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ABSTRACT 

 

 

The deleterious effects of ultraviolet (UV) radiation on outdoor workers and sunbathers cannot be 

over emphasised.  To combat photoaging, skin wrinkling, photo-dermatitis, and various forms of skin 

cancer associated with UV radiation, photoprotection is necessary.  The most convenient mode of 

protection is the use of sunscreens, presented in various cosmetic preparations.  However, most of the 

commonly used sunscreens have been shown to photodegrade to less efficient light absorbing species 

whose toxicities are unknown.  These photoproducts could be the cause of some of the observed 

hyperpigmentation and other skin disorders associated with topical cosmetic applications.  

 

This thesis interrogates various sunscreens present in commercial sunscreen and skin-lightening 

preparations.  Titanium dioxide was isolated, characterised and quantitated in twelve skin-lightening 

preparations because the amount, size and polymorph present determines its suitability as a sun 

protector.  Anatase titanium dioxide is a known active photocatalyst and its nanoparticle penetration 

into viable tissues is likely to cause undesirable effects.  A total of eight skin-lighteners had TiO2 in 

quantifiable levels.  The percent composition ranged between 2.83 – 12.47 % m/m.  Four samples 

contained anatase TiO2, three; rutile and one, a mixture of the two polymorphs.  The particle size 

range of TiO2 in these samples was from 16.23 – 58.70 nm indicating that all samples contained nano-

TiO2.  The percentage composition of TiO2 in sunscreen preparations was slightly higher (12.60 % 

m/m) than those in skin-lighteners.  The amounts of organic absorbers in sunscreens and skin-

lightening preparations were also measured in order to assess compliance with the health regulatory 

set maxima in various cosmetic preparations.  The amount of organic absorbers in most skin-

lightening preparations was found to be much lower than expected and none had the percentage 

composition indicated on the packet.  The amounts of organic absorbers in the sunscreen preparations 

were within the allowed maximum limit allowed by health regulatory authorities.  The amounts of 

organic absorbers were much higher than those in skin-lightening preparations.   

 

The photostability of twenty two cosmetic sunscreen preparations was investigated, categorising those 

with plant extracts and those without plant extracts.  The effect of plant extracts on common 

sunscreen absorbers was then examined.  The products containing plant extracts demonstrated unique 

photostability compared with those without plant extracts.  Some of the products contained liquorice 

and mulberry extracts and consequently it was of interest to investigate their contribution to the 

photostability observed.  The effect of four plant extracts: grape seed extract, lavender oil, liquorice 

root extract, and mulberry extract on the photostability of 2-ethylhexyl-p-methoxycinnamate, 

benzophenone-3 and tert-butylmethoxy dibenzoylmethane was investigated.  The mixture of each of 

these absorbers with the plant extracts singly and in combination demonstrated varying 

photoprotective potential.  Three plant extracts (grape seed extract, mulberry extract and liquorice root 

extract) demonstrated photostabilization potential.  In this work, lavender oil showed lower 

photostabilization potential.  However, the irradiation of lavender oil in mixtures with sunscreen 

absorbers showed an increase in the number of photoproducts formed.  Therefore, the addition of 

lavender oil in sunscreen preparations needs to be done with caution.   

 

Plants are known sources of polyphenols perceived to be aggressive antioxidants and also show 

significant UV absorption.  The antioxidant activity of some plant extracts and beverages was assayed 
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to ascertain their potential and suitability as free radical scavengers and synergistic absorbers.  The 

total phenolic content in the plants and fruits investigated correlated positively with their 

corresponding antioxidant activity.  The extracts also indicated significant UV absorption 

demonstrating possible use as UV absorbers. 

 

Our work demonstrates for the first time the photostabilization potential of plant extracts on common 

UV absorbers in sunscreens and skin-lightening preparations.  We have also shown that the 

incorporation of plant extracts may not require a combination of sunscreen absorbers to achieve 

broad-spectrum protection.  Therefore, the reduction in the number of organic absorbers incorporated 

in a formulation is likely to decrease potential side-effects.  Efforts have been made to profile the 

photoproducts in various plant extracts with a view of determining their identities as this is important 

for characterising their photo-toxicities in the future.  
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Skin cancer is the most common form of human cancer and its incidence is increasing worldwide at 

an alarming rate.  Most occurrences of skin cancer are thought to arise as a result of overexposure to 

solar ultraviolet (UV) radiation. 

 

1.1  Solar ultraviolet radiation and its effects 

For biological purposes solar UV radiation can be divided into three regions: ultraviolet C (UVC) 

from 100-280 nm, ultraviolet B (UVB) 280-315 nm, and ultraviolet A (UVA) 315-400 nm.  The UVC 

since it contains the shortest wavelengths, is the most energetic and consequently the most damaging 

radiation (Kowalski 2009; de Gruijl et al. 1993).  Fortunately it is absorbed mostly by the ozone in the 

stratosphere and does not fall on the earth’s surface.  This radiation is absorbed by the nucleic acid 

bases and hence can lead to genetic mutations and ultimately cancer. 

 

UVB radiation greater than 290 nm falls on the earth’s surface at sea level and constitutes about 5-10 

% of the terrestrial solar UV radiation.  This radiation is known to cause immune suppression, cataract 

formation, and other associated effects are inflammation, and formation of invasive and proliferating 

lesions called pterygia on the cornea.  It is absorbed by nucleic acids and has the ability to directly 

cause genotoxic damage to DNA and finally skin cancer (Girard et al. 2002).  The photochemical 

reactions of UVB on the skin, referred to as erythema, are the principal causes of UV induced tissue 

damage following solar exposures for any amount of time.  The symptoms depend on the intensity 

and or length of the exposure.  Chronic exposure to UVB causes photo-keratitis, wrinkling, photo-

aging, acute erythema or oedema of the skin, basal cell carcinoma and squamous cell carcinomas and 

their precursors (de Gruijl et al. 1993).  However, a moderate dose of UVB is necessary for 

production of vitamin D and vitamin K, that are very essential nutrients and antioxidants.  

 

UVA radiation has the longest wavelength but penetrates deeper into the skin.  At one point this 

radiation was thought to be harmless but now it is known to cause a wide variety of damaging 

biological effects.  Because it reaches the viable tissues, UVA is thought to excite chromophores, such 

as flavins, quinone, porphyrins and melanin, which act as endogenous photosensitisers.  The 

photosentization reactions lead to the formation of reactive oxygen species (ROS).  The ROS and 

singlet oxygen (1O2) may react with DNA, generating DNA single- and double-strand breaks or 

induce the photoproduct 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxoG) in human skin (Baumler et al. 

2012).  These lesions have been linked to induction of mutations and apoptosis (Cortat et al. 2013).  

These attacks on the DNA could be the cause of immune system depression and the development of 

skin cancer, including melanoma (Garland et al. 2003).  The photo-allergies and phototoxic reactions, 

as well as photo-dermatoses are mainly UVA induced (Fourtanier et al. 2012).  This indirect DNA 

damage has also been fronted as the cause of malignant melanoma.  More recent epidemiological data 

has shown that UVA radiation is involved in the genesis of cutaneous melanoma (Baumler et al. 2012; 

Autier et al. 2011).  In addition, because UVA penetrates deeper it damages collagen fibres and 

destroys vitamin A.  The current problem is that UVA forms the largest percentage (95 %) of the UV 

radiation that reaches the earth’s surface.  On most days of the year certain anatomic sites such as the 

top of the head, shoulders, arms, and faces are exposed.  There is therefore need for photoprotection. 

 

1.2  Photoprotective measures 

The effect of UV radiation on outdoor workers and sunbathers cannot be over-emphasised.  To 

combat photoaging, skin wrinkling, photo-dermatitis, and various forms of skin cancer associated 

with UV radiation, photoprotection is the only choice.  The avoidance of the sun between 10 am and 4 
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pm, the known peak UV radiation period, by keeping under shade may not be a solution given the 

different lifestyles of people and rapidly changing social cultural perspectives.  Various health 

regulatory bodies advocate the use of sunglasses, clothing, and hats but these too may not cover the 

entire skin especially with the rise in global temperatures.  Hence, the most convenient mode of 

protection is the use of sunscreens, presented in various cosmetic preparations.  Another problem is 

that among the Asian and African communities light skin is considered an element of beauty and so 

efforts are made to lighten the skin by inhibiting melanin formation, the intrinsic UV absorber.  This 

practice makes the skin susceptible to deleterious UV effects.  Consequently, these preparations 

require the incorporation of sunscreens to protect the lightened skin.   

 

1.3  Sunscreen concerns 

Sunscreens were originally designed to prevent erythema that is the reddening of the skin. They were 

not designed to prevent skin cancer.  It has now been shown that they are effective against the 

development of cutaneous malignant melanoma (CMM) (Gallagher et al. 2000).  Other current 

anticipated use of effective sunscreen is prevention of various deleterious UV effects such as 

immunosuppression, actinic keratosis, and UV-induced DNA damage, among others.  However, most 

of the commonly used sunscreens have been shown to photodegrade (particularly in the UVA region) 

to less light absorbing species whose toxicities are unknown.  Degraded sunscreens are no longer 

effective and the user remains inadvertently unprotected unless fresh sunscreen is applied.  A serious 

concern for such photodegrading sunscreens is the fate of the photoproducts; currently know report 

about their phototoxicities exist.  Such agents may induce adverse effects such as contact and 

photocontact allergic reactions.  The other emerging challenge is the revelation that some sunscreens 

penetrate the skin (Gonzalez 2010; Gonzalez et al. 2006) posing an unknown systemic toxicity 

profile.  There are reports from animal studies that speculate that some sunscreen agents may play a 

role in endocrine disruption (Schlumpf et al. 2004; Janjua et al. 2004)  Hence the amounts of organic 

absorbers, sizes and forms of physical absorbers, like titanium dioxide have drawn significant 

attention.  World health regulatory bodies have placed certain maximum values for the content of 

organic absorbers but no lower size limit of physical absorbers.  These regulators lay no check on the 

form of titanium dioxide, yet anatase titanium dioxide is a well-known aggressive photocatalyst.  This 

has the potential to penetrate to viable skin tissues if it is in the nano-range (Tiano et al. 2010).  

 

Figures 1.1 and 1.2 show the common groups of organic sunscreens with varying UV absorption 

capacities.  The derivatives of camphor, cinnamate, p-aminobenzoate and salicylate are known UVB 

absorbers whereas anthranilate and benzophenone derivatives absorb into the lower UVA1 region 

(340-400 nm).  The commonly used UVA absorber is a derivative of dibenzoylmethane.  This makes 

combinations of sunscreens inevitable in a bid to produce a broad-spectrum sunscreen product.  This 

again opens other frontiers of unanswered questions.  For example, tert-butylmethoxy 

dibenzoylmethane (BMDBM, commonly known as avobenzone) a common UVA absorber in 

combination with 2-ethylhexyl-p-methoxycinnamate (EHMC) gives a very photo-unstable product 

(Sayre et al. 2005; Dondi et al. 2006).  Both chemical absorbers are known to lose UV absorption 

efficiency through isomerisation, and photodegradation.  In addition, the triplet excited states of these 

absorbers are sufficiently close so that BMDBM can photosensitize EHMC causing it to isomerise 

and lose absorption efficiency (Sayre et al. 2005; Panday 2002).  The quest for a stable and effective 

broad-spectrum sunscreen preparation therefore has become an elusive yet thought-stimulating 

question.  Currently, various systems are under investigation, including plants extracts and other 

synthetic species, which would stabilize the approved organic absorbers. 
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1.4  Aim and objectives of this research 

Due to the foregoing challenges, the aim of this work was to study the photochemistry and 

photostabilization potential of plant extracts on sunscreen absorbers.  It is important to note that plants 

have found their niche in ethnopharmacology for ages now without reported adverse effects.  Some of 

the phytochemicals in plants are good UV absorbers and have also shown very good antioxidant 

properties.  Our study of the photostability of sunscreens in skin-lightening preparations demonstrated 

unique photostability for products containing plant extracts.  This led us to speculate a possible 

enhancement of UV absorption from the plant extracts.  Hence, the photo-activity of plant extracts 

projected itself as a worthwhile candidate for study with the aim to photostabilize commonly used 

sunscreens in the market.  Therefore the aim of this work was to study the effect of common plant 

extracts added to the three most commonly used sunscreen agents, namely EHMC, benzophenone-3 

(BP3) and BMDBM. 

 

The above aim was achieved by undertaking the following objectives: 

1. To determine the photostability of twenty two sunscreen products and twelve skin-lightening 

preparations upon exposure to solar radiation and to observe any differences between those 

that contained plants extracts and those without plant extracts. 

2. To determine the levels of organic absorbers in the sunscreens and the skin-lightening 

preparations. 

3. To quantitate, isolate, and characterise the polymorphs of titanium dioxide in the skin-

lightening preparations and determine their particle size range. 

4. To study the effect of plant extracts, namely, grape seed extract, mulberry extract, liquorice 

root extract and lavender oil on the photostability of: EHMC, BP3 and BMDBM. 

5. To determine the total phenolic content, antioxidant activity and UV absorption potential of 

phenolic acids from a local herb: Sutherlandia frutescens, commonly known as cancer bush. 

6. To quantitate the total phenolic content, antioxidant activity and identify the phenolic acids 

present in local beverages in order to inform on their suitability as dietary supplements to 

fight UV-induced systemic oxidative threats. 

 

1.5  Overview of thesis structure 

This thesis is written in paper/manuscript format and therefore consists of a series of self-contained 

chapters.  To understand possible interactions of the common UV absorbers in complex matrices 

normally encountered in finished products we reviewed the literature on the photostability, 

photoproducts and possible photostabilization mechanism of sunscreens in formulations.  This review 

is presented in Chapter Two.  In order to achieve our aim we conducted a survey on the current trends 

in sunscreen formulations.  We explored reports on the various strategies used so far and established 

missing links to the production of photostable products.  A comprehensive coverage of this subject 

can be seen in Chapter Three.  The photostability of twenty two cosmetic sunscreen preparations was 

investigated, categorising those with plant extracts and those without plant extracts.  The effect of 

plant extracts on common sunscreen absorbers was then examined.  The photostability was assessed 

by UV transmission spectrophotometry.  The organic absorbers were characterised and quantitated by 

use of HPLC-PDA, HPLC-MS, GC-FID and GC-MS while ICP-OES was used for the physical 

absorbers and reflectors.  The form of titanium dioxide present in these products was characterised by 

high resolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction (PXRD).  

The two techniques were instrumental in the determination of not only the form of titanium dioxide 

but also the particle size.  These reports can be seen as follows: the photostability of sunscreens in 

skin-lightening formulations in the South African market (Chapter Four), in-vitro study of the 
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photostabilizing potential of plant extracts on sunscreen absorbers (Chapter Five) and quantitation and 

particle size effects of titanium dioxide in skin-lightening products in the South African market 

(Chapter Six). 

 

Previous work in our laboratory had shown that a polyphenolic extract of the cancer bush could 

photostabilize BMDBM degradation.  On the basis of this observation and the unique spectral stability 

of the products containing plant extracts led us to investigate systems that could provide a lead to 

photostable sunscreen products.  These reports are sequenced as: An investigation of the 

photostabilizing effect of grape seed extract on three common sunscreen absorbers (Chapter Seven), 

The photostabilizing potential of mulberry extract on common sunscreen absorbers (Chapter Eight), 

The efficacy of liquorice root extract in enhancing the UV stability of three commonly used sun-

active agents (Chapter Nine), The effect of lavender oil on the photostability of commonly used 

sunscreen absorbers in suncare products (Chapter Ten).   

 

South Africa is endowed with plant materials and has a long history of herbal use of plant extracts in 

traditional medicine.  One such herb is Sutherlandia frutescens (cancer bush, CB).  There is 

considerable interest in this herb for various medical reasons.  We therefore investigated its 

polyphenolic content and quantitated the antioxidant activity of the phenolic acids in the cancer bush 

(Chapter Eleven).  To demonstrate the UV absorption potential of the phenolic acids in CB; an extract 

was screened by standard spectrophotometric methods.  Systemic antioxidant supplements are 

advocated as a remedy for various free radical mediated oxidative ailments.  One easy way of 

introducing polyphenolic antioxidants is by consumption of antioxidant rich beverages.  We 

investigated the antioxidant capacity of South African beverages (Chapter Twelve) to assess their 

nutritional value, a measure that could assist in determining their suitability as nutritional 

supplements.  Efforts were made to characterise the active groups present in them by comparison of 

their UV spectra with library and literature matches.  The fact that the polyphenols which are the main 

antioxidants in these beverages do have UV spectra is an indication that they are potent UV absorbers 

and hence suitable ingredients in sunscreen preparations and other cosmetic products. 

 

1.6  Conclusion 

The current work cross-examines various sunscreens present in commercial sunscreen and skin-

lightening preparations.  We report for the first time the photostabilization potential of plant extracts 

on common UV absorbers in sunscreens and skin-lightening preparations.  We have also shown that 

the incorporation of plant extracts may not require a combination of sunscreen absorbers to achieve 

broad-spectrum protection.  Therefore, the reduction in the number of organic absorbers incorporated 

in a formulation is likely to decrease potential side-effects.  Efforts have been made to profile the 

photoproducts in various plant extracts with a view to determining their identities as this is important 

for characterising their photo-toxicities in the future. 
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Abstract 

Degradation of sunscreen agents when exposed to solar irradiation leads to a loss in the initial 

absorptive capacity.  The resulting photoproducts and reactive intermediates of photo-unstable filter 

substances, if in direct contact with skin, may behave as photo-oxidants or promote phototoxic or 

photoallergic contact dermatitis.  Moreover, ultrafine sunscreen-grade TiO2, when irradiated with 

sunlight, is photocatalytically active and known to cause single- and double-strand breaks in DNA 

plasmids.  In view of the above concerns and the need to improve sunscreen photostability their 

photophysics and photochemistry require careful study.  The current work examines the photostability 

of the commonly used sunscreen absorbers and the fate of their photoproducts, if any.  The possible 

strategies for photostabilization are also discussed. 

 

Keywords: Photochemistry, photostability, sunscreens. 
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2.1  Introduction 

Absorption of ultraviolet (UV) radiation by photoactive molecules either from the sun or artificial 

sources affects coatings containing photoactive substances.  Active ingredients in cosmetic sunscreens 

are a mixture of UV filters designed to absorb, reflect or scatter the UVB rays (280–320 nm), UVA 

rays (320–400 nm) or both, and thereby reduce the amount of UV light reaching viable skin layers.  

There are two main types of sunscreen agents: organic UV absorbers and physical inorganic 

absorbers/reflectors.  A key parameter for efficacy and safety of sunscreen products is a high 

photostability.  Light-induced degradation leads to a reduction in the protection capacity during sun 

exposure and may generate potentially toxic species.  It is important to photostabilize an 

electronically excited chromophore-containing organic molecule in order to provide sufficient UV 

protection.  This can be accomplished by returning it to its ground state before undergoing a 

photochemical reaction destructive to its UV absorbing capability.   

 

Photounstable UV filters may damage human skin either by behaving as exogenous sensitizers or by 

generating reactive intermediates (free radicals) during photolysis of the filter.  The reactive 

intermediates may induce formation of reactive oxygen species (ROS) that further initiate destructive 

oxidative reactions or may bind to proteins or DNA.  Secondly, a dose-dependent decrease of UVA 

absorptive capacity increases direct UVA-induced skin damage.  Chemical photo-instability, 

accompanied by formation of photoproducts, free radicals, and ROS, may not only interact with other 

co-formulated ingredients of sunscreen products, but also skin constituents such as lipids, proteins, 

and nucleic acids (Crovara et al. 2012; Santo and Mezzena 2010).  To prevent sunburns and protect 

people from serious skin damage sunscreens must be photostable and dissipate absorbed energy 

efficiently through photophysical and photochemical pathways ruling out formation of singlet oxygen 

(1O2), hydroxyl radicals (˙OH), and any other harmful reactive intermediates (Serpone et al. 2002).  

Interaction of photodegradation products with sunscreen excipients or skin components like sebum 

may lead to formation of new molecules with unknown toxicological properties (Gaspar and Maia 

Campos 2006).  Several published reports demonstrate decomposition of several sunscreen agents 

under sunlight exposure and consequently they cannot maintain their initial absorptive capacity 

(Kockler et al. 2012; Mturi and Martincigh 2008; Gonzalez et al. 2007; Gaspar and Campos 2007).  

 

Physical blockers like titanium dioxide (TiO2), present in most skin care products are not spared.  They 

have been shown to photo-induce degradation of organic sunscreens, enzymes, and DNA (Sayre et al. 

2003).  Illumination of TiO2 suspensions with sunlight can degrade organic UV filters in a 

formulation (Egerton et al. 2007).  Studies on the acute toxicity of TiO2 nanoparticles in mammals 

indicate intra-tracheal instillation, intraperitoneal injection or oral instillation of TiO2 particles to 

animals evoke inflammatory responses and histopathological changes (Saquib et al. 2012; Shukla et 

al. 2011; Naya et al. 2012; Zhang et al. 2010).  In cultured macrophages, TiO2 nanoparticles change 

the integrity of the cell membrane and phagocytic activity (Zhang et al. 2010).  TiO2, passing through 

the skin, is likely to interact with viable tissues since it carries with it absorbed UVA and UVB 

radiation and can generate hydroxyl radicals, posing possible undesirable mutagenic effects.  Hence, 

the amount of TiO2 in a formulation needs to be controlled.  The European Cosmetic, Toiletry and 

Perfumery Association (COLIPA) has set the maximum allowable concentration as 25 % (m/m) 

(Atitaya et al. 2011).  Dunford et al. (1997) showed using photo-excited TiO2 specimens extracted 

from ten commercial sunscreens that TiO2 can inflict similar DNA damage and similar direct strand 

breaks as do hydroxyl radicals  in nuclei of whole human skin cells (Dunford et al. 1997).  This 

confirms that ultrafine sunscreen-grade-TiO2 irradiated with sunlight is photo-catalytically active and 

harmful causing single- and double-strand breaks in DNA plasmids. 
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An understanding of the photophysics and photochemistry of UV filter combinations is important to 

improve sunscreen photostability.  In this context different systems have been investigated to enhance 

the photostability of UV filters, including sunscreen combinations, inclusion complexes with 

cyclodextrins, polymeric microspheres and nanoparticles (Iannuccelli et al. 2006; Alvarez-Roman et 

al. 2001).  These approaches have been reported both by our group and other authors.  The focus of 

this current work is to examine the photostability of sunscreen molecules and the fate of their 

photoproducts.  

 

2.2  Photo-excitation and deactivation of sunscreen molecules 

When exposed to UV light, photo-absorbing molecules can be decomposed or rearranged easily, 

because the absorbed energy (excitation energy) cannot be transferred efficiently into other forms, 

such as light or heat.  The absorption of ultraviolet light by a chromophore-containing organic 

molecule causes excitation of an electron in the chromophore moiety from an initially occupied, low 

energy orbital to a higher energy, previously unoccupied orbital.  The energy of the absorbed photon 

is used to energize an electron and cause it to "jump" to a higher energy orbital.  Two excited 

electronic states arise from the electronic orbital configuration produced by UV light absorption.  In 

one state, electron spins are paired (antiparallel) and in the other unpaired (parallel).  The paired spin 

state has no resultant spin magnetic moment, possessed by unpaired spins state.  A state with paired 

spins remains a single state in the presence of a magnetic field, and is termed a singlet state (S1).  On 

the other hand, a state with unpaired spins interacts with a magnetic field and splits into three 

quantized states, and is termed a triplet state (T1).  Because of these electronically excited states, 

chromophore-containing organic molecules are prone to degradation.   

 

Several deactivation pathways of photo-excited molecules are known (see Fig 2.1).  Since most 

photostability studies are done in solution, it is important to note in solution transition moments of 

molecules are random.  The exciting such a system with linearly polarized light, will be efficient for 

molecules whose transition moments are at the time of excitation oriented similarly to the direction of 

polarization.  The presence of a solvent induces symmetry distortion allowing spin-allowed, 

symmetry–forbidden electronic transitions to take place giving rise to extinction coefficients in the 

order of 10-2 to 10-4.  An increase in the population of the triplet excited state shows an effect 

dependent on the polarity of the solvent.  Excited state molecules are chemically different species to 

their corresponding ground states and are energetically unstable and very short-lived.  If an efficient 

dissipation of excited-state energy does not occur, chemical bonds of UV-absorbing molecules may 

be broken and new bonds formed, leading to an irreversible molecular change (Lee et al. 2004).  

Photolysis of these molecules may generate free radicals causing, directly or indirectly, skin damage 

(Scalia et al. 2002) for topically applied agents on the skin. 

 

A photostable chromophore, as desired for a good sunscreen agent is one that is not destroyed during 

the process of deactivation and is repeatedly available to absorb more photons.  The fundamental goal 

in maintaining photostability is to prevent the excited state molecule from acquiring sufficient 

activation energy during its lifetime to react at a rate competitive with other modes of excited state 

deactivation.  There are several deactivation pathways: emission of a photon from the singlet excited 

state (fluorescence); emission of a photon from the triplet excited state (phosphorescence);  internal 

conversion; intersystem crossing; energy transfer or via photochemical reaction. Figure 2.1 

summarises these deactivation pathways classifying them into two main classes: the photochemical 

processes and photophysical pathways.  The Jablonksi diagram (Fig. 2.2) shows the anticipated 
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energy transfers during the photophysical excited state decay.  Ideally, all deactivation pathways 

compete with each other all the time.  Those with the highest quantum yields and fastest rates 

predominate.  

 

D + h D*

Photo-fragmentation

Photo-isomerization

Direct reaction

Vibrational relaxation

Internal conversion

Intersystem crossing

Fluorescence

Phosphorescence

Quenching

Radiative decay
Short-range rexation
Long-range relaxation

Photochemical processes

Photophysical processes

 
Figure 2.1: Summary of the deactivation pathways of an excited molecule. 

 
Figure 2.2: Jablonksi diagram for an organic molecule. Radiative processes and energy transfers are 

by in solid lines whereas non-radiative energy transfer processes are shown using dotted lines. 

Indicative timescales are shown, although they are molecule dependant. 

(http://photochemistryportal.net/home/index.php/category/principles/ (accessed on 3/7/2012)). 

 

For organic-based filters, intersystem crossing is a crucial deactivation pathway because it populates 

the triplet excited state.  This state has a longer lifetime, long enough to make the molecule acquire a 

diradical character making it particularly vulnerable to destructive chemical processes such as 

hydrogen and electron abstraction, cycloaddition, isomerisation and fragmentation.  

Photoisomerizations yield species that could be less light-absorbing than the parent species, and less 

useful as sunscreen agents.  Photofragmentation processes cause absorbing molecules to dissociate 

into reactive fragments (e.g., free radicals) or reactive intermediates.  Formation of photo-adducts 

between active agents; such as thymine and thymidine bases have been reported.   In addition, some 

active agents could increase the rate of formation of potentially carcinogenic DNA photoproducts 

(e.g. the cyclobutane-type pyrimidine dimers), on irradiation if they penetrate the cell nucleus.  Or 

they can undergo photochemical changes (Fig. 1) resulting in a loss of UVA/UVB filtering ability. 
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Energy transfer from an excited molecule (donor) to another molecule (acceptor) deactivating a 

chromophore in the process is called quenching.  The excited states of many organic compounds are 

efficiently quenched by the presence of oxygen, at rate constants several orders of magnitude faster 

than emission processes from the triplet state.  But emission from the triplet is spin-forbidden, and 

hence has rate constants in the range of 10 to 103 dm3 mol-1 s-1, whereas oxygen quenching may take 

place at rate constants of the order of 109 dm3 mol-1 s-1 (Wilkinson 1997).  Quenching of an excited 

state is a significant process because it is usually a very efficient process.  This can occur by two 

processes – electron transfer or energy transfer.  In both cases, the excited state energy of the 

luminophore (luminescent species) is deactivated due to the presence of a quencher.  Mostly 

quenchers operate on the triplet excited state of donors.  However, quenching the singlet excited state 

is important because it will reduce the population of the triplet excited state molecule; the origin of 

destructive photochemical reactions.  Under normal operating conditions such as room temperature 

(25 °C) or skin temperature (37 °C) increasing the concentration of acceptor molecules or quenchers 

increases the observed rate of energy transfer (Wilkinson 1997).  Hence, increasing the quantum yield 

of quenching is likely to decrease the quantum yields of potentially destructive processes to the donor. 

 

There are two mechanistic approaches in quenching of excited states of molecules.  The first is 

induced dipole or coulombic interaction.  Here the oscillating excited electron of a donor generates an 

electromagnetic field exciting one of the acceptor’s electrons to a higher energy orbital.  This action is 

distance dependent and is inversely proportional to the sixth power of the distance between donor and 

acceptor molecule.  The second approach is collisional or exchange mechanisms.  Here the donor and 

acceptor molecules are assumed to be close enough for their electron clouds to overlap.  This permits 

an exchange of excited electron from donor and ground state electron from acceptor.  Exchange only 

takes place if the donor is in the excited triplet state.  After exchange, the donor returns to the ground 

state, and the acceptor is elevated to an excited state.  The two mechanisms may, however, occur 

simultaneously in the singlet excited state. 

 

Both coulombic and collisional mechanistic theories are related to energy transfer rates of a donor in a 

singlet excited state to an acceptor in the ground state.  These rates are related to a quantity called the 

spectral overlap integral.  The magnitude of the spectral overlap integral in turn is related to the 

probability that the donor and acceptor are energetically compatible (Adronov and Frechet 2000).  

The overlap integral J (cm6 mol-1) is given by 

  

J = ∫fD(ν)A(ν)ν-4dν 

 

where ƒD(ν) is the fluorescence intensity of the donor, A(ν) is the molar extinction coefficient of the 

acceptor, and the overlap integral is calculated over the entire spectrum with respect to the frequency 

expressed in wavenumbers.  This overlap integral represents the overlap between the donor emission 

spectrum and the acceptor absorption spectrum.  It is closely correlated to the probability of energy 

transfer from the donor to the acceptor.  Hence, the extent of spectral overlap between the 

fluorescence emission spectrum of the donor and the absorption of the acceptor determines the rate of 

energy transfer.   

 

A plot of the fluorescent intensity of a compound as a function of the concentration of a potential 

acceptor (quencher), (Stern-Volmer analysis) can provide information for formulating a photostable 

sun care product.  Given the fast rate of transitions in an singlet excited state (in the order of femto 
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seconds), observation that a process competes with fluorescence its good evidence that the process 

can effectively deactivate the photoactive molecule.  Downstream processes such as intersystem 

crossing to the triplet excited state can then be avoided.   

 

2.3  Classes of absorbers 

Absorption of UV light accounts for about 85 % to 95 % of the photoprotective capacity of UV filters 

in cosmetic preparations.  To date no single UV absorber shows significant absorption across both the 

UVB and UVA regions of the UV spectrum.  Consequently the UV filters are classified depending on 

the region of the UV spectrum they absorb the most.  This classification is based on the wavelength of 

maximum absorption it demonstrates in that region.  Figure 2.3 shows common groups of organic 

sunscreens from which various UV absorbers are derived.  The derivatives of camphor, cinnamate, p-

aminobenzoate and salicylates are known UVB absorbers whereas anthranilates and benzophenone 

derivatives absorb into the lower UVA1 region (about 350 nm).  The commonly used UVA absorber 

is a derivative of dibenzoylmethane.  The agent, tert-butylmethoxy dibenzoylmethane (BMDBM), is 

known to degrade on exposure to UV light.  This has necessitated the search for broad spectrum UV 

filters that will keep their absorptive efficacy without loss or breakdown to less absorbing chemical 

species.   

 

Among the new promising UV filters are 2,2′-methanediylbis[6-(2H-benzotriazol-2-yl)-4-(2,4,4-

trimethylpentan-2-yl)phenol] (Tinosorb M) and 2,2′-[6-(4-methoxyphenyl)- 1,3,5-triazine-2,4-diyl] 

bis(5-[(2-ethylhexyl)oxy]phenol) (Tinosorb S).  Their absorption efficacy is based on the stability of 

the aromatic ring systems and the auxochrome modification of the electron -cloud of the phenyl 

rings.  It is expected that a symmetric molecule having aromatic rings conjugated with carbonyl 

groups and electron-releasing groups substituted on the aromatic rings may afford that molecule 

photostability.  In such a supramolecular assembly the energy dissipative processes via electron 

resonance delocalization upon absorption of a photon make it possible to deactivate sensitizers 

through energy transfer.  As explained above the triplet-triplet energy transfers may to lead 

photoisomerisation deactivating an acceptor.  This is likely to increase the photostability of a 

sunscreen molecule.  Without intending to be limited to any particular mechanism by which such 

compounds are able to quench (accept the excited state energy) an excited photoactive compound 

(Beasley and Meyer 2010) 

 

It is expected that the variation of the auxochromes around the phenyl rings may lead to 

photostabilization and subsequently present a different UV spectrum.  However, these agents are 

relatively new and so not yet accepted in some other regions, for example in America (Oesterwalder 

and Herzog 2009).  Hence lack of a single broad spectrum UV filter makes combinations of 

sunscreens inevitable in a bid to produce broad-spectrum sunscreen product.  Figure 2.4 shows some 

of the commonly used sun active molecules and Table 2.1 documents the allowed levels of sunscreen 

absorbers (% m/m) in a single commercial product. 
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Table 2.1: The list and maximal quantity (% m/m) of some of the sunscreen-active agents allowed in sunscreen products under the United States’ Food and 

Drug Administration (US FDA), European COLIPA, Australian and Japanese Health authorities (Serpone et al. 2002; Oesterwalder and Herzog 2009; Krause 

et al. 2012). 

.UV filter Common name(s) 

Absorption 

maximal 

λ/nm 

FDA EU AUS Japan 

4-aminobenzoic acid p-aminobenzoic acid 283 15 15 15 
 

3,3,5-trimethylcyclohexyl-2-

hydroxybenzoate 
Homosalate 306 15 10 15 10 

2-ethylhexyl-2-hydroxybenzoate Octyl salicylate, Octylsalate 307 5 5 5 10 

4-hydroxy-2-methoxy-5-(oxo-

phenylmethyl)benzenesulfonic acid 
Sulisobenzone 286, 324 10 5 10 10 

1-(4-methoxyphenyl)-3-(4-tert-

butylphenyl)propane-1,3-dione 

Avobenzone, tert- Butylmethoxy 

dibenzoylmethane 
357 3 5 3 10 

Methyl-2-aminobenzoate Menthyl anthranilate 336 5 - 5 - 

(2-hydoxy-4-methoxyphenyl)-

phenylmethanone 

Benzophenone-3, oxybenzone, 2-

hydroxy-4-methoxybenzophenone 
288,329 6 10 10 5 

2-ethoxyethyl-3-(4-

methoxyphenyl)propanoate 

Cinoxate, 2-ethoxyethyl-4-

methoxycinnamate 
290 3 

   

2-ethylhexyl-2-cyano-3,3-diphenyl-2-

propenoate 
Octocrylene 303 10 10 10 10 

2-ethylhexyl-4-

(dimethylamino)benzoate 
Padimate-O 311 8 8 8 10 

2-Ethylhexyl-4-methoxy cinnamate Octyl methoxycinnamate, octinoxate 311 7.5 10 10 20 

(2-hydroxy-4-methoxyphenyl)-(2-

hydroxyphenyl)methanone 
Dioxybenzone, benzophenone-8 325 3 

   

Tris-(2-hydroxyethylammonium-2-

hydroxybenzoate 
Trolamine salicylate 298 12 

   

2-phenyl-3H-benzimidazole-5-sulfonic 

acid 
Phenylbenzimidazole sulfonic acid 285, 333 4 8 3 4 
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2,2′-methanediylbis[6-(2H-

benzotriazol-2-yl)-4-(2,4,4-

trimethylpentan-2-yl)phenol] 

Tinosorb M, Bisoctrizole 305, 360 TEA 10 10 10 

2,2′-[6-(4-methoxyphenyl)- 1,3,5-

triazine-2,4-diyl] bis(5-[(2-

ethylhexyl)oxy]phenol) 

Tinosorb S, Bemotrizinol 310, 343 TEA 10 3 10 

Titanium(IV) oxide Titanium dioxide 295 25 25 25 no limit 

Zinc(II) oxide Zinc Oxide 390 25 UR 20 no limit 

TEA: Time and Extent Application (U.S. Food and Drug Administration application), UR: Under Review, COLIPA: European Cosmetics, Toiletry, and 

Perfumery Trade Association, EU: Europe, AUS: Australia. 



 
 

2.3.1  Photostability and photoproducts of 4-tert-butyl-4′-methoxydibenzoylmethane  

The most commonly used UVA absorber in broad-spectrum sunscreens is 4-tert-butyl-4′-

methoxydibenzoylmethane (BMDBM).  BMDBM exhibits high absorptivity in UVA region (̴ λmax = 

358 nm), but undergoes marked decomposition (Fig. 2.5) in sunlight leading to a decrease of the 

expected UV-protective level following sunscreen application.   

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Characteristic degradation of BMDBM in methanol showing the decay of the enolate 

avobenzone at 360 nm and formation of the keto form at 260 nm upon increasing exposure to solar 

simulated radiation. 

 

BMDBM, a derivative of dibenzoylmethane, has been widely reported to lose much of its UVA 

protective capability after irradiation through tautomerization (keto/enol tautomers) (see Fig. 2.6), 

fragmentation and photoproduct formation (Fig. 2.7).  Many studies point at the polarity of the 

solvents as a major determinant for its stability.  Dominating solute-solvent interactions arise from 

dipole-dipole interaction, lowering potential energies of all energy levels involved in absorption and 

excited state energy transfer processes.  It is known that changes in solute-solvent interaction lead to 

solvatochromic shifts in absorption and fluorescence of the same fluorophore.  The position of the 

absorption maximum wavelength and the strength of the absorption band depend sensitively on the 

electronic structure of a molecule.   

 

In a solvent-dependant study BMDBM was shown to photo-degrade in non-polar solvents but showed 

photostability in polar solvents and the length of irradiation was shown to influence decomposition 

rates (Beasley and Meyer 2010; Schwack and Rudolph 1995).  Roscher et al. (1994) showed that 

irradiation of BDBDM in cyclohexane yield tert-butylbenzene, p-tert-butylbenzoic acid and p-

methoxybenzoic acid.  Other products obtained were as result of the combination of BDBDM with the 

solvent giving cyclohexyl esters of p-methoxybenzoic acid, p-tert-butylbenzoic acid and methanoic 

acid.  The solvent itself on photodegradation yielded: cyclohexanol, cyclohexanone and dicyclohexyl 

ether.  In a more recent study by Mturi and Martincigh (2008), showed that the loss in photo-

absorption efficacy of BDBDM dependent on the proticity of the solvent.  They observed photoloss 

due to keto - enol tautomerisation of BMDBM in dimethylsulphoxide especially in the presence of 

oxygen and essentially photostable in methanol (Fig. 2.6).  This agent also showed photodegradation 

to photoproducts absorbing mainly in UVC region depending on solvent polarity and independent of 
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oxygen.  It is speculated that dibenzoylmethanes exists mainly in the chelated enol form in both non-

polar and polar solvents, although the enol content is higher in polar solvents because of strong 

intramolecular hydrogen bonds (Tobita et al. 1995).  
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Figure 2.6: Keto-enol tautomerism of BDBDM (Mturi and Martincigh 2008). 

 

The ketonization process is determined by a direct hydrogen transfer from the excited enol molecule, 

and after formation of an excited complex between one excited and one non-excited enol molecule.  

The low quantum yield of fluorescence of the enol-form molecule is explained by fast isomerization 

from the first excited singlet state (Yankov et al. 1988).  The absorption of UVA light produces an 

excited enol state (S1) whose main deactivation pathway involves an intramolecular hydrogen bond 

cleavage and a subsequent formation of a non-chelated enol (Z-isomer) (Fig. 2.6).  This enol form 

shows a strong absorption band around 340–360 nm, while the keto form absorbs in the range 260–

280 nm (Paris et al. 2009; Aspée et al. 2007).  The photoreaction appears to proceed through an n ~ π* 

excited triplet state as indicated by the structure of the proposed photoproducts (Srei et al. 2008).  

However, the chelated enol form of dibenzoylmethanes shows strong characteristic absorption bands 

in the UVA region (315–380 nm) (Fig. 2.3) due to the π – π* transition of the chelated quasi-aromatic 

π-electron system (Yamaji et al. 2010).  Though, phosphorescence intensity of diketone form and two 

chelated enol forms of β‐diketones in solution depends largely on the solvent used (Yamaji et al. 

2010; Paris et al. 2009).   

 

The observed phosphorescence of the diketone form in polar solvents is similar to that of aromatic 

monoketones arising from a triplet (π – π*) state.  It can be argued that phosphorescence of one of the 
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two chelated enol forms in a nonpolar solvent is emitted from a triplet (π – π*) state as suggested by 

the external and internal heavy atom effects (Paris et al. 2009).  Consequently, irreversible 

photodegradation of BMBDM has been observed and related in part to a Norrish Type I process 

occurring from the diketone triplet state.  These processes involve formation of transient enol isomers 

(rotamers).  The chelated enol form of BMDBM has a wavelength of maximum absorption in the 

UVA region (360 nm) due to the  – * transition of the chelated pseudo-aromatic -electron system.  

However, BMDBM does not fluoresce in solution, indicating the presence of efficient non-radiative 

processes from the excited singlet states.  This process is perceived to involve the formation of 

transient enol isomers.  The rotamers formed, undergo structural rearrangement back to the chelated 

enol form in the dark (Yamaji et al. 2010; Paris et al. 2009).  Lamola and Sharp (1966) suggested that 

a very fast radiationless decay takes place in molecules possessing an intramolecular hydrogen bond 

between the carbonyl oxygen and hydroxyl hydrogen.  This may explain the shortness of the 

phosphorescence lifetime showing the lowest triplet state is probably mixed with some higher energy 

triplet state of n - π* type (Yamaji et al. 2010).   

 

Since the diketone form of BMDBM has more luminescence than the chelated enol form of the β-

diketo form, it is likely to generate singlet oxygen.  The reaction of singlet oxygen with the enol form 

may lead to formation of oxygenation products.  Photo-reactivity of singlet oxygen with the enol form 

leads to different types of peroxides and their cleavage products (Beasley and Meyer 2010; Schwack 

and Rudolph 1995).  BMBDM has been shown to generate carbon-centred free radicals when 

illuminated with simulated sunlight causing in-vitro strand breaks in DNA and oxidative 

modifications in bovine serum albumin (Karlsson et al. 2009; Armeni et al. 2004).  The energy of the 

UV light causing excitation of BMBDM is of same order of magnitude as its bond dissociation 

energies, thus breaking it into two primary reactive radical fragments.  The photoproducts are 

proposed to originate from two radical precursors, either from a benzoyl radical or from a phenacyl 

radical (Fig. 2.7) (Mturi and Martincigh 2008; Schwack and Rudolph 1995). 
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Figure 2.7: Proposed primary photochemical degradation of BMBDM (Schwack and Rudolph 1995; 

Mturi and Martincigh 2008). 

 

Several reports show that photodegradation of BMBDM strongly depends on the presence of the 1,3-

diketo forms and the enol-keto tautomerism (Figure 2.6) is seen as the primary mechanism of 

photolability (Chatelain and Gabard 2001)  Any structural adjustment that favours stabilization of the 

enol form is likely to enhance the photostability of BMBDM.  In a polar solvent prior to irradiation 
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BMBDM exists almost exclusively as the enol tautomer.  A crystal structure investigation indicates 

this molecule is planar and the spatial distance between neighbouring oxygens is approximately 246 

pm revealing a very strong intramolecular hydrogen bond (Bjarke et al. 2006).  This has been 

observed and qualitatively assigned by Bjarke et al. (2006) as an infrared (IR) absorption in the region 

between 1700-1400 cm-1.  Hence, solvent solutions whose polarity will favour strengthening of the 

hydrogen bond should be considered as first line stabilizers of BMBDM. 

 

2.3.2  Cinnamates 

Cinnamates are esters of the cinnamic acid moiety found in cinnamon oil and balsam plants.  They are 

potent UVB absorbers and hence used in sunscreen agents and cosmetics with sun protection efficacy.  

In particular, 2-ethylhexyl methoxycinnamate (EHMC), is the most commonly used.  Apart from 

reported sensitization reactions of EHMC, it is absorbed into the skin and may promote generation of 

potentially harmful free radicals (Xu et al. 2001).  
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(E)-2-ethylhexyl 3-(4-methoxyphenyl)acrylate

N

O

O

2-ethylhexyl 2-cyano-3,3-diphenylacrylate  
Figure 2.8: Cinnamate sunscreens commonly used in cosmetic preparations. 

When exposed to sunlight, (E)-EHMC isomerizes to (Z)-EHMC with subsequent loss in absorption 

(Huong et al. 2007; Lyambila 2003) (Fig. 2.9).  Studies show that the position of the equilibrium of 

photoisomerisation reaction depends upon the concentration of EHMC and the polarity of the solvent 

used (Pattanaargson et al. 2004; Lyambila 2003).  The Z-isomer has a lower extinction coefficient (ε) 

and hence this reaction is accompanied by photoloss.  Photodimers have been identified, and indicate 

that this sunscreen absorber can undergo [2+2] cycloaddition reactions with itself (Broadbent et al. 

1996), that also reduce the efficacy of UV absorption of this agent (Fig. 2.10).  There are reports that 

cinnamates seem to react easily with unsaturated molecules in their vicinity, such as squalene, 

unsaturated fatty acids or DNA bases on human skin (Hauri et al. 2004)  An in vitro study on the 

possible photocycloaddition between EHMC and constituents of DNA by Ingouville (1995) returned 

no photo-adducts this led to the conclusion that photoreactions with DNA are likely to be very low.  

However, a subsequent study by Kowlaser (1998) detected formation of DNA photo-adducts with 

longer time of irradiation of EHMC with DNA nucleotides.  This result points to the possibility of a 

photo-induced reaction between EHMC and DNA in vivo.  Such a possibility may produce 

undesirable side-effects to unsuspecting sunscreen user.   

 

The combination of the UVB filter, EHMC, and the UVA filter, BMBDM are commonly used in 

sunscreen products.  But this combination is particularly photo-unstable (Sayre et al. 2005).  A study 
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by Panday (2002) showed that BMBDM photosensitises the isomerisation of EHMC (Panday 2002).  

In a bid to photostabilize EHMC the influence of nanoparticle-based systems on the light-induced 

decomposition of the (E)-EHMC has been attempted with results indicating that loading (E)-EHMC 

nanoparticles may improve its photostability (Perugini et al. 2002).   

 

Another cinnamate, octocrylene, is a known sensitizer upon UV absorption and has been reported to 

be a prime photoallergen (Avenel-Audran et al. 2010) of chemical absorbing sunscreens especially to 

people with sensitivities to cinnamates (Hanson et al. 2006).  The associated sensitivity produces 

allergic contact dermatitis and photo-contact dermatitis. 

 

 

 

 

 

 

 

 

  

 

 

Fig. 2.9: Characteristic isomerization decay of EHMC. 
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Figure 2.10: Photoinduced degradation of cinnamates sunscreens. 

 

2.3.3  Tinosorb S  

The rotation around the C=C double of the cinnamate moiety requires the molecule to acquire a 

diradical nature.  The carbons change from sp2 hybridization pseudo sp3; this allows 
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photoisomerisation to occur.  This requires sufficient energy synonymous with the excited triplet 

state.  Hence, it is envisaged that addition of organic molecules that can quickly accept energy from 

such excited molecules will deprive them of the energy to undergo change in hybridization that allows 

photoisomerization.  Such molecules are called photostabilisers.  An example of a photostabilizing 

molecule is Tinosorb S.  Tinosorb S (Fig. 2.11) is a photostable UVB and UVA sunscreen active with 

maximum absorption at 311 and 343 nm (Hexsel et al. 2008; Krause et al. 2012).  It has a symmetric 

molecular symmetry and the presence of three aromatic rings conjugated with ether groups and 

electron-releasing groups.  The hydroxyl groups substituted on the aromatic rings gives Tinosorb S an 

optimal structure for energy dissipative processes.  This allows electron resonance delocalization 

upon absorption of a photon, and hence it is able to deactivate sensitizers through triplet–triplet 

energy transfer.  Tinosorb S is a good energy acceptor that reversibly photo-isomerizes via hydrogen 

transfers to the triazine ring thus deactivating a photoexcited sensitizer.  To return to its ground state it 

efficiently dissipates the accepted energy through intramolecular hydrogen transfer in the excited state 

re-forming the phenol followed by internal conversion and phosphorescence. 

 

N

N

N

O

O

O

HO
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Figure 2.11: Molecular structure of Tinosorb S. 

 

2.3.4  Tinosorb M 

The photo-absorbing molecule 2,2′-methanediylbis[6-(2H-benzotriazol-2-yl)-4-(2,4,4-

trimethylpentan-2-yl)phenol] marketed by Ciba Speciality Chemicals as Tinosorb M and commonly 

referred to as bisoctrizole is a benzotriazole-based organic compound.  It has two absorption 

maximum wavelengths: 305 nm and 360 nm, making it a broad-spectrum UV absorber, absorbing 

UVB as well as UVA rays.   It shows poor solubility in both oil-based and aqueous based sunscreen 

preparations hence presenting itself as a hybrid UV absorber, and an organic UV reflector due to the 

microfine organic particles (< 200 nm) (Herzog et al. 2002). It shows very little photodegradation and 

has a stabilizing effect on other UV absorbers especially ethylhexyl methoxycinnamate.  This is a 

highly symmetric molecule (Fig. 2.12) with nitrogen and oxygen atoms in close proximity.  This close 

proximity may allow an intramolecular hydrogen transfer which is a known mechanism for excited 

state deactivation in organic molecules.  This could in part explain the photostability of this agent.  

Studies on its percutaneous penetration indicate that in sunscreen formulation it has minimal skin 

penetration (Mavon et al. 2007).  There are no in vitro estrogenic effects reports  on this agent 

currently (Ashby et al. 2001).   
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Fig. 2.12: The agent 2,2′-methanediylbis[6-(2H-benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-

yl)phenol]. 

 

2.3.5  Salicylates 

The commonly used salicylate UV absorbers are homosalate and octyl salicylate.  Both are esters of 

salicyclic acid with 3,3,5-trimetheylcyclohexanol and 2-ethylhexanol respectively (Fig. 2.13).  They 

have been shown to be relatively photostable, absorbing UV light with wavelengths between 295 nm 

and 315 nm. 
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Figure 2.13: Commonly used salicylate screens in cosmetic preparations. 

 

The cyclohexanol and 2-ethylhexanol portions of homosalate and ethylhexylsalicylate respectively are 

highly non-polar and this makes them hydrophobic reducing their solubility in water.  Due to this 

hydrophobicity they are claimed to have limited skin penetration favouring accumulation in the 

lipophilic stratum corneum.  It is this lipophilic barrier that prevents permeation of hydrophobic 

chemicals into the viable epidermis immediately below the stratum corneum (Chatelain et al. 2003).  

The epidermis is hydrophilic in nature and can act as a rate-limiting step in absorption of highly 

lipophilic topical applications.  However, the absolute amount of a compound permeating the skin has 

been shown to depend on the carrier vehicle (Kim et al. 2014; Chatelain et al. 2003).  Walters et al. 

(1997) showed that ethylhexylsalicylate has a high affinity for the lipid regions of the stratum 

corneum and its deeper permeation is limited by the hydrophilic nature of the viable epidermis.  Other 

in vitro studies have reported anti-androgenic activity of ethylhexyl methoxycinnamate and 

homosalate by antagonizing dihydrotestosterone-induced androgen receptor activation in the human 

breast carcinoma cell line MDA-kb2 (Hexsel et al. 2008; Krause et al. 2012).  Despite the foregoing, 

topically applied salicyclic acid ester screens can be broken down to salicylic acid by nonspecific 

esterases in isolated non-viable skin (Boehnlein et al. 1994).  Also salicylate esters topically applied 

on humans have been found in human excretes, but excretion rates depend on lipophilicity (Simonsen 

et al. 2002).  Consequently, any permeation of these sunscreen agents should be avoided or their 

concentration kept low. 
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2.3.6  Camphor derivatives 

Camphor derivatives (Fig. 2.14) are moderately effective UVB absorbers with maximum peak 

absorption at 300 nm (Hexsel et al. 2008).  The photostable benzylidene camphor derivatives are 

effective UV filters for cosmetic applications whereas benzylidene malonate derivatives are UV 

absorbers used in the photoprotection of automotive coatings.  Though these agents have very low 

phototransformation quantum yields, photoproducts have been reported upon sunlight exposure.  It 

has been demonstrated that their photochemical behaviour is independent of the physicochemical 

environment (Beck et al. 1981)  They have excited state lifetimes in the order of about 10-12s, too 

short for them to react with neighbouring molecules (Beck et al. 1981).  Studies indicate these 

compounds undergo very slight photodegradation and photoisomerization observed is speculated to 

be totally reversible (Beck et al. 1981).  However, it has been shown that upon UV exposure, 

benzylidene malonate derivatives dimerize in substituted cyclobutane derivatives (Beck et al. 1981). 

The E-Z photoisomerization (Fig. 15) of most benzylidene camphor derivatives is independent of 

concentration and oxygen.  This process is the single most important deactivation process occurring in 

these molecules (Douarre et al. 1995). 

H2N O
O

4-aminobenzylidene camphor
4-methylbenzylidene camphor

3-benzylidene camphor

O

 
Figure 2.14: Commonly used camphor derivatives in sunscreen preparations. 

 

In work by Douarre et al. (1995) photoproduct formation by 4-aminobenzylidene camphor required 

the presence of oxygen and an aqueous or acidic environment enhanced rapid back conversion of the 

photoproducts into the initial compounds.  Beck et al. (1981) argued that a mixture of E and Z isomers 

acts as a UV filter due to the very short lifetime of their excited states, making these compounds 

excellent sunscreen agents.  However, skin permeation of these particular agents into viable body 

tissues have been associated with endocrine disruptive effects in several animal studies (Krause et al. 

2012).  
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Figure 2.15: UV light induced isomerisation of camphor derivatives. 
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2.3.7  Benzophenones 

Benzophenones (BPs) (Fig. 2.16) are known to be very stable on UV exposure on the basis of the 

molecular symmetry of the benzophenone (BP) moiety.  However, it is that known under UV 

irradiation the carbonyl (C=O) group of BP participate in a rapid hydrogen abstraction reaction 

transforming it into an extremely powerful radical generator.  Several reports indicate that BP is a 

potent photosensitizer of thymine dimers in deoxyribose nucleic acid (DNA) (Cuquerella et al. 2012).  

Recent reports indicate that some non-steroidal anti-inflammatory drugs (NSAIDs) having the BP 

moiety form thymine dimers when irradiated with DNA in vitro (Placzek et al. 2013).  The medicinal 

compounds have also been shown to photosensitize double stranded supercoiled DNA making them to 

be prone to single-strand break formation (Sewlall 2003; Cuquerella et al. 2012).  In addition, 

sunscreens of BP structure have been shown to yield endoperoxides depending on the polarity of the 

solvent.  (2-hydroxy-4-methoxyphenyl)-phenylmethanone (BP3) is a common UV-filter in cosmetic 

sunscreen products.  Its maximum permissible concentration in formulations is 6%.  Transdermal 

absorption of BP3 in humans may reach 2%, as it is able to permeate the skin and reach the 

bloodstream after topical application.  It has been found in urine after topical application (Hayden et 

al. 1997).  A large amount of BP3 is absorbed, and accumulates in the body.  It has also been shown 

to induce contact allergenic and photo-allergenic effects due to sensitization reactions (Gonzalez et al. 

2006; Schram et al. 2007; Berne and Ros 1998).  Male reproductive toxicity has been inconsistently 

reported in chronic high dose animal studies (Gonzalez et al. 2006; Coronado et al. 2008; Kunz et al. 

2006).  Studies also indicate the BP3 has weak estrogenic activity or weak anti-androgenic activity 

(Gonzalez et al. 2006; Kunz et al. 2006). 

 

Recent work by Molina-Molina et al. (2008) in profiling of benzophenone derivatives by using fish 

and human estrogen receptor-specific in vitro bioassays considered 2,4-dihydroxybenzophenone 

(BP1), 2,2',4,4'-tetrahydroxybenzophenone (BP2), 2-hydroxyl-4-methoxybenzophenone (BP3), and; 

2,4,4'-trihydroxybenzophenone (THB), all UV-absorbing chemicals, widely used in pharmaceuticals 

and sunscreens.  All four benzophenone derivatives showed anti-androgenic activity in the order THB 

> BP2 > BP1 > BP3.  Though, this study requires further investigation of their role as endocrine 

disrupters in humans and wildlife, these findings seem to corroborate studies by Heneweer et al. 

(2005), which indicated synergistic activation of oestrogen receptors.  This led the authors to conclude 

that daily exposure to these sunscreen agents may have estrogenic effects in humans.  Recent work by 

Kunisue et al. (2012) showed BP1 possesses an estrogenic activity higher than BP3.  The authors 

speculate that exposure to elevated BP1 levels may be associated with endometriosis. 

 

Schallreuter et al. (1996) showed that BP3 is rapidly photo-oxidized, yielding BP3 semiquinone, a 

potent electrophile.  It may react with thiol groups on important anti-oxidant enzymes and substrates, 

such as thioredoxin reductase and reduced glutathione, respectively.  Its rapid oxidation followed by 

inactivation of important antioxidant systems indicates this substance may be harmful to homeostasis 

of the epidermis.  Cowley (1997) demonstrated BP3 can be photo-oxidized to its semiquinone by 

solar radiation in vitro and in vivo.  The reactive intermediate then binds to thiolate groups in the 

epidermis and inactivates important anti-oxidant enzyme, thioredoxin reductase.  With all these 

claims around there is need to minimize if not eliminate skin permeation of these UV filters.  

However, including BP3 in a dendritic structure may help in reducing its percutaneous absorption and 

improve excited state energy transfer to the core via triplet energy transfer in the dendritic structure 

(Chen et al. 2006).  The presence of gold at the core of this structure may provide an effective triplet-

triplet excited state energy quenching mechanism as well as gold itself acting as a physical blocker.  

The modified chemistry around this chromophore is likely to minimize detrimental effects. 
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Figure 2.15: Benzophenone and some of its commonly used sunscreen derivatives. 

 

2.3.8  p-Aminobenzoate derivatives 

p-Aminobeinzoic acid (PABA) was idely used in sunscreens but it photosensitizes thymine dimers 

(Aliwell et al. 1994).  These are precursors to skin cancer.  A study by Sutherland and Griffin (1984) 

showed that it penetrate into cells and has been associated with photoallergicity and therefore it is no 

longer in used.  However, the esters PABA are used as sunscreens.  p-Aminobenzoate derivatives 

sunscreen agents are esters of 4-aminobenzoic acid (PABA).  The potassium salt of (PABA) is used in 

the treatment of fibrotic skin disorders, such as Peyronie's disease and also occasionally prescribed as 

a management in a pill form for patients of irritable bowel syndrome to treat its associated 

gastrointestinal symptoms.  However, PABA absorbs strongly in the UVB region of the spectrum and 

is reported to reduce deleterious effects of UV in mice (Ley and Fourtanier 1997).  PABA has been 

shown to protect against skin tumors in rodents (Snyder and May 1975).  The sunscreen efficacy of 

this UVB absorber can be deduced from the non-bonding electrons pair conjugated to the phenyl ring 

-cloud.  This allows for electron delocalization between the amine group and the carbonyl (C=O) 

group (Fig. 2.17).  The ease of electron delocalization in a way photostabilizes the molecule.  

However, animal and in vitro studies have suggested that PABA might increase the risk of cellular 

UV damage.  Secondly, the presence of the reactive amino group and carboxylic acid moieties makes 

easily form crystallizable products and hence may lead to clothing discolouration when used in 



28 
 

cosmetic preparations.  The possible clothing discolouration problem, very oil solubility, and reported 

allergic responses associated with topical use of this agent have made it not suitable for skin 

application.   

 

The water-insoluble PABA derivatives such as 2-ethylhexyl 4-(dimethylamino)benzoate (padimate-

O) are currently used in some products.  Padimate –O is an ester formed by the condensation of 2-

ethylhexanol with dimethylaminobenzoic acid. Padimate O absorbs sufficiently in the UVB region 

and should thus prevent direct DNA damage.  However, the excited padimate-O molecule has been 

shown to react with DNA leading to indirect DNA damage.  In vitro studies have demonstrated the 

sunlight-induced mutagenicity of padimate-O (Knowland et al. 1993).  The excited state padimate-O 

has been reported to photosensitize DNA in various in vivo studies thus considered photocarcinogenic 

(Gulston and Knowland 1999).  There are contradictory reports from a number of in vivo studies 

conducted in hairless mice following topical application of padimate-O which no carcinogenic effects.  

These studies elude to the fact and that padimate-O reduces the frequency and the rate ofappearance 

of UV-induced skin tumours (Kligman et al. 1980; Bissett et al. 1991; Bissett and McBride 1996; 

Kerr 1998).  However, padimate-O is known to penetrate human skin but its effects on human cells 

are not clear (Gulston and Knowland 1999).  
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Figure 2.17: Resonance stabilization of p-aminobenzoic acid derivatives 

 

2.4  Sunscreen mixtures: a photostabilization strategy 

As a common practice at least two organic filters are used in sunscreen formulations with the 

intention to optimize the sunscreening effect in the UVB/UVA region.  In a number of cases physical 

blockers are incorporated as well.  These is because no single active agent, used at levels currently 

allowed, provides a high enough sun protection factor (SPF) or broad-spectrum absorption.  Two 

extensively used representatives of such classes of chemical UV filters are cinnamates (UVB) and 

dibenzoylmethanes (UVA) (Dondi et al. 2006).  Mixing absorbers aid formulators in producing high 

protection products without exceeding regulatory concentration maxima set by various countries.  It 

also helps in overcoming limited solubility problems of absorbers and incompatibility with other 

ingredients.   

 

It is desired that BMBDM remains intact chemically even over prolonged exposures to UVA 

irradiation.  A number of articles have reported that BMBDM photodegradation can be retarded by 

the presence of other filters.  Conversely, it can be accelerated if a photoreaction occurs between the 

two components.  Formulation strategies to optimize BMBDM's photostability include: removal of 

incompatible ingredients, inclusion of other sunscreen actives with the ability to enhance BMBDM's 

photostability; and using non-sunscreen ingredients that have the capacity to photostabilize BMBDM 

through energy transfer mechanisms.    
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It has been shown that alkoxy crylenes, particularly methoxy crylenes, can return excited BMDBM 

from both an electronically excited S1 and excited T1 back to their ground state, thereby 

photostabilizing it.  This formulation strategy was attempted by Deflandre et al. (1997) of which their 

cosmetic sunscreen composition contained at least 1% by weight of an α-cyano-β,β-diphenylacrylate, 

that photostabilizes BMBDM in a fatty phase.  The authors showed that glycerol stearates, or 

isopropyl myristate in a mole ratio of α-cyano-β,β-diphenylacrylate to BMBDM of at least 0.8 gave a 

better stabilizing effect.   

 

Several other methodologies have been developed in order to reduce the instability of BMBDM when 

exposed to sunlight, such as inclusion complexation with cyclodextrins, and incorporation in 

polymeric or lipid microparticles (Albertini et al. 2009).  For instance Albertini et al. (2009) showed 

that entrapment of BMBDM in lipid microparticles, at high loading levels (>40%), represents an 

effective strategy to reduce the photolability of this UVA filter, but the limited (4–20 %, m/m) loading 

capacity is a disadvantage for the applicability to finished sunscreening preparations.  Scalia et al. 

(2002) showed that their results indicated free radicals generated by BMBDM when exposed to 

simulated sunlight were effectively scavenged by inclusion complexation of BMBDM within 

hydroxypropyl-β-cyclodextrin.  This indicates complexation of BMBDM with a cyclodextrin is 

another option to be considered.   

 

The combination of EHMC and BMBDM in sunscreen formulations is not recommended in the US 

because of photoinstability and possible unfavourable synergistic interactions between these agents 

(Serpone et al. 2002).  Photoadducts are formed between EHMC and photo-generated fragments of 

BMBDM (Serpone et al. 2002; Chatelain and Gabard 2001).  Upon absorption of UV radiation, 

EHMC reacts with BMBDM photochemically in an irreversible manner, destroying the UV 

absorption properties of both molecules.  The incompatibility of EHMC is believed to stem from 

presence of an exocyclic double bond, undergoing an allowed photochemical [2 + 2] cycloaddition 

reaction with BMDBM (Fig. 16) to form primary photoproducts that subsequently collapse to form 

arrange of degradation products (Beasley and Meyer 2010). 
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Figure 2.17: Possible photo-induced reaction mechanism between avobenzone and EHMC to produce 

a [2+2] cycloaddition product. 

 

2.5 Conclusions 

In conclusion the photophysics and the photochemical characteristics of sunscreens and their 

perceived photostabilizers need to be explored on a sun-active agent basis.  The photochemical 
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response of a sunscreen agent may be influenced by the matrix in which is formulated and hence its 

absorption characteristics may be greatly affected. 
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Abstract 

There are different methods of combating the deleterious effects of ultraviolet radiation (UV): 

sunscreens formulated with filters as well as clothing.  It is known that exposure of keratinocytes to 

15 minutes of UVA radiation leads to substantial cell mortality and a decrease in protein content.  

Thus, the consequences of exposure to UV radiation and its correlation with cancer development have 

triggered a public education campaign promoting the use of sunscreens.  A broad variety of different 

creams, dispersions, emulsions, gels, ointments, lotions, milks, sprays, tonics and hydrogels are 

available in the market that use various UV-filter systems.  Several inorganic and organic compounds 

have been explored and are employed for protection from harmful UV radiation.  A lot of research is 

ongoing with a view of investigating ways of reducing the skin penetration of the sunscreen active 

ingredients, oxidative stress management and evaluation of different types of vehicles for topical 

dermal delivery.  This review aims at exploring the current formulations as well as to point out novel 

approaches for suncare product development and presentation. 

 

Keywords: Sunscreens, Nano-encapsulation, Dendrimer-nano-incorporation, Hindered-Amine-light-

stabilizers, Antioxidants, Hydrotalcites. 
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3.1  Introduction 

Ozone, a minority constituent in the earth's atmosphere, is a major absorber of ultraviolet (UV) 

radiation (Sklar et al. 2013).  As has been shown anthropogenic emissions, for example, of 

chlorofluorocarbons can deplete stratospheric ozone, giving rise to an ozone hole.  A decrease in 

atmospheric ozone is expected to significantly increase levels of UV on the earth’s surface (Bowden 

2004).  The main public concern regarding the ozone hole has been the effect of increased surface UV 

radiation on human health.  It is well documented that UV radiation is harmful to skin and can cause 

helioderma and cancers (Abarca and Casiccia 2002).  Publicized strategies for combating UV 

radiation are: sun avoidance during peak hours (10 am to 4 pm), clothing and sunscreens formulated 

with filters. 

 

Solar UV radiation incident on the earth’s surface can be divided into two regions: UVB (290-320 

nm) and UVA (320-400 nm).  Both types are harmful to human skin, damaging both the skin surface 

and inner structure of skin when taking prolonged sunbaths.  The skin is the largest organ of the body 

and constitutes 16 % of the body weight, with a surface area of 1.8 m2.  It has several functions; most 

important being that it is a physical barrier to the environment, allowing and limiting inward and 

outward passage of water, electrolytes and various substances.  It provides protection against micro-

organisms, UV radiation, toxic agents, and mechanical insults.  Though structurally consistent 

throughout the body, the skin varies in thickness depending on anatomical site and age of an 

individual.  The epidermis is the outer layer, serving as the physical and chemical barrier between the 

interior and exterior body environment.  Because UVB rays are of shorter wavelength they only reach 

the epidermal layer causing sunburn.  Most of the UVB radiation is absorbed by the stratum corneum 

on the epidermis surface (Fig. 3.1).  This stratum corneum is a layer of dead cells; the skin visible 

layer (Lautenschlager et al. 2007).  There is evidence from animal studies that UVB induces the 

disruption of the epidermal barrier function (Jiang et al. 2006).  However, UVB radiation has been 

shown to play a critical role in the synthesis of vitamin D.  Dermis is the deeper layer providing the 

structural support it is a loose connective tissue layer beneath the epidermis and subcutis or 

hypodermis is an important depot of fat.  Topically applied UV filters should be localized in the 

outermost part of the stratum corneum without infiltration to deeper viable tissues (Felton et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: The structure of the skin (http://csmrsoldier.com/2013/09/06/adventures-skin-
trade/ accessed on 12-12-2014) 
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Its known that compared with UVB, UVA radiation is a tenfold more efficient oxidative stress 

generator causing lipid peroxidation linked to plasma membrane damage (Damiani et al. 2006).  In 

vitro studies indicate UVA generates a peroxidative process in cultured human skin fibroblasts and in 

keratinocytes, a radical process that alters the plasma membrane.  Exposure of keratinocytes to 15 min 

UVA radiation has been shown to result in substantial cell mortality and a protein content decrease 

(Armeni et al. 2004).  Such physiological changes have adverse effects on the overall skin structure 

and serves to initiate various skin maladies.   

 

The cancer induction mechanism by UVA and UVB radiation is well documented.  Absorption of 

UVA and UVB radiation causes pyrimidine bases in the DNA molecule to form dimers (González et 

al. 2008); resulting in transcription errors during DNA replication.  The malignant type of cancer 

manifests tumours as a consequence of abnormal proliferating skin cells.  The uncontrollable growth 

of these cells leads to melanoma tumours forming.  Melanoma is a cancerous skin tumour, produced 

by cells in the skin that give it pigment (melanin), cells called melanocytes.  Melanoma begins as a 

dark skin lesion and may spread rapidly to other skin areas and within the body (Besaratinia and 

Pfeifer 2008).  Usually, melanoma skin cancer is caused by longer, deeper penetrating UVA rays.  

They penetrate the dermal layer and cause elastosis (loss of structural support and elasticity of the 

skin) (Atitaya et al. 2011).  Melanomas are therefore linked to UVA radiation but other experiments 

on opossums suggest a larger role for UVB (van der Leun and de Gruijl 2002).  Consequently both 

UVA and UVB radiation have therefore been linked to skin cancer, whether malignant or benign 

(Abarca and Casiccia 2002).  The most lethal of the skin cancers, cutaneous malignant melanoma, is 

more commonly associated with sporadic burning exposure to solar radiation.  There are several 

indications that UVA might have an important role in the pathogenesis of melanoma (Lautenschlager 

et al. 2007).  But sunburns are taken as a measure of overexposure to solar radiation and they have 

been identified as a risk factor for the development of melanoma.  It is on the basis of sunburns; 

primarily due to UVB that implicates UVB as a potential contributing factor to the pathogenesis of 

melanoma.  To this end there is a great deal of controversy regarding the relationship between UVA 

exposure and the development of melanoma (Wang et al. 2001).  Nonetheless, cutaneous malignant 

melanoma is one of the fastest increasing cancers and UV radiation is strongly linked in its etiology 

(De Fabo et al. 2004).  Cutaneous malignant melanoma is more prevalent among light-skinned people 

(Abarca and Casiccia 2002). 

 

The other solar radiation associated skin conditions are basal and squamous cell carcinomas, which 

are common forms of skin cancer in humans.  These cancers (BCC and SCC) are relatively mild and 

rarely fatal, although the treatment of squamous cell carcinoma sometimes requires extensive 

reconstructive surgery.  Other UV radiation induced skin disorders are: photoaging; actinic keratosis; 

lupus vulgaris (tuberculosis of the skin), and psoriasis or vitiligo (a discontinuous depigmentation of 

the skin).  Hence, sun protection is an inevitable choice, and suitable vehicles are required to deliver 

the sunscreen ingredient onto the skin or in clothing fabric. 

3.2  Sunscreen carriers 

The consequences of exposure to UV radiation and the correlation with cancer development have 

triggered a public education campaign promoting the use of sunscreens.  Solar UV filters present in 

sunscreens are intended to absorb, reflect, or refract ultraviolet radiation.  A broad variety of different 

creams, dispersions, emulsions, gels, ointments, lotions, milks, sprays, tonics and hydrogels are 

available in the market making use of a variety of UV-filter systems.  A number of factors determine 

the choice of vehicle used in delivering a suncare product.  These considerations are: target sun 

protection factor (SPF), skin type, cost of materials, level of water resistance, desired packaging, and 
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aesthetic value.  

 

Emulsions are more popular, being termed creams or lotions depending on their degree of viscosity; 

though no clear-cut distinction between a cream and a lotion exists.  However, both are easier to 

spread on the skin and dispense from bottles.  Due to ease of surface dispersion it is possible to 

achieve a uniform thickness, non-transparent sunscreen film and hence minimum ingredient 

interaction with sunscreen-active components.  It is because of these factors that make emulsion 

formulations to afford higher SPF values.  However, emulsions are difficult to stabilize especially at 

elevated temperatures, creating a favourable environment for microbial contamination and risking 

product breakdown.  Undeniably emulsions are the best medium that gives skin suppleness and a 

smooth silky feel. 

 

Oils have the advantage of ease of formulation and excellent product stability.  Given that most 

sunscreen ingredients are lipophilic in nature dissolution in oils makes their manufacture simpler 

compared to emulsions.  Application of oils on the skin yields a thinner, uniform layer, and a 

transparent film screen greatly reducing SPF.  It has been demonstrated that oils, like mineral oils, 

have a hypochromic shift effect on UV filters as a result of interactions with nonpolar esters that 

constitute the most popular sunscreens (Kwok et al. 2008).  Chemical reactions between esters in 

sunscreen oils may produce products likely to react with the plastic casing housing a product.  This 

offers an additional cost effect rolled over to consumers, since suitable packaging is required. 

Gels, on the other hand, present as crystal clear films when spread on the skin give an impression of 

high purity, class and fashion.  There are four classes of gels: aqueous, hydro-alcoholic, micro-

emulsion and gelled-oleaginous (oily anhydrous).  Each of these vehicles have corresponding 

disadvantages, for example, aqueous gels are prone to wash off when exposed to water or 

perspiration.  Use of a high concentration of surfactants makes the finished product both expensive 

and time-consuming.  Hydro-alcoholic gels give a good cooling effect on the skin.  Most lipophilic 

screens are soluble in ethanol thus additional solubilizers are not required.  However, the main 

limitations of this vehicle are water wash-ability and eye itch due to the high levels of alcohol.  

Volatility of alcohol is another challenge demanding special packaging thereby increasing the cost of 

production.  Micro-emulsion gels have particle sizes in the range of < 0.5 µm.  They afford an elegant 

feel to the skin creating a smooth, thick and uniform film when dispersed on the skin.  A challenge 

with this mode of sunscreen presentation is the use of high emulsifier levels known to irritate and 

increase wash-ability.  Oily gels are produced by crystallizing a combination of mineral oils and 

sunscreens with special silica making them clear.  This vehicle is not very popular due to cost of 

production.  

 

Popular among the feminine gender is the need to cover smaller sections of the body, such as the lips 

or nose; here sunscreen-sticks comes in handy.  Most sticks are composed of oils and oil-soluble sun-

active ingredients thickened by incorporation of waxes and petrolatum, thereby enhancing water 

resistance (Kwok et al. 2008).  For outdoor workers the vehicle of choice is ointments; they are hard 

to remove or wash away but aesthetically not appealing due to their oily and greasy nature.  Other 

vehicles in the market are mousses and aerosols but associated sun protection factors are much less.  

All vehicles discussed above have to carry several inorganic and organic compounds employed to 

absorb or scatter/reflect deleterious UV radiation.  The quantity of these compounds in commercial 

sun protection formulations is generally decided by the SPF.  A given sunscreen product must have a 

minimum SPF of less than the number of active sunscreen ingredients used in combination multiplied 

by two (Jain and Jain 2010). 
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Since both UVB and UVA radiation are carcinogens, sunscreen products should achieve broad-

spectrum protection, that is, UVA and UVB protection.  Problems of photoinstability of such products 

have been reported (Mturi and Martincigh 2008; Azusa et al. 2009; Kockler et al. 2012) and 

consequently the photostability of the protective molecules needs to be optimized.  Any photo-

generated reactive species should be quenched before photochemical damage occurs.  Suncare 

chemicals are classified into two main classes: physical blockers and chemical absorbers.  

 

Physical blockers, in sufficient amount and monodispersed on the skin surface should reflect or scatter 

all UV, visible and infrared radiation.  The most commonly used physical blockers are titanium oxide, 

zinc oxide and red petrolatum.  In most formulations they are used in conjunction with chemical 

absorbers to achieve high SPF factors.  Other forms of metal oxides and dopants are being 

investigated to enhance sun protection and increase aesthetic value of formulations (Herling et al. 

2013).  Chemical absorbers, on the other hand, are classified depending on the type of radiation they 

protect that is either UVA or UVB.  Sunscreen ingredients that absorb in the UVA range (315-400 

nm) are classified as UVA absorbers.  Examples are derivatives of benzophenone, anthranilate; and 

dibenzoylmethane.  Those absorbing between 290-315 nm, for example salicylates, cinnamates, 

camphor derivatives and p-amino benzoic acid derivatives, are classified as UVB absorbers (Atitaya 

et al. 2011). 

 

The chemical environment in which a sunscreen absorber is packaged greatly determines its UV 

absorptivity.  Acidic chemical absorbers in alkaline conditions favour formation of anions that tend to 

increase electron delocalization.  This decreases the energy required for electronic transitions in the 

UV region and thus a shift to longer wavelength is observed (bathochromic shift).  Similarly, tert-

butylmethoxy dibenzoylmethane (BMDBM) a common UVA absorber has been shown to stabilize in 

polar protic environments that favour the chelated enol form (Mturi and Martincigh 2008) that 

enhances its absorptivity in the UVA region.  Several other published works show a relationship 

between the chemical structure and efficacy of UV filters.  For example, 4-methylbenzylidene 

camphor (4-MBC), a UV filter with a high molar absorption coefficient of above 20000 dm3 mol-1 cm-

1 absorbs in the UVB range of 290-300 nm.  This molecule owes its photostability to the reversible 

photo-isomerization (Fig. 3.2).  A chemical environment that would favour carbonyl-hydrogen 

abstraction is therefore likely to interfere with the reversibility of the isomerisation and hence induce a 

loss in photostability. 

O

O

h

 
Figure 3.4 Photo-isomerization of 4-methylbenzylidene camphor (Shaath 2010). 

 

UVA (315-400 nm) penetrates to deeper layers of the skin damaging DNA and tissue via production 

of reactive oxygen species (ROS) (Setlow et al. 1993).  In addressing the effects of UVA damage it 

has been necessary to search for broad-spectrum UV radiation filters.  A common UVA absorber used 

BMDBM, is known to be inherently photolabile and requires special selection of formula ingredients 

to provide photostable protection (Wang et al. 2008).  Innovative stabilizing strategies for BMDBM 

have been investigated.  Chaudhuri et al. (2006) showed diethylhexyl syringylidene malonate as a 

potent stabilizer of BMDBM and effective antioxidant.  Recently Santo and Mezzena (2010) 
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demonstrated that addition of quercetin to the sunscreen formulation significantly reduced the 

photodegradation of the combination of BMDBM and EHMC, a mixture known to be photolabile. 

 

The photodegradation of suncare molecule produces by-products that are potentially dangerous, since 

they may induce sensitization and skin irritation.  Several techniques are available to reduce 

photodegradation.  These include: 

 Use of different UV filters in the same product, to enhance the synergistic effect,  

 Incorporation of specific stable UV filters that absorb at a specific wavelength, and 

 Protecting the active ingredient by complexing or encapsulation. 

This review aims at exploring current formulations and pointing out novel approaches for suncare 

product development and presentation.  

3.3  Quality of suncare product 

To optimize the functions of the integument, sunscreens must have minimal dermal absorption, if any, 

for good protection (Wissing and Müller 2002a).  Absorption and skin penetration of sunscreens may 

induce phototoxic reactions increasing the risk of photoallergic effects (Chawla and Mrig 2009) .  

Benzophenone-3 (BP3) has been reported to have been recovered as unchanged BP3 and its 

metabolites in the urine after topical application (Gonzalez et al. 2006; Hayden et al. 1997).  Concerns 

arising from the skin permeation of these substances are the possible estrogenic potency of these 

sunscreens and their components.  A recent study demonstrated changes in hormone (estradiol and 

testosterone) levels of participants after topical application of popular sunscreens (Gordon et al. 2005; 

Schlecht et al. 2004; Jarry et al. 2004).  A recent in vivo study on endocrine active components of 

sunscreens showed that 4-MBC, EHMC and BP3 indicated high estrogenicity in uterine wet weight, 

cell height, and cell proliferation assays (Schlumpf et al. 2004; Schlecht et al. 2004; Jarry et al. 2004).  

 

While safety of the sunscreen product is important, there are other factors that a commercial 

sunscreen product should meet.  These factors include water resistance; high tolerance, and pleasant 

product feel on the skin.  An ideal suncare formulation should delicately balance these vital aspects 

without compromising safety by way of skin penetration.  Efforts have therefore been made to reduce 

skin penetration of sunscreen active ingredients, including an evaluation of different vehicle types 

(Felton et al. 2002).  An increase in formulation viscosity (Cross et al. 2001), or incorporation of UV 

filters in nanoparticles (Felton et al. 2002), or complexation with cyclodextrins (Morabito et al. 2011; 

Vyas et al. 2008), are perceived as viable solutions.  Also, the addition of antioxidants reduces 

oxidative stress associated with some of the sunscreen ingredients.  For instance, Hanson et al. (2006) 

demonstrated that sunscreens, octocrylene (OCT), EHMC and BP3, enhanced the production of UV-

induced ROS in the skin above that produced naturally by epidermal chromophores under UV 

irradiation.  The stabilizing mechanisms: encapsulation or complexation may sustain efficacy, and 

antioxidants incorporated may trap free radicals formed thereby limiting photochemical damage 

(Nesseem 2011).  In addition, a suitable sunscreen delivery system that decreases the amount and the 

photolability of organic sun-active ingredients, is needed to maintain product efficacy.  

 

The current trend is to encapsulate active ingredients in various media.  An encapsulated system 

consists of a particle totally surrounded by a matrix.  In this case the particle is theoretically totally 

isolated from its surroundings.  This makes the undesired properties of the active sunscreening agent, 

such as contact and photo-contact allergic dermatitis, to be masked.  Encapsulation converts organic 

sunscreen into particulates and isolates the sunscreen from the skin, minimizing ingredient interaction.  

More so, it allows the use of oil soluble actives in oil-free systems with a greater range of solubility 
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(Jain and Jain 2010).  This is likely to reduce the interaction between oils and sunscreen esters hence 

limiting attack on the plastic casing. 

 

3.4  Nanoencapsulation 

Solid lipid nanoparticles (SLN) are emerging as a carrier system for sunscreens.  SLN are produced 

by replacing the liquid-lipid (oil) of an oil in water (o/w) emulsion by a solid lipid or a blend of solid-

lipids.  The lipid-particle matrix is solid at both room and body temperature (Müller et al. 2000; Puri 

et al. 2010).  For purposes of topical application, the SLN are reported to favour skin hydration, 

modified active agents release, and may avoid systemic uptake (Puri et al. 2010) of topically applied 

active agent.  Lipid nanoparticles are known to enhance the chemical stability of compounds sensitive 

to light, oxidation and hydrolysis.  SLNs are advantageous in comparison with conventional o/w 

emulsions because they exhibit a zero-order release profile of organic components.  The slow active 

molecule release from SLNs yields a longer-lasting sunscreen (Wissing and Müller 2002b; Pardeike et 

al. 2009) enhanced by the synergistic effect of offering both UV protection and photostability.  This 

results in a reduced need for high concentrations of potentially photo-carcinogenic photo-active 

molecules without sacrificing the SPF (Carlotti et al. 2005).  A study by Mueller et al. (2002) showed 

that SLN acting as a physical UV blocker resulted in improved UV protection in combination with 

BP3 at low concentrations.  A more recent report indicates that solid-liquid microspheres (SLMs) 

could be excellent carriers of BP3 in order to decrease release and penetration rate of this UV 

absorber (Mestres et al. 2010).  The SLMs have also been shown not only to decrease skin penetration 

of EHMC but also to improve it photostability (Yener et al. 2003).  This served to corroborate an 

earlier study that indicated nanoparticle-based systems could enhance the photostability of the 

sunscreen agent, trans-EHMC (Perugini et al. 2002). 

 

The advantage of SLNs is based upon their ability to reflect and scatter incoming UV radiation.  It has 

been shown that the scattering properties of SLNs depend on the degree of crystallinity.  More 

crystalline SLNs have a greater ability to reflect and scatter radiation (Wissing and Müller 2002b).   

Solid-lipid nanoparticles have emerged as an alternative to other novel delivery approaches.  Because 

of various advantages, including feasibility of incorporation in lipophilic and hydrophilic drugs, 

improved physical stability, low cost compared to liposomes, and ease of scale-up and manufacturing 

(Mandawgade and Patravale 2008), SLNs are regarded as new topical delivery systems for 

pharmaceutical and cosmetic active ingredients (Müller et al. 2002; Müller et al. 2000).  By being 

particulate, they remain on the skin forming a thin film layer sufficient to prevent trans-epidermal 

water loss (Wissing and Müller 2001; Jenning et al. 2000) and significantly increasing SPF.  An SPF 

50 was reported after encapsulation of titanium dioxide into SLNs (Villalobos-Hernández and Müller-

Goymann 2005).  This indicates that encapsulation of inorganic sunscreens into SLNs is a promising 

approach to obtain well tolerated sunscreens with high SPF.  Another competing encapsulation 

mechanism is the use of cyclodextrins. 

 

3.5  Cyclodextrin complexation 

Cyclodextrins are toroidal-shaped cyclic oligosaccharides with a hydrophilic outer surface and 

hydrophobic hollow interior.  Cyclodextrins can entrap a vast number of lipophilic compounds into 

their hydrophobic cavity, depending on their size and molecular structure.  For this reason 

cyclodextrins behave as hosts and hydrophobic species are guests.  The driving force for such an 

inclusion process is the enthalpy contribution arising from non-covalent hydrophobic interactions 

(Loftsson and Masson 2001; Szejtli 1998; Szejtli 2004).  The basic physicochemical characteristics of 
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cyclodextrins have been used extensively to improve physicochemical and pharmaceutical properties: 

solubility, stability and bioavailability of administered drug molecules.   

 

The photodegradation studies on encapsulated BMDBM in cyclodextrins showed a significant 

reduction of the light-induced decomposition of BMDBM (Scalia et al. 2006; Iannuccelli et al. 2006; 

Scalia et al. 1998).  This led the authors to conclude that incorporation of BMDBM in the 

cyclodextrin complex form could be more effective in enhancing this sunscreen.  Another 

photostabilization potential of cyclodextrin complexation with sunscreens was demonstrated with the 

reduction in the light-induced decomposition of 4-MBC (Scalia et al. 2007).  Experiments on the skin 

permeation of BMDBM have also shown that encapsulation of this agent in cyclodextrins markedly 

reduces its epidermal concentration.  It was also demonstrated that the encapsulation limits direct 

contact of the sunscreen and of its reactive photolytic products with the skin viable tissues (Simeoni et 

al. 2004).  Other systems of the sunscreen formulation target not only the photostabilization of the 

sunscreen agent but also scavenging of ROS generated by some agents.  This is by addition of 

antioxidants. 

 

3.6  Addition of antioxidants 

External sources of ROS initiation include UV light, ozone, cigarette smoke, dietary quinones and 

quinoid drugs.  Photo-induced singlet oxygen is produced by absorption of incident light of particular 

wavelengths by excitable endogenous molecules (Rogiers et al. 2006).  Transferred energy promotes 

an electron in an adjacent triplet (unexcited) oxygen molecule, to a singlet excited state.  Generated 

ROS interacts primarily with the skin and eyes.  A different phenomenon occurs in plants excessive 

exposure to UV radiation triggering production of non-photosynthetic pigments for example cinnamic 

acid derivatives and flavonoids.  Flavonoids have many positive effects on various cell layers of skin, 

namely, antioxidant, anti-allergic and anti-inflammatory effects.  The antioxidant capacity of flavones 

is attributed to the high reactivity of the hydroxyl substituent, with the number of hydroxyl groups on 

the β-ring being correlated to ROS scavenging capability (Al Shaal et al. 2011; Gavin and Durako 

2011).  These compounds are known to be responsible for blocking UV radiation in addition to their 

antioxidant activity (Gavin and Durako 2011).  The flavanoids are discussed at length in the section 

under plant extracts. 

 

Antioxidants contain many free electrons transferable to unpaired electrons in radicals. The 

antioxidants, vitamins C and E, pycnogenol and β-carotene have shown a synergistic effect in 

combination with sunscreen ingredients (Morabito et al. 2011).  Chemically, ascorbic acid (vitamin 

C), an alpha-ketolactone at physiological pH, is oxidized to dehydro-L-ascorbic acid.  This 

intermediate compound after donation of one electron forms ascorbate, a stable free radical.  Water 

soluble ascorbate, an effective free radical scavenger, interacts with a variety of free radicals 

intracellularly and extracellularly.  Vitamin C is known to regenerate α-tocopherol, a most stable form 

of vitamin E.  The vitamins C and E in topical applications show reduced UVB-induced skin 

wrinkling and delay the onset of skin tumours (Rogiers et al. 2006).  The addition of botanical 

antioxidants and vitamins C and E to a broad-spectrum sunscreen may further decrease UV-induced 

damage compared with sunscreens alone.  These agents have been shown to enhance protection 

against UV-induced epidermal thickening (Matsui et al. 2009).   

 

UVA induces tissue damage via production of radical oxygen species.  Topical application of 

antioxidants in sunscreens can potentially neutralize UVA-induced free radicals (Wang et al. 2011).  

It is speculated that topical supplementation of antioxidants can provide additional protection to 
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neutralize ROS from both endogenous and exogenous sources (Chen et al. 2012; Matsui et al. 2009).  

Topical antioxidants have shown the potential to diminish the ROS generated from the UVA 

radiation.  An in vivo study by Wu et al. (2011) demonstrated that antioxidants may contribute 

significantly to sun protection when added to a broad-spectrum sunscreen agent and applied topically 

on human skin.  Hence, the addition of antioxidants in cosmetics may help to prevent wrinkles and 

reduce ageing caused by UV radiation.  It is therefore envisaged that the inclusion of antioxidants in 

UV filter formulations could be an effective photoprotective strategy.  Another class of antioxidants 

of interest is carotenoids.   

 

The carotenoids, beta-carotene, lutein and lycopene, are considered to be of prime importance for 

reduction in skin aging and the risk of cancer development (Meinke et al. 2010).  Though carotenoids 

are produced by other photosynthetic organisms, in plants they play two major roles: light-harvesting 

and photoprotection.  Their photoprotective ability requires a minimum of nine conjugated double 

bonds in their chemical structure (Krinsky and Johnson 2005).  Photoprotection is achieved by 

deactivating excited singlet oxygen to yield the triplet carotenoid excited state and triplet oxygen in 

the ground-state, thus acting as a singlet oxygen quencher (Biesalski et al. 1996).  The carotenoids are 

natural effective antioxidants because of their ability to scavenge and trap peroxyl radicals.  It has 

been shown that a dietary mixture of β-carotene, lutein and lycopene, protects against UV-induced 

erythema (Heinrich et al. 2006; Sies and Stahl 2004).  Darvin et al. (2011) have shown topical, 

systemic and combined antioxidant treatments induce statistically significant increases of antioxidant 

levels in human skin.  Worthy to note is that due to blue light filtering, carotenoids are suitable 

components in a suncare formulation.  Other secondary metabolites with the ability to scavenge free 

radicals and absorb UV radiation are the polyphenols.  These form the bulk of plant extracts.  

 

3.7  Plant extracts 

Biological antioxidants can be categorized into two classes: enzymatic antioxidants that include 

superoxide dismutase, catalase and glutathione, and nonenzymatic antioxidants such as tocopherol, 

ascorbate and beta-carotene discussed earlier.  Plants produce a variety of antioxidants against 

molecular damage from ROS.  Phenolics comprise the major class of plant-derived antioxidants.  

Among the various phenolic compounds, flavonoids are perhaps most important group (Chen et al. 

2008).  

 

Flavonoids (or bioflavonoids) are a group of about 4000 naturally occurring compounds ubiquitous in 

all vascular plants.  They are important for normal growth, development and defence of plants.  

Flavanoids found in several medicinal plant and herbal remedies have been used in folk medicine 

around the world.  The use of plants containing flavonoids, either alone or in combination is 

popularised by consumer demand for compounds of natural origin.  Attention has been given to 

dietary plants containing this class of molecules as natural cancer chemopreventive compounds (Ren 

et al. 2003).  Very recently Vijayalakshmi et al. (2013) demonstrated that flavonoid  possessed potent 

anticancer properties against breast cancer cells.  

 

Besides scavenging UV-induced free radicals and inhibiting propagation of lipid peroxidative chain 

reactions, flavonoids provide a UV protective effect as therefore UV-absorbing organic molecules 

(Fent et al. 2010).  Flavonoids are known to possess good anti-inflammatory activity both in humans 

and animals and recently their topical application has met considerable interest.  For example a rutin 

derivative is known to prevent acute hind limb limphedema in rats, and hamamelis distillate has been 

shown to suppresses human UV radiation-induced erythema (Deters et al. 2001).  Various other 



46 
 

 
 

flavonoids show good inhibitory activity against croton oil-induced mouse ear or paw oedema (Fent et 

al. 2010).  Flavonoids are claimed to prevent photo-oxidative stress in skin.  It is therefore important 

to investigate plant extracts containing these substances and associated physicochemical stability after 

inclusion in topical formulations.  Several authors have demonstrated the antioxidant activity in vitro 

or in vivo of some plant extracts (Pulido et al. 2000; Sarla et al. 2011).  

 

Topical administration of antioxidants has recently proved to represent a successful strategy for 

protecting the skin against UV-mediated oxidative damage (Coronado et al. 2008; Berne and Ros 

1998).  However, there is no data on the efficacy following inclusion in sunscreening preparations and 

the influence on the physicochemical stability of such a formulation.  Despite the overwhelming 

evidence of the role of flavonoids in the protection of skin from oxidative injury, their antioxidative 

role in topical preparations remains subject to investigation.  These tasks require a thorough screening 

of plants extracts for their photoprotective efficacy in sunscreen formulation. 

 

Work on extracts of seeds of Coffea arabica, flower buds of Syzygium aromaticum, bark of 

Cinnamomium burmanii and leaf of Ocimum tenuiflorum showed good antioxidant properties and UV 

absorption capacity (Shekar et al. 2012).  Other studies have shown that green and black tea 

polyphenols ameliorate adverse skin reactions following UV exposure (Anitha 2012).  Recently in 

vitro and in vivo studies on Garcinia brasiliensis epicarp extract indicated a great potential for use of 

these extracts as a sunscreen additive for topical formulations when incorporated in UV filters 

(Figueiredo et al. 2014).  Most importantly a biflavonoid fraction from Araucaria angustifolia needles 

has been shown to be an effective singlet oxygen (1O2) quencher.  Thereby demonstrating potential to 

protect plasmid DNA against single strand break (ssb) caused by 1O2 or Fenton reaction and to inhibit 

Fenton or UV radiation-induced lipoperoxidation in phosphatidylcholine liposomes (Yamaguchi et al. 

2005).  In an investigation by Violante et al. (2009) on photoprotection of the dry ethanolic extract of 

L. pacari, the extract showed wavelength of maximum absorption in UVB (315 nm) and extract of O. 

hirsutissima indicated an absorption maximum in the UVA region.  However, these extracts presented 

sun protection factor (SPF) ≥ 2 and therefore considered not very good sun-protective agents on their 

own (Violante et al. 2009).  Interestingly the Polypodium leucotomos extract as a component of 

sunscreen moistures has been shown to prevent photodecomposition of trans-urocanic acid (t-UCA), 

inhibit UV-induced deleterious effects of TiO2 and to protect skin cells and endogenous molecules 

directly involved in skin immunosurveillance (Capote et al. 2006).  The plant phytochemicals 

hesperetin and naringenin (flavonoids) have also been demonstrated to be potent topical 

photoprotective agents but their topical activity require optimization using suitable penetration 

enhancers (Saija et al. 1998). 

 

The citrus and rosemary extracts have recently have been shown to have protective effects on UV-

induced damage in the human skin.  The authors speculated that combination of the extracts may have 

synergistic effects in decreasing UVB-induced intracellular ROS and preventing DNA damage.  This 

group concluded that the combination of citrus and rosemary extracts may be suitable ingredients for 

oral photoprotection (Perez-Sanchez et al. 2014).  Another study has also shown good correlation 

between SPF and phenolic contents (Ebrahimzadeh et al. 2014) though no correlations between SPF 

and flavonoid contents or antioxidant activity has so far been established.  An earlier work from our 

laboratories had indicated that polyphenols have significant UV absorption and that polyphenols from 

Sutherlandia frutescens (cancer bush) may photostabilize BMDBM (Mturi 2005).  From these 

findings it can be speculated that plant extracts can be used alone or as additives in other sunscreen 

formulations to enhance sunscreen product performance.  Other organisms besides plants, also 
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generate metabolites that absorb in the UV range with promising stability.  Amongst these are the 

fungal metabolites resembling amino acids. 

 

3.8  Mycosporine-like amino acids 

The generic name, mycosporine, is given to fungal metabolites absorbing at 310 nm or 320 nm 

formed by a cyclohexenone ring conjugated with a nitrogen substituent of an amino acid or amino 

alcohol.  Mycosporine-like amino acids generally consist of an imine derivative mycosporine 

containing an amino cyclohexenimine chromophore (Conde et al. 2000).  Mycosporine-like amino 

acids (MAAs) are UV-absorbing pigments.  Structurally distinct MAAs have been identified in 

taxonomically diverse organisms (Matsui et al. 2011).  They are biosynthesized via the shikimate 

pathway in a manner similar to the biosynthesis of UV-absorbing flavanoids in terrestrial plants 

discussed above.  Only fungi and algae can synthesize MAAs.  One adaptation of marine organisms 

to prevent UV-induced damage is to synthesize MAAs that strongly absorb within the UV region.  

MAAs, with maximum absorption around 310–360 nm, have been hypothesized to act as sunscreens 

and thus reduce the harmful effects of UV radiation (Carignan et al. 2009). 

 

Their high absorptivity ranges from the mycosporine-glycine wavelength of absorption at 310 nm to 

palythene with a wavelength of absorption at 350 nm (Sinha et al. 2002).  Oxocarbonyl-MAAs such 

as mycosporine–glycine and mycosporine–taurine, have reported antioxidant activity against cellular 

damage induced by high levels of ROS in organisms exposed to different oxidative stresses (Carignan 

et al. 2009).  MAAs and scytonemin can be good candidates in UVA sunscreen formulations given 

their strong absorption in the UVA region.  There is some evidence from cyanobacteria regarding the 

UV sunscreen role of mycosporine-like compounds (Garcia-Pichel et al. 1993).  Indeed, the first 

claimed patent for the incorporation MAAs in personal care products was by Llewellyn and Galley 

(2002), they used mycosporine-2 glycine as a sunscreen in a cream formulation.  Recently another 

cream comprising of MAAs has been claimed by the inventors to have good UV absorption and free 

radical scavenging abilities (Zhang et al. 2014).  These preparations are, however, not featured 

prominently in the market to the best of our knowledge.  There are also other compounds synthetic in 

nature though not light-absorbing but good free radical scavengers: hindered amine light stabilizers. 

 

3.9  Hindered amine light stabilizers 

Hindered amine light stabilizers (HALS) are usually derivatives of 2,2,6,6-tetramethylpiperidine 

(secondary and tertiary amines or amino ethers) (Geuskens and McFarlane 1999).  They have been 

extensively employed to stabilize polymers and prevent photo-oxidation.  Though, HALS, are 

effective in protection of surface coatings, they do not absorb UV light (Hodgson and Coote 2010).  

Hindered amines after transformation to the N-oxyl radical can quench the fluorescence of a 

chromophore by an intramolecular radiationless process.  Paramagnetic N-oxyls are effective 

quenchers of excited singlet states of aromatic hydrocarbons by intermolecular electron-exchange 

interactions between the donor-aromatic hydrocarbon in the excited state and the N-oxyl radical in the 

ground state (Búcsiová et al. 2000).  Nitroxides are extremely effective modulators of processes 

mediated by paramagnetic species, such as radicals and transition metals.  The reaction of the N-oxyl 

radical with other radicals results in the formation of a non-photoactive diamagnetic product 

(Búcsiová et al. 2000).  In biological systems it has been demonstrated that the nitroxide Tempol (a 

HALS) affords protection against UV radiation in a transgenic murine fibroblast culture model of 

cutaneous photoaging (Armeni et al. 2004).  A proper investigation is required to evaluate their 

potential applicability in cosmetic products.  But it is prudent to consider antioxidants, such as 
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nitroxides, as they may be useful additives in sunscreen formulations for protection against photo-

carcinogenesis and photoaging in skin.  However, other carrier systems need proper exploration 

especially in the possible role they could play as singlet and triplet quenchers.  Such systems include 

the dendrimers discussed below.  

 

3.10  Dendrimer-nanoparticle-incorporation 

Dendrimers are highly branched, synthetic polymers with layered architectures that show promise in 

several biomedical applications.  Dendrimers are core–shell nanostructures with precise architecture 

and low polydispersity; their molecular size and shape are controllable.  Recent studies demonstrating 

their controllable properties, which include toxicity, crystallinity, structural flexibility pattern, size, 

chirality and biocompatibility, are important parameters influencing their application in biomedicine 

(Luo et al. 2011; Nanjwade et al. 2009).  Dendrimers are composed of a core molecule, hyperbranches 

regularly extending outward, with terminal groups of defined molecular weight and size.  Higher 

generation dendrimers take a spherical shape, and can encapsulate metal complexes, nanoparticles, or 

other inorganic and organic guest molecules (Astuc et al. 2010). 

 

Noble metal nanoparticles exhibit a distinct absorption band within the UV-visible region known as 

the surface plasmon band.  This is a property that may be utilized in the physical blocking of UV 

radiation if they are well dispersed on the surface of the skin.  Dendrimers are well suited for hosting 

metal nanoparticles because dendrimer templates are fairly uniform in composition and structure and 

yield well defined nanoparticle replicas.  Nanoparticles stabilized by encapsulation within dendrimers 

may not agglomerate (Liu and Fréchet 1999).  Encapsulated nanoparticles are confined primarily by 

steric factors making the bulk of the surface available for localized surface plasmon resonance.  

Terminal groups on the dendrimer periphery can be tailored to control the solubility of the hybrid 

nanocomposites and used to anchor bioactive agents on the applied surface. 

 

One very important aspect of dendrimers is their monodispersity.  This ensures that the encapsulated 

guest does not agglomerate which occurs with most nanoparticles in biological systems.  Dendritic 

encapsulation may allow isolation of active agents from, for instance, dermal contact.  Most 

applications are achieved by drug molecules bonding covalently with functional groups on the 

dendrimer surface.  It is claimed most dendrimers do not trigger the immune system when injected or 

used topically and exhibit very low cytotoxicity.  The uniform size solubility controlled by the choice 

of modifiable surface group functionality (Lee et al. 2005), and available internal cavities make them 

suitable as nanoparticle carriers for sunscreen preparations.  

 

Benzophenone derivatives and particularly BP3 is frequently used in sunscreen preparations.  This 

agent is known to induce photosentization reactions in the excited state (Kumasaka et al. 2014).  From 

fluorescence studies by Miura et al. (2007) for excited nano-incorporated stilbene; and benzophenone 

in a dendritic structure, they showed that singlet–singlet energy transfer (SSET) from the stilbene core 

to the benzophenone units can take place more efficiently in dendrimers.  Another study targeting 

excited triplet state quenching of benzophenone indicated that there can be an efficient triplet-triplet 

energy transfer (TTET) from the benzophenone periphery to the stilbene core.  This photochemical 

energy transfer results in the stilbene core isomerization subsequent to deactivation of benzophenone 

in the dendrimer shell (Miura et al. 2007).  This showed benzophenone to be stabilized by this 

synergistic interaction co-hosted in the dendrimer structure.  This incorporation of benzophenone in 

the dendritic structure may limit its possible permeation into viable tissues.  Benzophenones and other 



49 
 

 
 

organic filters have also been intercalated in layered double hydroxides and have shown promising 

results. 

 

3.12  Hydrotalcite sunscreen intercalation 

Hydrotalcites (HTlc) are an uncommon type of lamellar solid bearing positively charged lamellae and 

exchangeable anions in the interlamellar region.  They are represented by the general formula:  

 

[Mz+
1-xM

3+(OH)2]
b+[An-

b/n].mH2O 

 

where M3+ can be Al, Cr, Fe, and M2+ can be Mg, Zn, Ni, Co; x ranges from 0.2 to 0.4.  An- is an 

exchangeable inorganic or organic anion that compensates the positive charge of the layer, m are 

moles of solvent, usually co-intercalated water.  

 

Most structures correspond to a natural hydrotalcite; magnesium–aluminum hydroxycarbonate; 

occurring in nature in foliated and knobby plates or fibrous masses.  Its formula is 

Mg6Al2(OH)16CO3·4H2O; it exhibits a well-known CdI2-type structure: hexagonal close-packing of 

hydroxyl ions, with all octahedral sites every two interlayers occupied by Mg2+ ions.  Partial 

Mg2+:Al3+ substitution gives rise to positively charged layers, thus leading to location of anions in 

unoccupied interlayers.  An intercalated anion can be replaced by another via an ion-exchange 

mechanism.  Thus, the interlayer region of a lamellar host can be considered a micro-vessel where an 

anionic molecule may be stored (Caminade et al. 2005).  By way of anion exchange or direct 

synthesis procedures capitalizing on the ease of “dissolution–reconstruction” of HTlc (Thomsen et al. 

2006) it is possible to prepare intercalation compounds.  A large variety of anionic species both 

inorganic and organic can be hosted.  The guest species are protected from oxidation and UV 

radiation and their properties are modulated by guest–guest and host–guest interactions.   

 

Intercalation of sunscreen agents in hydrotalcites has been attempted with positive results for instance 

the intercalation between UV absorber 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (4BHF) 

and ZnAl-hydrotalcite lamellae was shown to greatly improve its photostability and SPF (Perioli et al. 

2007; He et al. 2004).  The photosensitizing effect of PABA was reported to be greatly reduced, and 

photoprotection range increased, when intercalated with the consequence that cutaneous reactions and 

allergy problems were shown to be eliminated (Perioli et al. 2006a).  another organic UV filter, 

cinnamic acid and p-methoxycinnamic acid intercalated into Zn2Al layered double hydroxides 

(Zn2Al-LDHs) showed excellent UV absorption ability and very limited skin-sunscreen contact 

making them safe sunscreen materials (Sun et al. 2007).  The intercalation of 2-phenyl-1H-

benzimidazole-5-sulfonic acid in HTlc was shown to offer longer photoprotection efficacy, filter 

photostabilization and avoidance of a close contact between skin and filter, with consequent 

elimination of allergy problems and photocross reactions (Perioli et al. 2006b).  The only task is to 

identify a suitable vehicle to carry it most likely a gel or even a lotion are preferred.  A number of 

recent patents involving intercalation of UV absorbers include one by Matsufuji and Shimizu (2014), 

this authors claim their composite pigment can provide enhanced UV filtering effects low skin 

penetration, and optionally enhanced colouring effects.  This was demonstrated that the intercalation 

enhances absorption of UVA and UVB of the sunscreen agent Tinosorb M in a formulation (Matsufuji 

et al. 2014).  Hydrotalcites have advantage of ease of availability; and direct synthesis from soluble 

salts hence lower cost of production. 
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3.13  Conclusions 

The photostability of a sunscreen formulation is not determined by the constituent UV absorbers 

alone.  The photochemical interactions of individual UV absorbers with solvents, antioxidants, and 

other additives may significantly influence the products’ photochemical response.  A suitable cosmetic 

product presented either as an oil/water or water/oil emulsion in creams or in lotions should meet the 

minimum requirements of reducing/eliminating ROS generation and providing broad-spectrum UV 

protection.  This review has discussed the means by which this can be achieved.  The sunscreen 

absorbers can be encapsulated in SLN, HTLcs, and/or CDs in order to improve their efficacy.  The 

incorporation sunscreens in dendrimer assemblies may prove a novel strategy for improving their 

photostability.  Plant extract and antioxidant additions to the sunscreen formulation may also provide 

much better viable alternatives because apart from being synergistic UV absorbers, they may also 

scavenge UV-induced ROS. 
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Abstract 

The photochemical stability of common sunscreens in skin-lightening preparations was investigated 

in order to assess the products’ efficacy in photoprotection.  The percentage composition of the 

organic absorbers was determined by use of reversed-phase-HPLC.  The physical absorber, titanium 

dioxide, was quantitated by means of ICP-OES.  The percentage compositions of most UV filters 

were found within the set maximum allowed limits of the various health regulatory bodies.  The 

amounts of most of the sunscreen agents in the skin-lightening preparation were very low and no 

percentage composition was indicated on the product packages for comparison.  Such low amounts 

may not be sufficient to offer any significant photoprotection.  The photostability experiments were 

performed by application of a thin layer of the product on a quartz plate and exposing it to sunlight.  

The application density was kept at 1.0 mg cm-2.  The spectral transmission measurements were 

recorded on a UV-vis spectrophotometer after every hour of exposure for a total duration of five to 

seven hours.  Skin-lightening preparations with sunscreens but without plant extracts showed an 

increase in transmittance with increasing exposure to solar irradiation.  This photo-instability is due to 

degradation and photoisomerisation of the UV absorbers.  However, skin-lightening products that 

contained plant extracts together with sunscreens showed a drop in transmittance in the long 

wavelength region.  The effect could be associated with the formation of highly conjugated 

photoproducts hence the high long wavelength absorption.  We conclude that inclusion of plant 

extracts in the skin-lightening preparations is likely to photostabilize the sunscreen absorbers.  Thus, 

the photoprotection offered is likely to be enhanced but further investigation and profiling of the 

photo-toxicities of the photochemical products formed needs to be performed. 

 

Keywords: Sunscreens, skin-lighteners, photostability, plant extracts. 
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4.1 Introduction 

Skin-lightening is widely practiced worldwide but more so in sub-Saharan Africa, Asia and the 

Middle East.  It involves the use of chemical substances in an attempt to lighten skin tone or provide 

an even skin complexion.  These chemicals reduce the concentration of melanin, the pigment 

responsible for skin colour.  Several cosmetic preparations have been shown to be effective in skin-

lightening, while some have been proved to be toxic or have debateable safety profiles, in certain 

ethnic groups.  Some of these cosmetic preparations are used for medical reasons especially in 

depigmenting specific zones on the skin with abnormally high pigmentation such as moles and 

birthmarks.  Another medical condition of interest is vitiligo in which case the unaffected skin may be 

lightened to achieve a more uniform appearance.  However, a prolonged use of skin-lightening agents 

has been associated with increase in pigmentation in the joints of the fingers, toes, buttocks and ears.  

It is observed that the skin of the face may become thinned and the area around the eyes may have 

increased pigmentation causing a 'bleach panda effect' (Olumide 2010). 

 

Melanin, the primary determinant of skin, hair, and eye colour plays a critical role in photoprotection 

due to its ability to absorb ultraviolet (UV) radiation (Lin and Fisher 2007; Costin and Hearing 2007).  

Melanin is synthesised in the body via a process referred to as melanogenesis (Fig. 4.1).  

Melanogenesis is a complex enzyme-controlled process, which when disturbed gives rise to various 

types of pigmentation defects, which are classified as hypo or hyperpigmentation and the occurrence 

of these defects is independent of the number of melanocytes (Fistarol and Itin 2010; Lin and Fisher 

2007; Park et al. 2009).  Most skin-lightening agents reduce the amount of melanin formation by 

inhibiting tyrosinase.  Tyrosinase is the rate-limiting enzyme for the synthesis of melanin (Chang 

2012), thus inhibiting its formation inhibits melanogenesis.  

OH
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O

OH
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O
NH

OH

HO

UV light

tyrosinase, O2
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black melanin
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Figure 4.5: Tyrosinase controlled melanogenesis for the formation of eumelanin. 

 

There are several topical cosmetic or medically prescribed chemicals that inhibit melanin formation.  

For instance tretinoin has been shown to be effective in treating skin discolouration (Bhawan 1996).  

Users of tretinoin have to avoid sunlight, because it makes the skin more sensitive to UVA (320-400 

nm) and UVB (290-320 nm) radiation.  A common skin-lightener is hydroquinone.  This is medically 

regarded as the primary topical ingredient for inhibiting melanin production (Ball Arefiev and 

Hantash 2012; Musashi et al. 2009; Dadzie and Petit 2009).  Hydroquinone lightens the skin by 

disrupting the synthesis and production of melanin hyperpigmentation.  It has been banned in some 

countries because of fears of a cancer risk (Dadzie and Petit 2009).  Active compounds isolated from 

plants, such as arbutin, aloesin, gentisic acid, flavonoids, hesperidin, licorice (specifically glabridin), 

niacinamide, yeast derivatives, and polyphenols, inhibit melanogenesis without melanocytotoxicity by 

different mechanisms (Zhu and Gao 2008).  The plant extracts that have been shown to contain 

arbutin are: Broussonetia papyrifera (paper mulberry), Uva ursi (bearberry), Mitracarpus scaber 

extract, extract, Morus bombycis (mulberry), and Morus alba (white mulberry).  These plant extracts 
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are considered safe alternatives and are commonly used as depigmenting agents to make the skin 

fairer.  These arbutin is a form of hydroquinone which has been shown to be an efficient skin-

lightening agent (Jun et al. 2008).   

 

Other agents of botanical origin include kojic acid, which has been shown to be effective for 

inhibiting melanin production (Moon et al. 2001) but photo-unstable in cosmetic preparations.  It is 

thought to cause allergic contact dermatitis (Serra-Baldrich et al. 1998) and skin irritation.  Azelaic 

acid has been shown to be effective for skin discolourations (Baliña and Graupe 1991) as well as 

inhibiting melanin production (Rendon et al. 2006).  Glutathione is an antioxidant that inhibits 

melanin synthesis by quenching of free radicals and peroxides that contribute to tyrosinase activation 

and melanin formation.  The alpha hydroxy acids (AHAs): lactic acid and glycolic acid, have also 

been shown to inhibit melanin production apart from their actions as exfoliants on skin.  

 

Medically prescribed skin-lightening agents of synthetic origin are monobenzone and mequinol.  It is 

reported that monobenzone may cause destruction of melanocytes and permanent depigmentation.  

Hence, monobenzone is not recommended for skin conditions other than vitiligo but some users abuse 

it.  The overall effect of the skin-lightening agents on the skin is the destruction of the natural defence 

system against UV radiation.  In some cases the skin structure is also destroyed making such a skin 

vulnerable to the assaults of UVB and UVA radiation.  Therefore, the skin needs photoprotection and 

that is why most of the skin-lightening preparations should incorporate sunscreens. 

 

Sunscreens (both organic and physical) are compounds that absorb or reflect UV radiation and 

thereby prevent or minimize the deleterious effects of the solar radiation on the skin.  However, some 

of the chemical absorbers photo-degrade and the subsequent photo-loss reduces the photoprotection.  

The photoinstability of these agents is more pronounced in the UVA region.  The other concern is the 

safety of these products as the toxicities of the resulting photoproducts are unknown.  Some of the 

agents have been shown to form photoproducts that may be harmful to the homeostasis of the skin 

(Schallreuter et al. 1996).  It is therefore of interest to assess the photostabilities of these products and 

the quantities of the active ingredients in the final commercial products.  

 

The aim of the present work was to investigate the photostability of sunscreens in skin-lightening and 

suncare products containing plant extracts.  The target is to establish their robustness on long time sun 

exposure and suitability for outdoor activity users.  The specific objectives were to firstly quantify the 

amounts of the UV absorbers in the cosmetic preparations.  The amounts of these agents in these 

cosmetic agents are of concern as they may help in mapping some of observed dermal effects 

associated with skin-lightening preparations.  The Second objective was to examine the 

photostabilities, of the products upon solar exposure.  For most skin-lightening preparations there are 

no amounts of sunscreens indicated on the packages of the products.  Also, no report exists on the 

levels of the sun-screening agents in these skin-lightening preparations and their effectiveness.  To the 

best of our knowledge this is the first report of the amounts of sun-active agents in skin-lightening 

preparations.  The analysis of these agents in commercial products is important for quality control and 

for monitoring the observance of the existing legislation. 
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4.2  Materials and Methods 

4.2.1  Reagents 

The sunscreens 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3), 4-tert-butyl-4'-

methoxy-dibenzylmethane (BMBDM), was purchased from BASF, and 1-phenyl-1-pentanone 

(valerophenone) (99.8%) was purchased from Sigma-Aldrich, dodecane (99.9 %) was bought from 

Fluka Chemie, acetone (99.8 %) was from Riedel-de Haen.  HPLC grade methanol and acetonitrile 

was purchased from BDH HiperSolvTM Chemicals, Ltd.  Sulphuric acid (H2SO4) and potassium 

hydrogen sulphate (KHSO4) were purchased from BDH Chemicals Ltd.  Ultra-pure water was freshly 

dispensed from a Milli-Q® water purification system (Millipore, Bedford, MA, USA) for each day of 

analysis.  Titanium dioxide (TiO2) was from SAARCHEM Pty Ltd.  Twelve skin-lightening products 

containing UV filters were purchased from the retail store in Durban South Africa. 

 

4.2.2  Preparation of solutions 

4.2.2.1  Standard solutions 

All stock standard solutions of the three organic UV absorbers were prepared fresh each day of 

analysis.  Stock solutions of EHMC, BP3 and BMDBM were prepared by dissolving 32.5-40 mg in 20 

mL of methanol, and ultrasonicated for 1 hour and then diluted to 25 mL with methanol in a 

volumetric flask.  For the purposes of determining the linearity range, working standard solutions 

were prepared in the concentration range of  4.37–273 µM for BMDBM, 3.12–499 µM for BP3, and 

4.86–778 µM for EHMC. 

 

4.2.2.2  Sample preparation 

The analysis of EHMC, BP3, and BMDBM in the skin-lightening samples was performed by 

dissolving  150 mg of the samples in 30 mL of methanol, ultrasonicated in a water-bath for 1 hour 

and then diluted to 100 mL volume in a standard flask with methanol.  Working solutions were then 

prepared from this stock solution by imposing a tenfold dilution factor to achieve an approximate UV 

filter content of about 10-200 µM or more.  The prepared solutions were filtered through 0.45 µm 

Millex LCR syringe filters prior to injection into the HPLC system. 

 

4.2.3  High performance liquid chromatographic analysis 

The HPLC system consisted of a solvent delivery pump (Waters 600), an auto sampler (Perkin Elmer 

200 series), a photodiode array detector (Waters 996) and chromatography software (Millennium 

version 2.10 from Waters, Milford, MA, USA).  The analysis of EHMC, BMDBM, and BP3 was 

performed under isocratic elution with methanol–water (84:16, v/v) at a flow rate of 1 mL min-1 on a 

reversed phase C-12 column (Phenomenex Synergi 4µ Max-RP 80 Å, 150 mm x 4.6 mm).  A 20 µL 

aliquot of the sample was injected on the column.  The mobile phase was auto-degassed with helium 

at a rate of 30 mL min-1 continually during each run.  The chromatograms were recorded at 286, 310, 

and 358 nm.  The isocratic elution run time was set for 15 min. 

 

4.2.4  Validation of Analytical method 

The method validation experiments were performed by spiking 150 mg of three pre-analysed 

commercial sunscreen products with 9-10 mg of the pure sunscreen absorbers.  The spiked samples 

were dissolved in methanol and made up in the same way as described in Section 4.2.2.2.  The 
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solutions were filtered through a 0.45 µm Millex LCR syringe filter before a further dilution was 

made to achieve a final concentration of 80-200 µM by using the auto-sampler.  The prepared 

solutions were subjected to the same chromatographic conditions as described in Section 4.2.3.  The 

linearity of the employed method was determined by using a five point external calibration method.  

The regression equations were obtained through un-weighted least squares linear regression analysis, 

by using the peak areas as a function of concentration.  In order to assess the repeatability of the 

analytical procedure, an intra-day and inter-day analysis was performed by injecting authentic 

standard solutions onto the chromatograph.  The amounts of each standard were then computed by 

using the calibration curves.  Each experiment was repeated three times.  The analysis of TiO2 and the 

corresponding results are described in Chapter Six. 

 

4.2.5  Photostability experiments 

All the photostability studies were done on a clear sunny day.  The windy conditions were avoided to 

minimize aerosol accumulation on the quartz plates which greatly interferes with the spectral 

transmittance of the applied sample.  The accumulation of aerosols on the quartz plates carrying the 

sample causes scattering of light which was found to distort the spectral characteristics of the applied 

sample.  The products surface application density of  1.0 mg cm-2 was used; the ideal recommended 

application density is 2 mg cm-2 for children and 1.5 mg cm-2 for adults (Maier et al. 2001).  However, 

in practice consumers apply much less than the recommended value for aesthetic reasons.  The 

products were applied on a quartz plate by using a gloved finger saturated with the product.  To 

achieve a uniform thin film the finger was moved in a circular fashion outward from the center.  The 

quartz plates were allowed to dry in the dark, reweighed and then exposed to sunlight.  The spectral 

changes were recorded every hour on a Perkin Elmer Lambda 35 UV-vis dual beam 

spectrophotometer for a total duration five to seven hours.   

 

4.2.7.1  Actinometric studies 

To determine the amount of UV radiation falling on the quartz plates and therefore interacting with 

the applied sunscreen absorbers, the decrease in the concentration of the chemical actinometer 

valerophenone, with time was used.  It is known that valerophenone undergoes a Norrish Type II 

photodegradation reaction with quantum yield close to unity.  It is reported that the valerophenone 

photoreaction has a quantum yield (Φ) in aqueous solution of (290-330 nm) 0.98 ± 0.04 (Klan et al. 

2000).  Therefore, the actinic flux incident on the applied sunscreen absorbers was calculated by 

assuming a quantum yield of 0.98.  The UV dose received by the absorbers was then calculated and 

expressed as the standard erythemal dose (SED).  The SED corresponds to 100 J m-2 (Lucas et al. 

2006) weighted at 297 nm, this is deemed representative of the in vivo solar UV dose received 

because it is independent of the skin type unlike the minimal erythemal dose (MED – 200 J m-2) 

(Zepp et al. 1998; Stalgis-Bilinski et al. 2011; Lucas et al. 2006) that causes reddening of the skin.   

 

The reduction in the concentration of valerophenone with irradiation time was followed by means of 

gas chromatography-flame ionisation detection (GC-FID).  To improve the precision and accuracy of 

the actinometric data of the GC quantitative analysis an internal standard that does not undergo 

photoreaction under the current experimental conditions was used.  The internal standard used in this 

work was a straight chain alkane; dodecane.  A mass of 16.55 mg of valerophenone and 17.37 mg of 

dodecane was dissolved in acetone and made up to 100 mL to make 1.02 × 10-3 mol dm-3 of solution 

of each in the same standard flask.  The high concentration of valerophenone used in this work was 
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aimed at making the valerophenone photodegradation kinetics approximately zero order.  Zero order 

reactions are independent of the concentration of the reactants.  

 

A fixed volume (3 mL) of the prepared solution was accurately pipetted and transferred in a 1 cm 

pathlength quartz cuvette.  The tightly sealed cuvette was then placed in ice in a petri-dish to avoid 

possible evaporation during sun exposure.  The petri-dish and its contents were placed in a specially 

cut out trough at the centre of the eight quartz plate troughs containing the quartz plates with applied 

sunscreen products (Fig. 4.2).  Fresh actinometric solution was pipetted and exposed for every hour of 

exposure of the skin-lightening product.  After which a 1 µL of this solution was injected into the GC-

FID chromatograph to monitor the remaining concentration of valerophenone.  

 

The GC-FID used was a Shimadzu GC-2010, fitted with auto-sampler AOC 20i and a flow unit type 

AFC-2010.  A SGE BP X5 (5% phenylpolysilphenylene-siloxane) capillary column of length 30 m, 

internal diameter 0.25 mm and film thickness 0.25 µm was used.  The make-up gas was nitrogen/air 

flowing at 30 mL min-1, the carrier gas was hydrogen gas at a flow rate of 47 mL min-1 and air 

flowing at 400 mL min-1.  The injection port was set at 250 °C and the oven temperature program was 

80 °C held for 2 min then increased at 20 °C min-1 to 230 ºC and held there for 2 min. The detector 

temperature was 280 °C and the auto-sampler was set to inject a volume of 1 µL in splitless mode.  

The velocity flow control mode was adopted keeping the pressure at 80.7 kPa, the total flow rate at 

5.0 mL min-1, the column flow of 0.90 mL min-1, and a linear velocity of 25.3 mL s-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To minimise detector response and sensitivity variability a relative response factor (RRF) was 

calculated every day as follows: 

 

��� =	
��������� 	×	��������������

�������������� × ���������
 

 

Where Mvalerophenone and Mdodecane are the masses of valerophenone and dodecane respectively, and 

Svalerophenone and Sdodecane are the GC signals (peak areas) of valerophenone and dodecane respectively.  

The RRF was firstly determined and used in the determination of the amount of valerophenone 

Figure 4.6: Experimental set-up for the actinometric measurements and 
photostability studies. 
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remaining after each exposure time.  A plot of concentration against the time yields a linear curve.  

The slopes of the hourly plots were used to determine the irradiance incident on the samples for each 

hour and time of the day.  The total irradiance of each experimental day was also determined. 

 

4.2.7.2  Actinometric data analysis 

The slope k0 (mol L-1 s-1) from the valerophenone concentration vs time curve and the quantum yield, 

Φ (0.98) were used to calculate the incident solar intensity, I0 (einstein L-1 s-1), for the photo-

degradation of valerophenone.   

�� 	= 	
��
�

 

since I0 is the rate at which the photons of light are falling on the actinometric solution.  It can be 

shown that the total photon flux, F0 (W m-2) can be computed from the expression 

 

�� 	= 	
�������

�
 

where F0 is the photon flux, V is the volume (dm3), and A is the area (m2) of the exposed actinometric 

solution, NA is Avogadro’s number of particles; Eλ (Joule photon-1) is the energy of photon of 

wavelength λ.  The energy of a photon can be obtained from the relation 

 

�� 	= 	
��

�
 

where h is the Planck’s constant (6.626 × 10-34 m2 kg s-1) and c is the speed of light (3.0 x 108 m s-1) 

and λ is the average wavelength over which the actinometric measurements are made; 290-330 nm for 

this particular experiment 

 

The SED (J m-2) value for each hour of irradiation was then calculated as a product of irradiation time 

in seconds, T and F0 divided by 100. 

���	 = 	
���

���
 

4.3 Results  

It was of interest to quantify the active sunscreen ingredients in the skin-lightening products and then 

to determine the photostability of these products.  The skin-lightening preparations contained one or 

more of the three organic sunscreen absorbers, namely EHMC, BP3 and BMDBM, and the physical 

absorber TiO2.  Some preparations did not include sunscreen absorbers among the list of ingredients 

on the product label.  Moreover, even those that listed the sunscreening agents on the product label 

none indicated the amount of the absorbers incorporated.   

 

4.3.1  Levels of sunscreen agents in skin-lightening products 

The chromatographic detection and quantitation of the UV filters was done at the wavelength of 

maximum absorption of each UV filter.  Identification of each UV absorber was done by comparison 

of its retention time and UV spectrum with those of known standards.  A typical chromatogram of the 

three UV filters in a single preparation obtained under these conditions is shown in Figure 4.3.  Linear 

calibration curves were obtained for each UV filter by using five standard solutions.  The correlation 

coefficients of each calibration curve were  0.99.  In this study, the limit of detection (LOD) and the 

limit of quantitation (LOQ) were calculated based on the slope (b) of the calibration curves and the 

standard deviation (Sy/x) of the slope of the regression lines according to the formula: LOD = 3(Sy/x/b), 
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LOQ = 10(Sy/x/b) (Miller and Miller 1984).  The calculated LOD values for BP3, BMDBM, and 

EHMC were 0.100, 0.014 and 0.076 µM, respectively.  The calculated LOQ values were 0.333, 0.045, 

and 0.253 µM, respectively. Tables 4.1 and 4.2 summarise the calibration data and intra- and inter-day 

analysis.  Recoveries from spiked samples were in the range 97–104 % depending on the used matrix.  

Due to the complex matrix of cosmetics deviations in the results are expected.  The summary of 

analytical parameters used in the analysis of the UV filter is presented in Tables 4.1 and 4.2 whereas 

the levels of UV filters in the 12 skin-lightening preparations analysed are presented in Table 4.3.  

Most products contained all three organic UV filters thereby affording broad-spectrum protection.  

Products H and J did not contain BP3.  The other exceptions were samples K and L that contained 

only the physical blocker; TiO2.  These samples (K and L) also had no ingredients indicated on their 

packets.  The samples A, D, F and H did not contain titanium dioxide, a physical blocker.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

C 

B 

Figure 4.7: HPLC chromatogram of sample A showing the UV filters: BP3 (A), 
BMDBM (B) and EHMC (C).  A reversed phase C-12 column (Phenemonex 
Synergi 4µ Max-RP 80 Å, 150 mm × 4.6 mm) was used with mobile of methanol-
water (84:16 % v/v).  The injection volume was 20 µL and flow rate set at 1 mL 
min-1, The detection wavelength was 310 nm. 
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Table 4.2: The summary of linear regression of calibration data for the sunscreen absorbers. 

Parameters BMBDM BP3 EHMC 

Calibration range/µM 4.37 - 273 3.12 - 499 4.86 - 778 

Slope/1010 3.31 1.37 2.15 

Error of the slope/108 1.49 4.56 5.46 

R2 0.9997 0.9741 0.9879 

LOD/µM 0.014 0.100 0.076 

LOQ/µM 0.045 0.333 0.253 

The LOD is calculated as 3Sy/xb
-1 ( Sy/x is the standard error of the slope and b is the slope of the calibration line) and LOQ is given as 3.33(LOD). 

 

Table 4.3: A summary of the intra- and inter-day instrumental response analysis. 

Sunscreen absorber Conc./µM 
Intra-day (n = 5) Inter-day (n = 5) 

Found/µM RSD/% Recovery/% Found/µM RSD/% Recovery/% 

BMBDM 30 30.23 ± 0.95 3.14 100.8 29.57 ± 1.01 3.42 98.6 

BP3 60 59.87 ± 0.33 0.55 99.8 60.1 ± 0.56 0.93 100.2 

EHMC 50 50.12 ± 0.05 0.10 100.2 49.68 ± 0.96 1.93 99.4 

Recovery/% = (mean of found concentration/theoretical amount) × 100 % and RSD/% = (SD/mean concentration) × 100 % 
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Table 4.4: The percentage amounts of the sunscreens in the investigated skin-lightening preparations from the South African market. 

Sample BMDBM/ % m/m BP3/% m/m EHMC/%m/m TiO2/% m/m 

A 0.221 ± 0.002 1.10 ± 0.02  2.49 ± 0.005  - 

B 0.066 ± 0.007  9.44  ± 0.03 20.97 ± 0.09.0  6.90 ± 0.05 

C 0.432 ± 0.003 0.87 ± 0.04  1.93 ± 0.08  2.83 ± 0.07 

D 0.422 ± 0.001  0.85  ± 0.03 2.31 ± 0.08 - 

E 1.84 ± 0.015  0.39 ± 0.08  7.02 ± 0.06 7.47 ± 1.2 

F 0.214 ± 0.01  0.35 ± 0.01 7.00 ± 0.05 - 

G 0.163 ± 0.001 0.35 ± 0.007 1.52 ± 0.08  5.65 ± 0.05 

H 1.92  ± 0.06 - 8.20 ± 0.04  - 

I 0.50 ± 0.06 0.40 ± 0.009 1.85 ± 0.02 3.35 ± 0.03 

J 1.70  ± 0.01 - 6.46 ± 0.03 2.86 ± 0.06 

K 0 0 0 3.73 ± 0.07 

L 0 0 0 3.04 ± 0.06 

Max. COLIPA 

value % (m/m) 

5 10 10 25%; ˃ 100 nm 

USA* 3 6 7.5 25 

AUS25 10 10 5 ٭ 

Japan20 5 10 ٭ no limit 

BMDBM – butylmethoxy dibenzoylmethane, EHMC – 2-ethylhexyl-p-methoxycinnamate, BP3 - benzophenone-3, 

 from (Krause et al. 2012; Oesterwalder and Herzog 2009; Serpone et al. 2002)٭ 

Sunscreens below the detection limit but which may have been present are indicated as zero those that were not present were indicated as dash (-). 
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4.3.2  Photostability of the skin-lightening products 

The photostability of sunscreen products determines their effectiveness, since the decomposition of 

the UV filters under sunlight exposure reduces their expected screening capacity.  Hence, in order to 

ensure adequate photoprotection during usage, the photochemical behaviour of sunscreen agents 

needs to be investigated under conditions that mimic those encountered in the finished sun-care 

preparation.  In this work we investigated the photostability of skin-lightening preparations.  These 

products contained majorly the sunscreens: EHMC, BP3 and BMDBM.  Some of the samples 

contained plant extracts labelled on the packet as constituents constituting the preparation.  Each 

product was tested by smearing on a quartz plate.  The samples for instance A containing: EHMC, 

BMDBM and BP3, at an application density of 1.096 mg cm-2 showed photodegradation (Fig. 4.4).  

The same effect was observed for other skin-lightening products.  For instance, sample G 

incorporating EHMC, BP3, BMDBM, and TiO2 also photodegraded (Fig. 4.5).  This observation 

implied that despite the presence of a physical absorber and reflector of radiation, the samples 

suffered photo-loss upon solar exposure.  The only way we can tell that the UV filters are photo-

unstable is by decrease of the absorptive capacity because of photo-instability of the absorbers 

resulting in an increase of the transmitted radiation especially UVA region, (see Fig 4.4 and Fig. 4.5).  

Products A and G were similar in composition save for titanium dioxide in sample G.  Both samples 

contain the UVA absorber, BMDBM which is known to be photolabile particularly in aprotic media.  

It undergoes phototautomerisation from the enol- form that absorbs at 360 nm to the keto- form that 

absorbs at 260 nm.  In addition, in nonpolar media it is known to photodegrade.  A contained slightly 

more of the absorber than G but A was photostable in the UVB region whereas G exhibited a small 

photoloss in this region.  However, both were markedly unstable in the longer wavelength region.  

Other products that showed similar behaviour see Supplementary Materials Figures S4.1 – S4.4. 

 

However, samples containing plant extracts showed a different trend on continued exposure.  These 

samples most of them showed first an initial increase in percent transmittance and then a drop.  An 

indication of gain in photostability after an initial photoloss.  For example E, a composed of EHMC, 

BP3, BMDBM, TiO2, mulberry extracts, grape extracts, liquorice extracts, sexifrage extracts and 

scutelleria root extracts kojic acid and kojic diplamitate showed, drop in transmittance with increasing 

solar exposure (Fig. 4.6).  The application density on this plate was 1.002 mg cm-2.  The drop in 

transmittance is an indication of an increase in absorption efficacy.  We concluded from this 

observation and from other skin-lightening preparations even those containing the TiO2, that plants 

extracts have a positive effect on photostability.  For another example is sample B, Figure 4.7 shows 

the transmittance spectra of a preparation containing EHMC, BP3, BMDBM, TiO2, citronellol, 

coumarin, gereniol, limonene, and linalool at an application density of 1.010 mg cm-2 with increasing 

absorptive potential. Table 4.4 summarise the constituents of the samples investigated and the effect 

of solar exposure applied on the transmission characteristics when the products were applied on the 

quartz plates.   
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Figure 4.9: Photodegradation of skin lightening preparation G under solar irradiation, the 
sunscreens present are and EHMC, BP3, BMDBM and TiO2.  The application density 
was 1.021 mg cm-2 smeared on quartz plate and spectra recorded on a Perkin Elmer 
lambda 35 UV-vis dual beam spectrophotometer. 
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Figure 4.8: Photochemical degradation of skin-lightener A containing BMDBM, 
EHMC, and BP3.  The application density was 1.096 mg cm-2 smeared on a 
quartz plate.  The spectra were recorded on a Perkin Elmer Lambda 35 UV-vis 
dual beam spectrophotometer. 
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Figure 4.10: Transmission spectra of skin lightening preparation E containing the sunscreen 
agents, EHMC, BP3, BMDBM and TiO2 with plant extracts of mulberry, liquorice, grape, 
sexifrage, and scutelleria and kojic acid, and kojic dipalmitate.  The sunscreens incorporated are: 
avobenzone and ethylhexylmethoxy cinnamate.  The product was applied on quartz glass plate at 
an application density1.002 mg cm-2 and spectra recorded on a Perkin Elmer Lambda 35 UV-vis 
dual beam spectrophotometer. 
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Table 4.5: The constituents of the investigated skin lightening preparations as listed on product labels and their effect on light transmission. 

Skin-lightening 

Product 
Sunscreen Present 

Antioxidant 

present 
Plant Extracts Other Additives 

Effect on transmission 

due to solar exposure 

A 

EHMC 

BMDBM 

BP3 

Tocopheryl 

acetate 

Soy protein 

sulfonate 

 

Phenoxyethanol Increase 

B 

EHMC 

BP3 

BMDBM 

TiO2 

Tocopheryl 

acetate 

Citronellol 

Coumarin 

Geraniol 

Limonene 

Linalool 

Hydrolysed milk 

protein 

Phenoxyethanol 

Drop 

C 

EHMC 

BMDBM 

BP3 

TiO2 

 

Mulberry extract 

Grape extract 

Sexifrage extract 

Scutelleria root 

extract 

Jojoba oil 

Avocado oil 

Niacinamide 

Sweet almond 

milk 

Mineral oil 

Drop 

D 

EHMC 

BMDBM 

BP3 
 

Javetri extract 

Kasturimanjal 

extract 

Kesar extract 

Raktachandan 

extract 

Glycerin Drop 

E 

EHMC 

BP3 

BMDBM 

TiO2 

Tocopheryl 

acetate 

Lactic acid 

Mulberry extract 

Grape extract 

Liquorice extract 

Sexifrage extract 

Scutelleria root 

 
Drop 
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Kojic acid 

Kojic dipalmitate 

F 

EHMC 

BP3 

BMDBM 

 

 

Almond oil 

Cucumber extract 

Liquorice extract 

Aloe vera extract 

Saffron extract 

Germ oil 

Phenoxyethanol 

Methyl paraben 

propyl paraben 

Drop 

G 

EHMC 

BMDBM 

BP3 

TiO2 

Tocopheryl 

acetate 

Sodium 

ascorbate 

phosphate 

Niacinamide 
Milk cream 

Methyl paraben 
Increase 

H 

EHMC 

BMDBM 

 

Butylated 

hydoxytoluene 

Licorice extract 

Sunflower seed oil 

Niacinamide 

Allantoin 

Methyl paraben 

propyl paraben 

Drop 

I 

EHMC 

BP3 

BMDBM 

TiO2 

Propyl gallate 
Licorice extract 

Aspergillus ferment 

Diazolidynyl 

urea 

Methyl paraben 

Propyl paraben 

Drop 
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4.4  Discussion 

Most UV filters investigated had UV filter concentrations that fell within the allowed maximum limits 

of the health regulatory bodies in Japan, United States of America and the European Union, apart 

from sample B (Table 4.4).  The concentration of EHMC ranged from 1.85 – 20.97 % m/m with a 

mean concentration for the analysed samples of 4.98 % m/m.  The concentration range of 

benzophenone-3 was 0.35 – 9.44 % m/m and mean concentration of 1.72 % m/m.  The concentration 

range for BMDBM was from 0.221 – 1.92 % m/m and a percent composition of 0.65 % m/m.  .  The 

amounts of BMDM in most samples were much lower than anticipated.  Only one sample, B, had a 

concentration of EHMC that was found to exceed even the 20 % (m/m) maximum allowed 

concentration in Japan.  In comparison with levels found in the commercial sunscreen products in the 

market, the average composition of all organic absorbers in the products were lower than expected 

(Table 4.5).   

 

Table 4.5: A comparison of the percent composition of organic UV filters in skin-lightening 

preparations quantified and UV filters in commercial sunscreens products  

UV filter 
Present work Av % 

m/m 

Av. % m/m from Kim 

et al. (2011) 

Av. % m/m from 

Bunhu (2006) 

EHMC 4.98 6.77 6.15 

BP3 1.72 4.25 3.72 

BMDBM 0.65 2.01 1.67 

 

This work demonstrates that it is possible to photo-stabilize sunscreen molecules in certain 

formulations and photodegradation in others.  For instance, the products A and G contained BP3, a 

photostable absorber, which absorbs in the short wavelength UVA region and hence masks part of the 

BMDBM photoloss.  However, the lowest excited triplet state (T1) energy of BP3 (ET1 = 2.98 eV) 

(Kumasaka et al. 2014) is higher than that of the UVA absorber, BMDBM (ET1 = 2.53 eV) (Mendrok-

Edinger 2009; Kumasaka et al. 2014), and UVB absorber EHMC (ET1 = 2.42 eV) (Kikuchi et al. 

2010; Kumasaka et al. 2014).  This makes BP3 a possible triplet energy donor to BMDBM and 

EHMC in the mixture of these UV absorbers.  Hence the photosensitized BMDBM and EHMC may 

undergo [2+2] cycloaddition reactions yielding less absorbing photoproducts.  This could result in the 

rapid loss in photo-absorption observed.  EHMC is known to photoisomerise upon irradiation from 

the trans- to cis-isomer and thereby lose some of its efficacy.  It is also known that BMDBM 

photosensitizes the photoisomerisation of EHMC from the trans- to cis- and the cis-isomer is less 

efficient absorber of the UVB radiation. Formulation G could suffer another drawback due to the 

photocatalytic effect of TiO2 since it has been shown that the presence of TiO2 can mineralize organic 

absorbers (Egerton et al. 2008; Dondi et al. 2006).  It can therefore be argued that the photo-unstable 

UV filters may be harmful to human skin due to unknown photoproducts formed.   

 

The inclusion of plant extracts seems to confer stability to the incorporated sun-active molecules 

though further research is needed to confirm or elucidate the mechanism of the conferred 

photostability.  Notable case was the samples with plant phytochemicals; they showed remarkable 

improvement with increasing period of exposure to sunlight.  Sample B on its label indicated that it 

contained citronellol, coumarin. gereniol, limonene and linalool.  These are known compounds found 

in most plant species.  These compounds have some level of unsaturation within their carbon skeleton.  

We envisage that upon exposure to UV radiation they are likely to participate in photo-induced 

cyclization reactions and possible dimerization with net increase in  -  conjugation.  This claim 

requires further investigation, to establish the excited states involved and the resultant chromophoric 
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species formed.  It is interesting to note that the UV filter combination of BMDBM and EHMC, 

which is known to be photo-unstable, they demonstrated unusual photostability in skin-lightening 

preparation containing plant extracts (Fig. 4.6 and Fig 4.7).  The plant extracts incorporated may play 

a role in stabilizing the products and enhancing their absorptive capacity.  This is what causes the 

decrease in transmittance.  

 

BMDBM, while it is one of the few organic sunscreening agents that affords photoprotection in the 

long wavelength UVA range, is photo-unstable as can be seen in the sharp increase in spectral 

transmittance between 330 and 350 nm due to photo-degradation to less absorbing products.  

However, in this work skin lightening products with plant extracts showed a fall in this region.  The 

photostability of BMDBM has been shown to be partly depended on the polarity of the solvent.  

BMDBM undergoes photodegradation in a nonpolar environment (Schwack and Rudolph 1995), by 

reactive radical formation of benzoyl and phenacyl radicals.  This reaction yield photoproducts that 

are less absorbing within the UVB and UVA range.  However, in a polar protic environment 

BMDBM tends to participate in keto-enol tautomeric isomerization via excited carbonyl hydrogen 

abstraction reaction with the solvent or other hydrogen donors in the environment.  The enol form of 

BMDBM has a wavelength of maximum absorption at 358 nm making it a better UVA absorber.  The 

formation of the keto form of BMDBM which has maximum absorption at 260 nm greatly weakens its 

usefulness as UV protecting molecule.  This occurs in a polar aprotic environment.  Hence the keto-

enol tautomerism of this molecule plays a role on its photo-absorption.  This polarity and  proticity 

dependent photostability of BMDBM was shown by Mturi and Martincigh (2008).  Because of the 

improved photostability of these compounds in the skin-lightening preparations containing plant 

extracts, we propose that the phenolic compounds present in the plant extracts may create a 

favourable polar environment to enhance the enol form of BMDBM.  

 

On the other hand, the trans-cis photo-isomerization of EHMC results in a loss of some of its 

absorbing ability.  This is because the cis isomer has a shorter molar absorption coefficient, and thus a 

lower UV absorption efficacy.  Apart from these photo-induced structural transformations that bring 

about the photo-loss of the cinnamic group, the triplet excited state of the cinnamic chromophore is 

lower than the excited state of the dibenzoylmethane derivative (Kikuchi et al. 2010; Mendrok-

Edinger 2009).  Hence, it may undergo photosensitized isomerization in the presence of BMDBM.  

The resultant effect is an enhanced photo-loss because of the greater formation of the cis-isomer 

which is a less efficient absorber of UVB radiation.  From the foregoing analysis, therefore, a 

combination of BMDBM with EHMC is expected to be inherently photo-unstable.  The observed 

photostability is thus of great interest, because the decrease in transmittance was shown in the 

presence of both BMDBM and EHMC.  This leads us to conclude that phytochemicals play a role in 

stabilizing both UV filters.  A probable mechanism of photostabilization of sunscreen agents by these 

phenolic compounds could be by way of a vibrational deactivation mechanism or via participation in 

hydrogen abstraction reactions. 

The photostability of skin-lightening preparation E containing the plant extracts: mulberry, liquorice, 

grape, sexifrage, and scutelleria extracts could be explained interms of the presence of plants extracts.  

This view could be reinforced by the fact that the only sunscreens incorporated are EHMC and 

BMDBM (Fig.4.7).  The problem with this mixture is that it becomes difficult to determine the exact 

contribution of each of the different extracts.  The phytochemical compositions across different plant 

species are different and therefore there are likely to be antagonistic, or some other form of, reactions 

that may reduce the products efficacy.  Hence, each extract requires investigation singularly in order 

to evaluate its worth in photoprotection.   
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The use of natural products with properties known to rejuvenate and protect the skin from 

environmental pollution, chemicals, atmospheric temperature fluctuation, UVA and UVB radiation, 

wrinkling, hyperpigmentation (excessive tanning) and inflammation has been on the rise in cosmetic 

industry.  The other likely benefit of incorporating plants extracts in skin-lightening preparations with 

sunscreens is the radical scavenging ability of polyphenolic substances.  Several reports suggest that 

naturally occurring unsaturated fatty acids and phenolic compounds have free radical scavenging 

properties.  This approach is likely to mitigate not only the effects of UV long-wave radiation but also 

contribute to the nourishing of skin tone.   

 

The possible photostabilizing potential of plant extracts in cosmetics, other than the widely reported 

antioxidant activity has not been extensively explored.  However, there a is some evidence show the 

UV filtering ability of some of these natural phytochemicals.  Rancan et al. (2002) showed that usnic 

acid a naturally occurring dibenzofuran derivative found in several lichen species, had the best UVB 

filtering effect, with an in vivo protection factor similar to Nivea Sun Spray LSF 5.  This group found 

most of the isolated compounds to have good photo-absorption efficacy compared to EHMC.  

However, caution must be exercised because although some of these compounds are indeed UV-

active they may photodegrade.  In the work by (Sobarzo-Sanchez et al. (2012)) they showed that 

boldine, has a UV light-filtering property relevant to photoprotective action, but noted that the 

photoproducts were toxic to nauplii of Artemia salina.   

 

A light complexion is the desire of all users of skin-lightening preparations.  However, a bleached 

skin is more susceptible to UV effects and hence other product related risks must be minimized.  

Hence, more effective formulations containing herbal components for topical application require a 

better understanding of the fate of the photochemical products.  More so the inclusion of other UV 

filters in such a formulation require investigation of various chemical interactions.  Currently no law 

exists that guides the incorporation of the various herbal components in cosmetic preparations.  The 

regulatory authorities need to frame some laws concerned with the safety, efficacy and quality 

assessment of these newer herbal cosmeceuticals. 

 

4.5  Conclusions 

The aim of this study was to investigate the photostability of sunscreens in skin-lightening 

preparations.  Two categories of these products were investigated in this work: photodegradation of 

sunscreen in skin-lighteners and sunscreens in skin-lighteners with plant extracts.  All the products 

containing sunscreens without plant extracts showed photodegradation.  Skin-lightening preparations 

with plant extracts showed a decrease in the spectral transmittance in the long wavelength region.  

This behaviour is likely to confer product photostability and effective photoprotection to the user.  

However, further investigation is required to determine the photo toxicities of the photoproducts 

formed. 
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Supplementary Materials 

Photodegradation of Skin-lightening preparations without plant extracts 
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Figure S4.1: Photochemical degradation of skin-lightener A (repeat) containing BMDBM, 
EHMC, and BP3.  The application density was 1.096mg cm-2 smeared on quartz glass plate.  
The spectra were recorded on a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. 
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Figure S4.2: Photochemical degradation of skin-lightener K containing BMDBM, EHMC, and TiO2 no 
ingredients were indicated on the packet the sunscreens were characterised on the basis of their 
retention time and UV spectra match with authentic standards on HPLC but were below quantitation 
limit.  The physical blocker TiO2 was determined by its emission line at 337 nm on ICP-OES and 
XRD.  The application density was 1.096mg cm-2 smeared on quartz glass plate.  The spectra were 
recorded on a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer. 
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Figure S4.3: Photochemical degradation of skin-lightener L containing BMDBM, EHMC and TiO2

the organic sunscreen agents were identified by match of their retention time and UV spectra with the 
corresponding standards from the HPLC data.  The quantities were below the limit of quantitation 
hence not included in the results table.  The application density was 0.090 mg cm-2 smeared on quartz 
glass plate.  The spectra were recorded on a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer. 
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Photostability of skin-lighteners with plant extracts 
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Figure S4.4: Photochemical degradation of skin-lightener D containing BMDBM, BP3 and 
EHMC.    The plant extracts are: javeti extracts, kasturimanjal extracts, kesar extracts, and 
raktachandan extracts.  The application density was 1.01 mg cm-2 smeared on quartz glass 
plate.  The spectra were recorded on a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer. 
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Figure S4.5: Photochemical degradation of skin-lightener C containing EHMC, BP3, 
BMDBM, and TiO2. The plant extracts are: mulberry extracts, grape seed extracts, 
avocado oil, saxifrage extracts, jojoba seed oil, and scutelleria root extracts.  The 
application density was 1.096mg cm-2 smeared on quartz glass plate.  The spectra 
were recorded on a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer. 
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Figure S4.6: Photochemical degradation of skin-lightener F containing BMDBM, EHMC and
BP3.  The plant extracts in the preparation are: almond oil, cucumber extract, liquorice 
extract, vetiver extract, aloe vera extract, saffron extract, and germ oil.  The application
density was 1.001 mg cm-2 smeared on quartz glass plate.  The spectra were recorded on a 
Perkin Elmer Lambda 35 UV-Vis spectrophotometer. 
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Calibration curves for BMDBM, EHMC and BP3 analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.7.1: HPLC calibration curve for the determination of BMDBM in 
sunscreen preparations. The chromatographic conditions were: A reversed-
phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 
mm), a mobile phase composition of methanol-water (84:16, v/v) at a flow rate 
of 1 mL min-1 and detection wavelength of 358 nm at ambient temperatures. 
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Figure S4.7.2: Residual plot for BMDBM 
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Figure S4.8.1: HPLC calibration curve for the determination of EHMC in sunscreen 
preparations. The chromatographic conditions were: A reversed-phase C-12 Phenomenex 
Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm), a mobile phase composition of 
methanol-water (84:16, v/v) at a flow rate of 1 mL min-1 and detection wavelength of 310 
nm at ambient temperatures. 
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Figure S4.8.2.: Residuals plot for EHMC 



86 
 

 
 

 

 

m 

 

Figure S4.9.1:  HPLC calibration curve for the determination of BP3 in sunscreen 
preparations. The chromatographic conditions were: A reversed-phase C-12 column 
Phenomenex Synergi 4µ Max-RP 80 Å, (150 mm × 4.6 mm), a mobile phase composition 
of methanol-water (84:16, v/v) at a flow rate of 1 mL min-1 and detection wavelength of 
286 nm at ambient temperatures. 
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Figure S4.9.2: Residual plot for BP3 
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Figure S4.10: The calibration curve for quantitation of TiO2 on ICP-OES operating 
conditions were: argon gas flow rate of 1.5 litres (L) min-1, auxiliary and nebulizer 
gas flows at 0.2 L min-1 and 0.8 L min-1 respectively.  The pump flow rate was set 
at 1.5 mL min-1 while plasma radiofrequency working at 1300 W and data acquired 
at wavelength of 337.279 nm.   
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Table S5.1: The actinometric data used in this work. 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

cum F0/ 

W/m2 

SED/ 

J/m2 

0 0 3097493 2386120 0.77 346.27 0.0023 
     

1 3600 2981028 1202842 0.40 346.27 0.0013 2.94E-07 3.00E-07 0.88 0.88 31.78 

2 7200 2658511 640280 0.24 346.27 0.00081 2.12E-07 2.16E-07 0.64 1.52 54.72 

3 10800 2816061 597626 0.21 346.27 0.00072 1.49E-07 1.52E-07 0.45 1.97 70.84 

4 14400 3285889 1539600 0.47 346.27 0.0015 6.05E-08 6.18E-08 0.18 2.15 77.37 

5 18000 2835763 1419040 0.50 346.27 0.0016 4.33E-08 4.42E-08 0.13 2.28 82.05 

6 21600 2746013 1549284 0.56 346.27 0.0017 2.76E-08 2.81E-08 0.08 2.36 85.03 

7 25200 2816500 1652425 0.59 346.27 0.0018 2.07E-08 2.12E-08 0.06 2.42 87.27 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/W/m2 

SED/ 

J/m2 

0 0 3175693 2440150 0.77 346.27 0.0023 
     

1 3600 2911686 1464313 0.50 346.27 0.0016 2.13E-07 2.17E-07 0.64 0.64 23.00 

2 7200 2931436 1176494 0.40 346.27 0.0013 1.47E-07 1.50E-07 0.44 1.08 38.90 

3 10800 2620407 626855 0.24 346.27 0.0008 1.41E-07 1.44E-07 0.42 1.51 54.18 

4 14400 2771025 587049 0.21 346.27 0.0007 1.11E-07 1.14E-07 0.33 1.84 66.24 

5 18000 3341469 1552749 0.46 346.27 0.0015 4.87E-08 4.97E-08 0.15 1.99 71.50 

6 21600 2874821 1607794 0.56 346.27 0.0017 2.80E-08 2.85E-08 0.08 2.07 74.52 

7 25200 2916500 1752425 0.60 346.27 0.0018 1.91E-08 1.95E-08 0.06 2.13 76.59 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 
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0 0 3192328 2440010 0.76 346.27 0.0023 
     

1 3600 2935894 1474930 0.50 346.27 0.0016 2.10E-07 2.14E-07 0.63 0.63 22.70 

2 7200 2889846 1185579 0.41 346.27 0.0013 1.42E-07 1.45E-07 0.43 1.06 38.04 

3 10800 2792634 670371 0.24 346.27 0.0008 1.40E-07 1.43E-07 0.42 1.48 53.18 

4 14400 2939027 618242 0.21 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.81 65.18 

5 18000 3529809 1654131 0.48 346.27 0.0015 4.74E-08 4.84E-08 0.14 1.95 70.30 

6 21600 2852753 1573089 0.55 346.27 0.0017 2.85E-08 2.90E-08 0.085 2.04 73.38 

7 25200 2906500 1710025 0.59 346.27 0.0018 2.06E-08 2.10E-08 0.06 2.10 75.59 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3001347 2285707 0.76 346.27 0.0023 
     

1 3600 3007162 1516639 0.50 346.27 0.0016 2.06E-07 2.11E-07 0.62 0.62 22.29 

2 7200 2806170 1148953 0.41 346.27 0.0013 1.41E-07 1.44E-07 0.42 1.04 37.54 

3 10800 2675593 647278 0.24 346.27 0.0008 1.39E-07 1.42E-07 0.42 1.46 52.55 

4 14400 2801497 605620 0.22 346.27 0.0007 1.09E-07 1.11E-07 0.33 1.79 64.36 

5 18000 3253306 1516008 0.47 346.27 0.0015 4.74E-08 4.84E-08 0.14 1.93 69.48 

6 21600 2982271 1666095 0.56 346.27 0.0017 2.71E-08 2.77E-08 0.08 2.01 72.41 

7 25200 3006500 1690001 0.56 346.27 0.0017 2.36E-08 2.40E-08 0.07 2.08 74.96 
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Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 
SED/ J/m2 

0 0 3197784 2462296 0.77 346.27 0.0023 
     

1 3600 3166929 1587121 0.50 346.27 0.0016 2.16E-07 2.20E-07 0.65 0.65 23.29 

2 7200 2999845 1243110 0.41 346.27 0.0013 1.43E-07 1.46E-07 0.43 1.07 38.70 

3 10800 2741937 653762 0.24 346.27 0.0008 1.42E-07 1.45E-07 0.43 1.50 54.05 

4 14400 2857733 621259 0.22 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.83 66.02 

5 18000 3321061 1554092 0.47 346.27 0.0015 4.85E-08 4.95E-08 0.15 1.98 71.25 

6 21600 3052704 1707927 0.56 346.27 0.0017 2.82E-08 2.87E-08 0.08 2.06 74.29 

7 25200 3046502 1690001 0.55 346.27 0.0017 2.44E-08 2.49E-08 0.07 2.14 76.93 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3108668 2386294 0.77 346.27 0.0023 
     

1 3600 3054880 1523849 0.50 346.27 0.0016 2.16E-07 2.20E-07 0.65 0.65 23.29 

2 7200 2951782 1205207 0.41 346.27 0.0013 1.44E-07 1.47E-07 0.43 1.08 38.86 

3 10800 2673674 642339 0.24 346.27 0.0008 1.41E-07 1.44E-07 0.42 1.50 54.07 

4 14400 2906023 624182 0.22 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.84 66.06 

5 18000 3478178 1643913 0.47 346.27 0.0015 4.73E-08 4.83E-08 0.14 2.00 71.17 

6 21600 3048413 1708304 0.56 346.27 0.0017 2.77E-08 2.83E-08 0.083 2.06 74.17 

7 25200 3046512 1710001 0.56 346.27 0.0017 2.37E-08 2.41E-08 0.07 2.13 76.72 
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Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3202837 2526506 0.79 346.27 0.0024 
     

1 3600 2980481 1496463 0.50 346.27 0.0016 2.30E-07 2.35E-07 0.69 0.69 24.84 

2 7200 3135265 1269250 0.41 346.27 0.0013 1.54E-07 1.57E-07 0.46 1.15 41.48 

3 10800 2685361 643784 0.24 346.27 0.0008 1.47E-07 1.50E-07 0.44 1.59 57.34 

4 14400 2887630 624869 0.22 346.27 0.0007 1.15E-07 1.17E-07 0.34 1.94 69.74 

5 18000 3369275 1579386 0.47 346.27 0.0015 5.14E-08 5.24E-08 0.15 2.09 75.28 

6 21600 2882010 1606799 0.56 346.27 0.0017 3.10E-08 3.16E-08 0.09 2.18 78.62 

7 25200 2882100 1667854 0.58 346.27 0.0018 2.41E-08 2.46E-08 0.07 2.26 81.22 
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Abstract 

The photostabilizing potential of plant extracts on sunscreen absorbers in commercial sunscreen 

products was investigated.  The amounts of the ultraviolet (UV) filters in these products were 

determined in order to check compliance with applicable regulatory requirements.  A reversed-phase 

high performance liquid chromatographic method (RP–HPLC), with photodiode array (PDA) 

detection was used for the simultaneous determination of 2-ethylhexyl-p-methoxycinnamate 

(EHMC), benzophenone-3 (BP3), 2,2′-methanediylbis[6-(2H-benzotriazol-2-yl)-4-(2,4,4-

trimethylpentan-2-yl)phenol] (MBBT), octocrylene (OCT), 2,2′-[6-(4-methoxyphenyl)-1,3,5-triazine-

2,4-diyl]bis(5-[(2-ethylhexyl)oxy]phenol) (BEMT)  and tert-butylmethoxy dibenzoylmethane 

(BMDBM).  The external standard calibration curves were linear with R2 ≥ 0.998.  The recovery of 

these six chemical UV filters from the spiked samples was 98.3–101.5 %.  The physical absorbers: 

titanium dioxide (TiO2) and zinc oxide (ZnO) were also quantified by means of inductively coupled 

plasma-optical emission spectrometry (ICP-OES).  Their recoveries were in the range of 98.8–99.5 

%.  All samples contained UV filters within the accepted maximum limits set by various health 

regulatory authorities.  The photostability experiment was performed by applying the product with a 

1.0 mg cm-2 of the product surface density on a quartz plate and exposing the plate to sunlight.  The 

spectral changes were recorded every hour on a UV-vis spectrophotometer.  The products containing 

plant extracts showed remarkable photostability compared with products without plant extracts 

irrespective of the percentage composition of the UV filters in the products.  We conclude that plants 

extracts may contribute synergistically, or otherwise, to the observed photostability. 

 

Keywords: Plant extracts, photostability, UV-filters 
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5.1  Introduction 

The destruction of stratospheric ozone layer, the main absorber of ultraviolet (UV) radiation, by 

various anthropogenic emissions has been identified as the cause of an increase in erythema, burning, 

dehydration, photo-dermatoses, photoaging and skin cancer in recent years.  The UV spectrum is 

divided into three regions on the basis of the wavelength range: UVC (100–280 nm), UVB (280–315 

nm) and UVA (315–400 nm).  The UVA region is further subdivided into UVA2 (315–340 nm) and 

UVA1 (340–400 nm).  The amount of solar UV radiation reaching the Earth’s surface is 

approximately 90–99 % UVA and 1–10 % UVB (Serge 2008; Perrson et al. 2002).   

 

The direct interaction of UVB radiation with cellular DNA has been cited as the primary cause of 

photocarcinogenesis via the formation of cyclobutane pyrimidine dimers and thymine glycols.  

Though, the UVB effects have been shown to be mainly restricted to the epidermis.  For example, 

erythema (redness of the skin) is due to sunburn mainly associated with UVB (Sklar et al. 2013).  

This is a cutaneous inflammatory reaction that can be accompanied by warmth and tenderness; severe 

cutaneous erythema may cause blister formation (Casetti et al. 2011).  The deeper penetrating UVA 

radiation may be much more harmful and therefore further investigation on its role in 

photocarcinogenesis is relevant.  The major consequence of cumulative UVA radiation is reported as 

generation of reactive oxygen species (ROS) which may induce cancer through other reactions like 

generating oxidized DNA base derivatives (Cortat et al. 2013; Fourtanier et al. 2012).  One of the 

DNA base derivatives is 8-hydroxydeoxyguanosine, and the other effect of oxidant species is 

alteration of tumour suppressor genes, like p53 (Vielhaber et al. 2006; Seite et al. 2000).  Several 

reports demonstrate in the human fibroblast model, the induction of 8-hydroxydeoxyguanosine after 

radiation from UVA2 (>334 nm) up to near visible light (434 nm).  It is evident that UVA radiation 

directly affects the dermal compartment and is thought to be the major cause responsible for 

photoaging of human skin (Fourtanier et al. 2012).  A number of studies have shown that UVA1 

causes destructive effects in human dermal fibroblasts, by induction of cytokines, matrix 

metalloproteinases, and mtDNA mutations (Kanavy and Gerstenblith 2011).  The induction of 

collagenase: matrix metalloproteinase-1 (MPP-1) responsible for degradation of collagen-type 1, the 

major constituent of the connective tissue, is considered most significant.  This is because the extent 

of collagen-type 1 reduction has been correlated with photodamage in human skin (Perrson et al. 

2002; Vielhaber et al. 2006).  The only remedy is to limit exposure of the human skin to UV radiation 

by use of protective clothing or stay under shade to avoid solar radiation or use sunscreens.   

 

The use of cosmetic products containing UV filters has been advocated by health authorities as the 

first line of defence against solar radiation-induced damages such as photo-aging, skin cancer and 

other dermal immunological related complications (Sambandan and Ratner 2011; Kockler et al. 

2012).  UV filters are organic or inorganic compounds that mitigate the deleterious effects of sunlight 

and are incorporated in a variety of pharmaceutics and cosmetics such as sunscreen creams, lotions 

and sprays and other products.  The need for high photo-absorption efficiency of sunscreen products 

against both UVB and UVA has sparked great interest in the development of cosmetic preparations 

and sunscreening agents.  A list of approved UV filters and their maximum allowed concentrations in 

commercial products has been set by regional health regulatory authorities around the world.  For 

example, Table 5.1 shows maximum allowed concentrations by COLIPA and FDA and some of the 

average organic absorber concentrations quantified by Kim et al. (2011) and those quantitated by 

Bunhu (2006) from the South African market.   

 

The lipophilicity of most of the available organic UV filters cannot be ignored as they may 

accumulate in human subjects (Hagedorn-Leweke and Lippold 1995; Cameron and Michael 1997; 
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Jiang et al. 1999) as well as other biotic systems (Poiger et al. 2004; Manova et al. 2013).  Recently 

Cuquerella et al. (2012) demonstrated that benzophenone (BP) may photosensitize DNA reactions or 

its building blocks.  Their results showed that irradiation of the BP chromophore in the presence of 

DNA or its components led to nucleobase oxidations, cyclobutane pyrimidine dimer formation, single 

strand-breaks, and DNA-protein cross-links.  This finding may imply that photostable BP UV filter 

derivatives like benzophenone-3 (BP3), may initiate such reactions when in contact with viable 

tissues.  In fact, Salter et al. (1993) showed that the UV filter Uvinul DS49, a derivative of BP, 

photosensitized the formation of thymine dimer in vitro.  Moreover, a number of organic UV filters 

have been shown to undergo photochemical transformation including isomerization resulting in the 

formation of photoproducts whose toxicity potentials are yet to be established (Schwack and Rudolph 

1995; Ingouville 1995; Broadbent et al. 1996).  There has therefore been a growing need to 

photostabilize these agents in cosmetic preparations.  One of the ways is by incorporation of plant 

extracts. 

 

Plant extracts contain mostly phenolic compounds possessing one or more aromatic rings with one or 

more hydroxyl groups (Dai and Mumper 2010).  These compounds are known to offer 

photoprotection to plants and have been shown to be good antioxidants.  These secondary metabolites 

have also been shown to have chemo-protective effects against oxidative stress-mediated disorders 

(Soobrattee et al. 2005).  The photoprotective effect of some of these extracts has been demonstrated 

(Yamaguchi et al. 2005) and observed that they could reduce UVB-induced erythema and associated 

early events in murine and human skin (Zhao et al. 1999).  However, the direct effect of these plant 

extracts on the photostability of sunscreen absorbers in commercial sunscreen products has not been 

reported. 

 

Several working groups have reported analytical techniques for determining UV filters in sunscreen 

products.  These include analytical methods based on separation and/or quantification by using UV–

vis spectroscopy (Chisvert et al. 2002), gas chromatography (Ikeda et al. 1990), and high-

performance liquid chromatography (HPLC) (Bunhu 2006; Scalia et al. 2006; Gaspar and Campos 

2007).  Reversed-phase HPLC is the most common method for the simultaneous analysis of several 

UV filters in pharmaceutics and cosmetics.  Bunhu (2006) separated and quantified ten sunscreen 

agents 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3), tert-butylmethoxy 

dibenzoylmethane (BMDBM), octylsalicylate (OS), methybenzylidene camphor (MBC), 

octyldimethyl amminobenzoate (ODAB), phenylbenzimidazole sulphonic acid (ensulizole) methylene 

MBBT, BEMT, and OCT in South African commercial sunscreens (some of them are shown in Fig. 

1).  Though the amounts of these agents in these cosmetic preparations are of concern and may help 

in mapping some of observed dermal effects associated with cosmetic preparations, the effect of plant 

extracts on their photostability has not been examined.  For the first time we report the effect of plant 

extracts on the photostability of suncare agents in selected sunscreen preparations from the South 

African market.  The investigation on the photostability of these agents in commercial suncare 

products is important for evaluation of the quality of the photoprotection conferred. 
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Figure 5.9: Some common organic sunscreen agents. 

 

Table 5.6: Levels of UV-filters and in 101 commercial sun-care products reported by Kim et al. 

(2011) and 22 sunscreens reported by Bunhu (2006) expressed in % (m/m). 

Sunscreens 

Kim et al. 

(2011) 

Frequently used 

Conc 

Kim et al. 

(2011) Av. 

Conc. 

Bunh

u 

(2006

) 

Av. 

Conc 

Max. 

Allowed 

Conc. 

(Korea) 

Max. 

Allowed 

Conc٭ 

COLIP

A 

Max. 

Allowe

d Conc٭ 

FDA 

EHMC 3.08~8.16 6.77 6.15 7.50 10 7.5 

IAMC 0.33~7.79 2.91 2.32 10 10 3 

EHS  1.78~5.33 4.2 3.41 5 5 5 

MBC  2.01~4.96 3.42 3.06 5 5 5 

BP3  3.04~5.37 4.25 3.72 5 10 6 

EDAB 2.23~5.71 4.46 - 8 8 8 

OCT 1.13~6.75 3.53 3.89 10 10 10 

BMDBM  0.49~3.41 2.01 1.67  5 5 3 

* Maximum allowed concentrations/% (m/m) by COLIPA and FDA (Krause et al. 2012; 

Oesterwalder and Herzog 2009; Serpone et al. 2002). 
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5.2  Materials and Methods 

5.2.1.  Chemicals and reagents 

The solvents, acetonitrile (ACN) and methanol (MeOH) of HPLC-grade, were purchased from Merck 

KGaA and dimethyl formamide (DMF) from Merck KGaA.  Ultra-pure water was freshly dispensed 

from a Milli-Q® water purification system (Millipore, Bedford, MA, USA) for each day of analysis.  

The six chemical UV filters of analytical purity were purchased as follows: MBBT and BEMT were a 

kind gift from Ciba Speciality Chemicals Ltd; 2-ethylhexyl-p-methoxcinnmate (EHMC) and tert-

butylmethoxy dibenzoylmethane (BMDBM) were a kind donation from BASF, octocrylene (OCT) 

and benzophenone-3 (BP3) was from Sigma-Aldrich Sulphuric acid (H2SO4) and potassium hydrogen 

sulphate (KHSO4) were purchased from BDH Chemicals Ltd.  TiO2 was bought from SAARCHEM 

Pty Ltd and ZnO and 1000 mg dm-3 Zn+2 ion standard solutions were purchased from Merck KGaA.  

The sunscreen products were purchased from retail stores in Durban, South Africa. 

 

5.2.2.  Quantitation of organic UV absorbers  

5.2.2.1. Preparation of standard solutions 

All standard stock solutions of the six organic UV absorbers were prepared fresh each day of analysis.  

The solutions of MBBT and BEMT were prepared by dissolving 15-20 mg of the UV filter in 30 mL 

DMF, ultrasonicated in a water bath for 1 hour and made up to volume with methanol so that their 

concentration was about 500 µM.  Stock solutions of OCT, EHMC, BP3 and BMDBM with a 

concentration of about 1000 µM each were prepared by dissolving 10-15 mg of each UV filter in 30 

mL of methanol, and ultrasonicated for 1 hour and then diluted to 50 mL with methanol.  For the 

purposes of determining the linearity working range, working standard solutions were prepared in the 

concentration range of 6.11–196 µM for MBBT, 2.45–157 µM for BEMT, 11.2–360 µM for OCT, 

4.37–273 µM for BMDBM, 3.12–499 µM for BP3, and 4.86–778 µM for EHMC by using the HPLC 

autosampler. 

 

5.2.2.2. Sample preparation 

Quantitation of all the organic UV filters in the sunscreen products was performed by using external 

standard calibration curves.  Samples containing MBBT and BEMT products were prepared by 

dissolving 150 mg of the cream in 30 mL DMF, ultrasonicated in a water bath for 1 hour, and made 

to 50 mL in a volumetric flask with methanol.  From this stock solution a volume of 2 mL of these 

samples was diluted to 10 mL with the mobile phase so that the final expected concentration of the 

chemical UV filters in the injected solutions was approximately 80–100 µM depending on the 

absorber.  Samples that gave higher concentrations more than the calibration range were re-diluted.  

All experiments were performed in triplicate.  The analysis of BMDBM, BP3, OCT and EHMC in the 

sunscreen samples was performed by dissolving  150 mg of the samples in 30 mL of methanol, 

ultrasonicated in a water bath for 1 hour, and then diluted to 50 mL in a standard flask with methanol.  

Working solutions were then prepared from this stock solution by imposing a tenfold dilution factor 

to achieve an approximate UV filter content of about 10-200 µM or more.  The prepared solutions 

were filtered through 0.45 µm Millex LCR syringe filters before injection into the HPLC system.  

 

5.2.2.3  Chromatographic conditions 

A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm) was 

used.  The mobile phase for the analysis of MBBT, and BEMT standards and samples was: 
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methanol–acetonitrile (90:10 % v/v).  The analysis of EHMC, BMDBM, OCT and BP3 was done 

with a mobile phase composition of methanol-water (84:16 % v/v), for both standards and samples.  

All the mobiles phases were purged with helium at a rate of 30 mL min-1 continually during each run.  

The flow rate of the mobile phases was 1.0 mL min-1, and the injection volume was 20 µL.  All the 

separations were performed at ambient temperatures.  The chromatograms were detected at 286, 304, 

310, 342, and 358 nm.  The isocratic elution run time was set for 30 min. 

 

5.2.2.4  Validation of chromatographic method 

The method validation experiments were performed in three different sunscreen products by using the 

external standard method and prepared similarly.  Briefly 150 mg of a pre-analysed sunscreen 

product was spiked with 10-15 mg of a UV filter and prepared as described in Section 5.2.2.  The 

prepared solutions were filtered through 0.45 µm Millex LCR syringe filters before injection into the 

HPLC system.  

 

5.2.3  Quantitation of physical blockers 

The quantitation and validation of the quantitation method for the analysis of TiO2 was carried out as 

described in Chapter Six, Sections 6.2.2.1 to 6.2.2.3.  The zinc standards in the range of 10 mg dm-3-

100 mg dm-3 were prepared from a 1000 mg dm-3 commercial standard solution.   

 

5.2.3.1  Preparation of ZnO samples 

Masses of samples in range 0.4 -0.6 g were weighed into a fused silica crucible, placed into an 

electrical furnace with the temperature set at 600 ºC for three hours to give a carbon free ash.  The ash 

was allowed to cool in a desiccator for 10 min, and then about 0.5 g of KHSO4 was added.  The 

crucible with residue ash and KHSO4 was heated over Bunsen burner for 15 min to fuse the mixture.  

The molten product was then dissolved in hot, concentrated H2SO4 and the solution transferred to a 

beaker.  This solution was strongly heated to ensure complete solubilization of the ZnO.  Sample 

solutions were then diluted with deionised water to 100 mL.  A ten-fold dilution was done for samples 

with higher counts above the calibration standards.  All samples were filtered through 0.45 µm Millex 

LCR syringe filters before aspiration into the ICP-OES, each sample was analysed in triplicate. 

 

5.2.3.2  ICP-OES experiment 

The TiO2 and ZnO in the samples were quantified by means of ICP-OES.  The ICP-OES spectrometer 

(Perkin Elmer Optima 5300 DV), fitted with an auto-sampler, was programmed to sample each 

standard and sample five times.  The instrument was operated in radial view mode.  Other operating 

conditions were: argon gas at a flow rate of 1.5 L min-1, auxiliary and nebulizer gas flows at 0.2 L 

min-1 and 0.8 L min-1 respectively.  The pump flow rate was set at 1.5 mL min-1 while the plasma 

radiofrequency was working at 1300 W in radial view mode and the analysis was monitored at 206 

nm for ZnO and 337 nm for TiO2.  

 

5.2.3.3  Validation of ICP-OES method 

The validation of the ICP-OES method was done as detailed in Chapter Six, Section 6.2.2.3. 

 



99 
 

 
 

5.2.4  Data analysis 

Calibration curves for all UV filters were constructed for quantitation of the sunscreen absorbers in 

the products.  Regression equations were obtained through un-weighted least squares linear regression 

analysis, by using peak areas as a function of their concentration on Microsoft Excel 2007. 

 

5.2.5  Photostability experiments 

The photostability experiments were carried out as described in Chapter Four, Section 4.2.6. 

 

5.2.6  Actinometric studies 

The actinometric studies were carried out as detailed in Chapter Four, Section 4.2.7.1. 

 

5.2.6.1  Actinometric data analysis 

The analysis of the actinometric data was performed as described in Chapter Four Section 4.2.7.2. 

 

5.3  Results  

A total of eleven commercial sunscreen products were quantitated and their photostability 

investigated. 

 

5.3.1  Quantitation of absorbers 

In this work, six organic absorbers and two physical absorbers were quantified.  Some of the products 

contained other absorbers but these were not quantified because standards were not readily available.  

However, all were present in the HPLC chromatograms.  Each organic UV filter was quantified at the 

wavelength of its maximum absorption and physical blockers, TiO2 and ZnO, were quantified at their 

preferred wavelengths of emission.  The chromatogram in Fig. 5.2 shows a typical separation of the 

OCT, MBBT and BEMT standards and the corresponding UV spectra used in the identification.  This 

chromatogram was obtained with a mobile phase of methanol-acetonitrile (90:10 % v/v).  The 

calibration curves of the UV filters were linear in the investigated concentration ranges (R2  0.99).  

The analytical parameters of representative calibration curves are summarised in Table 5.2.  To 

validate this method the mean recovery of the UV filters from the spiked samples was calculated and 

results are shown in Table 5.3.  To check on instrument signal stability during the period of analysis 

an intra- and inter-day analysis of authentic standards was done.  A high level of precision was 

realized ≥ 99 % for the intra- and inter-day analysis (Table 5.4).  The statistical limit of detection 

(LOD) is defined as the analyte concentration that gives a signal equal to yb + 3.3 Sb, where yb is the 

signal of the blank and Sb is its standard deviation.  Similarly, the limit of quantitation (LOQ) is given 

as yb + 10 Sb.  However, for the un-weighted least-squares method it is recommended in practice to 

use the standard deviation of the slope (Sy/x) (Miller and Miller 1984) instead of Sb  

Thus 

��� = �.��� �⁄ �⁄  

and 

 	��� = ���� �⁄ �⁄  

where b is the slope of the regression line.  

 

The amounts of the UV filters found in this work were all within the allowed maxima set by COLIPA 

and FDA.  However, some samples had much lower amounts than anticipated.  For instance in B1, 
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B2, B3 and B4 the amount of BMDBM was below the limit of quantitation and so the respective 

amounts are indicated as zero (Table 5.5).  The amount of BP3 was in the range of 2.69 – 5.37 % 

(m/m), EHMC ranged from 0.28 – 3.62 % (m/m), OCT ranged from 0.68 – 4.02 % m/m, MBBT 

ranged from 2.65 – 7.93 % (m/m) and BEMT ranged from 3.79 – 6.07 % (m/m).  The sunscreen 

products; P1 – P3 containing plant extracts had much lower concentration of the UV filters, EHMC 

and BMDBM.  The levels of BEMT and MBBT for those products that had them were sufficiently 

comparable to the allowed amounts by COLIPA and FDA.  The amount of TiO2 in these samples 

ranged from 0.72 – 12.60 % (m/m) an average slightly higher than those found in skin-lightening 

preparations (see Chapter Six).  The quantitation of ZnO in other sunscreens products served as a 

control because the percentage composition was indicated on the packs unlike those that contained 

TiO2.  The experimental values were very close to the packet label an indication that the packet labels 

represented the actual concentration of ZnO (Table 6).  The levels of organic absorbers in the samples 

containing ZnO had previously been reported by Lyambila (2003) and therefore not included in this 

work, however, levels of ZnO were not done and in this work they ranged from 5.03 – 8.61 % (m/m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.10: A typical HPLC chromatogram of OCT at retention time 2.309 minute, MBBT at 11.431 
minute, and BEMT at 13.186 minutes on a reversed-phase C-12 Phenomenox synergi column (150 
mm × 4.6 mm).  The injection volume was 20 µL at a flow rate of 1 mL min-1 in isocratic elution 
mode of MeOH-ACN (90:10 v/v).  The chromatogram was monitored at 304 nm. 

OCT MBBT BEMT 
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Table 5.7: Summary of analytical parameters for representative calibration curves of the UV filters in 

the sunscreenproducts. 

UV filter 
Retention 

time/min 

Standards 

range/µM 
Slope R2 

LOD/ 

µM 

LOQ/ 

µM 

BP3 a 3.73 - 3.83 3.12 - 4 99 1.37 x 1011 0.987 0.1001 0.33 

OCT a 8.88 - 8.90 5.90 - 189 1.29 x 1011 9881 0.14 0.470 

BMDBM a 9.77 – 10.37 4.37 -  273 3.31 x 1011 0.9998 0.0132 0.044 

EHMC a 11.00 - 11.40 4.86 - 778 2.15 x 1011 0.9939 0.076 0.253 

MBBT b 11.45 - 11.52 6.11- 196 2.64 x 1010 0.9962 0.066 0.220 

BEMT b 13.19 - 13.56 2.45 -  157 4.17 x 1010 0.9784 0.191 0.637 

TiO2
c - 0.48 - 2.5 d 4.49 x 104 0.9997 0.0187 0.0623 

ZnO c - 10.0 -  100.0 e 1.15 x 105 0.9999 0.0077 0.0256 
a Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column 

(150 mm × 4.6 mm); mobile phase: methanol–water (84:16 % v/v). 
b Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å 

column (150 mm × 4.6 mm); mobile phase: methanol–acetonitrile (90:10 % v/v).  
c Determined on a Perkin Elmer Optima 5300 DV ICP-OES in radial view mode monitored at 

337.279 nm for TiO2 and 206 nm for ZnO. 
d the units are mol dm-3, and e mg dm-3. 

The LOD is calculated as 3Sy/xb
-1 (Sy/x is the standard error of the slope and b is the slope of the 

calibration line) and LOQ is given as 3.33(LOD). 

 

Table 5.8: Validation studies of the eight UV absorbers added to the test formulation. 

UV absorber Spiked mass/g Recovery/% (m/m) 

BMDBM 0.095 ± 0.021 100.5 ± 1.32 

BP3 1.007 ± 0.147 99.7 ± 0.59 

EHMC 0.0428 ± 0.0125 99.8 ± 1.01 

OCT 0.035 ± 0.009 101.5 ± 4.39 

MBBT 0.041 ± 0.011 99.5 ± 1.93 

BEMT 0.020 ± 0.002 98.3 ± 2.48 

TiO2 0.021 ± 0.005 98.8 ± 0.46 

ZnO 0.032 ± 0.0041 99.5 ± 0.99 

(n = 5) Each determination is mean ± SD. 
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Table 5.9: A summary of intra- and inter-day instrumental response analysis. 

Sunscreen 

absorber 
Conc./µM 

Intra-day (n = 5) Inter-day (n = 5) 

Found/µM RSD/% Accuracy/% Found/µM RSD/% Accuracy/% 

BMBDMa 30 30.23 ± 0.95 3.14 100.8 29.57 ± 1.01 3.42 98.6 

BP3a 60 59.87 ± 0.33 0.55 99.8 60.1 ± 0.56 0.93 100.2 

EHMCa 50 50.12 ± 0.05 0.10 100.2 49.68 ± 0.96 1.93 99.4 

BEMTb 20 19.99 ± 0.11 0.55 100.0 20.02 ± 0.12 1.00 100.1 

MBBTb 40 39.98 ± 0.35 0.88 100.0 40.12 ± 0.85 0.60 100.3 

OCTa 70 70.55 ± 0.46 0.65 100.8 69.85 ± 1.04 1.49 99.8 

TiO2 2 d 2.01 ± 0.02 0.10 100.5 2.01 ± 0.02 0.10 100.5 

ZnO 80 d 80.80 ± 0.40 0.50 101.0 79.39 ± 0.06 0.08 99.2 

Recovery/% = (mean of found concentration/theoretical amount) × 100 % and RSD/% = (SD/mean concentration) × 100 %, 

n is the sample population, SD is standard deviation, and RSD is the relative standard deviation. 
a Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm); mobile phase, methanol–water 

(84:16 v/v). 
b Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm); mobile phase, methanol–

acetonitrile (90:10 v/v).  
c Determined on Perkin Elmer Optima 5300 DV ICP-OES in a radial view mode monitored at 337.279 nm for TiO2 and 206 nm for ZnO. 
d the units are mg dm-3. 
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Table 5.10: The percentage levels of sunscreen agents in commercial sunscreen products containing plant extracts determined by HPLC. 

SAMPLE BMDBMa/% 

(m/m) 

BP3a/% 

(m/m) 

EHMCa/% 

(m/m) 

OCTa/% 

(m/m) 

MBBTb/% 

(m/m) 

BEMTb/% 

(m/m) 

TiO2
c/% (m/m) 

XD 2.33 ± 0.21 4.25 ± 0.32 3.11 ± 0.45 - - - - 

PB 3.05 ± 0.65 2.69 ± 0.12 3.62 ± 0.92 4.02 ± 0.46 - 3.85 ± 0.63 - 

B1 0 - 3.02 ± 0.08 - 2.65 ± 0.19 - 7.70 ± 0.09 

B2 0 - 0 - 7.93 ± 1.90 - 8.81 ± 0.03 

B3 0 - - - 2.81 ± 0.64 - - 

B4 0 - 0 - 3.15 ± 1.23 - 12.60 ± 0.21 

P1 0.59 ±0.002 - 0.28 ± 0.0003 0.68 ± 0.002 - 5.62 ± 0.01 0.70 ± 0.01 

 

P2 0.124 ± 0.004 5.37 ± 0.29 0.41 ± 0.0003 3.61 ± 0.19 - - 7.43 ± 0.02 

 

P3 0.26 ± 0.0004 5.01 ± 0.15 0.33 ± 0.007 2.65 ± 0.03 - 3.79 ± 0.04 1.50 ± 0.01 

 

P4 2.49 ± 0.03 4.41 ± 0.15 - 2.75 ± 0.02 - 6.07 ± 0.11 0 

P6 2.38 ± 0.81 - - 2.47 ± 0.05 - - 0.72 ± 0.04 

 

(n = 5) Each measurement is average value ± SD. 
a Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm); mobile phase: methanol–water 

(84:16 % v/v). 
b Chromatographic conditions: A reversed-phase C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm); mobile phase: methanol–

acetonitrile (90:10 % v/v).  
c Determined on a Perkin Elmer 5300 DV ICP-OES in a radial view mode monitored at 337.279 nm for TiO2. 

The amounts of sunscreen absorber detected but below the quantitation limit in this method are indicated as zero (0) and those without particular sunscreen 

absorber are indicated -. 
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Table 5.11: The percentage composition of zinc oxide in some selected sunscreen products in the 

market. 

Sample ID 
Product 

name 
SPF Zinc oxide/% (m/m) 

Packet labelled Zinc 

oxide % (m/m) 

SAU4 
Banana 

boat ultra 
30+ 8.33 ± 0.63 8 

SAU5 

Banana 

boat 

sensitive 

skin 

30+ 8.74 ± 0.41 8 

SAU6 
Banana 

boat faces 
30+ 8.40 ± 0.39 8 

SAU8 Triplegard  7.09 ± 0.17 7 

SAU12 Solar block 30+ 6.97 ± 0.08 6 

SAU14 
Banana 

boat kids 
30+ 8.61 ± 0.64 8 

SAU16 

UV 

triplegard 

kids lotion 

30+ 

 
7.19 ± 0.95 6.06 

SAU17 

UV 

triplegard 

kids 

30+ 6.93 ± 0.10 7.07 

SAU19 

The cancer 

council of 

Australia -

children 

30+ 6.17 ± 0.55 7 

SAU21 
Triplegard 

sun stick 

30+ 

 
4.84 ± 0.54 5 

SAU24 
Triplegard 

lip balm 
30+ 5.03 ± 0.27 5 

(n = 5) Each determination is mean ± SD.  

The amounts of organic absorbers in these products and their photostabilities had previously been 

reported by Lyambila (2003). 

 

5.3.2  Photostability of sunscreens products without plant extracts  

The sunscreen products investigated in this work mainly contained the following agents: BEMT, 

MBBT, homosalate (HMS), ethylhexyl salicylate (EHS), ethylhexyl triazine (EHT), ensulizole, OCT, 

EHMC, BP3, BMDBM and one product contained terephthalylidene dicamphor sulphonic acid 

(TDSA).  A number of them carried more than one sunscreen agent including the plant extracts.  Most 

sunscreen products containing no plant extracts, showed a characteristic degradation but with some 

showing a notable photostability.  This could be attributed to the inclusion of the photostable 

sunscreen absorbers: MBBT and BEMT, for example sample PB (Fig. 5.3).  This sunscreen product, 

PB contained OCT, HMS, BP3, BMDBM and BEMT a combination that is envisaged to offer very 

high stability in the UVB and UVA regions (Fig. 5.3) making it a broad-spectrum photoprotective 

product.  The very stable agent BEMT could explain its spectral stability in the UVA region.  

However, the sunscreen product XD (Fig 5.4), containing EHMC, BMDBM, BP3, and ensulizole 

showed a sudden increase in light transmittance under two hours of exposure.  This is less the time, 
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normally recommended for reapplication.  The sudden increase indicates high photoinstability in both 

UVB and UVA regions.  The transmittance of great amounts of UVB and UVA radiation is 

potentially dangerous because, both UVB and UVA are defined as carcinogenic factors by the IARC 

(1992) and sub-erythemogenic UVA doses have been shown to be responsible for various biological 

effects, including induction of photoallergic complications, and skin photodamage.  In addition, as a 

result of photochemical reactions, short-lived reactive photoproducts formed may react with 

biomolecules and give rise to potentially mutagenic products.  This product is therefore quite unstable 

and harmful to the unsuspecting consumer.  

 

Most sunscreens products showed similar photodegradation reported previously by Bunhu (2006).  

The problem with these commercial sunscreen products is that the percentage compositions of these 

sunscreens are not indicated on the pack and our HPLC analysis of some of these samples returned 

very low values.  This implies the sunscreen composition may be inadequate to offer sufficient 

photoprotection.  It is imperative that sufficient amounts of the ingredients be packaged and the 

percentage composition indicated on the pack.  Table 5.7 summarizes the compositions of the 

sunscreen products investigated and their photo-transmission response. 
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Figure 5.11: The photostability of the sunscreen PB without plant extracts 
applied on quartz plate (1.12 mg cm-2) exposed to sunlight.  The spectra were  
recorded on Perkin Elmer Lambda 35 UV-vis spectrophotometer. 

Figure 5.13: Photodegradation of sunscreen preparation XD containing EHMC, 
BP3, BMDBM and ensulizole.  The application density was 1.33 mg cm-2.  The 
product was applied on quartz plate and the spectra recorded on a Perkin Elmer 
lambda 35 UV-vis dual beam spectrophotometer. 
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5.3.3  Photostability of Sunscreens with plant extracts 

The sample P1 was indicated to contain the chemical absorbers OCT, BMDBM and BEMT, EHS, 

and the physical absorber and reflector TiO2.  The plant extract present was listed to be Simmondsa 

chinensis (Jojoba seed oil).  When the quartz plates with sample P1 applied was exposed to sunlight 

the transmission characteristics appeared to drop in the long wavelength region (Fig. 5.5).  The 

significant drop in the long wavelength could be due to the high degree of conjugated unsaturation of 

new photoproducts.  These spectral modifications indicate the conversion of phytochemicals and the 

incorporated chemical absorbers to other forms, which might be UVA-absorbing.  These changes are 

however, small possibly due to inclusion of stable chemical absorbers like BEMT and the physical 

absorber TiO2.  The overall conclusion is that either way exposure of this product to solar radiation 

causes chemical changes that could be accompanied with complete new products formed.  The 

formed photo-induced chemical species have different photo-absorption characteristics.  The spectral 

transmission behaviour varied from product to product in terms of magnitude of photo-absorption in 

the UVA2 and UVA1.  The product P3 containing the sunscreen agents OCT, EHMC, BP3, HMS, 

EHS, BMDBM, BEMT and TiO2 had vinifera (grape) seed extract, vaccinium oxycoccos (cranberry) 

extract and Lycium Chinese fruit extract incorporated.  This product showed pronounced drops in 

percent light transmission across the UV spectrum (Fig. 5.6).  The samples P2, P4, and P6 had much 

lower spectral change characteristics showing broad-spectrum protection; these products contained 

various plant extracts (see Supplementary Materials).  The product P2 contained jojoba seed oil and 

Buddleja davidii extracts but the offered photoprotection was perceived lower as it allowed light to 

pass through across the entire spectrum.  Product P6 proved to be very good sunscreen formulation in 

the seven hour continuous exposure.  This product contained OCT, BMDBM, EHT, FeO, TiO2, 

TDSA and Cocos nucifera extract.  The product showed remarkable increase in absorption of light 

indicated by drop in transmission to well below 2 % at 400 nm (see Table 5.7 and Supplementary 

Material S5.10).  The effect of physical absorbers in these sunscreen products could not be verified 

because the spectral behaviour of the products was not significantly different when compared to those 

without physical absorbers (eg P4 and P4).  
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spectra recorded on Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer. 
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Table 5.12: The composition of the sunscreen products used in the study and their effect upon solar 

exposure. 

Sunscreen 

product 

code 

Product 

name 

Sunscreen 

present 

Antioxidant 

present 
Plant Extracts 

Effect on 

transmission 

due to solar 

exposure 

XD 
Xeroderm 

(SPF 34) 

EHMC 

BMDBM 

BP3 

Ensulizole 

Tocopherol 

acetate  

Sharp 

increase in 

light 

transmission 

PB Piz buin  

OCT 

HMS 

BP3 

BMDBM 

BEMT 

Tocopheryl 

acetate  

Small 

Increase  

P1 

Garnier 

Ambre 

Solaire 

(SPF 50+) 

TiO2 

BEMT 

EHS 

BMDBM 

OCT 

 

Simmondsa 

chinensis 

extract (Jojoba 

seed oil) 

Drop 

P2 
Techni 

block 

OCT 

EHMC 

EHS 

BMDBM 

BP3 

TiO2 

 

Buddleja 

davidii extract 

Jojoba seed oil 

Drop 

P3 

Everysun 

family 

(SPF 40) 

OCT 

EHMC 

BP3 

HMS 

EHS 

BMDBM 

BEMT 

TiO2 

 

Vinifera 

(grape) seed 

extract 

Vaccinium 

oxycoccos 

(cranberry) 

extract 

Lycium 

Chinese fruit 

extract 

Drop 

P4 
Tropitone 

(SPF 30) 

OCT 

EHS 

HMS 

BP3 

BMDBM 

BEMT 

Tin Oxide 

TiO2 

 

Cocos 

nucifera 

Gardenia 

tahitensis 

 

Drop 
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P6 

Garnier 

amber 

solaire 

(SPF 30) 

OCT 

BMDBM 

EHT 

FeO 

TiO2 

TDSA 

 

Cocos 

nucifera 

 

Drop  

B1 
Disaar 

(SPF 60) 

EHMC 

MBBT 

BMDBM 

EHT 

TiO2 

 Green tea Small drop 

B2 
Disaar 

(SPF 90) 

EHMC 

MBBT 

BMDBM 

EHT 

TiO2 

Tocopheryl 

acetate 

Ascprbyl 

tetraisopalmitate 

O-cymen-5-ol Increase  

B3 

Disaar 

(SPF 

60/90) 

EHMC 

MBBT 

BMDBM 

EHT 

TiO2 

Tocopheryl 

acetate 

Ascprbyl 

tetraisopalmitate 

Trehalose  

Propylene glycol 

O-cymen-5-ol Increase  

B4 

Disaar 

beauty 

skin cream 

(SPF 60) 

EHMC 

MBBT 

BMDBM 

EHT 

TiO2 

Propylene glycol 

Tocopheryl 

acetate 

Ascprbyl 

tetraisopalmitate 

O-cymen-5-ol Increase  

 

5.4  Discussion 

UV radiation is reported to be largely responsible for the most damaging effects of sunlight on the 

skin.  The commonly used sunscreens are used to absorb this radiation because they show good 

absorption in this region.  It is known exposure of the skin to UV light gives rise to the formation of 

active oxygen intermediates (Mefferth et al., 1976; Fuchs and Packar, 1991) and lipid peroxidation 

products increases greatly in chronically sun-exposed human skin (Mefferth et al., 1976).  Therefore, 

a topical application that shows great potential of attenuating or absorbing UV light presents a good 

remedy for deleterious UV effects. 

 

The products investigated in this work showed varying degrees of photoprotection depending on the 

chemical composition and the plant extracts incorporated.  Plants are known to have varying 

phytochemical compositions based on species and even on geographical location.  It is not surprising 

that the photochemical behaviours of these products are different.  The phytochemicals present in 

these plants play a major role in protecting the plant itself against UV radiation as well preventing 

oxidative damage to the plant tissues induced by UV light.  Major plant phytochemicals known to 

inhibit photo-induced radical chain reactions are flavonoids.  Besides scavenging UV-induced 

radicals and so stopping propagation of lipid peroxidative chain reactions, flavonoids may provide 

their protective effect against UV radiation by acting as strong UV-absorbing sunscreens.  This group 
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of compounds belongs to the larger class of compounds referred to as polyphenols, which are natural 

antioxidants and are known to provide protection against UV irradiation-induced cytotoxicity. 

 

A product P3 in this work showed much longer wavelength protection compared to other products 

under study.  This product is labelled to contain vinifera seed extract, cranberry extract and lycium 

Chinese fruit extract.  The actual composition of these extracts in this product while it is unknown to 

us but the chemical compositions of each of the extract are known.  The major chemical component 

of vinifera seed extract are anthocyanins (Bagchi et al. 2000; Santosh 2008) which are known 

antioxidant and strong UV absorbers (Rancan et al. 2002).  Product P2 showed relatively lower 

photoprotection of the products investigated, however, because of the inclusion of the plant extracts 

we expect less UV induced effects because of polyphenols present from the plant extracts.  This 

product contains Buddleja davidii extract which has been shown to be rich in flavonoid related 

compounds (Fan et al. 2008) and Jojoba seed oil.  This observation opens another question of possible 

antagonistic effects between the phytochemical components in the extracts and the incorporated 

sunscreen agents.  

 

It is reported that UVA radiation penetrates deeply into the skin (Tyrrell, 1991); therefore, after 

topical application, antioxidant molecules may provide the skin with satisfactory photoprotection only 

if they are able to permeate through the stratum corneum and, therefore reach deeper skin layers.  The 

permeability barrier of the skin is determined by the stratum corneum, which is viewed as the main 

obstacle against the penetration of exogenous substances through the skin.  Products P4 and P6 

contained among other ingredients Cocos nucifera extract.  This particular extract is reported to 

contain various phytochemicals like vitamins (Yong et al. 2009).  These compounds are known to 

permeate deeply into the skin, and hence are likely to offer systemic protection against UVA induced 

free radical reactions.  Recently quercetin (a flavonoid) was shown to be able to permeate through the 

stratum corneum and, so, to penetrate into deeper skin layers.  Results from the work by Marquele-

Oliveira et al. (2007) showed that antioxidant compounds present in propolis extract were able to 

reach the lower layers of skin.  This conclusion was informed by observed antioxidant activity in the 

viable epidermis of pig skin and in the whole hairless mouse skin.  These findings suggest that 

topically applied antioxidants could be excellent candidates for successful employment as protective 

agents in certain skin diseases caused, initiated or exacerbated by sunlight irradiation (Bonina et al. 

1996).  Nevertheless, evaluation of cutaneous permeation and in vivo efficacy of formulations 

containing plant extracts are necessary in order to confirm their use for skin photoprotection.  Topical 

administration of antioxidants has recently proved to represent a successful strategy for protecting the 

skin against UV-mediated oxidative damage (Chen et al. 2012).  This approach has been shown to 

provide an efficient way to enrich the endogenous cutaneous protection system, and thus may be a 

successful strategy for diminishing UV radiation-mediated oxidative damage on the skin (Saija et al. 

1998).  

 

It has been widely reported that polyphenols prevent photo-oxidative stress in the skin, it would be 

important to know if plant extracts containing these substances maintain their action after inclusion in 

topical formulations.  Another important parameter to study is how they may interfere with the 

physical stability of the formulation.  This thought line is motivated by a recent work by Mambro and 

Fonseca (2005), whose result suggested that plant extracts could be active against one free radical but 

fail to protect the skin against other reactions mediated by free radicals.  These authors observed 

sufficient antioxidant activity of polyphenols via chemiluminescence assay but same compounds 

could not inhibit lipid peroxidation.  These polyphenols are also susceptible to temperature and 
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humidity action, and their stability profile and biological activity are strongly related and affected by 

processing and storage conditions. 

 

5.5  Conclusions 

The aim of this study was to investigate the photostability of sunscreens preparations containing plant 

extracts.  Two categories of commercial sunscreens were investigated in this work: sunscreens 

products without plant extracts and those with plants extracts or phytochemicals.  All the products 

containing sunscreens without plant extracts showed photodegradation.  Those preparations with 

plant extracts showed a decrease in spectral transmittance in both the short and long wavelength 

regions.  The broad-spectrum photo-absorption demonstrated may enhance a products’ efficacy in UV 

protection and minimize or eliminate deleterious UV effects.  There was notable spectral lability in 

some products in both short and long wavelength region of the UV spectrum.  This implies formation 

of photochemical species of diverse structural morphology.  This warrants further research to 

ascertain photo-toxicities of these new photochemical products.  
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Figure S5.1: HPLC calibration curve for the determination of BMDBM in 
sunscreen preparations. The chromatographic conditions were: A reversed-phase 
C-12 Phenomenex Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm), a 
mobile phase composition of methanol-water (84:16, v/v) at a flow rate of 1 mL 
min-1 and detection wavelength of 358 nm at ambient temperatures. 
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Figure S5.2: Residual plot for BMDBM 

y = 3E+10x
R² = 1

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03

p
.A

re
a

conc. Mol/L



117 
 

 
 

 

 

 

 

 

y = 2.1522E+11x
R² = 1.0000E+00

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

P
e

ak
 A

re
a

[EHMC]/mol dm-3

Figure S5.2.1: HPLC calibration curve for the determination of EHMC in sunscreen 
preparations. The chromatographic conditions were: A reversed-phase C-12 Phenomenex 
Synergi 4µ Max-RP 80 Å column (150 mm × 4.6 mm), a mobile phase composition of 
methanol-water (84:16, v/v) at a flow rate of 1 mL min-1 and detection wavelength of 310 
nm at ambient temperatures. 
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Figure S5.2.2.: Residuals plot for EHMC 
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Figure S5.3.1: HPLC calibration curve for the determination of BP3 in sunscreen 
preparations. The chromatographic conditions were: A reversed-phase C-12 column 
Phenomenex Synergi 4µ Max-RP 80 Å, (150 mm × 4.6 mm), a mobile phase composition 
of methanol-water (84:16, v/v) at a flow rate of 1 mL min-1 and detection wavelength of 
286 nm at ambient temperatures. 
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Figure S5.3.2: Residual plot for BP3 



119 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S5.4.1: HPLC calibration curve for the determination of BEMT in sunscreen preparations. 
The chromatographic conditions were: A reversed-phase C-12 column Phenomenex Synergi 4µ 
Max-RP 80 Å, (150 mm x 4.6 mm), a mobile phase composition of methanol-water (90.10 v/v) at a 
flow rate of 1 mL min-1 and detection wavelength of 342 nm at ambient temperatures. 
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Figure S5.4.2: Residual plot for BEMT 



120 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 2.6396E+10x
R² = 1.0000E+00

0

1000000

2000000

3000000

4000000

5000000

6000000

0 0.00005 0.0001 0.00015 0.0002 0.00025

p
e

ak
 a

re
a

[MBBT]/mol dm-3

Figure S5.5.1: HPLC calibration curve for the determination of MBBT in sunscreen 
preparations. The chromatographic conditions were: A reversed-phase C-12 column 
Phenomenex Synergi 4µ Max-RP 80 Å, (150 mm × 4.6 mm), a mobile phase 
composition of methanol-water (90.10 v/v) at a flow rate of 1 mL min-1 and detection 
wavelength of 342 nm at ambient temperatures. 
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Figure S5.5.2:: Residual plot for MBBT. 
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Figure S5.6.1: The calibration curve for quantitation of TiO2 on ICP-OES 
operating conditions were: argon gas flow rate of 1.5 litres (L) min-1, auxiliary 
and nebulizer gas flows at 0.2 L min-1 and 0.8 L min-1 respectively.  The pump 
flow rate was set at 1.5 mL min-1 while plasma radiofrequency working at 1300 
W and data acquired at 337.279 nm wavelength.   
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Figure S5.6.2: Residual plot for TiO2 
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Figure S5.7.1: The calibration curve for quantitation of ZnO on ICP-OES operating 
conditions were: argon gas flow rate of 1.5 L min-1, auxiliary and nebulizer gas flows at 
0.2 L min-1 and 0.8 L min-1 respectively.  The pump flow rate was set at 1.5 mL min-1

while plasma radiofrequency working at 1300 W and data acquired at 206 nm 
wavelength. 
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Figure S5.7.2: Residual plot for ZnO. 



123 
 

 
 

Photostability experiments for sunscreens with plant extracts 
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Figure S5.8: Spectral changes of sample P2 applied on quartz plate (1.02 mg cm-2) 
exposed to sun light.  The product was applied on quartz glass plate and spectra 
recorded on Perkin Elmer lambda 35 UV-Vis spectrophotometer. 
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Figure S5.9: Spectral changes of sample P4 applied on quartz plate (1.00 mg cm-2) 
exposed to sun light.  The product was applied on quartz glass plate and spectra 
recorded on Perkin Elmer lambda 35 UV-Vis spectrophotometer. 
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Figure S5.11: Spectral changes of sample B1 applied on quartz plate (1.03 mg cm-2) exposed to sun light.  
The product was applied on quartz glass plate and spectra recorded on Perkin Elmer lambda 35 UV-Vis 
spectrophotometer. 
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Figure S5.10: Spectral changes of sample P6 applied on quartz plate (1.12 mg cm-2) exposed 
to sun light.  The product was applied on quartz glass plate and spectra recorded on Perkin 
Elmer lambda 35 UV-Vis spectrophotometer. 
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Table S5.1: Recovery data for sunscreen analysis. 

BMDBM BP3 EHMC BEMT MBBT OCT 

85702617 49558373 51761148 82619914 67893224 93540756 

86319709 50184832 52140932 82296827 68488281 93174878 

85470431 49494526 52149613 82403375 68488256 94073428 

85836085 47384756 51997817 82645404 68528015 93798580 

84924711 48510880 51935928 81535279 67181774 93372005 

85696080 49756460 51951388 82536263 69161773 93372000 

86575973 49090651 52045120 82535270 67161779 93372116 
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Table S5.2: The actinometric data used in this work. 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

cum 

F0/ 

W/m2 

SED/ 

J/m2 

0 0 3097493 2386120 0.77 346.27 0.0023 
     

1 3600 2981028 1202842 0.40 346.27 0.0013 2.94E-07 3.00E-07 0.88 0.88 31.78 

2 7200 2658511 640280 0.24 346.27 0.00081 2.12E-07 2.16E-07 0.64 1.52 54.72 

3 10800 2816061 597626 0.21 346.27 0.00072 1.49E-07 1.52E-07 0.45 1.97 70.84 

4 14400 3285889 1539600 0.47 346.27 0.0015 6.05E-08 6.18E-08 0.18 2.15 77.37 

5 18000 2835763 1419040 0.50 346.27 0.0016 4.33E-08 4.42E-08 0.13 2.28 82.05 

6 21600 2746013 1549284 0.56 346.27 0.0017 2.76E-08 2.81E-08 0.08 2.36 85.03 

7 25200 2816500 1652425 0.59 346.27 0.0018 2.07E-08 2.12E-08 0.06 2.42 87.27 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/W/m2 

SED/ 

J/m2 

0 0 3175693 2440150 0.77 346.27 0.0023 
     

1 3600 2911686 1464313 0.50 346.27 0.0016 2.13E-07 2.17E-07 0.64 0.64 23.00 

2 7200 2931436 1176494 0.40 346.27 0.0013 1.47E-07 1.50E-07 0.44 1.08 38.90 

3 10800 2620407 626855 0.24 346.27 0.0008 1.41E-07 1.44E-07 0.42 1.51 54.18 

4 14400 2771025 587049 0.21 346.27 0.0007 1.11E-07 1.14E-07 0.33 1.84 66.24 

5 18000 3341469 1552749 0.46 346.27 0.0015 4.87E-08 4.97E-08 0.15 1.99 71.50 

6 21600 2874821 1607794 0.56 346.27 0.0017 2.80E-08 2.85E-08 0.08 2.07 74.52 

7 25200 2916500 1752425 0.60 346.27 0.0018 1.91E-08 1.95E-08 0.06 2.13 76.59 
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Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3192328 2440010 0.76 346.27 0.0023 
     

1 3600 2935894 1474930 0.50 346.27 0.0016 2.10E-07 2.14E-07 0.63 0.63 22.70 

2 7200 2889846 1185579 0.41 346.27 0.0013 1.42E-07 1.45E-07 0.43 1.06 38.04 

3 10800 2792634 670371 0.24 346.27 0.0008 1.40E-07 1.43E-07 0.42 1.48 53.18 

4 14400 2939027 618242 0.21 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.81 65.18 

5 18000 3529809 1654131 0.48 346.27 0.0015 4.74E-08 4.84E-08 0.14 1.95 70.30 

6 21600 2852753 1573089 0.55 346.27 0.0017 2.85E-08 2.90E-08 0.085 2.04 73.38 

7 25200 2906500 1710025 0.59 346.27 0.0018 2.06E-08 2.10E-08 0.06 2.10 75.59 

 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3001347 2285707 0.76 346.27 0.0023 
     

1 3600 3007162 1516639 0.50 346.27 0.0016 2.06E-07 2.11E-07 0.62 0.62 22.29 

2 7200 2806170 1148953 0.41 346.27 0.0013 1.41E-07 1.44E-07 0.42 1.04 37.54 

3 10800 2675593 647278 0.24 346.27 0.0008 1.39E-07 1.42E-07 0.42 1.46 52.55 

4 14400 2801497 605620 0.22 346.27 0.0007 1.09E-07 1.11E-07 0.33 1.79 64.36 

5 18000 3253306 1516008 0.47 346.27 0.0015 4.74E-08 4.84E-08 0.14 1.93 69.48 

6 21600 2982271 1666095 0.56 346.27 0.0017 2.71E-08 2.77E-08 0.08 2.01 72.41 

7 25200 3006500 1690001 0.56 346.27 0.0017 2.36E-08 2.40E-08 0.07 2.08 74.96 
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Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3197784 2462296 0.77 346.27 0.0023 
     

1 3600 3166929 1587121 0.50 346.27 0.0016 2.16E-07 2.20E-07 0.65 0.65 23.29 

2 7200 2999845 1243110 0.41 346.27 0.0013 1.43E-07 1.46E-07 0.43 1.07 38.70 

3 10800 2741937 653762 0.24 346.27 0.0008 1.42E-07 1.45E-07 0.43 1.50 54.05 

4 14400 2857733 621259 0.22 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.83 66.02 

5 18000 3321061 1554092 0.47 346.27 0.0015 4.85E-08 4.95E-08 0.15 1.98 71.25 

6 21600 3052704 1707927 0.56 346.27 0.0017 2.82E-08 2.87E-08 0.08 2.06 74.29 

7 25200 3046502 1690001 0.55 346.27 0.0017 2.44E-08 2.49E-08 0.07 2.14 76.93 

 

 

 

Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3108668 2386294 0.77 346.27 0.0023 
     

1 3600 3054880 1523849 0.50 346.27 0.0016 2.16E-07 2.20E-07 0.65 0.65 23.29 

2 7200 2951782 1205207 0.41 346.27 0.0013 1.44E-07 1.47E-07 0.43 1.08 38.86 

3 10800 2673674 642339 0.24 346.27 0.0008 1.41E-07 1.44E-07 0.42 1.50 54.07 

4 14400 2906023 624182 0.22 346.27 0.0007 1.11E-07 1.13E-07 0.33 1.84 66.06 

5 18000 3478178 1643913 0.47 346.27 0.0015 4.73E-08 4.83E-08 0.14 2.00 71.17 

6 21600 3048413 1708304 0.56 346.27 0.0017 2.77E-08 2.83E-08 0.083 2.06 74.17 

7 25200 3046512 1710001 0.56 346.27 0.0017 2.37E-08 2.41E-08 0.07 2.13 76.72 
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Time/hr Time/s Dod/Area Val/Area Val/Dod RRF 

Conc. 

Rem. 

Val/M 

k0/mol/L/s I0/einstein/L/s 
F0/ 

W/m2 

Cum 

F0/w/m2 

SED/ 

J/m2 

0 0 3202837 2526506 0.79 346.27 0.0024 
     

1 3600 2980481 1496463 0.50 346.27 0.0016 2.30E-07 2.35E-07 0.69 0.69 24.84 

2 7200 3135265 1269250 0.41 346.27 0.0013 1.54E-07 1.57E-07 0.46 1.15 41.48 

3 10800 2685361 643784 0.24 346.27 0.0008 1.47E-07 1.50E-07 0.44 1.59 57.34 

4 14400 2887630 624869 0.22 346.27 0.0007 1.15E-07 1.17E-07 0.34 1.94 69.74 

5 18000 3369275 1579386 0.47 346.27 0.0015 5.14E-08 5.24E-08 0.15 2.09 75.28 

6 21600 2882010 1606799 0.56 346.27 0.0017 3.10E-08 3.16E-08 0.09 2.18 78.62 

7 25200 2882100 1667854 0.58 346.27 0.0018 2.41E-08 2.46E-08 0.07 2.26 81.22 
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Abstract 

Titanium(IV) oxide (TiO2) is used as a physical blocker of ultraviolet (UV) radiation in many skin-

care products.  Absorption of TiO2 through the skin is likely to interact with viable tissues because 

UV radiation absorption generates toxic reactive oxygen species such as hydroxyl radicals.  Studies 

on the acute toxicity of TiO2 nanoparticles in mammals indicate that intra-tracheal instillation, 

intraperitoneal injection or oral instillation of TiO2 particles to the animals evoke an inflammatory 

response as well as certain histopathological changes.  Ultrafine particles of the anatase form of 

titanium dioxide, which are smaller than 0.1 microns, are pathogenic.  In this work eight skin-

lighteners containing TiO2 from South African market were studied.  The TiO2 was extracted by a 

fusion technique and quantified by inductively coupled plasma-optical emission spectrometry (ICP-

OES).  Sequential solvent extraction was employed to isolate TiO2 particles for characterisation by 

means of high resolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction 

(PXRD). All samples considered in this study meet agreeable TiO2 % (m/m) levels as specified by all 

health regulatory bodies.  Both forms of TiO2: anatase and rutile, were found to be present.  Most 

samples contained nano-TiO2 in the particle size range of 16.23 nm to 51.47 nm that could possibly 

lead to detrimental effects.  The fact that the anatase form, known for its photocatalytic activity, was 

present, is a cause for concern. 

 

Keywords: Quantitation, anatase, rutile, nano-TiO2 
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6.1  Introduction 

Physical blockers like titanium dioxide (TiO2) present in most skin care products have been shown to 

photo-induce degradation of organic sunscreens, enzymes, and DNA (Egerton et al. 2008; Sayre et al. 

2003).  Studies on the acute toxicity of TiO2 nanoparticles in mammals indicate intra-tracheal 

instillation, intraperitoneal injection or oral instillation of TiO2 particles to animals evoke 

inflammatory response and histopathological changes (Chen et al. 2010).  In cultured macrophages, 

TiO2 nanoparticles change the integrity of cell membrane and phagocytic activity (Zhang et al. 2010).  

A study showed reduction in cell viability, morphological alterations, a compromised antioxidant 

system, intracellular ROS production, and significant DNA damage in cells exposed to TiO2 

nanoparticles signifying the potential of nanoparticles to induce cytotoxicity and genotoxicity in 

cultured human amnion epithelial (WISH) cells (Saquib et al. 2012).   

 

TiO2 absorbs about 70 % of incident UV, and in viable aqueous environments this may lead to 

generation of hydroxyl radicals.  These free radicals may initiate oxidative reactions presenting 

possible undesirable mutagenic effects.  Hidaka et al. (1997) demonstrated that, if the sunscreen agent 

TiO2 illuminated with appropriate UV light it interacts with DNA or RNA and is, can cause serious 

damage.  This confirms that ultrafine sunscreen-grade TiO2 irradiated with sunlight is 

photocatalytically active.  A recent study showed that even some modified TiO2 particles specifically 

developed and marketed for sun-care, skin-care, and colour cosmetic formulations, still retain 

photocatalytic activity  (Tiano et al. 2010).  Mild cytotoxic response of TiO2 nanoparticles has been 

reported and linked to induction of DNA damage.  Shukla et al. (2011) observed significant induction 

in micronucleus formation, reduction in glutathione, concomitant increase in lipid hydroperoxide and 

reactive oxygen species (ROS) generation demonstrating mild cytotoxic potential.  Though induced 

ROS and oxidative stress may lead to oxidative DNA damage, micronucleus formation may form the 

basic mechanism of TiO2 nanoparticle genotoxicity (Shukla et al. 2011).   

 

Oxidative and nitrative stress causes nitration of the protein tyrosine, a post-translational modification 

linked to the onset or progression of diseases, such as cardiovascular diseases neurodegenerative 

diseases, and inflammation.  The presence of tyrosine nitration in diseased conditions is an indication 

of the generation of peroxynitrite (ONOO−) in vivo produced from the very fast reaction of nitric 

oxide (NO) and superoxide (O2
•¯) radical.  Tyrosine nitration is reported in several cutaneous 

pathological effects: contact hypersensitivity, systemic sclerosis, cutaneous inflammation, and thermal 

injury (Lu et al. 2008).  Lu et al. (2008) recently demonstrated the physiological potential of nano-

TiO2  to photocatalyse protein nitration in mouse skin homogenate.  The anatase form of TiO2 can 

greatly increase the formation of free radicals when exposed to sunlight and water in sunscreens.  

Studies indicate nano-anatase TiO2 (1-100 nm) is highly photo-reactive, and thus hazardous.  Nano-

anatase TiO2 in sunscreens was shown to react with sunlight and break down coatings on steel roofs at 

a rate 100-fold more than normal sunlight (Barker and Branch 2008).  With the same effectiveness 

nano-anatase is likely to attack viable tissues if it comes in contact. 

 

The major concern of the nano-particulate range of TiO2 in cosmetics is for infants and children with 

thinner, developing skin and people having broken skin.  The skin could be broken due to contact 

dermatitis, eczema, acne or other skin conditions, making it susceptible to particles coming in contact 

with living cells.  Nano particulate TiO2 is widely used in sunscreen products to boost the SPF.  

Another area of application is in skin-lightening preparations.  Skin-lighteners are designed to reduce 

the formation of melanin in the skin and thus the skin is left without adequate protection from the 

deleterious effects of UV radiation.  Consequently, these products contain TiO2 to afford braod-

spectrum protection.  From the foregoing it is apparent that the amount, particle size, and form of 
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TiO2 in a formulation needs to be controlled; European cosmetic, toiletry and perfumery association 

(COLIPA) set the maximum allowable concentration of TiO2 in sunscreens  as 25% (m/m) (Atitaya et 

al. 2011).  However, most health regulatory bodies worldwide to date do not specify particle size 

limits.  In the present work we set to isolate, quantitate, and characterize the phases of titanium 

dioxide present in skin-lightening products in the South African market. 

 

6.2  Materials and Methods 

6.2.1  Reagents 

Titanium dioxide (TiO2) (99.8 % – Analytical Reagent Grade) from Riedel-de Haën A.G., Seelze-

Hannover, was used for the preparation of standard solutions. Analytical grade sulphuric acid (H2SO4) 

(98.0 %) was supplied by Associated Chemical Enterprises (Pty) Ltd, Johannesburg, South Africa, 

and BDH Chemicals Ltd, Poole, England. Potassium hydrogen sulphate (KHSO4) was supplied by 

BDH Chemicals Ltd, Poole, England.  A total of eight skin-lightening products containing TiO2 were 

purchased from retail outlets in Durban, South Africa. 

 

6.2.2  Quantitation of TiO2 

6.2.2.1  Preparation of standard solutions 

A mass of 0.05 g of TiO2 (> 99 %) was weighed and dissolved in 100 mL of hot concentrated H2SO4 

(> 98 %), with constant stirring for 12 h to make a standard stock solution of 300 mg mL–1 of Ti4+.  

The stock solution was used to make working standards in the range 2 mg dm-3– 10 mg dm-3.  

 

6.2.2.2  Preparation of samples 

Masses of the skin-lightening samples in range of 0.4 -0.6 g were weighed into a fused silica crucible 

and placed into an electrical furnace (Natalab supplies, South Africa) with the temperature set at 600 

ºC for three hours to give a carbon-free ash.  The ash was allowed to cool in a desiccator for 10 min, 

and then about 0.5 g of KHSO4 was added to it.  The crucible containing the ash residue and KHSO4 

was heated over a Bunsen burner for 15 min to fuse the mixture.  The molten product was then 

dissolved in hot, concentrated H2SO4 and the solution transferred to a beaker.  This solution was 

strongly heated to ensure complete solubilization of the TiO2.  The sample solutions were then diluted 

with deionised water to 100 mL.  A ten-fold dilution was done for samples that did not fall within the 

range of the calibration standards.  All samples were analysed in triplicate. 

 

6.2.2.3  Inductively coupled plasma-optical emission spectroscopy analysis 

An inductively coupled plasma optical emission spectrometer Perkin Elmer (Optima 5300 DV) fitted 

with an auto-sampler was used for the quantitation of TiO2 and the data was processed by Perkin 

Elmer WinLab32 software.  The instrument was programmed to sample each standard and sample 

five times in radial view mode.  Other operating conditions were: argon gas flow rate of 1.5 L min-1, 

auxiliary and nebulizer gas flows at 0.2 L min-1 and 0.8 L min-1 respectively.  The pump flow rate was 

set at 1.5 mL min-1 with the plasma radiofrequency working at 1300 W.  The data were acquired at a 

wavelength of 337.279 nm. 
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6.2.2.4  Method validation 

The method validation was done by spiking a TiO2-free sample with about 10 mg of TiO2.  A mass of 

 0.150 g of the spiked sample was accurately weighed into a fused silica crucible.  The crucible was 

then put in an electrical furnace at 600 °C for three hours after which it was placed in a desiccator for 

10 min to cool.  To the cooled carbon-free ash residue a mass of 0.50 g of KHSO4 was added and 

fused over a Bunsen burner for 15 min.  The molten product was dissolved in hot, concentrated H2SO4 

and made up to 100 mL with deionized water it was then subjected to a ten-fold dilution.  The diluted 

sample was subjected to ICP-OES analysis.  The standards were analysed in between sample runs to 

check on instrument signal response and precision.  An intra- and inter-day analysis was performed 

based on the precision of the standards analysis within the day of analysis and between days of 

analysis.   

 

6.2.2.5  Data analysis 

The calibration data was analysed with Microsoft Excel© 2007 tool pack.  The limit of detection 

(LOD) and limit of quantitation (LOQ) was calculated from the results of the linear calibration curve 

of the standards.  The results were expressed as mean ± SD. 

 

6.2.3  Characterisation of TiO2 

6.2.3.1  Extraction of TiO2 

Samples containing TiO2 were washed with solvents of varying polarity indices in order to isolate 

crystalline particles.  A mass of  0.2 g of the sample was weighed into a beaker and washed firstly in 

200 mL dimethyl formamide with ultranisonication for 2 h.  The solvent with the dissolved organics 

was filtered through Whatman 1 filter paper and the remaining solid residue was then re-washed with 

fresh solvent in the order: methanol, acetone, and chloroform.  The order varied depending on the 

sample matrix.  Each wash was similarly filtered until crystalline TiO2 could be observed.  The 

isolated crystals were then dried in an electric oven at 100 °C for one hour.   

 

6.2.3.2  Characterisation by PXRD 

PXRD analyses was done by using a Bruker D8 Advance diffractometer equipped with an Anton Paar 

XRK 900 reaction chamber, a TCU 750 temperature control unit, with CuKα radiation at 40 mA; 40 

kV and 1.5405 Å.  The diffractograms were collected over a 2θ of 10.000° -89.893° range at a 

goniometric velocity of 0.034° min-1 at 25°C.  The spectral data was accumulated and processed by 

using Diffracplus basic XRD Wizard2.8 software. The diffraction peaks of crystalline phases were 

compared with standard anatase and rutile reported in the JCPDS database.  The particle size of TiO2 

extracted by the sequential solvent system was estimated from the width, of diffraction peaks, 

calculated by using Scherrer's equation: 

�	 = 	
� �

�����
 

where K is Scherrer's constant (0.89): shape factor, λ is the X-ray wavelength used (1.5405 Å), β is 

the  width at half maximum intensity (FWHM) in radians of the diffraction peak measured at 2θ, θ is 

the Bragg angle, and τ is mean size of the crystalline particles. 
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6.2.3.3  Characterisation by high resolution transmission electron microscopy 

Samples for high resolution transmission electron microscopy (HR-TEM) observation were prepared 

by dispersing the extracted TiO2 powders in an absolute ethanol solution under ultrasonic irradiation.  

The dispersed TiO2 was then deposited on carbon-copper grids.  The crystallite sizes and shapes were 

observed by HR-TEM on a JEOL JEM-2100 microscope at 200 kV.  The structure resolution of the 

microscope was set at 0.2 nm. 

 

6.3  Results  

The TiO2 content of the eight skin-lightening products investigated in this work was determined by 

ICP-OES.  The analytical method had a linear working from 0.48 to 2.5 mmol dm-3 as observed from 

the calibration curve of the standards (see Supplementary Materials Fig. S6.19).  The correlation 

coefficient of the calibration curve (determined in triplicate) was 0.999.   

 

Table 1 shows the amounts, particle size, and phases of the TiO2 analysed in this work.  The LOD was 

calculated by using equation 6.1: 

 

 ��� = ��� �⁄ �⁄ 																																																																																											�.� 

 

where Sy/x is the standard error of the slope and b is the slope of the calibration curve (Thomsen et al. 

2003).  The was 0.06518 mg dm-3.  The LOQ from this data was calculated using equation 6.2: 

 

 ��� = �.�	���.																																																																																										�.� 

 

The limit of detection at this wavelength was 0.2151 mg dm-3.  The recovery test using spiked 

samples gave a mean recovery of 98.8 % and the signal stability was determined by the intra- and 

inter-day analysis.  The intra-day analysis using an authentic standard gave an RSD % of 0.10 % and 

an inter-day value of 0.10 % thereby indicating very high precision.   

 

The percentage composition of titanium dioxide in this samples was in the range of 2.83 % to 12.47 % 

(Table 1).  These were all well below the COLIPA allowable 25 % (m/m) maximum concentration of 

titanium dioxide in a cosmetic formulation (Atitaya et al. 2011).  Most of the samples of the samples 

contained approximately 3 % (m/m) TiO2, which when compared with the maximum allowed limit is 

low. 

 

The PXRD characterisation of the samples gave signals at 2θ values: 25.22, 37.73, 38. 45, 47.82 and 

54.95° characteristic of anatase, at 27.33 37.73, 41.10, 54.10 and 68.69° characteristic of the rutile 

phase of TiO2 (see Figure 6.1 and Supplementary Materials S6.2 – 6.14).  The crystallite size 

estimation was based on the Scherrer equation.  The Scherrer formula can provide a good estimate of 

the particle size but a variety of factors can contribute to the width of a diffraction peak.  Besides 

crystallite size, the most important of these are usually inhomogeneous strain and instrumental effects.  

If all of these other contributions to the peak width were zero, then the peak width would be 

determined solely by the crystallite size and the Scherrer formula would apply.  If the other 

contributions to the width are non-zero, then the crystallite size can be larger than that predicted by 

the Scherrer formula, with the peak broadening coming from the other factors.  The eight samples 

gave crystallite sizes in the range of 16.23 nm to 58.38 nm (see Table 1).  These all fall within the 

nano-dimension. 
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Analysis of the high resolution transmission electron microscopy images also revealed grain sizes in 

the nano range (see Figure 6.2 and 6.3 and Supplementary Materials Fig. S6.1 – S6.15).  This range is 

useful for attenuation of UV radiation.  Attenuation is the combined effect of absorbing and scattering 

of incident light.  Because nano-TiO2 absorbs more UV light than it scatters compared with 

pigmentary grade TiO2, it is preferred in most sunscreen preparations.  Also, in this size range it does 

not produce a whitening effect on the skin and thus it is more aesthetically appealing.  The two 

methods of characterisation, thus proved helped useful in crystallite size approximation.  However, 

the measurement from the HR-TEM depend on the particle dispersion and it is not apparent on the 

form of TiO2 being measured.  Whereas with the PXRD both particle size and form of TiO2 could be 

obtained by library match.  In this work three samples displayed pure anatase signals indicating that 

the samples contained majorly anatase and four displayed rutile signals.  One sample however, 

showed mixed signals of anatase and rutile thereby showing a mixture of the two in the samples (see 

Supplementary Materials 6S.10 Table 6.1.  

 

Table 6.13: Average percentage concentration, particle size and phase of TiO2 in the skin-lightening 

samples. 

Sample ٭TiO2 % (m/m) Particle size/nm Phase of TiO2 

B 6.90 ± 0.01  16.23 ± 0.31 Rutile/anatase 

E 7.47 ± 1.24 26.39 ± 1.79 Rutile 

G 5.65 ± 0.01 45.03 ± 1.27 Rutile  

L 3.04 ± 0.01 22.86 ± 4.14 Rutile 

C 2.83 ± 0.01  44.42 ± 2.00 Anatase  

I 3.35 ± 0.00 58.70 ± 0.38 Anatase  

J 2.86 ± 0.01 42.59 ± 5.35 Anatase  

K 3.73 ± 0.01 51.67 ± 6.56 Anatase 

* Each value is an average of three replicates (mean ± SD). 
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Sample E 

Sample G 

Figure 6.14: X-ray diffactogram for sample E (anatase) and sample G (rutile) superimposed 
on library difractograms of anatase and rutile.  
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Sample E Sample H 

Figure 6.2: HRTEM images of samples E and showing well-defined crystalline TiO2. 

 

Figure 6.15: Particle size measurement for sample A observed using high-resolution 

transmission electron microscopy  
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6.4  Discussion 

Samples investigated in this work contained TiO2 acting as a sunscreen.  The high refractive index of 

TiO2 makes it useful for this purpose.  The refractive indices of the rutile and anatase forms of TiO2 

are 2.75 and 2.54 respectively (Vayssieres et al. 2011).  In this work the crystallite size range was 

from 16.23 – 69.10 nm (Table 1) as determined by PXRD.  The particles of TiO2 in the size range  

100 nm are referred to us nano-TiO2 and those  100 nm are known as pigmentary-TiO2.  The nano-

TiO2 have shown to be excellent UV filters or blockers because they have strong UV light absorbing 

capabilities and resistance to discolouration under UV irradiation.  This advantage enhances its 

stability and ability to protect the skin from UV light (Morganti 2010).  Hence, nano-TiO2 particles 

are frequently used in cosmetics because they scatter visible light less than pigmentary-TiO2 while 

still providing UV protection.  The majority of sunscreens intended for infants or people with delicate 

skin use are often based on TiO2 and/or ZnO, because these physical UV filters are believed to cause 

less skin irritation than other UV absorbing agents. 

 

However, nano-TiO2 is naturally photocatalytic because when they absorb UV light electrons are 

excited and promoted for anatase to the conduction band across the 3.2 eV band gap.  This excitation 

is induced by UV light of wavelengths below 385 nm.  The excited electrons promoted from the 

valence band (vb) to the conduction band (cb) generate two mobile charged species; negatively 

charged single electrons (e–) and positively charged spaces called holes (h+) (equation 1).  The 

electron and hole pair (e–/h+) (equation 2) may recombine or migrate rapidly to the particle surface.  

At the surface the electrons and holes may participate in chemical reactions with adsorbed chemical 

species.  There are two possible reactions that may take place at the surface.  The e– may react with 

dissolved oxygen gas (O2) and h+ with hydroxyl (OHˉ) ions or water (H2O), to form superoxide (O2ˉ) 

or hydroxyl (˙OH) radicals: 

 

TiO2 + hν → TiO2 (e
–/h+)         (1)  

TiO2 (e
–/h+) → e– (cb) + h+ (vb)       (2) 

e¯ (cb) + O2→ O2˙ˉ         (3) 

h+ (vb) + OH– → ˙OH          (4) 

h+ (vb) + H2O → ˙OH + H+         (5) 

 

The O2¯ and, in particular, the ˙OH radicals formed are the active agents for the degradation of 

organic compounds:  
˙OH or O2˙ˉ + substrate → photo-oxidized products  (Bunhu et al. 2011).  (6)  

 

Also, the excited electrons may return to their ground state, emitting energy, or escape from the 

particle (equation 2).  Escaped electrons may initiate oxidative reactions in nearby molecules, 

generating free radicals (equation 3 - 5).  Free radicals may cause further damage to skin cells or 

interact with other sunscreen components producing chemical species with undesirable effects 

(equation 6).  The fear is that this could lead to cancer in the skin. 

 

The probability of photo-electron promotion and generation of e–/h+ pairs is the phase of the nano-

TiO2 crystal.  In this work, both phases of TiO2, namely, anatase and rutile were identified in the skin-

lightening products.  It is known that rutile is more photostable than anatase.  This arises from the size 

dependence on the orbital character of the conduction band of anatase TiO2 nano-crystals. It is known 

that the appearance and predominance of unoccupied states derived from the hybridization of the 

antibonding Ti 4s and O 2p band is observed when the nanoparticle size approaches the exciton radius 
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(ca. 1 nm).  Such extended hydridization of O 2p with Ti 4s compared to narrow directional 3d in 

rutile demonstrates a confinement effect in anatase TiO2 nano-crystals, a factor in electron excitation 

upon UV irradiation.  The presence of s-hybridized band gap states controls the interfacial electron 

transfers and reduces the back reaction (Vayssieres et al. 2011).  This may create an avalanche of 

escaped electrons that may attack viable skin cells via generation of free radicals as illustrated above.  

On this account, rutile should be the preferred phase of TiO2 for use in cosmetic preparations.  In this 

study samples C, D E and H showed characteristic peaks of te anatase in the XRD diffractograms (see 

Figure 1 and Suplementary Materials Fig. S6.6, S6.10, S6.12) an evidence that anatase is still used in 

some skin-lightening preparations.  The forms of TiO2 present in these samples were not indicated on 

the packet labels.  This is a major concern because anatase TiO2 is a very active photocatalyst and 

should not be used in cosmetic preparations.  Secondly, as shown by Tiano et al. (2010) even surface-

modified TiO2 still retains photocatalytic activity. 

 

The question of percutaneous penetration of TiO2 has drawn a lot of attention especially after topical 

application.  Table 6.2 shows the relationship between particle size and possible viable tissue 

penetration by the nano-range particles.  In the worst case scenario the particle range of TiO2 found in 

this work (16 – 59 nm, Table 6.1) are likely to enter viable tissue should they be in contact with any of 

these body tissues  

 

Table 6.14: Particle size and entry into the human body 

Nanoparticle Size/nm Entry Point 

70 Alveolar surface of lung 

50 cells 

30 Central nervous system 

20 No data yet 

(http://www.organicmakeup.ca/titaniumdioxide.asp (accessed on 14/10/2012) 

 

Animal studies indicate that subjects who routinely apply sunscreens with micronized TiO2 show that 

the skin can absorb microfine particles (Naya et al. 2012; Lu et al. 2008).  The samples investigated in 

this work all have TiO2 in the nano-range ( 100 nm) (Table 6.1).  The penetration of nano-TiO2 into 

the cells may lead to photocatalysis within the cell, causing DNA damage after exposure to sunlight.   

 

Kumazawa et al. (2002) and Tamura et al. (2002) have shown that a Ti+4 solution stimulates 

neutrophils and increases the quantity of released O2¯ anions.  The authors showed that the cytotoxic 

effect of Ti particles is size dependent, and that they must be smaller than that of cells.  Animal model 

studies have shown the ingested titanium accumulates in the liver DNA leading to histopathological 

changes and hepatocyte apoptosis (Dunford et al. 1997; Saquib et al. 2012).   

 

However, some studies show that there is no deeper penetration of topically applied TiO2 into viable 

skin tissue (Lademann et al. 1999).  The same study indicated that there is possible penetration of 

TiO2 into the open skin parts around the follicles.  This is a pointer that compromised skin surface 

may be susceptible to TiO2 penetration.  The effects of viable tissue incorporated TiO2 include 

induction of ROS reactions that can lead to DNA mutations and cell death (Rahman et al. 2002).  

There are reports that TiO2 particles isolated from commercial sunscreen products induced DNA 

strand-breaks and other lesions in DNA plasmids and in human cells (Dunford et al. 1997).  It can 

therefore be inferred that the presence of TiO2 in sunscreen formulations can initiate or lead to photo-

oxidative damage of the skin.  Though, other investigations have shown that coarse or fine particles of 
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TiO2 to be safe and effective at deflecting and absorbing UV light, protecting the skin (Donathan and 

Thomas 2011; Sadrieh et al. 2010).  But consumers should avoid using products with nano-pigments, 

either in sunscreens or colour cosmetics if they have any wounds or broken skin.  Such preparations 

should be used with caution on the children where the skin is thinner and more permeable. 

 

Most of the investigated products in this work contained a combination of TiO2 with organic UV-

filters tert-butylmethoxy dibeznoylmethane, 2-ethylhexy-p-methoxy cinnamate, and benzophenone-3.  

There is the possibility that TiO2 may photocatalyse the photodegradation of these UV filters.  Several 

reports indicate loss of photo-absorption efficacy of these UV filters in the presence of TiO2 (Ricci et 

al. 2003).  The photoproducts resulting from the TiO2 photocatalysed reactions of the organic UV 

filters lead to a loss of photoprotection and potential risk to the skin.  In addition, the toxicities of the 

resulting photoproducts are not known.   

 

To inhibit the effects of TiO2 on the organic macromolecules and other substrates the surface of the 

TiO2 may require deactivation.  The surface deactivation of nano-TiO2 like the once found in this 

work may afford thin film uniform surface coating on the particles.  However, such surface 

modifications have been found inefective in photo-oxidative reactions (Tiano et al. 2010).  The 

structural modification of the TiO2 crystalline lattice by introduction of impurities has been shown to 

reduce photo-activity of TiO2.  The choice of the transition metal (dopant) determines the photo-

response of the doped TiO2.  Recently, it was demonstrated that manganese-doped TiO2 had enhanced 

UVA absorption, less degradation of other organic constituents of the formulation and a reduction in 

free radical generation (Wakefield et al. 2004).  However, there is no guarantee that surface coating or 

doping completely deactivates TiO2.   

 

6.5  Conclusions 

The aim of this study was to isolate, characterise and quantitate the amount of TiO2 present in the 

eight skin-lightening preparations.  The percentage composition of TiO2 in these skin-lightening 

agents was found to be in the range 2.83 % to 12.47 % (m/m).  Both anatase and rutile forms of TiO2 

were found present in nano range (16.23 nm to 51.67 nm).  Since anatase TiO2 is a potent 

photocatalyst it should not be used in such topical skin preparations.  This is more so since it has been 

shown that surface modification does not eliminate this photocatalytic activity. 
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Supplementary Materials 

 The high resolution electron microscopy images TiO2 in the investigated samples and their 

corresponding XRD difractograms. 

 

 

  

Figure S6.1: High resolution electron microscopy image of sample C observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S.2: X-ray diffactogram for sample C dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.3: High resolution electron microscopy image of sample D observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S6.4: X-ray diffactogram for sample D dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 



149 
 

 
 

 

 

 

  

Figure S6.5: High resolution electron microscopy image of sample E observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S6.6: X-ray diffactogram for sample E dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.7: High resolution electron microscopy image of sample H observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S6.8: X-ray diffactogram for sample H dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.9: High resolution electron microscopy image of sample A observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S6.10: X-ray diffactogram for sample A dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.11: High resolution electron microscopy image of sample B observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure 16: X-ray diffactogram for sample B dried in an electric oven at 100 ̊C for one hour. Instrument 
settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 220. s -
Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 0.00 ° -
X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.13: High resolution electron microscopy image of sample F observed using high-resolution 

transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. Structure resolution of 

microscope was set at 0.2 nm. 
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Figure S6.14: X-ray diffactogram for sample F dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step time: 
220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - χ: 0.00 ° - ψ: 
0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with Enhanced background 
6.761,1.000 and wavelength set at  1.5406 nm. 
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Figure S6.15: High resolution electron microscopy image of sample G observed using high-

resolution transmission electron microscopy (HRTEM) on a JEOL JEM-2100 at 200 kV. 

Structure resolution of microscope was set at 0.2 nm. 
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Figure S6.16: X-ray diffactogram for sample G dried in an electric oven at 100 ̊C for one hour. 
Instrument settings were 2Th/Th locked - Start: 10.000 ° - End: 89.983 ° - Step: 0.034 ° - Step 
time: 220. s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 10.000 ° - Theta: 5.000 ° -
χ: 0.00 ° - ψ: 0.00 ° - X: 0.0 mm - Y: 0.0 mm - Operations: Background 0.068,1.000 with 
Enhanced background 6.761,1.000 and wavelength set at  1.5406 nm. 
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Table 15: Duplicate determination of TiO2 from the XRD difractographic data using Scherrer's equation. 

Sample Kλ 2ϴ ϴ Cosϴ FWHM β τ/ nm 

A1 0.1448164 27.24341 13.621705 0.97187 0.53643 0.009363684 15.91339479 

A2 0.1448164 54.12637 27.063185 0.89051 0.56319 0.009830794 16.54208835 

B1 0.1448164 27.26918 13.63459 0.97182 0.30344 0.005296714 28.13360653 

B2 0.1448164 54.15218 27.07609 0.8904 0.37802 0.006598549 24.64813945 

C1 0.1448164 25.21269 12.606345 0.97589 0.17733 0.003095394 47.94032674 

C2 0.1448164 47.94088 23.97044 0.91576 0.24328 0.004246588 37.23882718 

D1 0.1448164 25.24339 12.621695 0.97583 0.14599 0.002548337 58.23536441 

D2 0.1448164 47.99019 23.995095 0.91358 0.20131 0.003513978 45.10992855 

E1 0.1448164 25.19646 12.59823 0.97592 0.18312 0.003196461 46.42309311 

E2 0.1448164 21.38227 10.691135 0.98264 0.19902 0.003474005 42.42217301 

F1 0.1448164 27.29959 13.649795 0.91776 0.48293 0.008429811 18.71848782 

F2 0.1448164 36.16564 18.08282 0.95061 0.32322 0.005641985 27.00122495 

G1 0.1448164 27.12458 13.56229 0.543731517 0.32956 0.005752653 46.29830274 

G2 0.1448164 36.98547 18.492735 0.937012 0.20234 0.003531957 43.7579707 

H1 0.1448164 25.26541 12.632705 0.997800681 0.14258 0.002488813 58.31518598 

H2 0.1448164 47.59754 23.79877 0.234617531 0.59856 0.010448197 59.07665825 
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Figure S6.17.1: The calibration curve for quantitation of TiO2 on ICP-OES 
operating conditions were: argon gas flow rate of 1.5 litres (L) min-1, auxiliary 
and nebulizer gas flows at 0.2 L min-1 and 0.8 L min-1 respectively.  The pump 
flow rate was set at 1.5 mL min-1 while plasma radiofrequency working at 1300 
W and data acquired at 337.279 nm wavelength.   
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Figure S6.17.2: Residual plot for TiO2 
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Abstract 

The photostabilizing ability of grape seed extract on the common sunscreen absorbers: 2-ethylhexyl-

p-methoxcinnmate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane 

(BMDBM) was investigated.  The chemical composition of the extract was determined by GC-MS.  

The photostability of the samples was studied by exposure to simulated solar radiation.  The change in 

UV absorption was followed by standard spectrophotometric methods.  The major secondary 

metabolites in this extract were epicatechin and catechin.  Exposure of the extract to UV radiation 

increased the UV absorption capacity of the extract linearly at 280 nm and 320 nm.  All sunscreens 

showed an improved photostability in the extract.  The inherent photo-instability of BMDBM when 

exposed to UV radiation was almost eliminated in the presence of grape seed extract.  A mixture of all 

three sunscreens in the extract showed very high photostability and a red shift covering the entire 

UVB and UVA regions.  The incorporation of the grape seed extract in sunscreens and other cosmetic 

formulations for topical application is likely to boost photoprotection by stabilizing the sunscreens 

included. Therefore, when grape seed extracts are combined with sunscreen absorbers photoprotection 

is enhanced without necessarily adding any other agent.  This in turn helps in reducing the amounts of 

absorbers in a sunscreen product. 

 

Keywords: Grape seed extract, 2-ethylhexyl-p-methoxcinnmate, benzophenone-3, photostability, 

sunscreens. 
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7.1  Introduction 

Human skin is the principal defence of the entire body against harmful environmental contaminants, 

various xenobiotic factors and exposure to solar ultraviolet radiation (UV).  The solar UV-spectrum 

can be divided into three regions: UVC (< 280 nm), UVB (280-320 nm) and UVA (320-400 nm) 

bands (Baliga and Katiyar 2006; Sklar et al. 2013).  Approximately 5 % of the total solar UV 

radiation reaching the earth’s surface falls in the UVB.  UVB radiation has been shown to possess 

suppressive effects on the immune system, as well as acting as a tumour initiator, tumour promoter 

and a co-carcinogen (Santosh 2008).  Various biological effects including: inflammation, sunburn cell 

formation, hyperpigmentation, immunological changes, and induction of oxidative stress, have been 

associated with exposure to UVB radiation.  These biological responses contribute to the development 

of the many forms of skin cancer (Hruza and Pentland 1993; Krause et al. 2012). Among the various 

forms of skin cancer, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), referred to as 

non-melanoma skin cancer, are by far the most common form of cancer in humans and account for 

approximately 80 % and 16 %, respectively, of reported cases (Bowden 2004).  The remaining part of 

the solar UV radiation (about 90-95 %) falls in the UVA region.  UVA radiation has longer 

wavelengths and correspondingly deeper penetration through the epidermis into the dermis.  Exposure 

to UVA radiation induces the generation of singlet oxygen (1O2) and hydroxyl (˙OH) free radicals, 

and a host of other reactive oxygen species (ROS), which can cause damage to cellular 

macromolecules, like proteins, lipids and DNA and suppress some immunological functions 

(DiGiovanni 1992; Santosh 2008; Sklar et al. 2013; Koksal et al. 2011; Mandal et al. 2009).  It is also 

thought to initiate the worst form of skin cancer, namely, malignant melanoma (Baumler et al. 2012; 

Krause et al. 2012; Ley and Fourtanier 1997). 

 

Thus, the adverse effect of UV radiation on human health and, particularly, the development of skin 

cancers cannot be overemphasized.  There is therefore a need to develop efficient photoprotective and 

chemopreventive strategies to combat this hazard.  The traditional approach has been the use of 

sunscreens incorporating both physical blockers and chemical absorbers in combination with other 

cosmetic agents.  This approach has associated advantages and disadvantages; of prime concern is the 

photoinstability of some chemical absorbers and the cutaneous permeation of physical blockers into 

the more labile tissues.  In the case of chemical absorbers, the photoproducts of some of the 

commonly used sunscreen agents are unknown and correspondingly their effects still a subject of 

further investigation.  For the physical blockers commonly used, like titanium dioxide, their particle 

size is a major concern since the current use of nanoparticles poses the danger that these ( 100 nm) 

particles are likely to permeate deep into the dermis and cause more harm by way of ROS generation.  

Consequently, various health regulatory authorities have set maximum allowed values of these agents 

in various cosmetic formulations.  However, the standards vary greatly from region to region with 

need for broad-spectrum protection and high sun protection factor (SPF).   

 

There is a growing trend of incorporating plant extracts in sunscreen formulations with the aim of 

reducing the amounts of the sunscreening agents.  The plant extracts come with other 

ethnopharmacological benefits though most of them are not yet confirmed.  One major advantage of 

plant extracts is that they have a long history of traditional use for treating various disorders with no 

adverse effects. 

 

Among the extracts that have attracted scientific interest is the grape seed (Vitis vinifera) extract.  A 

number of working groups have shown that grape seed extract products have beneficial effects on 

vascular disease and wound healing (Khanna et al. 2002).  There is a strong indication that these 

extracts play a preventative role against some cancers (American Cancer Society 2008; Kaur et al. 
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2006).  Results from both in-vitro and in-vivo models indicate that grape seed extract confers potent 

protection against oxidative stress and free radical-mediated tissue damage (Bagchi et al. 2000).  A 

major constituent of grape seed extract are proanthocyanidins.  These are envisaged to inhibit 

enzymes integral to the breakdown of the skin, such as collagenase, elastase, hyaluronidase and 

inhibit tumour growth (Mantena 2005).  The proanthocyanidins present in grape seeds are known to 

have biological effects, including prevention of photocarcinogenesis (Svobodova et al. 2003).   

 

Proanthocyanidins occur naturally in a large variety of fruits, vegetables, nuts, seeds, flowers and 

bark.  This class of phenolic compounds takes the form of oligomers or polymers of polyhydroxy 

flavan-3-ol units, such as (+)-catechin and (-)-epicatechin (Steinmetz and Potter 1996) (Fig 7.1).  The 

seeds of the grape are a particularly rich source of proanthocyanidins; the major component of 

polyphenols in red wine.  These grape seed proanthocyanidins are mainly dimers, trimers and highly 

polymerized oligomers of monomeric catechins (Scalbert and Williamson 2000) (Fig. 7.1).  

Experimental work has shown proanthocyanidins from grape seeds to be potent antioxidants and free 

radical scavengers, being more effective than either ascorbic acid or vitamin E (Joshi et al. 2001; 

Bagchi et al. 1997).  These secondary metabolites have been shown to have anti-carcinogenic activity 

in different cancer models (Sudheer et al. 2006).  There is overwhelming interest in the use of 

botanicals for the prevention of various diseases; the main focus has been their consumption as dietary 

supplements.  The topical application of plant extracts in combination with known sun active 

molecules in cosmetics is on the rise but no literature is available on their actual role.  The aim of this 

study was to investigate the effects of grape seed extract on the photostability of, 2-ethylhexyl-p-

methoxy cinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane 

(BMDBM). 
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Figure 7.17: Common proanthocyanidins and anthocyanidins found in grape seed (Vitis vinifera) 

extracts. 
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7.2  Materials and Methods 

The grape seed extract was firstly characterised and then its effect on the photostability of the 

common sunscreen absorbers investigated as detailed below. 

 

7.2.1  Materials  

The grape seed extract was purchased from Warren Chem Specialities (Pty) Ltd, South Africa.  The 

solvents, acetonitrile (ACN) and methanol (MeOH), of HPLC-grade were purchased from Merck 

KGaA.  The three chemical UV filters of analytical purity (99.9 %) were purchased as follows: 2-

ethylhexyl-p-methoxcinnmate (EHMC) and tert-butylmethoxy dibenzoylmethane (BMDBM) were 

kind donation from BASF, benzophenone-3 (BP3) from Sigma-Aldrich and N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) was purchased from Supelco.   

 

7.2.2  Characterisation of grape seed extract 

The grape seed extract was characterised by gas chromatography-mass spectrometry (GC-MS), gas 

chromatography-flame ionisation detection (GC-FID), and high performance liquid chromatography-

mass spectrometry (HPLC-MS) in order to identify the chemical components present. 

 

7.2.2.1  Sample preparation  

About 25 mg of grape seed extract powder was soaked in 25 mL of methanol at 25 °C and placed in 

an ultrasonic bath for two hours and then left to stand for 24 hours protected from light by aluminium 

foil.  The extraction mixture was then made up to 50 mL in a volumetric flask with methanol.  The 

resultant solution was filtered through a 0.45 µm Millipore Millex-LCR membrane filter and then 

transferred to an aluminium foil cased glass vial for storage.  A 20 µL aliquot of this solution was 

injected into a high performance liquid chromatography-mass spectrometer (HPLC-MS) for 

characterisation of the chemical components in the extract.  The remaining solution was preserved for 

photostability studies.  

 

The grape seed extract samples for gas chromatography-mass spectrometry (GC-MS) characterisation 

were firstly derivatised to volatilise the polyphenols in the extract.  This was achieved by dissolving a 

sample mass of about 2 mg of extract powder in 1.0 mL of ACN in a clean, dry 3 mL reaction vial.  

To this solution, 0.5 mL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was added, then 

capped tightly, mixed well, and heated at 70 °C for 45 min.  The resultant derivatised mixture was 

filtered through a 0.45 µm Millipore Millex-LCR membrane syringe tip filter after cooling to room 

temperature.  A volume of 0.1 µL of this derivatised sample was then injected into the GC-MS 

chromatograph.  

 

7.2.2.2  The GC-MS experiment 

A 0.1 µL volume of the derivatised grape seed extract sample was delivered into a Shimadzu GCMS 

(QP2010 SE), with a column temperature set at 70 °C and injection port at 250 °C.  Injections were in 

split mode at a ratio of 20:1.  Components were separated in a GL Sciences InertCap 5MS/Sil 30 m × 

0.25 µm quartz capillary column with a bound stationary phase consisting of 5% 

dimethylpolysilphenylene siloxane.  The column was held 70 °C for 2 min, a rise to 240 °C at 10 °C 

min-1, then held for 5 min, followed by raise to 270 °C at 10 °C min-1 and held there for 10 min.  The 

linear velocity was set at 30.0 cm s-1.  The MS ion source temperature was 200 °C and the interface 
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temperature was set at 250 °C.  The MS detector was programmed to run in scan mode in the m/z 

range 35-1000 at a scan speed of 3333.  The total run time was 37 min with helium as the carrier gas.   

7.2.2.3  The GC-FID experiment 

To check method interconvertability a GC-FID experiment was carried out on the same samples 

(derivatised grape seed extract) with the same temperature program.  The GC-FID used was a 

Shimadzu GC-2010, fitted with an autosampler AOC 20i and a flow unit type AFC-2010.  

Components were separated in a DB-5 30 m × 0.25 µm quartz capillary column with a bound 

stationary phase consisting of 5% phenyl polysilphenylene-siloxane.  The make-up gas was 

nitrogen/air flowing at 10 mL min-1, the carrier gas was hydrogen with a flow rate of 40 mL min-1 and 

oxygen/air flowing at 400 mL min-1.  The injection port was set at 250 °C, operating in a split mode of 

20:1 for an injection volume of 0.1 µL.  The velocity flow control mode was adopted keeping the 

pressure at 61.9 kPa, the total flow rate at 5.0 mL min-1, the column flow of 0.68 mL min-1, and a 

linear velocity of 20.0 mL s-1. 

 

7.2.2.4  HPLC-MS analysis  

The grape seed extract dissolved in methanol (see Section 7.2.2.1) was characterised by means of 

HPLC-PDA-ESI-MS/MS.  The analysis was carried out on an Agilent 1200 series LC MSD Trap, 

equipped with a photodiode array detector, a binary pump, a degasser, autosampler, and an ESI Trap 

MS.  This employed a G1312A binary pump, a G1316A autosampler, a G1322A degasser and a 

G1315D photodiode array detector controlled by Chemstation software (Agilent, v.08.04).  The 

chromatographic separation was achieved on an Agilent Zorbax Eclipse XDB C-18 reversed-phase 

column (150 × 4.6 mm i.d.; 5 μm particle size).  The mobile phase was composed of water:formic 

acid (99:1, v/v volume; solvent A) and acetonitrile (solvent B).  The mixtures were resolved by a 

gradient elution as follows: 5–13 min; 16 % B; 13-18 min; 45 % B and held for 5 min, 23-28 min; 75 

% B, held for 5 min; 33-40 min; 99 % B, then held 5 min and then dropped linearly to 16 % B for 15 

min.  The experiment was performed at ambient temperature with a flow rate of 1 mL min-1 and an 

injection volume of 20 µL.  The chromatograms were collected at detection wavelengths of 275 nm, 

280 nm, 286 nm, 310 nm, 320 nm and 358 nm with a bandwidth of 4 nm simultaneously in each of 

the 60 min run time.  The photodiode array detector was set to collect the UV-vis spectra of the 

chemical species separated over the range 190 to 800 nm.  Analyses were interfaced to an Agilent-SL 

LC MSD trap equipped with an electrospray ionization source and operated in the negative-ion mode.  

The mass detector was a G2445A ion-trap mass spectrometer controlled by LCMSD software 

(Agilent, v.4.1).  The nebulizing gas was nitrogen set at a pressure of 65 psi and flow rate adjusted to 

116 mL min-1.  A heated capillary and voltage was maintained at 350 °C and 4 kV respectively.  The 

instrument was programmed to scan over a mass range from m/z 90 to m/z 2000.  The target ion 

accumulation in the trap was put at 30000 counts for a maximum accumulation time of 50 ms.  MS2 

data were acquired in the negative ionization automatic smart mode to obtain MSn-1; primary 

precursor ion.  The target ion was set at � /� 350, the compound stability at 100 %, and the trap drive 

level at 90 %.  One precursor was selected each cycle; each precursor was excluded after 3 spectra; 

the release time was 0.3 minutes.  All collision-induced fragmentation experiments were performed in 

the ion-trap with helium as the collision gas, and the voltage was increased in cycles from 0.3 up to 2 

V.  The fragmentation time was 20 ms at an activation width of 10 amu and the cut-off for the 

daughter ion range set at 30 %.  MS3 data were obtained by manual fragmentation, targeting the most 

abundant ions in the precursor ion in the MS spectra. 
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7.2.3  Photostability experiments 

The sunscreen mixtures with grape seed extract were prepared by adding about 20 mg of the 

sunscreen agents to 25 mL of the methanol extract (see Section 7.2.2.1).  This solution was then made 

up to 50 mL in a volumetric flask with methanol.  To obtain working solutions, appropriate dilutions 

were carried out in order to obtain a sunscreen agent concentration of about 200 µmol dm-3 in the 

extract before photostability studies were done. 

 

Samples of grape seed extract with and without sunscreens added were exposed to simulated solar 

light in a Newport research lamp housing (M66901) fitted with a mercury-xenon lamp, powered by an 

arc lamp power supply (69911). The power output of the lamp was controlled by a digital exposure 

controller (68951) maintaining the output at 500 W.  The output from the lamp was passed through a 

10 mm-thick Pyrex filter to ensure that only wavelength greater than 300 nm impinged on the samples 

(see Supplementary Materials Fig. S7.1).  The exposure time was varied incrementally from 0 hour in 

steps of 30 min to 4 hours of continuous exposure.  Each exposed sample was contained in a 

stoppered 1.00 mm pathlength quartz cuvette.  After each irradiation interval a UV-visible spectrum 

of the sample was recorded on a Perkin Elmer Lambda 35 spectrophotometer.  A 20 µL aliquot of 

these same solutions were then injected into HPLC chromatograph to monitor the chemical 

transformations in the extract and the included sunscreen(s).  Samples of the sunscreens alone 

dissolved in methanol were similarly irradiated and monitored by UV spectrophotometry. 

 

7.2.3.1  HPLC analysis of the irradiated samples 

The chemical transformations in the irradiated samples were monitored on a Shimadzu Prominence 

LC chromatograph with PDA detector.  The chromatographic separation was achieved on Agilent 

Zorbax Eclipse XDB C-18 reversed-phase column (150 × 4.6 mm i.d.; 5 μm particle size).  The 

mobile phase was composed of water (solvent A) and acetonitrile (solvent B).  The mixtures were 

resolved by a gradient elution as follows: 5–13 min; 16 % B; 13-18 min; 45 % B and held for 5 min, 

23-28 min; 75 % B, held for 5 min; 33-40 min; 99 % B, then held 5 min and then dropped linearly to 

16 % B for 15 min.  The experiment was performed at ambient temperature with a flow rate of 1 mL 

min-1 and an injection volume of 10 µL.  The chromatograms were collected at detection wavelengths 

of 275 nm, 280 nm, 286 nm, 310 nm, 320 nm and 358 nm with a bandwidth of 4 nm simultaneously 

in each of the 60 min run time.  The photodiode array detector was set collect the UV-vis spectra of 

the chemical species separated over the range 190 to 800 nm. 

 

7.3  Results and discussion 

The UV-Vis spectrum of the grape seed extracts showed absorbance in the UVC and UVB range, a 

very close similarity to the spectrum of catechin (Santos-Buelga et al. 1995; Plumb et al. 1998) (Fig 

7.2).  This observation was supported by HPLC analysis of the extract.  The chromatogram detected at 

280 nm exhibited one prominent broad peak with a similar UV spectrum (Fig. 7.3) to catechin.  The 

broadness of this peak is a result of the co-elution of the two stereoisomers which could not be 

resolved under the current chromatographic conditions.  However, both GC-FID and GC-MS analyses 

resolved the two isomers as epicatechin and catechin (Fig. 7.4) at retention times of 31.970 and 

32.581 min respectively.  GC-MS analysis of the derivatized grape seed extract showed very high 

amounts of the two stereomeric isomers of flavan-3-ols; epicatechin and catechin (Fig. 7.4).  Exposure 

of the grape seed extract dissolved in methanol to solar simulated radiation showed an increase in the 

absorbance with increasing irradiation time (Fig. 7.5 and 7.6). This indicates an increase in 

photoprotection.  The two isomers are known to undergo oligomeric polymerization to yield 
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proanthocyanidins catalysed by UV light (Fig. 7.7).  The observed phenomenon can be envisaged to 

be due to the polymerization of the oligomers in three fashions: either a cis – cis, trans – trans or 

trans – cis assembly of oligomers (Fig. 7.7).  This results in different conjugation patterns that result 

in an increase in absorption extending to the UVA range.  The linear increase in absorption capacity 

observed at 280 nm and 320 nm suggest that the same type of molecules come together in the same 

fashion to form the polymer achieving a linear reaction relation (Fig. 7.6).  From the linear increase in 

absorbance at 280 nm and 320 nm it is proposed that the molecules combine in a cis-trans 

configuration.  This stereochemistry provides better conjugation and n to * and  to * electronic 

transitions are enhanced thus increasing the UV absorption in the UVA range.  This is apparent from 

the prominent peaks seen at 320 nm and 358 nm on the HPLC chromatogram (Fig. 7.8). 
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Figure 7.2: UV spectrum of a 0.06 mg mL-1 solution of grape seed extract dissolved in 
methanol.  The spectrum was acquired with a Perkin Elmer Lambda 35 UV-Vis 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 

Figure 7.3: HPLC chromatogram of grape seed extract detected at 280 nm.  The 
separation was achieved on a reversed-phase Zorbax Eclipse XDB C-18 column  (150 
mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at flow rate of 
1 mL min-1and an injection volume of 20 µL. 
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Figure 7.4: Total ion chromatogram of TMS-derivatized grape seed extract showing 
epicatechin and catechin.  The separation was effected on a GL Sciences InertCap 
5MS/Sil 30 m × 0.25 quartz capillary column under the condition described in 
section 7.2.2.2.   
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Figure 7.5: The photostability of 0.06 mg mL-1 grape seed extract dissolved in methanol, 
exposed to solar simulated radiation, in a 1 mm pathlength quartz cuvette.  Each exposure 
cycle involved the use of a fresh sample extract.  The spectra were recorded on a Perkin 
Elmer Lambda 35 UV-vis dual beam spectrophotometer. 
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Figure 7.6: Increase in the photo-absorptive potential of grape seed extract dissolved in 
methanol at A, 280 nm and B, 320 nm.  The data were obtained from spectra acquired with 
a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer in a 1 mm pathlength 
quartz cuvette with air as the reference. 
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The proposed UV-catalysed polymerization sequence of the proanthocyanidin oligomers that 

enhances the absorptive efficacy in grape seed extract is shown in Fig. 7.7. 
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Figure 7.7: Proposed polymerisation scheme of proanthocyanidins that enhance UV absorption.
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catechins 

280 nm 
320 nm 358 nm 

Figure 7.8: Photochemical changes of a methanolic solution of grape seed extract monitored at 280 nm, 320 nm and 358 nm showing the increasing 
catechin peak area with increase in irradiation time. The separations were achieved on a reversed-phase Zorbax Eclipse XDB C-18 column (150 mm 
× 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at flow rate of 1 mL min-1and an injection volume of 20 µL. 
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The GC-MS analysis of the grape seed extract showed the presence of various fragments of 

polyphenols: phenolic acids, flavonoids, catechins, proanthocyanidins, and anthocyanins (Fig. 7.9).  

The observed lower molecular weight polyphenols could be attributed to fragmentation of the 

catechins during derivatization.  The HPLC-ESI-MS/MS fragmentation of catechin can be 

rationalized by first a retro-Diels Alder fragmentation for ring A and other subsequent fragments seem 

to involve only ring B (Fig. 7.10).  From the results of the GC-MS analysis we conclude that the grape 

seed extract contains various classes of phenolic compounds.  Among these compounds are the 

phenolic acids which are simple molecules and form a diverse group that includes the widely 

distributed hydroxybenzoic and hydroxycinnamic acids (Dai and Mumper 2010).  The isolated 

compounds: 3,4-dihydroxybenzoic acid, 3-hydroxy-4-methoxybenzoic acid and 2-(3,4-

dihydroxyphenyl)-2-hydroxyacetic acid, can conveniently be associated with hydroxycinnamic acid 

derivatives.  These compounds occur most frequently as simple esters with hydroxy carboxylic acids 

or glucose, and the hydroxybenzoic acid compounds are present mainly in the form of glucosides.   

 

The 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol identified from this extract is a 

flavonoid.  This class of phenolic compounds is widely distributed in nature and its polyphenolic 

structure makes these compounds very sensitive to oxidative enzymes (Ghafar et al. 2010).  In this 

grape seed extract catechins were identified as the major constituents.  Catechins are documented to 

mainly occur in tea leaves and grape seeds and the monomeric flavan-3-ols: catechin, epicatechin, 

gallocatechin, epigallocatechin, epicatechingallate and epigallocatechin-3-gallate.  The oligomeric 

polymerization of catechins produces proanthocyanidins found in grape seeds, red wine and pine bark.  

The presence of these compounds in the extract under study leads us to expect that this extract 

exhibits reducing capacity and metal ion chelating ability like other polyphenols.  The main cause of 

reactive oxygen species (ROS) generation in living tissues is the presence of metal ions and they play 

an important role in generation of oxidative stress, DNA damage and cell death.  The biological 

properties of polyphenols depend on their molecular structure (Farrukh and Santosh 2011).  The GC-

MS results show the presence of benzene-1,2,3-triol commonly known as pyrogallol.  This is a tri-

functonal benzene derivative positioning it as a powerful metal chelator, like catechol, for instance, 

which is a conjugate acid of a chelating agent used widely in coordination chemistry.   

 

Apart from that, di-functional benzene derivatives like catechol, are known to readily condense to 

form heterocyclic compounds.  It is well documented that catechol and gallol are effective metal ion 

chelators.  Catechol reduces silver ions in solutions at ambient temperature and alkaline copper on 

heating (Donovan et al. 1999; Ferreira and Slade 2002; Soobrattee et al. 2005).  Consequently, the 

reactivities of proanthocyanidins and gallate esters with hydroxyl radicals, azide radicals, or 

superoxide anions correlate with catechol and pyrogallol groups in their molecular structures that 

provide evidence of the antioxidant properties of these agents (Ferreira and Slade 2002).  The 

scavenging activity of different grape catechin molecules is also related to the number of o-dihydroxy 

and o-hydroxyketo groups, C2-C3 double bonds, concentration and solubility, the accessibility of the 

active group to the oxidant and on the stability of the reaction product.  Polyphenols also affect signal 

transduction pathways, modulate many endocrine systems, and alter hormones and other 

physiological processes, as a result of their binding to metal ions and enzyme cofactors.  We envisage 

that coupled with the shown UVB absorbing potential of the extract in this work, the inclusion of the 

grape seed extract in sunscreens is likely boost the photoprotection and increase the antioxidant effect. 
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Figure 7.9: Secondary metabolites identified in grape seed extract by GC-MS. 
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Figure 7.10: The proposed fragmentation of catechin and epicatechin in ESI-MS/MS  

(Sisa et al. 2010; Benavides et al. 2006).  
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7.3.1 Photostability of BP3 incorporated in grape seed extract 

The spectral stability of a BP3 solution in methanol alone was observed when irradiated with a solar 

radiation simulator (Fig. 7.11).  The irradiated solution on HPLC analysis did not show any other peak 

an indication that there is likely to be no photodegradation products (Fig. 7.12).  Similarly the 

methanolic solutions of BP3 with grape seed extract were exposed to simulated solar radiation for 

increasing exposure times without appreciable change in their UV spectra (Fig. 7.13).  This indicated 

good photostability of the agent in the plant extract.  However, the HPLC chromatogram showed an 

additional two peaks observable at 280 nm and 358 nm (Fig. 7.15).  These two peaks could be 

attributed to exclusive photo-reactivity of the benzophenone moiety albeit to a small extent.  From a 

comparison of the UV spectra of BP3 in methanol (Fig. 7.11) and in grape  seed extract (Fig. 7.13) we 

note that one of the three peaks of the BP3 spectrum is missing in the latter namely, that at 240 nm.  

This could be due to reactions involving BP3 induced by light that do not necessarily destroy the 

carbonyl chromophore, characterised by an absorption maximum at 286 nm.  It is known that upon 

irradiation of ketones with radiation of wavelengths from 280 to 330 nm an n to ٭ transition takes 

place and because the triplet-singlet energy gap is small (20 - 70 kJ mol-1) intersystem crossing occurs 

readily (Wilkinson 1997).  We envisage that the triplet state photochemical reactions lead to 

formation of two UV-absorbing entities A and B exclusively from the triplet state (Fig. 7.14).  The 

high conjugation of species B makes it able to absorb at longer wavelength due to additional   to * 

transitions.  The formation of these two species and other absorbing chemical entities observed from 

the HPLC chromatographic results (Fig. 7.15) are unique to these extracts and suggests synergistic 

UV absorption efficacy.   

 

Schallreuter et al. (1996) showed that BP3 is rapidly photo-oxidized, yielding benzophenone-3 

semiquinone, a potent electrophile, capable of reacting with thiol groups on important antioxidant 

enzymes and substrates, such as thioredoxin reductase and reduced glutathione, respectively.  This 

group argued that the rapid oxidation followed by the inactivation of important antioxidant systems 

indicates that this substance may be rather harmful to the homeostasis of the epidermis.  But from this 

work, given that its incorporation in the grape seed extract and subsequent prolonged UV exposure 

does not significantly alter the secondary metabolite composition (see Supplementary Materials Table 

S7.2), it can be argued that the grape seed extract is likely to modulate the photochemical response of 

BP3 and thereby improve its efficacy as a UV absorber. 
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Figure 7.11: The spectral stability of BP3 in methanol irradiated by a solar 
simulated source.  The spectra were acquired with the Perkin Elmer Lambda 35 
UV-vis dual beam spectrophotometer in a 1 mm pathlength quartz cuvette with 
air as the reference. 

Figure 7.12: The photostability of BP3 monitored at 286 nm.  The separation was 
achieved on a reversed-phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 
mm) was used with mobile phase of methanol-water (84:16 % v/v).  The injection 
volume was 20 µL and the flow rate was set at 1 mL min-1. 
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Figure 7.14: Proposed triplet state rearrangement of BP3 yielding UV absorbing species A and B. 
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Figure 7.13: Photostability of grape seed extract with BP3 in methanol.  The spectra were 
acquired with a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer in a 1 mm 
pathlength quartz cuvette with air as the reference. 
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Figure 7.15: Photochemical changes of BP3 and grape seed extract mixture at 280 nm, 320 nm and 358 nm showing increasing catechin peak area 
with increase of the irradiation time and peaks of compounds A and B.  The separations were achieved on a reversed-phase Zorbax Eclipse XDB 
C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at a flow rate of 1 mL min-1and an injection volume of 
20 µL. 
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7.3.2  The photostability of BMDBM in grape seed extract 

BMDBM is a common sunscreen absorber incorporated in most cosmetics to protect human skin against 

deleterious UV effects.  In this work the irradiation of a solution of BMDBM in methanol showed a 

steady decay at 358 nm and an increase at 260 nm (Fig. 7.16).  The enol tautomer of BMDBM has a 

maximum absorption at 358 nm and the keto tautomer shows a maximum around 260 nm.  We therefore 

assign the decrease in absorption at 358 nm as enol decay and the observed growth at 260 nm as increase 

of the keto tautomer.  However, the HPLC chromatograms for the photostability studies did not show 

much decrease of the enol-tautmer (Fig. 7.17).  This apparent photostability could be due to a solvent 

effect because BMDBM has been shown to be stable in polar protic solvents such as methanol (Mturi and 

Martincigh 2008).  The keto-enol tautomerization is therefore be accompanied by a loss in the photo-

absorption efficacy of this sunscreening agent.  BMDBM is also known to photodegrade upon irradiation 

in a nonpolar medium by way of radical formation (Fig. 7.18) which may completely destroy UV 

absorption potential.  However, our photostability studies of the methanolic solution of BMDBM with 

grape seed extract over a four hour illumination period showed a drop in the first 30 minutes and then 

relative photostability thereafter (Fig. 7.19).  The spectra extended to the visible region with the 

wavelength of maximum absorption shifting to 400 nm.  From a comparison of the two spectra, Fig. 7.16 

and Fig. 7.19, we conclude that the incorporation of grape seed extract was the cause of the observed red 

shift.  The shift towards much longer wavelength makes the mixture a better UV absorber and effectively 

covers the entire UVB and UVA spectrum.  The UV spectra (Fig. 7.19) showed an increase at 320 nm 

indicating the formation of other UV absorbing entities.  This was supported by the HPLC chromatogram 

that showed very prominent peaks at 280 nm and 358 nm although the HPLC chromatographic data at 

320 nm show those peaks to be smaller (Fig. 7.20).  It can be concluded that those chemical species do 

not strongly absorb at 320 nm  Hence, the shift observed in the UV spectra is associated with 

photochemical reactions that yield strongly UV-absorbing species (see Supplementary Materials Table 

S7.3) and since the spectral shape of BMDBM essentially remains the same, we conclude that a chelated 

enol form is photostabilized.   
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Figure 7.16: The spectral changes of BMDBM dissolved in methanol and irradiated by a 
solar simulated light source.  The spectra were acquired with a Perkin Elmer Lambda 35 
UV-vis dual beam spectrophotometer in a 1 mm pathlength quartz cuvette with air as the 
reference. 
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Figure 7.17: The photochemical changes of BMDBM monitored at 260 and 358 nm on a 
reversed phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm) with a methanol-
water (84:16 % v/v) mobile phase.  The injection volume was 20 µL and the flow rate set 
at 1 mL min-1. 
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Figure 7.18: The photolysis of BMDBM in UV light adapted from Schwack and Rudolph (1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

200 300 400 500

A
b

so
rb

an
ce

Wavelength/nm

0 min

30 min

1 hr

1.5 hr

2 hr

3 hr

2.5 hr

4 hr

Figure 7.19: Photostability of BMDBM with grape seed extract in methanol.  The 
spectra were acquired with a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 
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Figure 7.20: Photochemical changes of a BMDBM and grape seed extract mixture at 280 nm, 320 nm and 358 nm showing increasing 
catechins peak area with increase of the irradiation time and the emergence of UV absorbing species K, T and X.  The separations 
were achieved on a reversed-phase Zorbax Eclipse XDB C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of 
acetonitrile-water at a flow rate of 1 mL min-1and an injection volume of 20 µL. 
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As indicated above BMDBM under UV irradiation is known to photodegrade into two radical species: a 

benzyl radical and a phenacyl radical (Fig. 7.18).  The presence of these radicals is likely to trigger free 

radical reactions especially given that flavan-3-ols at 300 nm are known to undergo homolysis of the 

hetercyclic 1,2-(O-C) and 3,4-(C-C) bonds (Fig. 7.21), (Sisa et al. 2010).  We speculate radical 

disproportionation reactions involving the benzyl and phenacyl radical with the new photochemical 

products.  We then invoke the Woodward-Fieser prediction rules for calculating the wavelength of 

maximum absorption in the UV for the proposed products to give λmax values for compounds K, T and X 

as 325 nm, 355 nm and 315 nm respectively formed from the scheme in Figure 7.19.  Our prediction 

agrees with the observed peaks at 320 nm and 358 nm (Fig. 7.20).  We therefore propose that the 

phenacyl radical couples with the catechin radical to give X and the benzyl radical couples with the 

catechin radical to give K.  However, the photo-induced rearrangement of the catechin radical yields the 

long wavelength absorbing species T in a manner proposed by Fourie et al. (1977).  The other peaks 

appearing at 280 nm could result from various photo-induced radical disproportionation reactions in 

numerous fashions.  The end result for this mixture of grape seed extract and BMDBM is a more effective 

and stable UV absorbing medium. 
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Figure 7.21: Proposed photo-induced radical disproportionation reactions of BMDBM photolysis 

products and triplet state flavan-3-ols. 

 

7.3.3 Photostability of EHMC in grape seed extract 

The exposure of a methanolic solution of EHMC to solar simulated radiation showed the characteristic 

cinnamic acid moiety decay (Fig. 7.22).  The HPLC analysis of this solution showed the formation of cis-

EHMC (Fig. 7.23) as the only photoproduct, this is in agreement with the findings of Broadbent et al. 

(1996).  Contrary to the argument fronted by these authors that the trans-cis isomerisation of EHMC 

reaches a photostationary state after 4 hours, the UV spectra in this work (Fig. 7.22) indicate an earlier 

pseudo-photostationary state followed by a further drop in the UV absorption in the fourth hour.  This 

view is supported by our HPLC analysis that shows that the peak areas of the trans-isomer for the 30 min 

exposure of this solution and 90 min exposure period were nearly the same (56.17 % and 53.00 %, of the 

initial peak area).  When this chromatogram was monitored at 260 nm the cis-isomer shows maximum 

absorption.  This explains the loss in photoprotection attributed to this isomerisation of EHMC because 

this particular wavelength does not reach the earth’s surface.  However, when EHMC was combined with 

grape seed extract dissolved in methanol and exposed to solar simulated radiation for four hours, a new 

spectral decay characteristic was observed.  The UV spectra of this mixture dropped sharply after the first 
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30 min and subsequently stabilized for the remaining three and half hours of exposure (Fig. 7.24).  The 

characteristic UV isomerisation that is normally accompanied with photo-loss was completely halted.  

This could imply a speedy establishment of the photostationary state with higher preference for the trans-

isomer.  It could also be argued that there is no further breakdown of the absorbing molecules but the 

HPLC chromatogram showed a number of peaks at 280 nm which could be associated with decay 

products of [2+2] cycloaddition (Broadbent et al. 1996; Lyambila 2003) of EHMC and other unsaturated 

secondary metabolites in the extracts (Fig 7.25, see also Table S7.4).  The [2+2] cycloaddition is usually 

accompanied by a reduction in double bond conjugation in the molecular structure of a compound and 

hence likely to diminish the light absorption capacity of the molecule in question.  The cyclobutane ring 

moieties formed are strained structures that are likely to breakdown in light-induced ring opening 

metathesis reactions yielding less absorbing chemical species as observed in this work.  Lack of the 

higher absorbing species from photo-induced reactions of the flavan-3-ols indicates no radical formation 

of catechins.  These could imply that phenolics remain in their natural state; hence better antioxidant 

activity is expected of this formulation.  The formulation seems to have an efficient excited state self-

deactivation mechanism by way of vibrational states depriving the molecules sufficient photon energy to 

combine and form other products.  We do not rule out possible cis-trans-isomerization of EHMC but state 

that the decay life of the cis-EHMC is greatly reduced and thus likely to offer longer protection.  From the 

UV spectra, the trans-isomer has a shoulder which appears to vanish upon exposure to light.  The overall 

effect is a stable sunscreen product, with antioxidant effect. 
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Figure 7.22: Photoinstability of EHMC dissolved in methanol under solar simulated 
irradiation. The spectra were acquired with a Perkin Elmer Lambda 35 UV-vis dual 
beam spectrophotometer in a 1 mm pathlength quartz cuvette with air as the 
reference. 

Figure 7.23: Isomerisation of EHMC under simulated solar irradiation monitored at 
260 and 310 nm on a reversed-phase Zorbax Eclipse-XDB C-18 column (150 mm × 
4.6 mm) with a methanol-water (84:16 % v/v) as the mobile phase.  The injection 
volume was 20 µL and the flow rate set at 1 mL min-1. 
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Figure: 7.24. The photostability of EHMC with grape seed extract in methanol under solar 
simulated radiation. The spectra were acquired with a Perkin Elmer Lambda 35 UV-vis 
dual beam spectrophotometer in a 1 mm pathlength quartz cuvette with air as the 
reference. 
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Figure 7.25 Photochemical changes of EHMC and grape seed extract monitored at 280 nm, 320 nm and 358 nm showing an increase in the 
catechin peak area with an increase in irradiation time and relatively stable EHMC.  The separations were achieved on a reversed-phase Zorbax 
Eclipse XDB C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at a flow rate of 1 mL min-1and an 
injection volume of 20 µL. 
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7.3.4  Photostability of a mixture of BMDBM, BP3 and EHMC in grape seed extract 

It is common practice by most sunscreen product manufacturers to combine organic absorbers in a 

formulation with a view to producing a broad-spectrum product.  The common combination is BMDBM 

for UVA absorption, EHMC for UVB and BP3 to provide a link between UVA and UVB.  BP3 shows 

appreciable absorption in the UVA1 (320-340 nm) region (Fig. 7.11) and sufficient absorption in the 

UVB region and hence is considered as a suitable combination with any of the sunscreen agents.  The 

irradiation of a methanolic solution of a mixture of BMDBM, BP3 and EHMC showed steady spectral 

drop with increasing time of irradiation (Fig. 7.26).  The HPLC analysis showed a steady 

photoisomerisation of trans-EHMC to cis-EHMC (Fig. 7.27).  The BMDBM peak monitored at 358 nm, 

however, did not show any appreciable change in terms of peak area, indicating an amount of 

photostability (Fig. 7.27).  This could be attributed to solvent polarity because methanol is polar and polar 

and protic such a medium has been shown to photostabilize BMDBM (Mturi and Martincigh 2008).  

Another notable observation on these spectra is the blue shift casting doubt on the UVA absorption 

potential of this mixture.  It can be argued that in the absence of any other ingredient other than the three 

sunscreen absorbers, then this mixture is suitable for UVB photoprotection only.  The photostability of a 

mixture of these three commonly used sunscreen absorbers in grape seed extract was investigated (Fig. 

7.28).  The three were mixed in the ratio 1:2:2, BMDBM:BP3:EHMC in accordance with the maxima 

allowed by COLIPA, namely a percent composition of 5 % BMDBM, 10 % BP3 and 10 % EHMC.  A 

minimal drop in photo-absorption was observed in the first 30 minutes of exposure and subsequently the 

mixture was relatively photostable (Fig. 7.28).  This shows that the inherent photoinstability of the 

BMDBM and EHMC mixture is diminished.  The characteristic peaks observed notably peak T on the 

HPLC chromatogram (see Fig. 7.29) when the grape seed extract was exposed together with BMDBM 

was also observed here (Fig. 7.29 and Table S7.6).   This chemical species absorbs strongly in the UVA 

region.  This indicates a few photo-induced radical reactions take place preferentially to BMDBM with 

effect of increasing photostability in the UVA region.  These radical disproportionation reactions have an 

effect of generating more UV-absorbing species thus avoiding the depletion of the antioxidant 

composition in the grape seed extract. 

 

It would be expected that the prevention of the UV-induced depletion of the antioxidant defence system 

would result in suppression of oxidative stress and the oxidative stress-mediated adverse effects in the 

skin.  Oxidative stress may cause damage at the cellular level, as well as at the molecular level, and this 

can result in cutaneous inflammation, lipid and protein oxidation, DNA damage, and activation or 

inactivation of certain enzymes (Bagchi et al. 2003), all are likely to  contribute to UVB-induced 

photodamage of the skin.  The observed absorption maxima of this mixture are in the UVB region and 

therefore this formulation is likely to offer sufficient UVB photoprotection.  Hence, a mixture of these 

sunscreens in grape seed extract may play a crucial role in minimizing UV-induced immunosuppression 

which is considered to be a risk factor for the development of skin cancer (Wang et al. 1991), and 

prevention of UV-induced immunosuppression represents a potential strategy for the management of skin 

cancer.   

 

The aim of this work is to find a suitable combination of ingredients that affords a stable photoprotection 

product.  This has direct consequences in terms of the possible ingestion of the product by children and 

hence safety concerns can be raised.  Grape seed extract has been demonstrated to be non-genotoxic and 
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to possess low toxicity as indicated by some in vitro tests and in vivo animal toxicity studies (Bagchi et al. 

2000; Khanna et al. 2002; Mantena 2005).  Yakamoshi et al. (2002) investigated the acute and subchronic 

oral toxicity of grape seed extracts on Fischer 344 rats and for mutagenic potential by the reverse 

mutation test on Salmonella typhimurium, the chromosomal aberration test on CHL cells, and the 

micronucleus test on ddY mice.  This group found no evidence of acute oral toxicity at dosages up to an 

oral administration dose of 4 g kg-1. There was no evidence of mutagenicity reported.  From these studies 

we envisage that accidental ingestion of grape seed extract may pose neither an immediate or future grave 

danger.  Other working groups have also shown grape seed extract to have higher bioavailability, 

conferring much more protection against free radical-induced lipid peroxidation and DNA damage than 

vitamin C, vitamin E, and β-carotene (Bagchi et al. 2000).  From this current work we have demonstrated 

the ability of grape seed extract to attenuate UV radiation and its potential in reducing the adverse UV-

induced effects on human skin.  Proanthocyanidins, or condensed tannins, are said to have the capacity to 

stabilize collagen and elastin and thus enhance the elasticity, flexibility, and appearance of the skin 

(Bagchi et al. 1998).  It is expected that UV-induced scars, stretch marks and skin wrinkling will be 

reduced.  The observed stabilizing potential of the grape seed extract on the chemical absorbers in 

combination and alone make grape seed extract a good candidate as an ingredient in cosmetic 

formulations. 
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Figure 7.26: The photostability of a mixture of BMDBM, BP3 and EHMC dissolved in 
methanol, irradiated by a solar simulating source.  The spectra were acquired on a Perkin Elmer 
Lambda 35 UV-vis dual beam spectrophotometer in a 1 mm pathlength quartz cuvette with air 
as the reference. 
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Figure 7.27: The photochemical transformations of a mixture of BMDBM, BP3, and EHMC dissolved in methanol monitored at 260, 
286, 310, and 358 nm.  The separation was effected on a reversed-phase Zorbax Eclipse-XDB C-18 column.  The mobile phase was a 
gradient elution of acetonitrile-water with a flow rate of 1.00 mL min-1 and an injection volume of 20 μL. 
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Figure 7.28: Photostability of a mixture of BMDBM, BP3, EHMC and grape seed extract 
in methanol.  The spectra were acquired with a Perkin Elmer Lambda 35 UV-vis 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 
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Figure 7.29: Photochemical changes of mixture of BMDBM, BP3, EHMC, and grape seed extracts at 280 nm, 320 nm and 358 nm 
showing increasing catechins peak area with increase of the irradiation time.  The separations were achieved on a reverse phase 
Zorbax Eclipse XDB C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at flow rate of 1 mL 
min-1and an injection volume of 20 µL. 
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7.4  Conclusions 

The secondary metabolites in grape seed extract undergo photochemical reactions yielding 

photoproducts that act synergistically and in combination with sunscreen absorbers to enhance 

photoprotection.  The photoinstability of the BMDBM and EHMC mixture is highly reduced when 

mixed with grape seed extract.  We propose that inclusion of grape seed extract in sunscreen 

formulations is likely to enhance the photoprotection potential of the formulation. 
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Figure S7.1: The transmittance spectrum of the 10 mm Pyrex glass filter used in this 
work recorded on a Perkin Elmer Lambda 35 UV-vis spectrophotometer. 
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Table S7.1 The photochemical changes of the sunscreen(s) dissolved in methanol after irradiation 

with simulated solar irradiation monitored on HPLC-PDA at 260, 286, 310, 358 nm. 

 Mixture of BMDBM, BP3 and EHMC 

   Peak Area 

Wavelength/nm UV-filter RT 0 min 30 min 90 min 

260 
keto-

BMDBM 
3.072 474053 388025 402645 

286 

BP3 3.08267 1149065 1127671 1136999 

cis-EHMC 10.19733 0 261526 443856 

trans-EHMC 11.53067 683313 303745 148920 

310 

BP3 3.05067 1076471 879510 915656 

cis-EHMC 10.19733 0 272403 461590 

trans-EHMC 11.488 1212199 538875 272829 

358 
enol-

BMDBM 
11.21067 146473 139439 154766 

 BMDBM 

260 
keto-

BMDBM 
2.368 5769 99334 95094 

358 
enol-

BMDBM 
11.232 110714 96556 92185 

 BP3 

286 BP3 3.06133 927540 738944 806767 

 EHMC 

260 
cis-EHMC 10.16533 0 139036 133916 

trans-EHMC 11.43467 156696 83566 81385 

310 nm 
cis-EHMC 10.16533 0 362702 342873 

trans-EHMC 11.44533 1818585 1026119 965827 
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Table S7.2: The chemical transformations of grape seed extract dissolved in methanol on UV irradiation monitored on HPLC-PDA at 275, 280, 286, 310 and 

358 nm.. 

275 nm 280 nm 

RT PA-0min RT PA-30min RT PA-90min RT PA-0min RT PA-30min RT 
PA-

90min 

1.402 821754 1.404 810606 1.398 814338 1.402 841527 1.405 827276 1.399 827785 

1.562 157219 1.565 138212 1.561 138737 1.562 162778 1.565 142711 1.561 142797 

1.851 75411 1.853 80312 1.847 91354 1.852 75001 1.853 79152 1.847 89590 

2.048 118953 2.042 112886 2.037 107493 2.049 122437 2.043 115293 2.039 110357 

2.392 104562 2.377 110316 2.369 110053 2.394 108431 2.377 109673 2.369 113712 

2.745 152558 2.732 153627 2.728 147229 2.745 157294 2.732 156512 2.728 153884 

3.061 56112 3.04 46293 3.04 43407 3.053 60422 3.051 52180 3.04 46751 

3.537 134134 3.509 134173 3.505 130459 3.537 146947 3.51 137856 3.505 140075 

4.225 108880 4.176 88631 4.176 60825 4.223 126170 4.169 91672 4.182 84684 

8.159 4921 5.12 3779 8.081 5678 5.195 19163 5.152 5678 5.12 5699 

12.357 1353501 8.066 6043 12.605 1842048 5.743 13204 8.097 7424 8.083 5523 

15.204 7325 12.462 1556170 16.83 11341 8.166 4710 12.46 1579609 12.597 1861391 

16.889 7829 16.898 8440 23.765 1109 12.382 1372515 16.827 7419 16.829 11101 

17.28 4266 17.227 4266 24.131 3028 15.142 3030 17.248 4899 17.227 1592 

23.083 1238 24.142 1165 24.363 2207 15.499 4539 24.127 2196 24.132 1334 

23.829 1429 24.93 2382 24.597 1999 16.892 8312 24.644 3398 24.94 2863 

24.165 3655 25.088 1616 24.924 4649 17.28 4859 24.925 3646 25.106 2073 

24.427 2903 25.341 8381 25.085 2455 24.164 1435 25.104 2999 25.336 7327 

24.619 1832 25.581 13174 25.333 10088 24.655 1056 25.337 7830 25.574 11534 

24.946 4475 26.853 2730 25.575 14970 24.975 2651 25.58 11687 26.852 2918 

25.142 2415 27.016 6034 26.852 2743 25.145 2601 26.853 2881 27.013 6219 

25.367 9733 27.505 1433 27.013 6296 25.361 7067 27.016 6304 28.149 8990 

25.607 13282 28.148 10020 27.494 1694 25.606 11647 28.146 8838 28.936 11803 

26.878 2718 28.933 11853 28.148 10152 26.876 3025 28.933 11376 29.534 1272 
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27.047 6270 29.527 1155 28.936 11767 27.044 6281 29.499 1492 30.435 1527 

27.543 1535 30.431 1730 30.429 1951 28.186 9068 30.445 1426 30.811 1229 

28.183 10173 30.792 1418 30.774 1394 28.977 11481 30.82 1336 35.312 3381 

28.977 11856 35.314 3365 35.211 1629 29.563 1317 35.319 3845 35.831 2673 

29.558 1107 35.842 2180 35.313 1919 30.468 1153 35.827 2684 38.786 6920 

30.46 1616 38.779 6713 35.817 2509 35.351 3391 38.78 6674 45.661 86377 

30.821 1818 45.59 78528 36.32 1239 35.863 2521 45.607 88282 
  

35.347 3341 
  

36.512 1334 38.831 6779 
    

35.866 2347 
  

38.785 7268 45.589 86824 
    

38.826 7027 
  

45.623 81154 
      

45.551 79786 
          

            
RT- retention time, PA- peak area 

 

286 nm 310 nm 

RT PA-0min RT PA-30min RT PA-90min RT 
PA-

0min 
RT PA-30min RT PA-90min 

1.402 691868 1.405 685360 1.398 695685 1.4 118461 1.403 135185 1.396 165243 

1.561 132530 1.564 117089 1.56 119043 1.559 22106 1.563 23431 1.557 26377 

1.851 65718 1.852 69386 1.847 75467 1.85 22167 1.851 32067 1.845 34065 

2.05 97216 2.044 95267 2.038 96035 2.766 1320 2.082 29938 1.969 10966 

2.392 91149 2.377 93260 2.368 96925 3.075 1432 2.364 30168 2.069 22137 

2.746 122678 2.732 116779 2.728 118402 3.481 1573 2.735 27430 2.362 32967 

3.065 48689 3.042 47944 3.044 43947 3.737 1560 3.058 18944 2.727 24498 

3.537 112150 3.509 104589 3.503 105787 4.231 1341 3.418 17621 3.054 16802 

3.947 12998 4.168 54555 4.168 52928 6.738 1604 3.702 12160 3.404 15287 

4.215 66095 8.095 4752 8.083 4923 11.029 11129 4.169 6845 3.687 5005 

5.163 1770 9.515 2196 12.617 1582090 12.171 58919 8.102 1409 6.717 1202 

8.168 4083 12.462 1308231 16.855 6063 12.367 58394 10.603 2188 8.157 1103 
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12.436 1141421 16.847 6683 17.227 4735 13.291 20524 12.139 85222 25.554 1314 

15.185 3106 17.248 4283 23.819 1633 25.579 1308 12.555 156053 27.015 1261 

15.477 3267 23.787 1432 24.103 1055 27.052 1228 25.549 1241 35.313 4092 

16.899 7148 24.133 1204 24.624 1463 35.35 3810 27.023 1040 35.826 1821 

17.259 4770 24.617 1259 24.932 2511 35.863 1749 35.321 3839 38.793 2339 

24.172 1136 24.949 2059 25.108 3627 38.814 2270 35.841 1505 44.538 2195 

24.657 1551 25.11 3626 25.319 6210 45.582 53966 38.786 2339 45.617 59446 

24.969 2498 25.339 5898 25.572 8066 
  

45.627 54469 
  

25.139 3741 25.577 7785 26.851 2734 
      

25.361 6191 26.852 2557 27.013 6479 
      

25.599 8057 27.015 5943 27.525 1051 
      

26.139 1620 28.141 6404 28.141 6811 
      

26.886 2704 28.926 7598 28.933 8631 
      

27.044 6111 29.52 1230 29.498 1948 
      

28.184 6614 30.412 1118 29.93 1609 
      

28.975 7607 35.312 3373 30.376 1185 
      

29.551 1465 35.824 2635 35.307 3497 
      

30.487 1167 38.78 5845 35.827 2781 
      

35.353 3333 45.596 95733 38.782 6171 
      

35.865 2614 
  

45.62 97628 
      

38.818 6043 
          

45.594 92016 
          

            

            
 

 

358 nm 

RT 
PA-

0min 
RT PA-30min RT PA-90min 
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1.398 33324 1.401 38505 1.394 45755 

1.557 7964 1.561 7938 1.555 8422 

1.849 18422 1.851 22275 1.845 22889 

35.086 1111 1.998 9924 1.977 9811 

35.867 1185 2.355 5189 2.363 9329 

  
35.017 1383 11.989 1106 

  
35.834 1076 35.004 1446 

    
35.831 1120 
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Table S7.3: The chemical transformation of grape seed extract mixed with BMDBM dissolved in 

methanol on simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min 
PA-

30min 

PA-

90min 
RT PA-0min 

PA-

30min 

PA-

90min 

1.408 571648 619539 612016 1.408 585560 634450 625814 

1.568 90745 92438 92092 1.568 94248 96081 95627 

1.855 57866 56525 61009 1.855 54728 55661 59921 

2.054 77727 73916 76430 2.054 79384 75508 76088 

2.398 49912 46431 50549 2.399 74743 49648 54419 

2.56 21249 18838 17142 2.518 
 

17058 17678 

2.754 101133 100474 103125 2.754 101971 103368 105969 

3.093 31948 31083 31607 3.083 34012 31994 35285 

3.473 
 

89618 91451 3.474 
 

95084 97927 

3.553 86269 
  

3.554 89775 
  

4.112 
 

49215 46547 4.111 
 

47192 59249 

4.24 51543 
  

4.221 50268 
  

4.875 1813 
  

5.056 
  

2682 

6.575 1751 
  

6.564 1307 
  

7.94 
 

3915 3629 7.941 
 

3771 3751 

8.187 3294 
  

8.184 2881 
  

9.365 
  

2487 9.28 
 

1040 
 

12.38 814874 739284 
 

9.333 
  

1598 

12.428 
  

887456 9.728 2865 
  

18.35 15642 14621 15120 12.361 822530 
  

21.867 14274 16813 19341 12.407 
 

771781 901666 

22.093 20235 17292 15357 18.343 14864 13719 14585 

22.482 
 

12972 13482 21.867 14645 
 

16550 

22.512 12353 
  

22.077 18639 31947 15826 

24.143 1546 2910 1776 22.486 
 

12833 13368 

24.352 
 

1622 
 

22.509 13243 
  

24.607 
 

1288 1052 24.147 1470 1586 1546 

25.499 
 

6551 4420 24.635 
 

1057 1269 

25.52 7678 
  

25.532 6828 6861 6704 

26.021 1369 
  

26.015 1085 
  

27.143 378252 389615 402218 27.143 352815 363516 374258 

27.569 21930 21289 24635 27.57 22369 23673 22660 

28.136 3353 2487 4065 28.124 3135 3672 2409 

28.884 40761 40672 43319 28.448 
 

1175 
 

29.551 1745 2346 1983 28.884 42194 41817 44933 

34.656 
 

2137 1423709 29.53 
 

2477 
 

34.971 1382376 1396290 
 

30.311 
  

1031 

38.515 2828 3053 3303 34.971 1420813 1435961 1461669 

45.371 31863 28239 18125 38.513 2676 2862 3142 

    
45.34 

 
35057 35152 
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45.416 35035 

  
286 nm 310 nm 

RT PA-0min PA-30min 
PA-

90min 
RT PA-0min PA-30min PA-90min 

1.408 481341 526507 522695 1.405 86260 100627 109291 

1.567 76997 79398 79425 1.563 14461 17191 18339 

1.855 51367 50065 51396 1.854 28115 29504 30010 

2.054 66776 63912 66635 1.973 
 

7502 24845 

2.397 45044 42350 46276 2.056 
 

17634 
 

2.56 16590 16317 14897 2.105 26944 
  

2.754 80786 80840 83765 2.367 21500 22723 24850 

3.085 36541 28563 32663 2.789 17573 20343 20187 

3.473 
  

77022 3.089 13866 13678 13314 

3.554 71763 79260 
 

3.397 
  

10603 

3.979 10036 9133 
 

3.428 
 

8618 
 

4.113 
 

28045 40231 3.501 7813 
  

4.237 33440 
  

3.662 
 

4463 4375 

4.533 
 

4466 
 

3.722 3301 
  

4.715 4645 
  

6.776 1001 
  

7.977 
 

3220 2886 11.712 
 

13353 1168 

8.198 2480 
  

12 
 

12762 1499 

9.653 1354 
  

12.356 
 

15380 
 

12.369 685195 
  

12.736 
 

17972 
 

12.409 
 

646749 742588 22.467 
 

1102 1169 

18.349 10349 8616 9737 22.513 1096 
  

21.877 9329 9428 9516 25.562 2335 2022 1930 

22.073 
 

9048 8981 26.384 1051 
  

22.103 9503 
  

27.143 31009 30985 32352 

22.474 
 

10818 
 

27.574 16864 16424 16387 

22.507 10793 
  

28.772 1085 1047 1149 

24.155 1011 1307 
 

34.613 
  

2200 

24.634 
 

1052 1605 34.971 1788683 1802380 1835204 

25.141 
 

1432 
 

35.273 3312 
  

25.546 4709 5235 5649 38.515 4341 4593 5044 

27.143 301985 311705 320404 44.582 4109 3218 
 

27.57 22483 22420 24696 45.389 
  

11968 

28.124 2709 1701 2882 45.409 11455 13543 
 

28.883 27200 26761 29171 
    

29.565 
 

1988 1972 
    

34.971 1455159 1470132 1496729 
    

38.516 2580 2735 3136 
    

44.559 
 

2219 1322 
    

45.383 40921 32027 38789 
    

 

358 nm 
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RT PA-0min PA-30min PA-90min 

1.403 29669 31744 33448 

1.562 7813 7045 7674 

1.854 17976 18296 21538 

1.973 
  

8792 

27.147 1408 1545 1809 

27.574 83259 84128 88969 

34.971 7224686 7307875 7447378 

38.516 11740 12538 13181 

44.59 5681 6646 2675 

 

Table S7.4: The chemical transformation of grape seed extract mixed with BP3 dissolved in methanol 

on simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT 
PA-

0min 

PA-

30min 
PA-90min RT 

PA-

0min 

PA-

30min 

PA-

90min 

1.406 516446 507024 485679 1.406 528634 519034 
49505

9 

1.567 75758 74681 74251 1.567 78670 77518 76878 

1.853 51680 52424 54481 1.854 50813 51377 53248 

2.046 67225 68522 71194 2.048 68171 69506 71818 

2.391 42823 42094 46181 2.388 45344 44639 48342 

2.549 16630 16895 17271 2.539 14924 15163 15252 

2.744 91236 89518 88067 2.743 90409 90084 87141 

3.061 26717 26728 27320 3.062 31906 29464 28946 

3.489 
 

79854 78028 3.489 
 

78859 74655 

4.132 
 

40942 41626 3.535 79230 
  

3.535 78713 
  

4.123 
 

40739 30526 

4.206 46592 
  

4.201 40225 
  

4.757 
 

1300 1487 4.533 
  

1261 

4.907 1151 
  

4.672 3917 
  

8.007 
 

3323 2931 4.768 
 

1045 
 

8.157 2532 
  

7.971 
  

2518 

9.397 
 

1392 
 

8.009 
 

3219 
 

9.589 2645 
  

8.126 2378 
  

12.347 662858 
  

9.312 
  

1348 

12.434 
 

682634 754600 9.579 
  

2252 

18.341 16126 15096 15659 12.389 643832 
  

21.867 16529 16935 16217 12.4 
 

702129 
 

22.085 21062 19241 20406 12.507 
  

80619
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1 

22.666 
  

4622 18.333 14672 14188 13654 

22.703 4677 4623 
 

21.877 16421 15059 15814 

24.154 2610 1684 1707 22.086 17674 19569 18010 

24.341 1242 
  

22.684 
 

4168 4038 

25.554 4775428 4789679 4846807 22.725 4137 
  

26.98 
  

6030 24.151 1501 1525 1373 

27.02 6157 6913 
 

24.611 
 

1096 
 

27.494 
 

1363 
 

25.554 5909379 
593090

9 

59985

82 

28.099 
  

2592 26.98 
  

6526 

28.152 2977 2603 
 

27.017 6408 6746 
 

28.888 42175 38553 41093 28.097 
  

2181 

29.227 
 

3763 
 

28.142 2669 2309 
 

29.532 
 

1752 
 

28.888 40694 42284 40874 

34.983 1762 2458 1781 34.981 1829 2585 1868 

35.296 4651 6469 4453 35.298 5433 7488 5162 

36.075 
  

1010 44.491 
 

2250 3095 

45.375 35671 28750 29652 45.407 40381 35709 35110 

286 nm 310 nm 

RT PA-0min PA-30min 
PA-

90min 
RT 

PA-

0min 

PA-

30min 

PA-

90min 

1.406 436197 431569 413404 1.403 80290 85131 91990 

1.566 64749 64188 63936 1.563 13844 15640 16260 

1.853 46074 44442 48170 1.853 26874 28421 29565 

2.049 57660 59075 61520 2.097 24353 25374 25117 

2.388 36839 39631 40254 2.361 17263 21283 23704 

2.56 15748 12818 16427 2.768 19969 17374 17784 

2.744 70215 70360 70100 3.069 11960 12705 12408 

3.076 27653 27301 26883 3.406 
 

8581 10768 

3.49 
 

62814 62795 3.507 7004 
  

3.535 65282 
  

3.715 2942 2485 2682 

3.957 5613 
  

12.128 
  

1085 

4.14 
 

27341 27342 25.554 4582082 
461276

0 

46469

49 

4.208 23879 
  

27.018 1440 1532 1381 

7.988 
 

2407 2215 28.759 1148 1254 1105 

8.124 2032 
  

34.986 2229 3030 2104 
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9.365 
 

2222 
 

35.298 7021 9083 6543 

9.728 1445 
  

44.546 4046 3850 
 

12.349 559886 
  

45.364 
  

6226 

12.418 
 

330349 662870 45.416 22882 14025 
 

12.555 
 

262141 
 

45.515 
  

4509 

18.333 10685 8800 8348 
    

21.781 
  

11520 
    

21.877 10351 9427 
     

22.085 10527 10933 9217 
    

22.699 3161 2919 2834 
    

24.146 1275 1067 1034 
    

24.602 
  

1232 
    

25.554 6713939 6755364 6815476 
    

26.979 
  

6345 
    

27.019 7220 8894 
     

28.097 
  

1600 
    

28.133 1762 1435 
     

28.887 25350 25054 24881 
    

29.28 1560 2135 1313 
    

29.486 
  

2156 
    

29.551 1744 1700 
     

34.981 1810 2439 1895 
    

35.297 6172 8224 6045 
    

35.84 1025 
      

44.422 
 

1989 
     

45.42 43966 35438 35982 
    

358 nm 

RT PA-0min 
PA-

30min 

PA-

90min 

1.401 27908 28576 31082 

1.561 8035 7109 8416 

1.853 18236 18203 18136 

25.554 1125806 1136514 1140015 

34.98 9668 12680 9376 

44.563 
 

5122 5384 
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Table S7.5: The chemical transformation of grape seed extract mixed with EHMC dissolved in 

methanol on simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min 
PA-

30min 

PA-

90min 
RT PA-0min 

PA-

30min 

PA-

90min 

1.403 551801 579666 525538 1.403 564580 592045 534834 

1.563 87707 90706 84373 1.563 90873 94096 87151 

1.849 53916 58392 61287 1.849 53091 55028 59887 

2.032 73110 69524 76707 2.033 74297 73259 78267 

2.369 48402 44513 50714 2.369 68215 47373 52038 

2.517 18696 17834 20321 2.533 
 

16085 18770 

2.717 96428 94981 94514 2.716 95667 97256 99866 

3.04 32526 29373 28418 3.031 33492 29923 28706 

3.484 81655 88672 
 

3.484 84755 90640 
 

3.514 
  

80625 3.514 
  

86568 

4.122 48259 45509 33593 4.121 48778 43561 41322 

7.975 3300 3431 
 

7.961 2948 3644 
 

8.076 
  

2872 8.077 
  

2711 

9.408 1122 
  

9.504 
  

1342 

9.504 
  

2846 12.407 735097 817605 
 

12.307 723555 
  

12.611 
  

997323 

12.462 
 

805143 
 

18.308 14662 14939 15226 

12.609 
  

988200 21.792 18047 
  

18.296 
 

15345 
 

21.803 
 

18778 18466 

18.309 15578 
 

15218 22.007 15764 16198 16356 

21.813 17947 15722 17761 22.657 4389 4011 4078 

22.03 19601 21105 19372 24.134 1463 1373 1536 

22.659 5279 5152 4673 24.608 
 

1034 
 

24.11 2406 1717 2743 25.173 
 

1093 
 

24.32 
  

1537 25.519 13489 13943 13908 

24.613 
  

1351 25.983 1340 1038 1717 

25.312 
 

1057 
 

26.988 8310 7258 7269 

25.515 11400 12251 11341 27.4 9682 3072 3288 

25.971 1274 1398 
 

27.77 
 

5189 4398 

26.99 6988 7018 6775 28.111 2618 2252 2433 

27.403 8993 3208 3394 28.857 40040 41369 40295 

27.771 
 

4724 3947 33.461 
 

1606 1225 

28.12 3305 3002 2900 33.791 2599 
 

2369 

28.858 41954 41891 41552 34.92 12180 2244 10222 

33.472 1004 1335 
 

35.26 8557942 9973 7661832 

33.787 2423 1933 2053 36.085 2335 7602718 
 

34.921 9835 8351 8591 36.32 4904 3320 3193 

35.26 6923229 6396703 6442375 36.565 2171 5388 5394 

36.085 1725 
  

36.811 15831 7864 7978 
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36.32 4967 3521 3581 44.419 
  

3068 

36.544 1986 4820 5052 45.305 37659 6415 
 

36.81 12794 6318 6754 45.414 
 

28507 33829 

45.317 32035 27956 31738 
    

286 nm 310 nm 

RT PA-0min PA-30min 
PA-

90min 
RT PA-0min 

PA-

30min 
PA-90min 

1.403 464439 490654 448488 1.401 84750 100206 104912 

1.563 74413 77578 72839 1.558 14833 16419 17802 

1.849 45749 49552 56090 1.848 20843 28210 29698 

2.034 64599 60511 64561 1.974 
  

29053 

2.367 57733 40963 46725 2.065 
 

25140 
 

2.526 
 

17212 15814 2.361 
 

19189 26364 

2.717 78759 76246 76247 2.738 
 

20060 19450 

3.016 29178 30149 25539 3.036 1047 13538 13152 

3.483 69883 74645 
 

3.437 1154 9758 13474 

3.513 
  

70118 3.675 1198 3612 
 

3.904 8689 
  

3.733 
  

4815 

4.132 30771 37019 23511 12.085 
 

1067 
 

7.98 2385 2627 
 

12.171 
  

1141 

9.515 
  

2980 17.412 1989 
  

12.403 630439 687468 
 

25.525 8726 8934 8829 

12.563 
  

473469 26.986 1347 1781 1437 

12.789 
  

333816 27.399 9910 1787 1711 

14.432 
  

45445 27.777 
 

3818 3245 

18.187 4188 
  

28.733 
  

1108 

18.298 
 

9628 
 

33.794 2456 1230 
 

18.305 5798 
 

9389 33.807 
  

1348 

21.99 
 

19569 10638 34.92 17399 13521 13799 

22.018 20216 
 

9256 35.26 12244867 9767019 9861700 

22.643 2508 2565 
 

36.094 
 

2523 
 

22.702 
  

2567 36.101 3278 
  

24.1 1531 
 

1161 36.267 2532 1760 
 

24.603 1105 
  

36.557 2761 7754 6499 

25.522 13323 12961 13235 36.812 24327 13692 13141 

25.983 
  

1161 44.498 
  

3770 

26.988 7910 7172 7242 44.518 3842 
  

27.399 10938 3092 3277 45.308 15388 9613 
 

27.772 
 

5688 4741 45.445 
  

10458 

28.099 
 

1631 
     

28.118 1836 
 

1585 
    

28.854 26995 26257 26254 
    

29.527 
  

1500 
    

33.483 
 

1366 
     

33.798 2149 1457 1705 
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34.922 14960 11571 11950 
    

35.26 10252311 8842980 8916252 
    

36.085 2530 
      

36.308 4236 2095 2103 
    

36.562 2390 6208 6159 
    

36.811 18786 9713 9955 
    

45.319 37758 
      

45.465 
 

39109 40837 
    

358 nm 

RT PA-0min PA-30min 
PA-

90min 

1.399 29684 32176 34220 

1.556 8346 8104 8308 

1.848 18410 18493 18388 

25.524 1630 1810 1728 

34.94 3104 2830 2538 

35.26 32815 40433 40861 

44.559 
  

5693 

 

Table S7.6: The chemical transformation of grape seed extract with a mixture of BMDBM, BP3 and 

EHMC dissolved in methanol on simulated solar irradiation, monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min 
PA-

30min 

PA-

90min 
RT PA-0min 

PA-

30min 

PA-

90min 

1.411 696454 756140 750190 1.411 712897 773027 765720 

1.571 114010 112045 114340 1.571 118188 116132 118341 

1.858 61706 67382 70616 1.859 60826 66347 69486 

2.047 94405 85392 92213 2.049 95706 86720 94307 

2.393 56054 56338 59303 2.393 59150 56929 60747 

2.56 25196 22133 22634 2.549 20159 22137 20565 

2.744 118281 122949 123381 2.744 123243 122637 129829 

3.065 41993 36803 37656 3.064 39282 40825 39208 

3.533 106630 116478 115066 3.533 103068 110642 120304 

4.187 79213 71154 70448 4.204 60588 56373 76616 

5.173 
 

2897 2626 5.184 
  

3372 

5.28 2754 
  

8.094 4918 3956 
 

6.522 2167 
  

8.118 
  

4454 

6.709 
  

1525 12.35 1040967 
  

8.082 
 

4615 
 

12.433 
 

1070163 1134387 

8.115 4114 
 

4710 18.337 14868 14793 15115 

9.525 
 

5103 
 

21.856 17789 
  

12.35 974547 
  

22.068 15445 33392 33273 

12.454 
 

1017324 1172969 22.484 12017 11980 11939 

18.332 15937 15722 16056 24.145 1462 1263 1521 

21.856 20002 
 

17077 24.604 
 

1303 1081 
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22.044 15448 36747 18452 25.142 
 

1032 1009 

22.486 11868 12357 12629 25.539 5570159 5701924 5818960 

24.125 3018 1861 1799 27.139 314918 321205 327039 

24.309 1568 
  

27.393 
 

5848 
 

24.614 1414 
  

27.416 15961 
  

25.312 
  

1058 27.561 18236 19107 18821 

25.539 4512197 4607830 4702151 27.783 
 

7327 7848 

27.139 338038 344763 350399 28.121 3139 2916 3032 

27.416 14410 5371 
 

28.384 
  

1022 
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Abstract 

The photostability of the sunscreen agents: 2-ethylhexyl-p-methoxycinnamate), (EHMC), 

benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane, (BMDBM, avobenzone) in the 

presence of mulberry extract was investigated.  The effect of mulberry extract on the photo-absorption 

capacity of each sunscreen was studied by exposing the samples to simulated solar radiation.  The 

photochemical transformations were then monitored by means of standard spectrophotometric 

methods.  Any new chemical species formed were monitored by RP-HPLC.  The constituents of 

mulberry extract were identified by means of GC/MS.  The absorptive efficacies of the sunscreens 

were greatly improved when each was mixed with mulberry extract alone in a methanolic solution.  

The mulberry extract favoured the chelated enol form of BMDBM and hence contributed to enhanced 

UVA absorption.  BP3 remained unchanged for all exposure times indicating no chemical interaction.  

Hence, no side-reactions of BP3 are envisaged in this mixture.  EHMC showed a drop in absorbance 

but subsequently stabilized.  A photochemical isomerisation to a strongly absorbing UVB species was 

observed.  The mulberry extract therefore was found to enhance the UVB absorption potential of 

EHMC.  However, the mixture of the three sunscreens in mulberry extract was found to greatly 

reduce UVA absorbing chemical species and favour UVB absorbing species.  We conclude that 

mulberry extract is a good photochemical stabilizer of sunscreens and would reduce the amount of 

sunscreens incorporated in a single product. 

 

Keywords: mulberry extract, avobenzone, benzophenone-3, photostability, 2-ethylhexyl-p-

methoxycinnamate. 
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8.1 Introduction  

The mulberry (Morus species) grows wild or is cultivated in many countries for the purpose of 

providing foliage, that serves as a primary source of food for silkworms (Bombyx mori) (Aramwit et 

al. 2010; Bajpai et al. 2012).  The mulberry fruits have been reported to exhibit a variety of biological 

activities, such as anti-thrombotic, antioxidant, antimicrobial, anti-inflammatory and neuroprotective 

effects.  A review by Bajpai et al. (2012) examines a number of these bioactivities.  These activities 

are associated with anthocyanins; a group of naturally occurring phenolic compounds responsible for 

the colour of mulberries.  Cyanidin-3-glucoside and cyanidin-3-rutinoside are the major anthocyanins 

(Aramwit et al. 2010; Yadav et al. 2014) present in mulberries.   

 

There is a growing trend of reliance on phytochemically-rich plant extracts containing polyphenolic 

compounds with good antioxidant properties to cure diverse diseases.  This is because of their low 

toxicity and lack of harmful side-effects compared with synthetic drugs.  In addition, the application 

of antioxidants as preservatives in the food industry (Winkler et al. 2006; Guillard et al. 2009; Brul 

and Coote 1999) and skin-protective ingredients in cosmetics continues to draw increasing attention 

and interest (Lupo 2001; Chen et al. 2012).  However, exposure of these extracts to light results in the 

loss of their efficacy.  Recently Aramwit et al. (2010) showed that the exposure of mulberry fruit 

extracts to light significantly deteriorated the total anthocyanin and ascorbic acid content.  The 

anthocyanins have been shown to be responsible for the anti-tyrosinase activity in these extracts, a 

potentially useful dermatological aspect.  Tyrosinase inhibitors are used in topical applications for 

lightening the skin and also are thought to play a role in cancer and neurodegenerative diseases such 

as Parkinson’s disease (Cavalieri et al. 2002).  These findings have generated a great deal of interest 

leading to widespread screening for compounds with potent anti-tyrosinase activity.  

 

Several authors have investigated the antioxidant potential of the extracts obtained from mulberry 

leaves and fruits (Wang et al. 2013; Arfan et al. 2012; Mishra et al. 2011).  These extracts contain 

polyphenolic compounds that are some of the most effective antioxidative constituents in fruits, 

vegetables, and grains; and much interest has been directed to their quantitation and assessment of 

their contribution to antioxidant activity.  However, an emerging aspect is their unique ability to 

absorb ultraviolet (UV) light.  For instance, Arfan et al. (2012) used the absorption bands at 

wavelengths of 320–350 nm to confirm the presence of phenolic acids in two mulberry species.  This 

UV absorption potential has been speculated to be useful in the sunscreening potential of mulberry 

extract (Subramaniyan et al. 2013). 

 

A number of investigations are ongoing to make use of naturally occurring UV radiation absorbers 

targeting anthocyanin in mulberry extract.  It is speculated that incorporation of these extracts in sun-

protective products could help boost their efficacy.  A recent study by Subramaniyan et al. (2013) 

showed that a higher concentration of anthocyanins yielded a higher sun protection factor (SPF).  

These authors found no difference in SPF between fabrics treated with crude mulberry fruit extract 

and fabric treated with anthocyanin extracted from the mulberry fruit.  Most sunscreens show loss in 

photoprotection when irradiated by UV light.  However, an investigation of the photostability of 

sunscreens in skin-lightening products indicated photostability for products containing plant extracts, 

one of which was mulberry extract (see Chapter Four).  We thus sought to study the effect of 

mulberry extract on the photostability of commonly used sunscreen absorbers.  In the current work we 

set to investigate the stabilizing potential of mulberry extract on some common sunscreen agents in 

skin-lightening preparations and sunscreen cosmetic products.  To the best of our knowledge this is 

the first comprehensive study on the photostabilizing potential of the mulberry extract on the common 
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sunscreen agents: 2-ethylhexyl-p-methoxycinnamate) (EHMC), benzophenone-3 (BP3) and tert-

butylmethoxy dibenzoylmethane, (BMDBM).  

 

8.2 Experimental 

8.2.1 Materials  

The mulberry extract was purchased from Warren Chem Specialities (Pty) Ltd, South Africa.  The 

solvents used were HPLC-grade acetonitrile (ACN) and methanol (MeOH) were purchased from 

Merck KGaA.  The three chemical UV filters of analytical purity (99.9 %) were purchased as follows: 

2-ethylhexyl-p-methoxcinnmate (EHMC) and tert-butylmethoxy dibenzoylmethane (BMDBM) were 

a kind donation from BASF, benzophenone-3 (BP3) was from Sigma-Aldrich and N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) was purchased from Supelco.   

 

8.2.2  Characterisation of mulberry extract 

The mulberry extract was characterised by gas chromatography-mass spectrometry (GC/MS), gas 

chromatography-flame ionisation detection (GC/FID), and High performance liquid chromatography-

mass spectrometry (HPLC-MS) in order to identify the chemical components present. 

 

8.2.2.1  Sample preparation  

About 25 mg of mulberry extract powder was soaked in 25 mL of methanol at 25 °C and placed in an 

ultrasonic bath for two hours and then left to stand for 24 hours protected from light by aluminium 

foil.  The extraction mixture was then made up to 50 mL in a volumetric flask with methanol.  The 

resultant solution was filtered through a 0.45 µm Millipore Millex-LCR membrane filter and then 

transferred to an aluminium foil cased glass vial for storage.  The remaining solution was preserved 

for photostability studies.  

 

The mulberry extract samples for gas chromatography-mass spectrometry (GC/MS) characterisation 

were first derivatised to volatilise the polyphenols in the extract.  This was achieved by dissolving a 

samples mass of about 2 mg of mulberry extract powder in 1.0 mL of ACN in a clean and dry 3 mL 

reaction vial.  To this solution 0.5 mL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was 

added then capped tightly, mixed well, and heated at 70 °C for 45 min.  The resultant derivatised 

mixture was filtered through a 0.45 µm Millipore Millex-LCR membrane syringe tip filter after 

cooling to room temperature.  A volume of 0.1 µL of this derivatised sample was then injected into 

the GC/MS chromatograph.  To monitor any chemical interactions between the mulberry extract and 

the sunscreen agents, a mixture of the sunscreen(s) with the mulberry extract was prepared and 

derivatised similarly and injected onto the GC/MS chromatograph.  Each mixture contained about 100 

µM of the organic sunscreen absorber(s) and the same amount of mulberry extract. 

 

8.2.2.2  The GC/MS experiment 

A 0.1 µL aliquot of the derivatised mulberry extract either alone or in combination with a 

sunscreen(s) was delivered into a Shimadzu GC/MS (QP2010 SE), with a column temperature set at 

70 °C and the injection port at 250 °C.  Injections were in split mode at a ratio of 20:1.  The 

components were separated in a GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary 

column with a bound stationary phase consisting of 5 % dimethylpolysilphenylene siloxane.  The 

column was held 70 °C for 2 min, raised to 240 °C at 10 °C min-1, then held for 5 min followed by an 
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increase to 270 °C at 10 °C min-1 and held for 10 min.  The carrier gas was helium flowing at linear 

velocity set at 30.0 cm s-1.  The MS ion source temperature was 200 °C and the interface temperature 

was set at 250 °C.  The MS detector was programmed to run in scan mode in the m/z range 35-1000 at 

a scan speed of 3333 and the detector voltage gain set at 2.5 kV.  The total run time was 37 min. 

 

8.2.2.3  The GC/FID experiment 

To check method interconvertability a GC/FID experiment was carried out on the same samples 

(derivatised mulberry extract alone and with sunscreen(s) with the same temperature program.  The 

GC/FID used was a Shimadzu GC (GC-2010), fitted with an autosampler (AOC 20i) and a flow unit 

(AFC-2010).  The components were separated in a DB-5 (30 m × 0.25 µm) quartz capillary column 

with a bound stationary phase consisting of 5% phenyl polysilphenylene-siloxane.  The make-up gas 

was nitrogen/air flowing at 10 mL min-1, the carrier gas was hydrogen with a flow rate of 40 mL min-1 

and oxygen/air flowing at 400 mL min-1.  The injection port was set at 250 °C, operating in a split 

mode of 20:1 for an injection volume of 2 µL.  The velocity flow control mode was adopted keeping 

the pressure at 61.9 kPa, the total flow rate at 5.0 mL min-1, the column flow of 0.68 mL min-1, and a 

linear velocity of 20.0 mL s-1. 

 

8.2.3  Photostability experiments 

The sunscreen mixtures with mulberry extract were prepared by adding about 20 mg of the sunscreen 

agents to 25 mL of the methanol extract (prepared as described in Section 8.2.2.1).  This solution was 

then made up to 50 mL in a volumetric flask with methanol.  To obtain working solutions, appropriate 

dilutions were carried out in order to obtain a sunscreen agent concentration of about 200 µmol dm-3 

in the extract for photostability studies. 

 

Samples of mulberry extract with and without sunscreens added were exposed to simulated solar light 

in a Newport research lamp housing (M66901) fitted with mercury-xenon lamp, powered by an arc 

lamp power supply Newport (69911). The power output of the lamp was controlled by a digital 

exposure controller Newport (68951) maintaining the output at 500 W.  The radiation from the lamp 

was passed through a 10 mm thick Pyrex filter to ensure that only wavelengths greater than 300 nm 

impinged on the samples.  The exposure time was varied incrementally from 0 hour in steps of 30 min 

to 4 hours of continuous exposure.  Each exposed sample was contained in a stoppered 1.00 mm 

pathlength quartz cuvette.  After each irradiation interval a UV-visible spectrum of the sample was 

recorded on a Perkin Elmer Lambda 35 dual-beam spectrophotometer.  A 10 µL aliquot of these same 

solutions were then injected into the HPLC chromatograph to monitor any chemical transformations 

between the extract and the included sunscreen(s).  Samples of the sunscreens alone dissolved in 

methanol were similarly irradiated and monitored by UV spectrophotometry. 

 

8.2.3.1  HPLC analysis of irradiated samples 

The chemical transformations in the irradiated samples were monitored on a Shimadzu Prominence 

HPLC chromatograph with a photodiode array (PDA) detector.  The chromatographic separation was 

achieved on an Agilent Zorbax Eclipse XDB C-18 reversed-phase column (150 × 4.6 mm i.d.; 5 μm 

particle size).  The mobile phase was composed of water (solvent A) and acetonitrile (solvent B).  The 

mixtures were resolved by a gradient elution as follows: 5–13 min, 16 % B; 13-18 min, 45 % B and 

held for 5 min; 23-28 min, 75 B %, held for 5 min; 33-40 min, 99 % B then held 5 min and then 

dropped linearly to 16 % B for 15 min.  The experiment was performed at ambient temperature with a 

flow rate of 1 mL min-1 and an injection volume of 10 µL.  The chromatograms were collected at 
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detection wavelengths of 275, 280, 286, 310, 320, and 358 nm with a bandwidth of 4 nm 

simultaneously in each of the 60 min run time.  The photodiode array detector was set to collect the 

UV-vis spectra of the chemical species separated over the range 190 to 800 nm. 

 

8.3  Results and discussion 

The characterisation of the mulberry extract was firstly done in order to identify the chemical 

components present that may play a role in any photochemical reactions and consequently give rise to 

any UV absorption effects observed. 

 

8.3.1  Characterisation of the mulberry extract 

In order to investigate the chemical composition of the mulberry extract used in this work, the extract 

was derivatised and subjected to GC/MS analysis.  The components present were identified from their 

mass spectra.  A positive match was obtained by comparison to  80 % match of the National Institute 

of Standards and Technology library search.  The total ion chromatogram (TIC) of the silylated 

mulberry extract is shown in Figure 8.1.  The prominent peaks P and E were identified as picolinic 

acid and ethyl-9,12-octadecadienoate respectively (Fig. 8.1).  Some of the other compounds identified 

are shown in Figure 8.2 together with their percentage match of the mass spectra with those of the 

NIST database. 
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Figure 8.1: The GC/MS total ion chromatogram of a methanolic solution of silylated mulberry 
extract showing the picolinic acid (P) and ethyl-9,12-octadecadienoate (E ) peaks.  The separation 
was effected on a GL Sciences InertCap 5MS/Sil 30 m × 0.25 quartz capillary column under the 
condition described in Section 8.2.2.2.   
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Figure 8.2: Some of the compounds identified in the mulberry extract by GC/MS.  Below each 

structure is given the percentage match of the mass spectrum with that of the NIST database. 

 

According to the library match criteria used in this work, the major constituents of mulberry extract in 

the methanolic solution were aliphatic esters, in which picolinic acid, an aromatic acid, and ethyl-

9,12-octadecadienoate were found to be major methanol extractible components (Fig. 8.1).  These 

compounds may not explain the observed light absorption characteristics exhibited by this extract.  

However,  Wang et al. (2013) isolated a number of flavonoids from various fractions of mulberry by 

using different solvent systems.  These authors concluded that mulberry extract contains high amounts 

of anthocyanins.  Our focus in this work was to investigate the photostabilization potential of the 

methanol soluble fraction of the mulberry extract on common sunscreen agents.  Most sunscreen 

preparations in the market use alcohol as the solvent.  Hence, different extraction solvent 

compositions were not attempted.  However, the absorption of UV observed in this work confirmed, 

the presence of flavonoids though our GC/MS results did not show any fragments that could relate to 

flavonoids or flavones.  The methanol fraction of mulberry extract has previously been shown to 

contain anthocyanins (Subramaniyan et al. 2013).   

 

8.3.2  Photostability of the mulberry extract 

The extract showed good UV light absorption but this dropped steadily on exposure to solar simulated 

light (Fig. 8.3).  The spectra show good UV absorption which extends to visible region and points to 

the presence of anthocyanins (Fig. 8.4).  The anthocyanins have extended conjugation in the C-ring 

and hence are better light harvesters than other flavonoids like the catechins.  This observation agrees 

with work by Aramwit et al. (2010); this group showed that light degrades anthocyanins from 

mulberry fruits.  It should be noted that spectral drop is gradual showing relative stability.  The 
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spectral changes observed were monitored by HPLC.  The HPLC chromatograms of these samples 

gave peaks of chemical species seen at 280 nm, 320 nm and 358 nm, with UV spectra characteristic of 

flavonoids, flavans and flavones (Fig. 5).  The lack of flavonoid fragments in the GC/MS results could 

be due to the low volatility of these compounds and the short derivatisation period employed.  A 

chemical species on the HPLC chromatogram at retention time 15 min decreased steadily with 

incremental exposure period.   
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Figure 8.4: The general structure of anthocyanins. 
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Figure 8.3: Photostability of the mulberry extract dissolved in methanol when exposed 
to simulated solar radiation. The spectral changes were monitored with a Perkin Elmer 
Lambda 35 dual beam spectrophotometer, in a 1 mm pathlength quartz cuvette. 
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280 nm 320 nm 358 nm 

Figure 8.5: HPLC chromatograms recorded at 280 nm, 320 nm, and 358 nm of the photochemical changes undergone by mulberry extract 
dissolved in methanol when irradiated by simulated solar radiation.  The separations were achieved on a reversed-phase Zorbax Eclipse XDB 
C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at flow rate of 1 mL min-1 and an injection volume 
of 20 µL. 
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The observed relative photostability can be attributed to photo-induced electron modulation in the 

anthocyanins.  The extra conjugation in the pyran ring (C-ring) (Fig. 8.4) and the cationic flavylium 

charge create an electron-hole effect aiding faster electron promotion and transfer on light absorption.  

The fast conversion of photon energy to kinetic energy of the electrons decreases the probability of 

molecular excitation and deactivates molecular excitation, blocking possible photolysis of this 

molecule.  The heterocyclic pyran ring thus acts as an efficient energy transducer unit.  Our claim is 

informed by the fact that the anthocyanins are known sources of electrons in dye-sensitized solar cells 

when they absorb appropriate photons of light.  They are also known to readily protonate and 

deprotonate depending on the pH of the surroundings (Fig. 8.6).  At a pH of 1-2 the anthocyanin 

exists in its cationic flavylium form whereas at a pH of 3-5 it deprotonates from the B-ring to form the 

quionoidal molecular form (Fig. 8.6).  This event creates a keto-enol tautomerism phenomenon only 

possible upon absorption of a photon of light by electrons in this conjugated system.  The absorption 

of photons of sufficient energy by an anthocyanin causes an excitation in the chromophore, which is 

the anthocyanidin part of the molecule.  Generally, lower excitation energies contribute to excitations 

in the vibrational, rotational and conformational energies of anthocyanins.  The rotational and 

vibrational transitions allow the continuous band spectrum of a molecule.  Higher excitation energies 

from shorter wavelengths, for example UV light, contribute to excitations in the conjugated -orbital 

systems where a -orbital electron is excited to a -antibonding orbital ( to ٭).  In the cationic 

flavylium form, the aromatic B-ring is an isolated -orbital system with 6 delocalized -orbitals, 

whereas its nonaromatic quinonoidal counterpart has only 5 delocalized -orbitals due to the keto-

group at position 4' (Fig. 8.6).  The absorbed photon needs to have sufficient frequency to excite the 

anthocyanin so that it has enough energy to release an electron.  After a successful release the 

molecule drops back to ground state and in the case of cyanin the release occurs on the femtosecond 

timescale, which prevents any decomposition from occuring.  This fast regeneration may sustain 

excitement and relaxation cycles without photodegradation of the molecule. 
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Figure 8.6: The keto-enol tautomers of cyanin, showing protonation and deprotonation reactions 

during photo-induced electron transfer. 

 

The relative energy of an absorbed photon is related to the maximum absorbance value of the sample.  

Among the anthocyanins the different absorption maxima of these compounds can be accounted for 

from the increasing number of hydroxyl groups in the B-ring.  This B-ring is known to mostly contain 

the LUMO electron density of the anthocyanin (Cherepy et al. 1997).  The increasing number of 

hydroxyl groups in the B-ring decreases the HOMO-LUMO gap, allowing photons of smaller energy 

to be absorbed.  This is due to a stronger electron affinity of the substituted oxygen compared to 

hydrogen relative to the sp2 hybridized carbons (Est'evez and Mosquera 2009).  Apart from changing 

the HOMO-LUMO gap, the hydroxyl auxochromes absorb photons with their non-bonding electrons 

(n, n٭) thus contributing to lower absorption energies.  The overall effect of the photo-induced 

electronic transitions and self-vibrational excited state deactivation is the relative low photolysis of 
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the molecule and longer wavelength light absorption efficacy.  We therefore speculate that this extract 

could help in the photostabilization of sunscreen absorbers which breakdown upon UV absorption, for 

example BMDBM. 

 

8.3.2  The effect of mulberry extract on the photostability of BMDBM 

The GC/MS total ion chromatogram of an un-exposed derivatised mixture of the mulberry extract and 

BMDBM (Fig. 8.7) did not show any other new chemical species.  The similarity of the total ion 

chromatograms of the mulberry extract alone and its mixture with BMDBM, save for the BMDBM 

peak in the latter, indicate that there are no dark reactions and heat does not induce chemical reactions 

between the mulberry extract and BMDBM.  A methanol solution of BMDBM, a common UVA 

absorber incorporated in most skin-lightening and sunscreen products, was firstly subjected to 

photostability studies.  The irradiation of a solution of BMDBM in methanol showed a gradual drop in 

UV absorption at 358 nm and an increase at 260 nm (Fig. 8.8).  It is known that in solution BMDBM 

exhibits keto-enol tautomerisation (Fig. 8.9).  The enol tautomer of BMDBM has a maximum 

absorption at 358 nm and the keto tautomer shows a maximum around 260 nm.  We therefore assign 

the decrease in absorption at 358 nm as enol photodegradation and the observed growth at 260 nm as 

increase of the keto tautomer.  However, the HPLC chromatogram of the same solution did not show 

any appreciable change in the BMDBM peak (Fig. 8.10).  This apparent photostability could be due to 

the effect of the methanol solvent because BMDBM has been shown to be stable in polar protic 

solvents (Mturi and Martincigh 2008).  The keto-enol tautomerization is accompanied by a loss in the 

photo-absorption efficacy of this sunscreening agent because the keto tautomer has maximum 

absorption at a much shorter wavelength, namely 260 nm.  In nonpolar solvents BMDBM is known to 

photodegrade upon irradiation by way of radical formation which may completely destroy UV 

absorption potential (Roscher et al. 1994; Mturi and Martincigh 2008).   

 

The photostability of BMDBM in the mulberry methanol extract was greatly improved.  Though there 

was an initial drop in photo-absorption of about 0.2 absorption units thereafter no further significant 

drop was observed alone (Fig. 8.11) compared to the spectral decay observed when BMDBM is 

dissolved in methanol (Fig. 8.8).  The major component of mulberry extract, anthocyanin, and 

BMDBM both can undergo light induced keto-enol tautomerism.  However, the presence of a charge 

on the anthocyanin provides an added advantage as a major driving force for the electronic transitions 

and safe deactivation pathway.  Considering the foregoing discussion, it is prudent to envisage that in 

a mixture of anthocyanin and BMDBM, a relationship of donor–acceptor is established, in which the 

enol form of BMDBM is favoured.  We expect two tautomeric fast regenerative reactions: the keto-

enol tautomers of BMDBM and keto-enol tautomers of anthocyanin to be synergistically sustained by 

light.  The anthocyanin may act as a quencher thus denying BMDBM sufficient energy to initiate its 

own break-up via free radical generation.  This system preserves the identity of BMDBM in the 

chelated enol form (Fig. 8.9) for a longer time hence no drop in absorption is observed.  It is known 

that molecular reorganization of an organic quencher represents the activation of the vibrational 

modes of the reactants, which is insignificant for electron transfer into and out of the orbitals (Clark 

and Hoffman 1997).  Such molecular transformations do not result in significant molecular structural 

changes and may not result in bond breakage or formation but isomerization is possible.  

Consequently the anthocyanin-BMDBM system may be said to be photostabilized via an electron 

donor-acceptor effect.  The triplet excited state of keto-BMDBM may also be quenched by ground 

state oxygen via triplet-triplet energy transfer to form a ground state keto-BMDBM and singlet 

oxygen, (1O2) (Cantrell and McGarvey 2001; Mturi and Martincigh 2008).  The singlet oxygen may 

oxidise enolate-BMDBM to BMDBM radical that can rapidly attract hydrogen from the solvent 



228 
 

 
 

(methanol) and anthocyanin in the medium since both are rich sources of hydrogen.  This route could 

be favoured in this mixture further stabilizing the enol-BMDBM, thus demonstrating the observed 

photostability (Fig. 8.11).  The total ion chromatogram of the mixture does not show any keto 

BMDBM (Fig. 8.7).  However, the HPLC chromatogram of a solution of BMDBM alone before 

irradiation did show a peak with a UV spectrum that matches the UV spectrum of the keto form of 

BMDBM at 260 nm (Fig. 8.10). 
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Figure 8.7 The GC/MS total ion chromatogram of a methanol solution of mulberry 
extract and BMDBM derivatised with BSTFA.  The separation was effected on a GL 
Sciences InertCap 5MS/Sil 30 m × 0.25 quartz capillary column under the conditions 
described in Section 8.2.2.2.   
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Figure 8.8: The spectral changes of BMDBM dissolved in methanol when irradiated with a 
solar simulated radiation.  The spectra were acquired with a Perkin Elmer Lambda 35 UV-Vis 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 
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Figure 8.9: The keto-enol tautomerism of BMDBM.  
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Figure 8.10 The photochemical changes of BMDBM monitored at 260 and 358 nm on a 
reversed phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm) with a methanol-water 
(84:16 % v/v) mobile phase.  The injection volume was 10 µL and the flow rate set at 1 mL min-

-1. 
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The HPLC chromatograms of the irradiated mixture of mulberry extract and BMDBM show evidence 

of a photochemical reaction.  The lack of detection the BMBDM peak; with a retention time of 34.954 

min (Fig. 8.12), and the emergence of a new peak (retention time 25.542 min) D observable at all the 

three detection wavelengths on exposure for a period of 1.5 hours is proof that there are photo-

induced reactions.  The photochemical product D was characterised by UPLC-TOF-MS and gave a 

molecular mass of 310 (note that the peak for compound D in Figure 7.12 is the same peak in Figure 

7.13 UPLC chromatogram and that there is a time delay between the mass spectrum detector and 

UPLC PDA detector and so the observed small differences in time of data acquisition).  The 

molecular mass obtained and the corresponding UV spectrum (see Fig. 8.13) led us to speculate that 

the structure could closely resemble the BMDBM structure.  Consequently, from the mass spectrum 

fragments we propose the structure of compound D as shown in Figure 8.14.  This particular structure 

may afford the observed longer wavelength absorption exhibited due to the increase in double bond 

conjugation and the fact that the cis-diene structures favour longer wavelength absorption.  More so, 

the structure retains the enol-BMDBM chromophore with a consequence of a possible bathochromic 

shift.   

 

It is known that the n−π* triplet state behaves as a 1,2-biradical and in reactions with hydrocarbons or 

alcohols, the triplet excited ketones are considered to behave like radicals.  It is commonly accepted 

that for hydrogen abstraction reactions, n−π* excitation is much more favourable than π−π* 

excitation.  Consequently, because of the phenolic constituents of the composition, we propose a 

chelated enol chromophore of the BMDBM is retained, which shows maximum absorption at  355 

nm (Cantrell and McGarvey 2001) (Fig. 8.11 and 8.12) but with a new structural reorganization or 

conformation, thus, changing the retention time.  It is therefore worthwhile to note that mulberry 

extract is a likely stabilizing candidate of for BMDBM.  This composition may not need the addition 

of any other organic or inorganic sunscreen agents.  The advantage, therefore, is the reduction in the 

number of active agents in a formulation and a significant reduction in the number of related side-

effects.  
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Figure 8.11: Photostability of BMDBM incorporated in mulberry extract dissolved in 
methanol when exposed to simulated solar radiation. The spectral changes were monitored 
on a Perkin Elmer Lambda 35 spectrophotometer in a 1 mm pathlength quartz cuvette. 
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Figure 12: HPLC chromatograms acquired at 280 nm, 320 nm, and 358 nm of the photochemical changes observed when BMDBM is 
incorporated in mulberry extracts dissolved in methanol and irradiated by simulated solar radiation. The separation effected on a reverse 
phase Zorbax Eclipse XDB C-18 (150 mm × 4.6 mm, i.d., 5 µm) under a gradient elution of acetonitrile-water at a flow rate of 1 mL min-

1and an injection volume of 20 µL. 
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Figure 8.13: The UV spectrum, UPLC chromatogram and mass spectrum of compound D.  The data was acquired on a 
Waters Acquity UPLC connected to a Waters Micromass LCT Premier TOF-MS in negative ionisation mode.  
Characterisation effected using a reversed phase C-12 column (Phenemonex Synergi 4µ Max-RP 80 Å, 150 mm × 4.6 
mm) was used with a gradient elution of acetonitrile-water.  The injection volume was 7 µL and flow rate set at 1 mL 
min-1, The detection wavelength was 358 nm. 
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Figure 8.14: The proposed structure of compound D and possible fragmentation products that gives 

the observed mass spectrum 

 

8.3.3  The effect of mulberry extract on the photostability of BP3 

The GC/MS total ion chromatogram of the derivatised mixture containing mulberry extract and BP3 

showed a BP3 peak, with a library match of 95 % at a retention time of 19.745 min (Fig. 8.15).  This 

indicates that there was no thermally-initiated reaction during the derivatization procedure.  The 

photostability study of a BP3 solution in methanol alone showed a marked expected photostability 

(Fig 8.16).  The HPLC analysis of the solution of irradiated BP3 in methanol also did not show any 

other peak indicating no photodegradation of BP3 under these exposure conditions (Fig. 8.17).  The 

UV spectra of the mixture of the mulberry extract with BP3 remained unchanged only showing a very 

slight hypsochromic shift (Fig. 8.18).  A comparison with the spectra of BP3 in methanol (Fig. 8.16) 

shows close similarity in all respects.  An inspection of the HPLC chromatograms of the time-

dependent irradiance experiment with the solar simulated source, shows no apparent chemical 

transformation of BP3 (Fig. 8.19).  It is reported by several working groups that after absorbing a 

photon, triplet BP3 is formed in a very efficient intersystem crossing (ISC) process with a quantum 

yield of one.  This triplet may disappear in energy dissipative processes including: the first-order 

phosphorescence and ISC, as well as the second-order triplet−triplet annihilation reaction (Demeter et 

al. 2013).  The overall effect is the preservation of the BP3 chemical identity.   

 

In the presence of mulberry extract, we propose a new deactivation pathway for BP3.  We suspect that 

the triplet excited state energy of BP3 is higher than the electron excitation in the anthocyanins.  

Consequently, BP3 loses the excitation energy quickly to the excited anthocyanin which drops to 

ground state via a vibrational deactivation pathway.  Hence, because of the high phenolic 

concentration in the mulberry extract and the fact that the solvent used is methanol (an alcohol) (all 

are possible hydrogen donors), the chances of hydrogen-bond complexation known to induce a blue 

shift for carbonyl chromophores are curtailed.  The presence of a large quantity of hydrogen-bond 

donor phenolic reactants may help to confer further photostabilisation.  Multiple complex formation 

equilibria may be established that mask the activation energy of the actual hydrogen atom transfer 
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step in a bid to photo-reduce the BP3.  This extract therefore enhances the photostability of BP3 

greatly and in turn preserves the chemical composition of the mulberry extract as shown by the HPLC 

data (see Supplementary Materials Table S8.4) and HPLC chromatograms (Fig. 8.19).  We envisage 

the same preservative effect may be replicated in sunscreen preparations incorporating other cosmetic 

agents like antioxidants that decompose in light. 
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Figure 8.16: The spectral stability of BP3 in methanol irradiated by a solar simulated 
source.  The spectra were acquired with a Perkin Elmer Lambda 35 UV-Vis dual beam 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 
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Figure 8.15 The GC/MS total ion chromatogram of a methanolic solution of silylated 
mulberry extract mixed with BP3.  The separation was effected on a GL Sciences 
InertCap 5MS/Sil 30 m × 0.25 quartz capillary column under the conditions described 
in Section 8.2.2.2.   
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Figure 8.17: The photostability of BP3 monitored by HPLC at 286 nm.  A 
reversed phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm) was 
used with a mobile phase of methanol-water (84:16 % v/v).  The injection 
volume was 10 µL and the flow rate set at 1 mL min-1. 
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Figure 8.18: Photostability of BP3 incorporated in mulberry extract dissolved in methanol 
when exposed to simulated solar radiation.  The spectral changes were monitored on a 
Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer, in a 1 mm pathlength quartz 
cuvette. 
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Figure 8.19: HPLC chromatograms acquired at 280 nm, 320 nm and 358 nm of the photochemical changes when BP3 is incorporated in mulberry extract dissolved 
in methanol and irradiated by simulated solar radiation.  The separation was effected on a reversed-phase Zorbax Eclipse XDB C-18 column (150 mm x 4.6 mm, 
i.d., 5 µm), under a gradient elution of acetonitrile-water at flow rate of 1 mL min-1 and an injection volume of 20 µL. 
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8.3.4  The effect of mulberry extract on the photostability of EHMC 

The behaviour of a methanolic solution of EHMC under simulated solar irradiation indicated spectral 

lability characteristic to the photo-loss by isomerisation of trans-EHMC to cis-EHMC (Fig. 8.20, 8.21 

and 8.22).  The HPLC chromatogram of this solution showed the formation of the cis-isomer (Fig. 

8.21) in the first 30 min of exposure.  The peak area of the trans- and cis-EHMC do not show much 

difference even after 90 min of exposure indicating an attainment of a photostationary state (Fig. 

8.21).  When this isomerisation is monitored at 260 nm, the cis-EHMC peak was found to be much 

bigger than trans-EHMC peak since the former absorbs more strongly at this wavelength.  This shows 

that the photostationary state is populated by the cis-isomer.  This in turn is taken as photo-loss 

because absorption of UVB (290-320 nm) radiation is compromised.  The photostability of EHMC 

was similarly examined in the mulberry extract firstly by investigating possible ground state reactions 

between EHMC and the mulberry extract.  The mixture was derivatised with BSTFA and subjected to 

GC/MS analysis.  The total ion chromatogram remained essentially the same as the original mulberry 

extract total ion chromatogram (Fig. 8.23).  This indicates that thermal reactions involving EHMC, 

other than derivatisation, did not occur.  This was confirmed by the RP-HPLC experiment of the 

unexposed samples whose result was identical to the chromatogram of the mulberry extract alone 

(Fig. 8.25).  The interpretation then is that the mulberry extract does not react with EHMC in the 

ground state.  Exposure of this mixture to solar simulated radiation for thirty minutes resulted in a 0.3 

drop in absorbance units (Fig. 8.24).  This drop could be attributed to cinnamic bond decay via trans-

cis isomerisation.  However, the characteristic cinnamic decay observed for an EHMC methanolic 

solution (Fig. 8.20) is not replicated.  For the replication of this decay, the rotation of a C atom around 

the C=C bond to result in trans–cis isomerisation is required.  However, this rotation around the --

C=C bond is symmetry forbidden.  Therefore isomerization is proposed to occur through a biradical 

intermediate state in which the --C-C bond is cleaved (Fig. 8.22).  This cleavage requires high 

energy and therefore it is probably from the singlet state because of the high energy consumed.  

 

Its speculated that in olefins the trans–cis-isomerisation occurs with high activation of the singlet 

excited state.  Normally the excited singlet state is stabilized by splitting of the two lowest * states 

resulting in large activation barrier for non-radiative decay.  This stabilization has been shown to be 

largest for meta, intermediate for ortho and smallest for para-substituted cinnamates.  However, 

lifetimes for cinnamates are too short to sensitize any oxygen species or form undesired chemical 

reactions (Karpkird et al. 2009).  As seen above the anthocyanins are good activated electron sources 

necessary for hydrogenation of the cinnamic moiety.  But this does not seem to occur because the 

overall protonation of the methoxy cinnamate radical by phenolics requires two electrons per 

molecule to be consumed to produce the hydrogenated product (Parker 1981).  Hence, we propose 

that the EHMC trans-cis-isomerization favours the trans-isomer on prolonged exposure (Fig. 8.24).  

This, therefore, generates the perceived stable absorption characteristics observed in this work. 
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Figure 8.22: Proposed electron movement during photo-induced biradical C=C bond cleavage of 

EHMC to effect trans – cis-isomerisation. 
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Figure 8.20: Photoinstability of EHMC dissolved in methanol under solar simulated irradiation. The 
spectra were acquired with a Perkin Elmer Lambda 35 UV-VIS spectrophotometer in a 1 mm 
pathlength quartz cuvette with air as the reference. 

Figure 8.21: Isomerisation of EHMC under simulated solar irradiation monitored by HPLC at 260 
and 310 nm on a reversed phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm) with a 
methanol-water (84:16 % v/v) mobile phase.  The injection volume was 10 µL and the flow rate set 
at 1 mL min-1. 
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Figure 8.23: The GC/MS total ion chromatogram of methanolic solution of silylated mulberry 
extract mixed with EHMC.  The separation was effected on a GL Sciences InertCap 5MS/Sil 30 
m × 0.25 quartz capillary column under the condition described in section 8.2.2.2.   
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Figure 8.24: Photostability of EHMC incorporated in mulberry extract dissolved in 
methanol when exposed to simulated solar radiation. The spectral changes were
monitored with a Perkin Elmer Lambda 35 spectrophotometer, in a 1 mm 
pathlength quartz cuvette. 
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Figure 8.25: Chromatograms recorded at 280 nm, 320 nm, and 358 nm of the photochemical changes when EHMC is incorporated in the 
mulberry extract dissolved in methanol and irradiated by simulated solar radiation.  The separation were effected on a reversed-phase Zorbax 
Eclipse XDB C-18 column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at a flow rate of 1 mL min-1 and an 
injection volume of 20 µL. 
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8.3.5  The effect of mulberry extract on the photostability of a mixture of BMDBM, 

BP3 and EHMC 

A mixture of the three commonly used sunscreen absorbers with mulberry extract was derivatised and 

subjected to GC/MS analysis.  The total ion chromatogram (Fig. 8.26) of the unexposed sample 

indicated peaks for all the sunscreens incorporated, eliminating the possibility of any reaction between 

the sunscreens and mulberry extract that could be thermally-driven during the derivatisation process.  

The observed smaller molecular weight products obtained by GC/MS can be attributed solely to the 

derivatisation process (Fig. 8.27).  This is because the same procedures were adopted when the 

sunscreens were incorporated and derivatised singly.   

 

A mixture of the three sunscreen absorbers was prepared and subjected to photostability studies.  

Spectral lability was observed (Fig. 8.28), with an accompanying blue shift.  The exposure of the 

samples to simulated solar radiation saw a drop in the absorption of the mixture of approximately 0.25 

absorbance units in the first thirty minutes (Fig. 8.28).  HPLC analysis of these solutions over the 90 

min irradiation period shows the isomerisation of EHMC and the steady formation of cis-EHMC 

which explains the photo-loss (Fig. 8.29).  In this mixture photostationary state observed earlier 

between cis- and trans-EHMC appears seem not to be attained.  This could be attributed to enhanced 

photosentization reaction due to the presence of BMDBM (Paris et al. 2009; Kumasaka et al. 2014).  

A mixture of the three sunscreens with mulberry extract dissolved in methanol and similarly irradiated 

demonstrated a unique photostability (Fig. 8.30).  The spectral change was confirmed by the lack of 

detection of BP3 and the reduction of BDBDM.  A shift in the retention time of the EHMC peak also 

observed (Fig. 8.31).  These occurred on irradiation by the solar simulated source.  It can be safely 

argued that all the sunscreens underwent photochemical reaction or transformation in the first thirty 

minutes of exposure (Fig. 8.30).  The most significant observation is the disappearance of chemical 

species absorbing at 358 nm as has been observed when the BDBDM and BP3 were incorporated 

singly into the mulberry extract (Fig. 8.12, and Fig. 8.19).   

 

From the Frank-Condon principle the position of the 0−0 transition is the measure of the energy of the 

singlet excited state at the ground state geometry.  It has been reported that both the structural and 

solvent relaxations are expected to be small for the excited benzophenone derivatives and this energy 

decreases with the increase of the electron withdrawing ability of the substituent on the phenyl group 

(Kumasaka et al. 2014).  Recently, Demeter et al. (2013) have shown that the substitution on the 

aromatic rings induces a remarkable change in the reactivity of triplet benzophenone towards alcohols 

which is the primary photoreduction step of the carbonyl chromophore.  It is also known that aromatic 

ketones can form hydrogen-bonded complexes with alcohols, the proton acceptor being the C=O 

group, which is also the chromophore.  Hence, the blue shift observed in the absorption spectrum of 

the nπ* excitation of a carbonyl molecule is due to the reduction of the electron density on the oxygen 

atom with excitation.  This solution is highly polar and therefore it is expected that for an nπ* 

transition, the energy of the first singlet state increases while the energy of the higher ππ* states, 

corresponding to symmetry allowed transitions, decreases (Demeter et al. 2013).  The resultant effect 

is the concerted photoreactions culminating in the reduction of the BP3 chromophore, decay of the 

cinnamate, and breakup of the dibenzoylmethane derivative.  The GC/MS results revealed a sizeable 

composition of aliphatic alcohols in the mulberry extract.  Since aromatic ketones undergo hydrogen 

bonded complex formation in the presence of aliphatic alcohols, it explains why this mixture has a 

significant blue shift and is thus only suitable as a UVB photoprotector. 
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Figure 8.26: The GC/MS total ion chromatogram of a methanolic silylated solution of mulberry 
extract mixed with BMDBM, BP and EHMC.  The separation was effected on a GL Sciences 
InertCap 5MS/Sil 30 m × 0.25 quartz capillary column under the conditions described in Section 
8.2.2.2.   
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Figure 8.27: Compounds identified by GC/MS when all the sunscreens were mixed with silylated 

mulberry extract prior to exposure to UV radiation. 
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Figure 8.28: The photostability of a methanolic solution containing the sunscreen 
absorbers: BDBDM, BP3 and EHMC under solar simulated irradiation.  The spectral 
changes were monitored with a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer, in a 1 mm pathlength quartz cuvette. 
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Figure 8.29: The photochemical transformations of a mixture of BMDBM, BP3, and EHMC dissolved in methanol monitored by HPLC at 260, 286, 310, and 
358 nm the separation was effected on a Zorbax Eclipse-XDB C-18 column.  The mobile phase was a gradient elution of acetonitrile-water with a flow rate of 
1.00 mL min-1 and an injection volume of 20 μL. 
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Figure 8.30: Photostability of BDBDM, BP3 and EHMC incorporated in mulberry extract 
dissolved in methanol when exposed to simulated solar radiation. The spectral changes were 
monitored on a Perkin Elmer Lambda 35 dual beam spectrophotometer, in a 1 mm pathlength 
quartz cuvette. 
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280 nm 320 nm 358 nm 

Figure 8.31: HPLC chromatograms recorded at 280 nm, 320 nm, and 358 nm of the photochemical changes when BDBDM, BP3, and EHMC is incorporated with 
mulberry extract dissolved in methanol and irradiated by simulated solar radiation.  The separation was effected on a reverse phase Zorbax eclipse XDB C-18 
column (150 mm × 4.6 mm, i.d., 5 µm), under a gradient elution of acetonitrile-water at a flow rate of 1 mL min-1and an injection volume of 20 µL. 

 

BP3 

trans-EHMC 
BMDBM 



248 
 

 
 

 

8.4 Conclusions 

The aim of this work was to investigate the effect of mulberry extract on the photostability of three 

common sunscreen absorbers.  The methanolic mulberry extract solution degraded when subjected to 

UV-irradiation.  However, the extract did photostabilize sunscreens when they were incorporated 

singly in a mixture.  The mixing of the three sunscreens with mulberry extract greatly lowers the UV 

range of photoprotection offered.  The red shift exhibited by BMDBM and BP3 may help in reducing 

amount of the organic absorbers incorporated in a cosmetic formulation.  This may lower the risk 

associated with photoproducts of these absorbers that may form upon photodegradation.  
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Figure S8.1: The transmittance spectrum of the 1 cm pyrex glass filter used in this work recorded on a 
PerkinElmer Lambda 35 UV-vis spectrophotometer. 
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Table S8.1: The photochemical changes of the sunscreen(s) dissolved in methanol after irradiation 

with simulated solar irradiation monitored on HPLC-PDA at 260, 286, 310, 358 nm. 

 Mixture of BMDBM, BP3 and EHMC 

   Peak Area 

Wavelength/nm UV-filter RT 0 min 30 min 90 min 

260 keto-BMDBM 2.372 474053 388025 402645 

286 

BP3 3.08267 1149065 1127671 1136999 

cis-EHMC 10.19733 0 261526 443856 

trans-EHMC 11.53067 683313 303745 148920 

310 

BP3 3.05067 1076471 879510 915656 

cis-EHMC 10.19733 0 272403 461590 

trans-EHMC 11.488 1212199 538875 272829 

358 enol-BMDBM 11.21067 146473 139439 154766 

 BMDBM 

260 keto-BMDBM 2.368 5769 99334 95094 

358 enol-BMDBM 11.232 110714 96556 92185 

 BP3 

286 BP3 3.06133 927540 738944 806767 

 EHMC 

260 
cis-EHMC 10.16533 0 139036 133916 

trans-EHMC 11.43467 156696 83566 81385 

310 nm 
cis-EHMC 10.16533 0 362702 342873 

trans-EHMC 11.44533 1818585 1026119 965827 
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Table S8.2: The chemical transformation of mulberry extract dissolved in methanol exposed to simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT 

PA-

0min RT PA-30min RT 

PA-

90min RT 

PA-

0min RT PA-30min RT 

PA-

90min 

1.395 136189 1.4 106124 1.394 96619 0.939 2142 1.4 102921 1.394 92546 

1.556 15239 1.561 10325 1.557 10324 1.395 141002 1.561 9752 1.557 9972 

1.845 64876 1.851 52471 1.846 50793 1.556 15351 1.851 52290 1.846 48267 

1.982 36847 1.992 25345 2.001 20097 1.845 65360 1.992 27027 1.999 18723 

2.201 33917 2.208 30295 2.204 27720 1.981 35797 2.208 34702 2.204 27781 

2.369 24156 2.379 33762 2.374 25116 2.201 35884 2.378 47549 2.374 20486 

2.517 30110 3.04 3366 3.6 3490 2.369 21404 3.033 19296 3.626 3122 

3.023 19859 3.613 3445 7.267 1364 2.542 30119 3.232 6703 3.984 1461 

3.221 8502 4.436 1246 8.912 1156 3.021 23191 3.625 21075 4.429 1107 

3.607 20599 11.051 1719 11.029 2853 3.615 21250 3.829 3811 9.401 1287 

3.843 12335 11.378 1532 11.377 2247 3.83 11994 3.99 6266 11.019 1489 

4.404 4750 11.637 1029 11.659 1734 4.418 4423 4.416 2847 12.064 1854 

7.158 1227 12.71 1526 11.968 5591 9.413 1267 9.403 1594 12.7 1051 

8.81 1438 13.074 1897 12.267 1587 10.763 1729 11.04 1689 14.53 1883 

11.324 1115 13.757 13326 12.437 4059 11.32 1903 11.377 1381 15.239 1758 

12.032 4490 14.225 2201 12.708 7151 12.683 2139 14.538 2983 16.904 8843 

12.416 3761 14.531 6012 13.077 9425 13.03 1451 15.235 1237 17.269 5867 

12.659 4426 15.247 1042 13.773 29259 13.28 1891 16.889 3694 23.445 1124 

13.035 7639 16.883 4008 14.251 6735 13.547 2505 17.045 5057 23.829 1624 

13.28 3880 17.035 5169 14.526 13762 13.744 8715 17.291 4836 24.156 4745 

13.775 24015 17.259 5122 15.241 12994 14.186 2363 24.164 1805 24.437 1552 

14.208 5018 24.174 1564 15.509 10375 14.494 7481 24.657 1141 24.629 2792 

14.496 16364 24.973 3489 16.901 8041 15.17 1109 24.821 1939 24.811 2463 

15.173 22027 25.142 1787 17.269 5668 16.811 4369 24.957 2053 24.967 3367 

16.827 8729 25.368 8568 24.174 1625 16.976 4288 25.146 2499 25.137 3477 
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17.269 6010 25.607 14978 24.821 1832 17.227 6346 25.371 7240 25.371 8143 

21.699 1132 26.896 3011 24.971 1515 21.676 1412 25.604 13181 25.605 14126 

24.137 1412 27.052 6431 25.141 1680 24.135 1448 26.896 3207 26.887 3293 

24.806 4428 27.53 1899 25.368 8630 24.619 1005 27.05 6462 27.055 6925 

25.094 2118 28.194 10913 25.607 15138 24.8 2213 27.548 1284 27.54 1819 

25.34 9777 28.984 12548 26.889 3011 24.925 1932 28.191 9825 28.192 9637 

25.572 16823 29.572 1154 27.053 6581 25.095 2517 28.985 12466 28.987 12801 

26.106 2895 30.494 2099 27.551 2036 25.338 7153 29.566 1624 29.563 1175 

26.853 2869 30.885 2138 28.191 11388 25.571 13230 30.492 1578 30.491 1838 

27.015 6542 35.403 4429 28.988 14175 26.852 2919 30.872 1484 30.923 2050 

27.498 2493 35.861 2253 30.486 1961 27.012 6500 35.406 3571 35.405 3536 

28.15 10563 38.833 7812 30.873 1386 27.497 1777 35.876 2716 35.877 2845 

28.931 12195 45.653 83945 35.406 4070 28.147 9301 38.833 7542 36.365 1028 

29.498 1032     35.875 2419 28.926 12142 45.646 91196 38.835 7454 

30.419 1944     36.366 1034 29.498 1469     45.68 90565 

30.831 1612     38.833 6849 30.409 1984         

35.051 1120     45.651 82412 30.808 1779         

35.3 4678         35.008 1036         

35.829 3220         35.304 4178         

36.117 1078         35.828 2901         

36.331 1668         38.79 6436         

36.512 1230         45.641 91671         

38.781 6829                     

45.609 81151                     

286 nm 310 nm 

RT 

PA-

0min RT PA-30min RT 

PA-

90min RT 

PA-

0min RT PA-30min RT 

PA-

90min 

1.395 128990 1.4 96118 1.394 85211 1.394 77490 1.4 60039 1.394 54644 

1.556 14056 1.561 9147 1.557 9411 1.555 8970 1.56 8115 1.556 8539 
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1.845 65272 1.851 50211 1.846 46070 1.845 55218 1.851 37890 1.846 34580 

1.981 35072 1.991 25387 1.994 17578 1.984 22777 1.987 17130 1.985 14287 

2.201 34924 2.208 33360 2.204 27338 2.2 15411 2.206 12039 2.204 11096 

2.369 20869 2.377 44798 2.374 20639 2.365 13651 2.378 11979 2.372 9832 

2.525 30020 3.032 13763 3.621 2421 2.543 24590 2.551 12527 2.542 5863 

3.022 22149 3.2 6707 3.989 2286 3.017 10350 3.019 2187 3.999 1742 

3.618 17736 3.621 14570 4.391 1103 3.221 5398 3.965 1852 14.54 1082 

3.844 13592 3.988 7045 6.864 1050 3.513 7604 14.532 2574 24.848 1171 

4.423 5697 9.447 1021 9.394 2038 3.825 8152 21.76 1326 25.557 3215 

9.372 1810 12.7 1032 12.688 1268 11.315 1375 25.124 1181 27.061 1157 

11.331 1068 14.053 5135 13.707 5161 14.499 3658 25.554 3537 35.36 2699 

12.028 1018 14.24 2188 14.022 2655 21.661 3669 27.046 1120 35.878 1680 

12.43 1350 14.539 5389 14.235 3896 24.822 1132 35.371 2711 38.84 2622 

14.493 4063 15.22 1386 14.533 8120 25.096 1500 35.879 1947 45.692 58673 

16.821 4024 16.864 3905 15.244 9447 25.524 3772 38.835 2274     

16.995 4594 17.032 4254 15.563 7798 27.004 1088 45.708 54023     

17.28 5360 17.269 4859 17.03 7574 35.313 2340         

21.664 1595 23.84 1676 17.259 5108 35.825 1488         

23.797 1681 24.011 1190 23.861 1041 38.808 2187         

24.134 1887 24.161 2505 24.17 3272 45.673 57298         

24.607 2495 24.658 3749 24.64 3260             

24.757 2930 24.821 2901 24.779 2208             

24.936 2130 24.947 2555 24.957 2527             

25.105 4587 25.146 4876 25.145 4767             

25.335 5855 25.37 6233 25.362 6304             

25.56 10110 25.598 10497 25.599 10659             

26.852 2721 26.895 2711 26.902 2738             

27.016 6539 27.049 6740 27.053 6905             

27.511 1618 27.56 1629 27.559 1827             
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28.141 6803 28.189 7043 28.194 6988             

28.932 8488 28.983 9152 28.987 9144             

29.482 1820 29.543 2133 29.556 1677             

29.928 1031 29.989 1351 29.958 1204             

30.423 1249 30.493 1244 30.497 1604             

35.303 3715 35.38 3586 30.87 1497             

35.822 3198 35.868 3066 35.368 3331             

38.79 5281 38.836 6029 35.875 3036             

45.689 97323 45.688 93875 38.843 6918             

        45.684 95161             

358 nm 

RT 

PA-

0min RT PA-30min RT 

PA-

90min 

1.394 42881 1.399 34567 1.393 33795 

1.555 7440 1.56 7336 1.556 7698 

1.845 25207 1.851 22819 1.846 22605 

1.999 7303 2.003 5908 2 5754 

6.393 1697 7.237 1371 7.226 1484 

7.163 2149 8.885 4051 8.878 3235 

8.825 3391 14.53 5888 14.533 2681 

14.498 8758 25.525 3847 25.526 3377 

25.494 3550 35.056 2591 35.056 2917 

35.011 3237 35.866 1093 35.87 1211 

35.818 1163         



 
 

Table S8.3: The chemical transformation of mulberry extract mixed with BMDBM dissolved in 

methanol exposed to simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min 

PA-

30min 

PA-

90min RT PA-0min PA-30min 

PA-

90min 

1.401 147420 148269 141520 1.401 157719 144659 138081 

1.552 11410 15591 15254 1.552 15988 15062 14603 

1.849 71921 64822 60722 1.849 72920 65575 60819 

1.98 43684 38827 34631 1.98 44377 41621 36953 

2.197 39495 34458 32929 2.197 39900 39144 37280 

2.358 68291 29730 39350 2.356 59720 36357 53340 

2.624   10940   2.613   19881   

2.974 21930 3676   2.974 19007 19856 21342 

3.006     4125 3.2 7744 11448   

3.221 11278     3.603 22426 17256 26289 

3.601 32597 4314 4116 3.779 5732     

3.808 7241     3.959 9029 9995 8448 

3.944 14414     4.36 6847 3168 2795 

4.371 17605 1193 1018 5.559 1379   1273 

4.951 9912     6.88   3205 1639 

5.423 7047 1071 1519 8.559 1396 2532 1604 

6.843   3342   9.209 2718 3379 2572 

6.917 2933   2983 11.271 1074 1127 1084 

8.56 3296 3081 2637 11.593   1035 1040 

9.17 1500     12.369 1310     

9.284   2381 1972 12.634 1031 1446 2660 

11.279 1814 1117 1003 14.48 4302 3719 2920 

11.561   1394 1312 18.144     5037 

12.378 1007     18.267     7432 

12.605 1272 1956 3525 18.31 14362 11485   

13.026     1245 21.738 16278 13633 14335 

14.481 5704 4956   22.053 17983 17748 17079 

18.308 15512 11975 12933 22.459 12707 12565 12802 

21.749 17314 17991 17778 23.705     1115 

22.029 18846 15310 16006 24.063     1346 

22.467 12722 12799 12332 24.121 3825 1133   

23.709   1023   24.352 1698     

24.081     1518 24.565   1039 1050 

24.115 1930 3540 1513 24.601 2748     

24.363   2081   24.762 5129 2127 1954 

24.565   2194   25.195 5953 2245 2213 

24.604 1181     25.467 7576 4142 4561 

24.759 2030 3787   25.581   2832 2574 

25.12   3902 1111 26.002 4811 1183 1683 

25.323 1086     26.187     1008 
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25.468 4188 5934 4149 26.397 2076 1031   

25.565   3687 2008 27.152 376984 397167 397865 

25.968 1123 1516   27.579 27157 27946 27002 

26.311     1472 28.115 3321 3634   

27.152 404257 427821 428052 28.047     3803 

27.101   1234 28.326   1159 1262 

27.577 2691 26761 27088 28.767   24334 25346 

28.114 3520 3522 4146 28.9 29396     

28.304   1225 1246 35.004 1517432 1538617 1533588 

28.767   23636 25537 35.827 1703     

28.903 29651     37.852 1008     

34.592 1806 1119 1428 38.605 3303 3154 3397 

35.004 1478800 1505309 1497079 38.842 2263     

35.772 1378     44.596   3393 4675 

37.871 1071 45.191   15861 19598 

38.605 3387 3383 3433 

38.852 2445     

44.595   4462 3815 

45.178 13391 17953 

286 nm 310 nm 

RT PA-0min 

PA-

30min 

PA-

90min RT PA-0min 

PA-

30min PA-90min 

1.401 151344 137312 129223 1.401 90066 78116 73323 

1.552 15781 14661 14037 1.552 9878 8357 8815 

1.849 73763 64702 59221 1.849 59968 54101 48838 

1.979 44004 40739 35798 1.977 28719 26791 24065 

2.197 39312 38431 36537 2.195 14557 16529 16139 

2.356 56919 33937 35284 2.356 12687 16446 16109 

2.603   20640 16053 2.518 18015 27409 27307 

2.999 16771 17108 19324 2.96 2084 11336 11115 

3.168 7777     3.377   12542 17017 

3.371   14177 12346 3.499   5605   

3.599 20597 12320 12301 3.785 2491 5366 8200 

3.787 6890   4343 3.936 1366 2687   

3.946 7753 11212 5579 6.909   1500   

4.374 4808 2661 2671 8.509 2483 1968 1985 

5.535 1490 1155   9.187 1282 1082   

6.738 2539   2659 11.256 2197 1362 1258 

6.882   1722   13.932 1176 1054 1002 

6.965 1119     14.484 4811 4702 3216 

8.527 1873 1651   21.562   4403 3546 

9.212 3692 3730 3765 21.639 5303     

11.267 1654 1071   22.46 1062   2345 

12.378 1137     22.53   2048   

12.615 1108 1360 1436 24.8 2029     
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14.48 3971 3279 2643 24.742   1700 1654 

18.133     4649 25.077 1197   2299 

18.309 9577 7621 4204 25.107   1549   

21.664   3478 9464 25.471 2476 4788 4294 

21.705 11404     25.959   1255 1313 

21.977     9206 26.399 2040 1431 1352 

22.022 10098     27.152 32814 33530 33642 

22.462 11032 9013 11436 27.584 18321 17688 18074 

23.717     1013 28.751 1063     

24.14 1417 1038 1240 35.004 1907370 1932042 1922224 

24.576   1022 1212 38.601 4519 4907 5301 

24.601 1548     44.61   4233 3246 

24.78 3114 2802 2210 44.516 2110 9718 11090 

25.124   2395 2431         

25.216 3296             

25.474 4866 3391 4039         

25.589   2292 2746         

25.999 1912   1931         

26.321     1181         

26.404 1696             

27.152 322291 340764 339842         

27.579 26664 27741 28172         

28.041     3638         

28.12 2044 3078           

28.324   1464 1344         

28.895 17413 16679 16407         

35.004 1551232 1577477 1569313         

35.831 1732   1974         

36.032     1031         

38.6 3149 3026 3226         

38.833 2041             

44.594   4032 3030         

45.177   16360 19174 

358 nm 

RT PA-0min 

PA-

30min 

PA-

90min 

1.4 46057 40135 38348 

1.552 8060 6958 6789 

1.848 25360 25114 24761 

1.99 5295 5444 6131 

2.504 1040     

6.278 1973     

6.936 2357 3081 2924 

8.517 5222 6091   

8.603     5237 
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11.274 1164 1052 1086 

14.482 10923 10317 8000 

24.187 1202     

25.469 4524 4516 4415 

27.156 1564 1621 1489 

27.584 87889 89387 89347 

35.004 7838740 7947571 7932074 

38.602 12927 13483 14291 

44.52 7383 7747 8305 

        

 

 

Table S8.4: The chemical transformation of mulberry extract mixed with BP3 dissolved in methanol 

exposed to simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min PA-30min PA-90min RT PA-0min 

PA-

30min PA-90min 

1.393 179253 162251 154020 1.393 179061 159352 150418 

1.546 17214 17070 16259 1.545 17235 16664 15793 

1.842 76363 66492 64967 1.842 77876 67446 63828 

1.974 49837 41182 37885 1.974 51395 44672 38168 

2.191 40895 36340 41471 2.191 44059 41942 42795 

2.352 66700 41583 40756 2.351 62831 37335 37428 

2.603     23156 2.581     24623 

2.991 21993 3803 21206 2.603   24056   

3.243 9520   2.983 26778 20482 25030 

3.591 25485 5039 42882 3.599 25673 40092 35042 

3.787 6937     3.787 7174     

3.934 8697   8581 3.808   3632   

4.271     6665 3.951 8946 11968 13035 

4.373 7266 1187   4.296   9198 9647 

4.587     1618 4.368 7648     

5.394 1765     4.587     3693 

5.54   1866 1961 4.629   3113   

6.843 4298 3230 2075 4.892     1481 

8.414     3654 4.903   2396   

8.547 2920 3387   5.369 1360     

9.157 2359     6.293 1058     

9.241   2099 2317 6.756 4818   2498 

11.294 2173 1369 1359 6.811   2273   

11.512 1204 1449 1601 8.423     3000 

12.352 1139     8.514 1696 2400   

12.594     1655 9.196 3579   3832 

12.602 1116 1525   9.242   2906   

14.472 6899 4598 2857 11.268 2225 1319 1105 
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15.18     1763 11.56 1143 1155 1311 

17.318 1033     12.344 1386     

18.259   12714 13224 12.606 1136 1296 1732 

18.306 15113     14.473 5131 3430 2234 

21.643     17857 15.153   1135 1845 

21.745 15907 17147   18.272   12332 12051 

21.902     15931 18.31 13553     

22.03 21981 17865   21.675   18103 17962 

22.524     3982 21.712 15035     

22.681 4559 4232 1163 21.921     13486 

24.095   2716 4425 22.032 20525 14639   

24.123 2178     22.598   4141 3529 

24.395   1246 2185 22.682 3851     

24.57   1317 2400 23.683     1023 

24.6 1082   4168 23.726   1013   

24.76 2325 2367   24.137 1885 1255   

25.131     3709 24.576   1013   

25.269 1229     24.695     2007 

25.532 7930651 7949779 8248403 24.757 2894 2191   

26.993 8256 7910 7932 25.195 2054     

27.362     2220 25.532 9765378 9775067 10109536 

27.46 2658 2109   26.994 9304 8689 8733 

28.071   2752 2717 27.362 1033 1132 1150 

28.108 3203     28.061   2381 2611 

28.776   35444 35110 27.467 1167     

28.883 30655     28.106 2564     

35.168     1961 28.777   34735 34904 

35.299 5158 5431 2269 28.881 30176     

35.744 1648     35.166     4477 

37.853 1108     35.299 5183 5959   

38.883 2046     35.837 1724     

39.04   1687   37.857 1103     

44.501 2634 38.731   1060   

44.621 2769 4490 38.884 2046     

45.153 19262 18318 44.405   1490 1120 

44.589 3439 3123 

45.138 19578 18986 

286 nm 310 nm 

RT PA-0min PA-30min PA-90min RT 

PA-

0min 

PA-

30min PA-90min 

1.394 173146 150541 142574 1.393 110613 83964 79694 

1.545 17042 16227 15314 1.545 14848 9059 8679 

1.842 78974 66481 61785 1.842 66577 54663 48209 

1.973 49423 43568 36819 1.97 30474 28212 27319 

2.191 45034 40765 41463 2.19 14792 17295 17299 
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2.351 26826 56938 35823 2.349 14538 17235 17464 

2.496 34873   22330 2.509 19237 27619 28234 

2.981 17278 17618 17953 3.008 2714 11215 11707 

3.157 8352     3.366   18668 18077 

3.349   15617 14663 3.485 1306     

3.602 22641 11474 10567 3.776 3627 6315 6093 

3.779 7697     3.925 1458 1966 2199 

3.944 8776 11653 11356 6.796     3182 

4.288   2551 2870 6.841   3154   

4.359 6413     8.489   2765 3138 

6.336   1102   8.539 2800     

6.757 5979 5217 2559 9.176 1327   1603 

8.477   2056 2503 9.231   1491   

8.529 2646     11.236 2261 1302 1356 

9.167 4272     12.631     1144 

9.201   3929 4476 13.927 1253 1204 1149 

11.251 1848 1248 1242 14.471 5448 3672 2281 

12.367 1116     21.59   4833 3995 

12.601 1071 1395 2029 21.637 6141     

14.472 4533 3027 1988 22.585   1368   

15.167   1065 1668 22.787 1069   1726 

18.27   7617 8015 24.789 2528 1806   

18.308 8834     25.075 2085 1850 2001 

21.68   3764   25.532 7728714 7724284 8001178 

21.701 4602     26.995 2111 1837 1768 

22.693 2132 2052 1877 35.21   4378 2459 

23.667     1021 35.306 1777     

24.03     1148 44.466 3079     

24.144 2989     45.141   12100 11287 

24.587   1164           

24.69     2681         

24.755 5109 2802           

25.532 11014667 11015851 11372246         

26.994 9573             

27.366 1807             

27.413   1469           

28.061   1640 1680         

28.12 1885             

28.774   21184 21302         

28.882 18237             

35.297 4371 5600 3981         

35.837 1562             

38.887 2109             

44.563   3038 2296         

45.175   20312 18677         
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358 nm 

RT PA-0min PA-30min PA-90min 

1.393 49747 42667 40758 

1.545 7355 7286 7473 

1.842 26398 25743 25158 

1.987 5770 6695 5012 

2.505 1140     

6.288 2324     

6.885   3425 3459 

6.93 3173     

8.489   6028 6374 

8.539 7121     

11.269 1493 1145 1332 

13.436 1007     

14.473 13543 9465 6026 

16.168 1029     

24.17 1364     

25.532 1896447 1888780 1950667 

34.886   1758   

35.024 1345     

44.61   7701 6206 

 

 

Table S8.5 The chemical transformation of mulberry extract mixed with EHMC dissolved in 

methanol exposed to simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min PA-30min 

PA-

90min RT PA-0min 

PA-

30min 

PA-

90min 

1.398 181538 157729 146136 1.398 182449 154472 140891 

1.551 17387 16256 16607 1.551 17441 15707 15902 

1.847 77330 69350 65113 1.848 78919 68095 62846 

1.982 48974 39100 35734 1.982 48868 39342 35429 

2.201 40183 43766 40631 2.201 44944 45106 42852 

2.364 66407 42555 40710 2.363 27436 38797 36049 

2.592   23422   2.528 34771     

2.613     24923 2.603   25373 22776 

2.995 20932 23481   3.004 27473 21922 21072 

3.027     19139 3.413     12138 

3.264 10622     3.61 23953 31963 16701 

3.605 24928 34871 34597 3.829 6057 4461   

3.84 6125 4391   3.965 10190 7353 10962 

3.963 10442 5578 10463 4.267   4084 4182 

4.269   3710 3849 4.409 7407     

4.429 8672     5.573 1450   1709 

5.482 1370     5.62       
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5.595   1979   6.885   2901   

5.607     1902 6.916     3311 

6.916   3800   7.328     1041 

8.589   4957   8.55   3432   

8.699 2547     8.636 1560     

8.782     2056 8.782     1263 

9.328 1886 3381   9.329 2486 4472   

9.437     2451 9.451     3287 

10.993   1103   11.335 1647 1555   

11.028     1636 11.6   1212   

11.338 2320 1780 1335 12.445 1057     

11.589 1166 1551   12.669 1065 1873 1733 

11.63     1415 13.065   1092   

12.648 1144 1904 1405 14.496   2204 6747 

13.062   1138   14.523 5473     

14.492     7148 15.213   1461 1989 

14.524 6940 2813   17.453 1115     

15.213   1388 1813 18.24   10827 11704 

17.435 1555     18.379 13326     

18.176     5029 21.643   16692   

18.228   11835 7450 21.728     15393 

18.384 14567     21.884 18164 12691   

21.653   14009   21.99     13275 

21.76     17317 22.131 18022     

21.884 16438     22.512   3981 3683 

21.923   16522 13404 22.765 3822     

22.13 21305     24.023   1442 2091 

22.52   4446 4289 24.204 1643     

22.759 4402     24.349     3552 

24.043   2590   24.523   1207 1532 

24.189 1903   2521 24.661 1142 1898   

24.267   1211 6363 24.821 2532     

24.518   1442 2196 25.248 1006     

24.678   1946   25.481   10265491   

24.712     1662 25.405     2892 

24.822 2082     25.513 4317   2808 

25.376 1871     25.709 1871     

25.481   8358346 5945 25.924     1888 

25.511 4714     26.014 1363     

25.694 2301     26.6     1295 

25.923     1617 26.919   8322 7403 

26.022 1846     27.054 6525     

26.599     1589 27.337   1780 3482 

26.918   7949 6587 27.476 11388     

27.054 6200     27.727     5010 
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27.355   2099 3665 28.021   1941 2910 

27.475 10048     28.184 3094     

27.725     4485 28.72   49486 67528 

28.007   2358 3114 28.958 29499     

28.179 3252     29.338     2019 

28.723   51083 69102 33.344     1261 

28.962 30618     33.633 1978   2299 

29.341     1757 33.927 3109     

33.657 2016     34.848     10882 

33.702     2053 35.046 13736     

33.926 3131     35.162   4841 8089850 

34.844     9597 35.381 9186283     

35.045 10872     36.213 2994   4239 

35.152   2745 6808804 36.432 5672     

35.264   1949   36.529     6165 

35.381 7427395   36.672 2175     

36.213 2206   4486 36.785     8689 

36.431 5529     36.922 18079     

36.528     5443 37.904 1085     

36.672 1739     38.916 2113     

36.785     6793 44.267   1243 2607 

36.921 14625     44.594   5164 6010 

37.913 1239     45.15   15064 12220 

38.936 2209             

44.288     4388         

44.621   6345 7678         

45.155   14297 12516         

286 nm 310 nm 

RT PA-0min 

PA-

30min 

PA-

90min RT PA-0min 

PA-

30min 

PA-

90min 

1.398 175247 144150 131452 1.398 111771 80344 72243 

1.551 17123 14951 15158 1.551 14143 8782 8320 

1.848 79957 66179 60007 1.848 68173 51411 45414 

1.982 49967 38386 35473 1.979 31242 28553 25169 

2.201 42707 44739 40549 2.199 16346 18333 17513 

2.363 27294 39313 34438 2.362 17084 18789 16867 

2.517 34083     2.521 29586 29342   

2.624   25495 22438 2.603     26899 

2.985   18404   2.988 11439 12891   

3.01 24215   15905 3.029     11290 

3.189   9038 5868 3.232 5236     

3.42   13564 11222 3.397   20398   

3.611 20690 13554 12459 3.412     17981 

3.811 7476 6316 3951 3.506 10600     

3.964 9622 8968 7647 3.807 8138 6650 7891 
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4.302     2958 3.979 1630 2210   

4.409 5955 7209   6.677 2427     

4.651   1363   6.886   3753   

5.625     1272 7.004 2208     

6.778 3265     8.595   4013   

6.89   3538 4297 8.675 3491     

7.051 2327     8.752     1327 

7.221     1210 9.311   1842   

7.328     1204 9.417     1114 

8.573   3382   11.306 2981 1533 1212 

8.686 1533     11.669 1308     

        12.699   1507   

9.296 3672     12.702     1312 

9.337   5422   13.98 1278 1211   

9.448     4083 14.007     1302 

9.967   1421   14.527 5736 2370 2322 

11.314 1956 1196 1059 15.248     1636 

12.42 1498     17.473 2182     

12.669 1067 2017   21.499   3865   

12.703     2041 21.583     2993 

14.495   1821 6400 21.778 5670 1534   

14.523 4871     22.873 1025     

15.215   1710 2149 24.847 1742     

17.456 1702     24.981   1394   

18.233   6942 7415 25.481   8131585 2171 

18.365 9882     25.515 2717   1696 

21.568   10367   25.633     1780 

21.728     9601 25.715 2403     

21.828 12553 7157   25.943     1571 

21.959     7391 26.299     1077 

22.149 10727     26.471 1830     

22.501   2801 2514 26.913   1961 1786 

22.788 3060     27.047 1593     

23.671   1029   27.354     1801 

24.008   1442 2476 27.475 12846     

24.217 3232     27.728     3531 

24.368     2121 28.684     1225 

24.523   1531 2704 28.808 1112     

24.651 3918 2183   33.461 1421     

24.717     3573 33.7     1749 

24.824 5282     33.937 3026     

24.981     1638 34.853     13804 

25.109 1894   3729 35.046 19119     

25.237 4224     35.161   3105   

25.481   11518356 3968 35.201     10400344 
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25.517 5971   3163 35.381 13302675     

25.643     2912 36.384 1290     

25.712 4664     36.529     6793 

25.932     5312 36.651 1409     

26.035 3355     36.786     13396 

26.293 1573     36.923 26762     

26.301     2017 44.535 2670 4148 3317 

26.457 2967     45.141   8571 5310 

26.589     2712         

26.917   9104 9892         

26.891 2324             

27.056 8333             

27.358     4856         

27.475 14404             

27.726     6410         

28.006   1562 2806         

28.168 2300             

28.716   32281 43431         

28.954 19958             

29.348     3850         

33.323     1328         

33.611 2082             

33.718     1872         

33.943 2817             

34.852     13395         

35.047 16458             

35.163   4920 9403148         

35.382 11003208             

35.573   1081           

36.021     3475         

36.213 3077   4970         

36.421 4855             

36.529     8096         

36.672 2672             

36.786     11116         

36.922 21795             

37.9 1022             

38.907 1584             

44.385 2381 1320 2485         

44.591   3759 5549 

45.153   14103 12124 

358 nm 

RT PA-0min 

PA-

30min 

PA-

90min 

1.398 49950 41153 37385 
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1.551 6889 7700 6814 

1.847 25921 25542 24572 

1.995 5926 7300 5834 

2.542 1375     

6.372 2509     

6.975   4258   

7.077 3387   3485 

8.594   7590   

8.696 6279     

8.752     6035 

11.332 1445 1368 1250 

13.501 1113     

14.526 13038 5927 3581 

24.24 1358     

25.407     4974 

25.511 4915 1981402   

34.904   1076   

35.111   43670   

35.068 1387     

35.381 35133     

44.288     1633 

44.545 6924   1040 

44.641     8254 

 

Table S8.6: The chemical transformation of mulberry extract mixed with BMDBM, BP3 and EHMC 

dissolved in methanol exposed to simulated solar irradiation monitored by HPLC-PDA. 

275 nm 280 nm 

RT PA-0min PA-30min PA-90min RT PA-0min PA-30min 

PA-

90min 

1.412 215569 204054 197621 1.412 215403 201422 193034 

1.565 21433 19870 19422 1.565 21364 19377 18828 

1.862 86358 80811 76106 1.862 88460 80949 78511 

1.997 56854 52259 48229 1.997 58788 53465 46263 

2.216 48985 48679 47377 2.216 51037 50341 49123 

2.379 73585 42220 42219 2.378 31996 38993 38276 

2.635   23938 22909 2.539 35479     

3.035 22591 21732 23608 2.635   24785 23089 

3.253 8340 9917   3.024 29871 24186 26980 

3.627 27379 26961 35810 3.627 25345 26842 27966 

3.851 6935     3.823 7103 5106 5454 

3.99 9792 12626 11318 3.987 11601 6964 6777 

4.295   5354 4080 4.294   4162 4036 

4.45 8489     4.451 7288     

5.554 2094 2022 1892 5.577 2032     

6.368 1124     5.633   1600 1877 
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6.731 2638     6.421 1435     

6.981     5102 6.755 3622     

7.066   4943   6.976     4685 

7.102 3359     7.115 3237     

8.657     4456 8.639     1760 

8.766 4127 3970   8.727 2157 1852   

9.345 3072     9.32 4007 3652 4122 

9.461   2544 2714 11.334 2997 1939 1463 

11.345 1977 1844 1743 11.597 2501     

11.575     1687 11.64   1504 1576 

11.601 1319 1902   11.861 2054     

12.473 1306 1100   12.075 1505     

12.673 1424     12.431 4204 1224 1108 

12.729   2997 4482 12.676 2996   3669 

13.073   1494 1663 12.729   2486   

14.53 8771 8702 8399 13.063 1908 1321 1590 

15.199 1059 1182 1836 14.53 6594 6520 7079 

17.379     1166 15.198 1065 1287 1576 

17.435 1887     17.449 1643 1056 1019 

18.123     5155 18.103     5301 

18.241     7761 18.291   11529 6903 

18.392 16354 11833   18.392 13605     

21.632     16683 21.685   16200 15612 

21.707   16917   21.849 19112     

21.882 18448     21.919     13780 

21.923     13796 22.017   12610   

22.019   13402   22.118 15864     

22.166 17757     22.489   31347 32896 

22.491   30260 29579 22.576 31298     

22.577 30388     23.104     3071 

23.108     1220 23.413     2349 

24.139   2827   23.685     2435 

24.064     3008 24.053     5335 

24.214 3503     24.134   2604   

24.395 1930 8139 8117 24.209 1783     

24.561   2223 2428 24.347   4412 5920 

24.657 1843   4493 24.565   2605 3813 

24.731   4762   24.661 1216   5592 

24.819 2882     24.725   4300   

25.074     6531 24.828 3009     

25.109   5381   24.907     1845 

25.355 1064     25.081     7751 

25.596 10856136 11082875 11217752 25.119   5645   

26.431 1671     25.28 1419     

27.095   1357524 1328855 25.596 13213981 13470802 13636683 
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27.207 1373297     26.428 2048     

27.477 2271   95834 27.095   1257009 1230469 

27.506   91796   27.207 1201179     

27.633 36481     27.475 28942   93687 

27.961     7985 27.507   89837   

28.024   7594   27.634 82428     

28.189 2817     27.951     6522 

28.299   9276 13871 28.001   5760   

28.694     70089 28.185 7726     

28.757   70088   28.241     12646 

28.974 29044     28.3   7865   

29.28     4722 28.694     66759 

29.357   4735   28.756   66681   

30.157   1559 1599 29.283     6039 

33.454   3085 3412 28.971 30238     

33.699   4262 4253 29.341   4989   

33.716 3252     29.664 1150     

33.93 4328     30.119     1176 

34.881   4913615 4927658 33.365     3054 

35.073 4892530     33.461   3176   

35.207   7452176 7215427 33.631     4292 

35.393 7901745     33.714 3773 4733   

35.982     1343 33.946 5131     

36.065   1210   34.881   5039112 5053772 

36.227 1167 3866 4174 35.073 5012594     

36.445 4156   6053 35.144     8519858 

36.533   4187   35.208   8960556   

36.788   9715 8012 35.393 9759167     

36.931 17242     35.99     1446 

37.257   12485 25393 36.069   1343   

37.476   15556 27084 36.211 1173 3992 4170 

37.692   9945 20101 36.535   5351   

37.836   13552 26378 36.439 4023   7528 

37.925 1396     36.672 1227     

38.461   11598 12632 36.788   12208 10096 

38.661 11444     36.932 21227     

38.987 1898   1028 37.257   11405 23897 

39.048   1227   37.477   12364 22416 

39.284 1100     37.69   8360 17365 

44.288   3121 4959 37.788     23462 

44.448     2328 37.835   11978   

44.612   6617 5696 37.925 1547     
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45.165   11942 13269 38.462   11096 11588 

        38.661 11061     

        38.987 2013     

        39.035   1059   

        39.284 1035     

        44.288   2943 3413 

        44.662   5708 6272 

        45.169   12034 13170 

286 nm 310 nm 

RT PA-0min PA-30min PA-90min RT PA-0min PA-30min 

PA-

90min 

1.412 207433 191334 181931 1.412 131443 119263 114237 

1.565 20900 18847 18238 1.565 16881 15288 14834 

1.862 89870 80337 76698 1.862 74926 65329 58783 

1.997 58328 52769 45236 1.994 34043 32695 31946 

2.216 50353 49660 48439 2.215 16759 19713 19141 

2.378 30773 38662 39073 2.376 15272 18906 20119 

2.54 36106     2.544 19994 29927 30409 

2.635   23746 22582 3.031 2518 10452 16785 

3.03 26218 16347 23748 3.427   17915 25521 

3.221   5750   3.529 1264     

3.413     11144 3.827 3836 10005 10602 

3.627 23747 23597 13868 3.989 1547   6595 

3.842 7775   6976 4.288     3914 

3.985 11476 13286 7132 4.653     3280 

4.294   3550 3518 6.699 3688     

4.439 7005     6.763     1897 

5.583 1835     6.979     3052 

5.624   1086 1450 7.084 3438     

6.421   1038   8.685     3214 

6.768 3819     8.75 4085     

6.854   7254 5285 9.318 2082 3296 1387 

7.09 3320     9.463   1064   

8.687     1426 11.329 3085 1893 1850 

8.763 1741 1557   12.698   1102 1125 

9.334 4951   4907 13.983 1504   1799 

9.435   4239   14.001   1403   

11.332 2430 1655 1786 14.484     4778 

11.661     1021 14.531 6847 6362   

12.439 1813 1026 1105 17.393     2264 

12.678 1184   2922 17.471 2486 2208   

12.702   1782   18.016     1176 

12.95     1751 21.592   6502 5487 

14.476     6728 21.768 7019     

14.53 5982 6455   22.493   6104 5922 
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15.197   1267 1604 22.584 4277     

16.96     1047 22.879 1275     

17.044 1074     24.341   3654   

17.371     1286 24.745   3073 1297 

17.457 1391 1255   24.858 2801     

18.089     5077 25.055     1622 

18.288   7870 4150 25.152 1853 4553   

18.355 8945     25.208     1119 

21.652   10252   25.596 10786855 11005524 11088304 

21.838 12757     26.319   1651 1581 

22.02   7823   26.438 4098     

22.165 9176     27.095   103483 100531 

21.573     9622 27.207 101757     

21.932     7479 27.488 13000   70561 

22.489   30190 29066 27.511   70944   

22.575 29721     27.638 61509     

24.071     2241 28.303   2168 3408 

24.115   2320   28.7   1078   

24.204 1514   1868 28.822 1151     

24.352   1721   33.504   1719   

24.576   2220 2062 33.645     1931 

24.661 1149   3897 33.746 1646 3282   

24.726   4438   33.955 3555     

24.834 3326     35.073 6297845 6326346 6357046 

24.907     1149 35.393 14167282 11975206 10845502 

25.066     5324 36.056   1225 1122 

25.116   6041   36.215 1472     

25.596 14558977 14810740 14937533 36.387 1054     

26.43 2383     36.534   6151 8386 

27.095   1071504 1046413 36.792   16612 12483 

27.207 1022719     36.935 28259     

27.48 29724   94059 37.255   1059 1914 

27.508   90252   37.835   1397 2710 

27.635 82635     38.461   16356 17725 

28.006   4903 4645 38.661 15119     

28.166 5733     44.32   1146   

28.302   6623 10944 44.624   3896   

28.753   43033 41976 45.135   4720 5182 

28.972 18363             

29.356   4326 3811         

30.122     1071         

33.483   3026 1547         
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33.662     1609         

33.727 3377 4264           

33.949 4425             

35.073 5131048 5164413 5168966         

35.393 11653052 10523724 9843225         

36.057   1267 1406         

36.217 1454 2413 2459         

36.436 2685   8195         

36.534   6033         

36.789   14265 11306         

36.933 24335             

37.257   10486 21042         

37.478   9098 16016         

37.692   6360 13040         

37.834   10387 20488         

37.925 1048             

38.461   10394 11081         

38.661 10050             

38.976 1486             

44.288     2744         

44.464 2582   5713         

45.136   10162 12452         

358 nm 

RT PA-0min PA-30min PA-90min 

1.412 54714 48636 48727 

1.565 6891 6999 7378 

1.862 27335 27012 26725 

2.005 7214 5999 6493 

2.547 1593 1210   

6.401 2978     

7.034     4307 

7.123 4092 4385   

8.698     7654 

8.74 7953 7802   

11.347 1931 1534 1591 

13.52 1208     

14.484     12569 

14.531 16196 15424   

14.938 1984     

16.229 1385 1043   

23.719   1026   

23.851 1032     

24.248 1681     

25.207     1110 

25.596 2622995 2658048 2658915 
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26.426 1516     

27.1   5533 5428 

27.209 5907     

27.639 305930 307344 315782 

35.075 29243953 29592356 29881041 

36.2 2245 2151 2180 

38.661 41587 43742 47180 

44.516 7311     
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Abstract 

The photostabilizing potential of liquorice root extract on commonly used UV absorbers in the market 

was investigated.  The effect of UV light on the photochemical stability of 2-ethylhexyl-p-methoxy 

cinnamate (EHMC), benzophenone-3 (BP3), and tert-butylmethoxy dibenzoylmethane (BMDBM, 

avobenzone) mixed with liquorice root extract was studied by irradiating the mixture(s) with 

simulated solar radiation.  The photochemical transformations were monitored by standard 

spectrophotometric methods; GC-MS, and HPLC-UV-ESI-MS-MS.  The extract showed good UV 

absorption but degrades on prolonged UV exposure.  The mixture of BP3 with liquorice root extract 

showed enhanced photostability arising from the chemical interaction of BP3 with the extract.  EHMC 

showed photostability upon prolonged exposure and BMDBM showed spectral photodegradation.  

This extract may not be good photostabilizer for BMDBM but reacts with EHMC to yield compounds 

that are photostable.  Liquorice root extract stabilizes EHMC and BP3 and diminishes the keto-enol 

tautomerism of BMDBM in favour of enol-BMDBM.  The phenolic secondary metabolites present in 

liquorice root extract may participate in free radical scavenging activity. 

 

Keywords: Liquorice root extract, 2-ethylhexyl-p-methoxy cinnamate, benzophenone-3, tert-

butylmethoxy dibenzoylmethane, photostability, sunscreens. 

 

  



276 
 

 
 

9.1 Introduction 

Plant extracts are commonly added to most cosmetic products, including sunscreens.  The list of plant 

extracts added to cosmetic formulations grows each day but the most common ones are derived from 

aloe vera, liquorice root, mulberry, grape seed, and soybean.  Despite the widespread use of these 

extracts in sunscreens, the fate of their photodegradative products and role in ultraviolet (UV) 

photoprotection remain largely unknown and requires further investigation. 

 

The medicinal properties of liquorice extract (Glycyrrhiza glabra) belonging to the Leguminosae 

family have been known since ancient Greece, Rome, and China (Fiore et al. 2005; Patil et al. 2012).  

The extracts have anti-inflammatory, immune-boosting, and anti-cancer effects, including protective 

effects against DNA damage.  It is reported that in Japan liquorice extracts have been used to treat 

chronic hepatitis, offering therapeutic benefit against other viruses, including human 

immunodeficiency virus (HIV), cytomegalovirus (CMV), and Herpes simplex (Patil et al. 2012).  

There is a demonstrated efficacy of these extracts in treating atopic dermatitis, an allergy-related, and 

intensely itchy swelling of the skin (Morteza-Semnani et al. 2003).  Liquorice root extracts are 

commonly used in skin-lightening preparations because of one of its major components, glycyrrhizin 

(Fig. 9.1), is associated the whitening effect. 

 

Some organic sunscreens undergo photodegradation when exposed to sunlight, specifically UV light.  

Our investigation of the photostability of sunscreens in skin-lightening preparations showed a unique 

photostability of formulations containing plant extracts.  Preparations containing among other 

ingredients, liquorice root extract showed an enhanced photoprotective effect.  A major component of 

the liquorice root extract, glycyrrhizin (Fig. 9.1), first isolated and identified in the early 1990’s is 

shows good absorption of harmful UVB (290-320 nm) and UVA (320-400 nm) radiation.  It has been 

reported to protect human skin against UVB light-induced damage (Yokota et al. 1998; Rossi et al. 

2005).  Therefore, there may be benefit in incorporating liquorice root extract in sunscreen 

preparations because of its UV protective effects. 
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Figure 9.1: The major constituents of liquorice root extract. 

 

A glycyrrhizin-rich liquorice extract has been shown to reduce inflammation resulting from UV light 

exposure when applied to the skin before exposure to UV light, thereby preventing redness and 

pigmentation (Yokota et al. 1998).  There are claims that enzymes in liquorice extract aid in 

stimulating cell renewal following damage from UV rays for healthier glowing skin.  Studies 

investigating the inhibitory effects of glycyrrhizin on melanogenesis and inflammation have shown 

that it inhibits tyrosinase activity of melanocytes.  This is its proposed mechanism in the treatment of 

hyperpigmentation and in reversing the damage caused by acne scars.  Another major constituent of 

liquorice root extract, namely, glabridin (Fig. 9.1), has been shown to protect against skin tumour 
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initiation and promotion (Wang et al. 1991).  Other studies have shown that liquorice root extract 

antioxidant activity enhances the photostability of other compounds when added to a topical 

dermatological cream (Morteza-Semnani et al. 2003).  The aim of this work was to investigate the 

effect of a methanolic liquorice root extract on the photostability of some commonly used sunscreens, 

namely, 2-ethylhexyl-p-methoxy cinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy 

dibenzoylmethane (BMDBM).   

9.2 Experimental 

The effect of liquorice root extract on common sunscreen agents was investigated by firstly 

characterizing the constituents of the extract and then subjecting it to photochemical stability studies 

alone and when mixed with the sunscreen(s). 

 

9.2.1 Materials  

The liquorice root extract was purchased from Warren Chem Specialities (Pty) Ltd, South Africa.  

The solvents used HPLC-grade acetonitrile (ACN) and methanol (MeOH) were purchased from 

Merck KGaA.  The three chemical UV filters of analytical purity (99.9 %) were purchased as follows: 

2-ethylhexyl-p-methoxy cinnamate (EHMC) and tert-butylmethoxy dibenzoylmethane (BMDBM) 

were a kind donation from BASF, benzophenone-3 (BP3) was from Sigma-Aldrich and N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) was purchased from Supelco.   

 

9.2.2 Characterisation of liquorice root extract 

The liquorice root extract was characterised by gas chromatography-mass spectrometry (GC-MS), gas 

chromatography-flame ionisation detection (GC-FID), and high performance liquid chromatography-

mass spectrometry (HPLC-MS) in order to identify the chemical components present. 

 

9.2.2.1 Sample preparation  

About 25 mg of liquorice root extract powder was soaked in 25 mL of methanol at 25 °C and placed 

in an ultrasonic bath for two hours and then left to stand for 24 hours protected from light by 

aluminium foil.  The extraction mixture was then made up to 50 mL in a volumetric flask with 

methanol.  The resultant solution was filtered through a 0.45 µm Millipore Millex-LCR membrane 

filter and then transferred to an aluminium foil cased glass vial for storage.  A 20 µL aliquot of this 

solution was injected into a high performance liquid chromatography-mass spectrometer (HPLC-MS) 

for characterisation of the chemical components in the extract.  The remaining solution was preserved 

for photostability studies.  

 

The liquorice root extract samples for gas chromatography-mass spectrometry (GC-MS) 

characterisation were firstly derivatised to volatilise the polyphenols in the extract.  This was achieved 

by dissolving a sample mass of about 2 mg of extract powder in 1.0 mL of ACN in a clean, dry 3 mL 

reaction vial.  To this solution 0.5 mL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was 

added, then capped tightly, mixed well, and heated at 70 °C for 45 min.  The resultant derivatised 

mixture was filtered through a 0.45 µm Millipore Millex-LCR membrane syringe tip filter after 

cooling to room temperature.  A volume of 0.1 µL of this derivatised sample was then injected into 

the GC-MS chromatograph.  
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9.2.2.2 The GC-MS experiment 

A 0.1 µL volume of the derivatised liquorice root extract sample was delivered into a Shimadzu GC-

MS (QP2010 SE), with a column temperature set at 70 °C and injection port at 250 °C.  Injections 

were in split mode at a ratio of 20:1.  Components were separated in a GL Sciences InertCap 5MS/Sil 

30 m × 0.25 µm quartz capillary column with a bound stationary phase consisting of 5 % 

dimethylpolysilphenylene siloxane.  The column was held 70 °C for 2 min, raised to 240 °C at 10 °C 

min-1, then held for 5 min followed by a rise to 270 °C at 10 °C min-1 and held for 10 min.  Helium 

was the carrier gas flowing with a linear velocity of 30.0 cm s-1.  The MS ion source temperature was 

200 °C and the interface temperature was set at 250 °C.  The MS detector was programmed to run in 

scan mode in the m/z range 35-1000 at a scan speed of 3333.  The total run time was 37 min. 

 

9.2.2.3 The GC-FID experiment 

To check method interconvertability a GC-FID experiment was carried out on the same sample 

(derivatised liquorice root extract) with the same temperature program.  The GC-FID used was a 

Shimadzu GC-2010, fitted with an autosampler AOC 20i and a flow unit type AFC-2010.  

Components were separated in a DB-5 (30 m × 0.25 µm) quartz capillary column with a bound 

stationary phase consisting of 5 % phenyl polysilphenylene-siloxane.  The make-up gas was 

nitrogen/air flowing at 10 mL min-1, the carrier gas was hydrogen with a flow rate of 40 mL min-1 and 

oxygen/air flowing at 400 mL min-1.  The injection port was set at 250 °C, operating in a split mode of 

20:1 for an injection volume of 0.1 µL.  The velocity flow control mode was adopted keeping the 

pressure at 61.9 kPa, the total flow rate at 5.0 mL min-1, the column flow of 0.68 mL min-1, and a 

linear velocity of 20.0 mL s-1. 

 

9.2.2.4  HPLC-MS analysis  

The liquorice root extract dissolved in methanol (see Section 9.2.2.1) was characterised by means of 

HPLC-PDA-ESI-MS/MS.  The analysis was carried out on an Agilent 1200 series LC MSD Trap, 

equipped with a photodiode array detector, a binary pump, a degasser, auto sampler, and an ESI Trap 

MS.  This employed a G1312A binary pump, a G1316A autosampler, a G1322A degasser and a 

G1315D photodiode array detector controlled by ChemStation software (Agilent, v.08.04).  The 

chromatographic separation was achieved on an Agilent Zorbax Eclipse XDB C-18 reversed-phase 

column (150 × 4.6 mm i.d.; 5 μm particle size).  The mobile phase was composed of water:formic 

acid (99:1, v/v, solvent A) and acetonitrile (solvent B).  The mixtures were resolved by a gradient 

elution as follows: 5–13 min, 16 % B; 13-18 min; 45 % B and held for 5 min; 23-28 min, 75 % B, 

held for 5 min; 33-40 min, 99 % B, then held 5 min and then dropped to 16 % B for 15 min.  The 

experiment was performed at ambient temperature with a flow rate of 1 mL min-1 and an injection 

volume of 20 µL.  The chromatograms were collected at detection wavelengths of 275 280, 286, 310, 

320, and 358 nm with a bandwidth of 4 nm simultaneously in each of the 60 min run time.  The 

photodiode array detector was set to collect the UV-vis spectra of the chemical species separated over 

the range of 190 to 800 nm.  Analyses were interfaced to an Agilent-SL LC MSD trap equipped with 

an electrospray ionization source and operated in the negative-ion mode.  The mass detector was a 

G2445A ion-trap mass spectrometer controlled by LCMSD software (Agilent, v.4.1).  The nebulizing 

gas was nitrogen set at a pressure of 65 psi and flow rate adjusted to 116 mL min-1.  A heated capillary 

and voltage was maintained at 350 °C and 4 kV respectively.  The instrument was programmed to 

scan over a mass range from m/z 90 to m/z 2000.  The target ion accumulation in the trap was put at 

30000 counts for a maximum accumulation time of 50 ms.  MS2 data were acquired in the negative 

ionization automatic smart mode to obtain MSn-1; primary precursor ion.  The target ion was set at 
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� /� 350, the compound stability at 100 %, and the trap drive level at 90 %.  One precursor was 

selected in each cycle; and excluded after averaging 3 spectra; the release time was 0.3 minutes.  All 

collision-induced fragmentation experiments were performed in the ion-trap with helium as the 

collision gas, and the voltage was increased in cycles from 0.3 up to 2 V.  The fragmentation time was 

20 ms at an activation width of 10 amu and the cut-off for the daughter ion range set at 30 %.  MS3 

data were obtained by manual fragmentation, targeting the most abundant ions in the precursor ion in 

the MS spectra. 

 

9.2.3 Photostability experiments 

The sunscreen mixture(s) with liquorice root extract were prepared by adding about 20 mg of the 

sunscreen agents to 25 mL of the methanol extract (see Section 9.2.2.1).  This solution was then made 

up to 50 mL in a volumetric flask with methanol.  To obtain working solutions, appropriate dilutions 

were carried out in order to obtain a sunscreen agent concentration of about 200 µmol dm-3 in the 

extract before photostability studies were done.  Samples of liquorice root extract with and without 

sunscreens added were exposed to simulated solar light in a Newport research lamp housing 

(M66901) fitted with mercury-xenon lamp, powered by an arc lamp power supply (Newport 69911).  

The power output of the lamp was controlled by a digital exposure controller (Newport 68951) 

maintaining the output at 500 W.  The radiation from the lamp was passed through a 10 mm thick 

Pyrex filter to ensure that only wavelengths greater than 300 nm impinged on the samples.  The 

exposure time was varied incrementally from 0 hour in steps of 30 min to 4 hours of continuous 

exposure.  Each exposed sample was contained in a stoppered 1.00 mm pathlength quartz cuvette.  

After each irradiation interval a UV-visible spectrum of the sample was recorded on a Perkin Elmer 

Lambda 35 UV-vis dual beam spectrophotometer.  A 20 µL aliquot of these same solutions was then 

injected into a HPLC chromatograph to monitor the chemical transformations in the extract and the 

included sunscreen(s).  Samples of the sunscreens alone dissolved in methanol were similarly 

irradiated and monitored by UV spectrophotometry. 

 

9.2.3.1  HPLC analysis of the irradiated samples 

The chemical transformations in the irradiated samples were monitored on a Shimadzu Prominence 

LC chromatograph with a PDA detector.  The chromatographic separation was achieved on an Agilent 

Zorbax Eclipse XDB C-18 reversed-phase column (150 × 4.6 mm i.d.; 5 μm particle size).  The 

mobile phase was composed of water (solvent A) and acetonitrile (solvent B).  The mixtures were 

resolved by varying the concentration of B as follows: 5–13 min, 16 % B; 13-18 min, 45 % B and 

held for 5 min; 23-28 min, 75 % B, held for 5 min, 33-40 min, 99 % B then held 5 min and then 

dropped back to 16 % B for 15 min.  The experiment was performed at ambient temperature with a 

flow rate of 1 mL min-1 and an injection volume of 10 µL.  The chromatograms were collected at 

detection wavelengths of 275, 280, 286, 310, 320, and 358 nm with a bandwidth of 4 nm 

simultaneously in each of the 60 min run time.  The photodiode array detector was set to collect the 

UV-vis spectra of the chemical species separated over the range of 190 to 800 nm. 

 

9.3 Results and discussion 

The components of liquorice root extract were first characterised before photostability studies were 

done on the extract alone and on its mixture(s) with the sunscreen agents. 
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9.3.1 Characterisation of liquorice root extract 

Most plant extracts contain polar N-H and O-H groups which are responsible for strong hydrogen 

bonding that makes them essentially nonvolatile.  Hydrogen on these functional groups can be 

substituted with a trimethysilyl (TMS) group in order to break the hydrogen bonding thus making 

them volatile.  The presence of each TMS group on any GC-MS fragment is normally taken as 

‘acidic’ hydrogen substitution by the TMS group during derivatization.  The qualitative elucidation of 

the molecular ion can then be done by replacement of the TMS by a hydrogen atom.  The chemical 

composition of the liquorice root extract was therefore identified by replacing the TMS group by H- 

on the phenolic and alcoholic GC-MS results.  This is because a typical derivatization of hydroxylated 

polycyclic aromatic hydrocarbons into TMS ethers using BSTFA follows the scheme in Fig. 9.2 under 

hydrophobic conditions.  The hydrophobic conditions must be attained because the TMS group 

substitutes exchangeable, ‘acidic’ protons and therefore hydrolysis of water may prevent any further 

derivatization of the analyte (Fig. 9.2 and 9.3).  
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Figure 9.2: General scheme for silylation reaction using N,O–bis(trimethylsilyl)trifluoro-acetamide: 

TMS = Si(CH3)3, W = O, S, NH, NR', COO, R, R' = Alk, Ar. 
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Figure 9.3: Typical derivatization reaction of a secondary metabolite by BSTFA. 

 

However, the reconstructions of the parent secondary metabolites in the liquorice root extract pose a 

challenge owing to the complex composition of the extract.  The total ion chromatogram from the 

GC-MS (Fig. 9.4) showed high intensities of the fructopyranose and fructofuranose silylated 

fragments indicating high abundance of glycyrrhizin in these extracts (Fig. 9.5).  The remaining less 

intense signals could be attributed to the fragmentation of glabridin giving rise to hydroxyl cinnamic 

acid moieties (Fig. 9.6). 

 

The methanolic extract considered in this work is expected to have a high concentration of flavonoids.  

The major constituents in liquorice root extract are glabridin and glycyrrhizin (Fig. 9.1).  These 

compounds are known to dissociate upon electron impact through a limited number of assumed 

pathways.  The origin of diagnostically valuable fragments can be explained by a retro-aldo 

fragmentation of the molecular ion and the daughter fragment (Denisova et al. 2006).  The flavanolic 

cleavage forms a set of fragments including the A- and B-rings and cleavage of the pyran ring at the 

third C atom.  The many alcoholic fragments observed in this work can be attributed to the high 

concentration of glycyrrhizin, whose sugar cleavage gives fructofuranose and fructopyranose moieties 

(Fig. 9.5).  The hydroxycinnamic acid moieties could similarly be attributed to the fragmentation of 
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glabridin, another known constituent of liquorice root extracts (Fig. 9.6).  The successive cleavage of 

a silyl substituent as CH2SiMe3 or ·SiMe3 gives rise to various identified chemical components (Fig. 

9.7 and Fig. 9.8). 
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Figure 9.5: The proposed fragmentation scheme of the sugar moiety of glycyrrhizin. 
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Figure 9.4: The total ion chromatogram of a derivatized sample of liquorice root extract on 
GC-MS.  The separation was effected on a GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm 
quartz capillary column under the conditions described in Section 9.2.2.2.   
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Figure 9.6: An anticipated fragmentation pattern of glabridin in a retro-diene reaction fashion 

modified by trimethyl silyl groups. 
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Figure 9.7: Some of the chemical constituents of liquorice root extract identified in this work. 
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Figure 9.8: More constituents of liquorice root extract identified by GC-MS. 
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9.3.2 Photostability studies of the liquorice root extract  

The prolonged exposure of a methanolic solution of liquorice root extract to simulated solar radiation 

showed a notable degree of photodegradation (Fig. 9.9).  This photodegradation is observed mainly in 

the UVB region as the drop in absorption in the UVA1 (340-400 nm) region remains fairly stable.  

The HPLC chromatograms of the same samples show rearrangement of the two major constituents of 

the liquorice root extract initially present (Fig. 9.10).  The photo-absorptive capacity observed with 

this extract can be attributed in part to the -enone, -bond conjugation in glycyrrhizin and the –diene, 

-bond conjugation in glabridin.  The Woodward-Fieser predictive calculation for the glycyrrhizin 

chromophore gives a wavelength of absorption  259 nm.  Imposing similar selection rules on the –

diene system of the glabridin molecule gives a wavelength  319 nm (Fig. 9.11).  However, it should 

be noted that these rules only give benchmark values.  The actual absorbance may differ by about 5-6 

nm or higher.  These absorption explain why the liquorice root extract shows good absorption in the 

UVB and fair absorption in the UVA (Fig. 9.9).   
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Figure 9.9: The photodegradation of the liquorice root extract dissolved in 
methanol exposed to simulated solar radiation, in a 1 mm pathlength quartz 
cuvette.  Each exposure circle involved use of fresh sample extract.  The spectra 
were recorded on a Perkin Elmer Lambda 35 UV-vis deal beam spectrophotometer. 



 
 

Figure 9.10: Photo-induced chemical changes in liquorice root extract secondary metabolites exposed to simulated solar radiation, monitored 
on a HPLC at 280, 320, and 358 nm.  The separation was effected on a Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm, i.d., 5 µm).  
The mobile phase was a gradient elution of acetonitrile-water with a flow rate of 1.00 mL min-1 and the injection volume was 20 μL. 
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Figure 9.11: Predicted wavelengths of maximum absorption for glycyrrhizin and glabridin based on 

the Woodward-Fieser selection rules. 

 

The chromatogram of the unexposed sample at 358 nm shows a very small peak for the prominent 

peak observed at 280 nm (Fig. 9.10).  This indicates that, this species does not absorb sufficiently at a 

longer UV wavelength (358 nm), consistent with the predicted value from Woodward-Fieser values 

calculated above (Fig. 9.11).  The photochemical reactions are observed after 30 minutes of exposure 

for which a number of peaks appear and others disappear.  These can be explained in terms of photo-

induced, repeated Norrish type I processes yielding a range of substituted flavonols and other 

associated photochemical rearrangement products.  These chemical species show the relative 

absorbance in the long wavelength region as indicated by the new peak observed at 358 nm (Fig. 

9.10). 

 

9.3.3 Effect of liquorice root extract on the photostability of BP3 

The photochemical response of a methanol solution of BP3 irradiated with solar simulated radiation 

was firstly investigated.  The UV spectra of BP3 showed photostability (Fig. 9.12).  The HPLC 

analysis of these same solutions also showed only one peak at 286 nm indicating that BP3 did not 

photodegrade in the present conditions (Fig. 9.13).  This could be attributed to hydrogen bonding 

between the carbonyl and ortho-hydroxyl group that interferes with the n, π* excitation of the 

carbonyl chromophore.  It is known that ortho-hydroxybenzophenone does not undergo 

photoreduction (Placzek et al. 2013) and stabilises the chromophore, namely, the carbonyl group.   
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Figure 9.12: The spectral stability of BP3 in methanol irradiated by a solar 
simulated source.  The spectra were acquired on a Perkin Elmer Lambda 35 
UV-vis spectrophotometer in a 1 mm pathlength quartz cuvette with air as the 
reference. 

Figure 9.13: The photostability of BP3 monitored by HPLC at 286 nm.  A 
reversed phase Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm) 
column was used with mobile of methanol-water (84:16 % v/v).  The injection 
volume was 20 µL and the flow rate set at 1 mL min-1. 
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The irradiation of a methanolic solution of BP3 and liquorice root extract showed a small 

photodegradation followed blue a blue shift in the spectra of BP3 (Fig. 9.14).  The HPLC 

chromatograms of the liquorice root-BP3 mixture gave rather interesting results.  The retention time 

of the BP3 peak varied on the chromatograms and incremental exposure time gave varying retentions 

for various prominent peaks at various wavelengths of analysis (Fig. 9.15).  We speculate that because 

the UV spectra remained essentially the same, then the carbonyl chromophore is not affected by the 

reactions and the attack is on the phenyl rings.  These reactions could be responsible for the variation 

of the BP3 peaks and these reactions do not necessarily require light.  This observation may in part 

agree with work by Schallreuter et al. (1996), who proposed possible photoreactions of BP3 

culminating in the photo-oxidation of BP3 to semiquinone.  But the HPLC analysis from the current 

work, however, suggests a possible dark reaction that may not necessarily lead to semiquinone 

formation.  It can be further speculated that inclusion of BP3 in the solution containing liquorice root 

extract introduces proton-type photochemical reactions.  We envisage ground state reactions of BP3 

that could involve C-C coupling of a radical pair generated by H-abstraction on the BP3 phenyl ring 

with the fructopyranose moiety (Fig. 9.16).   

 

It is known that BP3 is a derivative of benzophenone and absorbs UV radiation up to 360 nm.  The 

intersystem crossing quantum yield of benzophenones is about 1, and the energy of its n, π* lowest 

triplet excited state (TET) is about 290 kJ mol-1 (Cowley 1997; Murai et al. 1978; Cai et al. 2005).  

These compounds are known photosensitizers with singlet oxygen (1O2) production quantum yields of 

about 0.3.  We associate the peaks observed at 358 nm on prolonged exposure (at 90 min) with 

reactions of the triplet excited state, of BP3, with photosentised liquorice root extract components.  

The chemical species formed therefore alter the retention time of BP3 without affecting the 

chromophore (C=O).  The other observed peaks arise from various reaction pathways.  Upon light 

absorption, the triplet-triplet energy transfer (TTET) initiated reactions together with both type I 

(hydrogen atom or electron transfer) and type II (singlet oxygen) processes take effect.  These 

reactions are sustained by thermal population of the upper vibrational states of the excited triplet state 

of BP3.  Both glycyrrhizin and glabridin may be photosensitized by the triplet excited state of BP3 

and therefore undergo a Patternò-Büchi [σ2+2] photo-cycloaddition giving rise to oxetanes (Fig. 9.17 

and Fig. 9.18).  These reactions are known to compete with TTET and are favoured for n,π* triplets 

when the excited state of the alkene is comparable to or higher than that of the carbonyl compound.  
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Figure 9.14: The photostability of BP3 incorporated in liquorice root extract 
dissolved in methanol when exposed to simulated solar radiation, in a 1 mm 
pathlength quartz cuvette.  Each exposure event involved use of fresh sample 
solution.  The spectra were recorded on a Perkin Elmer Lambda 35 UV-vis dual 
beam spectrophotometer. 
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280 nm 320 nm 
358 nm 

Figure 9.15: HPLC chromatograms of the photochemical changes when BP3 is incorporated in the liquorice root extract dissolved in 
methanol and irradiated by simulated solar radiation.  The chromatograms were monitored at 280, 320, and 358 nm.  The separation 
was effected on a Zorbax Eclipse-XDB C-18 (150 mm x 4.6 mm, i.d., 5 µm) column.  The mobile phase was a gradient elution of 
acetonitrile-water with flow rate of 1.00 mL min-1 and the injection volume was 20 μL.  The BP3 could not be identified because the 
retention time changed from the one shown under these conditions. 
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Figure 9.16: Proposed reaction of the excited state BP3 with the fructopyranose moiety of 

glycyrrhizin. 
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Figure 9.17: The Patternò-Büchi mechanism proposed for the photodegradation of BP3 and BMDBM 

in the liquorice root extract. 
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9.18: Proposed photo-induced reactions of BP3 with glabridin exposed to solar simulated radiation. 

 

9.3.4 Effect of liquorice root extract on the photostability of BMDBM 

The photostability of a methanol solution of BMDBM was first investigated by irradiation of the 

solution with a simulated solar source.  The characteristic photodegradation of BMDBM was 

demonstrated by the spectral lability observed in the UV spectra (Fig. 9.19).  A drop of 0.4 

absorbance units was recorded in this work for a four-hour period of continuous exposure.  The HPLC 

analysis did not show a sufficient decrease in the peak area of the enol-BMDBM at 358 nm (Fig. 

9.20).  Several working groups have demonstrated the photostability of enol-BMDBM in polar protic 

solvents (Mturi and Martincigh 2008).  The UV spectra show an increase in the absorbance at 260 nm 

but the HPLC chromatograms monitored at 260 nm did not show an appreciable change.  This could 

be attributed to the difference in the sensitivity of the instruments and the fact that keto-BMDBM 

formation is not favoured by a highly polar protic medium.  The UV spectra of BMDBM in a mixture 

with liquorice root extract show a drop in absorption capacity with increase in irradiation time 

(Fig.9.21).  A comparison of the spectral changes under the same conditions with those of BMDBM 

alone (Fig. 9.19), shows that the absorbance drop is smaller.  A notable difference is the reduction in 

the keto-form of BMDBM observed at 260 nm against the decay of the enol-form of BMDBM.  The 

assumption here is that in this mixture the BMDBM keto-enol tautomerism may only occur to a 

limited extent but rather decomposition to other chemical species takes place.  This indicates that, 

liquorice root extract diminishes the keto-formation but fails to completely protect against enol-

BMDBM degradation.  It can be concluded that liquorice root extract may only partially 

photostabilize BMDBM.  BMDBM is known to photodegrade in UV light in a nonpolar solvent and 

to break into two radicals: the phenacyl and benzoyl radicals (Schwack and Rudolph 1995).  The 

HPLC chromatogram shows chemical species absorbing in the UVA region, characteristic with the 
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photo-rearrangement and radical disproportionation reaction of BMDBM (Fig. 9.22, Supplementary 

Materials Table S9.3).  Here also we envisage the participation of BMDBM in Patternò-Büchi type 

reactions but preserving the enol-chromophore (Fig. 9.17).   
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Figure 9.19: The spectral changes of BMDBM dissolved in methanol and irradiated 
by a solar simulated light source.  The spectra were acquired with a Perkin Elmer 
Lambda 35 UV-Vis spectrophotometer in a 1 mm pathlength quartz cuvette with air 
as the reference. 
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Figure 9.21:  The photodegradation of BMDBM in liquorice root extract exposed to UV 
radiation in methanol, in a 1 mm pathlength quartz cuvette.  Each exposure event involved 
the use of a fresh sample mixture.  The spectra were recorded on a Perkin Elmer Lambda 35 
spectrophotometer. 
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Figure 9.20: The photochemical changes of BMDBM monitored at 260 and 358 nm on a 
reversed-phase Zorbax Eclipse-XDB C-18 (150 mm x 4.6 mm) column with methanol-
water (84:16 % v/v) mobile phase.  The injection volume was 10 µL and the flow rate set 
at 1 mL min-1. 
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Figure 9.22: The photo-induced chemical transformations of a mixture of BMDBM and liquorice root extract in methanol.  The HPLC 
chromatograms were detected at 280, 320, and 358 nm.  The separation was effected on a Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm, 
i.d., 5 µm).  The mobile phase was a gradient elution of acetonitrile-water with a flow rate of 1.00 mL min-1 and the injection volume was 20 μL. 
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9.3.5 Effect of liquorice root extract on the photostability of EHMC 

The irradiation of a methanolic solution of EHMC with solar simulated radiation for an incremental 

period of time shows a spectral lability (Fig. 9.23).   The HPLC analysis indicates formation of cis-

EHMC which absorbs shorter wavelengths (Fig. 9.24).  This could explain the spectral lability 

observed during the photo-isomerisation of trans-EHMC to cis-EHMC.  Pattanaargson et al. (2004) 

and Broadbent et al. (1996) have previously reported the photoisomerisation of EHMC under UV 

irradiation.  
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Figure 9.23: Photoinstability of EHMC dissolved in methanol under solar simulated 
irradiation. The spectra were acquired with a Perkin Elmer Lambda 35 UV-VIS 
spectrophotometer in a 1 mm pathlength quartz cuvette with air as the reference. 

Figure 9.24: Isomerisation of EHMC under simulated solar irradiation monitored by 
HPLC at 260 and 310 nm on a reversed phase Zorbax Eclipse-XDB C-18 column 
(150 mm × 4.6 mm) with a methanol-water (84:16 % v/v) mobile phase.  The 
injection volume was 20 µL and the flow rate set at 1 mL min-1. 
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The photo-response of the mixture of EHMC with liquorice root extract was eratic with a sudden 

increase in the photo-absorption and then a fall (Fig 9.25). This is unlike the cinnamate spectral decay 

observed when EHMC is dissolved in methanol (Fig 9.23).  The HPLC analysis of these solutions 

showed the formation of strongly absorbing chemical species on continued exposure above 30 min 

(Fig. 9.26).  This could be attributed to [2+2] cycloaddition and Patternò-Büchi carbonyl-alkene 

reactions from the n٭ (Fig. 9.27).   
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Figure 9.25: The photoinstability of EHMC in liquorice root extract dissolved in 
methanol when exposed to simulated solar radiation, in a 1 mm pathlength quartz 
cuvette.  Each exposure event involved use of a fresh sample solution.  The spectra were 
recorded on a Perkin Elmer Lambda 35 dual beam spectrophotometer. 
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280 nm 320 nm 

Figure 9.26:  HPLC chromatograms of the photo-induced chemical reaction of EHMC with liquorice root extracts dissolved in methanol, irradiated 
by solar simulated radiation. The chromatograms were monitored at 280, 320, and 358 nm.  The separation was effected on a Zorbax Eclipse-XDB 
C-18 (150 mm × 4.6 mm, i.d., 5 µm) column.  The mobile phase was a gradient elution of acetonitrile-water with a flow rate of 1.00 mL min-1 and 
the injection volume was set 20 μL.  The EHMC peak and the glabridin could not be resolved under these conditions. . 
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Figure 9.27: Proposed mechanism for the ethylhexylmethoxy cinnamate reaction of EHMC with 

glabridin. 

 

The proposed mechanism is informed by the fact that the UV spectra of the mixture retain the same 

shape as the UV spectra of EHMC, and therefore the cinnamate moiety is assumed to be retained.  

The observed initial drop in the absorption of UV light can be attributed to competitive [2+2] 

cycloaddition and Patternò-Büchi [σ2+2] cycloaddition involving glabridin which forms an oxetane.  

We propose that the Patternò-Büchi reaction dominates the [2+2] cycloaddition upon UV light 

exposure, which would require a homolytic ring opening of the cyclobutane ring to retain the easily 

cleavable ester bond (Fig. 9.27).  On prolonged UV exposure the oxetane assumes a cis-conformation, 

which absorbs at a longer wavelength for the cinnamic moiety but with a very low absorption 

coefficient ( ).  The oxetane becomes more strained leading to oxidative heterocyclic ring opening 

with cleavage of the ester bond.  The overall result is the retained cinnamic acid moiety with higher , 

and a bathochromic shift attributed to the proximity of the cyclic pyran ring of the glabridin moiety.  

This explains the observed stability of this mixture covering the entire UV spectrum and without 

further photo-degeneration (Fig. 9.25) and the source of the peaks observed at 358 nm (Fig. 9.26).  

We conclude that a mixture containing liquorice root extract and EHMC is likely to produce a broad 

spectrum sunscreen product owing to the photochemical reactions between EHMC and the liquorice 

root extract constituents. 
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9.3.6 Effect of liquorice root extract on the photostability of a mixture of EHMC, BP3 and 

BMDBM 

The three sunscreen absorbers investigated are frequently mixed together in a formulation in order to 

obtain a broad-spectrum photoprotective product.  A mixture of the three sunscreen agents was 

prepared by dissolving the three UV absorbers in methanol and subjected to photostability studies.  

This solution showed photodegradation (Fig. 9.28), with absorption maxima in the UVB region.  The 

HPLC analysis of this mixture showed the relative photostability of BP3 and BMDBM and 

photoisomerisation of EHMC (Fig. 9.29).  This mixture, therefore cannot guarantee broad-spectrum 

photoprotection.  Efforts were thus made to investigate the effect of liquorice root extract on a mixture 

of EHMC, BP3 and BMDBM.  Most working groups have reported the inherent photoinstability of a 

BMDBM and EHMC mixture in which EHMC is reported to undergo photoisomerisation 

photosentised by BMDBM occasioning photo-loss (Dondi et al. 2006; Pattanaargson et al. 2004).  

These two are may also undergo a [2+2] cycloaddition reaction that breaks down rapidly to give other 

less absorbing photoproducts.  In this work the UV spectra of the three sunscreens combined with 

liquorice root extract showed a drop after 30 minutes and then stabilized (Fig. 9.30).  The spectral 

decay of this mixture in methanol is accompanied by a blue shift (Fig. 9.28) a phenomenon that is 

reversed in this mixture containing liquorice extract.  An inspection of the corresponding HPLC 

chromatogram showed the EHMC and BMDBM peaks only.  However, the BP3 peak was again not 

seen on the HPLC chromatogram.  This could be due to reactions explained in Section 9.3.3.  A study 

by Sayre et al. (2005) suggested that the photo-loss of EHMC may be enhanced by the free radicals 

formed in the photodegradation of BMDBM present in the mixture.  The overall observed effect of 

these reactions is the emergence of one major absorbing species (Fig. 9.31).  The HPLC 

chromatographic data reveal several other chemical species (Supplementary Materials Table S9.6,).  

This mixture achieves an improved absorption efficacy but does not stop the photo-degradation of 

BMDBM and photoisomerisation of EHMC as chemical entities but reaction occurs to produce long 

wavelength absorbing species. 
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Figure 9.28: The spectral transformations of a mixture of the organic UV absorbers: 
EHMC, BP3 and BMDBM, under solar simulated irradiation, in a 1 mm pathlength 
quartz cuvette.  Each exposure event involved use of a fresh sample solution.  The 
spectra were recorded on a Perkin Elmer Lambda 35 spectrophotometer. 
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Figure 9.29: The photochemical transformations of a mixture of BMDBM, BP3, and EHMC dissolved in methanol monitored by 
HPLC at 260, 286, 310, and 358 nm.  The separation was effected on a Zorbax Eclipse-XDB C-18 column (150 mm × 4.6 mm, 
i.d., 5 µm).  The mobile phase was a gradient elution of acetonitrile-water with a flow rate of 1.00 mL min-1 and the injection 
volume was 20 μL. 
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Figure 9.30: The photostability of a mixture of EHMC, BP3, BMDBM, and liquorice root 
extract dissolved in methanol when exposed to simulated solar radiation, in a 1 mm path-
length quartz cuvette.  Each exposure event involved use of a fresh sample solution.  The 
spectra were recorded on a Perkin Elmer lambda 35 UV-vis dual beam spectrophotometer. 
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Figure 9.31: Photochemical changes when liquorice root extract is incorporated in in a mixture of EHMC, BP3 and BMDBM in methanol, monitored 
by HPLC at 260, 286, 310, and 358 nm.  The separation was effected on a Zorbax Eclipse-XDB C-18 column (150 mm x 4.6 mm, i.d., 5 µm).  The 
mobile phase was a gradient elution of acetonitrile-water with flow rate of 1.00 mL min-1 and an  injection volume of 20 μL.  No peak be could be 
identified conclusively. 
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9.4 Conclusions 

The aim of this work was to investigate the effect of liquorice root extract on the photostability of 

some commonly used sunscreen absorbers.  The liquorice root extract alone showed appreciable 

photo-absorption.  However, irradiation of the extract with simulated solar radiation for increasing 

exposure periods showed a drop in UV-light absorption.  We conclude that the photo-absorbing 

species in the liquorice root extract degrade upon exposure to UV light.  The inclusion of common 

UV-absorbing agents into the liquorice root extract dissolved in methanol, showed different photo-

degenerative responses depending on the agent.  For example, a mixture containing BP3 in the 

liquorice root extract showed no appreciable change or drop in UV absorption.  But a significant 

chemical transformation was observed from the HPLC data.  No peak for BP3 could be detected on 

the chromatogram; the observed variation in the retention time indicates both dark and light-promoted 

reactions between the secondary metabolites of the liquorice root extract and BP3.  We propose that 

the reactions between these metabolites and BP3 do not affect the carbonyl chromophore but rather 

add onto the phenyl rings.  This causes the slight bathochromic shift observed suggesting that the 

added groups are electron-donating groups.  These effects predominate even when all the three 

absorbing molecules are mixed together.  The HPLC chromatograms of the mixture of the three 

sunscreen absorbers with liquorice root extract resemble those of BP3 alone with the liquorice root 

extract.  The UV spectra resemble those of BP3.  These results indicate the stability of the ortho-

hydroxybenzophenone moiety but do not rule out C-C and C-O linkages on the phenyl rings.   

 

EHMC showed an unusual photodegradation response with a drop-increase and drop fashion.  This is 

attributed to a photochemical reaction involving both Patternò-Büchi and [2+2] cycloaddition 

reactions followed by a rearrangement.  The resultant species is stable or has a longer life-time.  There 

is need to investigate, isolate and characterize this species due to its photostability and may provide a 

lead to a stable synthetic UV absorber. 

 

The addition of liquorice root extract to a solution of BMDBM in methanol did not show significant 

change on its photostability.  A steady drop in UV absorption was observed at 358 nm the wavelength 

of maximum absorption for the enol form of BMDBM.  This indicates photo-induced degradation of 

this UV absorber.  There was a slight increase in absorbance at about 260 nm on the UV spectra 

indicating a possible isomerization to the keto form but to a very limited degree.  The keto form of 

BMDBM has maximum wavelength of absorption at 254 nm.  A close inspection of the HPLC data 

shows that exposure to UV radiation of this mixture leads to photochemical reactions similar to those 

observed and proposed for EHMC.  This could be true given that BMDBM can split down to a 

phenacyl radical and a benzoyl radical upon UV irradiation.  The phenacyl radical may rearrange to 

produce the cinnamic acid moiety which is likely to react in similar fashion as EHMC. 

 

The overall analysis of liquorice root extract is that it may not be a very good stabilizer for all the 

chemical absorbers investigated, but it reacts with the agents to yield products with varying absorption 

characteristics.  We conclude that these photoreactions with the absorbers produce UV-active species 

which may photostabilize the absorption efficacy of the formulation and not the individual sunscreen 

agent.  It is expected that the phenolic compounds in the liquorice root extract may also contribute to 

absorption and scavenging of radical species.  
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ble S9.1: The photochemical changes of the sunscreen(s) dissolved in methanol after irradiation with 

simulated solar irradiation monitored on HPLC-PDA at 260, 286, 310, 358 nm. 

 Mixture of BMDBM, BP3 and EHMC 

   Peak Area 

Wavelength/nm UV-filter RT 0 min 30 min 90 min 

260 keto-BMDBM 3.072 474053 388025 402645 

286 

BP3 3.08267 1149065 1127671 1136999 

cis-EHMC 10.19733 0 261526 443856 

trans-EHMC 11.53067 683313 303745 148920 

310 

BP3 3.05067 1076471 879510 915656 

cis-EHMC 10.19733 0 272403 461590 

trans-EHMC 11.488 1212199 538875 272829 

358 enol-BMDBM 11.21067 146473 139439 154766 

 BMDBM 

260 keto-BMDBM 2.368 5769 99334 95094 

358 enol-BMDBM 11.232 110714 96556 92185 

 BP3 

286 BP3 3.06133 927540 738944 806767 

 EHMC 

260 
cis-EHMC 10.16533 0 139036 133916 

trans-EHMC 11.43467 156696 83566 81385 

310 nm 
cis-EHMC 10.16533 0 362702 342873 

trans-EHMC 11.44533 1818585 1026119 965827 
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Figure S9.1: The transmittance spectrum of the 10 mm-thick Pyrex glass filter used in this 
work recorded on a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer. 
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Table S9.2:  The chemical transformations of liquorice root extract dissolved in methanol on UV irradiation monitored on HPLC-PDA at 275, 280, 286, 310 

and 358 nm. 

275 nm 280 nm 

RT PA-0min RT 

PA-

30min RT 

PA-

90min RT PA-0min RT 

PA-

30min RT 

PA-

90min 

1.309 78395 1.4 172727 1.394 161441 1.4 197880 1.4 164602 1.394 153166 

1.4 125300 1.562 15298 1.555 15375 1.562 15560 1.562 15089 1.555 14317 

1.562 16397 1.854 72975 1.845 71214 1.854 107730 1.854 88445 1.845 85167 

1.854 88278 2.022 18149 2.011 19968 2.22 31271 2.216 37495 2.206 33554 

2.027 21072 2.216 26449 2.205 36121 2.517 6452 2.757 20510 2.719 21933 

2.221 39948 2.748 9341 2.724 22961 2.781 24284 3.25 14370 3.228 14328 

2.784 25109 3.259 3330 3.248 16351 3.276 19671 3.496 5238 3.517 4502 

3.282 23805 3.555 2439 3.533 5203 3.523 12519 4.154 1049 5.664 1227 

3.567 14525 4.132 2395 4.092 1133 4.148 7474 5.95 6528 5.921 6458 

4.021 4028 5.947 7197 5.643 1081 5.998 6965 6.798 13275 6.759 10975 

4.144 3238 6.809 14776 5.917 6597 6.906 12869 7.418 12235 7.355 9499 

6.001 6048 7.418 12488 6.737 14641 7.528 12518 7.953 6444 7.91 4403 

6.898 14706 7.944 5997 7.352 11345 8.069 6043 11.912 1382 11.28 2137 

7.536 13172 10.882 1058 7.901 4869 11.311 1672 12.583 4305 11.663 2106 

8.088 5917 11.252 1807 10.832 1265 11.975 1877 12.787 1013 11.872 3793 

11.326 1816 11.908 1927 11.233 1627 12.606 5577 13.045 4156 12.085 2076 

11.731 1026 12.134 1207 12.577 4872 12.822 1807 13.76 1865 12.256 1214 

11.934 2247 12.597 6939 12.769 1457 13.075 6156 13.905 2479 12.55 9860 

12.625 6858 12.787 1817 13.025 6175 13.29 3862 14.154 5489 12.769 4199 

12.818 1950 13.047 7418 13.221 2001 13.771 5782 16.83 9816 13.021 10183 

13.074 7962 13.252 2553 13.76 6396 14.179 5678 17.191 6551 13.222 6476 

13.29 4126 13.472 2591 13.869 2915 16.841 10004 24.191 3523 13.451 3681 

13.837 6761 13.792 4757 14.133 6350 17.202 6637 24.405 1670 13.792 11063 

14.179 7461 13.904 3411 16.805 11655 24.205 1850 24.661 2589 13.873 6130 
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16.833 12529 14.153 6518 17.161 5130 24.83 1939 24.836 2841 14.136 13546 

17.202 5331 15.207 4589 24.17 1172 24.987 1565 24.987 2501 14.4 4997 

23.819 1293 15.509 5854 24.821 1666 25.162 3014 25.158 4024 14.635 5925 

24.195 3412 16.824 12017 24.966 1669 25.395 7132 25.389 8081 14.805 6105 

24.448 2798 17.19 5209 25.109 1729 25.632 12822 25.626 14176 14.955 1342 

24.683 2476 23.84 1075 25.373 8901 26.165 2388 26.161 2455 15.198 8253 

24.839 3608 24.189 4524 25.613 15070 26.918 2545 26.907 2741 15.371 3716 

24.992 2643 24.405 3611 26.141 1796 27.076 6111 27.067 6258 15.573 9162 

25.153 3659 24.661 3171 26.887 2405 28.221 7975 28.209 8291 16.813 9160 

25.401 10775 24.836 4015 27.054 6315 29.013 10996 29 11372 17.167 6391 

25.634 16855 25.003 3933 27.544 1451 29.602 1315 29.575 1581 24.161 1822 

26.162 3465 25.157 3808 28.198 9866 35.378 2199 30.503 1421 24.815 1377 

26.916 2139 25.385 12948 28.99 11003 35.897 2802 30.916 1150 24.967 2037 

27.077 5866 25.627 20643 29.581 1168 38.855 6493 35.365 2998 25.142 2773 

27.567 1445 26.154 6365 30.471 1302 45.407 73254 35.884 2535 25.375 7305 

28.222 8928 26.389 2930 30.845 1292     38.845 6575 25.611 12880 

29.016 10101 26.707 3395 35.334 2613     45.425 76008 26.139 2533 

30.511 1397 26.91 4040 35.877 2168         26.894 2939 

30.906 1239 27.068 8430 38.825 7190         27.057 6602 

35.264 1520 27.556 3550 45.519 70622         27.538 1414 

35.385 1098 28.21 9439             28.198 8584 

35.896 2256 29.003 11027             28.991 11378 

38.852 6680 29.576 1145             29.581 1304 

45.368 64862 30.501 1551             30.476 1148 

    30.885 1639             30.925 1287 

    35.364 3573             35.354 2604 

    35.889 2018             35.877 2542 

    38.844 6775             38.839 6253 

    45.424 68933             45.503 80618 
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286 nm 310 nm 

RT PA-0min RT 

PA-

30min RT 

PA-

90min RT PA-0min RT 

PA-

30min RT 

PA-

90min 

1.4 179253 1.4 144361 1.394 132810 1.401 117829 1.401 79864 1.394 71480 

1.562 15204 1.561 13259 1.554 12573 1.562 13061 1.562 7929 1.554 8089 

1.854 101727 1.854 82722 1.845 76137 1.855 84946 1.854 61847 1.846 54745 

2.22 21236 2.217 32451 2.206 27452 2.216 6871 2.213 7507 2.196 7721 

2.56 4328 2.756 26603 2.716 17942 2.349 8470 2.349 9284 2.336 9731 

2.786 6404 3.238 16707 3.217 5148 2.775 8876 2.746 8219 2.725 5312 

4.154 1984 3.491 8919 5.643 1188 4.017 1233 4.072 1301 6.768 9748 

6.009 4223 3.904 2751 5.928 3553 6.963 9592 6.819 10507 7.369 5435 

6.936 9297 3.979 1225 6.778 8895 7.546 6491 7.417 6950 7.881 2298 

7.537 9764 4.123 2278 7.356 7821 8.045 2733 7.972 3015 12.525 6607 

8.047 4491 5.653 1261 7.928 3827 11.912 1878 11.857 1519 12.772 2124 

11.929 1567 5.948 4067 11.864 1093 12.574 6022 12.546 6716 12.949 5481 

12.594 4556 6.805 10757 12.537 4608 12.812 2142 12.788 2270 13.209 2647 

12.814 1576 7.443 9768 12.773 1453 13.001 5722 12.973 5673 14.13 1932 

13.066 4943 7.95 4520 13.02 4363 13.272 2977 13.233 3111 17.171 2284 

13.291 2787 11.877 1403 13.209 1287 13.44 1600 14.152 2018 25.58 1703 

13.792 2862 12.563 4593 13.884 3447 14.177 1915 14.396 1152 27.047 1207 

14.178 3988 12.789 1475 14.131 3965 14.416 2061 17.199 2180 35.363 2979 

16.858 6839 13.042 4163 16.827 6369 17.207 2240 25.601 1661 35.87 1616 

17.213 6925 13.245 1138 17.169 7483 17.72 1029 35.365 3765 38.841 2344 

23.861 2764 13.91 2463 24.159 4599 25.136 1011 35.88 1792 45.5 49753 

24.203 3118 14.152 4127 24.658 3673 25.609 1752 38.856 2016     

24.683 3997 16.846 6847 24.808 2131 27.081 1242 45.456 50759     

24.822 2856 17.194 7124 24.974 2451 35.384 2736         

24.981 2489 24.174 1206 25.15 4571 35.896 1990         

25.175 5014 24.681 1339 25.369 7150 38.864 1909         
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25.393 7027 24.824 1852 25.608 9505 45.388 46468         

25.631 10179 24.997 1691 26.14 1653             

26.166 2742 25.162 3970 26.896 2610             

26.923 2405 25.383 6244 27.056 6096             

27.077 6350 25.622 9680 28.202 6356             

27.557 1226 26.158 2270 28.987 8318             

28.219 5967 26.914 2449 29.602 2451             

29.014 7711 27.066 5979 29.978 1109             

29.624 1345 27.557 1073 35.347 2726             

35.38 2422 28.214 5937 35.868 2615             

35.896 2991 29 7985 38.842 6211             

38.846 5699 29.583 1419 45.5 86146             

45.403 78502 35.368 3412                 

    35.883 2870                 

    38.845 5464                 

    45.464 83324                 
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Table S9.3: The chemical transformations of liquorice root extract mixed with BMDBM dissolved in methanol on irradiation with simulated solar irradiation 

monitored by HPLC-PDA. 

275 nm 280 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.4 126755 1.408 119601 1.394 113945 1.4 122530 1.408 114605 1.394 109236 

1.557 9811 1.565 9235 1.552 9863 1.557 9176 1.565 8650 1.552 9333 

1.85 89030 1.858 65665 1.844 61528 1.85 84368 1.858 76589 1.844 72687 

2.207 30723 2.027 17112 2.007 14993 2.203 29505 2.214 28474 2.202 22385 

2.718 35299 2.215 34105 2.198 23068 2.731 13701 2.74 13763 2.696 6839 

3.234 20722 2.731 27942 2.697 8490 3.225 4724 3.234 6005 3.225 1138 

3.504 14930 3.241 20932 3.227 2086 5.849 3726 4.133 1643 3.553 1039 

3.861 3225 3.558 14287 3.53 2058 6.59 4687 5.894 3285 5.869 3338 

4.048 3878 3.947 3432 4.047 2006 6.688 3168 6.703 6355 6.661 7522 

5.855 3712 4.097 2936 5.87 4163 7.224 7392 7.268 6666 7.215 7397 

6.599 9010 5.9 4569 6.658 10175 7.765 3623 7.833 2836 7.75 3594 

7.223 8096 6.668 9745 7.258 8271 12.528 2705 12.558 2752 12.525 2702 

7.738 3618 7.311 8742 7.78 3739 12.989 3210 13.015 3101 12.987 3061 

12.539 3191 7.844 3773 12.545 3251 13.214 1650 14.113 2754 14.082 2765 

12.995 4141 11.816 1029 12.993 4105 14.088 2687 14.457 3412 14.428 5047 

13.248 1798 12.561 2205 13.195 1079 16.788 2382 16.81 2431 16.777 2195 

14.089 3479 13.016 3221 14.081 2985 17.443 1022 18.379 14586 18.323 14745 

16.786 4171 14.114 2970 14.438 4911 18.325 14638 21.899 17976 21.856 15228 

17.64 1315 14.46 3150 16.779 4085 21.824 16457 22.108 17745 22.045 19557 

18.334 15988 16.809 4415 17.64 1127 22.06 19058 22.765 4373 22.72 4377 

21.835 19066 17.679 1189 18.326 16192 22.726 4199 24.176 1733 24.12 1520 

22.061 18172 18.374 15318 21.856 17094 24.133 1453 24.648 1124 24.608 1094 

22.724 5368 21.899 19092 22.052 20446 24.645 1101 25.366 1539 25.28 1913 

24.14 2006 22.113 18819 22.72 5131 25.341 1096 25.552 8189 25.517 7534 
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25.323 1921 22.756 5726 24.13 1689 25.52 5339 26.88 1145 25.982 1119 

25.512 7826 24.17 3613 25.323 1913 25.685 2057 27.051 7959 26.837 1034 

25.999 1254 24.373 2048 25.517 7283 26.848 1182 27.473 2877 27.015 7800 

27.023 7353 24.655 1808 25.98 1573 27.023 7950 27.858 5661 27.432 2991 

27.441 9214 24.813 1032 26.827 1003 27.44 10515 28.194 2314 27.816 5027 

28.154 2444 25.376 1464 27.019 7511 28.158 2297 28.968 41965 28.145 2320 

28.932 41921 25.549 7968 27.44 3184 28.932 42564 33.6 1522 28.922 42210 

33.578 1423 26.036 1718 27.816 4592 33.557 1424 33.896 2263 33.557 1709 

33.873 2593 26.88 1112 28.144 2749 33.865 2631 35.007 11086 33.856 2379 

34.975 11024 27.054 7481 28.923 42344 34.975 13596 35.341 8216264 34.958 10618 

35.312 7386906 27.479 3227 33.557 1443 35.312 9133380 36.392 3656 35.295 8038959 

36.128 1744 27.856 5059 33.854 1974 36.356 4133 36.628 6055 36.349 3716 

36.356 5402 28.187 2838 34.958 8836 36.587 1340 36.878 8626 36.588 5833 

36.597 1731 28.968 42313 35.294 
675942

8 
36.847 16705 45.326 31940 36.841 8511 

36.847 14111 33.579 1330 36.352 3676 45.304 28032 
  

45.298 31081 

45.295 26970 33.893 1995 36.589 5099 
      

  
35.007 9458 36.841 6588 

      

  
35.339 6905276 45.295 25516 

      

  
36.396 3995 

        

  
36.626 5490 

        

  
36.879 7039 

        

  
45.262 20725 

        
286 nm 310 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.4 112075 1.408 102256 1.394 96685 1.4 74738 1.408 65625 1.394 61705 

1.556 8708 1.565 8161 1.551 8888 1.557 8315 1.565 8129 1.551 8536 

1.85 80083 1.859 70106 1.844 68414 1.851 65391 1.859 57246 1.844 48532 
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2.206 19056 2.218 21028 2.201 23449 2.208 6371 2.229 5495 2.208 4902 

2.485 4015 2.714 6156 2.717 5581 2.332 8314 2.357 10290 2.338 1909 

2.745 7023 4.097 1043 5.864 2564 2.706 7820 2.716 5026 6.64 4398 

5.849 1940 5.893 2307 6.633 6905 6.626 4448 6.683 4291 12.484 3462 

6.626 6289 6.706 5398 7.266 6233 7.236 2827 7.273 2425 12.906 2535 

7.225 5991 7.309 5568 7.79 3443 12.488 3893 11.823 1163 14.08 1549 

7.772 2961 7.826 3081 11.79 1050 12.735 1461 12.512 3401 14.358 1343 

12.517 2761 12.53 2286 12.493 2626 12.914 3619 12.934 2243 17.136 1190 

12.737 1050 13.01 2175 12.986 2831 13.183 1926 14.111 1448 25.548 2298 

12.987 3224 14.113 2077 13.185 1068 13.355 1258 14.38 1107 25.675 1636 

13.208 1952 14.463 3461 14.081 2177 14.085 1368 17.172 1155 27.013 1428 

14.088 2141 16.808 1048 14.432 5026 14.359 1443 25.574 3269 27.431 1590 

14.366 1154 18.36 10058 16.778 1035 17.139 1193 25.717 1512 27.818 3687 

16.79 1065 22.086 21330 18.324 8705 17.425 2205 27.054 1833 33.854 1478 

17.432 1155 22.75 2836 21.824 10558 25.552 1662 27.47 2010 34.962 14137 

18.329 9176 24.175 1483 22.041 9983 25.674 2573 27.854 4221 35.298 
1035531

2 

21.856 11328 24.655 1081 22.694 2800 27.023 1662 28.825 1148 36.117 2738 

22.052 9921 24.798 1111 24.143 1333 27.439 10742 33.905 1581 36.288 1778 

22.722 3306 25.28 1906 24.62 1095 28.786 1006 35.01 14250 36.588 8264 

24.125 1396 25.561 7717 25.205 1705 33.873 2660 35.343 
1061407

9 
36.841 14248 

24.619 1123 27.05 7783 25.529 5188 34.977 19318 36.626 6644 45.296 17649 

25.227 1107 27.47 2826 25.675 1162 35.311 
1316048

2 
36.879 13996 

  

25.533 4440 27.854 6030 27.012 7710 36.306 1330 45.299 17587 
  

25.664 2215 28.201 1552 27.445 2784 36.576 1197 
    

27.023 7838 28.966 27477 27.815 5305 36.848 25586 
    

27.44 11898 29.702 1557 28.127 1462 45.3 17600 
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28.148 1519 33.568 1759 28.922 27003 
      

28.928 26690 33.894 1804 29.637 1387 
      

29.636 1301 35.007 13087 33.525 1557 
      

33.573 1521 35.342 9565410 33.853 1623 
      

33.874 2466 36.381 2268 34.96 12685 
      

34.976 16316 36.627 6663 35.296 
934918

5       

35.312 
1093400

5 
36.878 10448 36.117 2566 

      

36.345 2962 45.329 33436 36.342 3963 
      

36.597 1614 
  

36.589 7647 
      

36.848 20108 
  

36.841 11232 
      

45.317 31685 
  

45.298 35132 
      

358 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.4 39570 1.409 33411 1.395 32197 

1.557 7811 1.565 7370 1.552 8203 

1.851 22731 1.859 21170 1.844 21167 

1.968 2217 1.983 2114 1.962 1889 

6.633 3633 6.703 4428 6.68 4639 

12.484 5464 12.508 5245 12.481 5775 

12.734 3458 12.759 3445 12.731 3634 

12.904 3294 12.926 3330 12.899 3531 

13.167 2010 13.192 2097 13.167 2018 

14.369 1311 17.165 3312 17.134 3339 

17.141 3307 35.039 4133 34.99 2363 

28.755 1006 35.318 44567 35.273 43048 

35.001 3397 
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35.311 34877 
    

 

Table S9.4: The chemical transformations of liquorice root extract mixed with BP3 dissolved in methanol on irradiation with simulated solar irradiation 

monitored by HPLC-PDA. 

275 nm 280 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.402 125182 1.395 120802 1.398 115884 1.402 121025 1.395 115669 1.398 110460 

1.562 8783 1.553 9522 1.555 9587 1.562 8251 1.553 8844 1.555 8905 

1.855 83159 1.846 78538 1.849 65079 1.855 82144 1.846 79598 1.849 74888 

2.211 30904 2.203 24289 2.011 18245 2.211 32844 2.204 33705 2.206 20137 

2.726 23112 2.714 7483 2.205 38274 2.744 24365 2.709 22169 2.716 8790 

3.257 13213 3.242 1851 2.715 29243 3.239 17111 3.237 20006 3.22 1330 

3.539 6379 3.535 2035 3.225 21267 3.507 11586 3.455 10733 3.523 1474 

5.891 3607 4.076 1924 3.538 13977 4.086 7030 3.893 3622 4.059 1648 

6.706 7255 5.891 3155 4.088 6841 5.898 3657 4.077 2354 5.872 4250 

7.275 7262 6.678 8960 5.871 4801 6.712 6051 5.866 4587 6.608 8478 

7.823 3376 7.28 7832 6.609 10881 7.27 6888 6.714 6983 7.238 8238 

11.823 1083 7.832 3423 7.235 8922 7.826 3153 7.291 7175 7.749 3861 

12.563 3160 12.56 2616 7.75 3774 11.802 1432 7.833 3467 11.809 1822 

13.021 4192 13.016 3340 11.784 1184 12.56 2742 11.813 1038 12.545 3060 

13.301 1695 14.108 2768 12.547 2908 13.019 3704 12.54 2833 13.002 3083 

14.116 3108 16.8 3936 13.004 3580 13.222 1983 13.002 3399 14.102 2664 

16.81 3897 17.658 1331 13.865 1114 14.116 3219 13.205 1475 16.798 2268 

17.672 1244 18.362 14257 14.1 3156 16.812 2212 14.107 2603 18.344 14318 

18.38 15678 21.867 18868 16.796 3989 18.361 15117 16.801 2184 22.067 35200 

21.931 17058 22.088 19076 17.659 1460 21.888 14342 18.345 13734 22.742 4283 

22.128 20824 22.74 5293 18.358 15504 22.123 21340 21.909 16297 24.15 1573 

22.781 5285 24.144 2159 22.068 36988 22.786 4634 22.09 18854 24.641 1120 
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24.186 2034 25.355 1194 22.746 5070 24.186 1587 22.741 4199 25.269 1355 

25.355 1861 25.555 
341720

6 
24.154 1833 25.355 1133 24.141 1426 25.558 

423307

1 

25.575 
334818

1 
27.039 6564 24.634 1059 25.575 

414859

0 
24.638 1334 27.043 7026 

27.062 7117 28.167 2787 25.333 1556 27.062 7100 25.269 1198 28.168 2397 

27.546 1838 28.953 42473 25.558 
341501

5 
28.204 3130 25.555 

424115

4 
28.958 43942 

28.207 3335 35.323 2314 27.043 7140 28.544 1132 27.038 6727 35.338 4189 

28.986 44812 45.296 25590 27.516 1544 28.985 47471 28.168 2639 45.305 30412 

35.076 1127 
  

28.173 2932 35.038 1120 28.953 43520 
  

35.365 2416 
  

28.958 40055 35.362 2972 35.332 2723 
  

35.865 1126 
  

35.035 1005 35.897 1464 45.309 27934 
  

45.308 23156 
  

35.336 3334 45.326 31391 
    

    
36.32 1089 

      

    
45.304 20702 

      
286 nm 310 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.402 110184 1.396 103415 1.398 99198 1.403 74503 1.396 68054 1.398 63705 

1.562 7756 1.553 8154 1.555 8689 1.562 7981 1.553 8323 1.555 8490 

1.855 77095 1.846 70971 1.849 69845 1.856 60911 1.847 58359 1.849 56071 

2.212 20411 2.204 20567 2.203 21204 2.208 3908 2.208 6563 2.205 7421 

2.736 9198 2.709 6961 2.704 7082 2.357 1999 2.357 8703 2.333 6715 

5.897 1714 4.11 1232 4.055 1156 6.724 4998 2.715 6185 2.689 8704 

6.716 5433 5.892 2087 5.867 2255 7.326 2834 6.654 3644 6.62 5678 

7.29 5916 6.685 4205 6.622 5973 11.826 1535 12.51 3433 7.224 3699 

7.845 2899 7.294 3728 7.245 5568 12.515 3852 12.939 2251 7.789 1603 

12.54 2897 7.84 1627 7.79 3173 12.764 1262 14.102 1292 11.803 1151 
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12.762 1198 12.521 2086 11.79 1438 12.946 3518 17.15 1189 12.496 3598 

13.025 3553 13.005 2546 12.506 2514 13.227 2187 25.555 
327688

8 
12.932 2557 

13.221 2206 13.193 1332 12.997 2467 14.113 1292 27.035 1908 14.098 1388 

14.115 2073 14.104 2000 14.103 2040 14.38 1378 28.795 1138 17.154 1135 

16.829 1043 16.806 1056 16.805 1087 17.174 1095 35.33 3614 25.558 
326766

2 

18.364 9903 18.229 3275 18.353 8517 25.575 
320424

7 
45.296 16662 27.036 1348 

21.888 8981 18.351 5432 21.867 10911 27.049 1381 
  

35.044 1308 

22.128 11241 21.92 10052 22.098 9956 28.83 1086 
  

35.335 5459 

22.761 2569 22.094 10499 22.737 2939 35.055 1216 
  

45.307 12863 

24.672 1076 22.717 2550 24.144 2730 35.364 3787 
    

25.575 
473354

0 
24.162 1179 24.65 3197 45.337 14161 

    

27.06 7060 24.648 1252 24.794 1767 
      

28.195 1931 25.248 1302 25.269 3974 
      

28.984 28465 25.555 
483907

1 
25.558 

483506

5       

29.702 1179 27.036 6852 27.039 7027 
      

35.373 3157 28.175 1857 28.17 1737 
      

35.869 1585 28.951 25752 28.955 28284 
      

45.351 28805 29.28 2353 29.666 1710 
      

  
29.672 1161 35.046 1033 

      

  
35.326 3379 35.341 4914 

      

  
45.298 36714 45.311 34645 

      
358 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
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1.403 37881 1.396 34813 1.398 34243 

1.562 7570 1.553 7586 1.555 8389 

1.855 20296 1.847 22269 1.849 21321 

6.717 4036 1.975 4693 1.988 2240 

12.512 5562 6.725 2899 6.638 4363 

12.763 3525 12.504 5156 12.492 6030 

12.934 3226 12.754 3350 12.744 3808 

13.195 1916 12.925 3100 12.912 3689 

14.388 1172 13.19 2008 13.178 2131 

17.169 3448 17.155 3337 17.155 3340 

25.575 793990 25.556 810399 25.558 809566 

35.056 5055 35.016 4126 35.027 4963 

 

Table S9.5: The chemical transformations of liquorice root extract mixed with BMDBM dissolved in methanol on irradiation with simulated solar irradiation 

monitored by HPLC-PDA. 

275 nm 280 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.402 138090 1.402 138410 1.395 131685 1.402 133501 1.402 133358 1.395 126014 

1.562 9563 1.561 10240 1.553 9755 1.561 8963 1.561 9601 1.553 9099 

1.853 91355 1.853 72024 1.845 68964 1.853 88965 1.853 83991 1.845 84000 

2.205 36440 2.027 14754 2.016 14398 2.206 29917 2.209 22710 2.202 27777 

2.713 26418 2.209 25969 2.2 23487 2.475 3784 2.721 9435 2.699 26977 

3.224 23672 2.725 7154 2.68 8309 2.702 26585 3.218 1200 3.204 13706 

3.526 14436 3.229 2335 3.21 2299 3.213 20085 3.557 1322 3.403 3273 

3.84 2481 3.534 2269 3.537 2104 3.492 13279 4.088 1052 3.547 2289 

4.039 5206 5.862 4023 5.836 3978 4.038 8047 5.862 4701 5.832 4050 

5.844 3923 6.621 10312 6.587 10075 5.85 3917 6.62 9637 6.585 8068 

6.573 10073 7.196 9267 7.189 9434 6.586 8702 7.21 9201 7.176 8484 
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7.185 8789 7.779 4449 7.722 4043 7.181 8190 7.761 4090 7.731 3747 

7.765 4285 11.804 1447 11.763 1108 7.737 4283 11.803 1815 11.78 1024 

11.762 1251 12.548 3677 12.537 3637 11.751 1156 12.533 3142 12.531 3220 

12.526 3492 12.743 2731 12.739 5592 12.513 2946 12.742 1726 12.734 3166 

12.976 4762 12.998 4771 12.98 5656 12.737 1154 12.996 3709 12.982 4560 

13.216 1922 13.184 1216 14.077 3531 12.974 4083 14.101 3010 14.079 3255 

14.074 3698 14.1 3614 16.774 6253 13.159 2202 16.792 3378 16.776 3305 

16.767 6205 16.791 6463 17.419 2048 14.068 2931 18.349 13861 17.626 1067 

17.624 2306 17.643 2321 17.636 1561 16.768 3298 21.867 15592 18.325 17266 

18.312 16333 18.34 14434 18.326 18081 18.32 13988 22.067 16353 21.803 16307 

21.867 18863 21.835 17921 21.824 20140 21.835 18226 22.472 12169 22.049 16265 

22.031 16832 22.074 16403 22.024 15394 22.013 14432 22.741 3295 22.446 12640 

22.426 11652 22.471 11780 22.444 11663 22.428 11830 24.15 1513 22.688 3130 

22.709 4425 22.731 4402 22.684 4437 22.677 3428 24.627 1651 24.131 4965 

24.13 2018 23.755 1420 24.115 1945 23.748 1278 24.79 1324 24.612 6379 

25.323 2382 24.134 5859 24.606 1104 24.107 6291 25.184 3610 24.759 3220 

25.495 6606 24.624 8681 25.227 3403 24.597 4098 25.523 9371 25.184 8688 

26.005 1431 24.785 3761 25.499 5054 24.767 2911 26.021 1421 25.502 7237 

26.22 1887 25.205 7457 25.628 3969 25.035 2198 26.256 4220 25.643 6816 

26.837 1170 25.333 2706 25.984 2592 25.184 4651 26.848 1020 26.032 3893 

27.138 499064 25.523 14780 26.247 7123 25.504 8890 27.157 480336 26.248 8557 

27.566 26948 26.005 5105 26.645 1089 26.009 2688 27.589 28329 26.635 2620 

28.136 5370 26.255 8385 26.837 1398 26.219 2658 28.177 4018 26.848 2057 

28.448 1510 26.667 2615 27.14 504644 26.37 1406 28.426 3403 27.14 471925 

28.914 44457 26.848 2316 27.569 28962 26.837 1308 28.934 35944 27.57 30604 

29.632 1488 27.157 520028 28.153 5477 27.138 463262 29.643 1384 28.151 5211 

34.977 
155815

0 
27.588 32718 28.421 4998 27.567 26136 34.994 

167225

6 
28.418 4903 

38.519 3126 28.163 6371 28.914 43593 28.133 3015 36.829 1119 28.913 41484 
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45.275 21115 28.429 4488 29.611 2195 28.914 41718 36.954 1199 29.632 1641 

  
28.933 38964 30.371 1320 34.977 

159904

2 
38.529 3644 30.377 1148 

  
29.653 1354 34.974 

159050

5 
35.812 1180 45.295 34447 34.974 

163132

1 

  
34.994 

162984

0 
36.937 1040 38.516 3080 

  
36.94 1048 

  
36.835 1210 38.506 3827 45.277 24338 

  
38.512 3517 

  
36.951 1294 45.253 26680 

    
45.257 31373 

  
38.531 3847 

        

  
38.768 1018 

        

  
45.243 21792 

        
286 nm 310 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.402 122188 1.402 120685 1.395 113461 1.402 82238 1.403 79177 1.396 73738 

1.561 8547 1.561 9137 1.553 8996 1.561 8248 1.561 8752 1.553 8702 

1.853 81715 1.853 81453 1.845 76936 1.854 71013 1.854 66351 1.846 61640 

2.205 22340 2.209 20973 2.202 21395 2.208 6552 2.219 6313 2.197 9752 

2.715 6186 2.507 2026 2.703 8954 2.339 9552 2.336 8921 2.315 9253 

4.057 1539 2.716 6594 5.859 1958 2.706 12762 2.724 5729 2.688 12227 

5.852 2125 4.089 1381 6.584 7139 6.598 6084 6.617 5726 3.019 1328 

6.562 6640 5.851 2093 7.224 6662 7.196 3234 7.216 3073 6.578 5671 

7.194 6132 6.639 7613 7.731 3303 12.474 4192 12.499 4475 7.184 2792 

7.737 3334 7.216 7027 12.505 3074 12.716 1557 12.747 1608 12.486 4497 

12.477 3248 7.769 3415 12.733 1637 12.895 3958 12.931 3995 12.731 1589 

12.721 1407 11.823 1490 12.97 4171 13.183 2153 13.187 1650 12.912 4320 

12.979 3858 12.517 2925 14.086 2203 13.333 1226 13.361 1236 13.169 1632 

13.187 2642 12.742 1072 16.779 1467 14.07 1461 14.09 1564 13.347 1415 
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14.067 2242 12.989 3289 18.011 4162 14.344 1502 14.37 1185 14.082 1376 

16.773 1424 14.091 2235 18.197 2571 17.116 1295 17.144 1403 14.354 1089 

18.311 10365 16.804 1619 18.322 4881 22.434 1284 22.478 1430 17.129 1356 

21.835 9605 18.327 9085 21.781 10837 25.555 1129 25.554 4269 18.003 2963 

22.042 9054 21.877 11511 22.049 7690 26.368 1130 27.157 41842 22.438 1572 

22.426 11861 22.056 7232 22.44 13976 27.138 40423 27.592 20400 25.557 2906 

22.709 2101 22.471 11983 24.122 1257 27.571 19537 28.777 1039 26.243 1197 

24.117 2746 22.731 2014 24.614 1158 34.977 
201629

0 
34.994 

210734

8 
27.14 40681 

24.633 2885 24.136 1255 24.761 1235 38.518 5054 38.53 5421 27.573 20217 

24.764 2047 24.634 1399 25.201 3333 45.336 14390 45.266 18032 34.974 
205651

9 

25.195 4478 24.767 1290 25.513 3991 
    

38.513 5476 

25.511 6710 25.212 2318 25.632 3466 
    

44.527 2208 

26.004 1694 25.535 9265 26.013 1723 
    

45.286 14160 

26.224 1274 26.021 1963 26.244 5364 
      

27.138 395911 26.254 3297 27.14 400165 
      

27.568 27209 27.157 409390 27.57 28229 
      

28.142 3898 27.59 28935 28.146 3211 
      

28.427 1162 28.167 3155 28.403 3815 
      

28.913 25384 28.44 2824 28.913 24638 
      

29.184 2961 28.932 21400 29.28 1463 
      

29.602 1581 29.237 2262 29.596 1552 
      

34.977 
163734

5 
29.645 1266 34.974 

166852

2       

35.805 2417 34.994 
171014

1 
36.93 1013 

      

36.107 1064 36.833 1034 38.517 3328 
      

36.288 1923 36.949 1105 45.298 33916 
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38.516 2934 38.53 3554 
        

45.316 31101 45.293 38072 
        

358 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.402 42088 1.403 38772 1.396 38846 

1.562 7917 1.561 7986 1.554 7997 

1.853 23869 1.853 20587 1.845 22894 

1.968 2638 6.636 4702 1.961 2832 

6.587 4700 11.843 1077 6.595 5158 

11.868 1009 12.496 6769 12.482 6164 

12.469 6047 12.745 4406 12.734 3926 

12.723 3790 12.915 3964 12.902 3802 

12.89 3594 13.179 2354 13.169 2227 

13.157 2224 17.146 3942 14.357 1116 

14.345 1340 27.159 2192 17.128 3838 

17.123 3674 27.593 99325 27.146 2304 

27.148 2229 34.994 
859392

0 
27.574 98791 

27.572 94559 38.529 14544 34.974 
840121

1 

34.977 
822043

9   
38.512 14932 

38.518 13417 
    

44.496 2717 
    

 

Table S9.6: The chemical transformation of liquorice root extract with a mixture of BMDBM, BP3 and EHMC dissolved in methanol on simulated solar 

irradiation, monitored by HPLC-PDA. 

275 nm 280 nm 
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RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.41 133174 1.402 132743 1.398 131131 1.41 129019 1.402 127941 1.398 125938 

1.571 9152 1.561 9936 1.556 9099 1.57 8547 1.561 9340 1.556 8567 

1.864 90514 1.853 83649 1.85 86510 1.864 79026 1.853 79070 1.85 85121 

2.223 27602 2.128 45008 2.199 38439 2.224 10817 2.201 36363 2.203 35514 

2.75 31214 2.71 25085 2.734 26796 2.755 1233 2.716 23264 2.705 22856 

3.261 14820 2.993 13859 3.221 21549 3.257 1525 2.992 10043 3.215 20545 

3.558 6296 3.229 12563 3.525 12840 3.486 1584 3.205 7930 3.508 12851 

4.099 1034 3.539 13223 4.035 8653 5.91 3694 3.536 5376 4.031 8198 

5.918 4004 3.851 3579 5.839 3868 6.775 8547 5.845 4214 5.867 3471 

6.738 10327 4.042 3187 6.582 10587 7.288 8603 6.584 8580 6.618 7816 

7.342 9043 5.833 3528 7.195 9167 7.871 3851 7.207 7880 7.199 8055 

7.877 3972 6.562 8694 7.739 4331 11.825 1178 7.759 3365 7.741 3844 

11.855 1139 7.173 8360 12.573 3509 12.579 3020 12.528 2756 12.545 3318 

12.583 2799 7.76 4015 12.769 4341 12.783 1104 12.735 1302 12.772 2987 

13.037 4442 11.787 2415 13.026 5435 13.034 4018 12.979 3349 13.015 5118 

13.28 1747 12.529 4274 13.227 1252 13.269 1829 14.078 2781 13.232 1399 

14.135 3276 12.73 2331 14.13 3137 14.137 3061 14.378 1845 14.131 3235 

16.823 5840 12.98 5128 14.471 2969 16.825 3078 16.782 3087 14.468 3040 

17.483 1161 13.173 1035 16.836 5830 17.68 1192 17.434 1067 16.838 3093 

17.676 1454 14.078 3539 17.493 1466 18.392 15670 17.62 1148 17.5 1443 

18.389 16071 14.384 1689 17.699 2027 21.931 16599 18.337 15271 17.701 1130 

22.142 35751 16.781 5819 18.414 17199 22.133 17525 21.803 17278 18.406 16809 

22.539 12531 17.408 1404 21.963 17545 22.54 13648 22.035 15671 21.92 16452 

22.805 4205 17.619 1554 22.157 17550 22.805 3286 22.44 12985 22.141 16402 

24.177 2069 18.339 16469 22.541 11959 24.205 1668 22.699 2909 22.54 12708 

25.376 1917 21.824 18286 22.795 3603 24.815 1029 23.744 1032 22.773 3454 

25.585 3868155 22.038 17528 24.154 1972 25.585 4798003 24.124 5179 23.691 1545 
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27.201 529829 22.444 11456 24.994 1988 27.201 493177 24.618 6084 24.156 4826 

27.484 15370 22.72 4263 25.288 3383 27.485 16819 24.766 3784 24.651 6173 

27.633 25748 24.114 2294 25.557 3985436 27.634 25291 24.967 2764 24.794 3089 

28.2 2420 25.275 2939 26.255 3396 28.216 2196 25.152 2684 24.995 4411 

28.997 41815 25.537 3875195 27.151 534477 28.996 41469 25.272 4551 25.284 6957 

33.69 1523 26.236 1299 27.582 30889 33.666 1541 25.537 4839913 25.557 4966928 

33.926 1919 27.149 522326 27.797 9553 33.947 1808 26.237 1156 26.253 2797 

35.052 1677431 27.578 27040 28.146 5561 35.052 1722737 27.149 483037 27.151 492744 

35.369 6786418 27.804 8916 28.416 7474 35.369 8404158 27.579 25719 27.582 28144 

36.405 3927 28.146 4983 28.928 48654 36.406 3738 27.809 8324 27.799 8253 

36.64 1085 28.425 4996 29.644 7941 36.64 1257 28.151 3536 28.142 3008 

36.892 15850 28.927 46026 30.598 3581 36.893 18523 28.427 3855 28.423 4496 

38.587 3484 29.632 3799 30.848 1348 38.59 3293 28.925 44247 28.927 41650 

45.313 27993 33.6 1599 33.632 1488 45.34 30790 29.631 4345 29.638 5155 

  
33.86 1748 33.844 1050 

  
33.589 1380 33.557 1461 

  
34.99 1631523 34.995 1644479 

  
33.86 1712 33.851 1064 

  
35.296 6035815 35.219 2733896 

  
34.99 1676243 34.995 1688954 

  
36.101 1046 35.287 3321049 

  
35.298 7117289 35.293 7062640 

  
36.356 3803 36.08 1768 

  
36.354 3688 36.1 1439 

  
36.596 6159 36.357 3890 

  
36.597 6694 36.357 3602 

  
36.842 10240 36.596 6922 

  
36.843 11316 36.596 7464 

  
37.309 6803 36.839 8970 

  
37.309 6056 36.839 14840 

  
37.531 7452 36.949 5423 

  
37.531 6105 37.309 11168 

  
37.747 6699 37.31 11870 

  
37.748 5827 37.529 10517 

  
37.889 8195 37.53 12658 

  
37.886 7494 37.745 11729 

  
38.531 3727 37.745 13356 

  
38.531 3522 37.883 15045 

  
45.274 23866 37.882 16386 

  
45.316 29383 38.532 3721 

    
38.532 4284 

    
45.32 32358 

    
45.317 24454 
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286 nm 310 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 
RT 

PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.41 117480 1.402 116590 1.398 113733 1.411 78585 1.403 76980 1.398 73711 

1.57 8398 1.56 8880 1.556 8125 1.57 7916 1.56 8587 1.556 8324 

1.864 80741 1.853 75284 1.85 80343 1.864 69593 1.853 59779 1.85 65105 

2.223 19896 2.203 38338 2.204 30683 2.229 6953 2.193 4392 2.203 7993 

2.755 8839 2.715 17142 2.692 21387 2.347 6452 2.347 2473 2.325 7190 

5.915 2241 3 9325 3.216 10538 2.528 4240 6.57 5436 2.701 9409 

6.772 6934 3.215 5558 3.429 2722 2.738 5680 7.171 2662 6.627 4697 

7.354 6319 3.411 4879 3.605 2278 3.992 1137 11.792 1162 7.741 1033 

7.875 3131 5.857 1916 5.847 2510 6.748 4440 12.479 3563 12.517 4161 

11.866 1085 6.588 5597 6.601 6186 11.848 1408 12.91 2519 12.772 1524 

12.557 3045 7.202 5707 7.218 6036 12.531 4032 14.079 1443 12.947 4075 

12.783 1239 7.73 2676 7.736 2892 12.777 1496 14.351 1310 13.219 1618 

13.035 3635 11.791 1390 11.791 1370 12.957 3897 17.133 1254 13.397 1146 

13.263 2388 12.492 2676 12.537 3087 13.243 2388 17.415 1579 14.128 1542 

14.133 2109 12.722 1058 12.773 1794 13.397 1002 22.464 1538 14.422 1439 

14.396 1136 12.976 3024 13.012 4691 14.128 1319 25.272 1328 17.194 1224 

16.828 1539 14.082 2168 13.218 1252 14.394 1472 25.537 3702028 17.471 1653 

17.477 1131 14.383 1784 14.138 2245 17.178 1257 27.149 41317 18.079 1924 

18.376 9688 16.784 1265 14.453 3056 17.471 2068 27.583 22721 22.551 1474 

21.952 11741 18.338 9549 16.842 1368 22.543 1494 27.814 4369 24.997 1765 

22.155 7422 21.792 9460 17.472 1246 25.585 3721421 28.45 1168 25.294 3101 

22.541 12340 22.053 9136 18.414 11352 27.201 43081 28.769 1054 25.557 3808448 

22.752 2775 22.446 12060 21.963 9993 27.49 9681 33.86 1123 27.15 41574 

24.178 1983 22.709 1934 22.161 8757 27.638 21213 34.99 2103404 27.585 22446 

24.661 1483 24.134 2446 22.543 14157 28.838 1459 35.302 8968159 27.816 4547 

24.816 1005 24.632 2866 24.185 2437 33.938 2288 36.596 6977 28.431 1475 
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25.269 1016 24.77 1924 24.649 2819 35.052 2167809 36.848 10517 28.772 1002 

25.585 5472912 24.977 2149 24.795 2013 35.369 
1208570

7 
38.531 5557 33.867 1462 

27.201 421370 25.12 2006 24.997 3272 36.356 1163 44.538 2211 34.995 2120166 

27.487 17701 25.271 2917 25.293 5535 36.651 1035 45.348 14185 35.302 8669005 

27.635 26531 25.537 5482690 25.557 5635900 36.896 23569 
  

36.596 7739 

28.211 1783 27.149 406645 26.253 2448 38.586 5356 
  

36.848 10341 

28.995 27496 27.421 5824 27.151 421696 45.332 14320 
  

37.887 1371 

33.653 1636 27.58 26899 27.583 28257 
    

38.533 5977 

33.939 2248 27.81 8186 27.807 9086 
    

45.312 13772 

35.052 1764193 28.126 2185 28.138 2294 
      

35.369 
1007732

2 
28.43 3001 28.421 4084 

      

36.189 1051 28.924 25094 28.926 26708 
      

36.397 2609 29.259 1997 29.641 4059 
      

36.894 21629 29.636 2582 30.574 1380 
      

38.588 3256 33.589 1387 33.536 1262 
      

45.329 32129 34.99 1715995 34.995 1729985 
      

  
35.3 8221614 35.297 8090041 

      

  
36.348 2202 36.112 1180 

      

  
36.595 7446 36.348 2233 

      

  
36.845 12062 36.596 8002 

      

  
37.309 5308 36.841 15166 

      

  
37.53 4342 37.309 9887 

      

  
37.748 4390 37.53 7428 

      

  
37.888 6391 37.745 8884 

      

  
38.533 3380 37.884 12891 

      

  
45.32 30879 38.533 3581 

      

    
45.327 35448 
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358 nm 

RT 
PA-

0min 
RT 

PA-

30min 
RT 

PA-

90min 

1.411 40421 1.403 37652 1.398 36925 

1.571 7723 1.561 7647 1.556 8325 

1.864 23012 1.853 22650 1.85 23211 

1.985 3273 1.969 2802 1.986 4106 

6.77 5418 6.609 4534 6.638 5580 

12.528 6201 12.477 5396 12.514 6398 

12.777 4041 12.729 3632 12.773 4193 

12.949 3679 12.898 3442 12.941 3807 

13.218 2113 13.161 2162 13.216 2160 

14.394 1225 14.359 1047 14.416 1069 

17.181 3637 17.133 3656 17.193 3478 

25.585 921858 25.276 1959 24.997 1019 

26.419 1405 25.537 913296 25.295 2930 

27.199 2453 27.15 2284 25.557 935616 

27.64 102648 27.584 102185 27.154 2451 

35.052 8927220 34.99 8839924 27.587 104278 

38.586 14392 38.531 14900 30.818 1322 

    
34.995 8989042 

    
38.532 15854 
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Abstract 

The ability of lavender oil to photostabilize common sunscreening agents in cosmetics was 

investigated.  The samples were exposed to simulated solar radiation in a 1 mm pathlength cuvette 

and the spectral changes were monitored with a UV-vis spectrophotometer.  The photochemical 

changes were also monitored by GC-MS.  The absorption spectrum of lavender oil shows a maximum 

at 260 nm indicating no significant ultraviolet B (UVB) (290-320 nm) and UVA (320-400) 

absorption.  The absorption capacity of lavender oil decreases with increasing time of irradiation 

showing a steady photodegradation on exposure to light.  When lavender oil was irradiated with tert-

butylmethoxy dibenzoylmethane (BMDBM) photoinstability was observed.  GC-MS analysis of these 

solutions showed a [2+2] cycloaddition reaction.  The spectra of lavender oil and 2-ethylhexyl-p-

methoxy cinnamate (EHMC) showed an erratic increase followed by a steady drop of light absorption 

with increased irradiation.  There was no observed spectral change for benzophenone-3 (BP3) in 

combination with lavender oil, an indication of a good degree of photostability, however, more 

photochemical products were observed by GC-MS.  These could indicate photosensitization reactions 

initiated by the triplet excited state of BP3.  A mixture of lavender oil with all the three studied 

chemical absorbers showed relative photostability but with a blue shift indicating any cosmetic 

product with lavender oil cannot guarantee UVA protection to the consumer.  We conclude that 

lavender oil may not photostabilize any of the sunscreens under investigation and itself cannot be used 

as UVB/UVA absorber.  The inclusion of EHMC, BP3 and BMDBM in a lavender oil cosmetic 

product formulation, may pose a health risk due to unknown photoproducts formed. 

 

Keywords: lavender oils, photostability, UV protection, 2-ethylhexyl-p-methoxy cinnamate, 

benzophenone-3, tert-butylmethoxy dibenzoylmethane sunscreens. 
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10.1  Introduction 

Lavender oil has been used in a wide range of products in the food, aromatherapy, fragrance and 

pharmaceutical industries due to its exceptional chemical composition associated with both aromatic 

and biological activities (Danh et al. 2012; Salah et al. 2009; Cavanagh and Wilkinson 2005).  

Proponents of alternative medicine, advocate the use of lavender oil as an antiseptic and pain reliever 

and so it can be applied to minor burns and insect bites and stings.  The use of lavender oil to treat a 

variety of common ailments, such as sunburn and sunstroke (Hanamanthagouda et al. 2010; Salah et 

al. 2009; Cavanagh and Wilkinson 2005), has been reported.  This essential oil is reported to be used 

in massage oil mixtures, and believed to be effective in the relief of joint and muscle pain, or in chest 

rub mixtures for the relief of asthmatic and bronchitic spasm (Hanamanthagouda et al. 2010; Sheikhan 

et al. 2012).  It is also said to treat head lice when used in a hair rinse mixture, or on a fine comb to 

eliminate nits.  One study suggests application of lavender essential oil instead of povidone-iodine for 

episiotomy wound care (Sheikhan et al. 2012; Sosa et al. 2005; Vakilian et al. 2011). 

 

Despite its good therapeutic claims a number of in vitro studies indicate that lavender oil is cytotoxic 

and photosensitizing.  Recent work on the cytotoxicity of lavender oil to human skin cells 

demonstrated an in vitro cytotoxic effect on endothelial cells and fibroblasts at a concentration of 0.25 

%.  In this work, linalool, a component of lavender oil, reflected the activity of the whole oil, 

indicating that linalool may be the active component of lavender oil (Cavanagh and Wilkinson 2005; 

Prashar et al. 2004).  Other studies investigating the aqueous extracts of lavender spp showed that 

they reduce the mitotic index, but significantly induce chromosome aberrations and mitotic 

aberrations.  The aqueous extracts induced breaks, stickiness, pole deviations and micronuclei.  The 

authors observed that these effects were related to extract concentrations (Sosa et al. 2005). 

 

Cavanagh and Wilkinson (2005) reported that lavender oil, and its major constituent linalyl acetate, 

are toxic to human skin cells in vitro.  Contact dermatitis to lavender oil appears to occur at only a 

very low frequency.  The relevance of this in vitro toxicity to dermatological application of lavandula 

oil remains unclear.  For example, an investigative report by Placzek et al. (2007) on photo-toxicity of 

fragrances concluded that lavender oil and sandalwood oil do not induce photo-haemolysis.  A clinical 

review by Groot and Frosch (1997) documents photosensitivity reactions due to these substances on 

patients with persistent light reaction but more recently a positive photo-patch test exonerating 

sandalwood oil has also been reported (Cavanagh and Wilkinson 2005). 

 

The topical application of lavender oil has been implicated in gynecomastia, the abnormal 

development of breasts in pre-puberty teens.  An investigation by Henley et al. (2007) showed that 

lavender and tea tree oil have compounds which suppress male hormones and mimic female 

hormones.  This led the authors to suspect that lavender and tea tree oils, present in various personal 

care products including shampoos and lotions, may contribute to the increased incidence of early 

breast development in girls.  However, an in vivo study on rats gave no evidence of estrogenic activity 

of lavender oils (Politano et al. 2013).   

 

Considering all the claims and widespread use of lavender oils in cosmetics, aromatherapy and other 

forms of alternative medicine, we report for the first time photo-activity of lavender oil incorporated 

in sunscreen mixtures.  The aim of this work was to investigate the effects of this oil on the 

sunscreens: 2-ethylhexyl-p-methoxy cinnamate, benzophenone-3 and tert-butylmethoxy 

dibenzoylmethane.  These sunscreen agents are commonly used in skin care products containing 

lavender oil among other ingredients.  

 



333 
 

 
 

10.2  Experimental 

The investigation of the effect of lavender oil on common sunscreen absorbers was done by firstly 

characterising the components of the lavender oil and studying their UV absorption efficacy.  The oil 

was then mixed with the sunscreen agents singly and then in a mixture following the procedure 

detailed here-under. 

 

10.2.1  Materials  

The lavender oil was purchased from the South Africa distributor: Vital Health Foods.  The solvents 

acetonitrile (ACN) and methanol (MeOH) of HPLC-grade were purchased from Merck KGaA.  The 

three chemical UV filters of analytical purity (99.9 %) were purchased as follows: 2-ethylhexyl-p-

methoxy cinnamate (EHMC) and tert-butylmethoxy dibenzoylmethane (BMDBM) were a kind 

donation from BASF, and benzophenone-3 (BP3) was from Sigma-Aldrich. 

 

10.2.2  Characterisation of lavender oil 

The lavender oil was characterised by gas chromatography-mass spectrometry (GC-MS) and gas 

chromatography-flame ionisation detection (GC/FID) in order to identify the chemical components 

present. 

 

10.2.2.1 Sample preparation  

About 20 mg of lavender oil was dissolved in 25 mL of methanol at ambient conditions and protected 

from light by aluminium foil.  The mixture was then made up to 50 mL in a volumetric flask with 

methanol.  The resultant solution was filtered through a 0.45 µm Millipore Millex-LCR membrane 

filter and then transferred to an aluminium foil-cased glass vial for storage.  This solution was used 

for both characterisation experiments and photostability studies.  To study the effect of lavender oil on 

the photostability of sunscreen absorbers, the above solution was mixed with approximately 200 µM 

solution(s) of the sunscreens. 

 

10.2.2.2 The GC/MS experiment 

A 0.1 µL volume of the lavender oil alone and mixed with sunscreen was delivered into a Shimadzu 

GC/MS (QP2010 SE), with a column temperature set at 70 °C and injection port at 250 °C.  Injections 

were in split mode at a ratio of 20:1.  Components were separated in a GL Sciences InertCap 5MS/Sil 

30 m × 0.25 µm quartz capillary column with a bound stationary phase consisting of 5 % 

dimethylpolysilphenylene siloxane.  The column was held 70 °C for 2 min, raised to 240 °C at 10 °C 

min-1, then held for 5 min followed by a rise to 270 °C at 10 °C min-1 and held for 10 min.  The linear 

velocity was set at 30.0 cm s-1.  The MS ion source temperature was 200 °C and the interface 

temperature was set at 250 °C.  The MS detector was programmed to run in scan mode in the m/z 

range 35-1000 at a scan speed of 3333.  The total run time was 37 min with helium as the carrier gas.   

 

10.2.2.3 The GC-FID experiment 

To check method interconvertability a GC-FID experiment was carried out on the same samples 

(lavender oil alone and in sunscreen mixture(s)) with the same temperature program.  The GC/FID 

used was a Shimadzu GC (GC-2010), fitted with an autosampler (AOC 20i) and a flow unit type 

(AFC-2010).  Components were separated in a DB-5 (30 m × 0.25 µm) quartz capillary column with a 

bound stationary phase consisting of 5 % phenyl polysilphenylene-siloxane.  The make-up gas was 
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nitrogen/air flowing at 10 mL min-1, the carrier gas was hydrogen with a flow rate of 40 mL min-1 and 

oxygen/air flowing at 400 mL min-1.  The injection port was set at 250 °C, operating in split mode of 

20:1 for an injection volume of 2 µL.  The velocity flow control mode was adopted keeping the 

pressure at 61.9 kPa, the total flow rate at 5.0 mL min-1, the column flow of 0.68 mL min-1, and a 

linear velocity of 20.0 mL s-1. 

 

10.2.3  Photostability experiments 

The sunscreen mixtures with lavender oil were prepared by adding about 20 mg of the sunscreen 

agents to 25 mL of the methanolic lavender oil solution (see Section 10.2.2.1).  This solution was then 

made up to 50 mL in a volumetric flask with methanol.  To obtain working solutions, appropriate 

dilutions were carried out in order to obtain a sunscreen agent concentration of about 200 µmol dm-3 

in the lavender oil solution before photostability studies were performed. 

 

Samples of the lavender oil with and without sunscreens added were exposed to simulated solar 

radiation in a Newport research lamp housing (M66901) fitted with mercury-xenon lamp, powered by 

an arc lamp power supply (Newport 69911).  The power output of the lamp was controlled by a digital 

exposure controller (Newport 68951) maintaining the output at 500 W.  The radiation from the lamp 

was passed through a 10 mm thick Pyrex filter to ensure that only wavelengths greater than 300 nm 

impinged on the samples.  The exposure time was varied incrementally from 0 hour in steps of 30 min 

to 4 hours of continuous exposure.  Each exposed sample was contained in a stoppered 1.00 mm 

pathlength quartz cuvette.  After each irradiation interval a UV-visible spectrum of the sample was 

recorded on a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer.  A 0.1 µL aliquot of 

these same solutions was then injected into the GC-MS to monitor the chemical transformations in the 

lavender oil solution and the included sunscreen(s).  The chemical changes in the solutions of 

sunscreens alone without the oil were monitored by HPLC by injecting a 20 µL aliquot after every 

irradiation cycle and their UV spectra recorded by a UV-visible spectrophotometer .(The HPLC 

results can be seen in the Supplementary Material section.)  

 

10.2.3.1 GC-MS experiment for the irradiated samples 

A 0.1 µL aliquot of irradiated lavender oil solution with or without the sunscreen absorbers was 

injected on to the GC-MS chromatograph to monitor the photochemical transformations by using the 

method described in Section 10.2.2.2. 

 

10.2.3.2 HPLC analysis of the irradiated sunscreen absorbers 

The chemical transformations in the irradiated samples were monitored on a Shimadzu Prominence 

LC chromatograph with a PDA detector.  The chromatographic separation was achieved on an Agilent 

Zorbax Eclipse XDB C-18 reversed-phase column (150 × 4.6 mm i.d.; 5 μm particle size).  The 

mobile phase was composed of water (solvent A) and acetonitrile (solvent B).  The mixtures were 

resolved by varying the concentration of B as follows: 5–13 min, 16 % B; 13-18 min, 45 % B and 

held for 5 min; 23-28 min, 75 % B, held for 5 min; 33-40 min, 99 % B then held 5 min and then 

dropped back to 16 % B for 15 min.  The experiment was performed at ambient temperature with a 

flow rate of 1 mL min-1 and an injection volume of 10 µL.  The chromatograms were collected at 

detection wavelengths of 275, 280, 286, 310, 320, and 358 nm with a bandwidth of 4 nm 

simultaneously in each of the 60 min run time.  The photodiode array detector was set to collect the 

UV-vis spectra of the chemical species separated over the range of 190 to 800 nm. 
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10.3  Results and discussion 

The components of lavender oil were identified and their UV absorption capacity determined by using 

UV spectrophotometry before mixing with sunscreen(s) solution(s). 

 

10.3.1  Characterisation of lavender oil 

The constituents of unexposed lavender oil were analyzed by using GC-MS.  The total ion 

chromatogram showed 39 peaks (Fig. 10.1). The identity of each peak was determined by comparison 

with the National Institute of Science and Technology (NIST) library.  The criterion used for a 

positive match was a  80 % similarity with a five hit threshold per peak.  The components identified 

in this way are shown in Figure 10.2.  By considering the peak height and peak area, linalool (35.23 

%) and linalyl acetate (32.97 %) were found to be the major constituents of lavender oil.  This is in 

agreement with the results of Umezu et al. (2006), who showed with the aid of standards that linalool 

and linalyl acetate were the major constituents of lavender oil.  The other components found were: α-

pinene, camphene, β-myrcene, p-cymene, limonene, cineol, borneol, terpinen-4-ol, geranyl acetate 

and caryophyllene, these too have been shown by other working groups.  HPLC analysis of the 

lavender oil was done to compare the number of species identified by GC-MS and those on HPLC and 

the two were found comparable (Supplementary Materials Table S10.1).  All the components 

identified by GC-MS analysis, and their retention indices and area percentages are summarised in 

Supplementary Materials Table S10.2.  These compounds have been reported to have several valuable 

properties.  The main fragrance compounds of lavender essential oil are linalool and linalyl acetate.  

They are used in decorative cosmetics, fine fragrances, household cleaners, detergents, shampoos and 

other toiletries (Letizia et al. 2003).  Linalool has been shown to possess antibacterial, antifungal and 

insecticidal properties.  These bioactivities are useful for treatment of minor cuts, insect bites, scratch 

or fungal infections and for the preparation of a natural disinfecting solution.  Camphor and menthol 

are readily absorbed through skin and produce a feeling of cooling and acs as a slight local anaesthetic 

and antimicrobial substance.  In addition, camphor has been used as an antimicrobial substance with 

several applications for treating insects and improving sleep quality (Fismer and Pilkington 2012).  It 

is also used as a natural flavouring agent and an ingredient for food processing (Karapandzova et al. 

2012).  In traditional Chinese medicine borneol is used as a moxibustion and it is a natural insect 

repellent (Duke 2014).  Lavender is a popular aromatherapy plant that has an appealing scent that has 

been incorporated into numerous products.  In aromatherapy, lavender is believed to possess 

anticonvulsive, sedative and anti-depressive effects, and to be useful for treating nervous breakdown, 

nervous tension and depression. 
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Figure 10.1: The total ion chromatogram of the unexposed lavender oils on 
GC/MS showing the major chemical constituents: linalool, terpinen-4-ol (A), 
linalyl acetate, lavandulyl acetate (B), geranyl acetate (C) and caryophyllene 
(D).  The separation was effected on a GL Sciences InertCap 5MS/Sil 30 m × 
0.25 µm quartz capillary column under the conditions described in Section 
10.2.2.2.   



337 
 

 
 

OH

linalool

HO

terpinen-4-ol

O

O

linalyl acetate

O

O

lavandulyl acetate

OO

geranyl acetate

caryophyllene

OH

L-alpha-terpineol

OO

nerol acetate

cis-beta-farnesene

trans-beta-ocimene 3-carene

 
Figure 10.2: Chemical constituents of lavender oil. 
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10.3.2  The photostability experiments 

The photostability of lavender oil alone and when mixed with sunscreen absorbers was investigated 

by examining the spectral changes arising from simulated solar irradiation.  The chemical species 

formed were monitored by GC-MS. 

 

10.3.2.1 The photostability of the lavender oils 

Lavender oil was exposed to simulated solar radiation for increasing time intervals in a 1 mm 

pathlength quartz cuvette.  The spectral changes were recorded on a Perkin Elmer Lambda 35 UV-vi 

dual beam spectrophotometer.  Each irradiated sample was then injected into the GC-MS 

chromatograph to monitor photochemical products.  The oils showed weak absorption in the UVB and 

a maximum in the UVC range (absorption maximum wavelength, 263 nm) (Fig. 10.3).  The UVC 

region of the spectrum does not reach the earth’s surface.  Hence the oil on its own is not suitable as a 

UV absorber.  The absorbance of the oil decreased with increasing exposure time indicating a steady 

degradation of the chromophores in the oil (Fig. 10.3).  The photoproducts also varied depending on 

the length of time of exposure.  The major components of lavender oil: linalool and linalyl acetate, 

decreased significantly when the samples were exposed for 120 minutes, and then increased again 

when the samples were exposed for 240 minutes (Fig. 10.4 and Supplementary Materials Table 

S10.1).  These compounds have some level of unsaturation in their carbon skeleton and therefore the 

drop in absorption of UV light may be due to photo-induced [2+2] cycloaddition reactions which 

cause a loss in the concentration of these compounds.  A large number of chemical species were 

observed in the chromatogram for the sample exposed for 120 minutes.  This could be due to the 

formation of self-dimers causing inter-and intra-molecular cleavages with the resultant effect of 

producing low UV absorbing species formed.  Most of the compounds identified by comparison with 

the GC-MS library did not meet the library match criteria adopted in this work ( 80 %) and hence 

they were not considered as true photoproducts.  It can be concluded that these cleavages gave rise to 

new chemical entities whose identities require further investigation.  Very recently Gismondi et al. 

(2014) demonstrated that UV light induces a significant deterioration of lavender oil biochemical 

profile.  This is, however, evidence that topical application of the lavender oil may expose the user to 

risk of photodegradation.  The penetrative dermal effects of these photoproducts was demonstrated by 

Salah et al. (2009), in their study on rat skin exposed to ultraviolet radiation.  These authors 

speculated a reversible change of stratum corneum behaviour when lavender oils were applied on the 

rat skin leading to accumulation of these compounds in the epidermis.  These could explain the photo-

dermatitis effect reported in other studies (Wu and James 2011).  
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10.3.2.2 The effect of lavender oil on the photostability of EHMC 

The irradiation of a solution of EHMC in methanol showed characteristic spectral decay (Fig. 10.5).  

The GC/MS total ion chromatogram (TIC) showed the isomerisation of trans-EHMC to cis-EHMC 

(Fig. 10.6).  The peak areas of trans- and cis-EHMC seem not to change after 30 min of exposure 

which indicates that the process attains a photostationary state within a 30 min exposure period.  No 

other products were observed to form.  We conclude that exposure of EHMC dissolved in methanol to 

UV radiation only leads to isomerisation and therefore that formation of photodimers may only occur 

to a very limited degree (Fig. 10.7) if any are formed.  This observation is in agreement with 

Broadbent et al. (1996) who showed a neat solution of EHMC forms dimers when irradiated, but 

indicated that a solution of trans-EHMC only yields cis-EHMC on UV irradiation.  This current work 

only differs in the time taken to attain a photostationary state: ours is attained in the first 30 min 
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Figure 10.3: Photostability of lavender oil dissolved in methanol when exposed to 
simulated solar radiation. The spectral changes were monitored on a Perkin Elmer 
Lambda 35 UV-vis dual beam spectrophotometer, in a 1 mm pathlength quartz 
cuvette. 

Figure 10.4: Selected photochemical transformations for exposed samples of lavender 
oils monitored by GC/MS.  The separation was effected on a GL Sciences InertCap 
5MS/Sil 30 m × 0.25 µm quartz capillary column under the conditions described in 
Section 10.2.2.2.   
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whereas theirs took longer but this dependent on the intensity of the irradiation sourc, and the 

concentration of the solution.   

 

The spectral lability of the mixture of EHMC with lavender oil in methanol was not entirely 

characteristic of the cinnamate degradation (Fig 10.8).  A drop greater than 0.3 in absorbance units 

was observed in the first 30 minutes indicating loss in the cinnamate chromophore.  The GC-MS TIC 

showed the characteristic formation of cis-EHMC and an increase in the number of peaks (Fig. 10.9).  

There are a number of likely reaction pathways expected.  The absorption of light of the order of 300 

nm triggers ٭ and n٭ transitions, these events results in the electronic rearrangement of excited 

state trans-EHMC that leads to transition state cleavage of the C=C bond to allow rotation to cis-

EHMC.  This is accompanied by a drop in absorption due to the smaller absorption coefficient of cis-

EHMC.  However, the margin of loss in absorption observed in this mixture points to other reactions 

that characterise rapid loss of the cinnamic chromophore.  The increase in the number of peaks and 

chemical species identified may be associated with photo-induced dimerization of EHMC leading to 

formation of strained dimer structures (Fig. 10.7).  The strained cyclobutane structural moieties may 

break to form less UV absorbing species. 

 

Other reactions involving unsaturated hydrocarbons and excited state EHMC may occur.  Most 

unsaturated hydrocarbons are known to undergo [2+2] cycloaddition reactions within themselves and 

this may involve the incorporated EHMC.  The four-membered rings formed are strained and 

therefore likely to participate in concerted ring opening metathesis reactions giving rise to several ring 

fragments.  In this work exposure of the solution to solar simulated radiation for 180 minutes resulted 

in a further decrease of both trans- and cis-EHMC peaks and most peaks from the components of 

lavender oil (Fig. 10.9).  Most striking is that the peaks that increased after sixty minutes of exposure 

also vanished.  We therefore propose that ring fragmentations yield less volatile species that could not 

be detected by GC-MS. 
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Figure 10.5: The spectral changes of a methanolic solution of EHMC irradiated by a solar 
simulated light source. The spectral changes were monitored with a Perkin Elmer 
Lambda 35 spectrophotometer, in a 1 mm pathlength quartz cuvette. 

Figure 10.6: The total ion chromatogram showing the photochemical changes of an 
exposed methanolic solution of EHMC.  The separation was effected on a GL Sciences 
InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary column under the conditions described 
in Section 10.2.2.2.   
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Figure 10.7: Photo-induced dimeration of EHMC. 
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Figure 10.8: Photodegradation of EHMC incorporated in lavender oil 
dissolved in methanol when exposed to simulated solar radiation. The spectral 
changes were monitored on a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer, in a 1 mm pathlength quartz cuvette. 

Figure 10.9: The total ion chromatograms showing photochemical changes of 
an exposed sample of lavender oil and EHMC.  The separation was effected 
on a GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary column 
under the conditions described in Section 10.2.2.2.   
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10.3.2.3 The effect of lavender oil on photostability of BP3 

The irradiation of a solution of BP3 with a simulated solar light source showed spectral stability of 

BP3 (Fig. 10.10).  The GC-MS analysis of this solution did not show any other peak for all samples 

and exposure periods (Fig. 10.11).  This indicated that BP3 is photostable in methanol.  The inclusion 

of BP3 in the solution of the lavender oil indicated a very small amount of degradation upon 

irradiation.  This implied fairly high photostability on absorption of UV light for this sunscreen 

absorber (Fig. 10.12) in this mixture.  The GC-MS TIC, however, indicates differently, particularly in 

the number of identified compounds.  For an exposure period of 180 minutes only three significant 

peaks for linalool, linalyl acetate and BP3 could be seen on the chromatogram (Fig. 10.13).  Even so 

these peaks are greatly reduced in magnitude indicating a loss of these components through 

participation in photochemical reactions.  BP3 is a derivative of benzophenone which is a known 

photosensitizer in its triplet excited state (3٭) (Kumasaka et al. 2014).  Consequently there is high 

chance of BP3-photosensitized induced reactions giving rise to less volatile species and hence a loss 

in the number of volatile species.   

 

The carbonyl chromophore of BP3 has lone pairs of electrons and is therefore capable of a n to ٭ 

electronic transition upon absorption of light in the range 290 to 320 nm.  This forms the lowest triplet 

state of BP3.  The lowest triplet state (3n٭) of benzophenone is known to deactivate by abstraction of 

a hydrogen atom from hydrogen containing solvent molecules and to form the diphenylketyl radical at 

room temperature (Murai et al. 1978).  This may initiate radical reactions in the mixture we have 

leading to production of various less volatile products.  The solvent used in this experiment is 

methanol and components of lavender oil all have abstractible hydrogens and therefore it is a likely 

event in diverse forms.  The unsaturation in linalool and linalyl acetate could also aggravate the 

situation for the excited state BP3 by engaging in photo-Fries reactions resulting in the formation of 

oxetane moieties that fragment yielding phenolic products detected by the GC-MS.  The overall result 

is the multiplication of photochemical products.  Because absorption by the benzophenone 

chromophore (C=O) is not lost as observed in the UV-spectra, we speculate that photo-Fries reactions 

are minimal but that the lowest excited state relaxation mechanism via hydrogen abstractions could be 

enhanced and hence cause the reduction in the BP3 peak observed in the TIC. 
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Figure 10.10: The photostability of BP3 in methanol irradiated by solar 
simulated light source.  The spectral changes were monitored on a Perkin Elmer 
Lambda 35 UV-vis dual beam spectrophotometer, in a 1 mm pathlength quartz 
cuvette. 

Figure 10.11: The total ion chromatogram of BP3 dissolved in methanol showing 
photochemical stability.  The separation was effected on a GL Sciences InertCap 
5MS/Sil 30 m × 0.25 µm quartz capillary column under the condition described 
in section 10.2.2.2.   
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Figure 10.12: Photostability of BP3 incorporated in lavender oil dissolved in methanol 
when exposed to simulated solar radiation.  The spectral changes were monitored on a 
Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer, in a 1 mm pathlength 
quartz cuvette. 

Figure 10.13: The total ion chromatogram of BP3 and lavender oil showing 
photochemical changes. The separation was effected on a GL Sciences InertCap 
5MS/Sil 30 m × 0.25 µm quartz capillary column under the conditions described in 
Section 10.2.2.2.   

BP3 
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10.3.2.4 The effect of lavender oil on the photostability of BMDBM 

A solution of BMDBM in methanol when irradiated by simulated solar radiation showed 

photoinstability (Fig. 10.14).  The TIC chromatogram showed formation of several chemical peaks 

after 90 min of exposure (Fig. 10.15).  This observation indicates that it is not only the keto-enol 

tautomerism that occurs.  A mixture involving lavender oil and BMDBM showed characteristic 

photodegradation of this photo-absorber (Fig. 10.16).  However, the degradation was not as 

pronounced as for BMDBM alone for the same concentration of BMDBM.  The TIC chromatogram 

not only shows a total disappearance of the BMDBM peak but also rapid reduction in the number of 

volatiles profiled by the mass spectrometer (Fig. 10.17).  BMDBM in known to break down into two 

radicals, the benzoyl radical and the phenacyl radical, the mechanism of which is well presented by 

Schwack and Rudolph (1995).  However, Mturi and Martincigh (2008) demonstrated that this 

photodegradation of BMDBM is solvent dependent and that polar protic solvents tend to 

photostabilize BMDBM.  In this work we observed a steady decomposition of BMDBM in methanol 

in the presence of lavender oil.  Contrary to their observation there was a significant drop in 

absorption in the first 30 minutes ( 0.3 absorbance units).  We envisage not only radical-initiated 

reactions but also concerted cycloaddition reactions.  A thorough mechanistic investigation is required 

to establish the life-time of BMDBM in this mixture.  BMDBM is a common sunscreen and lavender 

oils are frequently used in cosmetics.  Most of these products also have a long shelf-life before they 

are sold.  Our work demonstrates a rapid degradation of BMDBM and formation of less volatile 

compounds within 90 minutes of exposure.  This raises concerns on the nature of the photoproducts 

and their fate on topical application on the living skin. 
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Figure 10.14: The spectral lability of BMDBM in methanol when exposed to 
solar simulated radiation. The spectral lability was monitored on a Perkin 
Elmer Lambda 35 UV-vis spectrophotometer, in a 1 mm pathlength quartz 
cuvette. 

Figure 10.15: Total ion chromatograms for the solution of BMDBM in methanol 
irradiated with a solar simulated light source.  The separation was effected on a 
GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary column under 
the condition described in section 10.2.2.2.   
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Figure 10.16: Photostability of BMDBM incorporated in lavender oil dissolved 
in methanol when exposed to simulated solar radiation. The spectral changes 
were monitored on a Perkin Elmer Lambda 35 UV-vis dual beam 
spectrophotometer, in a 1 mm pathlength quartz cuvette. 

Figure 10.17: Total ion chromatograms for an exposed sample of lavender oil 
and BMDBM.  The separation was effected on a GL Sciences InertCap 5MS/Sil 
30 m × 0.25 µm quartz capillary column under the conditions described in 
Section 10.2.2.2.   

BMDBM 
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10.3.2.5 The effect of lavender oil on the photostability of a mixture of BMDBM, BP3 and 

EHMC 

The photostability of a mixture incorporating all three common sunscreen absorbers with the lavender 

oil was investigated.  First; ground state reactions were investigated by GC-MS.  The unexposed 

mixture of the three absorbers was injected on the GC-MS and the constituents profiled (Fig. 10.18).  

The TIC chromatogram of the unexposed samples showed the presence of all three sunscreens and 

nearly all the components of lavender oil (Fig. 10.18 and Fig. 10.19).  This shows that any other 

chemical transformations observed are as a result of exposure to solar simulated radiation.  A mixture 

of the three sunscreens was irradiated by solar simulated radiation and monitored on a UV-vis 

spectrophotometer and GC-MS.  Spectral lability was observed (Fig. 10.20).  The observed drop in 

absorbance was accompanied by a blue shift (Fig. 10.20).  The GC-MS TIC chromatogram showed 

the formation of cis-EHMC and the BP3 and BMDBM peaks do not show any change (Fig. 10.21).  

Whereas our previous experiment indicated attainment of a photostationary state in the isomerisation 

process of EHMC (see Section 10.3.2.2) in the first 30 min, this does not occur here.  Cis-EHMC 

doubles its peak area after 90 min exposure with respect to trans-EHMC (see Supplementary 

Materials Table S10.1).  This can be attributed to enhanced photosentization of EHMC by the excited 

state BMDBM (Kumasaka et al. 2014; Sayre et al. 2005).  A mixture of EHMC and BMDBM has 

been shown to be inherently photo-unstable because BMDBM can photo-induce the isomerisation of 

EHMC to cis-EHMC (Panday 2002; Gonzenbach et al. 1992).  The BMDBM has also been shown to 

form a mixture of enol-transient-keto forms yielding UVB absorbing species (Andrae et al. 1997).  

Our earlier work has shown that the keto-BMDBM strongly absorbs in the shorter wavelength UV 

region (see Chapters 7, 8, and 9).   

 

A solution of a mixture of the three sunscreens with lavender oil was similarly irradiated and 

monitored by both UV-vis spectrophotometry and GC-MS.  Mixing all the three sunscreen absorbers 

with lavender oil was expected to enhance the photostability of the sunscreen absorbers by synergistic 

effects or otherwise.  The spectral changes observed in this experiment show an initial drop and 

thereafter the mixture becomes relatively stable only showing a much smaller spectral drop (Fig. 

10.22).  An inspection of the TIC chromatograms of exposed samples for incremental time intervals 

shows an increase in the number of peaks that is a sign of the formation of new chemical species (Fig. 

10.23, and Supplementary Materials Table S10.6).   

 

This solution has many likely reaction routes and the lower energy pathways are likely to be favoured.  

The total disappearance of the BMDBM peak is expected because it is a low energy activated n٭ 

transition; lower than the lowest 3n٭ of BP3 (Demeter et al. 2013; Yamaji et al. 2010; Shaath 2010; 

Azusa et al. 2009; Wilkinson 1997).  Thus, the radical reactions dominate as a result of 

photosentization by BP3.  The photosensitization reactions are envisaged as seen from the UV spectra 

of the mixture, the maximum at 290 nm is characteristic of the BP3 absorption spectrum.  This 

implies that the C=O chromophore is un-affected though one of its aromatic rings may have acquired 

an electron-withdrawing auxochrome.  Auxochromes are groups of atoms or functional groups that 

modify the absorption characteristic of a given chromophore.  Electron withdrawing auxochromes 

reduce the wavelength of maximum absorption and so the BP3 shoulder in the UVA region dropped 

(Fig. 10.22).  The aromatic ring bearing the methoxy group also carries the hydroxyl group at the 

ortho position.  The methoxy group is an electron-donating group and the hydroxyl group at the ortho 

position has been argued to stabilize the carbonyl chromophore.  Hence, we envisage no hydrogen 

abstraction relaxation mechanism for BP3 in this mixture but an excited state pseudo-transition state 

aromatic ring addition reaction.  This would involve substitution of the acidic hydrogen by a 
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nucleophile.  This claim requires further investigation to establish the molecular structure of this UV 

absorbing species.  The various products formed would therefore result from photochemical decay of 

the intermediate products of the reactions between the sunscreen absorbers EHMC and BMDBM and 

the unsaturated components of lavender oil.  

HO
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O O
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O

O methyl palmitate

O OH

O
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O
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(EHMC)

(BP3)

(linalool) (linalyl acetate)

 
Figure 10.19: Major compounds identified by comparison with the NIST library from the GC-MS 

analysis of a solution of lavender oil, EHMC, BP3 and BMDBM in methanol. 

Figure 10.18: The GC/MS total ion chromatogram of an unexposed mixture of lavender oil 
(linalool, terpinen-4-ol (A), linalyl acetate, lavandulyl acetate (B), geranyl acetate (C) and 
caryophyllene (D)), EHMC, BP3 and BMDBM BMDBM.  The separation was effected on a 
GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary column under the 
conditions described in Section 10.2.2.2.   
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Figure 10.20 The spectral changes of a mixture of the sunscreens: EHMC, BP3 and 
BMDBM exposed to solar simulated light.  The spectral change was monitored with a 
Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer, in a 1 mm pathlength 
quartz cuvette. 

Figure 10.21: The total ion chromatogram of mixture of EHMC, BP3 and BMDBM 
showing photochemical changes.  The separations were effected on a GL Sciences 
InertCap 5MS/Sil 30 m × 0.25 µm quartz capillary column under the conditions 
described in Section 10.2.2.2.   
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Figure 10.22: Photostability of EHMC, BP3 and BMDBM incorporated in lavender oils 
dissolved in methanol when exposed to simulated solar radiation.  The spectral changes 
were monitored with a Perkin Elmer Lambda 35 spectrophotometer, in a 1 mm 
pathlength quartz cuvette. 

Figure 10.23: The photochemical transformation for the formulation containing EHMC 
BP3 and BMDBM and lavender oils exposed to simulated solar radiation. The 
separation was effected on a GL Sciences InertCap 5MS/Sil 30 m × 0.25 µm quartz 
capillary column under the condition described in section 10.2.2.2.   
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10.4  Conclusions 

This study aimed at investigating the photo-activity of lavender oil and its effect on the photostability 

of the common sunscreen absorbers: EHMC, BP3 and BMDBM.  The composition of the lavender oil 

was investigated and chemical components were identified.  The major components were linalool and 

linalyl acetate.  These were speculated to participate in the photochemical response of lavender oil.  

The lavender oil was found to adversely reduce the photostability of all the sunscreens investigated 

and more so generate a number of chemical species whose fate on the skin require further 

investigation.  A mixture of lavender oil with all the three studied chemical absorbers showed a blue 

shift indicating any cosmetic product with lavender oil cannot guarantee UVA protection to the 

consumer.  However, the oil seemed to photostabilize BMDBM to small degree and the mixture of the 

three sunscreens was more stable.  We conclude that sunscreen preparations and skin-lightening 

preparation for outdoor workers incorporating lavender oil with any of these chemical absorbers is 

unsuitable to offer broad-spectrum photoprotection and should be applied with caution. 
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Table S10.2: The GC-MS results of the sunscreens: EHMC, BP3 and BMDBM exposed to solar 

simulated radiation for incremental period of time. 

Exposure time/min 0 30 90 30 90 

Sunscreen type peak area 
Ratio of cis-EHMC/trans-

EHMC 

cis-EHMC 

mixture 

 
12346471 23247414 

0.536 1.365 
trans-EHMC 12611552 23016741 17031488 

BP3 40997159 10855687 135589934 

BMDBM 6998458 6063437 6760110 

cis-EHMC 
single  

15480633 30137737 
0.609 0.618 

trans-EHMC 4457545 25404416 48759010 

BP3 single 6357540 4551065 5425680 
  

BMDBM single 257520 2395318 1454228 
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Figure S10.1: The transmittance spectrum of the 10 mm-thick Pyrex glass filter used in this work 
recorded on a Perkin Elmer Lambda 35 UV-vis spectrophotometer. 



 

 
 

Table S10.3: The photochemical changes of irradiated lavender oil monitored by HPLC-PDA. 

275 nm 280 nm 

RT 

PA-

0min 

PA-

30min 

PA-

90min RT 

PA-

0min 

PA-

30min 

PA-

90min 

1.401 24010 24331 23849 1.4 24034 23478 23929 

1.568 11081 11451 11424 1.567 10647 10838 10840 

1.852 22986 23270 23024 1.852 24961 21976 22006 

13.338 62356 60292 58067 1.986 1826     

15.459   10085   13.338 61243 58834 56839 

16.16 1846 1937 1555 15.25   10657   

16.486 5393 4127 3730 16.139 1800   1617 

16.889 13227 14208 14438 16.427 5004 1284 4314 

17.269 8081   7675 16.868   2656 12370 

17.312   7702   16.929 11573     

18.32 1518     17.269 9055   7891 

19.515 5366 5351 5921 18.31 1089     

20.034 4076 4694 4225 19.525 5093 5435 5220 

22.499   3663   20.036 4551 4894 4949 

22.508 3655   3888 22.495   3056   

23.35 2311     22.511 3752   3196 

23.825 4638 2784 2700 22.933 1394     

24.125 4240 1227 1131 23.338 3333     

24.395 3291     23.824 5306 2482 2279 

24.629 2093     24.142 4620 1343 1398 

24.942 4852 2296 2739 24.427 3674     

25.094     1648 24.662 2682     

25.112 2603 1670   24.943 5415 2453 2202 

25.348 9230 7954 7822 25.115 3795 2339 2290 

25.591 16282 15052 15081 25.343 7720 6384 6242 

26.124 2119 2285 1854 25.591 14706 12334 12069 

26.867 2148 2351 2656 26.117 3157 2320 2080 

27.029 6074 6183 6229 26.866 2693 2810 3203 

27.507 1020 1008 1036 27.033 6283 6061 6741 

28.165 10688 10834 10215 27.502     2112 

28.956 16112 15388 13800 28.163 8860 9112 9084 

29.54 1270 1215 1152 28.957 13268 13043 12751 

30.427 1649 1944 2195 29.543 1318 1260 1425 

30.863 1710 2091 2186 30.426 1248 1489   

31.72 61768 59620 57530 30.796   1592   

32.365   1058 1240 30.842 1526   1834 

35.078 4246 4192 4981 31.719 60629 58802 56390 

35.489 1125 1063 2586 32.315   1084 1361 

35.853 2473 2853 4900 35.071 2587 1284 1188 

36.139     1878 35.307 1516     

36.341     3226 35.849 3059 3123 3351 



 

 
 

36.533     3752 38.445 6314 6541 6579 

36.757     3239 38.794   5520   

37.042     4609 38.809 4776   5759 

37.583     1735 38.959 3482 2755 2559 

38.447 10024 10186 10045 39.157 1367 1253 1353 

38.79   5358   39.784 1476 1315 1086 

38.807 5246 2790 5559 45.29 111742 113956 109665 

38.976 3298   2682         

39.136 1250 1464 1325 

39.763 1977 1427   

45.288 101020 103492 99930 

286 nm 310 nm 

RT 

PA-

0min 

PA-

30min 

PA-

90min RT 

PA-

0min 

PA-

30min 

PA-

90min 

1.4 23146 22639 23237 1.4 21194 21496 22149 

1.567 10164 10271 10256 1.566 10665 10556 10500 

1.852 21764 21485 21624 1.852 19808 19891 19908 

13.337 54540 52771 51013 13.338 35524 34738 33393 

15.225 1826   1327 15.213 1271 1225 1071 

16.153       16.429 1045     

16.432 1526 1236 3472 22.579 1578     

16.891   2033 10361 25.556 1465 1175 1112 

17.28     6687 27.015 1043 1133 1275 

19.515   1045   31.73 1431 1372 1387 

20.031 2466 2262 1977 35.316 2236 1848 1866 

22.49   1779   35.839 2172 2157 2090 

22.521 1991   1974 38.802 2339 2399 2211 

23.341 2189 2356   45.327 75474 70191 71310 

23.797     2693         

23.819 4822             

24.13 2547 1291 1055         

24.427 1662             

24.636 2835 1244 1249         

24.937 4420 2668 2689         

25.118 4650 3947 3830         

25.331 6252 5602 5193         

25.589 9767 8972 8339         

25.995 1292             

26.139 1741 3059 2300         

26.87 2471 2653 2523         

27.032 6388 6655 5900         

27.512   2078 1010         

28.159 6558 6630 6650         

28.946 8736 8098 9515         

29.501 1915   1650         



 

 
 

29.937     1264         

30.396 1158 1087           

30.416     1414         

30.834     1570         

31.718 51482 49464 47991         

35.323 1411 1431           

32.368     1143         

35.338     1598         

35.853 3437 3324 3685         

38.442 2472 2869 2824         

38.792   4662           

38.81 4481   4606         

38.965 2530 2403 2566         

39.157 1195 1166 1264         

39.782 1426 1006         

45.334 120358 123040 115133         

358 nm 

RT 

PA-

0min 

PA-

30min 

PA-

90min 

1.4 20048 20303 18675 

1.566 10787 10532 10815 

1.853 18202 18234 18254 

22.572 2217     

35.053 1359     

35.86 1083 1234 1326 

44.452 3121     

 



 
 

 
 

Chapter Eleven 

 

 

 

Quantitation and antioxidant Activity of phenolic acids from Sutherlandia frutescens 

 

 

 

 

Moses A. Ollengo, Anis Mangenda and Bice S. Martincigh* 

 

 

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag 

X54001, Durban 4000, South Africa 

 

*Corresponding author: Tel.:+27-31-2601394; Fax: +27-31-2603091; E-mail address: 

martinci@ukzn.ac.za 

 

 

  



361 
 

 
 

Abstract 

The aim of this work was to investigate the phenolic acid content and antioxidant activity of the plant 

Sutherlandia frutescens subspecies microphylla commonly known as the cancer bush (CB).  The 

medicinal value of CB and its reported role in the management of chronic ailments like HIV/AIDS 

generates interest for the identification and quantitation of the total phenolic acid content.  The 

antioxidant properties of phenolic acids are known to reduce the risk of chronic diseases including 

cancer and heart sicknesses linked to oxidative stress.  Phenolic acids were extracted from the leaves 

of the CB by Soxhlet (SXE) and ultrasonication (USE) extraction methods.  These extracts were 

analysed by ultraviolet (UV) spectroscopy, high performance liquid chromatography (HPLC), and 

liquid chromatography-mass spectrometry (RP-HPLC-PDA-ESI-MS).  Six phenolic acids were 

identified and quantitated by RP-HPLC-PDA, under isocratic elution conditions with an external 

standard method.  The identified phenolic acids were: gallic, p-hydroxybenzoic, vanillic, caffeic, 

syringic and p-coumaric acids.  The concentration of p-coumaric acid was the highest in all the 

extracts.  RP-HPLC-PDA-ESI-MS was used to characterise three novel phenolic acids: 5-hydroxy-2-

vinylbenzoic acid, an isomer of p-coumaric acid (C-1); (Z)-3-(4-hydroxy-2-methoxyphenyl)acrylic 

acid (C-2); and (Z)-2-hydroxy-3-(4-methoxyphenyl)acrylic acid (C-3) ferulic acid isomers.  The 

Folin-Ciocalteu protocol was used to determine the total phenolic content of the extracts.  The 

ultrasonication-diethyl ether (USDE) fraction gave GAE = 0.1247 mg g-1 and ultrasonication-ethyl 

acetate (USEA) GAE = 0.0769 mg g-1 as the highest and lowest total phenolic content respectively.  

Antioxidant activity was investigated by the DPPH free radical scavenging assay and the FRAP assay.  

The USDE extract (EC50 = 30.38 µg mL-1) and the Soxhlet-diethyl ether extract (SXDE) (EC50 = 48.63 

µg mL-1) exhibited the highest and lowest antioxidant activity by DPPH assay respectively.  The 

FRAP assay showed higher activity for USDE (EC1 = 41.53 µg mL-1) and lower value for SXDE 

extract (EC1= 33.05 µg mL-1).  The CB extracts with higher phenolic content had higher antioxidant 

activity and are thus a suitable remedy for free radical mediated ailments.  Also the UV-vis spectra of 

the CB extracts had significant absorption in the UV region, and hence are viable ingredients in 

sunscreen preparations. 

Keywords: Sutherlandia frutescens, radicals, antioxidants, phenolic acids, UV-photoprotection. 

 

  



362 
 

 
 

11.1  Introduction 

Qualitative and quantitative investigations of the phenolic acid content of plants are of great interest 

due to their antioxidant properties especially for reported medicinal plants.  Several working groups 

have reported the anti-inflammatory, antiseptic, antibiotic, antitumour and antioxidant properties of 

phenolic acids (Tarnawski et al. 2006; Baublis et al. 2000; Arimboor et al. 2008).  The antioxidant 

properties of phenolic compounds draw attention for research because of their effect in preventing 

diseases related to oxidative stress (Yashin et al. 2011).   Antioxidants have also been shown to be 

inhibit the formation of ultraviolet B (UVB) induced cyclopyrimidine dimers in human HaCaT cells 

(Guahk et al. 2010; Thongrakard et al. 2013).  These dimers are the precursor lesions to skin cancer.  

Antioxidants are also known to offer systemic protection by stimulating cellular defence mechanisms 

(Thongrakard et al. 2013), remaining active for days.  A body is considered to be under oxidative 

stress when there are excess reactive oxygen species (ROS) or reactive nitrogen species (RNS) 

conditions relative to its endogenous antioxidant capacity.  This excess leads to “oxidation” of a 

variety of biomacromolecules, such as enzymes, proteins, DNA and lipids.(Dai and Mumper 2010; 

Marxen et al. 2007).  The oxidation of these biomacromolecules is linked to health complications such 

as cancer, heart disease, rheumatoid arthritis, inflammatory bowel disease, ageing and cataracts 

(Tarnawski et al. 2006; Dai and Mumper 2010).   Humans can be exposed to oxidative stresses by 

exposure to pollutants and UV radiation; by smoking cigarettes; by ingestion of oxidized or burnt 

foods; and from cellular metabolism (Tarnawski et al. 2006; Baublis et al. 2000).  These are initiators 

of ROS such as the hydroxyl radical (•OH); superoxide anion (•O2
-); and hydrogen peroxide (H2O2) 

(Tarnawski et al. 2006; Marxen et al. 2007). 

 

To prevent an imbalance between reactive oxidising species and the body’s natural antioxidant 

capacity requires dietary antioxidant supplements (Baublis et al. 2000; Tarnawski et al. 2006; Paulo et 

al. 1999).  The proposed mechanisms linked to the antioxidant properties of phenolic compounds 

include scavenging radical species, the suppression of ROS/RNS formation by inhibiting some 

enzymes or chelating trace metals involved in free radical production; and the protection of 

antioxidant defence (Dai and Mumper 2010).  As antioxidants, phenolic acids enhance the protection 

against the above mentioned diseases by scavenging free radicals in the body (Baublis et al. 2000; 

Tarnawski et al. 2006; Cvetkovic and Markovic 2011).  In general, phenolic compounds have been 

found to be more potent antioxidants in vitro than vitamin C and E and carotenoids (Baublis et al. 

2000).  For example, caffeic acid has been found to inhibit intracellular free radical production, not 

achievable with vitamin C (Kadoma and Fujisawa 2008).  Epidemiological data show that the 

presence of phenolic acids in the diet can act as a preventive measure for various diseases (Biglari et 

al. 2008; Ramos 2008). 

 

Phenolic acids are aromatic carboxylic acids, containing a single benzene ring bearing hydroxyl or 

methoxyl substituents.  They are generally classified into two groups: benzoic acid derivatives and 

cinnamic acid derivatives (Fig. 11.1).  Structurally, they can be distinguished by the number and 

position of the hydroxyl or methoxyl substituents on the benzene ring of benzoic acid.  They are plant 

secondary metabolites, for fighting external stresses including pathogens, predators, UV radiation, 

mechanical damage, and low temperature conditions (Stalikas 2007).  A commonly known phenolic 

acid is salicylic acid (m-hydroxybenzoic acid), an active signal molecule in plants. 
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Figure 12.1: Structure of some phenolic acids: (A) benzoic acid derivatives; (B) cinnamic acid 

derivatives.  

 

Sutherlandia frutescens (Fig. 11.2) is a medicinal plant, indigenous to dry parts of Southern Africa, 

and occurs mainly in the Western Cape up to Namibia and Botswana and in the western Karoo up to 

the Eastern Cape (Shaik et al. 2010).  In South Africa it has various names such as kankerbos 

(Afrikaans), cancer bush (CB), and unwele (Zulu) (Shaik et al. 2010; Directorate of Plant Production 

2009).  The name cancer bush emanates from the ethnopharmacological belief that it cures cancer 

(Shaik et al. 2008).  It serves different purposes including: washing of wounds and the treatment of 

colds, flu, rheumatism, bronchitis and dysentery.  It is a reputed immune booster in the treatment of 

HIV/AIDS (Shaik et al. 2010; Shaik et al. 2008; Directorate of Plant Production 2009).  The 

therapeutic effect of the cancer bush like in many other herbal medications is related to the presence 

of polyphenols.  The role of polyphenols as antioxidants has been widely reported especially their 

ability to modify immune cell functions.  The antioxidant activity of the cancer bush has previously 

been demonstrated by Fernandes et al. (2004) but a comparison of the total phenolic content to 

antioxidant activity has not been exhaustively reported.  Therefore, an investigation of the cancer bush 

phenolic acid content and the relationship with the antioxidant activity is relevant, given its popularity 

in Southern African traditional medicine.  In this work, phenolic acids present in the leaves were 

extracted, identified, quantified and their antioxidant activity and photoprotection ability investigated.  
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11.2  Experimental 

11.2.1  Materials and Equipment 

Leaves from the Sutherlandia frutescens (family: Fabaceae) plant were harvested and air-dried in the 

shade in the vicinity of Murraysburg in the Karoo, South Africa by W. Grobler.  The plants were 

identified as Sutherlandia frutescens (L.) R. Br. Var. microphylla (Burch. Ex DC) Harv., by Professor 

B.-E. van Wyk of the Botany and Biotechnology Department of the University of Johannesburg 

[voucher specimen from W. Grobler: C. Albrecht s.n. sub. B.-E. van Wyk 4126 (JRAU)].  The 

phenolic acid standards supplied were: gallic acid (Hopkin and William), p-hydroxybenzoic acid 

(Aldrich Chemicals), vanillic acid (Merck kGaA), caffeic acid (Sigma-Aldrich), syringic acid (Sigma-

Aldrich) and p-coumaric acid (Sigma-Aldrich) were all supplied at high purity (> 99%).  2,2-

Diphenylpicryl-1-hydrazyl (DPPH) was obtained from Aldrich, 2,4,6-tripyridyl-s-triazine (TPTZ) was 

purchased from Merck KGaA, ammonium ferrous sulphate was from BDH, ferric chloride from 

UniLAB, glacial acetic acid was from ACE, anhydrous sodium carbonate and sodium sulphate from 

BDH Chemicals Ltd, and Folin-Ciocalteu phenol reagent from Merck kGaA and acetic acid was from 

Sigma-Aldrich.  The solvents used were deionised water obtained from a Millipore Milli-Q® water 

purification system (Millipore, Bedford, MA, USA), methanol (BDH Prolabo), ethanol (Sigma-

Aldrich), diethyl ether (DE) (Sigma-Aldrich), ethyl acetate (EA) (SMM Instruments) and petroleum 

ether (Sigma-Aldrich).   

 

11.2.2  Sample preparation, extraction and purification of phenolic acids 

A sample of dried CB leaves (84 g) was ground to a fine powder by using a mechanical grinder.  To 

obtain crude extracts two methods were employed: Soxhlet extraction (SXE) and an ultrasonication 

(USE) method.  After the crude extraction in methanol and soaking the extract in water, diethyl ether 

(DE) and ethyl acetate (EA) were used to extract the phenolic acids from the aqueous phase.  Both DE 

and EA have been used extensively in literature for the extraction of phenolic acids, giving similar 

extraction efficiencies (Stalikas 2007).  In this work, both solvents were used in order to compare 

their effectiveness in isolating phenolic acids from the rest of the methanolic extract. 

   

Figure 11.2: Leaves, pods and flower of Sutherlandia frutescens (Directorate of Plant Production 2009).  
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11.2.2.1  Soxhlet extraction 

About 20 g of dry CB powder was extracted with approximately 100 mL of methanol by means of 

Soxhlet extraction.  The extraction was carried out for 18 hours, and then the crude extract was 

filtered through Munktell grade (3hw) filter paper under gravity into a clean pre-weighed round 

bottomed flask.  The methanol was removed from the crude extract by means of rotary evaporator to 

dryness under vacuum at 56 °C to give a dark green tar-like residue.  The extractible amount of the 

crude phenolic extract by this method was calculated on a dry weight basis (Table 11.1) by using 

equation 11.1. 

 

% 	�����	 =
� �����	��	���	�������

� �����	�����	���	����������
× ���																																		��������	��.� 

 

11.2.2.2  Ultrasonic extraction 

About 10 g of CB was placed in conical flask and 50 mL of methanol was added.  The mixture was 

ultrasonicated for 30 min and then filtered under gravity through a Munktell grade (3hw) filter paper.  

The procedure was repeated with a further 10 g of CB.  The filtrates from the two extractions were 

combined and the solvent was evaporated by means of a rotary evaporator under vacuum conditions at 

56 °C.  The percentage amount extracted by this method was similarly calculated from equation 11.1.  

 

11.2.2.3  Liquid-liquid extraction 

A volume of about 120 mL of boiling water was added to each the crude Soxhlet and ultrasonication 

extracts in a round-bottomed flask and left to stand for 16 hours to allow water extractible phenolics 

to dissolve.  The solutions were filtered through Whatman No. 1 filter paper under gravity.  The 

filtrates were then divided into two portions and re-extracted with 30 mL portions of petroleum ether 

(PE) six times in order to remove lipophilic components.  After extraction with PE, half of the 

aqueous phase from SXE or USE was re-extracted with 6 × 30 mL diethyl ether (DE) and the other 

half with 6 x30 mL ethyl acetate (EA).  The EA or DE layers were dried by adding some anhydrous 

sodium sulphate (Na2SO4).  The DE or EA was removed from the extract by rotary evaporation under 

vacuum, at temperatures of about 30 ºC for DE and about 45 ºC for EA.  Each residue was 

reconstituted in methanol to achieve a concentration of approximately 12.5 mg mL-1. 

 

11.2.3  HPLC separation and quantification of phenolic acids 

Shimadzu LC-20 AD XR liquid chromatograph fitted with Zorbax Eclipse XDB C-18 column of 

dimensions 4.6 × 150 mm, 5 µm particle size, with a photodiode array (PDA) detection was used for 

identification and quantitation of the phenolic acids.  The phenolic extracts were analysed by isocratic 

elution with a mobile phase consisting of 2 % (v/v) acetic acid in water-methanol 88:12 (v/v), and the 

flow rate was 1.00 mL min-1.  The column temperature was 25 °C.  A 500 µL aliquot of each CB 

extract was diluted with an equal volume of mobile phase and a 10 µL volume of this resultant 

solution (now approximately 6.25 mg mL-1) was injected into the chromatograph.  The 

chromatograms were detected at 255, 260, 271, 274, 309 and 323 nm.  All samples and standards 

were filtered through 0.45 µm Millipore Millex-LCR syringe filters before being injected into the 

chromatograph.  The identification of phenolic acids was done by matching the retention time and UV 

spectra of the extract components with those of six phenolic acid standards.  The quantitation of 

identified phenolic acids was done by an external calibration method.  Stock solutions of each of the 

six acids containing approximately 103 mg dm-3 were prepared in methanol.  Aliquots of these 
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standard stock solutions were diluted with the mobile phase to obtain multi-standard solutions with 

approximate concentration of 10, 20, 80 and 100 mg dm-3 of each acid.   These solutions were used to 

obtain the calibration curves for each standard acid.  Method validation was done by spiking extracts 

with 10 µL of each of the six phenolic acid stock solutions.  

 

11.2.4  Identification of novel phenolic acids by RP-HPLC-PDA-ESI-MS/MS  

A reverse phase, Zorbax Eclipse-XDB C-18 column of dimensions 150 mm × 4.60 mm, 5 µm particle 

size protected with a 4 mm × 4 mm Zorbax Eclipse-XDB guard column under isocratic conditions of 

12 % methanol; 88% water with 2 % acetic acid  was used to achieve chromatographic separation at a 

flow rate of 1 mL min-1 and with 50 µL injection volumes.  The HPLC system consisted of an Agilent 

1100 series equipped with an Agilent 1100 series photo diode array detector and a mass detector in 

series (Agilent Technologies, Waldbronn, Germany).  It consisted of a G1312A binary pump, a 

G1313A autosampler, a G1322A degasser and a G1315B photodiode array detector controlled by 

ChemStation software (Agilent, v.08.04).  The chromatograms were detected at 255, 260, 271, 274, 

309 and 323 nm.  The mass detector was a G2445A Ion-Trap Mass Spectrometer equipped with an 

electrospray ionization (ESI) system and controlled by LCMSD software (Agilent, v.4.1).  The 

nebulizing gas was nitrogen set at a pressure of 65 psi and a flow rate adjusted to 116 mL min-1.  A 

heated capillary and voltage was maintained at 350 °C and 4 kV respectively.  The detector was 

programmed to scan masses in the range m/z 90 up to m/z 2000.  All collision-induced fragmentation 

experiments were performed in the ion trap with helium as collision gas, with the voltage being 

ramped in cycles from 0.3 up to 2 V.  MS2 data were acquired in the negative ionization automatic 

smart mode to get MSn-1; primary precursor ion.  MS3 data were obtained by manual fragmentation, 

targeting the most abundant ions in the precursor ion MS spectra.  Targeting much lower abundant 

mass values on MS3 only yielded the primary precursor ion of the series.  Frequent characteristic 

fragment ions shown in Table 11.2 were used to elucidate the structures of compounds C-1, C-2 and 

C-3. 

 

11.2.5  Determination of total phenolic content 

The determination of the total phenolic content of each extract was done by using the Folin-Ciocalteu 

assay.  A 150 µL of extract, 2400 µL of Millipore water and 150 µL of 0.25 N Folin–Ciocalteu 

reagent were combined in a plastic vial and then mixed thoroughly.  The mixture was allowed to react 

for 3 min and then 300 µL of 1 N Na2CO3 solution was added and mixed well.  The solution was 

incubated at room temperature (25 °C) in the dark for 2 hr.  The absorbance was measured at 765 nm 

with a Perkin Elmer Lambda 35 UV-Vis dual beam spectrophotometer and the results were expressed 

in gallic acid equivalents (GAE; mg g-1 dry mass) based on an external calibration of gallic acid 

standards ranging from 50 mg dm-3 to 500 mg dm-3.  The measurements for both gallic acid standards 

and the samples were done in triplicate. 

 

11.2.6  DPPH scavenging assay 

The free radical scavenging activity of the extracts was assessed by using the 2,2-diphenylpicryl-1-

hydrazyl (DPPH) assay according to the method reported by Blois (1958).  The reaction mixture 

contained 1.8 mL of 0.1 mM DPPH methanolic solution and 0.2 mL of each serial dilution of cancer 

bush extracts.  Simultaneously a control was prepared without sample extract and both reaction 

mixture sets were incubated at room temperature for 1 hour in the dark.  The antioxidant activity of 

each fraction was quantitated by the loss in colour at 522 nm on a Perkin Elmer Lambda 35 UV-Vis 

dual beam spectrophotometer.  The percentage DPPH scavenged was calculated by using equation 
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11.2, where Acontrol is the absorbance of the solution containing only DPPH diluted with the solvent, 

and Asample is the absorbance of the DPPH solution after incubation with different concentrations of the 

CB extracts. 

 

 % 	����	��������� =
��������� 	���� ���

��������
�	���											��������	��.�  

 

The percentage DPPH scavenged and the absorbance due to the remaining DPPH were plotted against 

the volume of each extract.  The EC50 value for each extract was obtained by reading off the linear 

section of the curve.  

 

11.2.7  FRAP Antioxidant Assay  

The FRAP assay was performed according to the protocol described by Benzie and Strain (1996).  

The stock solutions included 300 mM acetate buffer (3.1 g C2H3NaO2•3H2O and 16 mL C2H4O2) of 

pH 3.6, 10 mM 2,4,6-tripyridyl-s-triazine (TPTZ) solution in 40 mM HCl, and 20 mM FeCl3•6H2O 

solution.  A fresh working solution was prepared by mixing 25 mL acetate buffer, 2.5 mL TPTZ 

solution, and 2.5 mL FeCl3•6H2O solution.  The standards were then incubated for 4 and 30 minutes 

at 37 ºC in a water bath before analysis in a 1 cm pathlength glass cuvette with Perkin Elmer lambda 

25 UV-vis spectrophotometer fitted with a Peltier temperature controller set at 37 ºC.  The absorbance 

of the solutions were measured at 596.00 nm.  Standard graphs were constructed using known 

concentrations of ammonium ferrous sulphate dissolved in 80 % (v/v) aqueous methanol.  All tests 

were done in triplicate and mean values were used to calculate EC1 values.  EC1 is defined as 

concentration of an antioxidant having a ferric reducing ability equivalent to that of mM ferrous salt 

(Sarla et al. 2011).  An aliquot of 5 mg mL-1 solution of cancer bush extracts (150 µL) were allowed 

to react with 2850 µL of the FRAP solution for 4 min and 30 min in the dark condition before 

absorbance measurements were taken.  

 

11.2.4  Potential role of phenolic acid extracts in photoprotection 

The potential role of the CB extracts in photoprotection was investigated by recording the UV-vis 

spectra of each extract.  The UV-vis spectrum of a mixture of the six phenolic acids was also 

measured for comparison.  All UV spectra were recorded on a Perkin Elmer Lambda 35 UV-vis dual 

beam spectrophotometer.  For this experiment, the CB extracts and the phenolic acid standard 

solutions were diluted with methanol to achieve concentrations of 0.0625 mg mL-1 and 0.005 mg mL-1 

respectively. 

 

11.3  Results and discussion 

The extraction of phenolic acids from the CB leaves was carried out by both Soxhlet extraction (SXE) 

and ultrasonic extraction (USE), due to the sample matrix dependence of phenolic acids 

(Waksmundzka-Hajnos et al. 2007).  An additional step was introduced to remove lipophilic 

components so as to avoid masking the HPLC determination of phenolic acids (Ćetković et al. 2004).  

The effect of pH on the extraction of phenolic acids by releasing ester bound phenolics (Ayaz et al. 

2005) was investigated and compared with un-acidified samples (Table 11.1).  A comparison of the 

percentage yields of crude extracts indicated the USE yield to be higher than the SXE yield.  The 

yields of purified extracts from the two solvents (Table 11.1) show that re-extraction with ethyl 

acetate (EA) has a higher yield of extract than re-extraction with diethyl ether (DE) for all extraction 
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methods.  Acidified extracts: UHDE, SHDE, and SHEA showed a yield increase effect for SXE with 

EA (SXEA; 0.91% and SHEA; 1.58%) and a decrease in yield for DE (SXDE; 0.63% and SHDE; 

0.48%) (Table 11.1). 

 

Table 11.16: Yield of crude extract and purified extract obtained from each extraction method. 

* pH was adjusted to 2.1 with HCl before purification by LLE. 

RP-HPLC-PDA quantitation was based on ultraviolet (UV) spectra and retention times (RT) of the 

phenolic acid standards after optimising column conditions (Fig. 11.3).  Each phenolic acid was 

identified and quantitated at its wavelength of maximum absorption.  Diluting the standards and 

extract samples with the mobile phase gave better peak profiles with baseline resolution (Figure 11.4 

and 11.5).  

  

Method  Solven

t for 

LLE 

Extract Mass of 

dried CB 

powder 

used/g 

Mass of crude 

(methanolic) 

extract/g 

Mass of 

purified 

extract/g 

 

% Yield of 

crude 

extract/g 

% Yield 

of 

purified 

extract/g 

USE  DE USDE 10.23 2.68 0.0442 26.2 0.43 

USE EA USEA 10.23 2.68 0.0742 26.2 0.73 

USE  DE* UHDE 10.24 3.02 0.0808 29.5 0.79 

SXE  DE SXDE 10.06 1.94 0.0629 19.3 0.63 

SXE EA SXEA 10.06 1.94 0.0919 19.3 0.91 

SXE DE * SHDE 10.16 1.60 0.0492 15.7 0.48 

SXE EA * SHEA 10.16 1.60 0.1601 15.7 1.58 
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Figure 11.4: Comparison of partial HPLC chromatograms of the SXDE extract diluted in MeOH (A), 
and in the mobile phase (B).  The separation was effected on a reversed-phase, Zorbax Eclipse-XDB C-
18 (150 mm × 4.60 mm, 5 µm particle size) column protected with a 4 mm × 4 mm Zorbax Eclipse-
XDB guard column under isocratic conditions of 12 % methanol; 88 % water with 2 % acetic acid, the 
flow rate was 1.00 mL min-1and the injection volume was 10 μL. 
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Figure 11.3: UV spectra of the six phenolic acid standards recorded by the PDA detector. The 
separation was effected on a reversed-phase, Zorbax Eclipse-XDB C-18 (150 mm × 4.60 mm, 5 
µm particle size) column protected with a 4 mm × 4 mm Zorbax Eclipse-XDB guard column under 
isocratic conditions of 12 % methanol; 88 % water with 2 % acetic acid the flow rate was 1.00 mL 
min-1and the injection volume was 10 μL. 
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The HPLC chromatogram of SXDE showed three other prominent peaks at 274 nm (Fig. 11.5) with 

unique UV spectra (Fig. 11.6).  These three new compounds had retention times 33.2 min, 44.2 nm, 

and 53.3 nm.  Characterisation targeting these peaks on HPLC-DAD-ESI-MSn revealed the presence 

of a p-coumaric acid isomer (peak C-1) and two ferulic acid isomers (peaks C-2 and C-3) (Figs. 11.5 

and 11.6).  Each peak had unique MS fragmentation pattern allowing for differentiation (Fig. 11.7, 

11.8 and 11.9) and structure speculation.  An isomer of p-coumaric acid, 5-hydroxy-2-vinylbenzoic 

acid, (C-1); and (Z)-3-(4-hydroxy-2-methoxyphenyl)acrylic acid (C-2), and; (Z)-2-hydroxy-3-(4-

methoxyphenyl)acrylic acid (C-3), both isomers of ferulic acid were similarly elucidated by manual 

target ion fragmentation (Fig. 11.10).  An MS3 mode targeting smaller molecular weights did not yield 

tangible mass fractions hence the MS2 precursor ion was used (Table 11.2).  This could be attributed 

to low currents and, hence, the low field frequencies of MS3 mode. 

  

Figure 11.5: HPLC chromatograms of six phenolic acid standards monitored at 280 nm (A), 
and of the SXDE extract monitored at 274 nm (B). The labelled phenolic acids were 
identified by matching the retention times and UV spectra of the extract and of the phenolic 
acid standards. The separation was effected on a reversed-phase, Zorbax Eclipse-XDB C-18
(150 mm × 4.60 mm, 5 µm particle size) column protected with a 4 mm × 4 mm Zorbax 
Eclipse-XDB guard column under isocratic conditions of 12 % methanol; 88 % water with 2 
% acetic acid, the flow rate was 1.00 mL min-1and the injection volume was 10 μL. 
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Table 11.2: MSn fragmentation pattern of three phenolic acids.  

Compound RT/min MS2 [M-H]- MS3 [(M-H)-

→(M-H-X)-] 

MS3 [(M-H)-

→(M-H-Y)-] 

MS3 [(M-H)-→(M-

H-Z)-] 

C-1 33.2 164 119 134 75.2 

C-2 44.2 194 137 117 75.2 

C-3 53.3 194 149 117 75.2 

*Masses that were not structurally helpful are not considered. 

  

Figure 11.6: The UV spectra of predicted compounds C-1, C-2 and C-3 of the SXDE extracts.   
The separation was effected on a reverse phase, Zorbax Eclipse-XDB C-18 (150 mm × 4.60 
mm, 5 µm particle size) column protected with a 4 mm × 4 mm Zorbax Eclipse-XDB guard 
column under isocratic conditions of 12 % methanol; 88 % water with 2 % acetic acid, the flow 
rate was 1.00 mL min-1and the injection volume was 10 μL. 
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MS3 [164-H-45]- 

MS3 [164-H-27]- 

MS2 [M-H]- 

Figure 11.7: MSn analysis of 5-hydroxy-2-vinylbenzoic acid (C-1) in the negative mode. 
MS2 [M-H]-; MS3 [M-H]- → MS3 [164-H-27]-; MS3 [164-H-45]-.  A is the and  total ion  
mass spectrum and B is the HPLC chromatogram monitored at 309 nm respectively 
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(Z)

OH

O

OH
O

(Z)-2-hydroxy-3-(4-methoxyphenyl)acrylic acid 

MS3 [135-H-18]- 

MS3 [194-H-57]- 

MS3 [194-H-34]- 

MS2 [M-H]- 

Figure 11.8: MSn analysis of (Z)-3-(4-hydroxy-2-methoxyphenyl)acrylic acid (C-2) 
in the negative mode. MS2 [M-H]-; MS3 [M-H]- →MS3 [194-H-31]-; MS3 [194-H-
57]-; MS3 [135-H-18]-.  A is the total ion mass spectrum and B is the HPLC 
chromatogram monitored at 309 nm respectively 
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MS3 [134-H-17]- 
MS3 [149-H-15]- 

MS3 [194-H-45]- 

MS2 [M-H]- 

Figure 11.9:  MSn analysis of (Z)-2-hydroxy-3-(4-methoxyphenyl)acrylic acid (C-3) in the 
negative mode. MS2 [M-H]-; MS3 [M-H]- →MS3 [194-H-45]-; MS3 [149-H-15]-; MS3 [134-H-
17]-.  A is the total ion mass spectrum and B is the HPLC chromatogram monitored at 309 nm 
respectively. 
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5-hydroxy-2-vinylbenzoic acid

(E)-3-(4-hydroxy-2-methoxyphenyl)acrylic acid

(Z)-2-hydroxy-3-(4-methoxyphenyl)acrylic acid

C-1

C-2

C-3

 

Figure 11.10: Predicted structures of compounds C-1, C-2 and C-3 from the chromatogram of the 

SXDE extract monitored at 274 nm, based on LC-MS precursor ion identification in MS2 mode.  

 

The limit of detection (LOD) and limit of quantitation (LOQ) for each phenolic acid was calculated 

by using an external standard method (Thomsen et al. 2003; Bunhu 2006).  The LOD and LOQ were 

calculated as 3Sy/x/b and 3.3LOD respectively where Sy/x is the standard error of the slope and b is the 

slope (Miller and Miller 1984).  Among the six phenolic acids analysed, caffeic acid (4.33 µg mL-1) 

and gallic acid (1.31 µg mL-1) had the highest and lowest LOD (Table 11.3) respectively.   

 

Table 11.3: Summary of results from the linear regression of the calibration curves of phenolic acids.  

Phenolic acid Conc. range/µg 

mL-1 RT/min 

Absorb 

λmax/nm 

slope/ 

104/mL 

µg-1 Sb/102 R2 

LOD/µg 

mL-1 

LOQ/µg 

mL-1 

Gallic acid 13.10 - 131.0 2.17 271 2.94 1.29 0.9992 1.31 4.37 

p-

hydrobenzoic 

acid 13.21 - 132.1 6.64 255 6.13 3.14 0.9979 1.54 5.12 

Vanilic acid 12.68 - 126.8 8.81 260 3.64 2.47 0.9964 2.04 6.78 

Caffeic acid 11.39 - 113.9 9.10 323 5.38 7.76 0.9877 4.33 14.42 

Syringic acid 11.22 - 112.2 10.93 274 3.26 3.41 0.9945 3.13 10.43 

p-coumaric 

acid 10.76 - 107.6 17.9 309 7.71 8.35 0.9922 3.25 10.81 

λmax = wavelength of maximum absorption, Sb = standard error of slope 

 

The concentration of p-coumaric acid ranging from 2860 µg g-1 to 14520 µg g-1 was highest in all the 

extracts, followed by p-hydroxybenzoic acid; 106 µg g-1 to 500.5 µg g-1 (Table 11.4, Fig. 11.11).  

Notably the concentrations of vanilic acid (48 µg g-1 to 193.5 µg g-1) and gallic acid (80 µg g-1 to 180 

µg g-1) were much lower compared to the other four phenolic acids.  Syringic acid was present in all 

extracts (360 µg g-1 to 1730 µg g-1) (Table 11.4).  

 

The total phenolic acids of the USDE (17584 µg g-1) extract had the highest concentration, followed 

by SXDE (13859 µg g-1); SXHDE (13667 µg g-1); USHDE (10834 µg g-1); USEA (8840 µg g-1); 

SXEA (6349 µg g-1); and SXHEA (4604 µg g-1) extracts in decreasing order (Table 11.4).  Total 
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phenolic content of the eight CB extracts was determined by using the Folin-Ciocalteu (F-C) assay.  

The total phenolic content of each CB extract ranged from SXDE, 7.69 mg g-1 GAE to USDE, 12.12 

mg g-1 GAE (Table 11.5).  However, the total phenolic content may not correlate to phenolic acids 

content determined by HPLC as other phenolic compounds could be present in the extracts that may 

reduce the F-C reagent.  A comparison of the SXE and USE shows that in general there are more 

phenolic compounds in the USE extract than the SXE extract.  The effect of acidifying the aqueous 

phase before extraction with DE or EA did not show any significant trend. 

 

Beside the determination of total phenolic content, the F-C assay is also an indicator of antioxidant 

capacity of the extract.  This is because the hexavalent phosphomolybdic/phosphotungstic acid 

complexes of the F-C reagent can be reduced to W8O23 and Mo8O23 by phenolic compounds (Kasavel 

2008).  Therefore, USDE extract is likely to have the highest antioxidant capacity, while the SXHEA  

extract may show lowest antioxidant capacity because it had the lowest total phenolic content (Table 

11.4).   



 
 

 
 

 

Table 11.4: Concentrations of phenolic acids in cancer bush extracts (n = 3). 

Extracts 

Gallic 

acid/µg g-1 

p-hydrobenzoic 

acid/µg g-1 

Vanilic 

acid/µg g-1 

Caffeic 

acid/µg g-1 

Syringic 

acid/µg g-1 

p-coumaric 

acid/µg g-1 
ƩPA/µg g-1 

USDE 140 ± 0.02 500.5 ± 0.03 193.5 ± 0.01 605 ± 0.03 1625 ± 0.02 14520 ± 0.20 17584 

USEA 80 ± 0.01 271 ± 0.01 119 ± 0.08 340 ± 0.02 1180 ± 0.01 6850 ± 0.60 8840 

USHDE 180 ± 0.04 296 ± 0.01 148 ± 0.21 380 ± 0.01 1200 ± 0.13 8630 ± 0.01 10834 

SXDE 100 ± 0.01 431 ± 0.01 178 ± 0.01 380 ± 0.01 1680 ± 0.01 11090 ± 0.01 13859 

SXEA 100 ± 0.10 177 ± 0.02 82 ± 0.04 70 ± 0.03 750 ± 0.01 5170 ± 0.01 6349 

SXHEA 110 ± 0.11 106 ± 0.02 48 ± 0.03 1120 ± 0.03 360 ± 0.10 2860 ± 0.01 4604 

SXHDE 130 ± 0.10 130 ± 0.01 167 ± 0.02 1670 ± 0.02 1730 ± 0.03 9840 ± 0.19 13667 

ƩPA is the sum of the six phenolic acid concentrations 
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Figure 11.11: A comparison of (A) all the phenolic acids concentration in all 

extracts, (B) the minor phenolic acids: vanilic acid, p-hydrobenzoic acid and 

gallic acid, and (C) the major phenolic acids: p-coumaric acid, syringic acid and 

caffeic acid in all the cancer bush extracts.  
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The antioxidant activity of the extract was assessed by the 1,1-diphenylpicryl-2-hydrazyl (DPPH) 

assay.  This assay is based on the scavenging of DPPH by an antioxidant through a hydrogen atom 

transfer (HAT) mechanism.  In this study percentage DPPH scavenged extracts ranged from USDE 

(30.43 µg mL-1) to SXDE (48.65 µg mL-1) (Table 11.5).   

 

This model was compared to the ferric reducing ability of plasma (FRAP), a single electron transfer 

(SET) antioxidant model.  Electron donating species can be taken as antioxidant and the resulting 

deactivation of the species results in a redox reaction.  Hence, total antioxidant power can be 

analogously referred to as total reducing power (Sarla et al. 2011).  In this study all the fractions 

exhibited a total reducing capacity in the range of SXDE, 33.05 µg mL-1 to USDE, 41.53 µg mL-1 see 

Table 11.5. 

 

Table 11.17: Comparison of the total phenol (F-C), FRAP values and DPPH, IC50 values of the 

extracts (n = 3). 

Extract GAE/mg g-1 DPPH/EC50/µg mL-1 FRAP value/µg mL-1 

USDE 12.12 ± 1.2 30.43 ± 0.92 41.53 ± 3.77 

USEA 7.85 ± 0.3 42.92 ± 0.15 36.95 ± 3.09 

SXEA 7.94 ±  0.03 38.75 ± 0.50 36.26 ± 2.59 

SXDE 7.69 ± 2.8 48.65 ± 0.36 33.05 ± 6.03 

(n = 3)  

 

A low EC50 value for DPPH indicates that the antioxidant extract has a high free radical scavenging 

capacity which would mean a higher FRAP value.  In the present work, the USDE extract had the 

highest free radical scavenging capacity (EC50 = 30.43 ± 0.92 µg ml-1), and the SXDE extract showed 

the lowest free radical scavenging capacity (EC50 = 48.65 ± 0.36 µg ml-1).  Their corresponding FRAP 

results were 41.53 ± 3.77 µg mL-1 and 33.05 ± 6.03 µg mL-1 respectively (Table 11.5).  Thus there is a 

good correlation between the models and the total phenolic content in the extracts in line with 

findings by Arora and Chandra (2010) studied the total phenolic content from Aspergillus sp isolate.  

These authors argued that the higher the total phenolic content the higher the antioxidant activity.  By 

the same argument, the marked antioxidant activity of the CB extracts, should imply that these 

extracts can be effective remedies for free radical mediated ailments. 

 

  

Figure 11.12: UV-vis spectra of the CB extracts and the sum of the six phenolic acids.  The 
spectra are recorded on Perkin Elmer lambda 35 UV-vis dual beam spectrophotometer in a 1 
cm pathlength quartz glass cuvette. 
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UV-vis spectra of 0.0625 mg mL-1 solutions of each of the extracts were recorded (Figure 11.12).  

These spectra show that all the extracts have significant absorption throughout the UVB (280-315 nm) 

region and part of the UVA (315-400) region.  The combined absorbance of a solution of the six 

phenolic acids is similar to that of the extracts indicating the potential of using these extracts as 

photoprotectors against UVB and UVA radiation in sunscreen preparations.  This corroborates the 

findings of Shapiro et al. (2009) who showed that caffeic acid, gallic acid and chlorogenic acid 

provided UV photoprotection to Beet armyworms at much lower concentrations of up to 0.005 M. 

 

Another recent work by Oresajo et al. (2008) on the photoabsorption potential of phenolic compounds 

demonstrated that a mixture of vitamin C, ferulic acid and phloretin gave sufficient UV protection at a 

concentration of 100 ppm.  This group observed that the thymine dimers were substantially inhibited 

an indication of UVA damage photoprotection afforded to the DNA.  Though in their work, limited 

UV absorption was shown in the 320-400 nm bands, our work shows appreciable absorption in the 

region 280-360 nm (Fig. 11.12).  Because of the intrinsic existence of conjugated double bonds and a 

benzene moiety, every phenolic acid exhibits some degree of photo absorption in the ultraviolet (UV) 

and/or ultraviolet/visible (UV-vis) region.  This structural property may present proof for sufficient 

sun protection factor (SPF) afforded by these phenolic compounds.  It is probable that phenolic acids 

may offer photoprotection by both absorption of UV radiation and scavenging of ROS.  Thus, 

phenolic acids impart two important biological benefits if incorporated in sunscreen preparations and 

other cosmetic products. 

 

11.4  Conclusions 

The cancer bush extracts were extracted by two extraction procedures, Soxhlet extraction and an 

ultrasonic extraction method.  Six known phenolic acids, namely gallic acid, caffeic acid, vanilic acid, 

syringic acid, ferulic acid and p-coumaric acid were identified and quantified.  The acid with the 

highest concentration was p-coumaric.  In addition, three other acids were identified.  These were 5-

hydroxy-2-vinylbenzoic acid, (Z)-3-(4-hydroxy-2-methoxyphenyl)acrylic acid and (Z)-2-hydroxy-3-

(4-methoxyphenyl)acrylic acid.  The extracts showed remarkable antioxidant activity proportional to 

the total phenolic content.  The two antioxidant assays investigated in this work showed very good 

correlation implying both hydrogen atom transfer and single electron transfer can conveniently be 

used to describe the antioxidant activity of these plant extracts.  The phenolic acid standards and the 

cancer bush extracts showed similar photoabsorption characteristics in the UV region.  We speculate 

that the absorption potential demonstrated by the cancer bush extracts is mainly due to the phenolic 

acid content.  The characteristic spectra of the three identified compounds in the extracts also show 

good absorption in the UVB and UVA region.  We conclude that these extracts have high potential for 

use in the sun protection preparations as absorbers of UV light.  Combining the UV absorption and 

antioxidant activity of the cancer bush we propose that cancer bush extracts can be useful ingredients 

in sunscreens and other cosmetic preparations. 
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Abstract 

Polyphenols from plants draw increasing attention due to their potent antioxidant properties and 

marked effects in prevention of various oxidative stress associated diseases such as cancer.  In this 

work teas and fruit juice samples from the local South African market were investigated for their 

phenolic content and antioxidant activity.  The Folin-Ciocalteu protocol was used for the total 

phenolic content and expressed as gallic acid equivalents. The antioxidant activity was done by 

assessing free radical scavenging activity of stable 1,1-diphenylpicryl-2-hydrazyl radical (DPPH) and 

the ferric reducing antioxidant power (FRAP) of the samples.  The two models compared well with 

determined total phenolic content of tea and fruit juice samples expressed in gallic acid equivalents 

per gram of dry sample: green tea (GT) (758.6 ± 20.48 mg g-1) ˃ black tea (BT) (580.1 ± 5.80 mg g-1) 

˃ Rooibos-Honeybush (RH) (573.5 ± 8.47 mg g-1) ˃ Rooibos-Honeybush-blck tea (RHB) (485.4 ± 

6.70 mg g-1) ˃ Rooibos-black tea (RB) (520.2 ± 6.40 mg g-1).  The DPPH IC50 : GT(3.60 ± 0.02 µg 

mL-1) ˃ BT (4.50 ± 0.01 µg mL-1) ˃ RH (10.79 ± 0.06 µg mL-1) ˃ RHB (11.69 ± 0.01 µg mL-1) ˃ RB 

(14.35 ± 0.04 µg mL-1).  This sequences were supported by the results of the FRAP analysis in mM of 

Fe(II) showing; GT (0.204 ± 0.03 mM)˃ BT (0.268 ± 0.03 mM) ˃ RH (0.290 ± 0.04 mM) ˃ RHB 

(0.321 ± 0.01 mM) ˃ RB (0.441 ± 0.06 mM).  Thus green tea had a higher antioxidant activity 

followed by black tea.  All the tea samples showed presence of other polyphenols.  Fruit juices 

sampled also gave differences in total phenolic content: orange (611.7 ± 18.87 mg L-1) > grape (503.5 

± 11.07 mg L-1) > apple (334.4 ± 7.41 mg L-1) and subsequently varying antioxidant activity.  The free 

radical scavenging activity done by using the stable DPPH radical indicated a stronger activity (IC50) 

in gallic acid equivalent for orange (2.11 ± 0.02 mg L-1 GAE), > grape (2.63 ± 0.02 mg L-1 GAE) > 

apple (4.23 ± 0.07 mg L-1 GAE) and similar trend for FRAP, EC1: orange (2.52 ± 0.0 2 mM Fe(II)), > 

grape (4.47 ± 0.05 mM Fe(II)) > and apple  (4.55 ± 0.02 mM Fe(II)).  HPLC-UV analysis of fruit 

juices indicated orange juice had the highest number of polyphenols.  All the beverages had a good 

activity and correlated well with the total phenolic content.  Increased dietary intake of these 

beverages should be encouraged as a remedy for various oxidative stress related degenerative ailments 

and to prolong life expectancy. 

 

Keywords: Fruit juices, teas, antioxidant activity, DPPH, FRAP, phenolic content. 
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12.1  Introduction 

Experimental evidence links many pathophysiological disorders such as anthritis, cancer, skin 

irritations and inflammation, arteriosclerosis, genotoxicity (Mandal et al. 2009; Koksal et al. 2011; 

Sidddiqua et al. 2010) and neurodegenerative diseases like Alzheimer’s ailment (Pulido et al. 2000) to 

reactive oxygen species (ROS).  The six major reactive oxygen species causing oxidative damage to a 

living body are superoxide anion (O2
•-); hydrogen peroxide (H2O2), peroxyl radicals (ROO•); hydroxyl 

radical (HO•); singlet oxygen (1O2); and peroxynitrite (ONOO-) (Dejian et al. 2005).  These species 

initiate degenerative disorders in living systems by oxidizing nucleic acids, lipids and proteins 

(Pisoschi et al. 2009).  To counteract the assault of these ROS, biological defence systems composed 

of enzymatic antioxidants convert ROS and reactive nitrogen species (RNS) to harmless species.  

However, no enzymatic action is known to scavenge ROO•, HO•, 1O2, and ONOO-.  Therefore, the 

burden of defence relies on nonenzymatic antioxidants, such as vitamins C and E and other 

phytochemicals that have the ability to scavenge oxidants and free radicals.   

 

It has been shown that antioxidants can inhibit oxidative reactions in vivo, aiding the functional 

performance of enzyme systems for the self-defence of mechanisms within cells (Lu et al. 2011).  

Thus, dietary intake of antioxidants is necessary to maintain a physiological balance of antioxidants 

and oxidant generation in living organisms (Sidddiqua et al. 2010).  A number of working groups 

have shown a good correlation between increased dietary intake of phenolic acids, and generally 

polyphenols, to reduced coronary heart disease and cancer mortality with longer life expectancy 

(Ghafar et al. 2010).  Antioxidants are known to deactivate radicals via three major mechanisms: 

hydrogen atom transfer (HAT), electron transfer (ET) and a combination of both HAT and ET (Dejian 

et al. 2005).  Hydrogen atom transfer measures the ability of an antioxidant to quench free radicals by 

hydrogen atom donation within their environs.  Electron transfer determines the ability of an 

antioxidant to transfer one electron to reduce radicals, metals and carbonyls in a medium (Lu et al. 

2011).   

 

One easy way of introducing these polyphenolic antioxidants in the diet is through beverages.  South 

Africa has a wealth of plant materials and there is a long history of their use by the indigenous people 

as traditional medicines.  South Africa also has a thriving fruit industry and produces a variety of fruit 

juices both for export and local consumption.  It was therefore of interest to determine the 

polyphenolic content of beverages in the South African market.  The aim of this study was to 

determine the total phenolic content of common South African beverages by using an electron transfer 

based mechanism (Folin-Ciocalteau) and to correlate the results with the antioxidant capacity of these 

beverages based on similar mechanistic assays; namely, the FRAP assay a purely ET based assay and 

the DPPH assay which combines both HAT and ET.  Information about their relative composition 

will help in determining nutritional value of these beverages to consumers.  Common non-alcoholic 

beverages in the South African market are teas and fruit juices.  Rooibos (Aspalathus linearis) tea is 

known to be a source rich in polyphenols.  The plant is also indigenous to South Africa.  These were 

compared with green tea and black tea.  Then, three common fruit juice samples, namely, orange, 

grape and apple were also investigated.  In this study brand names have been dropped and replaced by 

code names for simplicity of reference in the text.  Fruit juices investigated have also been coded for 

purposes of ease of naming. 
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12.2  Experimental 

12.2.1  Samples and reagents  

Commercial fruit juices namely, orange, red grape and clear apple were purchased from Liqui-FruitTM 

South Africa.  Apart from orange juice  which was a blend of grape, apple and pear juice, all other 

juices were 100 % pure.  A total of five tea brands were also randomly selected and bought from a 

local market for study.  These were: green tea produced by Entyce beverages (GT), Joko black tea 

(BT) from Unilever, Rooibos All-in-one (a blend of Rooibos, Honeybush and black tea) (RHB) and 

Honeybush blend (a blend of Rooibos and Honeybush) (HB) from Joekels tea packers and Rooibos 

Vital (RB) from Vital Health Foods.  The phenolic standard used was gallic acid purchased from 

Hopkin and Williams.  The Folin-Ciocalteau phenol reagent, 2,4,6-tripyridyl-s-triazine, and sodium 

acetate were from Merck kGaA, acetic acid and 1,1-diphenylpicryl-2-hydazyl (DPPH) radical from 

Sigma-Aldrich, and ferric chloride hexahydrate, from Associated Chemicals, SA.  The solvents used 

were deionised water obtained from a Millipore Milli-Q® water purification system (Millipore, 

Bedford, MA, USA), and methanol was from BDH Prolabo. 

 

12.2.2  Ethanol-water extraction of polyphenols from teas  

A study by Lin et al. (2003) found that significantly more polyphenols were extracted from tea leaves 

by 75% ethanol than by boiling water.  Hence this was also attempted here.  About 5 g of extractable 

material was ground by using a mortar and pestle, and then immersed in 40 ml 75:25 (v/v) ethanol-

deionised water solution.  The mixture was placed in an oil bath at 65 ºC with stirring for 30 min.  The 

mixture was then filtered through Whatman No. 4 filter paper and the filtrate evaporated under 

reduced pressure by means of a rotary evaporator.  The crude extract was re-dissolved in 25 ml 

deionised water (Miketova et al. 1998).  The aqueous solution was extracted three times with an equal 

volume of ethyl acetate (Miketova et al. 1998; Mukhtar et al. 1992; Lin et al. 1996) to extract the 

polyphenols.  The ethyl acetate extracts were combined and filtered through Whatman No. 4 filter 

paper.  The ethyl acetate was evaporated under reduced pressure in a rotary evaporator.  A few drops 

of dichloromethane were added to ensure complete removal of water (Soleas et al. 1997; Soleas and 

Goldberg 1999).   This provided a solid extract.  A mass of about 30 mg of each tea extract was re-

dissolved in 2 mL of methanol and a 10 µL aliquot of the solution injected into the HPLC for analysis.  

This ethanol-water extraction method was used to extract polyphenols from all the teas investigated. 

 

12.2.3  Extraction of polyphenols from fruit juices  

The extraction of polyphenols was carried out by using a solvent composition consisting of 

methanol:water:acetic acid (30:69:1 % (v/v)).  This composition has been shown to extract 

intracellular polyphenols (Abad-García et al. 2007).  The fruit juice samples were centrifuged at a 

speed of 6000 rpm for two minutes with a Labofuge 200 centrifuge and then the supernatants were 

decanted into clean vials.  A 1 mL aliquot of each juice sample was diluted with 2 mL of extraction 

solvent in the absence and presence of 0.2 % (w/v) ascorbic acid.  The 0.2 % (w/v) ascorbic acid was 

used to as an antioxidant to prevent the oxidation of the extracted polyphenols.  The samples were 

sonicated for 15 minutes at 25 °C in an ultrasonic bath and then filtered through 0.45 µm Millex LCR 

syringe filters into HPLC vials.  Aliquots of 10 µL of these samples were injected into the reversed-

phase high performance liquid chromatograph with diode array detector (RP-HPLC-DAD) for 

analysis. 
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12.2.3  Reversed-phase HPLC analyses 

The HPLC analysis of the tea extract samples was done on a Waters 600 multisolvent delivery system 

connected to Perkin Elmer series 200 autosampler.  A waters 996 photodiode array (PDA) detector 

was used to detect sample components.  All chromatograms were monitored at a wavelength of 272 

nm.  The PDA detector and acquisition of the chromatograms was controlled by Waters Millennium 

Version 4.00 software.  The separation was effected on a Nucleosil 100 C-18 (250 mm × 4.6 mm, 5 

µm particle size) column.  All samples were filtered through 0.45 µm Millex LCR syringe filters and 

solvents were filtered through 0.45 µm Durapore filters before being injected into the HPLC.  Helium 

was used to sparge the mobile phase prior to use.  The solvent flow rate was 1 mL min-1 and injection 

volume was 10 µL.  The samples passed through a Waters Guard-Pak µ-Bondapak C-18 before 

entering the column.  A gradient elution method reported by Zuo et al. (2002) was used to separate the 

extracted polyphenols.  The mobile phase composition was varied as follows: 100 % solvent A (97:3 

% (v/v) deionised water-acetic acid) for 1 min, then a linear change to 63 % solvent B (methanol) 

over 56 min and brought back linearly to 100 % solvent A over 3 minutes, and left at solvent A for 10 

min.  A mass of about 30 mg of the tea extract was dissolved in 2 mL of methanol.  A 10 µL aliquot 

of this solution was eluted with the above mobile phase.   

 

The HPLC analysis of fruit juice samples was carried out on an Agilent 1200 series HPLC, equipped 

with a photodiode array detector (G1315D), a binary pump (G1312A), a degasser (G1322A), 

autosampler (G1316A) all controlled by Chemstation software (Agilent, v.08.04).  The 

chromatographic separation was achieved on a reversed-phase Phenomenex Luna ODS, C18 column 

(250 mm × 4.6 mm, i.d., 5 µm).  A gradient elution with mobile phase composition of 0.25 % (w/v) 

acetic acid in Millipore water (solvent A) and methanol (solvent B) was employed.  The solvent 

composition was varied as follows: initially held at 5 % (v/v) B for 4 min then linearly increased to 10 

% (v/v) B in 4 min; followed by an increase to 20 % (v/v) B in 1 min and held for 4 min, then 

increased to 35 % (v/v) B in 7 min and held for 4 min.  It was then followed by a rise to 100 % (v/v) B 

in 4 min and held for 2 min before being dropped back to 5 % (v/v) B in 5 min and held for 5 min.  

Helium gas was used to spurge the mobile phase prior to use.  The flow rate was set at 0.5 mL min-1; 

the injection volume was 5 µL; and the column temperature kept at 30 °C for a run time of 40 min.  

The chromatograms were acquired at 265, 280, 300 and 350 nm. 

 

12.2.4  Folin-Ciocalteu total phenol assay 

The total concentration of polyphenols in the tea and fruit juice extracts was determined according to 

the Folin-Ciocalteu method (Singleton et al. 1999).  This method measures the phenolic content by 

UV spectrophotometry based on a colorimetric redox reaction in which the reduced form of the 

phosphomolybdic-tungstic mixed acid chromagen is measured at approximately 750 nm.  Gallic acid 

was employed as the standard.  Singleton et al. (1999) reported that linear calibration curves for gallic 

acid are obtained only between concentrations ranging from 3 to 300 mg dm-3.  Hence, a calibration 

curve was prepared from standard gallic acid solutions ranging in concentration from 5 mg dm-3 to 50 

mg dm-3.  These standards were prepared by dissolving 0.500 g of gallic acid in 10 mL of ethanol and 

diluting to 100 mL with Millipore water.  Sodium carbonate solution was prepared by dissolving 200 

g of anhydrous sodium carbonate in 800 mL of millipore water and brought to a boil.  After cooling, a 

few crystals of sodium carbonate were added then left to stand for 24 hour; the solution was then 

filtered and made to 1 L by adding water.  From each calibration solution, sample, or blank, 20 µL 

was pipetted into separate cuvettes, followed by addition of 1580 µL water, and then 100 µL of Folin-

Ciocalteu reagent, and mixed well.  After 8 min, 300 µL of sodium carbonate solution was added, and 

shaken to mix.  The solutions were left at 25 °C for 2 hours and the absorbance of each solution was 
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determined at 765 nm against a blank.  A plot of absorbance vs. concentration was made for the gallic 

acid standards.  Each measurement was performed in triplicate.  The total phenolic content of the 

samples was calculated and expressed as gallic acid equivalents (GAE) mg g-1 of dry sample 

according to equation 12.1 
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12.2.6  DPPH scavenging assay 

The free radical scavenging activity of fruit juice and tea extracts was assessed by using stable 1,1-

diphenylpicryl-2-hydrazyl (DPPH) assay according to a standard method reported by Blois (1958).  

Briefly a 40 mg dm-3 stock solution of DPPH was prepared by dissolving 4 mg of DPPH in 80 % (v/v) 

aqueous ethanol and made up to 100 mL by the same solution in a standard flask.  An aliquot of 2 mL 

of the 40 mg dm-3 DPPH in 80 % aqueous ethanol was mixed with 1 mL of 1.8 mg mL-1 of tea or fruit 

juice extracts and 1 mL of 80 % aqueous ethanol.  Simultaneously a control was prepared without 

sample extracts and both reaction mixture sets were incubated at room temperature for 1 hour in the 

dark.  The antioxidant activity of each sample was quantitated by the loss in colour at 522 nm by 

using a Perkin Elmer Lambda 35 UV-vis dual beam spectrophotometer.  The percentage DPPH 

scavenged was calculated using equation 12.2, where Acontrol is the absorbance of the solution 

containing only DPPH diluted with solvent (80 % (v/v) aqueous ethanol), and Asample is the absorbance 

of the DPPH solution after incubation with different concentration of fruit juice and tea extracts. 
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A double axes plot of mean % DPPH scavenged, mean absorbance of three replicate against 

concentrations was drawn.  The IC50 volume was read by interpolation for each tea and fruit juice 

sample.  On average about 45 mg of each tea or fruit juice sample was weighed and dissolved in 15 

mL 80 % (v/v) aqueous ethanol and made up to 25 mL with 80 % (v/v) aqueous ethanol to make a 

concentration of 1.8 mg mL-1 of the extract.  From this solution 1 mL of extract was combined with 1 

mL of 80 % (v/v) aqueous ethanol and then added 2 mL of 40 mg dm-3 DPPH solution.  Considering 

these dilutions then IC50 was calculated from the equation below, expressed interms of µg mL-1 of tea 

and fruit juice samples solution equation 12.3. 
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12.2.7  FRAP Antioxidant Assay  

The FRAP assay was performed according to the protocol reported by Benzie and Strain (1996).  

Stock solutions contained 300 mM acetate buffer (3.1 g C2H3NaO2•3H2O and 16 mL C2H4O2) at pH 

3.6, 10 mM TPTZ (2,4,6-tripyridyl-s-triazine) solution in 40 mM HCl, and 20 mM FeCl3•6H2O 

solution.  A fresh working solution was prepared by mixing 25 mL acetate buffer, 2.5 mL TPTZ 

solution, and 2.5 mL FeCl3•6H2O solution.  Ferrous ammonium sulphate standards in the range of 100 

– 1000 µM were prepared from a 0.01 M stock solution with 80 % aqueous methanol.  A 100 µL 

aliquot of each standard was then added to 3 mL of the FRAP reagent and incubated for 4 and 30 min 

at 37 °C in a waterbath before analysis in a 1 cm pathlength glass cuvette with Perkin Elmer Lambda 
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25 UV-vis dual beam spectrophotometer fitted with a Peltier temperature controller set at 37 ºC and 

the absorbance measured at 596 nm.  A standard calibration curve was consequently constructed.  The 

tea and fruit juice extracts (150 µL) dissolved in 80 % aqueous methanol were allowed to react with 

2850 µL of the FRAP solution for 4 min and 30 min in the dark condition before absorbance 

measurement were similarly taken.  All tests were run in triplicate and mean values were used for the 

determination of EC1 values.  EC1 is defined as concentration of an antioxidant having a ferric 

reducing ability equivalent to that of 1 mM Fe+2 (Sarla et al. 2011). 

 

12.3  Results  

The identification of phenolic groups present in the beverages was first done by comparison of the 

retention time of standards and their corresponding UV spectra from the HPLC chromatograms and 

literature. 

 

12.3.1  HPLC analysis of the tea extracts 

One-third of dietary polyphenols consist of phenolic acids that are ubiquitous in plants in free and 

bound forms.  The main linkage of bound phenolics to various plant components is through ester, 

ether, or acetal bonds (Robbins 2003).  Identification of these phenolics was done by elution of 

standards and compared to sample eluents by matching retention times and respective UV spectra and 

by classifying polyphenolic groups according to their UV spectra.  For example in this work gallic 

acid peaks were observed at 9.7 min for both the standard (Fig. 12.1) and the RHB extract (Fig. 12.2).   

 

The HPLC chromatograms of the Rooibos tea extracts are displayed in Fig 12.4 for rooibos tea, Fig. 

12.5 for RH tea and for RHB tea in Fig. 12.5.  Table 12.1 summarises the chromatograms by listing 

and categorising all the compounds present in the extracts.  The extracts from RB and RH teas contain 

a similar range of compounds but differ from RHB tea.  However, the RHB tea extract contains the 

largest number of compounds.  Rooibos tea is a rich source of flavonoids (Erickson 2003), and 

honeybush teas is also known to contain various polyphenols (Ferreira et al. 1998; Kamara et al. 

2003) such as hydroxycinnamic acids, isoflavones, flavanones, flavones, coumestans and xanthones.  

The polyphenolic substances in black tea are different from those in rooibos and honeybush tea they 

tend to be rich in dimeric flavanols and polymeric polyphenols known as theaflavins and thearubigins 

formed from the oxidation of catechins (Zhao et al. 1999).  This is the reason that the RHB tea 

chromatogram showed a greater variety of compounds than those of the other rooibos teas.  The 

method extraction determines the chemical composition of the extractable polyphenols. 
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Figure 12.1: HPLC chromatogram of the elution of gallic acid standard through a Nucleosil 
100 C18 column (250 mm × 4.5 mm, i.d., 5 µm) by a gradient mobile phase of composition 
water/acetic acid (97:3 v/v) solvent A and methanol solvent B at flow rate of 1 mL min-1.  
The chromatogram was monitored at a detection wavelength of 272 nm.  Gallic acid elutes at 
9.6 min and the top window shows its UV spectrum. 

Figure 12.2: HPLC chromatogram of boiling water Rooibos-black tea extract eluted through 
a Nucleosil 100 C18 column (250 mm × 4.5 mm, i.d., 5 µm) by a gradient mobile phase of 
composition water/acetic acid (97:3 v/v) solvent A and methanol solvent B at flow rate of 1 
mL min-1.  The chromatogram was monitored at a detection wavelength of 272 and shows 
gallic acid eluting at 9.7 min. 
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Figure 12.3: HPLC chromatogram of the boiling water Rooibos tea extract eluted through a Nucleosil 
100 C18 column (250 mm × 4.5 mm, i.d., 5 µm) by a gradient mobile phase of composition 
water/acetic acid (97:3 v/v) solvent A and methanol solvent B at flow rate of 1 mL min-1. The 
wavelength of detection was 272 nm, and the top window shows the corresponding UV spectra of 
eluents. 
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Figure 12.4: HPLC chromatogram of the ethanol-water Rooibos-honeybush tea extract eluted through a 
Nucleosil 100 C18 column (250 mm × 4.5 mm, i.d., 5 µm) by a gradient mobile phase of composition 
water/acetic acid (97:3 v/v) solvent A and methanol solvent B at flow rate of 1 mL min-1.  The 
wavelength of detection was 272 nm, and the top window shows the corresponding UV spectra of 
eluents. 
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Figure 12.5: HPLC chromatogram of the boiling-water RHB tea extract eluted through a 
Nucleosil 100 C18 column (250 mm × 4.5 mm, i.d., 5 µm) by a gradient mobile phase of 
composition water/acetic acid (97:3 v/v) solvent A and methanol solvent B at flow rate of 1 
mL min-1.   The wavelength of detection was 272 nm, and the top window shows the 
corresponding UV spectra of eluents. 
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Table 12.18: Matched HPLC peaks, based on their retention times and UV spectra, from extracts of 

various Rooibos teas. These compounds are grouped into known polyphenolic groups based on their 

UV spectra. 

polyphenols 

Retention times of the compounds extracted by the ethanol-

water extraction method 

  RB tea RHB tea RH  

1 3.642 3.688 3.573 

2 5.113 

3 6.317 6.468 

4 7.657 

5 7.677 

Gallic acid  9.715 9.739 

7 13.358 13.331 

8 14.801 14.936 

9 16.725 16.479 16.615 

10 20.118 

11 20.402 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 21.155 21.076 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 21.777 

14 24.058 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 24.015 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 25.715 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 26.238 

18 27.108 

19 27.65 

20 30.578 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 30.584 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 31.25 

23 33.04 32.637 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 34.109 

25 34.579 34.128 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 34.822 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 36.766 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 38.476 

29 40.198 39.597 
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Flavone/Flavanol/Chalcone 

(Ryan and Robards 1998) 42.676 42.027 41.994 

Flavan-3-ol/Benzoic acid (Ryan 

and Robards 1998) 42.968 

Flavone/Flavanol/Chalcone 

(Ryan and Robards 1998) 44.62 43.938 43.974 

33 46.184 46.288 

34 47.499 

Flavone/Isoflavone (Ryan and 

Robards 1998) 48.138 47.52 

Flavone/Flavanol/Chalcone 

(Ryan and Robards 1998) 47.52 

Rutin 50.185 49.465 49.449 

Flavanol/Chalcone (Ryan and 

Robards 1998) 51.271 

Flavone/Flavanol/Chalcone 

(Ryan and Robards 1998) 52.58 

Flavone/Flavanol/Chalcone 

(Ryan and Robards 1998) 53.145 53.054 53.828 

41 55.522 

42 57.998 

Flavanol/Chalcone(Ryan and 

Robards 1998) 58.762 57.998 

44 59.624 

Flavanol/Chalcone (Ryan and 

Robards 1998) 61.314 60.605 

46 66.495 65.786 

 

 

12.3.1.2  HPLC analysis of components of fruit juices 

Reverse phase high-performance liquid chromatography ultraviolet (HPLC-UV) analysis was 

performed to identify various polyphenols in each of the fruit juice extracts.  Retention times, UV 

spectra and library data provided structural information of compounds obtained without need for 

individual compounds isolation.  Phenolic acids: gallic acid, ascorbic acid; and hydroxycinnamic acid 

were identified alongside caffeine and catechin.  Three flavonoids: flavanone, flavan-3-ol and 

flavonol were identified.  The wavelengths of detection employed were 265, 280, 300, 350 and 500 

nm.  Fig. 12.6  to 12.8 show the chromatograms obtained for each fruit juice extract and the UV-vis 

spectra for peaks obtained in three chromatograms. Tables 2 to 12.4 shows identifications made based 

on UV spectra, retention times and literature data. 
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Figure 12.8: HPLC chromatogram of the orange juice extract which was 
profiled on the Agilent 1200 series HPLC system comprising of a reversed-
phase Phenomenex Luna ODS, C-18 column (250 mm x 4.6 mm, i.d., 5 µm), 
a 35 minute gradient elution programme at a flow rate of 0.5 mL min-1 and a 
PDA detection wavelength of 300 nm. 

Figure 12.6: HPLC chromatogram of the apple juice extract which was profiled 
on the Agilent 1200 series HPLC system comprising of a reversed-phase 
Phenomenex Luna ODS C18 column (250 mm × 4.6 mm, i.d., 5 µm), with a 35 
minute gradient elution programme at a flow rate of 0.5 mL min-1 and a PDA 
detection wavelength of 280 nm. 
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Figure 12.7: HPLC chromatogram of the grape juice extract which was profiled 
on the Agilent 1200 series HPLC system comprising of a reversed-phase 
Phenomenex Luna ODS, C18 column (250 mm × 4.6 mm, i.d., 5 µm) with a 35 
minute gradient elution programme at a flow rate of 0.5 mL min-1 and a PDA 
detection wavelength of 280 nm. 



397 
 

 
 

Table 12.2: Description of the peaks observed in the HPLC chromatogram seen in Fig. 12.6.  The UV-

vis spectrum of each peak is displayed together with its absorption maxima.  The retention times of 

the correlating peaks in the apple juice extract are listed.  

Retention 

time/min 
UV/VIS spectrum 

UV-vis 

absorption 

maxima/nm 

 

Polyphenol 

identification 

 

3.308 

 

200, 296 - 

4.214 

 

 

202, 284 

 

Flavanone (Abad-

García et al. 2007) 

4.749 

 

 

226, 276 

 

Flavan-3-ol (Abad-

García et al. 2007) 

7.525 

 

206, 220, 234, 

300, 326 

Hydroxycinnamic 

acid (Tsao et al. 

2003) 

8.999 

 

 

228, 312 

 

Hydroxycinnamic 

acid (Tsao et al. 

2003)b 

12.758 

 

198, 216, 252, 

284 

Flavanone (Abad-

García et al. 2007) 

21.993 

 

 

214, 302 

 

Hydroxycinnamic 

acid (Abad-García 

et al. 2007) 

23.693 

 

 

200, 236, 264 

 
- 

 

Table 12.3: Description of the peaks observed in the HPLC chromatogram seen in Fig. 12.7.  The UV-

vis spectrum of each peak is displayed together with its absorption maxima.  The retention times of 

the correlating peaks in the grape juice extract are listed.  

Retention 

time/min 

UV-vis spectrum UV-vis 

wavelength of 

maximum 

Polyphenol 

identification 

nm200 250 300 350 400 450 500

mAU

0

1

2

3

4

5

*DAD1, 3.341 (5.7 mAU, - ) Ref=3.181 & 3.534 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

0

1

2

3

4

5

6

*DAD1, 4.194 (7.2 mAU, - ) Ref=4.001 & 4.454 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

-0.5

0

0.5

1

1.5

*DAD1, 4.787 (2.4 mAU, - ) Ref=4.581 & 4.981 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

0

1

2

3

4

5

*DAD1, 7.594 (6.0 mAU, - ) Ref=7.374 & 7.761 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

*DAD1, 9.021 (2.2 mAU, - ) Ref=8.867 & 9.227 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

0

2

4

6

8

10

12

14

*DAD1, 12.781 (15.5 mAU, - ) Ref=12.521 & 13.148 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

-0.5

0

0.5

1

1.5

2

2.5

3

*DAD1, 22.047 (4.0 mAU, - ) Ref=21.874 & 22.601 of APPLE1610A.D

nm200 250 300 350 400 450 500

mAU

-2.5

0

2.5

5

7.5

10

12.5

15

*DAD1, 23.714 (18.4 mAU, - ) Ref=22.601 & 24.074 of APPLE1610A.D
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absorption/nm 

1.270 

 
 

196, 244 

 
Ascorbic acid 

2.279 

 

 

264, 270 

 

Hydroxybenzoic 

acid (Tsao et al. 

2003; Abad-García 

et al. 2007)a,b 

12.760 

 

 

198, 216, 252, 

284 

 

- 

18.378 

 

 

200, 274 

 

Catechin (Tsao et 

al. 2003) 

20.589 

 

 

202, 224, 278 

 

Catechin (Tsao et 

al. 2003)  

22.006 

 

 

202, 236, 304 

 
- 

22.175 (at 

350 nm) 

 
 

226, 358 

 

Flavonol (Howard 

and Mabry 1970) 

  

Table 12.4: Description of the peaks observed in the HPLC chromatograms seen in Fig. 12.8.  The 

UV/VIS spectrum of each peak is displayed together with its absorption maxima.  The retention times 

of the correlating peaks in the orange juice extract are listed.  
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UV/VIS spectrum 

UV-vis 

absorption 

maxima/nm 
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- 
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- 
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Flavanone (Abad-

García et al. 2007) 
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194, 274 
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García et al. 2007) 

4.218 

 

 

218, 232, 

294, 318 

 

Hydroxycinnamic acid 

(Abad-García et al. 

2007) 
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22.657 

 

 

196, 228, 282 

 

Flavanone (Abad-

García et al. 2007) 

25.284 

 

 

196, 216, 

224, 284, 328 

 

Flavanone (Abad-

García et al. 2007)  

27.397 

 

 

200, 284 , 

332 

 

Flavanone (Abad-

García et al. 2007)  

28.726 

 

 

218, 286,  

338 

 

- 
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212, 254, 325 

 

Hydroxycinnamic acid 

(Abad-García et al. 

2007) 

29.575 

 

 

198, 208, 

230, 256 

 

- 

30.356 

 

 

312, 358 

 
- 

 

 

12.3.3  Total phenolic content 

The Folin-Ciocalteu reaction method is a simple, yet accurate, method for quantitating phenols in a 

sample, though, it lacks specificity in the type of phenolics it quantitates.  In this method, gallic acid 

was used as the standard and the phenolic quantity in the beverages is reported in milligram gallic 

acid equivalents per gram (mg GAE g-1 beverage).  Antioxidant activity is associated with the 

presence of phenolic acids whose composition varies from one type of the beverage to another.  The 

total phenolic content of beverages investigated (see Table 12.5) showed that GT (758.6 mg g-1 GAE) 

had the largest total phenolic content of all the samples.  The teas were ranked as follows: GT(758.6 ± 

20.48 mg g-1)˃ BT (580.1 ± 5.80 mg g-1) ˃ RH (573.5 ± 8.47 mg g-1) ˃ RHB (520.2 ± 6.40 mg g-1) ˃ 

RB (485.4 ± 6.70 mg g-1).  The fruit juices sampled also gave differences in total phenolic content 

(Table 12.5): orange (611.7 ± 18.87 mg g-1), > grape (503.5 ± 11.07 mg g-1) > apple (334.4 ± 7.41 mg 

g-1).   
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Table 12.5: total phenolic content, IC50 of DPPH and FRAP value of beverages investigated (n = 3) 

Sample Total phenolic 

content/mg GAE g-1 tea 

IC50 DPPH/µg 

mL-1 

 EC1/mM Fe(II) 

GT 758.6 ± 20.48 3.60 ± 0.02 2.04 ± 0.03 

BT 580.1 ± 5.80 4.50 ± 0.01 2.68 ± 0.03 

RH 573.5 ± 8.47 10.79 ± 0.06 2.90 ± 0.04 

RHB 485.4 ± 6.70 11.69 ± 0.01 3.21 ± 0.01 

RB 520.2 ± 6.40 14.35 ± 0.04 4.41 ± 0.06 

Orange* 611.7 ± 18.87 2.11 ± 0.02 2.52 ± 0.0 2 

Grape* 503.5 ± 11.07 2.63 ± 0.02 4.47 ± 0.05 

Apple* 334.4 ± 7.41 4.23 ± 0.07 4.55 ± 0.0 2 

* units are in mg GAE dm-3 

 

12.3.4  Antioxidant assays 

A lower value of a beverage sample required to scavenge 50 % of the DPPH present is considered to 

be a good antioxidant.  Hence, the for the five tea samples the order of decreasing antioxidant activity 

is; GT (3.60 ± 0.02 µg mL-1) ˃ BT (4.50 ± 0.01 µg mL-1) ˃ RH (10.79 ± 0.06 µg mL-1) ˃ RHB (11.69 

± 0.01 µg mL-1) ˃ RB (14.35 ± 0.04 µg mL-1).  These sequence was supported by the results of the 

FRAP analysis indicating GT (2.04 ± 0.03 mM) ˃ BT (2.68 ± 0.03 mM) ˃ RH (2.90 ± 0.04 mM) ˃ 

RHB (3.21 ± 0.01 mM) ˃ RB (4.41 ± 0.06 mM).  Thus GT showed a higher antioxidant activity 

followed by BT (Table 12.5).   

 

The free radical scavenging activity of the fruit juices samples by using the same stable DPPH radical 

indicated a stronger activity (IC50) in gallic acid equivalent for orange (2.11 ± 0.02 µg mL-1 GAE) > 

grape (2.63 ± 0.02 µg mL-1 GAE) > apple  (4.23 ± 0.07 µg mL-1 GAE) and a similar trend for FRAP, 

EC1: orange (2.52 ± 0.0 2 mM Fe(II)), > grape (4.47 ± 0.05 mM Fe(II)) > apple  (4.55 ± 0.0 2 mM 

Fe(II)). 

 

12.4  Discussion 

The antioxidant activity of beverages is closely linked to the total polyphenol content.  In this study 

the tea and fruit juice extracts were investigated for their radical-scavenging ability by reacting them 

with a stable free radical, namely the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH).  The progress of 

the reaction was monitored by measuring the loss of DPPH absorption at its wavelength of maximum 

absorption (max) at 522 nm.  When the radical was reacted with the tea and fruit juice extracts, a loss 

in absorbance at its max was observed with time.  After four hours the tea and fruit juice extracts had 

scavenged all the DPPH radicals.  This implies that the tea and fruit juice extracts acted as hydrogen 

donor towards the DPPH radical, the stoichiometry of the reaction depends on the number of sites for 

hydrogen abstraction on the donor compound.  Polyphenols would therefore act as ideal donors since 

they contain conjugated phenyl rings, hydroxyl groups and carbonyl groups that are able to delocalise 

the radical electron left on the compound.  The resulting relatively stable phenoxyl radicals 

subsequently form orthoquinones.   

 

It is expected that sample extracts with high phenolic content are expected to demonstrate higher 

antioxidant potential because phenolic compounds (POH) act as free radical acceptors and chain 

breakers.  They are known to interfere with the oxidation of lipids and other molecules by rapid 

donation of a hydrogen atom to radicals (R): 
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R· + POH → RH + PO·  

 

The resonance stabilization effect in the phenoxy radical intermediates (PO·) slows down a new chain 

reaction initiation and propagation thus acting as terminators of propagation route by reacting with 

other free radicals: 

 

PO· + R· → POR  

 

The presence of hydroxyl groups on the molecular structure of phenolic compounds makes them ideal 

structures for free radical scavenging activities because they readily donate a hydrogen atom or an 

electron to a free radical.  Secondly the extended conjugated aromatic system creates room for 

delocalization of an unpaired electron thus enhancing its stability. 

 

Consequently, the antioxidant activity of phenolic acids and their esters depends on the number of 

free hydroxyl groups in the molecule, favoured by steric hindrance.  Hydroxycinnamic acids have 

been shown to be effective reducing agents with resonance effect of –CH=CH–COOH and the phenyl 

ring as aryloxy-radical stabilizing mechanism.  Hence, a high content of hydroxycinnamic acids is 

likely to contribute to higher antioxidant effect of a given type of beverage.  Apart from phenolic 

acids, green tea is reported to have a large amount of flavan-3-ols known as catechins (-) 

epigallocatechin-3-gallate (EGCG) is the most abundant catechin with an occurrence of up to 50 % of 

catechins by weight (Balentine et al. 2000). 

 

Apart from polyphenols, tea is considered a rich source of other antioxidant molecules. Three major 

forms of antioxidant tea are green teas and black tea differing in mode of production and chemical 

composition (Balentine et al. 2000; Lambert and Elias 2010).  The main antioxidants in tea are 

catechins, theaflavins, thearubigins, oxyaromatic acids, flavonols, such as kaempferol, myricetin, 

quercetin; and flavones, such as apigenin; derivatives of gallic acid, such as tannins.  Animal model 

studies on carcinogenesis show that green tea and (-) epigallocatechin-3-gallate (EGCG) can inhibit 

tumorigenesis during initiation, promotion and progression stages (Lambert and Elias 2010).  Results 

of catechins oxidation is formation of catechins dimers, known as theaflavins.  These compounds are 

responsible for colour, taste, and antioxidant activity.   

 

A qualitative investigation of the fruit juices showed hydroxycinnamic acids to be present  in all the 

fruit juice samples (Tables 12.2 – 12.4) these are known to be potent antioxidants (Soobrattee et al. 

2005).  A wide variety of polyphenols were found in orange juice and this could be due to the fact that 

it was a blend of other fruits, hence, polyphenols from these fruits contributed to the observed activity.  

It was found that fewer polyphenols were present in grape juice and polyphenols that were expected, 

such as anthocyanidins were not detected.  The results show that in comparison with orange juice, 

apple juice showed less variety of polyphenols and this correlated to its low antioxidant activity 

(Table 12.5).  Both DPPH and FRAP assays showed that fruit juice with highest antioxidant activity 

was orange followed by grape and then apple juice.  It can be concluded that blending of fruit juices 

increases the polyphenol content and variety thereby improving the antioxidant activity as observed in 

the case of the orange juice antioxidant activity. 
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12.5  Conclusions  

Total phenolic content determines the antioxidant activity of a beverage as seen for green tea and 

orange juice blend.  Each of the beverage amounts of polyphenols.  The Of the beverages considered 

green tea and orange juice exhibited the best antioxidant activity.. 
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Chapter Thirteen 
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There are different methods of combating the deleterious effects of ultraviolet radiation: these include 

sunscreens formulated with filters as well as clothing.  The consequences of exposure to UV radiation 

and its correlation with the development of skin cancer have triggered a public education campaign 

promoting the use of sunscreens.  Several inorganic and organic compounds have been explored and 

are employed for protection from harmful UV radiation.  The challenge has been the localization of 

the active ingredients on the skin without permeating into the deeper viable layers of the skin and the 

photodegradation exhibited by some organic UV absorbers.  Efforts are therefore ongoing to 

investigate various ways of reducing the skin penetration of sunscreen active ingredients, oxidative 

stress management and evaluation of different types of vehicles to prevent photodegradation of 

absorbers.  The major aim is to make an aesthetically acceptable and stable broad-spectrum 

photoprotection sunscreen product. 

 

The decomposition of sunscreen agents under sunlight exposure leads to a loss in the initial absorptive 

capacity.  Photoproducts and reactive intermediates of photo-unstable filter substances coming into 

direct contact with skin, may behave as photo-oxidants or promote phototoxic or photoallergic contact 

dermatitis.  Moreover, ultrafine sunscreen-grade TiO2 irradiated with sunlight is photocatalytically 

active known to cause single- and double-strand breaks in DNA plasmids (Hidaka et al. 1997; 

Dunford et al. 1997; Buchalska et al. 2010).  In view of the above concerns and the need to improve 

sunscreen photostability the photophysics and photochemistry of sunscreen absorbers require careful 

study.   

 

Titanium(IV) oxide (TiO2) is used as a physical blocker of ultraviolet (UV) radiation in many skin 

care products.  To avoid the whitening effect of TiO2 on the skin nano-particulate TiO2 is used.  

Absorption of nano-TiO2 through the skin is likely to interact with viable tissues because UV 

radiation absorption by nano-TiO2 generates toxic reactive oxygen species such as hydroxyl radicals.  

Studies on the acute toxicity of TiO2 nanoparticles in mammals indicate that intra-tracheal instillation, 

intraperitoneal injection or oral instillation of TiO2 particles to the animals evoke an inflammatory 

response as well as certain histopathological changes.  Ultrafine particles of the anatase form of 

titanium dioxide, which are smaller than 0.1 microns, are pathogenic.  In this work eight skin-

lighteners containing TiO2 from the South African market were studied.  The TiO2 was extracted by a 

fusion technique and quantified by inductively coupled plasma-optical emission spectrometry (ICP-

OES).  Sequential solvent extraction was employed to isolate TiO2 particles for characterisation by 

means of high resolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction 

(PXRD).  All samples considered in this study had a TiO2 % (m/m) composition below the maximum 

limit specified by health regulatory bodies.  In most samples the TiO2 content was of the order of 3 % 

(m/m) which on its own does not afford sufficient protection particularly in a skin-lightening product 

aimed to reduce melanin formation.  Both forms of TiO2: anatase and rutile, were found to be present.  

This is a cause of concern because of the greater photocatalytic activity of anatase TiO2.  Most 

samples contained nano-TiO2 in the particle size range 16.23 nm to 51.47 nm that could possibly lead 

to detrimental effects. 

 

The photochemical stability of common sunscreens in skin-lightening preparations was investigated in 

order to assess the photoprotective capacity of these products. These products contained the 

sunscreens 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3), tert-butyl-4-

methoxydibenzoylmethane (BMDBM) and titanium dioxide (TiO2).  The percentage composition of 

the organic absorbers was determined by use of reversed-phase-HPLC.  The physical absorber 

titanium dioxide was quantitated by ICP-OES.  The percentage compositions of all the UV filters 

were found to be within the set maximum allowed limits of the various health regulatory bodies but 
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some of them were very low (0.066 % (m/m)) casting doubt on the product ability of the product to 

offer significant photoprotection.  Photostability experiments were performed by application of a thin 

layer of the product on a quartz plate and exposing it to sunlight.  The application density was kept at 

1.0 mg cm-2.  Skin-lightening preparations with sunscreens but without plant extracts showed an 

increase in transmittance on increased exposure to solar UV radiation. This indicated photo-instability 

due to possible degradation of the absorbers to chemical species that are less efficient absorbers.  

However, products that contained plant extracts in the skin-lightening preparations with sunscreens 

showed the opposite effect and improved their absorption characteristics particularly in the long 

wavelength region.  This effect could be associated with formation of highly conjugated 

photoproducts and hence the high long wavelength absorption.  We conclude that inclusion of the 

plant extracts in skin-lightening preparations is likely to photostabilize the UV absorbers.  The 

photoprotection offered is likely to be enhanced but further investigation and profiling of the photo-

toxicities of the photochemical products formed needs to be done. 

 

The photo-stabilizing potential of plant extracts on sunscreen absorbers in commercial sunscreen 

products was also investigated.  The amounts of the ultraviolet filters in these products were 

determined in order to check compliance with applicable regulatory requirements.  The reversed-

phase high performance liquid chromatographic method, with photo diode array (PDA) detection was 

used for the simultaneous determination of BP3, EHMC, methylene bis-benzotriazolyl 

tetramethylphenol (Tinosorb M), octocrylene (OCT), bis-ethylhexyloxyphenol methoxyphenyl 

triazine (Tinosorb S) and BMDBM.  The physical absorbers: titanium dioxide and zinc oxide were 

quantified by using ICP-OES.  The photostability experiment was performed by applying the product 

on a quartz glass plate with an application density of 1.0 mg cm-2 and exposing to sunlight.  All 

samples contained UV filters within accepted maximum limits set by COLIPA.  These sunscreen 

products contained significantly more of the active ingredients than the skin-lightening products.  The 

products containing plant extracts showed remarkable photostability compared with products without 

the extracts irrespective of the percentage composition of the UV filters in the products.  We conclude 

that plants extracts may contribute synergistically or otherwise to the observed photostability. 

 

Since plant extracts in the skin-lightening and sunscreen products improved the photo-absorption 

properties it was of interest to investigate this aspect further.  To this end four plant extracts were 

purchased: grape seed extract, mulberry extract, liquorice root extract and lavender oil.  These extracts 

were found in some of the skin-lighteners and sunscreens investigated and so their choice was made 

to study their possible photostabilization effect on commonly used sunscreens.  The effect and 

photostabilizing ability of grape seed extract on the common sunscreen absorbers: EHMC, BP3 and 

BMDBM was investigated.  The chemical composition of a derivatised sample of grape seed extract 

was determined by GC-MS.  It was found that grape seed contained catechin and epicatechin which 

can chemically combine to form proanthocyanidins which are likely contributor to the enhanced UV 

absorption.  The photostability of the samples was studied by exposure to simulated solar radiation.  

The change in UV absorption and chemical transformations were followed by standard 

spectrophotometric and chromatographic methods.  Exposure of the extracts to UV radiation 

increased the UV absorption capacity of the extracts linearly at 280 nm and 320 nm.  All sunscreens 

showed a higher degree of photostability in the extract.  The inherent photoinstability of BMDBM 

when exposed to UV radiation was almost eliminated.  The mixture of all the sunscreens in the extract 

showed very high photostability and greater bathochromic shift covering the entire UVB and UVA 

region.  The grape seed extract indicated potential to afford broad-spectrum protection and thus, likely 

to reduce the quantity of absorbers added in a formulation.  The incorporation of the grape seed 
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extract in sunscreens and other cosmetic formulations for topical application is likely to boost 

photoprotection by stabilizing sunscreens included.  

 

The photostability of EHMC, BP3 and BMDBM in a methanolic solution of mulberry extract was 

investigated.  The effect of mulberry extract on the photo-absorption capacity of each sunscreen was 

studied by exposing the samples to simulated solar radiation.  The photochemical transformations 

were then followed by standard spectrophotometric methods.  The new chemical species were 

monitored by means of reversed-phase-HPLC and derivatised constituents of mulberry extract were 

identified by GC-MS.  The absorptive efficacies of the sunscreens were greatly improved when each 

was mixed with mulberry extract alone.  The mulberry extract seemed to favour the chelated enol 

form of BMDBM and hence contributed to enhanced UVA absorption.  BP3 remained unchanged for 

all exposure periods indicating no chemical interaction.  Hence no side reactions of BP3 are envisaged 

in this mixture.  EHMC showed a drop in absorption but subsequentlystabilized.  A photochemical 

isomerisation to a strongly absorbing UVB species was observed.  The mulberry extract therefore was 

found to enhance the UVB absorption potential of EHMC.  However, a combination of the three 

sunscreens in mulberry extract was found to greatly reduce UVA absorbing chemical species and 

favour UVB absorbing species.  We conclude that mulberry extract may be good a photochemical 

stabilizer of sunscreens and would reduce the amount of sunscreens incorporated in a single product. 

 

The photostabilizing potential of liquorice root extract on commonly used UV absorbers in the market 

was investigated.  The effect of UV light on the photochemical stability of EHMC, BP3 and BMDBM 

was studied by irradiating the extract incorporated samples by simulated solar radiation.  The 

photochemical transformations were monitored by standard spectrophotometric and chromatographic 

methods: UV, GC-MS, and HPLC-UV-ESI-MS/MS.  The extract showed good UV absorption but 

degrades on UV exposure.  The incorporation of BP3 showed enhanced photostability by chemical 

interaction with the extract.  EHMC showed stability with prolonged exposure and BMDBM showed 

photodegradation.  This extract may not be a good stabilizer for BMDBM but reacts with EHMC to 

yields compounds that are photostable.  Liquorice root extract may enhance the photo-absorption of 

BP3 and EHMC but not BMDBM.  The phenolic secondary metabolites present may help free radical 

scavenging. 

 

The lavender oil was bought from a local market and the photostabilizing potential investigated 

against common sunscreening agents in cosmetics.  The samples were exposed to simulated solar 

radiation in 1 mm pathlength quartz cuvette and spectral changes recorded on a UV-Vis dual beam 

spectrophotometer.  The photochemical changes were monitored by GC-MS.  The absorption spectra 

of lavender oil showed maximum absorption at 260 nm indicating no significant UVB and UVA 

absorption.  The absorption capacity of lavender oil drops with increasing time of irradiation showing 

steady photodegradation on exposure to light.  The combination of lavender oil and BMDBM showed 

less photodegradation than BMDBM alone, with the GC-MS results showing fragments characteristic 

of [2+2] cycloaddition reactions.  This indicated some degree of photostabilization of BMDBM in the 

presence of lavender oil.  The spectra of a methanolic solution of lavender oil and EHMC showed an 

erratic increase then steadily dropped with absorption of light showing a low level of 

photostabilization of EHMC in lavender oil.  There was a small spectral change for BP3 mixture with 

lavender oil indicating a good degree of stability; however, more photochemical products were 

observed by GC-MS.  These could indicate sensitization reactions initiated by the triplet excited state 

of BP3.  We conclude that lavender oil exhibits some degree of photostabilization of the sunscreens 

under investigation but it self cannot be used as UVB/UVA absorber.  The inclusion of EHMC, BP3 
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and BMDBM in a lavender oil cosmetic product formulation, may pose a greater health risk due to the 

unknown photoproducts formed. 

 

Since the plant extracts were shown to be able to enhance photoprotection it was of interest to 

investigate the properties of a South African plant material for this purpose.  Previous work in our 

laboratories showed the ability of a polyphenolic extract from Sutherlandia frutescens to 

photostabilize BMDBM (Mturi 2005).  The phenolic acids form part of the polyphenolic content of 

plants and also exhibit antioxidant properties, it was therefore important to isolate then, characterise 

them and determine their UV absorption properties.   

 

Sutherlandia frutescens is a very important ethnopharmacological plant.  We set to investigate the 

phenolic acid content, antioxidant activity and UV absorption potential of Sutherlandia frutescens 

subspecies microphylla, commonly known as the cancer bush (CB).  Sutherlandia frutescens 

medicinal value and reported role in the management of chronic diseases, like HIV/AIDS, generates 

interest for total phenolic acid quantitation in this plant.  The antioxidant properties of phenolic acids 

are known to reduce the risk of chronic infections including cancer and heart ailments linked to 

oxidative stress.  Phenolic acids were extracted from the leaves of the CB by both Soxhlet (SXE) and 

ultrasonication (USE) extraction methods.  These extracts were analysed by ultraviolet spectroscopy, 

high performance liquid chromatography, and liquid chromatography-mass spectrometry.  Six 

phenolic acids were identified and quantitated by means of reversed-phase-HPLC-PDA, under 

isocratic elution conditions with an external standard method.  The identified phenolic acids were: 

gallic, p-hydroxybenzoic, vanillic, caffeic, syringic and p-coumaric acids.  RP-HPLC-PDA-ESI-MS 

was used to characterise three novel phenolic acids: 5-hydroxy-2-vinylbenzoic acid, an isomer of p-

coumaric acid (C-1); (Z)-3-(4-hydroxy-2-methoxyphenyl)acrylic acid (C-2); and (Z)-2-hydroxy-3-(4-

methoxyphenyl)acrylic acid (C-3), ferulic acid isomers.  The Folin-Ciocalteu protocol was used to 

determine the total phenolic content of various phenolic acid extracts.  The ultrasonication-diethyl 

ether (USDE) fraction gave GAE = 0.1247 mg g-1 and the ultrasonication-ethyl acetate extract 

(USEA), GAE = 0.0769 mg g-1 as the highest and lowest total phenolic content respectively.  The 

antioxidant activity of these extracts was investigated by the 1,1-diphenylpicryl-2-hydrazyl (DPPH) 

free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay.  The USDE 

extract (EC50 = 30.38 µg mL-1 ) and soxhlet-diethyl ether (SXDE) (EC50 = 48.63 µg mL-1 ) were the 

highest and lowest antioxidants by DPPH assay.  The FRAP assay showed higher activity for USDE 

(EC1 = 41.53 µg mL-1) and a lower value for SXDE extract (EC1 = 33.05 µg mL-1).  The CB extracts 

with higher phenolic content had higher antioxidant activity and thus suitable remedies for free radical 

mediated ailments.   

 

The UV-vis spectra of CB extracts had significant absorption in the UV region, and hence viable are 

ingredients in sunscreening preparations.  Further work will entail investigating the photostabilizing 

potential of CB phenolic acids on individual sunscreen absorbers and their mixtures. 

 

The polyphenols from plants draw increasing attention due to their potent antioxidant properties and 

marked effects in prevention of various oxidative stress associated diseases such as cancer.  In this 

work teas and fruit juice samples were purchased from a local South African market for determination 

of their phenolic content and antioxidant activity.  The Folin-Ciocalteu protocol was used to 

determine the total phenolic content and was expressed as gallic acid equivalents.  The antioxidant 

activity was tested by assessing the free radical scavenging activity of the stable radical, DPPH, and 

FRAP of the samples.  The two models compared well with the determined total phenolic content of 

tea samples expressed in gallic acid equivalent per gram of dry sample: GT (758.6 ± 20.48 mg g-1) ˃ 
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BT (580.1 ± 5.80 mg g-1) ˃ RH (573.5 ± 8.47 mg g-1) ˃ RHB (485.4 ± 6.70 mg g-1) ˃ RB (520.2 ± 

6.40 mg g-1).  The DPPH IC50 : GT(3.60 ± 0.02 µg mL-1) ˃ BT (4.50 ± 0.01 µg mL-1) ˃ RH (10.79 ± 

0.06 µg mL-1) ˃ RHB (11.69 ± 0.01 µg mL-1) ˃ RB (14.35 ± 0.04 µg mL-1).  This sequence was 

supported by the results of the FRAP analysis in mM of Fe(II) showing; GT (0.204 ± 0.03 mM)˃ BT 

(0.268 ± 0.03 mM) ˃ RH (0.290 ± 0.04 mM) ˃ RHB (0.321 ± 0.01 mM) ˃ RB (0.441 ± 0.06 mM).  

Thus, GT (green tea) had a higher antioxidant activity followed by BT (black tea).  All the tea 

samples showed the presence of polyphenols.  The fruit juices sampled also gave differences in total 

phenolic content: orange (611.7 ± 18.87 mg GAE L-1) > grape (503.5 ± 11.07 mg GAE L-1) > apple 

(334.4 ± 7.41 mg GAE L-1) and subsequently varying antioxidant activity.  The free radical 

scavenging activity done by using the stable DPPH radical indicated a stronger activity (IC50) in gallic 

acid equivalents for orange (211.3 ± 2.59 mg GAE L-1), > grape (263.2 ± 1.73 mg GAE L-1) > apple  

(423.3 ± 7.00 mg GAE L-1) and similar trend for FRAP, EC1: orange (2.52 ± 0.02 mM Fe(II)), > grape 

(4.47 ± 0.05 mM Fe(II)) > and apple  (4.55 ± 0.0 2 mM Fe(II)).  HPLC-UV analysis of the fruit juices 

indicated orange juice had the larger polyphenolic content.  All the beverages had a good activity and 

correlated well with the total phenolic content.  A comparison of the total phenolic content shows that 

the teas have higher phenolic content than the fruit juices.  Increased dietary intake of these beverages 

should be encouraged as a remedy for various oxidative stress related degenerative ailments and to 

prolong life expectancy. 

 

We investigated systems that could provide a lead to photostable sunscreen products. Our work 

demonstrates for the first time the photostabilization potential of plant extracts on common UV 

absorbers in sunscreens and skin-lightening preparations.  We have also shown that the incorporation 

of plant extracts may not require a combination of sunscreen absorbers to achieve broad-spectrum 

protection.  Therefore, the reduction in the number of organic absorbers incorporated in a formulation 

is likely to decrease potential side-effects.  Efforts have been made to profile the photoproducts in 

various plant extracts with a view to determining their identities as this is important for characterising 

their photo-toxicities in the future. 
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