2 induced to D4 . Thus for any class [d] o~

D4 , we must have that k = x(D4 132)(d) = 3m
, where m E {O, 1, 2}. However both

I~ 2 are the permutation characters of D4 of degree 4. It is not difficult to see that

we have three pernlutation characters of D4 of degree 4 denoted by 'lri, i E {I, 2, 3}.

Then we obtain the following table for these candidates:
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[d]D 4 lA 2A 2B 20 4A
7l"1 4 0 0 2 0

7l"2 4 0 2 0 0

7l"3 4 4 0 0 0

Since x(D4 13
2

) = 1 + 1~2 + 1~2' we have x(D4 132
) = 27ri + 1., i E {I, 2, 3} or

x(D4 132) = 7ri+7rj+1,i =I- j,i,j E {1,2,3}. However x(D4 13
2

) = 7ri+1r3+1,iE {1,2}

and x(D4 132 ) = 27ri + 1, i E {I, 2, 3} produce values for k's for some classes of D4

which are not of the form 3m
, m E {O, 1, 2}. Thus the only working possibility is

x(D4 132) = 7r1 + 7r2 + 1 and we get the following table for the corresponding values of

these k's.

[d]D4 lA 2A 2B 20 4A
k 9 1 3 3 1

Using Programme A from Chapter 2, Section 2.3, we are able to obtain the f/s

and hence the conjugacy classes of elements of 32:D4 . See Appendix, Programme A

for 32:D4 .

Having obtained the fj's, we then use Programme B from Chapter 2 (Section

2.3) to determine the orders of the conjugacy class representatives. Table 6.3 below

provides details of the conjugacy classes [X]h of elements of 13 = 32:D4.

Table 6.3: The conjugacy classes of elements of 32:D4

[d]D4 k fj dj W [x1I3 I[X]I31 ICI3 (x)1
lA 9 h = 1 (0,0) (0,0) lA 1 72

12=4 (1,1) (1,1) 3A 4 18
h =4 (1,0) (1,0) 3B 4 18

2A 1 f] = 1 (0,0) (0,0) 2A 9 8

2B 3 h = 1 (0,0) (0,0) 2B 6 12
12 =2 (1,1) (2,0) 6A 12 6

2C 3 h = 1 (0,0) (0,0) 2C 6 12
12=2 (0,1) (1, 1) 6B 12 6

4A 1 h = 1 (0,0) (0,0) 4A 18 4
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Thus we observe that 13 = 32:D4 has altogether 9 conjugacy classes.

In order to compute the charater table of 32:D4 , we need to obtain its inertia

groups. We proved that when D4 acts on I rr(32 ) we obtain three orbits of lengths

1, 4, 4 and thus three corresponding inertia groups T i = 32:1i, where i E {I, 2, 3}

of indices 1, 4, 4 respectively in 32:D4 . Thus we have T1 = D4 , T2 = Z2, T3 = Z2'
By looking at the conjugacy classes of 32:D4 listed above we obtain that no element

of 2A fixes an element of order 3 in 32• But each elements of 2B and 2C fixes some

elements of order 3 in 32 respectively, which give rise to the elements of order 6 in 6A

and 6B classes of 32:D4 . By considering the character table of 32 it is not difficult to

see that

(a) there is no X E 1rr(32
) and no a E 2A such that XQ = X.

(b) for x E 2B and y E 2C, there exist X, 'ljJ E 1rr(32) such that X =1= 'ljJ and XX = X

and 'ljJY = 'ljJ.

Hence without loss of generality we can assume that T2 = (x) and T3 = (y) for

some x E 2B and y E 2C. Since T2 and T3 are subgroups of D4 , we deduce that x and

y fuse to 2B and 2C classes of D4 respectively. Thus we have obtained the complete

fusions of T2 and T3 into D4. Having obtained these fusions, we are now able to

compute the Fischer-Clifford matrices of the group 32:D4 • We will use the relations

of Proposition 5.2.3, Theorem 5.2.4 and the properties (a) through (f) of the Fischer

Clifford matrices 'which are given in Chapter 5 (Section 5.2.2). Note that all the

relations hold since 32 is an elementary abelian group. Consider the conjugacy class

2B of D4 . Then we obtain that M(2B) has the following form with corresponding

weights attached to the rows and columns

12 6

M(2B) = ; (~ ~ )

3 6

However by Theorem 5.2.4 we have a = c = 1 and by property (e) of the properties
given in Chapter 5 (Section 5.2.2) of the Fischer-Clifford matrices, we obtain b = 2.
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By the orthogonalities of the columns and rows resp.ectively we must have 4 +4d = 0
and 6 + 6d = O. Hence d = -1 and we obtain M(2B) to be given by

M(2B) = (1 1).
2 -1

Now we consider M(lA). Then

72

8 ( 1
M(lA) = 2 4

2 4

1

18 18

:D
4 4

such that 8 + 2a2+ 2b2 = 18 and 8 + 8a + 8b = O. Hence we obtain that a2+ b2 = 5

and a+b = -1. We deduce that {a = 1,b = -2} or {a = -2,b = I}. Similarly c and

d must satisfy the relations c2 + d2 = 5 and c + d = -1 and hence {c = 1, d = -2}

or {c = -2, d = I}. Using the weights ml = 1,.m2 = 4 and m3 = 4 for the

orthogonality of the first and second rows we obtain 4 + 4a + 4c = 0 and hence

a + c = -1. Similarly we obtain b + d = -1. Thus {a = 1,b = -2,c = -2,d = I}

or {a = -2, b = 1, c = 1, d = -2}. Hence we have the following two possibilities for

M(lA):

(
~ ~ - ~) or (~ - ~ ~)
4 -2 1 4 1-2

Since in 32:D4 we have (6A)2 = 3A, for X E Irr(32:D4 ) we must have X(3A) =
x(6A)(mod 2). Checking the validity of this congruent relation for the portions of

the character table of 32:D4 corresponding to M(2B) and to the two candidates of

(

1 1 1)M(lA) we deduce that M(lA) = 4 1 -2 is the only candidate.
4 -2 1

We obtain all the Fischer-Clifford matrices for 32:D4 which are listed in Table 6.4

below.
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Table 6.4: The Fischer-Clifford matrices of 32:D4

M(d) M(d) M(d)ell) M(2B) = ( ~ -~ )M(lA) = 4 1-2 M(2A) = ( 1 )

4 -2 1

M(2C) = (1 1) M(4A) = ( 1 )
2 -1·

The character tables of T1 = D4 , T2 and T3 are as follows:

The character table of TI

[X]TJ lA 2A 2B 20 4A

I[X]TJ I 1 1 2 2 2

Xl 1 1 1 1 1

X2 1 1 -1 -1 1

X3 1 1 1 -1 -1

X4 1 1 -1 1 -1

Xs 2 -2 0 0 0

The character table of T2

[X]T2 lA 2B

I[X]T21 1 1

Xl 1 1

X2 1 -1

The character table of T3

[X]T3 lA 20

Xl 1 1

X2 1 -1

We use the Fischer-Clifford matrices given in Table 6.4 and the character tables

of T1 = D 4 , T2 and T3 together with the fusions of T2 and T3 into D4 to obtain the

character table of 32 :D4 . For example using M(lA) and the portions of the character

tables of the inertia factors which correspond to the classes that fuse into lA in D4 ,

we compute the portion of the character table of 32:D4 which corresponds to the'
identity coset as follows:
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1 1 1 1

1 1 1 1

1 [1 1 1] = 1 1 1

1 1 1 1

2 2 2 2

[ ~ ] [4 -2 ]= [ :
1 -2 ]1
1 -2

U][4 -2 1] = [ :
-2

~ ]-2
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Similarly we use M(2B) to compute the portion of the character table of 32:D4

which corresponds to the coset 2B:

1 1 1

-1 -1 -1

1 [11]= 11
-1 -1 -1

o 0 0

[ _~ ] [2 -1] = [ _~ -~]

The complete character table of 32:D4 is displayed in Table 6.5.
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Table 6.5: The character table of 13 = 32:D4

[d]D 4 lA 2A 2B 2C 4A

[Xh3 lA 3A 3B 2A 2B 6A 2C 6B 4A

ICh(x)1 72 18 18 8 12 6 12 6 4

Xl 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 -1 -1 -1 -1 1

X3 1 "1 1 1 1 1 -1 -1 -1

X4 1 1 1 1 -1 -1 1 1 -1

Xs 2 2 2 -2 0 0 0 0 0

X6 4 1 -2 0 2 -1 0 0 0

X7 4 1 -2 0 -2 1 0 0 0

X8 4 -2 1 0 0 0 2 -1 0

X9 4 -2 1 0 0 0 -2 1 0

6.2.3 The fusions of 12, 13 and 14 into 86

As we mentioned before there are four inertia groups 11,12,13 and 14 for the group

25:86 such that 11 = 86 , 12 = 85 , 13 = 32:D4 and 14 = 84 X 2. We first compute the

power maps of the elements of 32:D4 which are given in Table 6.6.

Table 6.6: The power maps of the elements of 13 = 32:D4

[d)D 4 [x] 13 2 3

lA lA
3A lA
3B lA

2A 2A lA
2B 2B lA

6A 3A 2B
2C 2C lA

6B 3B 2C
4A 4A 2A

The power maps of the elements of 12, 14 and 86 are easily obtainable. Using
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the character tables of 12 , 13 and 14 together with the power maps of their elements,

the cycle structures, the permutation characters of 56 of degrees 6, 10 and 15, and

Corollary 3.5.4 we obtain the fusions of 12 , 13 and 14 into 56 which are listed in

Tables 6.7, 6.8 and 6.9 below. The entries of the tables are obtained by computing

ICs6 (y)I/IC1i (x)1 where y is a representative of a conjugacy class of 56 and x a repre

sentative of a conjugacy class of I i , where i E {2, 3, 4} and o(x) = o(y). The entries

of the boxes in the tables give the actual fusions. For example in the fusion of 32:D4

into 56 we have lA~ lA, 2A~ 20, 2B~ 2A and so on. Similarly in the fusion

of 54 x 2 into 56, we have lA~ lA, 2A~ 2B, 2B~ 2C, 20~ 2B and so on.

Table 6.7: The fusion of 5 s into 56

Cycle of S6 16 14 2 23 12 22 13 3 32 12 4 24 1 S 123 6

Class of S6 lA 2A 2B 2C 3A 3B 4A 4B SA 6A 6B
Class of Ss Cycle of Ss

lA 16
~

2A 23 4 [}]
2B 12 22 6 6 0
3A 32 3 IT]
4A 12 4 [3] 2

SA 1 S IT]
6.4 6 1 III

x(S61Ss) 6 0 4 2 0 3 2 0 1 0 1

Table 6.8: The fusion of 32:D4 into 56

Cycle of S6 16 14 2 23 12 22 13 3 32 12 4 24 IS 123 6

Class of S6 lA 2A 2B 2C 3A 3B 4A 4B SA 6A 6B
Class of 32 :D4 Cycle of 32:D4

lA 16
~

2A 12 22 6 6 0
2B 14 2 [}] 4

2C 23 4 8]
3A 13 3 IT] 1

3B 32 1 IT]
4A 24 2 [3]
6A 123 IT] 1
6B 6 1 III

x(S6132:D4) 10 4 4 2 1 1 0 2 0 1 1



114 CHAPTER 6. A MAXIMAL SUBGROUP OF F122

Table 6.9: The fusion of 84 ~ 2 into 86

Cycle of 86 16 14 2 23 12 22 13 3 32 12 4 24 1 5 123 6

Class of 86
. lA 2A 2B 20 3A 3B 4A 4B 5A 6A 6B

Class of 84 x 2 Cycle of 84 x 2

lA 16 [}]]
2A 23 6 0 2

2B 12 22 3 3 IT]
2C 23 1 []
2D 12 22 6 6 [2]
2E 14 2 0 3 1

3A 33 3 0
4A 12 4 IT] 1

4B 24 1 IT]
6A 6 1 fll

X(86184 X 2) 15 3 7 3 0 3 1 1 0 0 1

6.2.4 The Fischer-Clifford Matrices of 25:86

We use the fusions discussed in Section 6.2.3 together with the relations of Proposition

5.2.3, Theorem 5.2.4 and the properties (a) through (f) of the Fischer-Clifford matrices

which are given in Chapter 5 (Section 5.2.2) to construct the Fischer-Clifford matrices

of 25:86 . For each class representative h E 86 , we construct a Fischer-Clifford matrix

M (h) and these are displayed in the following table.

Table 6.10: The Fischer-Clifford matrices of 25:86

M(h) M(h) M(h)

M(1A) ~ ( 1:
1 1 -q 7 1 1 1 1 1 \

-6 -2
M(2A) ~ ( :

1 -n 4 -4 2 -2 0

-10 2 -4 M(2B) = 4 -4 -2 2 0 I
15 15 -1 -1

3 6 6 0 0 -2
1 1 -1 -1 1

M(2C)~U1 1 1

-D M(3B) ~ (1-2 -2 2 1 1

-: )-2 2 -2 M(3A) = ( ~ -~ ) -3 -1

1 1 1 -1 1

2 -2 -2 3 -1 -1

M(4A) ~ ( :

1 -: ) M(4B) ~ ( :

1 -: ) M(5A) = ( ~ -~ )-2 -2
1 1

1 1 1 1

M(6A) = ( 1

-~ ) M(6B) = (
1 -1 -1 1 )1 1 -1 1 -1

\ 1 1 -1 -1 )

We used the above Fischer-Clifford matrices and the character tables of 11 , 12 ,

13 and 14 together with the fusions of 12, 13 and 14 into 86 to obtain the character
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table of H2 = 25:86 . The set of irreducible characters of 25:86 will be partitioned into

four blocks B 1 , B2 , B3 and B4 corresponding to the inertia factors 11 ,12 ,13 and 14

respectively. In fact B1 = {Xi 11 :::; i :::; 11}, B2 = {Xi 112 :::; i :::; 18}, B3 = {Xi 119 :::;

i :::; 27}, B4 = {Xi I 28 :::; i :::; 37}, where Irr(25 :86 ) = U;=1 Bi. The complete

character table of 25 :86 is given in Table 6.11. Please note that the centralizers of

elements of 25:86 are not listed here but are listed in the last column of Table 6.2.

Table 6.11: The character table of 25:86

lA 2A 2B 2C 3A
lA 2A 2B 2C 2D 2E 4A 2F 2G 4B 4C 2H 21 2J 4D 4E 4F 3A 6A

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 5 5 5 5 -3 -3 -3 1 1 1 1 1 1 1 1 1 1 2 2

X3 9 9 9 9 -3 -3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 0 0

X4 5 5 5 5 -1 -1 -1 3 3 3 3 3 1 1 1 1 1 -1 -1
XS 10 10 10 10 -2 -2 -2 2 2 2 2 2 -2 -2 -2 -2 -2 1 1

X6 16 16 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2

X7 5 5 5 5 1 1 1 -3 -3 -3 -3 -3 1 1 1 1 1 -1 -1
X8 10 10 10 10 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1

X9 9 9 9 9 3 3 3 3 3 3 3 3 1 1 1 1 1 0 0

XIO 5 5 5 5 3 3 3 -1 -1 -1 -1 -1 1 1 1 1 1 2 2

Xll 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1

Xl2 6 -6 -2 2 0 0 0 4 -4 2 -2 0 2 -2 -2 2 0 0 0

Xl3 24 -24 -8 8 0 0 0 -8 8 -4 4 0 0 0 0 0 0 0 0

Xl4 30 -30 -10 10 0 0 0 -4 4 -2 2 0 2 -2 -2 2 0 0 0
XIS 36 -36 -12 12 0 0 0 0 0 0 0 0 -4 4 4 -4 0 0 0
Xl6 30 -30 -10 10 0 0 0 4 -4 2 -2 0 2 -2 -2 2 0 0 0
Xl7 24 -24 -8 8 0 0 0 8 -8 4 -4 0 0 0 0 0 0 0 0
Xl8 6 -6 -2 2 0 0 0 -4 4 -2 2 0 2 -2 -2 2 0 0 0
Xl9 10 -10 2 -2 4 -4 0 4 -4 -2 2 0 2 -2 2 -2 0 1 -1
X20 10 -10 2 -2 -4 4 0 -4 4 2 -2 0 2 -2 2 -2 0 1 -1
X21 10 -10 2 -2 4 -4 0 -4 4 2 -2 0 2 -2 2 -2 0 1 -1
X22 10 -10 2 -2 -4 4 0 4 -4 -2 2 0 2 -2 2 -2 0 1 -1
X23 20 -20 4 -4 0 0 0 0 0 0 0 0 -4 4 -4 4 0 2 -2
X24 40 -40 8 -8 8 -8 0 0 0 0 0 0 0 0 0 0 0 1 -1
X2S 40 -40 8 -8 -8 8 0 0 0 0 0 0 0 0 0 0 0 1 -1

X26 40 -40 8 -8 0 0 0 8 -8 -4 4 0 0 0 0 0 0 -2 2
X27 40 -40 8 -8 0 0 0 -8 8 4 -4 0 0 0 0 0 0 -2 2
X28 15 15 -1 -1 3 3 -1 7 7 -1 -1 -1 3 3 -1 -1 -1 0 0
X29 45 45 -3 -3 3 3 -1 -9 -9 3 3 -1 1 1 -3 -3 1 0 0
X30 30 30 -2 -2 -6 -6 2 -2 -2 2 2 -2 2 2 2 2 -2 0 0
X31 45 45 -3 -.3 3 3 -1 3 3 3 3 -5 -3 -3 1 1 1 0 0
X32 15 15 -1 -1 -3 -3 1 5 5 1 1 -3 -1 -1 3 3 -1 0 0
X33 15 15 -1 -1 3 3 -1 -5 -5 -1 -1 3 -1 -1 3 3 -1 0 0
X34 45 45 -3 -3 -3 -3 1 -3 -3 -3 -3 5 -3 -3 1 1 1 0 0
X35 30 30 -2 -2 6 6 -2 2 2 -2 -2 2 2 2 2 2 -2 0 0
X36 45 45 -3 -3 -3 -3 1 9 9 -3 -3 1 1 1 -3 -3 1 0 0
X37 15 15 -1 -1 -3 -3 1 -7 -7 1 1 1 3 3 -1 -1 -1 0 0
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Table 6.11: The character table of 25 :S6 (continued)

3B 4A 4B 5A 6A 6B

3B 6B 6G 6D 4G 4R 8A 41 4J 8B 5A lOA 6E 6F 6G 6R 12A 12B

. Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1

X3 0 0 0 0 1 1 1 1 1 1 -1 -1 0 0 0 0 0 0

X4 2 2 2 2 1 1 1 -1 -1 -1 0 0 -1 -1 0 0 0 0

X5 1 1 1 1 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1

X6 -2 -2 -2 -2 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X7 2 2 2 2 -1 -1 -1 -1 -1 -1 0 0 1 1 0 0 0 0

X8 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 1 1 1 1

X9 0 0 0 0 -1 -1 -1 1 1 1 -1 -1 0 0 0 0 0 0

XIO -1 -1 -1 -1 1 1 1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1

Xll 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

Xl2 3 -3 -1 1 2 -2 0 0 0 0 1 -1 0 0 1 -1 -1 1

Xl3 3 -3 -1 1 0 0 0 0 0 0 -1 1 0 0 1 -1 -1 1

Xl4 -3 3 1 -1 2 -2 0 0 0 0 0 0 0 0 -1 1 1 -1

Xl5 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

Xl6 -3 3 1 -1 -2 2 0 0 0 0 0 0 0 0 1 -1 -1 1

Xl7 3 -3 -1 1 0 0 0 0 0 0 -1 1 0 0 -1 1 1 -1

Xl8 3 -3 -1 1 -2 2 0 0 0 0 1 -1 0 0 -1 1 1 -1

Xl9 1 -1 1 -1 0 0 0 2 -2 0 0 0 1 -1 1 -1 1 -1

X20 1 -1 1 -1 0 0 0 2 -2 0 0 0 -1 1 -1 1 -1 1

X21 1 -1 1 -1 0 0 0 -2 2 0 0 0 1 -1 -1 1 -1 1

X22 1 -1 1 -1 0 0 0 -2 2 0 0 0 -1 1 1 -1 1 -1

X23 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X24 -2 2 -2 2 0 0 0 0 0 0 0 0 -1 1 0 0 0 0

X25 -2 2 -2 2 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

X26 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1

X27 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1

X28 3 3 -1 -1 1 1 -1 1 1 -1 0 0 0 0 1 1 -1 -1
X29 0 0 0 0 1 1 -1 -1 -1 1 0 0 0 0 0 0 0 0

X30 -3 -3 1 1 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1
X31 0 0 0 0 -1 -1 1 1 1 -1 0 0 0 0 0 0 0 0

X32 3 3 -1 -1 1 1 -1 -1 -1 1 0 0 0 0 -1 -1 1 1
X33 3 3 -1 -1 -1 -1 1 -1 -1 1 0 0 0 0 1 1 -1 -1
X34 0 0 0 0 1 1 -1 1 1 -1 0 0 0 0 0 0 0 0

X35 -3 -3 1 1 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1

X36 0 0 0 0 -1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0

X37 3 3 -1 -1 -1 -1 1 1 1 -1 0 0 0 0 -1 -1 1 1

6.3 The fusion of 25:S6 into SP(6, 2)

The conjugacy classes of H2 = 25:S6 are listed in Table 6.2 (Section 6.2.1). We used

these classes and computed the power maps of the elements of 25:S6 which are given
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in Table 6.12 below.

Table 6.12: The power maps of the elements of H2 = 25:86

[Y]SG [X]H2 2 3 5 [Y]S6 [X]H2 2 3 5

lA lA 2A 2D lA
2A lA 2E lA
2B lA 4A 2B
2C lA

2B 2F lA 2C 2I lA
2G lA 2J lA
2H lA 4D 2B
4B 2C 4E 2B
4C 2C 4F 2C

3A 3A lA 3B 3B lA
6A 3A 2A 6B 3B 2A

6C 3B 2C
6D 3B 2B

4A 4G 2I 4B 41 2I

4H 2I 4J 2I

8A 4E 8B 4D
5A 5A lA 6A 6E 3A 2D

lOA 5A 2A 6F 3A 2E
6B 6G 3B 2G

6H 3B 2H
l2A 6C 4B
l2B 6C 4C
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The power maps of the elements of 8P(6, 2) are given in the ATLAS. Using the

information provided by the conjugacy classes of the elements of 25:86 and 8P(6, 2),

the power maps and the permutation character of 8P(6, 2) of degree 63, we are able

to obtain partial fusion of 25:86 into 8P(6, 2). For example the classes 2A, 2B, 20

of 25:86 fuse respectively to 2A, 2B, 20 in 8P(6, 2). To complete the fusion map,

we restrict irreducible characters of 8P(6, 2) of small degrees to 25:86 . To determine

the restrictions of irreducible characters of SP(6, 2) to 25:86 , we use the following

technique of set intersections for characters which has been discussed and used in [80]
and [81].

Let p be the character of 86 afforded by the regular representation of 86 . Then

we obtain that p = L:;~l eicPi, where cPi E Irr(86 ) and ei = deg(cPi)' Then p can be

regarded as a character of 25 :86 which contains 25 in its kernel such that
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If'l/J is a character of 5P(6, 2), then we obtain that

(p, 'ljJhs,s. - 1
2
/S61 {p(lA)'IjJ(lA) + p(2A)'IjJ(2A) + 15p(2B)'IjJ(2B) + 15p(2C)'IjJ(2C)}

1
- 125 :5

6
1 {1561'l/J(lA) + 156 1'l/J(2A) + 15156 1'l/J(2B) + 15156 1'l/J(2C)}

- 3
1
2 {'IjJ(lA) + 'IjJ(2A) + 15'IjJ(2B) + 15'IjJ(2C)}

- ('l/J25,71)

where 71 is the identity character of 25 and 'l/J25 is the restriction of 'l/J to 25. Also for

'l/J we obtain that

where a1, a2, a3, a4 E N U {a} and ()i, i E {I, 2, 3, 4} are the sums of the irreducible

characters of 25 which are in one orbit under the action of 56 on Irr(25 ). Let 7j E

Irr(25 ), where j E {I, 2, ... ,32}. Then we obtain that (using Theorem 6.2.5)

7

()2 = L 7j , deg(()2) = 6
j=2

17

()3 = L 7j , deg(()3) = 10
j=8

32

()4 = L 7j , deg(()4) = 15
j=18

Hence
7 17 32

'l/J25= a171+ a2 L 7j + a3 L 7j + a4 L 7j

j=2 j=8 j=18

and

('l/J25,'l/J25) = ai + 6a~ + 10a~ + 15a~

Notice that al = ('l/J25,71) = (p,'l/Jh5:S6. We also have that

1
('l/J25,'l/J25) = 32 {'l/J(lA)'l/J(lA) + 'l/J(2A)'l/J(2A) + 15'l/J(2B)'l/J(2B) + 15'l/J (2C)'l/J (2C) }
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We now apply the above results to 'lfJl = 7a and 'lfJ2 = 15a, irreducible characters

of SP(6, 2) of gegrees 7 and 15 respectively. For 'lfJl we obtain that

1 1
al = (p, 'lfJl)25:Ss = 32 [7 + (-5) + 15(-1) + 15(3)] = 32 [32] = 1

Since deg ('lfJl) = 7, we must have that

and since al = 1, then we must have that a2 = 1, a3 = a4 = O. Now based on the

partial fusion of 25:S6 in SP(6, 2) which has already been determined, we obtain that

Similarly for 'lfJ2 we obtain that

1 1
al = (p, 'lfJ2h5:ss = 32 [15 + (-5) + 15(7) + 15(3)] = 32 [160] = 5

Since deg( 'lfJ2) = 15, we Inust have that

Since al = 5, then we have a2 = a4 = 0 and a3 = 1. Hence we get ('lfJ2h5:ss = XlO+X19.

Using the partial fusion which has already been determined, the values of'lfJl and

'lfJ2 on the classes of SP(6, 2) and the values of ('lfJlh5:ss and ('lfJ2h5:ss on the classes

of 25:S6 , we are able to complete the fusion of H2 = 25:S6 into G = SP(6,2). This

fusion is given in Table 6.13.
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Table 6.13: The fusion of 25:86 into 8P(6, 2)

[g]a lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A

[h]H2
lA ~
2A IT]
2B 15 [}] 1

2C 15 3 IT]
2D 60 [ill 4 1

2E 60 12 4 IT]
2F 30 6 IT]
2G ~ 6 2

2H 180 36 12 IT]
2I 180 36 [ill 3

2J 180 36 12 IT]
3A 60 18 IT]
3B [ill
4A 6 3 3 ~
4B 2 [] 1

4C 2 1 []
4D 3 IT]
4E [}] 1

4F 12 6 6 4

rn4G 12 6 6 4

4H 12 6 0 4 1

41 12 6 6 4 []
4J 12 0 6 4 1

5A f3l
x(8P(6,2)125 :86) 63 31 15 15 7 15 0 3 3 7 7 3 3 3

Table 6.13: The fusion of 25:86 into 8P(6, 2) (continued)

[g]a 6A 6B 6C 6D 6E 6F 6G 7A 8A 8B 9A lOA 12A 12B 12C 15A
[h]H2
6A 4 4 2 W
6B 1 IT]
6C 3 3 IT]
6D 0 3 1
6E 12 12 6 4 3 IT] 1
6F 12 12 6 4 3 3 IT]
6G 6 6 3 0
6H 6 0 3 2
BA IT] 1
8B 1 IT]
lOA IT]
12A IT] 1
12B 1 fll

x(8P(6,2)125 :86) 3 7 0 3 3 0 0 1 1 0 0
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6.4 The Fischer-Clifford matrices of G
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We use the fusion discussed in Section 6.3 together with the relations of Proposition

5.2.3, Theorem 5.2.4 and the properties (a) through (f) of the Fischer-Clifford matrices

which are given in Chapter 5 (Section 5.2.2) to construct the Fischer-Clifford matrices

of 26:SP(6,2). For each conjugacy class [g] of G with representative 9 E G, we

construct the corresponding Fischer-Clifford matrix M (g) and these matrices are

given in Table 6.14 below.

Table 6.14: The Fischer-Clifford matrices of G
M(g) M(g) M(g)

M(IA) = ( 6~ -~ ) M(2A) ~ ( :
1 -D M(2B) ~ ( :

1

-D1 -1
30 -2 12 0

M(2C) ~ ( :

1 1

-D M(2D)~ C1 1

-~ )1 1 -1 1
M(3A) = ( 1 -~ )2 -2 -1 -1 15

12 -4 0 1 -1 -3

M(3B) = ( 1 ) M(3C) = ( ~ -~ ) M(4A) = ( ~ -~ )

M(4B) ~ ( i 1 -D M4C)~ C 1

-D M(4D) ~ ( :

1

-D1 -1 -2
-2 0 1

M(4E) ~ ( 1
1 1 -; )1 -1

M(5A) = ( ~ -~ ) M(6A) = ( ~ -~ )-1 -1
-1 1 -1

M(.B) ~ ( :

1 -D M(.D) ~ ( :

1 -D1 M(6C) = ( 1 ) 1
-2 -2

M(6E) = ( ~ -~ ) M(6F) = ( ~ -~ ) M(6G) = ( ~ -~ )
M(7A) = ( 1) M(8A) = ( ~ -~ ) M(8B) = ( ~ -~ )
M(9A) = ( 1 ) M(10A) = ( ~ -~ ) M(12A) = ( ~ -~ )
M(12B) = ( ~ -~ ) M(12C) = ( 1 ) M(15A) = ( 1 )

We used the above Fischer-Clifford matrices and the character tables of SP(6, 2)

and 25:86 together with the fusion of 25:S6 into 8P(6, 2) to obtain the character table

of G = 26 :SP(6,2). The set of irreducible characters of G = 26:SP(6,2) will be

partitioned into two blocks B I and B 2 corresponding to the inertia factors HI and
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H2 respectively. In fact B1 = {Xi lIS; i S; 3D}, B2 = {Xi I 31 S; i S; 67}, where

Irr(26:SP(6, 2)) = U;=l B i . The complete character table of G is given in Table 6.15.

Please note that the centralizers of elements of G are listed in the last column of

Table 6.1.

Table 6.15: The character table of 26 :SP(6, 2)

lA 2A 2B 2C 2D

lA 2A 2B 2C 4A 2D 4B 2E 2F 2G 4C 4D 2H .4E 4F 4G

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 7 7 -5 -5 -5 -1 -1 -1 3 3 3 3 -1 -1 -1 -1

X3 15 15 -5 -5 -5 7 7 7 3 3 3 3 -1 -1 -1 -1

X4 21 21 9 9 9 -3 -3 -3 1 1 1 1 -3 -3 -3 -3

X5 21 21 -11 -11 -11 5 5 5 5 5 5 5 -3 -3 -3 -3

X6 27 27 15 15 15 3 3 3 7 7 7 7 3 3 3 3

X7 35 35 -5 -5 -5 3 3 3 -5 -5 -5 -5 3 3 3 3

X8 35 35 15 15 15 11 11 11 7 7 7 7 3 3 3 3

X9 56 56 -24 -24 -24 -8 -8 -8 8 8 8 8 0 0 0 0

XIO 70 70 -10 -10 -10 -10 -10 -10 6 6 6 6 -2 -2 -2 -2

XlI 84 84 4 4 4 20 20 20 4 4 4 4 4 4 4 4

Xl2 105 105 -35 -35 -35 1 1 1 5 5 5 5 1 1 1 1

Xl3 105 105 25 25 25 -7 -7 -7 9 9 9 9 1 1 1 1

Xl4 105 105 5 5 5 17 17 17 -3 -3 -3 -3 -7 -7 -7 -7
Xl5 120 120 40 40 40 -8 -8 -8 8 8 8 8 0 0 0 0
Xl6 ]68 168 40 40 40 8 8 8 8 8 8 8 8 8 8 8
X17 189 189 21 21 2] -3 -3 -3 -11 -11 -11 -11 -3 -3 -3 -3
Xl8 ]89 189 -51 -5] -51 -3 -3 -3 13· 13 13 ]3 -3 -3 -3 -3
X19 189 189 -39 -39 -39 21 21 21 1 1 1 1 -3 -3 -3 -3
X20 210 210 50 50 50 2 2 2 2 2 2 2 -6 -6 -6 -6
X2I 210 210 10 10 10 -14 -14 -14 10 10 10 10 2 2 2 2
X22 216 216 -24 -24 -24 24 24 24 8 8 8 8 0 0 0 0
X23 280 280 -40 -40 -40 -8 -8 -8 -8 -8 -8 -8 8 8 8 8
X24 280 280 40 40 40 24 24 24 8 8 8 8 0 0 0 0
X25 3]5 315 -45 -45 -45 -21 -21 -21 3 3 3 3 3 3 3 3
X26 336 336 -16 -16 -16 16 16 16 -16 -16 -16 -16 0 0 0 0
X27 378 378 -30 -30 -30 -6 -6 -6 2 2 2 2 -6 -6 -6 -6
X28 405 405 45 45 45 -27 -27 -27 -3 -3 -3 -3 -3 -3 -3 -3
X29 420 420 20 20 20 4 4 4 -12 -12 -12 -12 4 4 4 4
X30 512 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6.15: The character table of 26:SP(6, 2) (continued)

3A 3B 3C 4A 4B 4C 4D

3A 6A 3B 3C 6B 4H 41 4J 4K 8A 4£ 8B 4M 4N 40 4P

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 4 4 -2 1 1 3 3 1 1 1 -3 -3 -3 -1 -1 -1

X3 0 0 -3 3 3 -1 -1 -3 -3 -3 1 1 1 3 3 3

X4 6 6 3 0 0 5 5 -1 -1 -1 3 3 3 1 1 1

X5 6 6 3 0 0 1 1 -3 -3 -3 -3 -3 -3 1 1 1

X6 9 9 0 0 0 3 3 1 1 1 5 5 5 -1 -1 -1

X7 5 5 -1 2 2 7 7 -1 -1 -1 -1 -1 -1 --1 -1 -1

X8 5 5 -1 2 2 -1 -1 5 5 5 1 1 1 3 3 3

X9 11 11 2 2 2 0 0 4 4 4 -4 -4 -4 0 0 0

XIO -5 -5 7 1 1 2 2 2 2 2 2 2 2 2 2 2

XlI -6 -6 3 3 3 4 4 0 0 0 0 0 0 4 4 4

Xl2 15 15 -3 -3 -3 5 5 -1 -1 -1 -5 -5 -5 1 1 1

Xl3 0 0 6 3 3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

Xl4 0 0 6 3 3 -3 -3 3 3 3 -1 -1 -1 1 1 1

Xl5 15 15 -6 0 0 0 0 -4 -4 -4 4 4 4 0 0 0

Xl6 6 6 6 -3 -3 0 0 0 0 0 0 0 0 0 0 0

Xl7 9 9 0 0 0 9 9 1 1 1 1 1 1 1 1 1

Xl8 9 9 0 0 0 -3 -3 1 1 1 1 1 1 -3 -3 -3
Xl9 9 9 0 0 0 -3 -3 -5 -5 -5 -1 -1 -1 1 1 1

X20 15 15 3 0 0 -2 -2 2 2 2 2 2 2 -2 -2 -2

X21 -15 -15 -6 3 3 6 6 -2 -2 -2 -2 -2 -2 -2 -2 -2

X22 -9 -9 0 0 0 0 0 -4 -4 -4 4 4 4 0 0 0

X23 10 10 10 1 1 0 0 0 0 0 0 0 0 0 0 0

X24 -5 -5 -8 -2 -2 0 0 4 4 4 -4 -4 -4 0 0 0

X25 0 0 -9 0 0 -5 -5 3 3 3 3 3 3 3 3 3

X26 6 6 -6 0 0 0 0 0 0 0 0 0 0 0 0 0

X27 -9 -9 0 0 0 6 6 2 2 2 2 2 2 -2 -2 -2
X28 0 0 0 0 0 -3 -3 -3 -3 -3 -3 -3 -3 5 5 5

X29 0 0 -3 3 3 -4 -4 0 0 0 0 0 0 -4 -4 -4
X30 -16 -16 8 -4 -4 0 0 0 0 0 0 0 0 0 0 0
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Table 6.15: The character table of 26:.SP(6, 2) (continued)

4E . 5A 6A 6B 6C 6D 6E

4Q 4R 8C 8D 5A lOA 6C 12A 6D 6E 12B 6P 6C 12C 12D 6H 12E

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 2 2 2 2 -2 -2 -2 2 0 0 0 1 1

X3 1 1 1 1 0 0 -2 -2 -2 -2 -2 1 0 0 0 1 1

X4 -1 -1 -1 -1 1 1 0 0 0 0 0 3 -2 -2 -2 0 0

X5 1 1 1 1 1 1 2 2 -2 -2 -2 -1 2 2 2 -2 -2

X6 1 1 1 1 2 2 3 3 3 3 3 0 1 1 1 0 0

X7 -1 -1 -1 -1 0 0 -3 -3 1 1 1 3 1 1 1 -2 -2

X8 1 1 1 1 0 0 -1 -1 3 3 3 -1 1 1 1 0 0

X9 0 0 0 0 1 1 1 1 -3 -3 -3 -2 -1 -1 -1 0 0

XIO -2 -2 -2 -2 0 0 -1 -1 -1 -1 -1 -1 3 3 3 -1 -1

Xll 0 0 0 0 -1 -1 2 2 -2 -2 -2 -1 -2 -2 -2 1 1

Xl2 -1 -1 -1 -1 0 0 1 1 1 ] 1 1 -1 -1 -1 1 1

Xl3 1 1 1 1 0 0 -4 -4 4 4 4 2 0 0 0 1 1

Xl4 -1 -1 -1 -1 0 0 2 2 2 2 2 2 0 0 0 -1 -1

Xl5 0 0 0 0 0 0 1 1 1 1 1 -2 -1 -1 -1 -2 -2

Xl6 0 0 0 0 -2 -2 2 2 -2 -2 -2 2 2 2 2 1 1

Xl7 1 1 1 1 -1 -1 -3 -3 -3 -3 -3 0 1 1 1 0 0

Xl8 1 1 1 1 -1 -1 -3 -3 -3 -3 -3 0 1 1 1 0 0

Xl9 -1 -1 -1 -1 -1 -1 3 3 3 3 3 0 1 1 1 0 0

X20 -2 -2 -2 -2 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2

X21 -2 -2 -2 -2 0 0 1 1 1 1 1 -2 1 1 1 1 1

X22 0 0 0 0 1 1 -3 -3 -3 -3 . -3 0 -1 -1 -1 0 0

X23 0 0 0 0 0 0 -2 -2 2 2 2 -2 -2 -2 -2 -1 -1

X24 0 0 0 0 0 0 -3 -3 1 1 1 0 -1 -1 -1 -2 -2
X25 -1 -1 -1 -1 0 0 0 0 0 0 0 3 0 0 0 0 0

X26 0 0 0 0 1 1 -2 -2 2 2 2 -2 2 2 2 2 2
X27 2 2 2 2 -2 -2 3 3 3 3 3 0 -1 -1 -1 0 0

X28 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X29 0 0 0 0 0 0 4 4 -4 -4 -4 1 0 0 0 -1 -1

X30 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
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Table 6.15: The character table of 26:SP(6, 2)(continued)
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6F 6G 7A 8A 8B 9A lOA 12A 12B 12C 15A

61 6J 6K 12F 7A 8E 8F 8C 8H 9A lOB 20A 12G 24A 12H 24B 121 15A

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 -1 -1 -1 -1 0 -1 -1 1 1 1 0 0 -2 -2 0 0 0 -1

X3 1 1 -1 -1 1 1 1 -1 -1 0 0 0 0 0 -2 -2 -1 0

X4 0 0 0 0 0 -1 -1 1 1 0 -1 -1 2 2 0 0 -1 1

X5 2 2 0 0 0 -1 -1 -1 -1 0 -1 -1 0 0 0 0 1 1

X6 0 0 0 0 -1 1 1 -1 -1 0 0 0 1 1 -1 -1 0 -1

X7 0 0 0 0 0 1 1 1 1 -1 0 0 -1 -1 -1 -1 1 0

X8 2 2 0 0 0 -1 -1 1 1 -1 0 0 -1 -1 1 1 -1 0

X9 -2 -2 0 0 0 0 0 0 0 -1 1 1 1 1 -1 -1 0 1

XIO -1 -1 1 1 0 0 0 0 0 1 0 0 -1 -1 -1 -1 -1 0

XlI -1 -1 1 1 0 0 0 0 0 0 -1 -1 0 0 0 0 1 -1

Xl2 1 1 1 1 0 1 1 -1 -1 0 0 0 -1 -1 1 1 -1 0

Xl3 -1 -1 1 1 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0

Xl4 -1 -1 -1 -1 0 1 1 -1 -1 0 0 0 0 0 2 2 0 0

Xl5 -2 -2 0 0 1 0 0 0 0 0 0 0 -1 -1 1 1 0 0

Xl6 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Xl7 0 0 0 0 0 -1 -1 -1 -1 0 1 1 1 1 1 1 0 -1

Xl8 0 0 0 0 0 1 1 1 1 0 -1 -1 1 1 1 1 0 -1

Xl9 0 0 0 0 0 -1 -1 1 1 0 1 1 1 1 -1 -1 0 -1

X20 2 2 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 0

X21 1 1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 0 0

X22 0 0 0 0 -1 0 0 0 0 0 1 1 -1 -1 1 1 0 1

X23 1 1 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X24 0 0 0 0 0 0 0 0 0 1 0 0 1 1 -1 -1 0 0

X25 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 1 0

X26 -2 -2 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 1
X27 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 1

X28 0 0 0 0 -1 1 1 1 1 0 0 0 0 0 0 0 0 0

X29 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

X30 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 -1
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Table 6.15: The character table of 26:SP(6, 2)(continued)

lA 2A 2B 2C 2D

lA 2A 2B 2C 4A 2D 4B 2E 2F 2G 4C 4D 2H 4E 4F 4G

X31 63 -1 31 -1 -1 15 -1 -1 15 -1 -1 -1 7 -1 -1 -1

X32 315 -5 35 3 -5 -21 -5 27 19 3 3 -5 3 3 -5 3

X33 567 -9 -81 15 -9 -9 -9 39 15 -1 15 -9 -9 7 -1 -9

X34 315 -5 95 -1 -5 3 -5 19 23 7 -1 -5 11 ~1 -5 7

X35 630 -10 70 6 -10 6 -10 38 -10 22 6 -10 -2 -2 -2 14

X36 1008 -16 16 16 -16 48 -16 48 16 16 16 -16 0 0 0 0

X37 315 -5 -85 11 -5 27 -5 11 11 -5 11 -5 -5 3 3 -13

X38 630 -10 -50 14 -10 54 -10 22 -18 14 14 -10 -10 -2 6 -2

X39 567 -9 99 3 -9 63 -9 15 27 11 3 -9 15 -5 -1 3

X40 315 -5 -25 7 -5 51 -5 3 15 -1 7 -5 3 -1 3 -9

X41 63 -1 -29 3 -1 -9 -1 7 11 -5 3 -1 -1 3 -1 -5

X42 378 -6 -126 2 6 -6 2 -6 34 2 -6 -2 -6 -2 2 6

X43 1512 -24 216 -40 24 -24 8 -24 -8 -8 24 -8 0 0 0 0

X44 1890 -30 90 -38 30 -30 10 -30 26 -6 18 -10 -6 -2 2 6

X45 2268 -36 -36 -36 36 -36 12 -36 -36 28 12 -12 12 4 -4 -12

X46 1890 -30 -150 -22 30 -30 10 -30 42 10 2 -10 -6 -2 2 6

X47 1512 -24 -264 -8 24 -24 8 -24 24 24 -8 -8 0 0 0 0

X48 378 -6 114 -14 6 -6 2 -6 18 -14 10 -2 -6 -2 2 6

X49 630 -10 -130 -2 10 54 -2 -10 30 -2 -10 2 -10 2 -2 10

X50 630 -10 110 -18 10 -42 -2 22 14 -18 6 2 -2 -6 6 2

X51 630 -10 110 -18 10 54 -2 -10 14 -18 6 2 -10 2 -2 10

X52 630 -10 -130 -2 10 -42 -2 22 30 -2 -10 2 -2 -6 6 2

X53 1260 -20 -20 -20 20 12 -4 12 -52 12 -4 4 12 4 -4 -12

X54 2520 -40 -40 -40 40 120 -8 -8 -8 -8 -8 8 -8 8 -8 8

X55 2520 -40 -40 -40 40 -72 -8 56 -8 -8 -8 8 8 -8 8 -8

X56 2520 -40 -280 -24 40 24 -8 24 8 8 -24 8 0 0 0 0

X57 2520 -40 200 -56 40 24 -8 24 -24 -24 8 8 0 0 0 0

X58 945 -15 225 1 -15 33 1 -15 49 1 -15 1 9 1 1 -15

XS9 2835 -45 -225 63 -45 27 3 -21 -9 -25 15 3 3 -1 3 -9
X60 1890 -30 -30 34 -30 -78 2 18 18 -14 2 2 -6 10 -6 -6

X61 2835 -45 135 39 -45 27 3 -21 -33 15 -9 3 -21 -1 11 -9

X62 945 -15 165 5 -15 -39 1 9 -3 13 -11 1 -15 5 1 -3
X63 945 -15 -135 25 -15 33 1 -15 -23 -7 9 1 9 -7 1 9
X64 2835 -45 -45 51 -45 -45 3 3 -45 3 3 3 3 -5 -5 27
X65 1890 -30 90 26 -30 66 2 -30 26 -6 -6 2 18 -6 2 -6
X66 2835 -45 315 27 -45 -45 3 3 27 11 -21 3 3 3 -5 3
X67 945 -15 -195 29 -15 -39 1 9 21 -27 13 1 9 5 -7 -3
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Table 6.15: The character table of 26:SP(6, 2) (continued)

3A 3B 3C 4A 4B 4C 4D

3A 6A 3B 3C 6B 4H 41 4J 4K BA 4£ BB 4M 4N 40 4P

X31 15 -1 0 3 -1 3 -1 7 -1 -1 7 -1 -1 3 -1 -1

X32 -15 1 0 6 -2 3 -1 -5 3 -1 -5 -1 3 -5 7 -1

X33 0 0 0 0 0 3 -1 3 -5 3 3 3 -5 -5 7 -1

X34 30 -2 0 -3 1 3 -1 -3 5 -3 9 -3 1 -1 3 -1

X35 15 -1 0 3 -1 -6 2 2 2 -2 2 -2 2 -6 2 2

X36 -30 2 0 -6 2 0 0 0 0 0 0 0 0 0 0 0

X37 30 -2 0 -3 1 3 -1 -9 -1 3 -9 3 -1 -3 -1 -1

X38 15 -1 0 3 -1 -6 2 -2 -2 2 -2 2 -2 2 -6 2

X39 0 0 0 0 0 3 -1 9 1 -3 -3 -3 5 7 -5 -1

X40 -15 1 0 6 -2 3 -1 -7 1 1 5 1 -3 7 -5 -1

X41 15 -1 0 3 -1 3 -1 5 -3 1 -7 1 1 -1 3 -1

X42 45 -3 0 0 0 6 -2 2 2 -2 -14 2 2 -2 -2 2

X43 45 -3 0 0 0 0 0 -4 -4 4 4 -4 4 0 0 0

X44 -45 3 0 0 0 6 -2 -2 -2 2 -10 -2 6 -2 -2 2

X45 0 0 0 0 0 -12 4 0 0 0 0 0 0 4 4 -4

X46 -45 3 0 0 0 6 -2 2 2 -2 10 2 -6 -2 -2 2

X47 45 -3 0 0 0 0 0 4 4 -4 -4 4 -4 0 0 0

X48 45 -3 0 0 0 6 -2 -2 -2 2 14 -2 -2 -2 -2 2

X49 15 -1 0 3 -1 -6 2 -14 2 2 2 -2 2 2 2 -2

X50 15 -1 0 3 -1 -6 2 -10 6 -2 -2 2 -2 2 2 -2

X51 15 -1 0 3 -1 -6 2 14 -2 -2 -2 2 -2 2 2 -2
X52 15 -1 0 3 -1 -6 2 10 -6 2 2 -2 2 2 2 -2
X53 30 -2 0 6 -2 12 -4 0 0 0 0 0 0 -4 -4 4

X54 -30 2 0 3 -1 0 0 0 0 0 0 0 0 0 0 0

X55 -30 2 0 3 -1 0 0 0 0 0 0 0 0 0 0 0

X56 15 -1 0 -6 2 0 0 -4 -4 4 4 -4 4 0 0 0

X57 15 -1 0 -6 2 0 0 4 4 -4 -4 4 -4 0 0 0
X58 45 -3 0 0 0 -3 1 5 -3 1 5 1 -3 -3 1 1
X59 0 0 0 0 0 -9 3 -3 5 -3 9 -3 1 -5 -1 3
X60 -45 3 0 0 0 6 -2 2 2 -2 2 -2 2 6 -2 -2
X61 0 0 0 0 0 3 -1 9 1 -3 -3 -3 5 -1 3 -1
X62 45 -3 0 0 0 9 -3 -5 3 -1 7 -1 -1 5 1 -3
X63 45 -3 0 0 0 9 -3 -7 1 1 -7 1 1 1 5 -3
X64 0 0 0 0 0 3 -1 3 -5 3 3 3 -5 3 -1 -1
X65 -45 3 0 0 0 6 -2 -2 -2 2 -2 2 -2 -2 6 -2
X66 0 0 0 0 0 -9 3 -9 -1 3 -9 3 -1 -1 -5 3
X67 45 -3 0 0 0 -3 1 7 -1 -1 -5 -1 3 1 -3 1
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Table 6.15: The character table of 26:SP(6, 2)(continued)

4E 5A 6A 6B 6C 6D 6E

4Q 4R 8C 8D 5A lOA 6C 12A 6D 6E 12B 6F 6G 12C 12D 6H 12E

X31 3 -1 -1 -1 3 -1 3 -1 7 -1 -1 0 3 -1 -1 1 -1

X32 -1 3 -1 -1 0 0 -3 1 5 -3 1 0 1 -3 1 2 -2

X33 3 -1 -1 -1 -3 1 0 0 0 0 0 0 0 0 0 0 0

X34 1 1 -3 1 0 0 6 -2 2 2 -2 0 2 2 -2 -1 1

X35 -2 -2 2 2 0 0 3 -1 -5 3 -1 0 -1 3 -1 1 -1

X36 0 0 0 0 3 -1 -6 2 -2 -2 2 0 -2 -2 2 -2 2

X37 -1 3 -1 -1 0 0 6 -2 2 2 -2 0 2 2 -2 -1 1

X38 -2 -2 2 2 0 0 3 -1 7 -1 -1 0 3 -1 -1 1 -1

X39 1 1 1 -3 -3 1 0 0 0 0 0 0 0 0 0 0 0

X40 1 1 -3 1 0 0 -3 1 -7 1 1 0 -3 1 1 2 -2

X41 1 1 1 -3 3 -1 3 -1 -5 3 -1 0 -1 3 -1 1 -1

X42 2 -2 -2 2 3 -1 3 -1 -9 -1 3 0 1 -3 1 0 0

X43 0 0 0 0 -3 1 3 -1 -9 -1 3 0 1 -3 1 0 0

X44 2 -2 -2 2 0 0 -3 1 9 1 -3 0 -1 3 -1 0 0

X45 0 0 0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0

X46 -2 2 2 -2 0 0 -3 1 -3 5 -3 0 3 -1 -1 0 0

X47 0 0 0 0 -3 1 3 -1 3 -5 3 0 -3 1 1 0 0

X48 -2 2 2 -2 3 -1 3 -1 3 -5 3 0 -3 1 1 0 0

X49 2 -2 2 -2 0 0 -3 1 -7 1 1 0 3 -1 -1 -1 1

X50 2 -2 2 -2 0 0 -3 1 5 -3 1 0 -1 3 -1 -1 1

X51 -2 2 -2 2 0 0 -3 1 5 -3 1 0 -1 3 -1 -1 1

X52 -2 2 -2 2 0 0 -3 1 -7 1 1 0 3 -1 -1 -1 1

X53 0 0 0 0 0 0 -6 2 -2 -2 2 0 2 2 -2 -2 2

X54 0 0 0 0 0 0 6 -2 2 2 -2 0 -2 -2 2 -1 1

X55 0 0 0 0 0 0 6 -2 2 2 -2 0 -2 -2 2 -1 1

X56 0 0 0 0 0 0 -3 1 5 -3 1 0 -1 3 -1 2 -2
XS7 0 0 0 0 0 0 -3 1 -7 1 1 0 3 -1 -1 2 -2
X58 1 -3 1 1 0 0 -3 1 9 1 -3 0 1 -3 1 0 0

X59 1 1 -3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X60 -2 -2 2 2 0 0 3 -1 3 -5 3 0 3 -1 -1 0 0

X61 1 1 1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0

X62 -1 -1 -1 3 0 0 -3 1 -3 5 -3 0 -3 1 1 0 0

X63 -3 1 1 1 0 0 -3 1 9 1 -3 0 1 -3 1 0 0

X64 3 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

X65 -2 -2 2 2 0 0 3 -1 -9 -1 3 0 -1 3 -1 0 0

X66 -1 3 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

X67 -1 -1 3 -1 0 0 -3 1 -3 5 -3 0 -3 1 1 0 0
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Table 6.15: The character table of 26:SP(6, 2) (continued)

129

6F . 6G 7A 8A 8B 9A lOA 12A 12B 120 15A

61 6J 6K 12F 7A 8E 8F 8G 8H 9A lOB 20A 12G 24A 12H 24B 121 15A

X31 3 -1 1 -1 0 1 -1 1 -1 0 1 -1 1 -1 1 -1 0 0

X32 0 0 0 0 0 -1 1 -1 1 0 0 0 1 -1 1 -1 0 0

X33 0 0 0 0 0 1 -1 1 -1 0 -1 1 0 0 0 0 0 0

X34 -3 1 -1 1 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0

X35 3 -1 1 -1 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0

X36 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

X37 3 -1 1 -1 0 -1 1 -1 1 0 0 0 0 0 0 0 0 0

X38 -3 1 -1 1 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0

X39 0 0 0 0 0 -1 1 1 -1 0 -1 1 0 0 0 0 0 0

X40 0 0 0 0 0 1 -1 -1 1 0 0 0 -1 1 -1 1 0 0

X41 -3 1 -1 1 0 -1 1 1 -1 0 1 -1 -1 1 -1 1 0 0

X42 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 1 -1 0 0

X43 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 1 -1 0 0

X44 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0

X45 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0

X46 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0

X47 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 0 0

X48 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 -1 1 0 0

X49 3 -1 -1 1 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0

X50 -3 1 1 -1 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0

X51 3 -1 -1 1 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0

X52 -3 1 1 -1 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0

X53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X54 -3 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X55 3 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X56 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 0 0

X57 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0

X58 0 0 0 0 0 -1 1 -1 1 0 0 0 -1 1 -1 1 0 0

X59 0 0 0 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0

X60 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0

X61 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0

X62 0 0 0 0 0 -1 1 1 -1 0 0 0 1 -1 1 -1 0 0

X63 0 0 0 0 0 1 -1 1 -1 0 0 0 -1 1 -1 1 0 0

X64 0 0 0 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0 0

X65 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0

X66 0 0 0 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 0

X67 0 0 0 0 0 1 -1 -1 1 0 0 0 1 -1 1 -1 0 0

6.5 The fusion of 26:SP(6, 2) into Fi22

We used the results in Section 6.1 to compute the power maps of the elements of

26:SP(6, 2) which are listed in Table 6.16 below.
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Table 6.16: The power maps of the elements of 26:SP(6, 2)

[g]SP(6,2) [Xb6:SP(62 2 3 5 7 [9]SP(6,2) [Xb6:SP(62 2 3 5 7

lA lA 2A 2B lA

2A lA 2C lA
4A 2A

2B 2D lA 2C 2F lA

2E lA 2G lA

4B 2A 4C 2A
4D 2A

2D 2H lA 3A 3A lA

4E 2A 6A 3A 2A

4F 2A
4G 2A

3B 3B lA 3C 3C lA
6B 3C 2A

4A 4H 2D 4B 4J 2F
41 2E 4K 2F

8A 4C

4C 4L 2F 4D 4N 2D
4M 2F 40 2E
8B 4C 4P 2E

4E 4Q 2F 5A 5A lA

4R 2G lOA 5A 2A
8C 4C
8D 4C

6A 6C 3A 2D 6B 6D 3A 2B
12A 6A 4B 6E 3A 2C

12B 6A 4A

6C 6F 3B 2D 6D 6G 3A 2F
12C 6A 4C
12D 6A 4D

6E 6H 3C 2B 6F 61 3C 2D
12E 6B 4A 6J 3C 2E

6G 6K 3C 2H 7A 7A lA
12F 6B 4G

SA 8E 4H SB 8G 4N
BF 41 8H 40

9A 9A 3B lOA lOB 5A 2B
20A lOA 4A

12A 12G 6G 4J 12B 12H 6G 4L
24A 12C 8A 24B 12C 8B

12C 121 6F 4H 15A 15A 5A 3A

The power maps of the elements of Fi22 are given in the ATLAS. We make use of

the power maps and conjugacy classes of elements for both groups to obtain the partial

fusion of 26:SP(6, 2) into Fi22 . To complete the fusion map we use the restrictions of

the irreducible characters of Fi22 of small degrees to 26:SP(6, 2). To determine these
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restrictions, we again use the technique of set intersections for characters. Thus we

restrict two irreducible characters 78a and 429a of degrees 78 and 429 respectively of

Fi22 to 26:SP(6, 2).

Let p be the character of SP(6,2) afforded by the regular representation of

SP(6,2). Then we obtain that p = Lt~1 ei<pi, where <Pi E 1rr(SP(6,2)) and ei =
deg(<pi)' Then p can be regarded as a character of 26:SP(6, 2) which contains 26 in

its kernel such that

p(g) = { ISP(6,2)1 if 9 E.2
6

o otherwIse

If 'ljJ is a character of Fi22 , then we obtain that

1
126:SP(6, 2) 1 {p(lA)'ljJ(lA) + 63p(2A)'ljJ(2A)}

1
126:SP(6, 2)1 {ISP(6, 2)1~(lA) + 63ISP(6, 2)1~(2A)}
1 .

64 {~(lA) + 63~(2A)}

- (~26, 71)

where 71 is the identity character of 26 and ~26 is the restriction of'ljJ to 26. Also for

~ we obtain that

~26 = a1 (}1 + a2(}2

where aI, a2 E N U {O} and (}i, i E {1,2} are the sums of the irreducible characters of

26 which are in one orbit under the action of SP(6, 2) on Irr(26). Let 7j E 1rr(26),
where j E {I, 2, ... ,64}. Then we obtain that

64

(}2 = L7j , deg((}2) = 63
j=2

and thus we have
64

~26 = a1 7 l + a2 L 7j

j=2

and hence
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Let 78a and 429a be the irreducible characters of Fi22 of degrees 78 and 429

respectively. First let 'l/Jl = 78a. Then we obtain that

However Fi22 has three classes of involutions namely 2A, 2B, 2C. The 2A class of

26:SP(6,2) must fuse into one of these classes of involutions of Fi22 such that the

condition (p, 'l/Jl) E IN U {O} is satisfied. But the values of 78a on the classes 2A,2C

of Fi22 violate this condition and only the value on 2B fulfills the condition. Hence

we obtain that 2A of 26:SP(6, 2) fuses into 2B of Fi22 and that

Since deg('l/Jl) = 78, we must have that al + 63a2 = 78 and since al = 15, we must

have that a2 = 1. Hence based on the partial fusion of 26:SP(6, 2) into Fi22 which

has already been determined, we obtain that (vhh6:sP(6,2) = X3 + X41.

Now let 'l/J2 = 429a. Then we obtain that

1
al = (p, 'l/J2h6:sP(6,2) = 64 [429 + 63 x 45] = 51

Since deg('l/J2) = 429, we must have that al + 63a2 = 429 and since al = 51, we must

have a2 = 6. Hence we obtain

Using the partial fusion already determined and the values of'l/Jl and 'l/J2 on the classes

of Fi22 and the values of (vhh6:sP(6,2) and (7/J2h6:sP(6,2) on the classes of 26:SP(6, 2),

we are able to complete the fusion map of 26:SP(6, 2) into Fi 22 and this is given in

Table 6.17.
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Table 6.17: The fusion of 26 :SP(6,2) into Fi22

[9]SP(6,2) [xbl.i:SP(62 --+ [h]Fin [9]SP(6,2) [Xb6:SP(62 --+ [h] Fi22

lA lA lA 2A 2B 2A

2A 2B 2C 2C
4A 4B

2B 2D 2C 2C 2F 2B
2E 2B 2G 2C
4B 4A 4C 4A

4D 4E

2D 2H 2C 3A 3A 3A

4E 4E 6A 6D
4F 4C
4G 4B

3B 3B 3D 3C 3C 3C
6B 61

4A 4H 4D 4B 4J 4E
41 4C 4K 4B

8A 8B

4C 4L 4B 4D 4N 4D
4M 4E 40 4A
8B 8A 4P 4E

4E 4Q 4E 5A 5A 5A
4R 4D lOA lOB
8C 8A
8D 8B

6A 6C 6F 6B 6D 6A
12A 12C 6E 6F

12B 12D
6C 6F 6K 6D 6G 6D

12C 12B
12D 121

6E 6H 6E 6F 61 6H
12E 12J 6J 61

6G 6K 6J 7A 7A 7A
12F 12J

8A 8E 8D BB BC BD
8F 8C 8H 8B

9A 9A 9C lOA lOB lOA
20A 20A

12A 12G 121 12B 12H 12D
24A 24A 24B 24B

12C 121 12K 15A 15A 15A

133
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6.6 The permutation character of Fi22 on 26:SP(6, 2)

We have that 26:SP(6, 2) is a maximal subgroup of Fi22 of index 694980 in Fi22 . Thus

when Fi22 acts on the cosets of 26:SP(6, 2), then this action gives rise to a permu

tation representation which affords a permutation character of degree 694980 and let

X(Fi 22 126 :SP(6, 2)) be this permutation character. To determine X(Fi 22 126:SP(6, 2)),

we use the fusion of 26:SP(6, 2) into Fi22 and the restrictions of Xi E Irr(Fi22 ) to

26:SP(6,2), where deg(Xi) ~ 694980. However from the ATLAS, we need only

restrict Xi E Irr(Fi 22 ), where i E {I, 2, 3, ... ,45} to 26:SP(6, 2). Let 'l/Jl be the iden

tity character of 26:SP(6, 2). Having restricted Xi E Irr(Fi22 ), i E {I, 2, ... ,45} to

26:SP(6, 2), then we compute the inner product of each Xi with 'l/Jl' We thus obtain

the following table for this information.

Xl X2 X3 X4 X5 X6 X7 X8 X9 XIO Xll Xl2 Xl3 Xl4 Xl5

(Xi, 'l/JI) 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0

Xl6 Xl7 Xl8 Xl9 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

(Xi, 'l/JI) 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45

(Xi, 'l/JI) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Using the above table and the Frobenius-Reciprocity (Theorem 3.4.3), we obtain

that the permutation .character X(Fi 22 126 :SP(6, 2)) is given by

X(Fi 22 126:SP(6,2)) = la + 429a + 1430a + 3080a + 13650a + 30030a +

45045a + 75075a + 205920a + 320320a .

The work of Ivanov et. al. in [65] and of Ivanov and Saxl in [66] shows that the

group Fi22 acting on the cosets of 26:SP(6, 2) has rank 10 with subdegrees 1, 135,

1260, 2304, 8640, 10080, 45360, 143360 and 241920(twice).
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A maximal subgroup of 26:SP(6, 2)

The sporadic simple group Fi22 is generated by a conjugacy class D of 3510 involutions

which are called 3-transpositions such that the product of any noncornmuting pair

is an element of order 3. The full automorphism group of Fi22 is denoted by Fi22

and it is given by Fi22 = Fi22 :(e), where e is an involutory outer automorphism

of Fi22 • In Fi22 there are three classes of involutory outer automorphisms of Fi22
which are denoted bye, ! and B and represented in the ATLAS by 2D, 2F and

2E respectively. In this chapter, we study the group Gpi22 (B) ~ 26:0-(6,2) which

is a maximal subgroup of 26:SP(6, 2) of index 28. We determine its Fischer-Clifford

matrices and hence construct its character table. We use the properties of the Fischer

Clifford matrices which have been discussed in Chapter 5 (Section 5.2.2) and in some

cases we also use the additional information discussed in the introduction of Chapter

6, to compute the entries of the Fischer-Clifford matrices. Motivation for this problem

came from Moori's papers [83] and [85]. Moori in [83] obtained the generators for the

groups CFi22 ( e), CFi22 (f) and GFi22 (B), where

From [83] we obtain that the above groups are D-subgroups of Fi22 generated by

GD(e), GD(!) and GD(B) respectively. The complete fusion of26:0-(6, 2) into 26:SP(6, 2)
will be fully determined.

135
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7.1 The .conjugacy classes of 26:0-(6,2)

In this section we use the method of coset analysis discussed in Chapter 2, Section 2.3,

to determine the conjugacy classes of elements of 26:0-(6,2). The group 0-(6,2) is

a maximal subgroup of SP(6, 2) of index 28. From the conjugacy classes of elements

of SP(6, 2), obtained using CAYLEY, we generated 0-(6,2) by two elements a and

(3 of SP(6, 2) which are given by:

1 0 1 0 0 1 0 1 1 1 0 0

0 0 1 0 0 0 1 1 0 1 1 1

0 1 0 0 0 0
and /3=

0 1 1 0 1 1
a=

0 0 0 0 1 0 0 0 1 0 1 0

0 0 1 1 0 1 0 1 1 1 0 1

0 0 0 0 0 1 1 1 1 1 1 0

such that 0(0) = 4 and 0((3) = 9. We also give the class representatives 9 E 0-(6,2)

in terms of 6 x 6 matrices over GF(2) in the following table, where M is the matrix

which represents that particular class.

[gle M I[glel [gJe M I[glel
/ 1 0 0 0 0 o \ / 1 0 0 0 0 o \

0 1 0 0 0 0 0 1 0 0 0 0

lA
0 0 1 0 0 0 0 0 1 0 0 0

1 2A 36
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0 0 0 1

0 1 0 1 1 0 / 1 0 0 0 0 o \
1 1 1 1 0 1 0 0 1 0 0 0

2B
0 1 0 0 1 1 0 1 0 0 0 0

45 20 270
1 1 0 0 1 0 1 1 1 0 1 0
1 0 1 1 1 1 1 1 1 1 0 0
0 1 1 0 1 0 0 1 1 0 0 1

0 1 0 0 0 1 / 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0

2D
1 1 0 0 1 0 1 1 0 0 1 0

540 3A 80
0 1 0 0 0 0 0 1 0 1 0 0
0 1 1 1 0 1 0 0 1 1 1 1

\ 1 0 0 1 0 o / \ 1 0 0 1 0 o /
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[g]c M I[g]cl [g]c M l[g]cl
/ 1 1 0 0 0 1 \ / 0 0 1 1 1 o \

0 1 0 0 0 0 1 1 0 1 1 0

0 0 1 0 0 0
3C

0 1 1 0 1 1
4803B 240

1 0 1 1 0 1 0 1 1 0 0 0

1 1 1 0 1 0 1 1 0 1 1 1

1 0 1 0 0 0 0 0 1 0 0 1

1 1 0 1 0 1 1 0 0 0 0 0

0 1 0 1 1 1 1 1 0 1 1 0

1 0 1 1 0 0
540 4B

1 0 1 1 1 0
5404A

0 0 1 0 1 0 1 1 0 0 1 0

0 1 1 1 1 0 1 0 1 1 0 0

1 1 1 1 1 0 1 0 0 1 1 1

1 0 1 0 0 0 0 1 1 0 1 o \
0 1 0 0 0 0 0 1 0 1 0 0

4C
0 0 1 0 0 0

1620 4D
1 1 1 0 1 0

3240
0 1 1 1 0 1 0 0 1 1 1 1

1 1 0 0 1 0 1 1 1 1 0 0

1 1 1 0 0 1 1 1 1 1 1 1

0 0 1 0 0 1 / 1 0 1 0 1 0

1 0 1 1 1 0 1 0 1 1 1 1

5A
0 1 0 0 1 1

5184 6A
1 0 1 1 0 1

720
1 1 0 1 1 0 1 1 1 1 0 0

0 1 1 0 1 1 1 1 0 1 1 0
1 1 0 0 0 1 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0

6B
1 1 1 0 1 0

6C
1 0 1 1 0 0

1440 1440
0 1 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 0 1 1 1

1 1 0 1 0 0 1 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 1 0

6D
0 1 0 0 1 1 0 1 1 1 0 1

1440 6E 1440
1 1 0 1 1 1 0 0 0 1 0 0

0 0 1 1 0 1 0 0 0 1 1 0
0 1 0 0 1 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0 1

6F
0 1 0 0 0 0 1 1 1 1 0 1

2160 6G 4320
0 0 0 0 1 0 0 1 0 1 1 1
1 0 1 1 0 1 1 1 1 0 1 1

\ 1 0 0 0 0 1 J \ 0 1 1 0 0 1 /

137



138 CHAPTER 7. A MAXIMAL SUBGROUP OF 26 :8P(6, 2)

[g]c M I[g]cl [g]c M I[g]cl
I 0 0 0 1 0 1 \ I 1 0 0 0 1 o \

0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 1 1 0
9A

0 0 0 0 1 0
57608A 6480

0 1 0 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 1 0 0 0 1

0 0 1 0 0 0 1 0 1 1 1 0

1 1 0 0 1 1
l2A

1 1 0 1 1 0
4320lOA 5184

0 1 0 0 1 1 1 1 1 1 0 1

0 1 1 1 1 0 1 1 0 0 1 0

1 1 1 0 0 0 0 1 0 1 1 0

0 0 0 0 0 1

0 0 1 1 1 1

0 1 1 0 1 1
432012B

0 0 1 1 0 1

0 1 0 0 1 1

\ 1 0 1 0 1 o J

We obtain that 0-(6,2) has 25 conjugacy classes and that when .0-(6,2) acts on

26 it gives rise to three orbits of lengths 1, 27 and 36 and hence three point stabilizers

0-(6,2), 24:85 and 86 x 2 of indices 1, 27 and 36 respectively in 0-(6,2). Let

X(0-(6,2)124:85 ) and X(0-(6, 2)186 x 2) be the permutation characters of 0-(6,2)

on 24:85 and 86 x 2 respectively. Then from the ATLAS, we obtain that

Now let X(0-(6, 2)126
) be the permutation character of 0-(6,2) on 26 . Then we

obtain that

(0- (6 2) 126) = 1 + 10 - (6,2) + 10 - (6,2)
X, 24 :S5 S6 x2 '

where I~~s~,2) and I~~~,2) are the identity characters of 24 :85 and 86 x 2 respectively

induced to 0-(6,2) and we observe that

I~~~:,2) = X(0- (6,2) 124:85 ) and I~~(g,2) = X(0- (6,2) 186 x 2) .

Hence X(0- (6,2) 126
) = 1+X(0- (6,2) 124:85) +X(0- (6,2) 186 x 2). Thus the values of

X(0-(6, 2)126
) on the various classes of 0-(6,2) give us the number k of fixed points

of each 9 E 0-(6,2) in 26
. The following table provides us with a complete list of the

k's, which we need for calculating the conjugacy classes of 26:0-(6,2).
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[9]0-(62) lA 2A 2B 20 2D 3A 3B 30 4A 4B 40 4D 5A

X(O-(6,2)124 :85) 27 15 3 7 3 ° 9 ° 3 1 5 1 2

X(O-(6,2)186 X 2) 36 16 12 8 4 ° 6 3 ° 6 2 2 1

k 64 32 16 16 8 1 16 4 4 8 8 4 4

[9]0-(62) 6A 6B 6C 6D 6E 6F 6G 8A 9A lOA 12A 12B

X(O- (6,2)124 :85) ° ° 3 ° 3 1 ° 1 ° ° 1 °
X(O-(6, 2)186 x 2) ° 1 4 3 ° 2 1 ° -0 1 ° °

k 1 2 8 4 4 4 2 2 1 2 2 1
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Having obtained the values of the k's for each class representative g E 0-(6,2), we

then need to compute the /j'S corresponding to these various k's. For this purpose we

use Progrmme A given in Chapter 2 (Section 2.3). See Appendix, Programme A for

26:0-(6,2). From the programme output we calculate the number /j of orbits Q/s,

1 ~ i ~ k which have come together under the action of Co- (6,2) (g) for each class

representative 9 E 0-(6,2). Having obtained the I/s, we deduce that 26:0-(6,2)

has altogether 65 conjugacy classes of elements. These values are listed in Table

7.1. In this table we also list the d/s where djg is a representative of the ~j. For

each class representative 9 E 0-(6,2), we calculate the lengths of the corresponding

classes [xh6:o-(6,2) of 26:0-(6, 2) by using the theory of the conjugacy classes of group

extensions which has been discussed in Chapter 2 (Section 2.3). For each [xh6 :o-(6,2) ,

the order of C26:0-(6,2)(X) is also given in the last column of Table 7.1. Table 7.1
provides complete details of the conjugacy classes of elements of 26:0-(6,2).

Table 7.1: The conjugacy classes of 26:0-(6,2)

[9Jo-(62) k fj dj W [Xb6:0- (62) I[xb6:0-(62)1 10 26 :o-(62)(x)1
lA 64 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) lA 1 3317760

h = 27 (1,1,1,1,0,1) (1,1,1,1,0,1) 2A 27 122880

h =36 (1,1,1,1,1,1) (1,1,1,1,1,1) 2B 36 92160

2A 32 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) 20 72 46080

12=6 (1,1,1,1,0,1) (1,0,0,0,0,0) 4A 432 7680

h = 10 (1,1,1,1,1,1) (1,0,0,0,0,0) 4B 720 4608

14 = 15 (1,0,1,0,1,0) (0,0,0,0,0,0) 2D 1080 3072

2B 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2E 180 18432

12 =3 (1,1,1,1,1,1) (0,0,0,0,0,0) 2F 540 6144

h = 12 (1,0,1,1,1,1) (1,0,1,1,0,1) 40 2160 1536
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Table 7.1: The conjugacy classes of 26:0-(6, 2)(continued)

[g]0-(62) k f.i dj W [Xb6:0-(62) I[x b6:0-(62)1 IC26:0-(62)(x)1

2C 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2G 1080 3072

12 = 1 (1,1,0,1, 1,0) (0,1,1,0,0,0) 4D 1080 3072

13 =3 (1,1,1,1,1,1) (0,1,1,0,0,0) 4E 3240 1024

f4 = 3 (0,0,1,0,0,1) (0,0,0,0,0,0) 2H 3240 1024

fs = 8 (1,0,1,0,1,0) (1,0,0,1,1,0) 4F 8640 384

2D 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 2I 4320 768

12 = 1 (1,1,1,1,1,1) (1,1,0,0,0,1) 4G 4320 768

13 =3 (0,1,0,1,0,1) (1,0,0,1,0,1) 4H 12960 256

f4 = 3 (1,1,1,1,1,0) (0,1,0,1,0,0) 41 12960 256

3A 1 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3A 5120 648

3B 16 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3B 960 3456

12=6 (1,1,1,1,0,1) (0,0,0,1,0,1) 6A 5760 576

13 =9 (1,1,1,1,1,1) (1,0,1, I, 1,0) 6B 8640 384

3C 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 3C 7680 432

12 =3 (1,1,1,1,1,1) (1,0,1,0,1,1) 6C 23040 144

4A 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4J 8640 384

h =3 (1,1,1,1,0,1) (0,0,0,0,0,0) 4K 25920 128

4B 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4£ 4320 768

12=3 (1,1,1,1,1,1) (0,0,0,0,0,0) 4M 12960 256

13 =4 (1,0,0,1,0,0) (0,1,1,0,0,0) 8A 17280 192

4C 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4N 12960 256

12 = 1 (0,1,1,0,1,1) (0,0,0,0,0,0) 40 12960 256
13=2 (1,0,1,0,1,0) (0,0,0,0,0,0) 4P 25920 128
f4 =4 (1,1,1,1,1,1) (0,0,1,0,0,0) 8B 51840 64

4D 4 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) 4Q 51840 64

12 = 1 (1,1,1,1,1,1) (1,1,0,0,1,0) 8C 51840 64
13 = 1 (1,0,1,0,1,0) (1,1,0,0,1,0) 8D 51840 64
f4 = 1 (1,0,0,1,0,0) (0,0,0,0,0,0) 4R 51840 64

5A 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 5A 82944 40
12 = 1 (1,1,1,0,0,0) (1,0,0,0,1,1) lOA 82944 40
13 =2 (1,1,1,1,1,1) (0,0,1,1,1,1) lOB 165888 20

6A 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6D 46080 72

6B 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6E 46080 72
12 = 1 (1,1,1,1,1,1) (1,0,0,0,0,0) 12A 46080 72

6C 8 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6F 11520 288
12 = 1 (0,1,1,1,1,0) (1,0,0,1,0,0) 12B 11520 288
13 =3 (1,1,1,1,1,1) (0,0,0,0,0,0) 6G 34560 96
f4 = 3 (1,0,1,0,1,0) (1,0,0,1,0,0) 12C 34560 96
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[g]0-(62) k fj d j W [Xb6:0- (62) l[xb6:0-(62)1 IC26:0-(62)(x)1

6D 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6H 23040 144

h =3 (1,1,1,1,1,1) (0,0,0,0,0,0) 61 69120 48

6E 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6J 23040 144
12 =3 (1,1,1,1,1,1) (1,1,0,0,1,1) 12D 69120 48

6F 4 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6K 34560 96
12 =1 (1,1,1,1,1,1) (0,1,1,0,0,0) 12E 34560 96
12=2 (1,0,1,0,1,0) (1,0,0,1,1,0) 12F 69120 48

6G 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 6£ 138240 24

h = 1 (1,1,1,1,1,1) (1,1,0,0,0,1) 12G 138240 24

8A 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 8E 207360 16
12 = 1 (1,0,0,0,0,0) (0,0,0,0,0,0) 8F 207360 16

9A 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 9A 368640 9

lOA 2 h =1 (0,0,0,0,0,0) (0,0,0,0,0,0) lOC 165888 20

12 = 1 (1,0,0,1,0,0) (1,0,0,1,1,1) 20A 165888 20

12A 2 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 12H 138240 24
12 = 1 (1,0,0, 1,0,0) (0,1,1,0,0,0) 24A 138240 24

12B 1 h = 1 (0,0,0,0,0,0) (0,0,0,0,0,0) 121 276480 12

7.2 The inertia groups of 26:0-(6,2)

When 0-(6,2) acts on the conjugacy classes of 26 , it forms three orbits of lengths

1, 27 and "36. Hence 0-(6,2) acting on Irr(26 ) will form three orbits of lengths 1,

t and z such that t + z = 63. Since 0-(6, 2) ~ U4 (2).2, then from the ATLAS

we obtain that t = 27 and z = 36. We deduce that there are three inertia groups

Hi = 26 :Hi of indices 1, 27, 36 in 26 :0-(6,2) respectively, where i E {I, 2, 3} and

Hi :s 0-(6,2) are the inertia factors. Then we obtain that the inertia factors are

given by HI = 0-(6,2), H 2 = 24:85 and H3 = 86 X 2, where H2 = (aI, a2) and

H 3 = ({31, {32), where aI, a2, {31 and {32 are given by

1 1 ° 1 ° 1 1 ° ° 1 1 °° 1 ° ° ° ° ° ° ° ° 1 °° 1 1 1 ° 1 1 ° 1 1 1 1
Ql=

° ° ° 1 ° °
, Q2 =

° ° 1 1 1 1

° 1 ° 1 1 1 1 1 1 1 ° °° ° ° ° ° 1 1 ° 1 ° 1 °
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0 1 0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0

1 1 0 0 1 0
/32 =

1 0 1 1 0 0
/31=

0 1 0 0 0 0
,

0 0 0 1 0 0

0 1 1 1 0 1 1 1 0 0 1 0

1 0 0 1 0 0 0 0 0 1 1 1

such that o(Ql) = 2, o(Q2) = 12, O(!31) = 2 and O(!32) = 6.

7.3 The fusions of 24:85 and 86 x 2 into 0-(6,2)

The groups 24:85 and 86 x 2 are maximal subgroups of 0-(6,2) of indices 27 and 36

respectively. Thus using direct matrix conjugation in 0-(6,2) and the permutation

characters of 0-(6, 2) on 24:85 and 86 x 2 of degrees 27 and 36 respectively, we obtain

the fusions of the inertia factors H2 = 24:85 and H3 = 86 X 2 into 0-(6,2). These are

given in Tables 7.2 and 7.3 respectively. We follow the techniques already discussed

and used in Chapter 6 for the fusions.

Table 7.2: The fusion of 24:85 into 0-(6,2)

[glo- (62) lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 5A

[hl24:S.
lA @]
2A IT]
2B 6 IT]
2C [ill 12 2 1

2D 45 36 6 IT]
2E 45 36 W 3

3A 27 0
4A 1 [2]
4B IT] 3 1
4C 3 3 [i]
4D 6 6 2 [i]
4E 12 12 0 2

5A f2l
xCO "C6, 2)124 :85) 27 15 3 7 3 0 9 0 3 5 2
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Table 7.2: The fusion of 24:85 into 0-(6, 2)(continued)

[g]0-(62) 6A 6B 6C 6D 6E 6F 6G 8A 9A lOA 12A 12B

[hb1:S,

6A 3 ~
6B 6 3 IT] 3 3 2 1

6C 6 3 3 3 IT] 2 1

8A IT]
12A fll 1

x(O-(6,2)124 :85) 0 0 3 0 3 0 0 0 1 0

Table 7.3: The fusion of 86 x 2 into 0-(6,2)

[g]0-(62) lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 5A

[h]Sc,x2

lA ~
2A [I]
2B 15 12 ~ 1

2C 15 [ill 2 1

2D [ill 12 2 1

2E 15 12 2 IT]
2F 45 36 W 3

2G 45 36 6 IT]
3A 18 W 3

3B 18 6 IT]
4A 6 6 2 ffi4B 6 6 2
4C 6 W 2
4D 6 6 0
5A III

x(O (6,2)186 x 2) 36 16 12 8 4 0 5 3 0 6 2 2 1

Table 7.3: The fusion of 86 x 2 into 0-(6, 2)(continued)

[g]0-(62) 6A 6B 6C 6D 6E 6F 6G 8A 9A lOA 12A 12B
[h]Sc,X2

6A 2 1 ~ 1 1
6B 2 IT] 1 1 1
6C 6 3 3 3 3 IT] 1
6D 6 3 3 IT] 3 2 1
6E 6 3 3 3 3 2 []
6F 6 3 IT] 3 3 2 1
lOA fll

x(O (6,2)186 x 2) 0 1 4 3 0 2 1 0 0 1 0 0
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7.4 The Fischer-Clifford matrices of 26:0-(6,2)

We use the fusions discussed in Section 7.3 together with the relations of Proposition

5.2.3, Theorem 5.2.4 and the properties (a) through (f) of the Fischer-Clifford ma

trices which are given in Chapter 5 (Section 5.2.2) to construct the Fischer-Clifford

matrices of 26:0-(6,2). For each conjugacy class [g] of 0-(6,2) with representative

9 E 0-(6,2), we construct the corresponding Fischer-Clifford matrix M(g) and these

are given in Table 7.4 below.

Table 7.4: The Fischer-Clifford matrices of 26:0-(6,2)
M(g) M(g) M(g)

/ 1 1 1 1 \

M(lA) ~ ( 2~
1

-D M(2A) = ( ) M(2B) ~ ( :
1 -D15 -5 3 -1

-5 3
1 -1 -1 1

36 4 12 -4
15 5 -3 -1

M(2C) ~ ( l 1 1 1

-D M(2D)~c 1 1

-: )1 1 1

-6 2 -2
3 -1

M(3A) = ( 1 )
-2 -2 2

-1 -1

6 -2 -2
-3 1 -1

M(3B) ~ ( :

1 -n M(3C) = ( ~ -~ ) M(4A) = ( ~ -~ )-3
2

M(4B) ~ ( : -D M(4C)~ C 1 1

~D M(4D)~ C 1 1

-: )1

1
1 1 -1 -1

-2
-4 0 1 -1

2 -2 -1 1 -1

M(SA) ~ ( :

1

-D M(6B) = ( ~ -~ )-2 M(6A) = ( 1 )
1

M(6C) ~ ( 1
1 1

-: )-3 -1
M(6D) = ( ~ -~ ) M(6E) = ( ~ -~ )-1 1

3 -1 -1

M(6F) ~ ( :

1 -D M(6G) = ( ~ -~ ) M(8A) = ( ~ -~ )1
-2

M(9A) = ( 1 ) M(10A) = ( ~ -~ ) M(12A) = ( ~ -~ )
M(12B) = ( 1 )

We use the above Fischer-Clifford matrices and the character tables of HI =

0-(6,2), H2 and H3 , together with the fusions of H2 and H3 into 0-(6,2) to obtain

the character table of 26:0-(6, 2). The set of irreducible characters of 26:0-(6, 2) will

be partitioned into three blocks El, E2 and E3 corresponding to the inertia factors
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HI, H2 and H3 respectively. In fact B1 = {Xi I 1 :S i :S 25}, B2 = {Xi I 26 :S i :S
43}, B3 = {Xi I 44 :S i :S 65}, where Irr(26:O-(6, 2)) = Uf=l Bi~ The complete char

acter table of 26:0- (6,2) is displayed in Table 7.5. Please note that the centralizers

of the elements of 26:0-(6,2) are listed in the last column of Table 7.1.

Table 7.5: The character table of 26:0-(6,2)

lA 2A 2B 2C

lA 2A 2B 2C 4A 4B 2D 2E 2F 4C 2G 4D 4E 2H 4F

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

X3 6 6 6 4 4 4 4 -2 -2 -2 2 2 2 2 2

X4 6 6 6 -4 -4 -4 -4 -2 -2 -2 2 2 2 2 2

X5 10 10 10 0 0 0 0 -6 -6 -6 2 2 2 2 2

X6 15 15 15 -5 -5 -5 -5 7 7 7 3 3 3 3 3

X7 15 15 15 5 5 5 5 -1 -1 -1 -1 -1 -1 -1 -1

X8 15 15 15 -5 -5 -5 -5 -1 -1 -1 -1 -1 -1 -1 -1

X9 15 15 15 5 5 5 5 7 7 7 3 3 3 3 3

XIO 20 20 20 -10 -10 -10 -10 4 4 4 4 4 4 4 4

Xll 20 20 20 10 10 10 10 4 4 4 4 4 4 4 4

Xl2 20 20 20 0 0 0 0 4 4 4 -4 -4 -4 -4 -4

Xl3 24 24 24 -4 -4 -4 -4 8 8 8 0 0 0 0 0

Xl4 24 24 24 4 4 4 4 8 8 8 0 0 0 0 0

Xl5 30 30 30 -10 -10 -10 -10 -10 -10 -10 2 2 2 2 2

Xl6 30 30 30 10 10 10 10 -10 -10 -10 2 2 2 2 2

Xl7 60 60 60 0 0 0 0 12 12 12 4 4 4 4 4

Xl8 60 60 60 -10 -10 -10 -10 -4 -4 -4 4 4 4 4 4

Xl9 60 60 60 10 10 10 10 -4 -4 -4 4 4 4 4 4

X20 64 64 64 -16 -16 -16 -16 0 0 0 0 0 0 0 0

X21 64 64 64 16 16 16 16 0 0 0 0 0 0 0 0
X22 80 80 80 0 0 0 0 -16 -16 -16 0 0 0 0 0
X23 81 81 81 -9 -9 -9 -9 9 9 9 -3 -3 -3 -3 -3
X24 81 81 81 9 9 9 9 9 9 9 -3 -3 -3 -3 -3

X25 90 90 90 0 0 0 0 -6 -6 -6 -6 -6 -6 -6 -6
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T~ble 7.5: The character table of 26:0-(6, 2)(continued)

2D 3A 3B 3C 4A 4B
2I 4G 4H 41 3A 3B 6A 6B 3C 6C 4J 4K 4£ 4M 8A

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1

X3 0 0 0 0 -3 3 3 3 0 0 2 2 -2 -2 -2

X4 0 0 0 0 -3 3 3 3 0 0 2 2 2 2 2

X5 0 0 0 0 1 -2 -2 -2 4 4 2 2 0 0 0

X6 -1 -1 -1 -1 -3 0 0 0 3 3 -1 -1 -3 -3 -3

X7 -3 -3 -3 -3 6 3 3 3 0 0 3 3 1 1 1

X8 3 3 3 3 6 3 3 3 0 0 3 3 -1 -1 -1

X9 1 1 1 1 -3 0 0 0 3 3 -1 -1 3 3 3

XIO -2 -2 -2 -2 2 5 5 5 -1 -1 0 0 -2 -2 -2

XU 2 2 2 2 2 5 5 5 -1 -1 0 0 2 2 2
Xl2 0 0 0 0 -7 2 2 2 2 2 4 4 0 0 0

Xl3 -4 -4 -4 -4 6 0 0 0 3 3 0 0 0 0 0

Xl4 4 4 4 4 6 0 0 0 3 3 0 0 0 0 0

Xl5 2 2 2 2 3 3 3 3 3 3 -2 -2 4 4 4

Xl6 -2 -2 -2 -2 3 3 3 3 3 3 -2 -2 -4 -4 -4

Xl7 0 0 0 0 -3 -6 -6 -6 0 0 4 4 0 0 0

Xl8 -2 -2 -2 -2 6 -3 -3 -3 -3 -3 0 0 2 2 2
Xl9 2 2 2 2 6 -3 -3 -3 -3 -3 0 0 -2 -2 -2
X20 0 0 0 0 -8 4 4 4 -2 -2 0 0 0 0 0

X21 0 0 0 0 -8 4 4 4 -2 -2 0 0 0 0 0

X22 0 0 0 0 -10 -4 -4 -4 2 2 0 0 0 0 0
X23 3 3 3 3 0 0 0 0 0 0 -3 -3 -3 -3 -3
X24 . -3 -3 -3 -3 0 0 0 0 0 0 -3 -3 3 3 3
X25 0 0 0 0 9 0 0 0 0 0 2 2 0 0 0
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Table 7.5: The character table of 26:0-(6, 2) (continued)
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4C 4D 5A 6A 6B 6C
4N 40 4P BB 4Q BC BD 4R 5A lOA lOB 6D 6E 12A 6F 12B 6G 12C

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

X3 2 2 2 2 0 0 0 0 1 1 1 1 -2 -2 1 1 1 1

X4 -2 -2 -2 -2 0 0 0 0 1 1 1 1 2 2 -1 -1 -1 -1

X5 0 0 0 0 -2 -2 -2 -2 0 0 0 -3 0 0 0 0 0 0

X6 1 1 1 1 1 1 1 1 0 0 0 1 1 1 -2 -2 -2 -2

X7 1 1 1 1 -1 -1 -1 -1 0 0 0 2 2 2- -1 -1 -1 -1

X8 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 2 -2 -2 1 1 1 1

X9 -1 -1 -1 -1 1 1 1 1 0 0 0 1 -1 -1 2 2 2 2

XIO -2 -2 -2 -2 0 0 0 0 0 0 0 -2 -1 -1 -1 -1 -1 -1

XlI 2 2 2 2 0 0 0 0 0 0 0 -2 1 1 1 1 1 1

Xl2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Xl3 0 0 0 0 0 0 0 0 -1 -1 -1 2 -1 -1 2 2 2 2
Xl4 0 0 0 0 0 0 0 0 -1 -1 -1 2 1 1 -2 -2 -2 -2
Xl5 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1

Xl6 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 1 1 1

Xl7 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0 0

XI8 2 2 2 2 0 0 0 0 0 0 0 2 -1 -1 -1 -1 -1 -1

Xl9 -2 -2 -2 -2 0 0 0 0 0 0 0 2 1 1 1 1 1 1

X20 0 0 0 0 0 0 0 0 -1 -1 -1 0 2 2 2 2 2 2
X21 0 0 0 0 0 0 0 0 -1 -1 -1 0 -2 -2 -2 -2 -2 -2
X22 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

X23 1 1 1 1 -1 -1 -1 -1 1 1 1 0 0 0 0 0 0 0
X24 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 0 0 0 0 0 0 0
X25 0 0 0 0 2 2 2 2 0 0 0 -3 0 0 0 0 0 0
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Table 7.5: The character table of 26:0- (6,2)(continued)

6D 6E 6F 6G 8A 9A lOA 12A 12B

6H 61 6J 12D 6K 12E 12F 6£ 12G 8E 8F 9A 10C 20A 12H 24A 121

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 . -1 -1 1

X3 -2 -2 1 1 -1 -1 -1 0 0 0 0 0 -1 -1 1 1 -1

X4 -2 -2 1 1 -1 -1 -1 0 0 0 0 0 1 1 -1 -1 -1

X5 0 0 0 0 2 2 2 0 0 0 0 1 0 0 0 0 -1

X6 1 1 -2 -2 0 0 0 -1 -1 1 1 0 0 0 0 0 -1

X7 2 2 -1 -1 -1 -1 -1 0 0 -1 -1 0 0 0 1 1 0

X8 2 2 -1 -1 -1 -1 -1 0 0 1 1 0 0 0 -1 -1 0

. X9 1 1 -2 -2 0 0 0 1 1 -1 -1 0 0 0 0 0 -1

XIO 1 1 1 1 1 1 1 1 1 0 0 -1 0 0 1 1 0

Xll 1 1 1 1 1 1 1 -1 -1 0 0 -1 0 0 -1 -1 0

Xl2 -2 -2 -2 -2 2 2 2 0 0 0 0 -1 0 0 0 0 1

Xl3 -1 -1 2 2 0 0 0 -1 -1 0 0 0 1 1 0 0 0

Xl4 -1 -1 2 2 0 0 0 1 1 0 0 0 -1 -1 0 0 0

Xl5 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1

Xl6 -1 -1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 -1 -1 1

Xl7 0 0 0 0 -2 -2 -2 0 0 0 0 0 0 0 0 0 1

Xl8 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0 -1 -1 0

Xl9 -1 -1 -1 -1 1 1 1 -1 -1 0 0 0 0 0 1 1 0

X20 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0

X21 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

X22 2 2 2 2 0 0 0 0 0 0 0 -1 0 0 0 0 0

X23 0 0 0 0 0 0 0 0 0 -1 -1 0 1 1 0 0 0

X24 0 0 0 0 0 0 0 0 0 1 1 0 -1 -1 0 0 0

X25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
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Table 7.5: The character table of 26:0- (6,2)(continued)

lA 2A 2B 2C

lA 2A 2B 2C 4A 4B 2D 2E 2F 4C 2G 4D 4E 2H 4F

X26 27 -5 3 15 -5 3 -1 3 3 -1 7 -5 3 -1 -1

X27 27 -5 3 -15 5 -3 1 3 3 -1 7 -5 3 -1 -1

X28 108 -20 12 30 -10 6 -2 12 12 -4 4 4 4 4 -4

X29 108 -20 12 -30 10 -6 2 12 12 -4 4 4 4 4 -4

X30 135 -25 15 -15 5 -3 1 15 15 -5 11 -1 7 3 -5

X31 135 -25 15 15 -5 3 -1 15 15 -5 11 -1 7 3 -5

X32 135 -25 15 45 -15 9 -3 -9 -9 3 7 -5 3 -1 -1

X33 135 -25 15 -45 15 -9 3 -9 -9 3 7 -5 3 -1 -1
X34 162 -30 18 0 0 0 0 18 18 -6 -6 18 2 10 -6

X35 270 -50 30 60 -20 12 -4 6 6 -2 10 -14 2 -6 2

X36 270 -50 30 -30 10 -6 2 6 6 -2 -14 10 -6 2 2

X37 270 -50 30 0 0 0 0 -18 -18 6 14 -10 6 -2 -2
X38 270 -50 30 -60 20 -12 4 6 6 -2 10 -14 2 -6 2

X39 270 -50 30 30 -10 6 -2 6 6 -2 -14 10 -6 2 2

X40 405 -75 45 45 -15 9 -3 -27 -27 9 -3 9 1 5 -3
X41 405 -75 45 -45 15 -9 3 -27 -27 9 -3 9 1 5 -3
X42 540 -100 60 -30 10 -6 2 12 12 -4 -4 -4 -4 -4 4

X43 540 -100 60 30 -10 6 -2 12 12 -4 -4 -4 -4 -4 4

X44 36 4 -4 16 4 -4 0 12 -4 0 8 4 -4 0 0
X45 36 4 -4 14 6 -2 -2 -12 4 0 4 8 0 -4 0
X46 36 4 -4 -14 -6 2 2 -12 4 0 4 8 0 -4 0
X47 36 4 -4 -16 -4 4 0 12 -4 0 8 4 -4 0 0
X48 180 20 -20 -10 -10 . -2 6 36 -12 0 4 8 0 -4 0
X49 180 20 -20 20 0 -8 4 -36 12 0 8 4 -4 0 0
X50 180 20 -20 -50 -10 14 -2 -12 4 0 12 0 -8 4 0
X51 180 20 -20 -40 -20 4 8 12 -4 0 0 12 4 -8 0
X52 180 20 -20 10 10 2 -6 36 -12 0 4 8 0 -4 0
X53 180 20 -20 50 10 -14 2 -12 4 0 12 0 -8 4 0
X54 180 20 -20 -20 0 8 -4 -36 12 0 8 4 -4 0 0
X55 180 20 -20 40 20 -4 -8 12 -4 0 0 12 4 -8 0
X56 324 36 -36 -36 -24 0 12 -36 12 0 0 12 4 -8 0
X57 324 36 -36 54 6 -18 6 36 -12 0 12 0 -8 4 0
X58 324 36 -36 36 24 0 -12 -36 12 0 0 12 4 -8 0
X59 324 36 -36 -54 -6 18 -6 36 -12 0 12 0 -8 4 0
X60 360 40 -40 40 0 -16 8 -24 8 0 -8 -16 0 8 0
X61 360 40 -40 -40 0 16 -8 -24 8 0 -8 -16 0 8 0
X62 360 40 -40 -20 -20 -4 12 24 -8 0 -16 -8 8 0 0
X63 360 40 -40 20 20 4 -12 24 -8 0 -16 -8 8 0 0
X64 576 64 -64 -16 16 16 -16 0 0 0 0 0 0 0 0
X65 576 64 -64 16 -16 -16 16 0 0 0 0 0 0 0 0

149
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Table 7.5: The character table of 26:0-(6, 2)(continued)

2D 3A 3E 3C 4A 4E

2I 4G 4H 41 3A 3E 6A 6E 3C 6C 4J 4K 4£ 4M 8A

X26 3 3 -1 -1 0 9 -3 1 0 0 3 -1 1 1 -1

X27 -3 -3 1 1 0 9 -3 1 0 0 3 -1 -1 -1 1

X28 6 6 -2 -2 0 9 -3 1 0 0 0 0 2 2 -2

X29 -6 -6 2 2 0 9 -3 1 0 0 0 0 -2 -2 2

X30 -3 -3 1 1 0 -9 3 -1 0 0 3 -1 -1 -1 1

X31 3 3 -1 -1 0 -9 3 -1 0 0 3 -1 1 1 -1

X32 -3 -3 1 1 0 18 -6 2 0 0 3 -1 -3 -3 3

X33 3 3 -1 -1 0 18 -6 2 0 0 3 -1 3 3 -3

X34 0 0 0 0 0 0 0 0 0 0 -6 2 0 0 0

X35 0 0 0 0 0 9 -3 1 0 0 -6 2 2 2 -2

X36 6 6 -2 -2 0 9 -3 1 0 0 6 -2 -4 -4 4

X37 0 0 0 0 0 -18 6 -2 0 0 6 -2 0 0 0

X38 0 0 0 0 0 9 -3 1 0 0 -6 2 -2 -2 2

X39 -6 -6 2 2 0 9 -3 1 0 0 6 -2 4 4 -4

X40 -3 -3 1 1 0 0 0 0 0 0 -3 1 -3 -3 3

X41 3 3 -1 -1 0 0 0 0 0 0 -3 1 3 3 -3

X42 -6 -6 2 2 0 -9 3 -1 0 0 0 0 2 2 -2

X43 6 6 -2 -2 0 -9 3 -1 0 0 0 0 -2 -2 2

X44 4 -4 0 0 0 6 2 -2 3 -1 0 0 6 -2 0

X45 -2 2 -2 2 0 6 2 -2 3 -1 0 0 -6 2 0

X46 2 -2 2 -2 0 6 2 -2 3 -1 0 0 6 -2 0

X47 -4 4 0 0 0 6 2 -2 3 -1 0 0 -6 2 0

X48 6 -6 -2 2 0 -6 -2 2 6 -2 0 0 -6 2 0

X49 0 0 4 -4 0 -6 -2 2 6 -2 0 0 -6 2 0

X50 -2 2 -2 2 0 12 4 -4 -3 1 0 0 6 -2 0

X51 4 -4 0 0 0 12 4 -4 -3 1 0 0 -6 2 0

X52 -6 6 2 -2 0 -6 -2 2 6 -2 0 0 6 -2 0

X53 2 -2 2 -2 0 12 4 -4 -3 1 0 0 -6 2 0

X54 0 0 -4 4 0 -6 -2 2 6 -2 0 0 6 -2 0

X55 -4 4 0 0 0 12 4 -4 -3 1 0 0 6 -2 0

X56 0 0 4 -4 0 0 0 0 0 0 0 0 6 -2 0

X57 6 -6 -2 2 0 0 0 0 0 0 0 0 6 -2 0

X58 0 0 -4 4 0 0 0 0 0 0 0 0 -6 2 0

X59 -6 6 2 -2 0 0 0 0 0 0 0 0 -6 2 0

X60 -8 8 0 0 0 6 2 -2 3 -1 0 0 0 0 0

X61 8 -8 0 0 0 6 2 -2 3 -1 0 0 0 0 0

X62 -4 4 -4 4 0 6 2 -2 3 -1 0 0 0 0 0

X63 4 -4 4 -4 0 6 2 -2 3 -1 0 0 0 0 0

X64 0 0 0 0 0 -12 -4 4 -6 2 0 0 0 0 0

X65 0 0 0 0 0 -12 -4 4 -6 2 0 0 0 0 0
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4C 4D 5A 6A 6B 6C

4N 40 4P 8B 4Q 8C 8D 4R 5A lOA lOB 6D 6E 12A 6F 12B 6G 12C

X26 5 -3 1 -1 1 -1 -1 1 2 -2 0 0 0 0 3 -3 -1 1

X27 -5 3 -1 1 1 -1 -1 1 2 -2 0 0 0 0 -3 3 1 -1

X28 2 2 2 -2 0 0 0 0 -2 2 0 0 0 0 -3 3 1 -1

X29 -2 -2 -2 2 0 0 0 0 -2 2 0 0 0 0 3 -3 -1 1

X30 3 -5 -1 1 1 -1 -1 1 0 0 0 0 0 0 -3 3 1 -1

X31 -3 5 1 -1 1 -1 -1 1 0 0 0 0 0 0 3 -3 -1 1

X32 5 -3 1 -1 -1 1 1 -1 0 0 0 0 0 O· 0 0 0 0

X33 -5 3 -1 1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0

X34 0 0 0 0 -2 2 2 -2 2 -2 0 0 0 0 0 0 0 0

X35 -2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

X36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

X37 0 0 0 0 -2 2 2 -2 0 0 0 0 0 0 0 0 0 0

X38 2 2 2 -2 0 0 0 0 0 0 0 0 0 0 -3 3 1 -1

X39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 3 1 -1

X40 -3 5 1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

X41 3 -5 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

X42 2 2 2 -2 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

X43 -2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 -3 3 1 -1

X« 2 2 -2 0 2 0 0 -2 1 1 -1 0 1 -1 4 2 0 -2

X45 2 2 -2 0 0 2 -2 0 1 1 -1 0 -1 1 2 4 -2 0

X46 -2 -2 2 0 0 2 -2 0 1 1 -1 0 1 -1 -2 -4 2 0

X47 -2 -2 2 0 2 0 0 -2 1 1 -1 0 -1 1 -4 -2 0 2

X48 2 2 -2 0 0 -2 2 0 0 0 0 0 2 -2 -4 -2 0 2

X49 -2 -2 2 0 -2 0 0 2 0 0 0 0 2 -2 2 4 -2 0

X50 -2 -2 2 0 0 -2 2 0 0 0 0 0 1 -1 -2 2 -2 2

X51 -2 -2 2 0 -2 0 0 2 0 0 0 0 -1 1 2 -2 2 -2

X52 -2 -2 2 0 0 -2 2 0 0 0 0 0 -2 2 4 2 0 -2

X53 2 2 -2 0 0 -2 2 0 0 0 0 0 -1 1 2 -2 2 -2

X54 2 2 -2 0 -2 0 0 2 0 0 0 0 -2 2 -2 -4 2 0

X55 2 2 -2 0 -2 0 0 2 0 0 0 0 1 -1 -2 2 -2 2

X56 2 2 -2 0 2 0 0 -2 -1 -1 1 0 0 0 0 0 0 0

X57 -2 -2 2 0 0 2 -2 0 -1 -1 1 0 0 0 0 0 0 0

X58 -2 -2 2 0 2 0 0 -2 -1 -1 1 0 0 0 0 0 0 0
X59 2 2 -2 0 0 2 -2 0 -1 -1 1 0 0 0 0 0 0 0

X60 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -2 -4 2 0

X61 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 2 4 -2 0

X62 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 4 2 0 -2

X63 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -4 -2 0 2

X64 0 0 0 0 0 0 0 0 1 1 -1 0 2 -2 2 -2 2 -2

X65 0 0 0 0 0 0 0 0 1 1 -1 0 -2 2 -2 2 -2 2
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Table 7.5: The character table of 26:0-(6, 2) (continued)

6D 6E 6F 6G SA 9A lOA 12A 12B

6H 61 6J 12D 6K 12E 12F 6£ 12G SE SF 9A lOG 20A 12H 24A 121

X26 0 0 3 -1 1 1 -1 0 0 1 -1 0 0 0 1 -1 0

X27 0 0 3 -1 1 1 -1 0 0 -1 1 0 0 0 -1 1 0

X28 0 0 3 -1 1 1 -1 0 0 0 0 0 0 0 -1 1 0

X29 0 0 3 -1 1 1 -1 0 0 0 0 0 0 0 1 -1 0

X30 0 0 -3 1 -1 -1 1 0 0 1 -1 0 0 0 -1 1 0

X31 0 0 -3 1 -1 -1 1 0 0 -1 1 0 0 0 1 -1 0

X32 0 0 0 0 -2 -2 2 0 0 -1 1 0 0 -0 0 0 0

X33 0 0 0 0 -2 -2 2 0 0 1 -1 0 0 0 0 0 0

X34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X35 0 0 -3 1 1 1 -1 0 0 0 0 0 0 0 -1 1 0

X36 0 0 -3 1 1 1 -1 0 0 0 0 0 0 0 -1 1 0

X37 0 0 0 0 2 2 -2 0 0 0 0 0 0 0 0 0 0

X38 0 0 -3 1 1 1 -1 0 0 0 0 0 0 0 1 -1 0

X39 0 0 -3 1 1 1 -1 0 0 0 0 0 0 0 1 -1 0

X40 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

X41 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0

X42 0 0 3 -1 -1 -1 1 0 0 0 0 0 0 0 -1 1 0

X43 0 0 3 -1 -1 -1 1 0 0 0 0 0 0 0 1 -1 0

X44 3 -1 0 0 2 -2 0 1 -1 0 0 0 1 -1 0 0 0

X45 -3 1 0 0 -2 2 0 1 -1 0 0 0 -1 1 0 0 0

X46 -3 1 0 0 -2 2 0 -1 1 0 0 0 1 -1 0 0 0

X47 3 -1 0 0 2 -2 0 -1 1 0 0 0 -1 1 0 0 0

X48 0 0 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0

X49 0 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0 0

XSO -3 1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

XSl 3 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

XS2 0 0 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0

XS3 -3 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0

XS4 0 0 0 0 2 -2 0 0 0 0 0 0 0 0 0 0 0

XS5 3 -1 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0

X56 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0

X57 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0

X58 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

X59 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

X60 3 -1 0 0 -2 2 0 1 -1 0 0 0 0 0 0 0 0

X61 3 -1 0 0 -2 2 0 -1 1 0 0 0 0 0 0 0 0

X62 -3 1 0 0 2 -2 0 -1 1 0 0 0 0 0 0 0 0

X63 -3 1 0 0 2 -2 0 1 -1 0 0 0 0 0 0 0 0

X64 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0

X65 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0
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Using the list of maximal subgroups of Fi22 given in the ATLAS, we can easily show

that 26:0-(6, 2) ~ 26:SP(6, 2), where 26:SP(6, 2) is a maximal subgroup.of Fi22 . In

fact 26:0-(6,2) is a maximal subgroup of 26:SP(6, 2). We used the results in Section

7.1 to compute the power maps of the elements of 26:0-(6,2) which are listed in

Table 7.6 below.

Table 7.6: The power maps of the elements of 26:0-(6,2)

[glo-{s 2) [Xb6:0-{S 2) 2 3 5 [glo-{s 2) [Xb6:0- (S 2) 2 3 5

lA lA 2A 20 lA
2A lA 4A 2B
2B lA 4B 2B

2D lA

2B 2E lA 2C 2G lA
2F lA 4D 2A
4C 2A 4E 2A

2H lA

4F 2B

2D 2I lA 3A JA lA
4G 2B
4H 2B
41 2A

3B 3B lA 30 3C lA
6A 3B 2B 6C 30 2B
6B 3B 2A

4A 4J 2E 4B 4£ 2G
4K 2F 4M 2G

8A 4D
4C 4N 2G 4D 4Q 2G

40 2G 8C 4D
4P 2G 8D 4E
BB 4E 4R 2H

5A 5A lA 6A 6D 3A 2E
lOA 5A 2B
lOB 5A 2A

6B 6E 3C 2C 6C 6F 3B 20
12A 6C 4B 12B 6A 4B

6G 3B 2D
120 6A 4A

6D 6H 3C 2E 6E 6J 3B 2E
61 3C 2F 12D 6B 4C

6F 6K 3B 2G 6G 6£ 3C 2I
12E 6B 4D 12G 6C 4G
12F 6A 4F
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Table 7.6: The power maps of the elements of 26:0-(6, 2)(continued)

[g]0-(62) [Xb6:0- (62) 2 3 5 [g]0-(62) [Xb6:0- (62) 2 3 5

8A 8E 4J 9A 9A 3A
8F 4K

lOA 10C 5A 2C 12A 12H 6K 4£
20A lOA 4A 24A 12E 8A

12B 121 6D 4J

The power maps of elements of 26 :SP(6, 2) are given in Chapter- 6 (Section 6.5).

Since the group 0-(6,2) is a subgroup of SP(6, 2), then its fusion into SP(6,2) will

help to determine the fusion of 26:0-(6,2) into 26 :SP(6,2). For the restrictions of

the irreducible characters of 26 :SP(6, 2) to 26:0-(6,2), we use the technique of set

intersections for characters. Using the permutation character of SP(6, 2) on 0-(6,2)

of degree 28, we obtain the partial fusion of 0-(6, 2) into SP(6, 2). For the remaining

classes 4A, 4B, 6B, 6C, 6D, 6E, 12A and 12B, we used direct matrix conjugation in

SP(6, 2). The complete fusion of 0-(6,2) into SP(6, 2) is given in Table 7.7.

Table 7.7: The fusion of 0-(6,2) into SP(6, 2)

[g]SP(62) lA 2A 2B. 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E SA
[h]0-(62)

lA ~
2A [ill
2B 20 8J 1
2C 120 24 0 2
2D 240 48 16 8J
3A IT]
3B [ill 3
3C 20 3 CD
4A 8J 2 2
4B 4 [I] 2
4C 12 6 0 4 1
4D 24 12 12 8 [I]
5A 0-

x(SP(6,2)IO (6,2)) 28 16 4 8 4 10 1 4 2 6 0 2 3
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Table 7.7: The fusion of 0-(6,2) into SP(6, 2) (continued)

[9]SP(6,2) 6A 6B 6C 6D 6E 6F 6C 7A BA BB 9A lOA 12A 12B 12C 15A

[h]o -(62)

6A 2 2 IT]
6B 4 4 2 IT] 1

6C 4 [i] 2 1 1

6D 4 4 2 1 IT]
6E IT] 4 2 1 1

6F 6 6 3 ~
6C 12 12 6 4 3 3 IT]
BA ~ 2

9A IT]
lOA IT]
12A ~ 2 1

12B 2 2 Iil
x(SP(6, 2)/0- (6,2)) 4 4 2 1 0 2 0 1 1 2 0 1 0

Proposition 7.5.1 Let G, Hand N be groups such that H :::; G and that class kA

of H fuses into class kB of G. Let a E kA and b E kB. Then the classes of N:H

corresponding to the coset N a will fuse into the classes of N:G corresponding to the

coset Nb.

Proof Since kA fuses into kB, a and b are conjugate in G. Thus there exists 9 E G

such that a9 = gag-1 = b. Then we obtain that

(Na)9 = {gnag- 1 In E N} = {gng- 1(gag- 1
) In E N} = {gng- 1b InE N} = Nb

Hence the result. D

Remark 7.5.2 When Hand G act on N, then a and b will have the same number

of fixed points in N. This is true since a and b are conjugate in G and thus will have
the same number of fixed points in N.

We used the information provided by the conjugacy classes and power maps of

26:0-(6,2) and 26:SP(6,2) to partially compute the fusion map. Also the above

proposition and remark provide infonnation which is useful in computing the fusion

map. In order to complete the fusion map, we restricted the irreducible characters 7a,

63a, 63b, 315a and 315d of 26:SP(6, 2) to 26:0-(6,2). To determine these restrictions,

we use the technique of set intersections for characters.
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Let p be the. character afforded by the regular representation of 0- (6,2). Then

we obtain that p = L;~l eicPi, where cPi E Irr(0-(6, 2)) and ei = deg(cPi)' Then p can

be regarded as a character of 26:0-(6,2) which contains 26 in its kernel such that

If'ljJ is a character of 26:SP(6, 2), then we obtain that

1
126:0- (6,2) I {p(lA)'ljJ(lA) + 27p(2A)'ljJ(2A) + 36p(2B)'ljJ(2B)}

- 126:02(6,2)1 {10-(6, 2)1 {1/J(lA) + 271/>(2A) + 361/>(2B)}}

:4 {1/J(lA) + 271/>(2A) + 361/>(2B)}

('ljJ26 , 71)

where 71 is the identity character of 26 and 'ljJ26 is the restriction of'ljJ to 26 . Also for

'ljJ we obtain that

where ab a2, a3 E IN U {O} and Oi, i E {I, 2, 3}, are the sums of the irreducible

characters of 26 which are in the same orbit under the action of 0-(6,2) on Irr(26 ).

Let 7j E Irr(26), where j E {I, 2, ... ,64}. Then we obtain that

28

82 = L7j , deg(82 ) = 27
j=2

64

O2 = :L 7j , deg(02) = 36
j=29

and thus we have
28 64

'ljJ26 = a1 71+ a2 :L 7j + a3 l: 7j

j=2 j=29

and hence
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Also we obtain that al + 27a2 + 36a3 = deg( 'ljJ).

Now let 7a, 63a, 63b, 315a and 315d be the irreducible characters of 26:SP(6, 2)

of degrees 7, 63, 63, 315 and 315 respectively. Hence based on the partial fusion

of 26:0-(6,2) into 26:SP(6,2) which has already been determined and the above

argument, We obtain that

(7ah6:o-(6,2) = 1b + 6b, (63ah6:o-(6,2) = 27a + 36b ,

(63bh6:o-(6,2) = 27b + 36c, (315ah6:o-(6,2) = 135b + 180b ,

(315dh6:o-(6,2) = 135a + 180a .

Using the partial fusion already determined and the values of 7a, 63a, 63b, 315a and

315d on the classes of 26:SP(6,2) and the values of (7ah 6:o-(6,2)' (63ah 6:o-(6,2) ,

(63bh6:o-(6,2)' (315ah6:o-(6,2) and (315dh6:o-(6,2) on the classes of 26:0-(6,2), we
are able to complete the fusion map of 26:0-(6,2) into 26:SP(6, 2) which is given in

Table 7.8.

Table 7.8: The fusion of 26:0-(6,2) into 26:SP(6, 2)

[g]0-(62) [Xb6:0- (62) - [hb6:SP(62) [g]0-(62) [Xb6:0-(62) - [hb6:SP(62)
lA lA lA 2A 2C 2B

2A 2A 4A 4A
2B 2A 4B 4A

2D 2C
2B 2E 2D 2C 2G 2F

2F 2E 4D 4C
4C 4B 4E 4C

2H 2G
4F 4D

2D 2I 2H 3A 3A 3B
4G 4G
4H 4E
41 4F

3B 3B 3A 3C 3C 3C
6A 6A 6C 6B
6B 6A
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Table 7.8: The fusion of 26:0-(6,2) into 26:8P(6, 2)(continued)

[g1o- (62) [Xb6:0-(62) --+ [hb6 :sP(62) [g]0-(62) [Xb6:0-(62) --+ [hb6:SP(62)

4A 4J 4H 4B 4£ 4J

4K 41 4M 4K

8A 8A

4C 4N 4£ 4D 4Q 4Q

40 4M 8C 8C
4P 4M 8D 8D

8B 8B 4R 4R

5A 5A 5A 6A 6D 6F

lOA lOA

lOB lOA

6B 6E 6H 6C 6F 6D
12A 12E 12B 12B

6G 6E

12C 12B

6D 6H 61 6E 6J 6C
61 6J 12D 12A

6F 6K 6G 6G 6£ 6K

12E 12C 12G 12F

12F 12D

8A 8E 8E 9A 9A 9A
8F 8F

lOA 10C lOB 12A 12H 12G
20A 20A 24A 24A

12B 121 121

Since the group 26:0-(6,2) is a subgroup of Fi22 , it must sit inside at least one

maximal subgroup of Fi22 . The possible maximal subgroups of Fi22 which may con

tain 26:0-(6,2) are 2·U(6, 2), 0+(8,2):83 , 26:8P(6, 2) and (2 x 2~+8:U(4, 2)):2 with

indices 5544, 315, 28 and 16 respectively. If these maximal subgroups of Fi22 contain

26:0-(6,2), then they must have permutation characters of degrees corresponding

to the respective indices. However by computations using GAP, we obtain that the

groups 2·U(6, 2),0+(8,2):83 and (2 x 2~+8:U(4, 2)):2 do not have permutation char

acters of degrees 5544,315 and 16 respectively. Hence 26:8P(6, 2) is the only maximal

subgroup of Fi 22 which contains 26:0-(6,2).
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A maximal subgroup of Fi22

The maximal subgroup 26:SP(6, 2) of Fi22 , where 26 is a 2B-pure group and that

NFi22(26) = 26:SP(6, 2), is a 2-local subgroup of Fi22. We have 26:SP(6, 2) ~

NFi22 (26:SP(6, 2)) and since Fi22 is simple, the maximality of 26:SP(6,2) in Fi22
implies that NFi22 (26:SP(6, 2)) = 26:SP(6, 2). In Fi22 , we obtain that 26:SP(6, 2) ~

NPi22 (26:SP(6, 2)), but Npi22(26:SP(6,2)) =f Fi22 , Fi22 · By Theorem C in [118]

and the results of [71], we deduce that Npi (26:SP(6,2)) = 27:SP(6,2) and hence
22 .

27:SP(6,2) = (26:SP(6,2)):(e). In Chapter 6, we computed the conjugacy classes

and the Fischer-Cliffo.rd matrices of the group 26:SP(6, 2). In this chapter, we con

struct the conjugacy classes and the character table of the group 27:SP(6, 2) which

is a maximal subgroup of Fi22 of index 694980. We shall use the technique of the

Fischer-Clifford matrices to construct this character table. We use the properties of

the Fischer-Clifford matrices which have been discussed in Chapter 5 (Section 5.2.2)

and in some cases we also use the additional information discussed. in the introduction

of Chapter 6, to compute their entries. It can be easily shown that

where e, f and eare the involutory outer automorphisms of Fi22 in Fi22 which are

represented in the ATLAS by 2D, 2F and 2E respectively.
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8.1 The actions of SP(6, 2) on 26 and 27

We have that 0-(6,2) = U4 (2):2 is a maximal subgroup of SP(6,2) of index 28.

Consider the conjugacy classes 2D, 5A and 7A of SP(6, 2). Let a, x E SP(6,2) such

that a E 2D, x E 5A are given by

1 1 0 0 1 0 0 1 0 1 1 1

1 1 0 0 0 1 0 1 1 1 0 1

0 0 0 1 0 0
and

0 1 1 1 0 0
a= x=

0 0 1 0 0 0 1 0 1 0 0 0
1 0 0 0 1 1 1 1 1 0 1 0
0 1 0 0 1 1 0 1 1 0 1 0

Then we observe that H = (a,x) ~ 0-(6,2). We find b E 7A such that b*a*b6 tf. H.

Let c = b*a*b6
• Then c E 2D and c tf. H. So (H,c) = SP(6, 2). We also deduce that

o(ax) = 8, o(cx) = 9, o(ac) = 15, SP(6,2) = (H, c) = (a, x, c) = (x, c). We obtain

0 0 1 1 0 0
1 1 1 1 0 0
1 1 0 0 1 1

c=
0 1 0 0 1 1

0 1 1 1 1 0
1 0 0 1 1 0

Now let a, x, c be the following 7 x 7 matrices over GF(2)

1 1 0 0 1 0 0 0 1 0 1 1 1 0
1 1 0 0 0 1 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 1 1 0 0 0

a= 0 0 1 0 0 0 0 I x= 1 0 1 0 0 0 0
1 0 0 0 1 1 0 1 1 1 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1

and

0 0 1 1 0 0 0
1 1 1 1 0 0 0
1 1 0 0 1 1 0

c= 0 1 0 0 1 1 0
0 1 1 1 1 0 0
1 0 0 1 1 0 0
1 0 0 1 1 1 1
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Then we obtaip that (a,X-) ~ 0-(6,2) and (a,x,c) = (x,c) ~ SP(6,2). We thus

give the class representatives 9 E SP(6,2) in terms of 7 x 7 matrices over GF(2) in

the following table, where M is the matrix that represents that particular class.

[9]SP(6,2) M 1[9]SP(6,2)! [9]SP(6,2) M I[g]SP(6,2) I
/ 1 0 0 0 0 0 o \ 7 1 0 0 0 0 0 o \

0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 o· 0 0 1 0 0 0 0

lA 0 0 0 1 0 0 0 1 2A 0 0 0 1 0 0 0 63

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0 0 1 0 1

1 0 0 0 0 0 o \ / 0 0 0 1 1 1 0

0 1 0 0 0 0 0 1 1 0 1 1 1 0

1 1 1 0 0 0 0 1 0 1 1 1 1 0

2B 0 0 0 1 0 0 0 315 2C 0 1 1 1 0 0 0 945

1 0 0 1 1 0 0 0 1 1 0 1 0 0

0 1 0 1 0 1 0 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1 0 0 1 1 1 1

1 1 0 1 0 1 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 1 1 1 1 1 1 0

1 1 0 0 0 1 0 1 0 0 1 1 1 0

2D 1 0 1 0 0 0 0 3780 3A 1 0 1 1 0 1 0 672

1 0 0 1 0 1 0 0 0 0 0 1 0 0

0 1 1 1 1 1 0 1 0 1 0 0 0 0

1 0 0 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 0 1 0 0 0 0 0 o \
0 1 1 0 1 1 0 1 1 0 1 0 0 0

1 1 1 0 0 1 0 1 1 1 0 1 0 0
3B 1 0 1 0 1 1 0 2240 3C 0 1 0 0 0 0 0 13440

0 0 0 1 0 1 0 0 1 1 1 0 0 0
1 0 1 1 0 0 0 1 0 1 1 0 1 0
0 0 1 1 1 0 1 1 0 0 1 1 0 1

1 1 1 0 1 1 o \ / 0 1 1 1 0 0 0
1 0 0 0 0 1 0 1 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1 1 0

4A 0 1 1 1 0 0 0 3780 4B 1 0 0 0 0 0 0 7560
0 1 0 0 0 1 0 1 0 0 1 1 0 0
1 0 1 0 1 1 0 0 0 0 0 1 0 0

\ 0 1 0 0 0 0 1 J \ 0 0 0 0 1 1 1 J
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[9]SP(62) M 1[9]SP(6,2) I [9]SP(6,2) M 1[9]SP(6,2) I
/ 0 1 0 0 0 1 o \ 7 0 0 1 1 1 1 o \

1 1 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 1 0 0 0 0

4C 1 0 1 0 1 0 0 7560 4D 0 1 0 1 0 1 0 11340

1 1 1 1 1 0 0 1 0 1 0 0 1 0

0 1 1 1 1 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 1 1 0 1 1 1 0 1

0 0 0 1 1 1 0 1 1 1 0 -0 0 0

1 1 0 0 1 1 0 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1 1 0 1 1 0 0

4E 0 1 1 0 0 1 0 45360 5A 1 1 1 1 0 1 0 48384

0 1 1 1 1 1 0 1 1 1 0 1 1 0

1 1 1 0 1 1 0 1 0 0 1 1 1 0

1 0 0 0 0 1 1 0 1 1 1 1 1 1

1 0 1 1 1 0 0 1 1 1 1 0 1 o \
0 1 1 1 1 1 0 0 0 0 0 1 1 0

0 1 0 1 0 0 0 0 0 1 0 0 1 0

6A 0 1 1 0 0 0 0 10080 6B 0 0 1 1 1 1 0 10080

0 1 0 0 0 1 0 0 1 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 1 1 1 0 1

1 0 1 1 1 0 0 1 1 1 1 1 0 0

0 0 1 0 1 1 0 1 1 0 1 1 1 0

1 1 0 0 0 1 0 1 0 1 1 1 1 0

6C 0 1 0 1 1 0 0 20160 6D 1 0 0 1 0 1 0 30240

1 1 0 1 1 0 0 1 0 1 0 1 0 0

0 1 1 1 0 0 0 0 1 0 1 1 0 0

1 0 0 0 0 0 1 1 0 1 1 1 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 1 0 0 0 0

0 1 0 1 1 0 0 1 1 0 0 0 0 0
6E 1 1 0 1 0 0 0 40320 6F 0 0 1 1 1 0 0 40320

0 0 1 0 1 0 0 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1 1 1 0 1 1 0
1 0 1 1 1 0 1 1 0 1 0 1 0 1

0 1 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 1 1 1 0 1 1 0

6G 1 1 0 1 0 1 0 120960 7A 1 0 0 0 0 0 0 207360
1 1 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 1 0 1 0 0

\ 0 1 1 1 0 1 1 / \ 1 0 1 1 1 1 1 /
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[9]SP(6,2) M 1[9]SP(6,2) I [9]SP(62) M I[g]SP(6,2) I
/ 1 0 0 1 0 0 o \ / 0 1 0 0 0 1

o "
1 1 1 1 1 1 0 1 1 0 0 1 1 0

1 0 1 1 0 1 0 1 0 1 0 1 0 0

SA 1 0 1 0 1 1 0 90720 SB 1 1 1 1 1 1- 0 90720

1 0 0 1 1 0 0 1 0 0 1 1 1 0

1 1 1 0 1 0 0 0 1 1 1 1 0 0

0 0 1 1 1 0 1 0 1 0 0 1 0 1

0 1 0 0 1 1 0 0 0 1 0 -0 1 0

0 1 0 1 1 0 0 1 0 1 1 1 0 0

1 1 1 1 0 0 0 1 0 0 1 0 1 0

9A 0 1 0 0 1 0 0 161280 lOA 0 1 1 0 1 0 0 145152

0 0 1 1 0 0 0 1 1 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 0 0 1 0 0 1 1

0 0 1 1 0 1 0 1 0 1 0 1 0 0

1 1 0 1 0 0 0 1 0 1 1 0 1 0

0 1 0 0 1 1 0 1 1 0 1 0 0 0

12A 0 0 1 1 1 0 0 60480 12B 0 0 0 0 1 0 0 60480

1 1 1 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 1 0 0 1 0 0 0

1 0 1 0 1 1 1 0 0 1 1 0 1 1

0 0 1 1 0 1 0 1 1 0 1 0 0 0
0 1 0 0 1 1 0 0 0 1 0 0 1 0
1 1 1 0 0 1 0 1 0 1 1 0 1 0

12C 0 0 0 0 0 1 0 120960 15A 1 0 1 1 1 0 0 96768

0 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 0 0 1 1 0 1 1 0 0

\ 0 1 1 1 0 1 1 ) \ 0 1 1 0 1 1 1 )

Suppose that N = 26 = (el, e2, e3, e4, e5, e6) and W = 27 = (26 , B), where el =
[1,0,0,0,0,0], e2 = [0,1,0,0,0,0], ... ,e6 = [0,0,0,0,0,1], () = [0,0,0,0,0,0,1]. Then

we observe that a and x fix B whereas c : B -+ el + e4 + e5 + e6 + B. Hence (a, x, c) rv

SP(6, 2) acts on 27
• Note that C

Pi22
(B) = CFi22 (B) x (B) = [26:0-(6,2)] x (B) by Moori

[83]. Considering el, Band e3 + B = [0,0,1,0,0,0,1], then from the computations

using CAYLEY and GAP we obtain the point stablizers in SP(6, 2) which are given

by

Thus when SP(6,2) acts on 27
, we obt.ain four orbits of lengths 1, 28, 36 and

63 with corresponding point stabilizers SP(6, 2), 0-(6,2), S8 and 25 :86 respectively.
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Hence 8P(6,2) has four orbits on Irr(27
). We also note that N can be identified

with the 6-dimensional irreducible module of 8P(6,2) over GF(2). FUrthermore

W => N => O. Let Xl denote the identity character of 27
. Since 8P(6,2) fixes XI,

{Xl} forms an orbit of length 1 for the action of 8P(6,2) on Irr(27 ). Consider

X~ E I rr(27
) given by X~ (ei) = 1 for 1 ::; i ::; 6 and X~ (8) = -1. Then since x and c

fix X~, (x, c) = 8P(6, 2) will fix X~ forming a second orbit of length 1 given by {X~}.

Since 27 => 26 and 8P(6, 2) acting on Irr(26) produces an orbit ~ of length 63, we

can regard ~ as an orbit of 8P(6, 2) on Irr(27 ). Then the remaining orbit which we

denote by ~' also has length 63.

Since 27 = 26 x (8), the orbits of 8P(6,2) on Irr(27
) are {Xl}, {X~}, ~ and

~/, where ~' = {X I X E Irr(27
),. X26 E ~ and X(8) = -I} and where X26 is

the restriction of X to 26
. Since I~I = I~/I = 63, 8P(6,2) produces four orbits of

lengths 1, 1,63 and 63 on Irr(27 ) with corresponding point stabilizers HI = 8P(6, 2),

H2 = 8P(6, 2), H3 = 25:86 and H4 = 25:86 respectively. Let X E ~. Then X.X~ E ~'

and we can easily see that ISP(6,2)(XI) = ISP(6,2)(X~) = 8P(6,2), ISP(6,2)(X) ~ 25 :86

and ISP(6,2)(X.X~) ~ 25:86 . So we deduce that HI = H2 = 8P(6, 2).

Proposition 8.1.1 Let H3 = ISP(6,2) (X) and H4 =.IsP(6,2)(X.X~). Then H3 = H4 .

Proof We need to show that V9 E H3 , we have

For 9 E H3 we have

(X·X~)9(X) - (X.X~)(X9) = X(X9).X~(X9) = X9(x).(xD9(X)

- X(x).X~ (x) = X·X~ (x)

8.2 The conjugacy classes of 27:SP(6, 2)

In this section we use the method of coset analysis discussed in Chapter 2, Section 2.3,

to deternline the conjugacy classes of elements of 27:8P(6, 2). We observe that W =
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NU Ne7' where e7 = B, N = (el, e2, e3, e4, es, e6) and W = (el, e2, e3, e4, es, e6, e7)'

Thus when SP(6, 2) acts on W, we obtain four orbits ~1, ~2, ~3 and ~4 of lengths

1, 28, 36 and 63 respetively such that

For a class representative 9 E SP(6, 2), the coset W9 is given by W9 = N gUNe7g·

We would like to study the action of W on the coset Wg. Firstly notice that for

n E Nand .w E W, we have

and

where (ne7)9 = n'e7 for some n' EN.

Secondly since w E Wand W = NUNe7, we have w = n1 or w = n1 e7 for some

n1 E N. If w = n1 then by (*) we have n(wg)n = n(n1g)n = nn1n9g = nn1n2g E N g,

where n9 = n2 E N and by (**) we have ne7(wg)ne7 = ne7n1(ne7)9g = ne7n1n'e7g =

nn'n1g E N g. If w = n1e7, then by (*) we have n(wg)n = n(n1e7g)n = n(n1e7 )n9g =

nn1nge7g = nn1n2e7g E Ne7g and by (**) we have ne7(wg)ne7 = ne7(n1e7g)ne7 =
ne7n1 e7(ne7)99 = nn1 (ne7)99 = nn1n'e7g = nn'n1e7g E N e7g·

The above argument shows that when W acts on W g, the elements of N9 are

sent to elements of N 9 and those elements of N e7g are sent to elements of N e7g.

Now applying the theory of coset analysis for the conjugacy classes of elements, we

deduce that W 9 splits into k blocks such that ~ of these blocks correspond to N 9

and the other ~ blocks correspond to Ne7g. Now we act GG(g) on these blocks where

G = SP(6, 2). Let x E GG(g) and we obtain that

(a) x(ng)x-1 = xnx-1g E Ng

Thus when GG(g) acts on the blocks, it either fixes a block or sends a block of N 9 to

a block of N 9 or sends a block of N e79 to a block of N e7g.
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The number ?f conjugacy classes of 27 :SP(6, 2) is equal to

4

L l1rr(Hi)1 = 30 + 30 + 37 + 37 = 134 .
i=l

When SP(6,2) acts on 27 , we obtain four orbits of lengths 1, 28, 36 and 63 with

corresponding point stabilizers SP(6,2), 0-(6,2), S8 and 25:S6 respectively. Let

X(SP(6, 2)127) be the permutation character of SP(6, 2) acting on 27
. Then we obtain

that

1 + 1SP(6,2) + 1SP(6,2) + 1SP(6,2)
- 0-(6,2) Ss 25 :S6

- la + la + 27a + la + 35b + la + 27a + 35b

- 4 X la + 2 x 27a + 2 X 35b

SP(6,2) 1SP(6,2) d lSP(6,2) h'd' h f 0- (6 2) S dwhere 10 -(6,2)' Ss an 25 :S6 are t e 1 entIty c aracters 0 ,,8 an

25:S6 respectively induced to SP(6, 2). For each class representative 9 E SP(6, 2),

X(SP(6, 2)127) will give us the number k of fixed points of each 9 in 27 . The following

table provides us with the complete list of the k's which we need in order to be able

to calculate the conjugacy classes of elements of 27:SP(6, 2).

[g]SP(6,2) lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A

k 128 64 32 32 16 32 2 8 8 16 16 8 8 8 16

[g]SP(6,2) 6B 6C 6D 6E 6F 6G 7A 8A BB 9A lOA 12A 12B 12C 15A

k 8 2 8 8 4 4 2 4 4 2 4 4 4 2 2

Having'obtained the values of the k's for various class representatives of SP(6, 2),

we then use Programme A of Chapter 2, Section 2.3, to obtain the fj's. See Appendix,

Programme A for 27:SP(6, 2).

From the programme output we calculate the number fj of orbits Q/s for 1 ::;

i ::; k, which have come together under the action of CSP(6,2)(g),g E SP(6, 2) to form

one orbit !1 j • These values are listed in Table 8.1. In this table we also list the dJ'S

where dj 9 is a representative of the !1 j . For each class representative 9 E SP(6,2),

we calculate the lengths of the corresponding classes [xh7:sP(6,2) of 27 :SP(6,2) by

using the theory of conjugacy classes of group extensions which has been discussed

in Chapter 2 (Section 2.3). For each [xh7:sP(6,2) , the order of C27:SP(6,2) (x) is given

in the last column of Table 8.1. Table 8.1 below provides details and a complete

enumeration of the conjugacy classes of elements of 27:SP(6, 2).
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Table 8.1: The conjugacy classes of elements of 27:SP(6, 2)
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[g]SP(6,2) k Ij dj W [Xb7 :SP(6 2) I[xb7 :SP(6 2) I IC27:SP(62)(x)1

lA 128 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) lA 1 185794560

12 = 28 (1,0,1,0,1,0,1) (1,0,1,0,1,0,1) 2A 28 6635520

13 = 36 (1,1,1,1,1,1,1) (1,1,1,1,1,1,1) 2B 36 5160960

14 = 63 (1,0,0,0,0,0,0) (1,0,0,0,0,0,0) 2C 63 2949120

2A 64 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2D 126 1474560

12=6 (0,1,0,0,1,0,1) (0,1,0,0,1,0,1) 4A 756 245760

13=10 (1,1,1,1,1,1,1) (0,1,0,0, 1,0,0) 4B 1260 147456

14 = 15 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2E 1890 98304

15 = 16 (1,0,1,0,1,0,0) (0,1,0,0,1,0,0) 4C 2016 92160

16 = 16 (0,1,0,1,0,0,1) (0,0,0,0,0,0,0) 2F 2016 92160

2B 32 h =1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2G 1260 147456

12 = 1 (0,1,0,1,1,1,1) (0,0,0,0,0,0,0) 2H 1260 147456

13 =3 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2I 3780 49152

14 = 3 (1,1,1,0,0,0,1) (0,0,0,0,0,0,0) 2J 3780 49152

15 = 12 (1,0,1,1,0,1,0) (1,0,0,1,0,0,0) 4D 15120 12288

16 = 12 (1,1,1,1,1,1,1) (1,1,0,0,0,0,0) 4D 15120 12288

2C 32 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2K 3780 49152

12 =1 (1,0,1,0,1,0,1) (1,1,1,1,1,1,0) 4F 3780 49152

13=3 (1,1,0,1,1,0,0) (0,0,0,0,0,0,0) 2L 11340 16384

14 = 3 (1,1,1,0,1,1,1) (1,1,1,1,1,1,0) 4G 11340 16384

Is = 4 (1,1,1,1,0,0,0) (1,1,1,1,1,1,0) 4H 15120 12288

16 = 4 (1,1,0,0,0,1,1) (0,0,0,0,0,0,0) 2M 15120 12288
17=8 (1,0,0,0,0,0,0) (1,0,0,1,1,1,0) 4/ 30240 6144

Is = 8 (1,1,1,1,1,1,1) (1,0,0,1,1,1,0) 4J 30240 6144

2D 16 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 2N 30240 6144

12 = 1 (1,1,1,1,1,1,0) (0,0,1,0,1,1,0) 4K 30240 6144

13 = 1 (1,1,0,1,1,0,1) (0,0,1,0,1,1,0) 4L 30240 6144
14 = 1 (1,1,1,0,1,1,1) (0,0,0,0,0,0,0) 20 30240 6144
Is = 3 (1,0,0,0,0,0,0) (0,1,0,1,0,1,0) 4M 90720 2048

16 = 3 (0,1,1,1,1,1,0) (0,1,1,1,1,0,0) 4N 90720 2048
17=3 (1,1,1,1,1,1,1) (1,0,1,1,0,0,0) 40 90720 2048
fs = 3 (0,1,1,1,1,1,1) (1,1,1,0,0,1,0) 4P 90720 2048

3A 32 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 3A 2688 69120
12=6 (1,1,0,1,1,0,1) (1,1,0,1,1,0,1) 6A 16128 11520
13=10 (1,1,1,1,1,1,1) (0,1,0,0,0,0,1) 6B 26880 6912
14 = 15 (1,0,0,0,0,0,0) (1,0,0,1,1,0,0) 6C 40320 4608

3B 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 3B 143360 1296
12 = I, (1,1,1,1,1,1,1) (0,1,0,1,1,1,1) 6D 143360 1296

3C 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 3C 215040 864
12 = 1 (1,0,1,1,0,1,1) (1,0,0,1,1,1,1) 6E 215040 864
13 =3 (1,0,0,0,0,0,0) (1,0,0,0,0,0,0) 6F 645120 288
14 = 3 (1,1,1,1,1,1,1) (0,0,0,1,1,1,1) 6G 645120 288
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Table 8.1: The conjugacy classes of elements of 27:SP(6, 2) (continued)

[9]SP(6,2) k Ij dj W [Xb7 :SP(6 2) I[xb7 :SP(6 2) I IC27:SP(62)(x)1

4A 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4Q 60480 3072

h = 1 (1,0,1,1,0,1,1) (0,0,0,0,0,0,0) 4R 60480 3072

fa =3 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 45 181440 1024

14 = 3 (1,1,1,1,1,1,1) (0,0,0,0,0,0,0) 4T 181440 1024

4B 16 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4U 60480 3072

h = 1 (1,0,1,0,1,0,1) (0,0,0,0,0,0,0) 4V 60480 3072

fa =3 (1,0,1,1,0,1,0) (0,0,0,0,0,0,0) 4W 181440 1024

14 = 3 (1,0,0,0,0,0,1) (0,0,0,0,0,0,0) 4X 181440 W24
15 = 4 (1,0,0,0,0,0,0) (1,1,1,1,1,1,0) 8A 241920 768

16 = 4 (1,1,1,1,1,1,1) (1,1,1,1,1,1,0) 8B 241920 768

4C 16 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4Y 60480 3072

h = 1 (0,0,0,0,0,0,1) (0,0,0,0,0,0,0) 4Z 60480 3072
fa=3 (1,1,0,1,1,0,0) (0,0,0,0,0,0,0) 4AA 181440 1024

/4 = 3 (1,0,0,1,0,0,1) (0,0,0,0,0,0,0) 4AB 181440 1024

/5 = 4 (1,0,0,0,0,0,0) (0,1,1,1,1,1,0) 8C 241920 768

/6 = 4 (1,1,1,1,1,1,1) (0,1,1,1,1,1,0) 8D 241920 768

4D 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4AC 181440 1024

h = 1 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4AD 181440 1024
fa = 1 (1,1,1,1,0,1,1) (0,0,0,0,0,0,0) 4AE 181440 1024

14 = 1 (1,1,0,1,1,0,1) (0,0,0,0,0,0,0) 4AF 181440 1024
/5 = 2 (1,1,1,0,0,0,0) (0,0,0,0,0,0,0) 4AG 362880 512
/6 = 2 (1,1,1,1,1,1,1) (0,0,0,0,0,0,0) 4AH 362880 512

4E 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 4A1 725760 256
h = 1 (1,0,0,0,0,0,0) (1,0,0,1,0,1,0) 8E 725760 256
fa = 1 (1,1,0,1,1,0,0) (1,0,0,1,0,1,0) 8F 725760 256
/4 = 1 (1,0,1,0,1,0,0) (0,0,0,0,0,0,0) 4AJ 725760 256
15 = 1 (1,1,1,1,1,1,1) (0,0,0,0,0,0,0) 4AK 725760 256
/6 = 1 (1,0,1,0,1,0,1) (1,0,0,1,0,1,0) 8G 725760 256
h = 1 (1,1,0,1,1,0,1) (0,0,0,0,0,0,0) 4AL 725760 256
Is = 1 (0,0,0,0,0,0,1) (1,0,0,1,0,1,0) 8H 725760 256

5A 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 5A 774144 240
h = 1 (0,0,1,1,1,1,1) (1,0,1,1,0,0,1) lOA 774144 240
fa =3 (1,0,0,0,0,0,0) (0,0,0,1,1,0,0) lOB 2322432 80
/4 = 3 (1,1,1,1,1,1,1) (0,0,0,0,1,1,1) 1OC 2322432 80

6A 16 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6H 80640 2304
h = 1 (1,1,1,1,0,1,1) (0,0,0,0,0,1,0) 12A 80640 2304
fa =3 (0,0,1,0,0,1,0) (0,0,0,0,0,0,0) 61 241920 768
14 = 3 (1,1,1,1,1,1,1) (0,0,0,0,0,1,0) 12B 241920 768
15 = 4 (1,0,0,0,0,0,0) (0,0,0,0,0,1,0) 12C 322560 576
16 = 4 (0,0,1,1,1,1,1) (0,0,0,0,0,0,0) 6J 322560 576
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Table 8.1: The conjugacy classes of elements of 27:SP(6, 2) (continued)
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[g]SP(6,2) k 1j dj W [Xb7:SP(62) I[xb7 :SP(6 2) I IC27:SP(62)(x)1

6B 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6K 161280 1152

12 = 1 (1, I, 1, 1, 1,1, 1) (0,0,0,0,0,0,0) 6£ 161280 1152

13=3 (1,0,0,0,0,0,0) (0,1,0,1,1,0,0) 12D 483840 384

14 = 3 (1,0,0,1,0,0,1) (0,0,0,0,0,1,0) 12E 483840 384

6C 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6M 1290240 144

12 = 1 (1,1, I, 1, 1, 1, 1) (0,0,0,0,0,0,0) 6N 1290240 144

6D 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 60 483840 . 384

12 = 1 (1,0,1,1,0,1,0) (1,1,1,1,1,1,0) 12F 483840 384

13 = 1 (0,0,0,1,0,0,1) (1,1,1,1,1,1,0) 12G 483840 384

14 = 1 (0,1,0,1,1,0,1) (0,0,0,0,0,0,0) 6P 483840 384

15 = 2 (1,0,0,0,0,0,0) (1,0,0,1,1,1,0) 12H 967680 192

16 = 2 (1,1, I, 1, 1, I, 1) (1,0,0,1,1,1,0) 121 967680 192

6E 8 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6Q 645120 288

12 = 1 (1,0,0,1,0,1,1) (0,0,0,0,0,0,0) 6R 645120 288

13 =3 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6B 1935360 96

14 = 3 (1,1,1,1, I, 1, 1) (0,0,0,0,0,0,0) 6T 1935360 96

6F 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6U 1290240 144

12 = 1 (0,1,0,1,0,1, Q) (1,0,0,0,0,0,0) 12J 1290240 144

13 = 1 (1,1,1,1, I, 1, 1) (0,0,0,0,0,0,0) 6V 1290240 144

14 = 1 (0,1,1,1,1,0,1) (1,0,0,0,0,0,0) 12K 1290240 144

6C 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 6W 3870720 48

12 = 1 (1,0,0,0,0,0,0) (0,0,1,0,1,1,0) -12£ 3870720 48

13 = 1 (1,1,1,1,1,1,1) (0,0,1,0,1,1,0) 12M 3870720 48

14 = 1 (1,0,0,1,0,0,1) (0,0,0,0,0,0,0) 6X 3870720 48

7A 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 7A 13271040 14

12 = 1 (1,1,1,1,1,1,1) (0,0,0,1,1,1,1) 14A 13271040 14

8A 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 81 2903040 64

12 = 1 (1,1,1,0,0,0,0) (0,0,0,0,0,0,0) 8J 2903040 64

13 = 1 (1,1, I, 1, 1, 1, 1) (0,0,0,0,0,0,0) 8K 2903040 64
14 = 1 (1, 1,0,0,1,1,1) (0,0,0,0,0,0,0) 8£ 2903040 64

8B 4 h =1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 8M 2903040 64
12 = 1 (1,0,0,0,0,0,0) (0,0,0,0,0,0,0) 8N 2903040 64
13 = 1 (1,1,1,1,1,1,1) (0,0,0,0,0,0,0) 80 2903040 64
14 = 1 (1,0,1,1,1,1,1) (0,0,0,0,0,0,0) 8P 2903040 64

9A 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 9A 10321920 18
12 = 1 (1, I, 1, 1, 1, 1, 1) (0,0,1,1,0,1,1) 18A 10321920 18

lOA 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 10D 4644864 40
12 = 1 (0,1,1,0,0,1,0) (0,1,0,0,1,0,0) 20A 4644864 40
13 = 1 (1,1,1,1,1,1,1) (0,1,0,0,1,0,0) 20B 4644864 40
14 = 1 (0,0, I, I, I, 1, 1) (0,0,0,0,0,0,0) 10E 4644864 40
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Table 8.1: The conjugacy classes of elements of 27:SP(6, 2) (continued)

[g]SP(6,2) k Ij dj W [xb7:sP(62) I[Xb7~SP(6 2)1 IC27:SP(62)(x)1

12A 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 12N 1935360 96

h = 1 (1,0,0,0,0,0,0) (1,1,1,1,1,1,0) 24A 1935360 96

h = 1 (1,1,1,1,1,1,1) (1,1,1,1,1,1,0) 24B 1935360 96

14 = 1 (1,0,0,0,0,0,1) (0,0,0,0,0,0,0) 120 1935360 96

12B 4 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 12P 1935360 96

h = 1 (1,0,0,0,0,0,0) (0,1,1,1,1,1,0) 24C 1935360 96
h = 1 (1,1,1,1,1,1,1) (0,1,1,1,1,1,0) 24D 1935360 96

14 = 1 (0,1,0,1,0,0,1) (0,0,0,0,0,0,0) 12Q 1935360 96

12C 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 12R 7741440 24
h = 1 (1,1,1,1,1,1,1) (0,0,0,0,0,0,0) 128 7741440 24

15A 2 h = 1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 15A 6193152 30
h = 1 (1,1,1,1,1,1,1) (1,0,1,1,0,0,1) 30A 6193152 30

8.3 The inertia groups of 27:SP(6, 2)

From the results of Section 8.1 we obtain four inertia groups Hi = 27:Hi of indices 1, 1,

63, 63 in 27:SP(6,2) respectively, where i E {I, 2, 3, 4}. We also observed that HI =

H2 ~ SP(6,2) and H3 = H4 ~ 25:S6 of indices 1, 1, 63, 63 in SP(6,2) respectively.

We used the generators a, x, c of SP(6, 2) to compute the class representatives of the

elements of SP(6, 2) in terms of 7 x 7 matrices over GF(2). Hence we were able to

produce a, f3 E 8P(6,2) such that (a, (3) ~ 25:86 , a E 2B , f3 E 12A, where 2B and

12A are two conjugacy classes of elements of 8P(6, 2). We have

1 ° ° ° ° ° ° ° ° 1 1 ° 1 °° 1 ° ° ° ° ° 1 1 ° 1 ° ° °1 1 1 0 0 0 0 0 1 0 0 1 1 0
a= ° ° ° 1 ° ° ° and (3= ° ° 1 1 1 0 °1 ° ° 1 1 ° ° 1 1 1 ° ° ° °° 1 ° 1 0 1 ° 1 ° ° ° 1 1 °1 1 ° ° ° ° 1 1 ° 1 ° 1 1 1

8.4 The fusion of 25:S6 into SP(6, 2)

The group 25:S6 is a maximal subgroup of SP(6, 2) of index 63. Using the permutation

character of 8P(6, 2) of degree 63, we are able to obtain the partial fusion of 25 :86
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into SP(6, 2). We completed the fusion by using matrix conjugation in SP(6, 2). The

complete fusion of 25:S6 into SP(6, 2) is given in Table 8.2. We follow the techniques

already discussed and used in Chapter 6 for the fusion.

Table 8.2: The fusion of 25:S6 into SP(6, 2)

[glSP(62\ lA 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A

[h1 25:s"

lA ~
2A ~
2B 15 3 ~
2C' 15 0 1

2D ~ 6 2

2E 30 6 0
2F 60 12 4 ~
2C 60 rE] 4 1

2H 1BO 36 lE] 3

21 1BO 36 12 lE2J 1BO 36 12

3A @J
3B 60 1B 0
4A 2 ~ 1

4B 2 1 CD
4C 0 1

4D 3

ffi4E 6 3 3

4F 12 0 6 4 1

4C 12 6 6 4 lE4H 12 6 6 4

41 12 6 0 4 1

4J 12 6 6 4 ~
5A r3l

x(8P(6,2)12:1:86) 63 31 15 15 7 15 0 3 7 7 3 3 3

Table 8.2: The fusion of 25:S6 into SP(6,2)(continued)

[glSP(62\ 6A 6B 6C 6D 6E 6F 6C 7A BA BB 9A lOA 12A 12B 12C 15A

[h1 25 :s"
6A l2.J
6B 3 3 ~
6C 3 0
6D 4 4 2 ~
6E 0 6 3 2

6F 6 6 3 0
6C 12 12 6 4 3 ~
6H 12 12 6 4 0 1

BA 1 ~
BB [2]
lOA [2]
12A 0 1

12B fll
x(8P(6,2)125 :86) 0 0 0 0 0
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8.5 The Fischer-Clifford matrices of 27:SP(6, 2)

We use the fusion discussed in Section 8.4 together with the relations of Proposition

5.2.3, Theorem 5.2.4 and the properties (a) through (f) of the Fischer-Clifford ma

trices which are given in Chapter 5 (Section 5.2.2) to construct the Fischer-Clifford

matrices of 27:SP(6, 2). For each conjugacy class [g] of SP(6, 2) with representative

9 E SP(6,2), we construct the corresponding Fischer-Clifford matrix M(g). These

matrices are given in Table 8.3.

Table 8.3: The Fischer-Clifford matrices of 27:SP(6, 2)
M(g)

M(lA) = (6~ =i -~ _~)
63 9 -7 -1

M(2A) = ( ,j
1

30

M(g)
1 1 1 1

-1 -1 1 1
1 1 1 -1

-10 6 -2 0

-1 -1 1-1
10 -6 -2 0

-~ )-1

o
1

o

M(2B) = ( li
12

1

-1

3

-12
-3
12

~ -~ ~ -~)
3 3 -1 -1

-4 4 0 0
3 -3 -1 1

-4 -4 0 0

M(2C) =

1 1

1 -1

1 1
2 2

12 -12
1 -1

2 -2
12 12

1 1 1 1 1 1
1 -1 1 -1 1-1
1 1 1 1 -1 -1
2 2 -2 -2 0 0

-4 4 0 0 0 0
1 -1 1 -1 -1 1
2 -2 -2 2 0 0

-4 -4 0 0 0 0

M(4A) ~ (~ =~ =1 =1)

(~ -~ ~ -~ ~ -~)
M(4C) = 6~1 1 1 1 -1 -1

-6 -2 2 0 0
-1 1 -1 -1 1

6 -2 -2 0 0

M(2D) =

11111111
1 1 -1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 1-1
3 3 3 3 -1 -1 -1 -1
3 -3 3 -3 1 -1 -1 1
1 -1 -1 1 -1 1 -1 1
3 3 -3 -3 -1 -1 1 1
3 -3 -3 3 1 -1 1-1

M(3B) = ( _~)

M(3A) = (1~ =~ -~ _~)
15 5 -3 -1

M(3C) ~n=1 =1 =1)

(~ -~ ~ -~ ~ -~)
M(4B) = 6~1 1 1 1 -1 -1

-6 -2 2 0 0
-1 1 -1 -1 1

6 -2 -2 0 0

(~ ~ -~ -~ ~ -~)
M(4D) = :11 1 1 1 -1 -1

-2 2 -2 0 0
1 -1 -1 -1 1

-2 -2 2 0 0
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Table 8.3: The Fischer-Clifford matrices of 27:8P(6, 2)(continued)
M(g) M(g)

7 1 1 1 1 1 1 1 1 \
1 1 1 1 -1 -1 -1 -1
1 -1 -1 1 1 -1 1 -1

M(5A) ~ ( 1
1 1

-: )1 -1 1 -1 1 1 -1 -1 -1 1
M(4E) =

1 1 -1 -1 1 -1 -1 1 -3 -1
1 -1 -1 1 -1 1 -1 1 3 -1 -1
1 -1 1 -1 -1 -1 1 1
1 1 -1 -1 -1 1 1 -1

M(6A) ~ ( 1
1 1 1 1

-: )-1 1 -1 . 1

M(6B) ~ ( 1
1 1 -: )1 1 1 -1 -1 -1 1

-6 -2 2 0 0 3 -1 -1
. 1 -1 1 -1 -1 1 -3 -1 1

6 6 '-2 -2 0 0

M(6D) ~ (! 1 1 1 1

-: )1 -1 -1 1

M(6C) = ( 1 1 ) 1 1 1 -1 -1
1 -1 -2 2 -2 0 0

1 -1 -1 -1 1
-2 -2 2 0 0

M(6E)~ U 1 1

-: ) M(6F)~ C 1 1 1 )-1 1 1 -1 -1
-3 -1 -1 -1 1

3 -1 -1 -1 1 -1

M(6G) ~ ( ! 1 1 -: )1 -1
M(7A) = ( 1 1 )-1 1 -1 1 -1

-1 -1 1

M(6A)~ C 1 1

-: ) M(8B)~ C 1 1

-: )1 -1 1 -1
-1 -1 -1 -1
-1 1 -1 -1 1 -1

M(lOA) ~ ( 1
1 1 -: )M(9A) = ( ~ -~ ) 1 -1

-1 1 -1
-1 -1 1

M(12A) ~ ( 1
1 1

-: ) M(12B) ~ ( 1
1 1 1 )1 -1 1 -1 -1

-1 -1 -1 -1 1
-1 1 -1 -1 1 -1

M(12C) = ( ~ -~ ) M(15A) = ( ~ -~ )

173

We use the above Fischer-Clifford matrices and the character tables of the iner

tia factors HI = H 2 = 8P(6,2) and H3 = H 4 = 25:86 , together with the fusion of

25:86 into 8P(6, 2) to obtain the character table of 27:8P(6, 2). The set of irreducible

characters of 27:8P(6, 2) will be partitioned into four blocks B I , B2 , B3 and B4 corre

sponding to the inertia factors HI, H 2 , H3 and H4 respectively. In fact B I = {Xi 11 :::;

i:::; 30},B2 = {Xi 131:::; i:::; 60},B3 = {Xi 161:::; i ~ 97},B4 = {Xi I 98 ~ i ~ 134},



174 CHAPTER 8. A MAXIlvfAL SUBGROUP OF FI22

where Irr(27:SP(6,2)) = U;=l Bi · The complete character table of 27:SP(6,2) is

given in Table 8.4. Please note that the centralizers of the elements of 27:SP(6, 2)

are listed in the last column of Table 8.1.

Table 8.4: The character table of 27:SP(6, 2)

lA 2A 2B

lA 2A 2B 2C 2D 4A 4B 2E 4C 2F 2G 2H 2I 2J 4D 4E

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 7 7 7 7 -5 -5 -5 -5 -5 -5 -1 -1 -1 -1 -1 -1

X3 15· 15 15 15 -5 -5 -5 -5 -5 -5 7 7 7 7 7 7

X4 21 21 21 21 -11 -11 -11 -11 -11 -11 5 5 5 5 5 5

X5 21 21 21 21 9 9 9 9 9 9 -3 -3 -3 -3 -3 -3
X6 27 27 27 27 15 15 15 15 15 15 3 3 3 3 3 3

X7 35 35 35 35 -5 -5 -5 -5 -5 -5 3 3 3 3 3 3

X8 35 35 35 35 15 15 15 15 15 15 11 11 11 11 11 11

X9 56 56 56 56 -24 -24 -24 -24 -24 -24 -8 -8 -8 -8 -8 -8
X10 70 70 70 70 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
Xll 84 84 84 84 4 4 4 4 4 4 20 20 20 20 20 20

X12 105 105 105 105 -35 -35 -35 -35 -35 -35 1 1 1 1 1 1
X13 105 105 105 105 5 5 5 5 5 5 17 17 17 17 17 17
X14 105 105 105 105 25 25 25 25 25 25 -7 -7 -7 -7 -7 -7
X15 120 120 120 120 40 40 40 40 40 40 -8 -8 -8 -8 -8 -8
X16 168 168 168 168 40 40 40 40 40 40 8 8 8 8 8 8
X17 189 189 189 189 -51 -·51 -51 -51 -51 -51 -3 -3 -3 -3 -3 -3
X18 189 189 189 189 21 21 21 21 21 21 -3 -3 -3 -3 -3 -3
X19 189 189 189 189 -39 -39 -39 -39 -39 -39 21 21 21 21 21 21
X20 210 210 210 210 10 10 10 10 10 10 -14 -14 -14 -14 -14 -14
X21 210 210 210 . 210 50 50 50 50 50 50 2 2 2 2 2 2
X22 216 216 216 216 -24 -24 -24 -24 -24 -24 24 24 24 24 24 24
X23 280 280 280 280 40 40 40 40 40 40 24 24 24 24 24 24
X24 280 280 280 280 -40 -40 -40 -40 -40 -40 -8 -8 -8 -8 -8 -8
X25 315 315 315 315 -45 -45 -45 -45 -45 -45 -21 -21 -21 -21 -21 -21
X26 336 336 336 336 -16 -16 -16 -16 -16 -16 16 16 16 16 16 16
X27 378 378 378 378 -30 -30 -30 -30 -30 -30 -6 -6 -6 -6 -6 -6
X28 405 405 405 405 45 45 45 45 45 45 -27 -27 -27 -27 -27 -27
X29 420 420 420 420 20 20 20 20 20 20 4 4 4 4 4 4
X30 512 512 512 512 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27 :SP(6, 2)(continued)

2C 2D

2K 4F 2£ 4G 4H 2M 41 4J 2N 4K 4£ 20 4M 4N 40 4P

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1

X3 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1

X4 5 5 5 5 5 5 5 5 -3 -3 -3 -3 -3 -3 -3 -3

X5 1 1 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -3 -3

X6 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3

X7 -5 -5 -5 -5 -5 -5 -5 -5 3 3 3 3 3 3 3 3

X8 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3

X9 8 . 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

XIO 6 6 6 6 6 6 6 6 -2 -2 -2 -2 -2 -2 -2 -2

Xll 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Xl2 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1

Xl3 -3 -3 -3 -3 -3 -3 -3 -3 -7 -7 -7 -7 -7 -7 -7 -7

Xl4 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1

Xl5 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

Xl6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Xl7 13 13 13 13 13 13 13 13 -3 -3 -3 -3 -3 -3 -3 -3

Xl8 -11 -11 -11 -11 -11 -11 -11 -11 -3 -3 -3 -3 -3 -3 -3 -3

Xl9 1 1 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -3 -3

X20 10 10 10 10 10 10 10 10 2 2 2 2 2 2 2 2

X21 2 2 2 2 2 2 2 2 -6 -6 -6 -6 -6 -6 -6 -6

X22 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

X23 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0
X24 -8 -8 -8 -8 -8 -8 -8 -8 8 8 8 8 8 8 8 8
X25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
X26 -16 -16 -16 -16 -16 -16 -16 -16 0 0 0 0 0 0 0 0
X27 2 2 2 2 2 2 2 2 -6 -6 -6 -6 -6 -6 -6 -6

X28 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
X29 -12 -12 -12 -12 -12 -12 -12 -12 4 4 4 4 4 4 4 4
X30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

175



176 CHAPTER 8. A MAXIMAL SUBGROUP OF FI22

T~ble 8.4: The character table of 27:SP(6, 2) (continued)

3A 3B 3C 4A
3A 6A 6B 6C 3B 6D 3C 6E 6P 6G 4Q 4R 48 4T

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 4 4 4 4 -2 -2 1 1 1 1 3 3 3 3

X3 0 0 0 0 -3 -3 3 3 3 3 -1 -1 -1 -1

X4 6 6 6 6 3 3 0 0 0 0 1 1 1 1

X5 6 6 6 6 3 3 0 0 0 0 5 5 5 5

X6 9 9 9 9 0 0 0 0 0 0 3 3 3 3

X7 5 5 5 5 -1 -1 2 2 2 2 7 7 ·7 7

X8 5 5 5 5 -1 -1 2 2 2 2 -1 -1 -1 -1

X9 11 11 11 11 2 2 2 2 2 2 0 0 0 0

XIO -5 -5 -5 -5 7 7 1 1 1 1 2 2 2 2

XlI -6 -6 -6 -6 3 3 3 3 3 3 4 4 4 4

Xl2 15 15 15 15 -3 -3 -3 -3 -3 -3 5 5 5 5

Xl3 0 0 0 0 6 6 3 3 3 3 -3 -3 -3 -3

Xl4 0 0 0 0 6 6 3 3 3 3 -3 -3 -3 -3

Xl5 15 15 15 15 -6 -6 0 0 0 0 0 0 0 0

Xl6 6 6 6 6 6 6 -3 -3 -3 -3 0 0 0 0

Xl7 9 9 9 9 0 0 0 0 0 0 -3 -3 -3 -3

Xl8 9 9 9 9 0 0 0 0 0 0 9 9 9 9

Xl9 9 9 9 9 0 0 0 0 0 0 -3 -3 -3 -3

X20 -15 -15 -15 -15 -6 -6 3 3 3 3 6 6 6 6

X21 15 15 15 15 3 3 0 0 0 .0 -2 -2 -2 -2

X22 -9 -9 -9 -9 0 0 0 0 0 0 0 0 0 0

X23 -5 -5 -5 -5 -8 -8 -2 -2 -2 -2 0 0 0 0

X24 10 10 10 10 10 10 1 1 1 1 0 0 0 0

X25 0 0 0 0 -9 -9 0 0 0 0 -5 -5 -5 -5

X26 6 6 6 6 -6 -6 0 0 0 0 0 0 0 0

X27 -9 -9 -9 -9 0 0 0 0 0 0 6 6 6 6

X28 0 0 0 0 0 0 0 0 0 0 -3 -3 -3 -3

X29 0 0 0 0 -3 -3 3 3 3 3 -4 -4 -4 -4

X30 -16 -16 -16 -16 8 8 -4 -4 -4 -4 0 0 0 0
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Table 8.4: The character table of 27 :SP(6, 2)(continued)

177

4B 4C 4D

4U 4V 4W 4X BA BB 4Y 4Z 4AA 4AB BC BD 4AC 4AD 4AE 4AF 4AG 4AH

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -1 -1 -1 -1 -1 -1

X3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1 3 3 3 3 3 3

X4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1

X5 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3 1 1 1 1 1 1

X6 1 1 1 1 1 1 5 5 5 5 5 5 -1 -1 -1 -1 -1 -1

X7 -1 -1 -1 -1 -1 -1 . -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

XB 5 5 5 5 5 5 1 1 1 1 1 1 3 3 3 3 3 3

X9 4 4 4 4 4 4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0

XIO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Xll 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4

X12 -1 -1 -1 -1 -1 -1 -5 -5 -5 -5 -5 -5 1 1 1 1 1 1

X13 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

X14 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

X15 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 0 0 0 0 0 0

X16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X17 1 1 1 1 1 1 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3

XIB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X19 -5 -5 -5 -5 -5 -5 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

X20 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

X21 2 2 2 2 2 2 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2

X22 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 0 0 0 0 0 0
X23 4 4 4 4 4 4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0
X24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
X26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X27 2 2 2 2 2 2 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2
X28 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 5 5 5 5 5 5
X29 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4
X30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2)(continued)

4E 5A 6A
4Al 8E 8F 4AJ 4AK 8G 4AL 8H 5A lOA lOB 10C 6H 12A 61 12B 12C 6J

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 1 1 1 1 2 2 2 2 -2 -2 -2 -2 -2 -2
X3 1 1 1 1 1 1 1 1 0 0 0 0 -2 -2 -2 -2 -2 -2
X4 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2
XS -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0

X6 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3

X7 -1 -1 -1 -1 -1 --1 -1 -1 0 0 0 0 1- 1 1 1 1 1

X8 1 1 1 1 1 1 1 1 0 0 0 0 3 3 3 3 3 3

X9 0 -0 0 0 0 0 0 0 1 1 1 1 -3 -3 -3 -3 -3 -3

XIO -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 -1 -1 -1 -1 -1 -1

Xll 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2
Xl2 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1

Xl3 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 2 2 2 2 2 2
Xl4 1 1 1 1 1 1 1 1 0 0 0 0 4 4 4 4 4 4

XIS 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Xl6 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
Xl7 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3 -3 -3
Xl8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3 -3 -3
Xl9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3
X20 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 1 1 1 1 1 1

X2I -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 -1 -1 -1 -1 -1 -1

X22 0 0 0 0 0 0 0 0 1 1 1 1 -3 -3 -3 -3 -3 -3
X23 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
X24 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2
X2S -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
X26 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2
X27 2 2 2 2 2 2 2 2 -2 -2 -2 -2 3 3 3 3 3 3
X28 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
X29 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4
X30 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)
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6B 60 6D 6E
6K 6L 12D 12E 6M 6N 60 12F 12G 6P 12H 121 6Q 6R 68 6T

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 2 2 2 2 2 2 0 0 0 0 0 0 -1 -1 -1 -1

X3 -2 -2 -2 -2 1 1 0 0 0 0 0 0 1 1 1 1

X4 2 2 2 2 -1 -1 2 2 2 2 2 2 2 2 2 2

X5 0 0 0 0 3 3 -2 -2 -2 -2 -2 -2 0 0 0 0

X6 3 3 3 3 0 0 1 1 1 1 1 1 0 0 0 0

X7 -3 -3 -3 -3 3 3 1 1 1 1 1 1 0- 0 0 0

X8 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 2 2 2 2

X9 1 1 1 1 -2 -2 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2

XIO -1 -1 -1 -1 -1 -1 3 3 3 3 3 3 -1 -1 -1 -1

Xll 2 2 2 2 -1 -1 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1

Xl2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

Xl3 2 2 2 2 2 2 0 0 0 0 0 0 -1 -1 -1 -1

Xl4 -4 -4 -4 -4 2 2 0 0 0 0 0 0 -1 -1 -1 -1

Xl5 1 1 1 1 -2 -2 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2

Xl6 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1

Xl7 -3 -3 -3 -3 0 0 1 1 1 1 1 1 0 0 0 0

Xl8 -3 -3 -3 -3 0 0 1 1 1 1 1 1 0 0 0 0

Xl9 3 3 3 3 0 0 1 1 1 1 1 1 0 0 0 0

X20 1 1 1 1 -2 -2 1 1 1 1 1 1 1 1 1 1

X21 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 2 2 2

X22 -3 -3 -3 -3 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0
X23 -3 -3 -3 -3 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0

X24 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1

X25 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0
X26 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2 -2 -2
X27 3 3 3 3 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0
X28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X29 4 4 4 4 1 1 0 0 0 0 0 0 1 1 1 1
X30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



180 CHAPTER 8. A MAXIMAL SUBGROUP OF F122

Table 8.4: The character table of 27:SP(6, 2) (continued)

6F 6G 7A 8A 8B

6U 12J 6V 12K 6W 12£ 12M 6X 7A 14A 81 8J 8K 8£ 8M 8N 80 8P

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 1 1 -1 -1 -1 -1 0 0 1 1 1 1 -1 -1 -1 -1

X3 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 1

X4 -2 -2 -2 -2 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

X5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1

X6 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 1 1 1 1

X7 -2 -2 -2 -2 0 0 0 0 0 0 1 1 1 1 1 1 1 1

X8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1

X9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XIO -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Xll 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Xl2 1 1 1 1 1 1 1 1 0 0 -1 -1 -1 -1 1 1 1 1

Xl3 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 1 1 1 1

Xl4 1 1 1 1 1 1 1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

Xl5 -2 -2 -2 -2 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Xl6 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

Xl7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Xl8 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

Xl9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1

X20 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

X21 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X22 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0
X23 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X24 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
X25 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

X26 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X28 0 0 0 0 0 0 0 0 -1 -1 1 1 1 1 1 1 1 1
X29 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
X30 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)
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9A lOA 12A 12B 12C 15A

9A 18A lOD 20A 20B lOE 12N 24A 24B 120 12P 24C 24D 12Q 12R 128 15A 30A

Xl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 1 1 0 0 0 0 -2 -2 -2 -2 0 0 0 0 0 0 -1 -1

X3 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -1 -1 0 0

X4 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1

X5 0 0 -1 -1 -1 -1 2 2 2 2 0 0 0 0 -1 -1 1 1

X6 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1 0 0 -1 -1

X7 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 1 0 0

X8 -1 -1 0 0 0 0 -1 -1 -1 -1 1 1 1 1 -1 -1 0 0

X9 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 0 0 1 1

XIO 1 1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

Xll 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 -1 -1

X12 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1 -1 -1 0 0

X13 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0

X14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X15 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1 0 0 0 0

X16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

X17 0 0 -1 -1 -1 -1 1 1 1 1 1 1 1 1 0 0 -1 -1

X18 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 -1 -1

X19 0 0 1 1 1 1 1 1 1 1 -1 -1 -1 -1 0 0 -1 -1

X20 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
X21 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 1 0 0

X22 0 0 1 1 1 1 -1 -1 -1 -1 1 1 1 1 0 0 1 1

X23 1 1 0 0 0 0 1 1 1 1 -1 -1 -1 -1 0 0 0 0
X24 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
X26 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1
X27 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1
X28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0
X30 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1
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Table 8.4: The character table of 27:SP(6, 2) (continued)

lA 2A 2B
lA 2A 2B 2C 2D 4A 4B 2E 4C 2F 2G 2H 2I 2J 4D 4E

X31 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1
X32 7 -7 -7 7 -5 5 5 -5 -5 5 -1 1 -1 1 -1 1

X33 15 -15 -15 15 -5 5 5 -5 -5 5 7 -7 7 -7 7 -7

X34 21 -21 -21 21 -11 11 11 -11 -11 11 5 -5 5 -5 5 -5

X35 21 -21 -21 21 9 -9 -9 9 9 -9 -3 3 -3 3 -3 3

X36 27 -27 -27 27 15 -15 -15 15 15 -15 3 -3 3 -3 3 -3
X37 35 -35 -35 35 -5 5 5 -5 -5 5 3 -3 3 -3 3 -3
X38 35 -35 -35 35 15 -15 -15 15 15 -15 11 -11 11 -11 11 -11
X39 56 -56 -56 56 -24 24 24 -24 -24 24 -8 8 -8 8 -8 8

X40 70 -70 -70 70 -10 10 10 -10 -10 10 -10 10 -10 10 -10 10

X41 84 -84 -84 84 4 -4 -4 4 4 -4 20 -20 20 -20 20 -20
X42 105 -105 -105 105 -35 35 35 -35 -35 35 1 -1 1 -1 1 -1
X43 105 -105 -105 105 5 -5 -5 5 5 -5 17 -17 17 -17 17 -17
X44 105 -105 -105 105 25 -25 -25 25 25 -25 -7 7 -7 7 -7 7
X45 120 -120 -120 120 40 -40 -40 40 40 -40 -8 8 -8 8 -8 8
X46 168 -168 -168 168 40 -40 -40 40 40 -40 8 -8 8 -8 8 -8
X47 189 -189 -189 189 -51 51 51 -51 -51 51 -3 3 -3 3 -3 3
X48 189 -189 -189 189 21 -21 -21 21 21 -21 -3 3 -3 3 -3 3
X49 189 -189 -189 189 -39 39 39 -39 -39 39 21 -21 21 -21 21 -21
X50 210 -210 -210 210 10 -10 -10 10 10 -10 -14 14 -14 14 -14 14
X51 210 -210 -210 210 50 -50 -50 50 50 -50 2 -2 2 -2 2 -2
X52 216 -216 -216 216 -24 24 24 -24 -24 24 24 -24 24 -24 24 -24
X53 280 -280 -280 280 40 -40 -40 40 40 -40 24 -24 24 -24 24 -24
X54 280 -280 -280 280 -40 40 40 -40 -40 40 -8 8 -8 8 -8 8
X55 315 -315 -315 315 -45 45 45 -45 -45 45 -21 21 -21 21 -21 21
X56 336 -336 -336 336 -16 16 16 -16 -16 16 16 -16 16 -16 16 -16
X57 378 -378 -378 378 -30 30 30 -30 -30 30 -6 6 -6 6 -6 6
X58 405 -405 -405 405 45 -45 -45 45 45 -45 -27 27 -27 27 -27 27
X59 420 -420 -420 420 20 -20 -20 20 20 -20 4 -4 4 -4 4 -4
X60 512 -512 -512 512 0 0 0 0 0 0 0 0 0 0 0 0



8.5. THE FISCHER-CLIFFORD MATRICES OF 27:SP(6, 2)

Table 8.4: The character table of 27:SP(6, 2)(continued)

2C 2D
2K 4F 2L 4G 4H 2M 41 4J 2N 4K 4L 20 4M 4N 40 4P

X31 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1

X32 3 -3 3 -3 3 -3 3 -3 -1 -1 1 1 -1 -1 1 1

X33 3 -3 3 -3 3 -3 3 -3 -1 -1 1 1 -1 -1 1 1

X34 5 -5 5 -5 5 -5 5 -5 -3 -3 3- 3 -3 -3 3 3

X35 1 -1 1 -1 1 -1 1 -1 -3 -3 3 3 -3 -3 3 3

X36 7 -7 7 -7 7 -7 7 -7 3 3 -3 -3 3 3 -3 -3

X37 - -5 5 -5 5 -5 5 -5 5 3 3 -3 -3 3 3 -3 -3

X38 7 -7 7 -7 7 -7 7 -7 3 3 -3 -3 3 3 -3 -3

X39 8 -8 8 -8 8 -8 8 -8 0 0 0 0 0 0 0 0

X40 6 -6 6 -6 6 -6 6 -6 -2 -2 2 2 -2 -2 2 2

X41 4 -4 4 -4 4 -4 4 -4 4 4 -4 -4 4 4 -4 -4

X42 5 -5 5 -5 5 -5 5 -5 1 1 -1 -1 1 1 -1 -1...

X43 -3 3 -3 3 -3 3 -3 3 -7 -7 7 7 -7 -7 7 7
X« 9 -9 9 -9 9 -9 9 -9 1 1 -1 -1 1 1 -1 -1

X45 8 -8 8 -8 8 -8 8 -8 0 0 0 0 0 0 0 0

X46 8 -8 8 -8 8 -8 8 -8 8 8 -8 -8 8 8 -8 -8

X47 13 -13 13 -13 13 -13 13 -13 -3 -3 3 3 -3 -3 3 3

X48 -11 11 -11 11 -11 11 -11 11 -3 -3 3 3 -3 -3 3 3

X49 1 -1 1 -1 1 -1 1 -1 -3 -3 3 3 -3 -3 3 3

X50 10 -10 10 -10 10 -10 10 -10 2 2 -2 -2 2 2 -2 -2

X51 2 -2 2 -2 2 -2 2 -2 -6 -6 6 6 -6 -6 6 6

X52 8 -8 8 -8 8 -:8 8 -8 0 0 0 0 0 0 0 0

X53 8 -8 8 -8 8 -8 8 -8 0 0 0 0 0 0 0 0
X54 -8 8 -8 8 -8 8 -8 8 8 8 -8 -8 8 8 -8 -8
X55 3 -3 3 -3 3 -3 3 -3 3 3 -3 -3 3 3 -3 -3

X56 -16 16 -16 16 -16 16 -16 16 0 0 0 0 0 0 0 0
X57 2 -2 2 -2 2 -2 2 -2 -6 -6 6 6 -6 -6 6 6
X58 -3 3 -3 3 -3 3 -3 3 -3 -3 3 3 -3 -3 3 3
X59 -12 12 -12 12 -12 12 -12 12 4 4 -4 -4 4 4 -4 -4
X60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)

3A 3B 3C ·4A
3A 6A 6B 60 3B 6D 3C 6E 6F 6G 4Q 4R 48 4T

X31 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1

X32 4 -4 -4 4 -2 2 1 -1 1 -1 3 -3 3 -3

X33 0 0 0 0 -3 3 3 -3 3 -3 -1 1 -1 1

X34 6 -6 -6 6 3 -3 0 0 0 0 1 -1 1 -1

X35 6 -6 -6 6 3 -3 0 0 0 0 5 -5 5 -5

X36 9 -9 -9 9 0 0 0 0 0 0 3 -3 3 -3

X37 5 -5 -5 5 -1 1 2 -2 2 -2 7 -7 "7 -7

X38 5 -5 -5 5 -1 1 2 -2 2 -2 -1 1 -1 1

X39 11 -11 -11 11 2 -2 2 -2 2 -2 0 0 0 0

X40 -5 5 5 -5 7 -7 1 -1 1 -1 2 -2 2 -2

X41 -6 6 6 -6 3 -3 3 -3 3 -3 4 -4 4 -4

X42 15 -15 -15 15 -3 3 -3 3 -3 3 5 -5 5 -5

X43 0 0 0 0 6 -6 3 -3 3 -3 -3 3 -3 3

X« 0 0 0 0 6 -6 3 -3 3 -3 -3 3 -3 3

X45 15 -15 -15 15 -6 6 0 0 0 0 0 0 0 0

X46 6 -6 -6 6 6 -6 -3 3 -3 3 0 0 0 0

X47 9 -9 -9 9 0 0 0 0 0 0 -3 3 -3 3

X48 9 -9 -9 9 0 0 0 0 0 0 9 -9 9 -9

X49 9 -9 -9 9 0 0 0 0 0 0 -3 3 -3 3

X50 -15 15 15 -15 -6 6 3 -3 3 -3 6 -6 6 -6

X51 15 -15 -15 15 3 -3 0 0 0 0 -2 2 -2 2

X52 -9 9 9 -9 0 0 0 0 0 0 0 0 0 0

X53 -5 5 5 -5 -8 8 -2 2 -2 2 0 0 0 0

X54 10 -10 -10 10 10 -10 1 -1 1 -1 0 0 0 0
X55 0 0 0 0 -9 9 0 0 0 0 -5 5 -5 5
X56 6 -6 -6 6 -6 6 0 0 0 0 0 0 0 0
X57 -9 9 9 -9 0 0 0 0 0 0 6 -6 6 -6
X58 0 0 0 0 0 0 0 0 0 0 -3 3 -3 3
X59 0 0 0 0 -3 3 3 -3 3 -3 -4 4 -4 4
X60 -16 16 16 -16 8 -8 -4 4 -4 4 0 0 0 0
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Tq.ble 8.4: The character table of 27:SP(6, 2)(continued)
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4B 4C 4D
4U 4V 4W 4X BA BB 4Y 4Z 4AA 4AB BC BD 4AC 4AD 4AE 4AF 4AG 4AH

X31 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1

X32 1 -1 1 -1 1 -1 -3 3 -3 3 -3 3 -1 -1 1 1 -1 1

X33 -3 3 -3 3 -3 3 1 -1 1 -1 1 -1 3 3 -3 -3 3 -3

X34 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 1 1 -1 -1 1 -1

X3S -1 1 -1 1 -1 1 3 -3 3 -3 3 -3 1 1 -1 -1 1 -1

X36 1 -1 1 -1 1 -1 5 -5 5 -5 5 -5 -1 -1 1 1 -1 1

X37 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 - -1 1 1 -1 1

X38 5 -5 5 -5 5 -5 1 -1 1 -1 1 -1 3 3 -3 -3 3 -3

X39 4 -4 4 -4 4 -4 -4 4 -4 4 -4 4 0 0 0 0 0 0

X40 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 2 -2 -2 2 -2

X41 0 0 0 0 0 0 0 0 0 0 0 0 4 4 -4 -4 4 -4

X42 -1 1 -1 1 -1 1 -5 5 -5 5 -5 5 1 1 -1 -1 1 -1

X43 3 -3 3 -3 3 -3 -1 1 -1 1 -1 1 1 1 -1 -1 1 -1

X« -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 -3 3 3 -3 3
X4S -4 4 -4 4 -4 4 4 -4 4 -4 4 -4 0 0 0 0 0 0
X46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X47 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -3 -3 3 3 -3 3
X48 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1

X49 -5 5 -5 5 -5 5 -1 1 -1 1 -1 1 1 1 -1 -1 1 -1
XSO -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 -2 2 2 -2 2
XSl 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 -2 -2 2 2 -2 2
XS2 -4 4 -4 4 -4 4 4 -4 4 -4 4 -4 0 0 0 0 0 0
XS3 4 -4 4 -4 4 -4 -4 4 -4 4 -4 4 0 0 0 0 0 0
XS4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XSS 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 3 -3 -3 3 -3
XS6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XS7 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 -2 -2 2 2 -2 2
XS8 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 5 5 -5 -5 5 -5
XS9 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 4 4 -4 4
X60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)

4E 5A 6A

4Al 8E 8F 4AJ 4AK 8C 4AL 8H 5A lOA lOB 10C 6H 12A 61 12B 12C 6J

X31 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

X32 1 1 1 1 -1 -1 -1 -1 2 -2 2 -2 -2 2 -2 2 -2 2
X33 1 1 1 1 -1 -1 -1 -1 0 0 0 0 -2 2 -2 2 -2 2

X34 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -2 2 -2 2 -2 2

X35 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 0 0 0 0 0 0

X36 1 1 1 1 -1 -1 -1 -1 2 -2 2 -2 3 -3 3 -3 3 -3

X37 -1 -1 -1 -1 1 1 1 1 0 0 0 0 1- -1 1 -1 1 -1

X38 1 1 1 1 -1 -1 -1 -1 0 0 0 0 3 -3 3 -3 3 -3

X39 0 0 0 0 0 0 0 0 1 -1 1 -1 -3 3 -3 3 -3 3

X40 -2 -2 -2 -2 2 2 2 2 0 0 0 0 -1 1 -1 1 -1 1

X41 0 0 0 0 0 0 0 0 -1 1 -1 1 -2 2 -2 2 -2 2

X42 -1 -1 -1 -1 1 1 1 1 0 0 0 0 1 -1 1 -1 1 -1

X43 -1 -1 -1 -1 1 1 1 1 0 0 0 0 2 -2 2 -2 2 -2

X« 1 1 1 1 -1 -1 -1 -1 0 0 0 0 4 -4 4 -4 4 -4

X45 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1

X46 0 0 0 0 0 0 0 0 -2 2 -2 2 -2 2 -2 2 -2 2

X47 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 -3 3 -3 3 -3 3

X48 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 -3 3 -3 3 -3 3
X49 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 3 -3 3 -3 3 -3
X50 -2 -2 -2 -2 2 2 2 2 0 0 0 0 1 -1 1 -1 1 -1

X51 -2 -2 -2 -2 2 2 2 2 0 0 0 0 -1 1 -1 1 -1 1

X52 0 0 0 0 0 0 0 0 1 -1 1 -1 -3 3 -3 3 -3 3
X53 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1

X54 0 0 0 0 0 0 0 0 0 0 0 0 2 -2 2 -2 2 -2
X55 -1 -1 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
X56 0 0 0 0 0 0 0 0 1 -1 1 -1 2 -2 2 -2 2 -2
X57 2 2 2 2 -2 -2 -2 -2 -2 2 -2 2 3 -3 3 -3 3 -3
X58 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
X59 0 0 0 0 0 0 0 0 0 0 0 0 -4 4 -4 4 -4 4
X60 0 0 0 0 0 0 0 0 2 -2 2 -2 0 0 0 0 0 0



8.5. THE FISCHER-CLIFFORD MATRICES OF 27:SP(6, 2)

Table 8.4: The character table of 27:SP(6, 2) (continued)
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6B 6C 6D 6E
6K 6£ 12D 12E 6M 6N 60 12F 12G 6P 12H 12/ 6Q 6R 68 6T

X31 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1

X32 2 -2 2 -2 2 -2 0 0 0 0 0 0 -1 1 -1 1

X33 -2 2 -2 2 1 -1 0 0 0 0 0 0 1 -1 1 -1

X34 2 -2 2 -2 -1 1 2 2 -2 -2 2 -2 2 -2 2 -2

X35 0 0 0 0 3 -3 -2 -2 2 2 -2 2 0 0 0 0

X36 3 -3 3 -3 0 0 1 1 -1 -1 1 -1 0 0 0 0

X37 -3 3 -3 3 3 -3 1 1 -1 -1 1 -1 0 0 0 0

X38 -1 1 -1 1 -1 1 1 1 -1 -1 1 -1 2 -2 2 -2

X39 1 -1 1 -1 -2 2 -1 -1 1 1 -1 1 -2 2 -2 2

X40 -1 1 -1 1 -1 1 3 3 -3 -3 3 -3 -1 1 -1 1

X41 2 -2 2 -2 -1 1 -2 -2 2 2 -2 2 -1 1 -1 1

X42 1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1

X43 2 -2 2 -2 2 -2 0 0 0 0 0 0 -1 1 -1 1

X44 -4 4 -4 4 2 -2 0 0 0 0 0 0 -1 1 -1 1

X45 1 -1 1 -1 -2 2 -1 -1 1 1 -1 1 -2 2 -2 2

X46 2 -2 2 -2 2 -2 2 2 -2 -2 2 -2 -1 1 -1 1

X47 -3 3 -3 3 0 0 1 1 -1 -1 1 -1 0 0 0 0

X48 -3 3 -3 3 0 0 1 1 -1 -1 1 -1 0 0 0 0

X49 3 -3 3 -3 0 0 1 1 -1 -1 1 -1 0 0 0 0

X50 1 -1 1 -1 -2 2 1 1 -1 -1 1 -1 1 -1 1 -1

X51 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 2 -2 2 -2

X52 -3 3 -3 3 0 0 -1 -1 1 1 -1 1 0 0 0 0

X53 -3 3 -3 3 0 0 -1 -1 1 1 -1 1 0 0 0 0

X54 -2 2 -2 2 -2 2 -2 -2 2 2 -2 2 1 -1 1 -1
X55 0 0 0 0 3 -3 0 0 0 0 0 0 0 0 0 0
X56 -2 2 -2 2 -2 2 2 2 -2 -2 2 -2 -2 2 -2 2
X57 3 -3 3 -3 0 0 -1 -1 1 1 -1 1 0 0 0 0
X58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X59 4 -4 4 -4 1 -1 0 0 0 0 0 0 1 -1 1 -1
X60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



188 CHAPTER 8. A MAXIMAL SUBGROUP OF FI22

Table 8.4: The character table of 27:SP(6, 2)(continued)

6F 6G 7A 8A 8B
6U 12J 6V 12K 6W 12L 12M 6X 7A 14A 81 8J 8K 8L 8M 8N 80 8P

X31 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1

X32 1 1 -1 -1 -1 -1 1 1 0 0 1 1 -1 -1 -1 -1 1 1

X33 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1

X34 -2 -2 2 2 0 0 0 0 0 0 -1 -1 1 1 -1 -1 1 1

X35 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1

X36 0 0 0 0 0 0 0 0 -1 1 -1 -1 1 1 1 1 -1 -1

X37 -2 -2 2 2 0 0 0 0 0 0 1 1 -1 . -1 1 1 -1 -1

X38 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1

X39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X40 -1 -1 1 1 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0

X41 1 1 -1 -1 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0

X42 1 1 -1 -1 1 1 -1 -1 0 0 -1 -1 1 1 1 1 -1 -1

X43 -1 -1 1 1 -1 -1 1 1 0 0 -1 -1 1 1 1 1 -1 -1

X44 1 1 -1 -1 1 1 -1 -1 0 0 -1 -1 1 1 -1 -1 1 1

X45 -2 -2 2 2 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
X46 1 1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 0 0 0 0
X47 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 1 -1 -1

X48 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 -1 -1 1 1

X49 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1
X50 1 1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 0 0 0 0
X51 2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X52 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0
X53 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X54 -1 -1 1 1 -1 -1 1 1 0 0 0 0 0 0 0 0 0 0
X55 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 -1 -1 1 1
X56 2 2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XS7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XS8 0 0 0 0 0 0 0 0 -1 1 1 1 -1 -1 1 1 -1 -1
XS9 -1 -1 1 1 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0
X60 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)
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9A lOA 12A 12B 120 15A

9A IBA lOD 20A 20B lOE 12N 24A 24B 120 12P 240 24D 12Q 12R 128 15A 30A

X31 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1

X32 1 -1 0 0 0 0 -2 -2 2 2 0 0 0 0 0 0 -1 1

X33 0 0 0 0 0 0 0 0 0 0 -2 -2 2 2 -1 1 0 0

X34 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 1 -1 1 -1

X35 0 0 -1 -1 1 1 2 2 -2 -2 0 0 0 0 -1 1 1 -1

X36 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1 0 0 -1 1

X37 -1 1 0 0 0 0 -1 -1 1 1 -1 -1 1 1 1 -1 0 0

X38 -1 1 0 0 0 0 -1 -1 1 1 1 1 -1 -1 -1 1 0 0

X39 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 0 0 1 -1

X40 1 -1 0 0 0 0 -1 -1 1 1 -1 -1 1 1 -1 1 0 0

X41 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 1 -1 -1 1

X42 0 0 0 0 0 0 -1 -1 1 1 1 1 -1 -1 -1 1 0 0

X43 0 0 0 0 0 0 0 0 0 0 2 2 -2 -2 0 0 0 0
X44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X45 0 0 0 0 0 0 -1 -1 1 1 1 1 -1 -1 0 0 0 0
X46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

X47 0 0 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 0 0 -1 1
X48 0 0 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 0 0 -1 1
X49 0 0 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 0 0 -1 1
XSO 0 0 0 0 0 0 1 1 -1 -1 1 1 -1 -1 0 0 0 0
X51 0 0 0 0 0 0 -1 -1 1 1 -1 -1 1 1 1 -1 0 0
X52 0 0 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 0 0 1 -1
X53 1 -1 0 0 0 0 1 1 -1 -1 -1 -1 1 1 0 0 0 0
X54 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0
X56 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 0 0 1 -1
X57 0 0 0 0 0 0 -1 -1 1 1 -1 -1 1 1 0 0 1 -1
X58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XS9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0
X60 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1
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Table 8.4: The character table of 27:SP(6, 2) (continued)

lA 2A 2B
lA 2A 2B 2C 2D 4A 4B 2E 4C 2F 2G 2H 21 2J 4D 4E

X61 63 -9 7 -1 31 -9 7 -1 -1 -1 15 -9 -1 7 -1 -1
X62 63 -9 7 -1 -29 11 -5 3 -1 -1 -9 15 7 -1 -1 -1
X63 315 -45 35 -5 35 -5 11 3 -5 -5 -21 51 27 3 -5 -5
X64 315 -45 35 -5 -25 15 -1 7 -5 -5 51 -21 3 27 -5 -5
X65 315 -45 35 -5 95 -25 23 -1 -5 -5 3 27 19 11 -5 -5
X66 315 -45 35 -5 -85 35 -13 11 -5 -5 27 3 11 19 -5 -5
X67 378 -54 42 -6 114 -46 18 -14 6 6 -6 -6 -6 -6 2 2

X68 378 -54 42 -6 -126 34 -30 2 6 6 -6 -6 -6 -6 2 2

X69 567 -81 63 -9 -81 39 -9 15 -9 -9 -9 63 39 15 -9 -9
X70 567 -81 63 -9 99 -21 27 3 -9 -9 63 -9 15 39 -9 -9
X71 630 -90 70 -10 70 -10 22 6 -10 -10 6 54 38 22 -10 -10
X72 630 -90 70 -10 -130 30 -34 -2 10 10 54 -42 -10 22 -2 -2
X73 630 -90 70 -10 110 -50 14 -18 10 10 54 -42 -10 22 -2 -2
X74 630 -90 70 -10 110 -50 14 -18 10 10 -42 54 22 -10 -2 -2
X75 630 -90 70 -10 -50 30 -2 14 -10 -10 54 6 22 38 -10 -10
X76 630 -90 70 -10 -130 30 -34 -2 10 10 -42 54 22 -10 -2 -2
X77 945 -135 105 -15 225 -55 57 1 -15 -15 33 -39 -15 9 1 1
X78 945 -135 105 -15 -135 65 -15 25 -15 -15 33 -39 -15 9 1 1
X79 945 -135 105 -15 165 -35 45 5 -15 -15 -39 33 9 -15 1 1
X80 945 -135 105 -15 -195 85 -27 29 -15 -15 -39 33 9 -15 1 1
X81 1008 -144 112 -16 16 16 16 16 -16 -16 . 48 48 48 48 -16 -16
X82 1260 -180 140 -20 -20 -20 -20 -20 20 20 12 12 12 12 -4 -4
X83 1512 -216 168 -24 216 -104 24 -40 24 24 -24 -24 -24 -24 8 8
X84 1512 -216 168 -24 -264 56 -72 -8 24 24 -24 -24 -24 -24 8 8
X85 1890 -270 210 -30 90 10 42 26 -30 -30 66 -78 -30 18 2 2
X86 1890 -270 210 -30 -30 50 18 34 -30 -30 -78 66 18 -30 2 2
X87 1890 -270 210 -30 -150 10 -54 -22 30 30 -30 -30 -30 -30 10 10
X88 1890 -270 210 -30 90 -70 -6 -38 30 30 -30 -30 -30 -30 10 10
X89 2268 -324 252 -36 -36 -36 -36 -36 36 36 -36 -36 -36 -36 12 12
X90 2520 -360 280 -40 200 -120 8 -56 40 40 24 24 24 24 -8 -8
X91 2520 -360 280 -40 -40 -40 -40 -40 40 40 120 -72 -8 56 -8 -8
X92 2520 -360 280 -40 -280 40 -88 -24 40 40 24 24 24 24 -8 -8
X93 2520 -360 280 -40 -40 -40 -40 -40 40 40 -72 120 56 -8 -8 -8
X94 2835 -405 315 -45 -45 75 27 51 -45 -45 -45 27 3 -21 3 3
X95 2835 -405 315 -45 315 -45 99 27 -45 -45 -45 27 3 -21 3 3
X96 2835 -405 315 -45 -225 135 -9 63 -45 -45 27 -45 -21 3 3 3
X97 2835 -405 315 -45 135 15 63 39 -45 -45 27 -45 -21 3 3 3
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Table 8.4: The character table of 27:SP(6, 2) (continued)

191

2C 2D
2K 4F 2L 4G 4H 2M 41 4J 2N 4K 4L 20 4M 4N 40 4P

X61 15 -9 -1 7 -1 -1 -1 -1 7 -1 7 -1 -1 -1 -1 -1

X62 11 -13 -5 3 3 3 -1 -1 -1 -5 -1 -5 3 -1 -1 3

X63 19 -5 3 11 3 3 -5 -5 3 3 3 3 3 -5 -5 3

X64 15 -9 -1 7 7 7 -5 -5 3 -9 3 -9 -1 3 3 -1

X65 23 -1 7 15 -1 -1 -5 -5 11 7 11 7 -1 -5 -5 -1

X66 11 -13 -5 3 11 11 -5 -5 -5 -13 -5 -13 3 3 3 3

X67 18 -30 -14 2 10 10 -2 -2 -6 6 -6 6 -2 2 2 -2

X68 34 -14 2 18 -6 -6 -2 -2 -6 6 -6 6 -2 2 2 -2

X69 15 -9 -1 7 15 15 -9 -9 -9 -9 -9 -9 7 -1 -1 7

X70 27 3 11 19 3 3 -9 -9 15 3 15 3 -5 -1 -1 -5

X71 -10 38 22 6 6 6 -10 -10 -2 14 -2 14 -2 -2 -2 -2

X72 30 -18 -2 14 -10 -10 2 2 -10 10 -10 10 2 -2 -2 2

X73 14 -34 -18 -2 6 6 2 2 -10 10 -10 10 2 -2 -2 2

X74 14 -34 -18 -2 6 6 2 2 -2 2 -2 2 -6 6 6 -6

X75 -18 30 14 -2 14 14 -10 -10 -10 -2 -10 -2 -2 6 6 -2
X76 30 -18 -2 14 -10 -10 2 2 -2 2 -2 2 -6 6 6 -6

X77 49 -23 1 25 -15 -15 1 1 9 -15 9 -15 1 1 1 1

X78 -23 1 -7 -15 9 9 1 1 9 9 9 9 -7 1 1 -7

X79 -3 21 13 5 -11 -11 1 1 -15 -3 -15 -3 5 1 1 5

X80 21 -51 -27 -3 13 13 1 1 9 -3 9 -3 5 -7 -7 5

X81 16 16 16 16 16 16 -16 -16 0 0 0 0 0 0 0 0

X82 -52 44 12 -20 -4 -4 4 4 12 -12 12 -12 4 -4 -4 4

X83 -8 -8 -8 -8 24 24 -8 -8 0 0 0 0 0 0 0 0
X84 24 24 24 24 -8 -8 -8 -8 0 0 0 0 0 0 0 0
X85 26 -22 -6 10 -6 -6 2 2 18 -6 18 -6 -6 2 2 -6
X86 18 -30 -14 2 2 2 2 2 -6 -6 -6 -6 10 -6 -6 10
X87 42 -6 10 26 2 2 -10 -10 -6 6 -6 6 -2 2 2 -2
X88 26 -22 -6 10 18 18 -10 10 -6 6 -6 6 -2 2 2 -2
X89 -36 60 28 -4 12 12 -12 -12 12 -12 12 -12 4 -4 -4 4
X90 -24 -24 -24 -24 8 8 8 8 0 0 0 0 0 0 0 0
X91 -8 -8 -8 -8 -8 -8 8 8 -8 8 -8 8 8 -8 -8 8
X92 8 8 8 8 -24 -24 8 8 0 0 0 0 0 0 0 0
X93 -8 -8 -8 -8 -8 -8 8 8 8 -8 8 -8 -8 8 8 -8
X94 -45 27 3 -21 3 3 3 3 3 27 3 27 -5 -5 -5 -5
X95 27 3 11 19 -21 -21 3 3 3 3 3 3 3 -5 -5 3
X96 -9 -33 -25 -17 15 15 3 3 3 -9 3 -9 -1 3 3 -1
X97 -33 39 15 -9 -9 -9 3 3 -21 -9 -21 -9 -1 11 11 -1
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Table 8.4: The character table of 27:SP(6, 2) (continued)

3A 3B 3C 4A

3A 6A 6B 6C 3B 6D 3C 6E 6F 6G 4Q 4R 48 4T

X61 15 -5 3 -1 0 0 3 -3 -1 1 3 3 -1 -1

X62 15 -5 3 -1 0 0 3 -3 -1 1 3 3 -1 "-I

X63 -15 5 -3 1 0 0 6 -6 -2 2 3 3 -1 -1

X64 -15 5 -3 1 0 0 6 -6 -2 2 3 3 -1 -1

X65 30 -10 6 -2 0 0 -3 3 1 -1 3 3 -1 -1

X66 30 -10 6 -2 0 0 -3 3 1 -1 3 3 -1 -1

X67 45 -15 9 -3 0 0 0 0 0 0 6 6 -2 -2

X68 45 -15 9 -3 0 0 0 0 0 0 6 6 -2 -2

X69 0 0 0 0 0 0 0 0 0 0 3 3 -1 -1

X70 0 0 0 0 0 0 0 0 0 0 3 3 -1 -1

X71 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X72 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X73 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X74 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X75 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X76 15 -5 3 -1 0 0 3 -3 -1 1 -6 -6 2 2

X77 45 -15 9 -3 0 0 0 0 0 0 -3 -3 1 1

X78 45 -15 9 -3 0 0 0 0 0 0 9 9 -3 -3

X79 45 -15 9 -3 0 0 0 0 0 0 9 9 -3 -3

X80 45 -15 9 -3 0 0 0 0 0 0 -3 -3 1 1

X81 -30 10 -6 2 0 0 -6 6 2 -2 0 0 0 0

X82 30 -10 6 -2 0 0 6 -6 -2 2 12 12 -4 -4

X83 45 -15 9 -3 0 0 0 0 0 0 0 0 0 0

X84 45 -15 9 -3 0 0 0 0 0 0 0 0 0 0

X85 -45 15 -9 3 0 0 0 0 0 0 6 6 -2 -2

X86 -45 15 -9 3 0 0 0 0 0 0 6 6 -2 -2

X87 -45 15 -9 3 0 0 0 0 0 0 6 6 -2 -2

X88 -45 15 -9 3 0 0 0 0 0 0 6 6 -2 -2

X89 0 0 0 0 0 0 0 0 0 0 -12 -12 4 4

X90 15 -5 3 -1 0 0 -6 6 2 -2 0 0 0 0

X91 -30 10 -6 2 0 0 3 -3 -1 1 0 0 0 0

X92 15 -5 3 -1 0 0 -6 6 2 -2 0 0 0 0

X93 -30 10 -6 2 0 0 3 -3 -1 1 0 0 0 0

X94 0 0 0 0 0 0 0 0 0 0 3 3 -1 -1

X95 0 0 0 0 0 0 0 0 0 0 -9 -9 3 3

X96 0 0 0 0 0 0 0 0 0 0 -9 -9 3 3

X97 0 0 0 0 0 0 0 0 0 0 3 3 -1 -1
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Table 8.4: The character table of 27:SP(6, 2)(continned)
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4B 4C 4D

4U 4V 4W 4X 8A 8B 4Y 4Z 4AA 4AB 8C 8D 4AC 4AD 4AE 4AF 4AG 4AH

X61 7 -5 -1 3 -1 -1 7 -5 -1 3 -1 -1 3 -1 3 -1 -1 -1

X62 5 -7 -3 1 1 1 -7 5 1 -3 1 1 -1 3 -1 3 -1 -1

X63 -5 7 3 -1 -1 -1 -5 7 3 -1 -1 -1 -5 7 -5 7 -1 -1

X64 -7 5 1 -3 1 1 5 -7 -3 1 1 1 7 -5 7 -5 -1 -1

X65 -3 9 5 1 -3 -3 9 -3 1 5 -3 -3 -1 3 -1 3 -1 -1

X66 -9 3 -1 -5 3 3 -9 3 -1 -5 3 3 3 -1 3 -1 -1 -1

X67 -2 -2 -2 -2 2 2 14 -10 -2 6 -2 -2 -2 -2 -2 -2 2 2

X68 2 2 2 2 -2 -2 -14 10 2 -6 2 2 -2 -2 -2 -2 2 2

X69 3 -9 -5 -1 3 3 3 -9 -5 -1 3 3 -5 7 -5 7 -1 -1

X70 9 -3 1 5 -3 -3 -3 9 5 1 -3 -3 7 -5 7 -5 -1 -1

X71 2 2 2 2 -2 -2 2 2 2 2 -2 -2 -6 2 -6 2 2 2

X72 -14 10 2 -6 2 2 2 2 2 2 -2 -2 2 2 2 2 -2 -2

X73 14 -10 -2 6 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2

X74 -10 14 6 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2

X75 -2 -2 -2 -2 2 2 -2 -2 -2 -2 2 2 2 -6 2 -6 2 2

X76 10 -14 -6 2 2 2 2 2 2 2 -2 -2 2 2 2 2 -2 -2

X77 5 -7 -3 1 1 1 5 -7 -3 1 1 1 -3 1 -3 1 1 1
X78 -7 5 1 -3 1 1 -7 5 1 -3 1 1 1 5 1 5 -3 -3

X79 -5 7 3 -1 -1 -1 7 -5 -1 3 -1 -1 5 1 5 1 -3 -3

X80 7 -5 -1 3 -1 -1 -5 7 3 -1 -1 -1 1 -3 1 -3 1 1

X81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X82 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -4 -4 4 4
X83 -4 -4 -4 -4 4 4 4 4 4 4 -4 -4 0 0 0 0 0 0
X84 4 4 4 4 -4 -4 -4 -4 -4 -4 4 4 0 0 0 0 0 0
X85 -2 -2 -2 -2 2 2 -2 -2 -2 -2 2 2 -2 6 -2 6 -2 -2
X86 2 2 2 2 -2 -2 2 2 2 2 -2 -2 6 -2 6 -2 -2 -2
X87 2 2 2 2 -2 -2 10 -14 -6 2 2 2 -2 -2 -2 -2 2 2
X88 -2 -2 -2 -2 2 2 -10 14 6 -2 -2 -2 -2 -2 -2 -2 2 2
X89 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 -4 -4
X90 4 4 4 4 -4 -4 -4 -4 -4 -4 4 4 0 0 0 0 0 0
X91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X92 -4 -4 -4 -4 4 4 4 4 4 4 -4 -4 0 0 0 0 0 0
X93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X94 3 -9 -5 -1 3 3 3 -9 -5 -1 3 3 3 -1 3 -1 -1 -1
X95 -9 3 -1 -5 3 3 -9 3 -1 -5 3 3 -1 -5 -1 -5 3 3
X96 -3 9 5 1 -3 -3 9 -3 1 5 -3 -3 -5 -1 -5 -1 3 3
X97 9 -3 1 5 -3 -3 -3 9 5 1 -3 -3 -1 3 -1 3 -1 -1



194 CHAPTER 8. A MAXIMAL SUBGROUP OF FI22

Table 8.4: The character table of 27:SP(6, 2) (continued)

4E 5A 6A

4A1 8E 8F 4AJ 4AK 8C 4AL 8H 5A lOA lOB 10C 6H 12A 61 12B 12C 6J

X61 3 -1 -1 -1 3 -1 -1 -1 3 -3 -1 1 7 -5 -1 3 -1 -1

X62 1 -3 1 1 1 1 1 -3 3 -3 -1 1 -5 7 3 -1 -1 -1

X63 -1 -1 -1 3 -1 -1 3 -1 0 0 0 0 5 -7 -3 1 1 1

X64 1 1 -3 1 1 -3 1 1 0 0 0 0 -7 5 1 -3 1 1

X65 1 1 -3 1 1 -3 1 1 0 0 0 0 2 2 2 2 -2 -2

X66 -1 -1 -1 3 -1 -1 3 -1 0 0 0 0 2 2 2 2 -2 -2

X67 -2 -2 2 2 -2 2 2 -2 3 -3 -1 1 3- -9 -5 -1 3 3

X68 2 2 -2 -2 2 -2 -2 2 3 -3 -1 1 -9 3 -1 -5 3 3

X69 3 -1 -1 -1 3 -1 -1 -1 -3 3 1 -1 0 0 0 0 0 0

X70 1 -3 1 1 1 1 1 -3 -3 3 1 -1 0 0 0 0 0 0

X71 -2 2 2 -2 -2 2 -2 2 0 0 0 0 -5 7 3 -1 -1 -1

X72 2 -2 2 -2 2 2 -2 -2 0 0 0 0 -7 5 1 -3 1 1

X73 -2 2 -2 2 -2 -2 2 2 0 0 0 0 5 -7 -3 1 1 1

X74 2 -2 2 -2 2 2 -2 -2 0 0 0 0 5 -7 -3 1 1 1

X75 -2 2 2 -2 -2 2 -2 2 0 0 0 0 7 -5 -1 3 -1 -1

X76 -2 2 -2 2 -2 -2 2 2 0 0 0 0 -7 5 1 -3 1 1

X77 1 1 1 -3 1 1 -3 1 0 0 0 0 9 -3 1 5 -3 -3

X78 -3 1 1 1 -3 1 1 1 0 0 0 0 9 -3 1 5 -3 -3

X79 -1 3 -1 -1 -1 -1 -1 3 0 0 0 0 -3 9 5 1 -3 -3

X80 -1 -1 3 -1 -1 3 -1 -1 0 0 0 0 -3 9 5 1 -3 -3

X81 0 0 0 0 0 0 0 0 3 -3 -1 1 -2 -2 -2 -2 2 2

X82 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 2 2

X83 0 0 0 0 0 0 0 0 -3 3 1 -1 -9 3 -1 -5 3 3

X84 0 0 0 0 0 0 0 0 -3 3 1 -1 3 -9 -5 -1 3 3

X85 -2 2 2 -2 -2 2 -2 2 0 0 0 0 -9 3 -1 -5 3 3

X86 -2 2 2 -2 -2 2 -2 2 0 0 0 0 3 -9 -5 -1 3 3
X87 -2 -2 2 2 -2 2 2 -2 0 0 0 0 -3 9 5 1 -3 -3
X88 2 2 -2 -2 2 -2 -2 2 0 0 0 0 9 -3 1 5 -3 -3
X89 0 0 0 0 0 0 0 0 3 -3 -1 1 0 0 0 0 0 0
X90 0 0 0 0 0 0 0 0 0 0 0 0 -7 5 1 -3 1 1
X91 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 -2 -2
X92 0 0 0 0 0 0 0 0 0 0 0 0 5 -7 -3 1 1 1
X93 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 -2 -2
X94 3 -1 -1 -1 3 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
X95 -1 -1 -1 3 -1 -1 3 -1 0 0 0 0 0 0 0 0 0 0
X96 1 1 -3 1 1 -3 1 1 0 0 0 0 0 0 0 0 0 0
X97 1 -3 1 1 1 1 1 -3 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27 :SP(6, 2) (continued)
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6B 6C 6D 6E

6K 6£ 12D 12E 6M 6N 60 12F 12G 6P 12H 121 6Q 6R 68 6T

X61 3 3 -1 -1 0 0 3 -1 3 -1 -1 -1 3 -3 -1 1

X62 3 3 -1 -1 0 0 -1 3 -1 3 -1 -1 -3 3 1 -1

X63 -3 -3 1 1 0 0 1 -3 1 -3 1 1 0 0 0 0

X64 -3 -3 1 1 0 0 -3 1 -3 1 1 1 0 0 0 0

X65 6 6 -2 -2 0 0 2 2 2 2 -2 -2 -3 3 1 -1

X66 6 6 -2 -2 0 0 2 2 2 2 -2 -2 3 -3 -1 1
.'

X67 3 3 -1 -1 0 0 -3 1 -3 1 1 1 0 0 0 0

X68 3 3 -1 -1 0 0 1 -3 1 -3 1 1 0 0 0 0

X69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X71 3 3 -1 -1 0 0 -1 3 -1 3 -1 -1 3 -3 -1 1

X72 -3 -3 1 1 0 0 3 -1 3 -1 -1 -1 3 -3 -1 1

X73 -3 -3 1 1 0 0 -1 3 -1 3 -1 -1 3 -3 -1 1

X74 -3 -3 1 1 0 0 -1 3 -1 3 -1 -1 -3 3 1 -1

X75 3 3 -1 -1 0 0 3 -1 3 -1 -1 -1 -3 3 1 -1

X76 -3 -3 1 1 0 0 3 -1 3 -1 -1 -1 -3 3 1 -1

X77 -3 -3 1 1 0 0 1 -3 1 -3 1 1 0 0 0 0

X78 -3 -3 1 1 0 0 1 -3 1 -3 1 1 0 0 0 0

X79 -3 -3 1 1 0 0 -3 1 -3 1 1 1 0 0 0 0

X80 -3 -3 1 1 0 0 -3 1 -3 1 1 1 0 0 0 0

X81 -6 -6 2 2 0 0 -2 -2 -2 -2 2 2 0 0 0 0

X82 -6 -6 2 2 0 0 2 2 2 2 -2 -2 0 0 0 0

X83 3 3 -1 -1 0 0 1 -3 1 -3 1 1 0 0 0 0

X84 3 3 -1 -1 0 0 -3 1 -3 1 1 1 0 0 0 0

X85 3 3 -1 -1 0 0 -1 3 -1 3 -1 -1 0 0 0 0

X86 3 3 -1 -1 0 0 3 -1 3 -1 -1 -1 0 0 0 0

X87 -3 -3 1 1 0 0 3 -1 3 -1 -1 -1 0 0 0 0

X88 -3 -3 1 1 0 0 -1 3 -1 3 -1 -1 0 0 0 0

X89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X90 -3 -3 1 1 0 0 3 -1 3 -1 -1 -1 0 0 0 0

X91 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2 -3 3 1 -1

X92 -3 -3 1 1 0 0 -1 3 -1 3 -1 -1 0 0 0 0

X93 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2 3 -3 -1 1

X94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2) (continued)

6F 6G 7A 8A 8B

6U 12J 6V 12K 6W 12£ 12M 6X 7A 14A 81 8J 8K 8£ 8M 8N 80 8P

X61 1 -1 -1 1 1 -1 1 -1 0 0 1 -1 -1 1 1 -1 -1 1

X62 1 -1 -1 1 -1 1 -1 1 0 0 1 -1 -1 1 -1 1 1 -1

X63 2 -2 -2 2 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1

X64 2 -2 -2 2 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1

X65 -1 1 1 -1 -1 1 -1 1 0 0 -1 1 1 -1 1 -1 -1 1

X66 -1 1 1 -1 1 -1 1 -1 0 0 -1 1 1 -1 -1 1 1 -1

X67 0 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 0 0

X68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X69 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1

X70 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1

X71 1 -1 -1 1 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0

X72 -1 1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0

X73 -1 1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0

X74 -1 1 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0

X75 1 -1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0

X76 -1 1 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0

X77 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1

X78 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1

X79 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1

X80 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1

X81 -2 2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X82 -2 2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XS8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X90 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X91 -1 1 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0

X92 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X93 -1 1 1 -1 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0

X94 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1

X95 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1

X96 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1

X97 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1
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Table 8.4: The character table of 27:SP(6, 2) (continued)
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9A lOA 12A 12B 12C 15A

9A 18A lOD 20A 20B lOB 12N 24A 24B 120 12P 24C 24D 12Q 12R 123 15A 30A

X61 0 0 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X62 0 0 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X63 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X64 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X67 0 0 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X68 0 0 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X69 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0

X70 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0

X71 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X72 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X73 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X74 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X75 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X76 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X77 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X78 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X79 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X80 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X81 0 0 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

X82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X83 0 0 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X84 0 0 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X85 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

X86 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1 0 0 0 0

X87 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X88 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X89 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0

X90 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

X91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X92 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0

X93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



198 CHAPTER 8. A MAXIMAL SUBGROUP OF FI22

Table 8.4: The character table of 27:SP(6, 2)(continued)

lA 2A 2B
lA 2A 2B 2C 2D 4A 4B 2E 4C 2F 2G 2H 2I 2J 4D 4E

X98 63 9 -7 -1 31 9 -7 -1 -1 1 15 9 -1 -7 -1 1

X99 63 9 -7 -1 -29 -11 5 3 -1 1 -9 -15 7 1 -1 1

XIOO 315 45 -35 -5 35 5 -11 3 -5 5 -21 -51 27 -3 -5 5

XIOl 315 45 -35 -5 -25 -15 1 7 -5 5 ·51 21 3 -27 -5 5

XI02 315 45 -35 -5 95 25 -23 -1 -5 5 3 -27 19 -11 -5 5

XI03 315 45 -35 -5 -85 -35 13 11 -5 5 27 -3 11 -19 -5 5

XI04 378 54 -42 -6 114 46 -18 -14 6 -6 -6 6 -6 6 2 -2
XI05 378 54 -42 -6 -126 -34 30 2 6 -6 -6 6 -6 6 2 -2

X106 567 81 -63 -9 -81 -39 9 15 -9 9 -9 -63 39 -15 -9 9

XI07 567 81 -63 -9 99 21 -27 3 -9 9 63 9 15 -39 -9 9

XI08 630 90 -70 -10 70 10 -22 6 -10 10 6 -54 38 -22 -10 10

XI09 630 90 -70 -10 -130 -30 34 -2 10 -10 54 42 -10 -22 -2 2

X110 630 90 -70 -10 110 50 -14 -18 10 -10 54 42 -10 -22 -2 2

Xll1 630 90 -70 -10 110 50 -14 -18 10 -10 -42 -54 22 10 -2 2

X112 630 90 -70 -10 -50 -30 2 14 -10 10 54 -6 22 -38 -10 10
X113 630 90 -70 -10 -130 -30 34 -2 10 -10 -42 -54 22 10 -2 2
X114 945 135 -105 -15 225 55 -57 1 -15 15 33 39 -15 -9 1 -1
X115 945 135 -105 -15 -135 -65 15 25 -15 15 33 39 -15 -9 1 -1
X116 945 135 -105 -15 165 35 -45 5 -15 15 -39 -33 9 15 1 -1
X117 945 135 -105 -15 -195 -85 27 29 -15 15 -39 -33 9 15 1 -1
X118 1008 144 -112 -16 16 -16 -16 16 -16 16 48 -48 48 -48 -16 16
X119 1260 180 -140 -20 -20 20 20 -20 20 -20 12 -12 12 -12 -4 4
X120 1512 . 216 -168 -24 216 104 -24 -40 24 -24 -24 24 -24 24 8 -8
X121 1512 216 -168 -24 -264 -56 72 -8 24 -24 -24 24 -24 24 8 -8
X122 1890 270 -210 -30 90 -10 -42 26 -30 30 66 78 -30 -18 2 -2
X123 1890 270 -210 -30 -30 -50 -18 34 -30 30 -78 -66 18 30 2 -2
X124 1890 270 -210 -30 -150 -10 54 -22 30 -30 -30 30 -30 30 10 -10
X125 1890 270 -210 -30 90 70 6 -38 30 -30 -30 30 -30 30 10 -10
X126 2268 324 -252 -36 -36 36 36 -36 36 -36 -36 36 -36 36 12 -12
X127 2520 360 -280 -40 200 120 -8 -56 40 -4G 24 -24 24 -24 -8 8
X128 2520 360 -280 -40 -40 40 40 -40 40 -40 120 72 -8 -56 -8 8
X129 2520 360 -280 -40 -280 -40 88 -24 40 -40 24 -24 24 -24 -8 8
X130 2520 360 -280 -40 -40 40 40 -40 40 -40 -72 -120 56 8 -8 8
X131 2835 405 -315 -45 -45 -75 -27 51 -45 45 -45 -27 3 21 3 -3
X132 2835 405 -315 -45 315 45 -99 27 -45 45 -45 -27 3 21 3 -3
X133 2835 405 -315 -45 -225 -135 9 63 -45 45 27 45 -21 -3 3 -3
X134 2835 405 -315 -45 135 -15 -63 39 -45 45 27 45 -21 -3 3 -3
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Table 8.4: The character table of 27:SP(6, 2)(continued)
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2C 2D

2K 4F 2£ 4G 4H 2M 41 4J 2N 4K 4£ 20 4M 4N 40 4P
X98 15 9 -1 -7 -1 1 -1 1 7 -1 -7 1 -1 -1 1 1

X99 11 13 -5 -3 3 -3 -1 1 -1 -5 1 5 3 -1 1 -3

XIOO 19 5 3 -11 3 -3 -5 5 3 3 -3 -3 3 -5 5 -3

XIOI 15 9 -1 -7 7 -7 -5 5 3 -9 -3 9 -1 3 -3 1

XI02 23 1 7 -15 -1 1 -5 5 11 7 -11 -7 -1 -5 5 1

XI03 11 13 -5 -3 11 -11 -5 5 -5 -13 5 13 3 3 -3 -3

XI04 18 30 -14 -2 10 -10 -2 2 -6 6 6 -6 -2 2 -2 2

XI05 34 14 2 -18 -6 6 -2 2 -6 6 6 -6 -2 2 -2 2

XI06 15 9 -1 -7 15 -15 -9 9 -9 -9 9 9 7 -1 1 -7

XI07 27 -3 11 -19 3 -3 -9 9 15 3 -15 -3 -5 -1 1 5

XI08 -10 -38 22 -6 6 -6 -10 10 -2 14 2 -14 -2 -2 2 2

XI09 30 18 -2 -14 -10 10 2 -2 -10 10 10 -10 2 -2 2 -2

XlIO 14 34 -18 2 6 -6 2 -2 -10 10 10 -10 2 -2 2 -2

XlII 14 34 -18 2 6 -6 2 -2 -2 2 2 -2 -6 6 -6 6

X1I2 -18 -30 14 2 14 -14 -10 10 -10 -2 10 2 -2 6 -6 2

X1I3 30 18 -2 -14 -10 10 2 -2 -2 2 2 -2 -6 6 -6 6

X1I4 49 23 1 -25 -15 15 1 -1 9 -15 -9 15 1 1 -1 -1

X1I5 -23 -1 -7 15 9 -9 1 -1 9 9 -9 -9 -7 1 -1 7

X1I6 -3 -21 13 -5 -11 11 1 -1 -15 -3 15 3 5 1 -1 -5

X1I7 21 51 -27 3 13 -13 1 -1 9 -3 -9 3 5 -7 7 -5

X1I8 16 -16 16 -16 16 -16 -16 16 0 0 0 0 0 0 0 0

X1I9 -52 -44 12 20 -4 4 4 -4 12 -12 -12 12 4 -4 4 -4

Xl20 -8 8 -8 8 24 -24 -8 8 0 0 0 0 0 0 0 0

Xl21 24 -24 24 -24 -8 8 -8 8 0 0 0 0 0 0 0 0

Xl22 26 22 -6 -10 -6 6 2 -2 18 -6 -18 6 -6 2 -2 6

Xl23 18 30 -14 -2 2 -2 2 -2 -6 -6 6 6 10 -6 6 -10

Xl24 42 6 10 -26 2 -2 -10 10 -6 6 6 -6 -2 2 -2 2

Xl25 26 22 -6 -10 18 -18 -10 10 -6 6 6 -6 -2 2 -2 2
X126 -36 -60 28 4 12 -12 -12 12 12 -12 -12 12 4 -4 4 -4
Xl27 -24 24 -24 24 8 -8 8 -8 0 0 0 0 0 0 0 0
Xl28 -8 8 -8 8 -8 8 8 -8 -8 8 8 -8 8 -8 8 -8
Xl29 8 -8 8 -8 -24 24 8 -8 0 0 0 0 0 0 0 0
Xl30 -8 8 -8 8 -8 8 8 -8 8 -8 -8 8 -8 8 -8 8
Xl31 -45 -27 3 21 3 -3 3 -3 3 27 -3 -27 -5 -5 5 5
X132 27 -3 11 -19 -21 21 3 -3 3 3 -3 -3 3 -5 5 -3
X133 -9 33 -25 17 15 -15 3 -3 3 -9 -3 9 -1 3 -3 1
Xl34 -33 -39 15 9 -9 9 3 -3 -21 -9 21 9 -1 11 -11 1
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Table 8.4: The character table of 27:SP(6, 2) (continued)

3A 3B 3C 4A

3A 6A 6B 6C 3B 6D 3C 6E 6F 6G 4Q 4R 48 4T

X98 15 5 -3 -1 0 0 3 3 -1 -1 3 -3 -1 1

X99 15 5 -3 -1 0 0 3 3 -1 -1 3 -3 -1 1

XIOO -15 -5 3 1 0 0 6 6 -2 -2 3 -3 -1 1

XIOl -15 -5 3 1 0 0 6 6 -2 -2 3 -3 -1 1

XI02 30 10 -6 -2 0 0 -3 -3 1 1 3 -3 -1 1

XI03 30 10 -6 -2 0 0 -3 -3 1 1 3 -3 -1 1

XI04 45 15 -9 -3 0 0 0 0 0 0 6 -6 - -2 2

XI05 45 15 -9 -3 0 0 0 0 0 0 6 -6 -2 2

XI06 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

XI07 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

XI08 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

XI09 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

X110 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

Xlll 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

X1l2 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

X1l3 15 5 -3 -1 0 0 3 3 -1 -1 -6 6 2 -2

X1l4 45 15 -9 -3 0 0 0 0 0 0 -3 3 1 -1

X1l5 45 15 -9 -3 0 0 0 0 0 0 9 -9 -3 3

X1l6 45 15 -9 -3 0 0 0 0 0 0 9 -9 -3 3

X1l7 45 15 -9 -3 0 0 0 0 0 0 -3 3 1 -1

X1l8 -30 -10 6 2 0 0 -6 -6 2 ·2 0 0 0 0

X1l9 30 10 -6 -2 0 0 6 6 -2 -2 12 -12 -4 4

X120 45 15 -9 -3 0 0 0 0 0 0 0 0 0 0

X121 45 15 -9 -3 0 0 0 0 0 0 0 0 0 0

X122 -45 -15 9 3 0 0 0 0 0 0 6 -6 -2 2

X123 -45 -15 9 3 0 0 0 0 0 0 6 -6 -2 2

X124 -45 -15 9 3 0 0 0 0 0 0 6 -6 -2 2

X125 -45 -15 9 3 0 0 0 0 0 0 6 -6 -2 2

X126 0 0 0 0 0 0 0 0 0 0 -12 12 4 -4

X127 15 5 -3 -1 0 0 -6 -6 2 2 0 0 0 0

X128 -30 -10 6 2 0 0 3 3 -1 -1 0 0 0 0

X129 15 5 -3 -1 0 0 -6 -6 2 2 0 0 0 0

X130 -30 -10 6 2 0 0 3 3 -1 -1 0 0 0 0

X131 0 0 0 0 0 0 0 0 0 0 3 -3 -1 1

X132 0 0 0 0 0 0 0 0 0 0 -9 9 3 -3

X133 0 0 0 0 0 0 0 0 0 0 -9 9 3 -3

X134 0 0 0 0 0 0 0 0 0 0 3 -3 -1 'I
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Table 8.4: The character table of 27:SP(6, 2) (continued)
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4B 4C 4D

4U 4V 4W 4X 8A 8B 4Y 4Z 4AA 4AB 8C 8D 4AC 4AD 4AE 4AF 4AG 4AH

X98 7 5 -1 -3 -1 1 7 5 -1 -3 -1 1 3 -1 -3 1 -1 1

X99 5 7 -3 -1 1 -1 -7 -5 1 3 1 -1 -1 3 1 -3 -1 1

XIOO -5 -7 3 1 -1 1 -5 -7 3 1 -1 1 -5 7 5 -7 -1 1

XIOl -7 -5 1 3 1 -1 5 7 -3 -1 1 -1 7 -5 -7 5 -1 1

XI02 -3 -9 5 -1 -3 3 9 3 1 -5 -3 3 -1 3 1 -3 -1 1

XI03 -9 -3 -1 5 3 -3 -9 -3 -1 5 3 -3 3 -1 -3 1 -1 1

XI04 -2 2 -2 2 2 -2 14 10 -2 -6 -2 2 -2 -2 2 2 2 -2

XI05 2 -2 2 -2 -2 2 -14 -10 2 6 2 -2 -2 -2 2 2 2 -2

XI06 3 9 -5 1 3 -3 3 9 -5 1 3 -3 -5 7 5 -7 -1 1

XI07 9 3 1 -5 -3 3 -3 -9 5 -1 -3 3 7 -5 -7 5 -1 1

XI08 2 -2 2 -2 -2 2 2 -2 2 -2 -2 2 -6 2 6 -2 2 -2

XI09 -14 -10 2 6 2 -2 2 -2 2 -2 -2 2 2 2 -2 -2 -2 2

X110 14 10 -2 -6 -2 2 -2 2 -2 2 2 -2 2 2 -2 -2 -2 2

Xlll -10 -14 6 2 -2 2 -2 2 -2 2 2 -2 2 2 -2 -2 -2 2

X1l2 -2 2 -2 2 2 -2 -2 2 -2 2 2 -2 2 -6 -2 6 2 -2

X1l3 10 14 -6 -2 2 -2 2 -2 2 -2 -2 2 2 2 -2 -2 -2 2

X1l4 5 7 -3 -1 1 -1 5 7 -3 -1 1 -1 -3 1 3 -1 1 -1

X1l5 -7 -5 1 3 1 -1 -7 -5 1 3 1 -1 1 5 -1 -5 -3 3

X1l6 -5 -7 3 1 -1 1 7 5 -1 -3 -1 1 5 1 -5 -1 -3 3

X1l7 7 5 -1 -3 -1 1 -5 -7 3 1 -1 1 1 -3 -1 3 1 -1

X1l8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1l9 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 4 4 4 -4

X120 -4 4 -4 4 4 -4 4 -4 4 -4 -4 4 0 0 0 0 0 0
X121 4 -4 4 -4 -4 4 -4 4 -4 4 4 -4 0 0 0 0 0 0

X122 -2 2 -2 2 2 -2 -2 2 -2 2 2 -2 -2 6 2 -6 -2 2

X123 2 -2 2 -2 -2 2 2 -2 2 -2 -2 2 6 -2 -6 2 -2 2
X124 2 -2 2 -2 -2 2 10 14 -6 -2 2 -2 -2 -2 2 2 2 -2
X125 -2 2 -2 2 2 -2 -10 -14 6 2 -2 2 -2 -2 2 2 2 -2
X126 0 0 0 0 0 0 0 0 0 0 0 0 4 4 -4 -4 -4 4
X127 4 -4 4 -4 -4 4 -4 4 -4 4 4 -4 0 0 0 0 0 0
X128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X129 -4 4 -4 4 4 -4 4 -4 4 -4 -4 4 0 0 0 0 0 0
X130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X131 3 9 -5 1 3 -3 3 9 -5 1 3 -3 3 -1 -3 1 -1 1
X132 -9 -3 -1 5 3 -3 -9 -3 -1 5 3 -3 -1 -5 1 5 3 -3
X133 -3 -9 5 -1 -3 3 9 3 1 -5 -3 3 -5 -1 5 1 3 -3
X134 9 3 1 -5 -3 3 -3 -9 5 -1 -3 3 -1 3 1 -3 -1 1
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Table 8.4: The character table of 27:SP(6, 2) (continued)

4E 5A 6A

4A1 BE BF 4AJ 4AK BG 4AL BB 5A lOA lOB lOG 6B 12A 61 12B 12G 6J

X98 3 -1 -1 -1 -3 1 1 1 3 3 -1 -1 7 5 -1 -3 -1 1

X99 1 -3 1 1 -1 -1 -1 3 3 3 -1 -1 -5 -7 3 1 -1 1

XIOO -1 -1 -1 3 1 1 -3 1 0 0 0 0 5 7 -3 -1 1 -1

XIOI 1 1 -3 1 -1 3 -1 -1 0 0 0 0 -7 -5 1 3 1 -1

XI02 1 1 -3 1 -1 3 -1 -1 0 0 0 0 2 -2 2 -2 -2 2

XI03 -1 -1 -1 3 1 1 -3 1 0 0 0 0 2 -2 2 -2 -2 2

XI04 -2 -2 2 2 2 -2 -2 2 3 3 -1 -1 3 9 -5 1 3 -3

XI05 2 2 -2 -2 -2 2 2 -2 3 3 -1 -1 -9 -3 -1 5 3 -3

XI06 3 -1 -1 -1 -3 1 1 1 -3 -3 1 1 0 0 0 0 0 0

XI07 1 -3 1 1 -1 -1 -1 3 -3 -3 1 1 0 0 0 0 0 0

XI08 -2 2 2 -2 2 -2 2 -2 0 0 0 0 -5 -7 3 1 -1 1

XI09 2 -2 2 -2 -2 -2 2 2 0 0 0 0 -7 -5 1 3 1 -1

XlIO -2 2 -2 2 2 2 -2 -2 0 0 0 0 5 7 -3 -1 1 -1

XlII 2 -2 2 -2 -2 -2 2 2 0 0 0 0 5 7 -3 -1 1 -1

X1I2 -2 2 2 -2 2 -2 2 -2 0 0 0 0 7 5 -1 -3 -1 1

X1I3 -2 2 -2 2 2 2 -2 -2 0 0 0 0 -7 -5 1 3 1 -1

X1I4 1 1 1 -3 -1 -1 3 -1 0 0 0 0 9 3 1 -5 -3 3

X1I5 -3 1 1 1 3 -1 -1 -1 0 0 0 0 9 3 1 -5 -3 3

X1I6 -1 3 -1 -1 1 1 1 -3 0 0 0 0 -3 -9 5 -1 -3 3

X1I7 -1 -1 3 -1 1 -3 1 1 0 0 0 0 -3 -9 5 -1 -3 3
X1I8 0 0 0 0 0 0 0 0 3 3 -1 -1 -2 2 -2 2 2 -2
X1I9 0 0 0 0 0 0 0 0 0 0 0 0 -2 2 -2 2 2 -2
XI20 0 0 0 0 0 0 0 0 -3 -3 1 1 -9 -3 -1 5 3 -3
XI2I 0 0 0 0 0 0 0 0 -3 -3 1 1 3 9 -5 1 3 -3
XI22 -2 2 2 -2 2 -2 2 -2 0 0 0 0 -9 -3 -1 5 3 -3
XI23 -2 2 2 -2 2 -2 2 -2 0 0 0 0 3 9 -5 1 3 -3
X124 -2 -2 2 2 2 -2 -2 2 0 0 0 0 -3 -9 5 -1 -3 3
X125 2 2 -2 -2 -2 2 2 -2 0 0 0 0 9 3 1 -5 -3 3
X126 0 0 0 0 0 0 0 0 3 3 -1 -1 0 0 0 0 0 0
X127 0 0 0 0 0 0 0 0 0 0 0 0 -7 -5 1 3 1 -1
X128 0 0 0 0 0 0 0 0 0 0 0 0 2 -2 2 -2 -2 2
XI29 0 0 0 0 0 0 0 0 0 0 0 0 5 7 -3 -1 1 -1
X130 0 0 0 0 0 0 0 0 0 0 0 0 2 -2 2 -2 -2 2
XI3I 3 -1 -1 -1 -3 1 1 1 0 0 0 0 0 0 0 0 0 0
XI32 -1 -1 -1 3 1 1 -3 1 0 0 0 0 0 0 0 0 0 0
X133 1 1 -3 1 -1 3 -1 -1 0 0 0 0 0 0 0 0 0 0
XI34 1 -3 1 1 -1 -1 -1 3 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2)(continued)
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6B 6C 6D 6E

6K 6L 12D 12E 6M 6N 60 12F 12G 6P 12H 121 6Q 6R 68 6T

X9B 3 -3 -1 1 0 0 3 -1 -3 1 -1 1 3 3 -1 -1

X99 3 -3 -1 1 0 0 -1 3 1 -3 -1 1 -3 -3 1 1

XIOO -3 3 1 -1 0 0 1 -3 -1 3 1 -1 0 0 0 0

XIOI -3 3 1 -1 0 0 -3 1 3 -1 . 1 -1 0 0 0 0

XI02 6 -6 -2 2 0 0 2 2 -2 -2 -2 2 -3 -3 1 1

X103 6 -6 -2 2 0 0 2 2 -2 -2 -2 2 3 3 -1 -1

XI04 3 -3 -1 1 0 0 -3 1 3 -1 1 -1 0 0 0 0

XI05 3 -3 -1 1 0 0 1 -3 -1 3 1 -1 0 0 0 0

XI06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XIOB 3 -3 -1 1 0 0 -1 3 1 -3 -1 1 3 3 -1 -1

XI09 -3 3 1 -1 0 0 3 -1 -3 1 -1 1 3 3 -1 -1

XlIO -3 3 1 -1 0 0 -1 3 1 -3 -1 1 3 3 -1 -1

XlII -3 3 1 -1 0 0 -1 3 1 -3 -1 1 -3 -3 1 1

X1I2 3 -3 -1 1 0 0 3 -1 -3 1 -1 1 -3 -3 1 1

X1I3 -3 3 1 -1 0 0 3 -1 -3 1 -1 1 -3 -3 1 1

X1I4 -3 3 1 -1 0 0 1 -3 -1 3 1 -1 0 0 0 0

X1I5 -3 3 1 -1 0 0 1 -3 -1 3 1 -1 0 0 0 0
X1I6 -3 3 1 -1 0 0 -3 1 3 -1 1 -1 0 0 0 0

X1I7 -3 3 1 -1 0 0 -3 1 3 -1 1 -1 0 0 0 0

XlIB -6 6 2 -2 0 0 -2 -2 2 2 2 -2 0 0 0 0

X1I9 -6 6 2 -2 0 0 2 2 -2 -2 -2 2 0 0 0 0
XI20 3 -3 -1 1 0 0 1 -3 -1 3 1 -1 0 0 0 0
XI2I 3 -3 -1 1 0 0 -3 1 3 -1 1 -1 0 0 0 0

X122 3 -3 -1 1 0 0 -1 3 1 -3 -1 1 0 0 0 0

X123 3 -3 -1 1 0 0 3 -1 -3 1 -1 1 0 0 0 0
XI24 -3 3 1 -1 0 0 3 -1 -3 1 -1 1 0 0 0 0
XI25 -3 3 1 -1 0 0 -1 3 1 -3 -1 1 0 0 0 0
XI26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI27 -3 3 1 -1 0 0 3 -1 -3 1 -1 1 0 0 0 0
XI2B 6 -6 -2 2 0 0 -2 -2 2 2 2 -2 -3 -3 1 1
XI29 -3 3 1 -1 0 0 -1 3 1 -3 -1 1 0 0 0 0
XI30 6 -6 -2 2 0 0 -2 -2 2 2 2 -2 3 3 -1 -1
XI3I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8.4: The character table of 27:SP(6, 2)(continued)

6F 6G 7A 8A· 8B

6U 12J 6V 12K 6W 12£ 12M 6X 7A 14A 81 8J 8K 8£ 8M 8N 80 8P

X98 1 -1 1 -1 1 -1 -1 1 0 0 1 -1 1 -1 1 -1 1 -1

X99 1 -1 1 -1 -1 1 1 -1 0 0 1 -1 1 -1 -1 1 -1 1

XIOO 2 -2 2 -2 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1

XIOI 2 -2 2 -2 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1

XI02 -1 1 -1 1 -1 1 1 -1 0 0 -1 1 -1 1 1 -1 1 -1

XI03 -1 1 -1 1 1 -1 -1 1 0 0 -1 1 -1 1 -1 1 -1 1

XI04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XJ.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI06 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1

XI07 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1

XI08 1 -1 1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

XI09 -1 1 -1 1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0

XlIO -1 1 -1 1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0

XlII -1 1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

X1I2 1 -1 1 -1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0

X1I3 -1 1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

X1I4 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1

X1I5 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1

X1l6 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1

X1I7 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1

X1I8 -2 2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1I9 -2 2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI2I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI27 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI28 -1 1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0

XI29 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI30 -1 1 -1 1 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0

XI31 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1

XI32 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1

X133 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1

XI34 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1
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T~ble 8.4: The character table of 27:SP(6, 2) (continued)
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9A lOA 12A 12B 120 15A

9A 18A 10D 20A 20B lOE 12N 24A 24B 120 12P 240 24D 12Q 12R 125 15A 30A

X98 0 0 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 0 0 0 0

X99 0 0 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 0 0 0 0

XIOO 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

XIOI 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1 0 0 0 0

XI02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI04 0 0 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 0 0 0 0

XI05 0 0 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 0 0 0 0

XI06 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

XI07 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

XI08 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1 0 0 0 0

X109 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0

X110 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1 0 0 0 0

Xlll 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1 0 0 0 0

X1l2 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

X1l3 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0

X1l4 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1 0 0 0 0

X1l5 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1 0 0 0 0

X1l6 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

X1l7 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

X1l8 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0

X1l9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI20 0 0 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 0 0 0 0

XI2I 0 0 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 0 0 0 0

XI22 0 0 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0

XI23 0 0 0 0 0 0 -1 1 -1 1 -1 1 -1 1 0 0 0 0

XI24 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1 0 0 0 0

XI25 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0

XI26 0 0 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

XI27 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0

XI28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XI29 0 0 0 0 0 0 -1 1 -1 1 1 -1 1 -1 0 0 0 0
X130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI3I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XI34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.6 The fusion of 27:SP(6, 2) into Fi22

We use the results of Section 8.2 to compute the power maps of elements of 27:SP(6, 2)
which are listed in Table 8.5 below.
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Table 8.5: The power maps of the elements of 27:SP(6, 2)

[g]SP(6,2) [Xb7 :SP(6 2) 2 3 5 7 [9]SP(6,2) [Xb7 :SP(6 2) 2 3 5 7

lA lA 2A 2D lA
2A lA 4A 2C
2B lA 4B 2C
2C lA 2E lA

4C 2C
2F lA

2B 2G lA 2C 2K lA
2H lA 4F 2C
2I lA 2£ lA
2J lA 4G 2C
4D 2C 4H 2C
4D 2C 2M lA

41 2C
4J 2C

2D 2N lA 3A 3A lA
4K 2C 6A 3A 2B
4£ 2C 6B 3A 2A
20 lA 6C 3A 2C
4M 2C
4N 2C
40 2C
4P 2C

3B 3B lA 3C 3C lA
6D 3B 2A 6E 3C 2A

6F 3C 2C
6G 3C 2B

4A 4Q 2G 4B 4U 2K
4R 2G 4V 2K
45 2I 4W 2K
4T 2I 4X 2K

BA 4H
BB 4H

40 4Y 2K 4D 4AC 2G
4Z 2K 4AD 2I

4AA 2K 4AE 2G
4AB 2K 4AF 2I
BC 4H 4AG 2I
8D 4H 4AH 21

4E 4A1 2K 5A 5A lA
BE 4H lOA 5A 2B
8F 4H lOB 5A 2C

4AJ 2£ 10C 5A 2A
4AK 2£
8G 4H

4A£ 2K
8H 4H
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Table 8.5: The power maps of the elements of 27:SP(6, 2) (continued)

[g]SP{6,2) [Xb7:SP(62) 2 3 5 7 [9]SP(6,2) [xb7 :SP(6 2) 2 3 5 7

6A 6H 3A 2D 6B 6K 3A 2G
12A 6C 4B 6£ 3A 2H
61 3A 2E 12D 6C 4D

12B 6C 4A 12E 6C 4E
12C 6C 4C
6J 3A 2F

6C 6M 3B 2G 6D 60 3A 2K
6N 3B 2H 12F 6C 4H

12G 6C 4F
6P 3A 2M
12H 6C 41
121 6C 4J

6E 6Q 3C 2G 6F 6U 3C 2D
6R 3C 2H 12J 6F 4C
68 3C 2I 6V 3C 2F
6T 3C 2J 12K 6F 4B

6G 6W 3C 2N 7A 7A lA
12£ 6F 4K 14A 7A 2B
12M 6F 4£
6X 3C 20

8A 81 4AC 8B 8M 4Q
8J 4AD 8N 48
8K 4AD 80 48
8£ 4AC 8P 4Q

9A 9A 3B lOA 10D 5A 2D
18A 9A 6D 20A lOB 4C

20B lOB 4A
lOE 5A 2F

12A 12N 60 4U 12B 12P 60 4Y
24A 12F 8A 24C 12F 8C
24B 12F 8B 24D 12F 8D
120 60 4\/ 12Q 60 4Z

12C 12R 6M 4Q 15A 15A 5A 3A
12S 6M 4R 30A 15A lOA 6A
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The power maps of the elements of Fi22 are given in the ATLAS. The conjugacy

classes of elements of Fi22 can be divided into two categories, those which are in Fi22

and those which are outside of Fi22 . Since 26:SP(6,2) :::; 27:SP(6,2), we first need

to obtain the complete fusion of 26 :SP(6, 2) into 27 :SP(6, 2). This fusion enables us

to identify those classes of 27 :SP(6, 2) which fuse into Fi22 . Hence we obtain the

partial fusion of 27:SP(6, 2) into Fi 22 . The complete conjugacy classes of 26:SP(6, 2)

and the fusion into Fi22 were computed in Chapter 6. For 9 E SP(6,2) the classes

of 26:SP(6, 2) obtained from the coset N 9 will fuse into the classes of 27:SP(6, 2) ob-
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tained from the coset W g. However since W 9 = N gUNe7g, the classes of 26
:8 P (6, 2)

obtained from the coset N9 will only fuse into the classes of 27:8P(6,2) correspond

ing to the N 9 component of the coset W g. The complete fusion of 26:8P(6, 2) into

27:8P(6,2) is given in Table 8.6.

Table 8.6: The fusion of 26:8P(6, 2) into. 27:8P(6, 2)

[g]SP(S,2) [Xb6:SP{S 2) -- [Yb7 :SP(S 2) [g]SP(S,2) [Xb6:SP{S 2) --t [Y127 ;SP(S 2)

lA lA lA 2A 2B 2D

2A 2C 2C 2E
4A 4C

2B 2D 2C 2C 2F 2K

4B 4D 2C 2£
2E 21 4C 4H

4D 41

2D 2H 2N 3A 3A 3A

4E 4M 6A 6C
4F 4N

4C 4K

3B 3B 3B 3C 3C 3C
6B 6F

4A 4H 4Q 4B 4J 4U

41 48 4K 4W

8A 8A

4C 4£ 4Y 4D 4N 4AC

8B 8C 40 4AD

4M 4AA 4P 4AC

4E 4Q 4AI 5A 5A 5A

4R 4AJ lOA lOB

8C 8F
8D 8E

6A 6C 6K 6B 6D 6H
12A 12D 6E 61

12B 12C
6C 6P 6M 6D 6C 60

12C 12F
12D 12H

6E 6H 6U 6F 61 6Q
12E 12J 6J 68

6C 6K 6W 7A 7A 7A
12F 12£

8A 8E 8M 8B 8C 81
8F 8N 8H 8J

9A 9A 9A lOA lOB laD
20A 20A

12A 12C 12N 12B 12H 12P
24A 24A 24B 24C

12C 121 12R 15A 15A 15A
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The conjugacy classes of elements of 27 :SP(6, 2) corresponding to the coset W9

for 9 E SP(6,2) are divided into two parts, the N 9 and the N e7g parts respectively.

The classes obtained from the N9 part will fuse into Fi22 and the others will fuse into

Fi22 - Fi22 . As was mentioned above the fusion of the classes obtained from N9 into

Fi22 is completely determined by the fusion of 26:SP(6, 2) into 27 :SP(6, 2) and then

into Fi22 . The fusion of the classes of 27:SP(6, 2) obtained from Ne7g into Fi22 will

be accomplished by using the information provided by the conjugacy classes and the

power maps of 27 :SP(6, 2) and Fi22 and also by using the restrictions of irreducible

characters of Fi22 of small degrees to 27 :SP(6, 2).

For every Xi E 1rr(Fi22 ), there exists X~ E 1rr(Fi22 ) such that

Using the partial fusion of27 :SP(6, 2) into Fi22 which has already been determined

from the fusion of the classes of 27 :SP(6,2) corresponding to Ng into the classes of

Fi22 , we are able to restrict 78a, (78a)', 429a, (429a)' E 1rr(Fi22 ) to 27 :SP(6, 2).
Using the theory of set intersections for characters, the fusion of the classes obtained

from the N e7 part of the identity coset W into Fi22, which is important for the

restrictions of the irreducible characters of Fi22 to 27 :SP(6, 2), was fully detremined.

Let p be the character afforded by the regular representation of SP(6, 2). Then

we obtain that p = l:r~l eicPi, where cPi E 1rr(SP(6, 2)) and ei = deg(cPi). Then p can

be regarded as a character of 27 :SP(6, 2) which contains 27 in its kernel such that

p(g) = { ISP(6,2)1 if 9 E.2
7

o otherwIse

If 'ljJ is a character of Fi22 , then we obtain that

1
(p, 'ljJh7 :sP(6,2) = 127 :SP(6, 2)1 {p(lA)'ljJ(lA) + 28p(2A)'ljJ(2A) + 36p(2B)'ljJ(2B) +

63p(2C)'ljJ(2C) }
1

- 127 :SP(6, 2)1 {ISP(6, 2) I{'ljJ(lA) + 28'ljJ(2A) + 36'ljJ(2B) +

63'ljJ(2C)} }
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._ _1 {'l/J(1A) + 28'l/J(2A) + 36'l/J(2B) + 63'l/J(2C)}
128

- ('l/J27,T1)

where T1 is the identity character of 27 and 'l/J27 is the restriction of 'ljJ to 27
. Also for

'l/J we obtain that

'l/J27 = a 18l + a282+ a383+ a484 ,

where aI, a2, a3, a4 E IN U {O} and 8i , i E {I, 2, 3, 4}, are the sums of the irreducible

characters of 27 which are in the same orbit under the action of SP(6, 2) on Irr(27
).

Let Tj E Irr(27 ), where j E {I, 2, ... ,128}. Then we obtain that

81 = T1 , deg(81) = 1

82 = T2 , deg(82) = 1

65

83 = LTj , deg(83) = 63
j=3
128

84 = L Tj , deg(84) = 63
j=66

and thus we have
65 128

'l/J27 = alT1 + a2T2+ a3 LTj + a4 L Tj
j=3 j=66

and hence

('l/J27, 'l/J27) = ai + a~ + 63a; + 63a~ ,

where al = (p, 'l/Jh7:sP(6,2)' Also we obtain that al + a2 + 63a3+ 63a4 = deg('l/J).

Now let 'l/J = 78a be the irreducible character of Fi22 of degree 78. Then we obtain

that
1

al = 128 {78 + 28(6) + 36(22) + 63(14)} = 15

and al +a2+63a3+63a4 = 78. Hence we obtain two possibilities (a2 = a3 = 0, a4 = 1)

or (a2 = a4 = 0, a3 = 1). Hence without loss of generality we take a2 = a4 = 0 and

a3 = 1. We also know from Chapter 6 (Section 6.5) that (78ah6 :sP(6,2) = X3 + X4l.

Then based on the partial fusion of 27:SP(6,2) into Fi22 which has already been

determined, we obtain that (78ah7:sP(6,2) = X3 + X62. Hence we have that

(78ah 7:sP(6,2) = X3 + X62 and (78a)~7:sP(6,2) = X33 + X99 .
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Similarly we can show that

(429ah7 :SP(6,2) = Xl + X3 + X8 + X63 + X98

and
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(429a);7:SP(6,2) = X31 + X33 + X38 + X61 + XlOO .

Using the partial fusion already determined and the values of 78a, (78a)' , 429a

and (429a)' on the classes of Fi22 and the values of (78ah7:SP(6,2) , (78a)~7:SP(6,2) '

(429ah7:sP(6,2) and (429a);7:sp(6,2) on the classes of 2
7:SP(6, 2), we ~e able to com

plete the fusion map of 27:SP(6, 2) into Fi22 . This is given in Table 8.7 below.

Table 8.7: The fusion of 27:SP(6, 2) into Fi22

[glsp(6,2) [Xb7 :SP(6,2) ---+ [ylpi?? [glsp(6,2) [Xb7 :SP(6,2) ---+ [ylpi??
lA lA lA 2A 2D 2A

2A 2E 4A 4G
2B 2D 4B 4F
20 2B 2E 2G

4C 4B
2F 2F

2B 2G 2C 2G 2K 2B
2H 2D 4F 4F
2I 2B 2£ 2C
2J 2E 4G 4G
4D 4A 4H 4A
4E 4G 2M 2E

41 4E
4J 4H

2D 2N 2G 3A 3A 3A
4K 4B 6A 6£
4£ 41 6B 6Q
20 2F 6G 6D
4M 4E
4N 4C
40 41
4P 4H

3B 3B 3D 30 3C 3C
6D 6T 6E 6U

6F 61
6G 6P

4A 4Q 4D 4B 4U 4E
4R 4J 4V 4F
48 4C 4W 4B
4T 4/ 4X 4/

8A 8B
8B 8F
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Table 8.7: The fusion of 27 :SP(6, 2) into Fi22 (continued)

[glsp(6,2) [Xb7 :SP(6,2) --+ [ylFi?? [glsp(6.2) [Xb7 :SP(6,2) --+ [ylFi??

4C 4Y 4B 4D 4AC 4D

4Z 4C 4AD 4A

4AA 4E 4AE 4J·

4AB 41 4AF 4C

8C 8A 4AC 4E

8D 8E 4AH 4H

4E 4Al 4E 5A 5A 5A

8E 8B lOA 10C

8F 8A lOB lOB

4AJ 4D lOC 10E

4AK 4J
8C 8E

4A£ 4H
8B 8F

6A 6B 6A 6B 6K 6F

12A 12K 6£ 6M

61 6F 12D 12C

12B 120 12E 120

12C 12D
6J 60

6C 6M 6K 6D 60 6D

6N 65 12F 12B
12C 12M
6P 6Q

12H 12H
121 12P

6E 6Q 6H 6F 6U 6E

6R 6P 12J 121
65 61 6V 6V
6T 6U 12K 12N

6C 6W 6J 7A 7A 7A
12£ 121 14A 14B
12M 125
6X 6V

8A 81 8D 8B 8M 8D
8J 8B 8N 8C
8K 8F 80 8C
8£ 8H 8P 8H

9A 9A 9C lOA lOD lOA
18A 18C 20A 20A

20B 20B
10E 10D



8.7. THE PERMUTATION CHARACTER OF FI22 ON 27:SP(6, 2)

Table 8.7: The fusion of 27 :SP(6, 2) into Fi22 (continued)

[glsp(6,2) [Xb7 :SP(6,2) ~ [ylFi?? [glsp(6,2) [Xb7 :SP(6,2) ~ [ylFi'l'l
12A 12N 12H 12B 12P 12D

24A 24A 24C 24B

24B 24D 24D 24C

120 12M 12Q 120

12C 12R 12J 15A 15A 15A

128 12T 30A 30B
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8.7 The permutation character of Fi22 on 27:SP(6, 2)

The group 27 :SP(6, 2) is a maximal subgroup of Fi22 of index 694980. Thus when

Fi22 acts on the cosets of 27:SP(6, 2), then this action gives rise to a permutation

representation which affords a permutation character of degree 694980 and we denote

this permutation character by X(Fi 22 127 :SP(6, 2)). We also know from Chapter 6

(Section 6.6) that

la + 429a + 1430a + 3080a + 13650a + 30030a +
45045a + 75075a + 205920a + 320320a .

The permutation character X(Fi 22 127 :SP(6, 2)) is related to X(Fi22 126 :SP(6, 2))

in that the irreducible" characters involved in X( Fi22 127:SP(6,2)) are irreducible char

acters Xi or X~ such that Xi is involved in X(Fi 22 126:SP(6, 2)). Using the values of

the irreducible characters la, 429a, (429a)', 1430a, (1430a)', 3080a, (3080a)', 13650a,

(13650a)', 30030a, (30030a)', 45045a, (45045a)' ,75075a, (75075a)', 205920a,

(205920a)', 320320a and (320320a)' of Fi22 on the conjugacy classes of 27 :SP(6, 2) we
deduce that

X(Fi 22 127:SP(6, 2)) - la + 429a + 1430a + 3080a + 13650a + 30030a +

45045a + 75075a + 205920a + 320320a .

There is another group of the form 27:SP(6,2) which is an affine subgroup of

SP(8,2). This subgroup is maximal in SP(8,2) of index 255 and is isomorphic to

the centralizer of an element of the 2A conjugacy class of SP(8, 2). By the discussion

following Theorem 4.4.6 and by Remark 4.4.7, for this affine subgroup of SP(8, 2) we
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would have four inertia groups of indices 1,28,36 and 63 in 27:SP(6, 2) with inertia

factors of indices 1, 28, 36 and 63 respectively in SP(6,2). This group would have

some irreducible characters of degrees 28 and 36. Therefore the group 27:SP(6,2)

that has been studied in this chapter, is not the one that sits in SP(8, 2).



Appendix A

Programmes

A.I Programme A for 25:86

V : vector space(5, GF(2));

S : matrix group(V);

S.generators : a = mat(l, 0, 0, 0, 0 : 1,1,0,0,0 : 1,0,1,0,0 : 1,0,0,1,0 : 1,0,0,0,1), b =

mat (1, 1, 0, 0, 0 : 1, 0, 1, 0, 0 : 1, 0, 0, 1, 0 : 1, 0, 0, 0, 1 : 1, 0, 0, 0, 0);

c : classes(S);

01 : matr~x orbit(S, vec(l, 1, 1, 1, 1), false);

02 : matrix orbit(S, vec(l, 1, 1, 1,0), false);

03 : matrix orbit(S, vec(O, 0, 0, 0,1), false);

o : 01 join 02 join 03;
for i = 1 to 11 do;

print c[i], '$N';

e = null;

w = vec(O) of V;

while 0 - e ne [ ] do;

d = null;

for each x in 0 do;

y = [x + w + (x * c[i])];

d = djoin y;
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end;

print d, '$N';

print' * * * * * *';
e = d join e;

if 0 - e ne [ ] then;

w = setrep(O - e);

end;

end;

APPENDIX A. PROGRAMMES

r = null;

u = vec(O) of V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(S, c[iD do;

l=[u*g];

m = m join l;

end;

print'A block for the vectors under the action of centralizer :';

print m;

r = m join r;

if 0 - r ne [ ] then;

u = setrep(O - r);

end;

end;

print' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *';
end;

A.2 Programme A for 32:D4

V : vector space(2, GF(3));

S : matrix group(V);

S.generators : a = mat(O, 1 : 2,0), b = mat(l, 0 : 0,2);

c : classes(S);
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01 : matrix orbit(S, vec(l, 1), false);

02 : matrix orbit(S, vec(l, 0), false);

o :01 join 02;

for i = 1 to 5 do;

print c[i] , '$N';

e = null;

w = vec(O) of V;

while 0 - e ne [ ] do;

d = null;

for each x in 0 do;

y = [x + w + (x * c[i])];

d = d join y;

end;

print d, '$N';

print'******';

e = d join e;

if 0 - e ne [ ] then;

w = setrep(O - e);

end;

end;

r = null;

u = vec(O) of V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(S, c[i]) do;

l = [u * g];
m = m join l;

end;

print'A block for the vectors under the action of centralizer :';

print m;

r = m join r;

if 0 - r ne [ ] then;

u = setrep(O - r);
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end;

end;

print' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *';
end;

A.3 Programme A for 26:0-(6,2)

V : vector space(6, GF(2));

S : symplectic(6, GF(2));

c : classes(S);

H : matrix group(V);

H.generators : c[IO] = mat(l, 0, 1,0,0, 1 : 0,0, 1,0,0,°:0, 1,0,0,0,°:0,0,0,0, 1,°:
0,0,1,1,0,1 : 0,0,0,0,0, 1),c[25] = mat(O, 1, 1, 1,0,0 : 1,1,0,1,1,1 : 0,1,1,0,1,1 :

0,0,1,0,1,0: 0,1,1,1,0,1: 1,1,1,1,1,0);

q : classes(H);

01 : matrix orbit(H, vec(l, 1, 1, 1.,0,1), false);

02 : matrix orbit(H, vec(l, 1, 1, 1,1,1), false);

o :01 join 02;

fori = 1 to 25 do;

print q[i], '$N';

e = null;

w = vec(O) of V;

while 0 - e ne [ ] do;

d = null;

for each x in 0 do;

y = [x + w + (x * q[i])];
d = djoin y;

end;

print d, '$N';

print' * * * * * *';
e = d join e;

if 0 - e ne [ ] then;
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w = setrep(O - e);

end;

end;

r = null;

u = vec(O) of V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(H, q[i]) do;

l=[u*g];

m = m join l;

end;

print'A block for the vectors under the action of centralizer :';

print m;

r = m join r;

if 0 - r ne [ ] then;

u = setrep(O - r);

end;

end;

print' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *';
end;
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A.4 Programme A for 27:SP(6, 2)

V : vector space(7, GF(2));

S : matrix group(V);

S.generators : a = mat(1, 1,0,0,1,0,°:1,1,0,0,0,1,°:0,0,0,1,0,0,°:0,0,1,0,0,0,°:
1, 0, 0, 0, 1, 1,°:0, 1, 0, 0, 1, 1,°:0, 0, 0, 0, 0, 0, 1), x = mat (0, 1, 0, 1, 1, 1,°:0, 1, 1, 1, 0, 1,°:
0, 1, 1, 1, 0, 0,°:1, 0, ,1, 0, 0, 0,°:1, 1, 1, 0, 1, 0,°:0, 1, 1, 0, 1, 0,°:0, 0, 0, 0, 0, 0, 1), c =

mat(O, 0,1,1,0,0,°:1,1,1,1,0,0,°:1,1,0,0,1,1,°:0,1,0,0,1,1,°:0,1,1,1,1,0,°:
1,0,0,1,1,0,0: 1,0,0,1,1,1,1);

c : classes(S);

01 : matrix orbit(S, vec(1, 0,1,0,1,0,1), false);
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02 : matrix orbit(S, vec(1, 1, 1, 1, 1, 1, 1), false);

03 : matrix orbit(S, vec(1, 0, 0, 0, 0, 0, 0), false);

o :01 join 02 join 03;

for 'i = 1 to 30 do;

print c[i] , '$N';

e = null;

w = vec(O) of V;
while 0 - e ne [ ] do;

d = null;

for each x in 0 do;

y = [x + w + (x * c[i])];

d = djoin y;

end;

print d, '$N';

print' * * * * * *';
e = d join e;

if 0 - e ne [ ] then;

w = setrep(O - e);

end;

end;

APPENDIX A. PROGRAMMES

r = null;

u = vec(OYof V;

while 0 - r ne [ ] do;

m = null;

for each 9 in centralizer(S, c[iJ) do;

l = [u * g];
m = m join l;

end;

print'A block for the vectors under the action of centralizer :';

print m;

r = m join r;

if 0 - r ne [] then;

u = setrep(O - r);
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end;

end;

print' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *';
end;
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