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Abstract 

Ingestion of extracts prepared from various medicinal plants to induce or augment labour 

is common amongst Black South African women during the late stages of pregnancy. 

This applies particularly to the rural areas where modem health care facilities are often 

lacking. Many of these plants have not been investigated scientifically and one needs to 

substantiate claims of quality, safety and efficacy. Furthennore, it is believed that the 

consumption of these plant extracts can result in foetal meconium staining at delivery. 

An investigation into the uterotonic properties of three plants viz. Ekebergia capensis 

Sparrm. Clivia miniata (Lindl.) Regel. and Grewia occidentalis L. were carried out using 

guinea pig uterine smooth muscle in vitro. Supercritical fluid extraction was perfonned 

with water modified supercritical carbon dioxide to extract the uterotonic components. 

An attempt was also made to couple supercritical fluid extraction directly on-line to the 

bioassay so that on line screening of crude plant extracts could be perfonned within short 

periods of time. The effects of supercritical CO2 decompression on temperature and pH of 

the muscle bathing solution were considered since · these factors affect muscle 

contractility. The direct effects of excess CO2 on intracellular mechanisms were 

eliminated by constructing a CO2 reduction interface together with passage of carbogen 

which aided in the rapid displacement of excess CO2, As samples of these extracts were 

found to induce muscle contraction, supercritical fluid fractionation (SFF) was perfonned 

by sequentially increasing the fluid density. Extracted fractions were obtained by 

sequentially increasing the pressure at constant temperature and modifier concentration in 

an attempt to identify the active fractions. Extractions were perfonned at 200 atm, 300 

atm and 400 atm respectively. Subsequent testing of these fractions enabled the detection 

of active and inactive fractions as well as a fraction that had a spasmolytic effect on 

uterine muscle. The 400 atm extracts of E. capensis and C. miniata displayed maximum 

activity while only the 300 atm extract of G. occidentalis induced uterine muscle 

contraction. Subsequent analysis of the sequentially extracted fractions, by high 
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perfonnance liquid chromatography and micellar electrokinetic capillary chromatography 

revealed that certain compounds present in the fractions that stimulated muscle 

contraction, were sensitive to the extraction pressure hence making it possible to 

detennine the compounds that were likely to be active. Column chromatography 

followed by various spectroscopic techniques were perfonned in an attempt to isolate and 

elucidate the structures of the compounds that were present in the plant extracts. The 

extract of Ekebergia capensis yielded five known compounds (P-sitosterol, oleanonic 

acid, 3-epioleanolic acid, 2,3,22,23-tetrahydroxy-2,6,1 0, 15,19 ,23-hexamethyl-6, 1 0, 14, 18-

tetracosatetrene and 7 -hydroxy-6-methoxy coumarin. The extract of Clivia miniata 

yieded linoleic acid and 5-hydroxymethyl-2-furancarboxaldehyde while the extract of 

Grewia occidentalis yielded 3-( 4-hydroxy-3-methoxyphenyl)-2-propenal, a novel 

compound 2,2' ,6,6'-tetramethoxy-4' -al-4-( ro-oxo-E-propenyl)-biphenyl and oleanonic 

acid. The pure compounds were further evaluated pharmacologically to identify the 

active components and assess the physiological mode of action by the use of various 

receptor blockers. Oleanonic acid, 3-epioleanolic acid, linoleic acid and 5-

hydroxymethyl-2-furancarboxaldehyde and 3-(4-hydroxy-3-methoxyphenyl)-2-propenal 

were found to induce an agonistic muscle response. All these compounds were observed 

to mediate their effects through the cholinergic receptors. The results obtained in this 

study supports the claim of these plants possessing uterotonic properties. 
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Figure 8.6 
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CHAPTER 1 

Introduction and Aims 

Despite the dramatic advances made in orthodox medicine over the past 100 years, there 

has been an increasing interest in complimentary systems (1). About 80 % of the world's 

population relies on traditional medicines, and governments of Third-World countries, 

unable to sustain a complete coverage of modern drugs, have encouraged the rational 

development of traditional treatments. Furthennore, the services and advice of indigenous 

practitioners are valued because they are offered in tenns that patients can understarid and 

in the context of cultural values and practices that are shared by both patients and healers 

alike. 

The plant kingdom constitutes an abundant source of new chemical products which may 

be important due to their biological properties and in particular because of their potential 

use in medicine (2). Many plants produce secondary metabolites which have extensive 

drug effects. Table 1.1 outlines a few examples of important constituents produced by 

plants. This outline also shows some of the important constituents besides drugs, such as 

the essential oils which are used for foods etc. 

Traditional medicine used during pregnancy currently still plays an integral part in the lives 

of most black South African women. This applies particularly to the rural areas where 

modern health care facilities are often lacking. Fertility is a dominant theme as it ensures 

the preservation and propagation of the tribe. Children are regarded as an insurance 

against loneliness and poverty in old age and, as a result, a sterile woman is treated with 

contempt and pity (4, 5). Pregnancy is an event of great importance and many traditions 

and taboos are upheld to ensure a successful confinement and the birth of a healthy child. 

Traditional medicine recognises the value of antenatal medication and, as a result, the 

ingestion of plant extracts during pregnancy is common and as many as fifty seven 



different plants are used (6). Different concoctions known as 'isishilambezo' are 

consumed by women as antenatal remedies or, more specifically, to induce or augment 

labour. Many of these plants have not been investigated scientifically and one needs to 

substantiate claims of quality, safety and efficacy. Hence, investigation of components 

contained in these medicinal preparations is important as the utilization of the whole plant 

or other crude preparations for therapeutic purposes can have several drawbacks. These 

include: 

1. Variation in the concentration of the active constituents with topography, season, 

as well as with climatic and ecological conditions. 

2. Co-occurrence of undesirable compounds causing antagonistic, synergistic, or 

other undesirable, and possibly unpredictable, modulations of the bioactivity. 

3. Losses of bioactivity due to variability in collection, storage, and preparation of 

the raw material. 

Furthermore, it is believed that the consumption of these concoctions can result in foetal 

meconium staining at delivery. Meconium is a heterogenous substance found in foetal 

intestine and contains a number of pigments. Passage of meconium into the amniotic fluid 

followed by aspiration into the foetus can result in foetal distress. A study undertaken by 

Mitri et al. (7) has revealed a high incidence of foetal meconium passage in babies whose 

mothers had a history of consuming isishilambezo mixtures. Hence identification and 

isolation of these biologically active compounds is necessary since pure compounds can be 

administered in reproducible, accurate doses, with obvious benefits from an experimental 

or therapeutic point of view. Secondly, it permits the structural determination ofbioactive 

compounds that may enable the production of synthetic material, incorporation of 

structural modifications, and a rationalization of mechanisms of action. This, in turn, will 

enable investigations of structure/activity relationships, facilitating the developments of 

new compounds with similar or more desirable bioactivities. Hence this study is aimed at 

making an important contribution to the welfare of black South Africans. 
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Tablel.1 Selected examples of important bioactive substances 

from natural sources (3). 

Biochemical class Botanical source Biological activity 

1. Glycoside 

* Anthraquinones Rhamnus purshiana Cathartic 

Barbaloin Aloe barbadensis Cathartic 

2. Steroids 

Diosgenin Dioscorea spp. **Oralcontraceptives, corticosteroids 

Digitoxin Digitalis spp. Cardenolides 

3. Alkaloids 

Atropine Atropa belladonna Parasympatholytics 

Colchicine Colchicum autumnale Antigout 

Vincristine Catharanthus roseus Anticancer 

Morphine Papaver somniferum Analgesic 

Quinine Cinchona spp. Antimalarial 

Reserpine Rauwolfia serpentina Hypotensive 

Artemisinine Artemisia annua Antimalarial 

4. Limonoid 

Azadirachtin Azadirachta indica Antifeedant pesticide 

* ActIve as the glycosIde 

** After chemical modification 

This project is a multidisciplinary approach to the analysis of medicinal plants consumed 

during pregnancy in an attempt to validate the physiological properties these plants are 

said to manifest as well as document any toxic effects. The preparation of plant extracts 

for scientific analysis is currently usually still performed by classical liquid solvent 

extractions in a Soxhlet apparatus. Unfortunately, liquid solvent extractions often require 

several hours or even days to perform, result in dilute extracts (which must be 

concentrated for trace analysis), and may not result in quantitative recovery of target 
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analytes. Furthermore, concerns regarding the hazardous nature of many commonly used 

solvents together with the cost and environmental dangers of waste solvent disposal has 

given support to the development of alternative sample extraction methods. The 

limitations of conventional methods have fueled interest in the development of 

supercritical fluid extraction (SFE) as an alternative to extractions using liquid solvents. 

The aims and objectives of this work were to investigate the possibility of using 

supercritical carbon dioxide to extract the uterotonic components from three selected 

plants and to isolate and elucidate the structures of the biologically active compounds by 

various chromatographic and spectroscopic techniques. An attempt was also made to 

couple SFE directly on-line to a bioassay using guinea pig uterine smooth muscle in vitro 

so that on line screening of crude plant extracts could be performed within short periods 

of time. Further, a pharmacological evaluation of the isolated compounds was 

undertaken. The thesis ends with an overview of this investigation and the main 

conclusions which have been drawn from this study. 
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CHAPTER 2 

Theory of Supercritical Fluid Extraction (SFE) 

The solubility of solids in supercritical fluids was first discovered by Hannay and Hogarth 

in 1879 (1). Since then, the application of supercritical fluid extraction as an alternative to 

distillation and conventional solvent extraction has been considered by a number of 

industries including the food, polymer, petroleum and pharmaceutical industries (2-5) . 

This technique offers the analyst an alternative for preparing samples prior to analysis that 

is rapid and environmentally less hazardous. This chapter describes the basic principles 

involved in applying the technique to sample preparation. 

2.1 Definition ofa supercriticaI fluid 

In order to define a supercritical fluid (SF), one needs to consider the phase diagram 

illustrated in Figure 2.1. 

Pc 

Pressure 
Solid 

liquid 

Gas Gitical point 

Tc 
Temperature 

Figure 2.1 Pressure/temperature phase diagram of a substance. 
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If a liquid and a gas are in equilibrium and one moves along the gas-liquid coexistence 

curve towards the critical point, by increasing both the temperature and presure, the liquid 

becomes less dense because of thermal expansion and the gas becomes more dense as the 

pressure increases. At the critical point, the densities of the two phases become identical 

and the distinction between the gas and liquid disappears. The substance becomes a 

supercritical fluid and is characterized by a critical temperature and pressure (T~ and Pc). 

The region of interest for SFE is the area above the critical point where densities, 

solubilities, viscosities and diffusivities are intermediate between those of typical gases and 

liquids. 

2.2 Physical properties of supercritical fluids 

Supercritical fluids offer a convenient means to achieve solvating properties which have 

gas and liquid-like characteristics without actually changing chemical structure. By 

selective control of pressure and temperature one can access a significant range of 

physicochemical properties (density, diffusivity, dielectric constant, etc.) without ever 

passing through a phase boundary, e.g. changing from gas to liquid form. A supercritical 

fluid can therefore be considered a continuously adjustible solvent. Table 2.1 illustrates 

how supercritical fluids compare to gases and liquids in terms of the important 

physicochemical properties of each. 

Table 2.1 Comparison of physical properties of gases, liquids and supercritical 

fluids (6). 

Density (g/cm3
) 

Diffusion rates (cm2/s) 

Viscosity (g/cm.s) 

a at 25 DC and 1 atm 

b at Te and Pc to 4xPe 

Gasa 

0.6 - 2 x 10-3 

0.1 - 0.4 

1 - 3 X 10-4 
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Liquid3 SFb 

0.6 - 1.6 0.2 - 0.9 

0.2 - 2 x 10-5 0.1 - 4 x 10-3 

0.2 - 3 x 10-2 1 - 9 X 10-4 



These favourable physical properties of SFs are advantageous for extraction applications. 

2.3 Advantages of SFE 

SFE has several potential advantages over classical liquid extraction methods. 

Speed: Mass transfer is faster in a supercritical fluid than in liquid solvents because 

supercritical fluids have lower viscosities and higher solute diffusivities. The low 

viscosities provide favourable flow properties. This permits supercritical fluids to 

penetrate matrices with low permeability more readily than conventional solvents. The 

higher solute diffusivity is a significant property as rates of extraction are ultimately 

limited by the speed with which analyte molecules are transported by diffusion from the 

sample matrix into the bulk fluid. Hence SFE can usually be completed within a short 

period of time, compared to several hours for liquid solvent extractions. 

Variable solvent strength: The solvent strength of a supercritical fluid is a function of its 

density (7), which, in turn, is a function of temperature and pressure. The relationship 

between pressure, temperature and density may be described by an equation of state, a 

number of which have been developed by various workers (8, 9, 10). The general trend is 

for higher pressures (at a given temperature) to increase density and solvating power, 

while increasing temperature at a constant pressure will result in a reduction in density 

and hence solvent strength. These parameters (density, pressure, temperature) are, 

therefore, of prime importance in controlling the extraction process. This allows SFE 

parameters to be optimized for a target analyte, and provides a method to achieve class­

selective extractions from a single sample by simply extracting the sample at two 

different pressures with the same supercritical fluid. 

Reduction of liquid solvent usage: The large volumes of liquid solvents used for 

conventional extractions have caused recent concern because of their potential toxic 

nature and rapidly increasing disposal costs. Since most commonly-used supercritical 
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fluids such as CO
2 

are gases at ambient conditions and SFE effluents are typically 

collected in small volumes of liquid solvents (or no liquid solvent for on-line SFE 

methods), the need for liquid solvents is dramatically reduced. In a similar manner, the 

need to concentrate extracts prior to analysis of trace analytes is also greatly reduced. 

Simplified on-line coupling with chromatographic techniques: The gaseous nature (at 

ambient conditions) of most supercritical fluids also facilitates the direct coupling of SFE 

with GC and SFC. 

Analyte crystallization: Solid compounds may be crystallized from supercritical fluids 

and the size of the crystals manipulated by changing process pressures and temperatures. 

The ability to make small crystals is of interest to the pharmacuetical industry, where 

product morphology can be critical to drug uptake rates, and where mechanical 

fragmentation procedures may be unacceptable, owing to thermal instability or 

contamination risks (11). 

2.4 Selection of a supercritical fluid 

The critical pressure and temperature are two important parameters that need 

consideration when selecting a supercritical fluid. The analyst should strive to select a 

fluid that exhibits the best compromise in solubilizing the solutes of interest as well as 

mass transfer characteristics required to rapidly effect the extraction of the analytes. 

Qualitatively, the solvent strength of an eluent may be described by the solubility 

parameter introduced by Hildebrand and Scott (12). They stated that the solubility 

parameters of the solvent and the solute should be similar to achieve dissolution of the 

solute. This condition can be approximated if the solubility parameter of the analyte is 

known and if certain correlations are used, such as one proposed by Giddings et al. (13): 

P 
(2.1) 

P(liq) 
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where 8so1 is the Hildebrand solubility parameter, Pc is the critical pressure of the fluid, pis 

the density of the supercritical fluid, and P(liq) is the density of the fluid in its liquid state. 

Optimization of pressure and temperature will assure a high flux rate of the analyte into 

the extracting medium, thereby saving consumption of fluid, while assuring rapid sample 

processing. Figure 2.2 shows the dependence of the Hildebrand solubility parameter on 

temperature and pressure for supercritical C02. 

S 5.0 

4.0 

to 3.0 

· • • • • • 
2.0 • • • • · • · • • • • • • • 1.0 • 

0.7 

• • • • :-Tc · · · · · 

P~ure(atm) 

730 

145 

100 

80 

· 0.5 :-~_-::-__ --:-:~ __ ---.JL-__ ---1 ___ ~ __ -.J 
20 180 220 

Temperature eC) 

Figure 2.2 Effect of temperature and pressure on the Hildebrand solubility parameter 

for supercritical C02. (14) 
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The critical pressure, to a first approximation, determines the magnitude of the fluid's 

solvent power in the condensed state and can therefore be used as a crude guide to match 

the fluid with the anticipated polarity of the compounds to be extracted. For example, 

ethane has a lower critical pressure than carbon dioxide as shown in Table 2.2. Based on 

this criterion, ethane would not dissolve a moderately polar solute to the same extent as 

carbon dioxide. Likewise, fluids which exhibits higher critical pressures than carbon 

dioxide, are known to solubilise polar compounds at higher concentrations in the fluid 

phase than supercritical CO2• 

The critical temperature of the fluid is also important when one considers the effect of 

extraction temperature on the thermal stability of target analytes. Fluids which are 

characterized by high critical temperatures require elevated extraction temperatures in 

order to effect extraction in the supercritical state. 
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Table 2.2 Critical conditions ofSFE solvents. (15) 

Compound Critical Critical Critical Acentric Dipole 

temperature pressure density factor moment 

(OC) (atm) (glcm3) (0)) (D) 

Ethylene 9.9 50.5 0.23 - -

Chlorotrifluoromethane 28.8 38.2 0.58 0.198 0.5 

Carbon dioxide 31.0 72.9 0.47 0.239 0.0 

Ethane 32.2 48.2 0.20 0.099 0.0 

Tetrafluoroethylene 33.3 38.9 0.58 - -
Nitrous oxide 36.5 71.7 0.46 0.165 0.2 

Methyl fluoride 44.6 58.0 0.31 - -
Sulfur hexafluoride 45.6 37.1 0.75 0.286 0.0 

Chlorodifluoromethane 96.4 48.5 0.52 0.221 1.4 

Propane 96.7 42.0 0.22 0.153 0.0 

Carbon disulfide 104.8 65.0 0.45 0.109 0.0 

Dichlorodifluoromethane 111.7 39.4 0.56 - -
Dimethyl ether 126.9 52.6 0.26 - -

Ammonia 132.3 111.3 0.24 0.250 1.5 

Sulfur dioxide 157.5 77.7 0.53 - -

Nitrogen dioxide 157.8 100.0 0.56 - -
Methyl ethyl ether 164.7 43.4 0.27 - -
Diethyl ether 193.6 36.3 0.27 . - -
n-Pentane 196.6 33.3 0.23 0.251 0.0 

Isopropanol 235 .3 47.0 0.27 0.665 1.7 

Acetone 235.9 47.0 0.28 0.304 2.9 

Methanol 240.3 78.9 0.27 0.556 1.7 

Ethanol 243.4 63.0 0.28 0.644 1.7 

Chloroform 263.4 54.0 0.58 0.218 1.1 

n-Heptane 267.0 27.0 0.24 0.349 0.0 

Water 374.0 218.0 0.32 0.344 1.8 
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2.5 Unique properties of SF-C02 

Supercritical carbon dioxide has been the fluid of choice in many SFE studies. This fluid 

has the added advantage over other supercritical solvents because it is non-toxic, non­

flammable, environmentally acceptable, inexpensive, and leaves no solvent residue. In 

addition, the critical temperature is low (31°C), thus extractions can be performed at 

moderate temperatures hence preventing the degradation of thermally labile compounds. 

Modest compression of CO2 produces a substantial change in its fluid density due to the 

high non-ideality exhibited by this fluid as seen from the pressure-density isotherm (Figure 

2.3). Even though supercritical CO2 preferentially extracts non-polar compounds, it can 

exhibit an induced dipole moment, which enhances the extraction of moderately polar 

solutes into the fluid phase (16). 
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Figure 2.3 Effect of pressure changes on density of supercriticaI CO2 at different 

temperatures. (17) 
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2.6 Generalized method and instrumentation requirements for SFE 

The essential equipment needed to perform SFE is shown in Figure 2.4. A high pressure 

pump is used to provide pressurized fluid (at a constant pressure) to the sample which is 

contained in the extraction vessel or sample cell. The extraction vessel is housed in an 

oven to maintain the temperature above the critical temperature of the extraction fluid . 

The extraction fluid is pumped through the extraction vessel, the analytes are partitioned 

into the supercritical fluid, and the analytes are collected after depressurization of the 

supercritical fluid. The depressurization step and the flow control is achieved by using a 

back pressure regulator or a length of fused silica tubing (typically 10 to 50 J.lm i.d.). 

Extracted analytes are most often collected in a small volume of liquid solvent (off-line 

SFE) or the analytes transferred directly to a chromatographic system (on-line SFE) like 

SFC or GC. Alternate methods such as cryogenic trapping (18, 19) or collection onto a 

sorbent cartridge have also been used (20). 

The pump is usually a syringe or reciprocating type and requIres an external cooling 

source to assure liquefaction of the fluid. If necessary, the modifier component can be 

added by methods discussed in section 2.8.1. 

13 



oven 

control valves 

~ 
linear restrictor 

.-----{~/ 

~ 
collection vessel 

with suitable solvent 

I....------if- extraction vessel 

Figure 2.4 Schematic diagram of an SFE setup for off-line recovery of analytes. 

Extraction cells have been fabricated out of a variety of materials appropriately suited to 

pressures to be used, but most cells consist of a tubular metal cavity with associated 

compression fittings. In the past, many investigators have utilised tube fittings or HPLC 

columns as extraction cells (21), but recently, commercially available extraction cells with 

finger-tight fittings have become available. Figure 2.5 shows typical vessels currently 

employed in SFE. 
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Figure 2.5 Typical extraction cells used in analytical SFE. 
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2.7 Selection of SFE conditions 

As stated earlier, the density, pressure and temperature are of prime importance in 

controlling the extraction process and, although some relationships between them and 

solubility have been developed (22), it is generally not possible to predict ideal extraction 

conditions on a purely physicochemical basis. However, it is often possible to predict the 

overall feasibility of an extraction or initial extraction condition. In SFE, the solvent 

strength of a given fluid is primarily dependent upon its density. However it is much 

easier to measure directly and control the pressure (and temperature) than to measure 

directly and control the fluid density. It is possible, however, at a specific temperature, to 

relate fluid pressure to density, thus allowing measurement and control of the density by 

measuring and controlling the pressure. For low density gases, this is easily done with the 

ideal gas law, PVIRT = 1. (The molar volume, V, is the reciprocal of the molar density. 

Knowledge of the gas' s molar mass, M, makes conversion from molar density to mass 

density trivial: mass density, p, is MIV). At high densities, which are frequently 

encountered in SFE, the ideal gas law is no longer valid. The work by Pitzer (23, 24), 

however, allows the ideal gas law to be extended by adding another term, called the 

compressibility factor, which is a function of the pressure, temperature, and molecular 

identity of the fluid. With this extension, the gas law becomes PVIRT = z, where z is the 

compressibility factor. Pitzer was able to reduce the molecular identity terms of z to a 

single number, called the acentric factor, 0). This factor attempts to account for both the 

molecular size and shape. The value of the acentric factor (refer to Table 2.2) was taken 

to be the ratio of the vapour pressure of the substance at 70% of its critical temperature to 

that at its critical temperature. Thus, at a given temperature, pressure, and known acentric 

factor, z can be determined (25). This allows V to be determined from the gas law (V = 

zRTIP) and thus the mass density to be determined if the molar mass of the fluid is known. 

The same principle described for pressure to density conversion of a single fluid can be 

used for binary fluids as well. When two fluids are mixed, critical parameters can be 

calculated based on the physical-chemical properties and the mole fraction of each fuid in 

the mixture (26). 
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2.8 Use of modifiers in SFE 

Difficulties are experienced when fairly polar analytes need to be quantitatively extracted, 

as these analytes display a reduced solubility in the supercritical CO2 phase. In these cases 

a fluid with a higher solvent strength should be chosen, but the use of more polar fluids is 

severely limited by practical considerations. Supercritical ammonia would be very 

attractive from a solvent strength point of view, but it is difficult to pump as ammonia is 

chemically reactive (dissolves pump seals) and is likely to be too dangerous for routine 

use. Supercritical methanol is also an excellent solvent but is less attractive because of its 

high critical temperature and because it is a liquid at ambient conditions, which 

complicates sample concentrations after extractions. Despite its excellent characteristics 

as an SFE fluid, the routine use of CHCIF2 is also not likely because of negative 

environmental effects. Hence CO2 still remains the fluid of choice in many applications. 

In the case of polar analytes, it becomes desirable to add a polar co-solvent to the 

supercritical fluid to enhance the solubility of an analyte in the extracting medium. Such 

co-solvents (also called modifiers or entrainers) are usually organic solvents that are added 

to the source of compressed fluid . Table 2.3 lists examples of commonly-used modifiers 

in SFE applications. 

17 



Table 2.3 Examples of commonly-used modifiers in SFE applications. (26) 

Modifier Tc eC) Pc (atm) Molar mass Dielectric 

g/mol constant at 20°C 

Methanol 239.4 79.9 32.04 32.70 

Ethanol 243.0 63.0 46.07 24.30 

Propan-l-ol 263.5 51.0 60.10 20.33 

Propan-2-01 235.1 47.0 60.10 19.30 

Hexan-l-ol 336.8 40.0 102.18 13.30 

2-Methoxyethanol 302.0 52.2 76.10 16.93 

T etrahydrofuran 267.0 5l.2 72.11 7.58 

1,4-dioxane 314.0 51.4 88.11 2.25 

Acetonitrile 275.0 47.7 4l.05 37.50 

Dichloromethane 237.0 60.0 84.93 8.93 

Chloroform 263.2 54.2 119.38 4.81 

Carbon disulphide 279.0 78 .0 76.13 2.64 

Water 374.1 217.6 18.01 80.1 

2.8.1. Methods of adding modifiers 

There are a number of ways in which modifiers can be added to primary supercritical fluids 

(27-30). Premixed cylinders can be purchased from commercial sources. These cylinders 

have a discrete concentration level of a specific modifier in CO2 for example. The cylinder 

is directly connected to the supply pump, which then delivers prernixed modified fluid to 

the SFE vessel. One disadvantage of this technique is that, to obtain different percentages 

of modifier, different cylinders with a range of concentrations of modifier are necessary. 

Also, it has been experimentally observed that, as material is drawn from the cylinder, a 

shift in the vapour-liquid equilibrium results, leading to a change in the concentration of 
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the modifier in the liquid phase (31). As the liquid phase is drawn, CO2, being the more 

volatile component, vapourises disproportionately occupying the liberated volume. As a 

result, the concentration of the modifier in the liquid phase increases. Such behaviour has 

been found to give rise to reproducibility problems in extraction efficiency (32). 

Modifiers can also be added to CO2 by using two separate supply pumps. One pump is 

used primarily for CO2 delivery and the second pump is used for modifier delivery. 

Downstream of both these pumps is a mixing tee where the modifier is equilibrated with 

either liquid or supercritical CO2 in a thermostatted zone. A schematic diagram is shown 

in Figure 2.6. The mixed fluid is then delivered to the extraction vessel. 
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Figure 2.6 Schematic diagram of modifier delivery system for SFE. 
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Unlike the first method of introducing modifiers, in this case the compressibility of the 

fluids must be taken into account otherwise pumping of the modifier into the CO2 pump 

can occur. 

The next and perhaps the most effective way (if matrix-analyte interactions are strong) of 

delivering a modifier for SFE is by directly adding the modifier to the sample matrix prior 

to extraction. In this respect, the highest concentration of modifier is delivered to the 

matrix. Moreover, one can screen a number of modifiers and modifier concentrations in a 

relatively rapid fashion without purging the entire system between experimental runs. 

Ashraf-Khorassani and Taylor compared the extraction efficiency of PCBs from river 

sediment using two different methods for incorporation of modifier into the SFE system 

(33). They found that off-line addition of modifier to the SFE vessel prior to extraction 

was more effective in promoting extraction efficiency of PCBs than using in-line modifier 

addition. Also, direct spiking of the matrix required less modifier than the in-line approach 

for achieving the same level of recovery. 

Hawthome et al. developed a simple saturation chamber to provide modified supercritical 

CO2 and used this device (Figure 2.7) for the extraction of linear alkylbenzenesulfonates 

from soil, sediment and municipal wastewater treatment sludge (34). Reproducible and 

quantitative recoveries (>90%) were achieved. 
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Pump 

Figure 2 .7 Schematic diagram of device used to modify supercritical CO2 (34). 

Arrows indicate direction of flow. Components: A = four port valve; 

B = 'Parker" or 'Swagelok" brand 'tee" tubing fitting (1/16 x 1116 x 1/4 inch 

stainless steel); C = 114 inch normal pipe thread x 114 inch tubing stub fitting 

welded into D; D = modifier chamber; E = 1116 inch o.d. stainless steel 

tubing; F = heating coil; G = extraction cell; H = heater; I = restrictor; 

J = collection vial. 
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With any method of adding modifiers to the primary fluid, it must be remembere~ that 

the addition of modifiers changes the critical point of the mixture from one recorded for 

the pure fluid. The critical temperature of the mixed solution is higher than that of the 

pure fluid, and therefore the extraction temperature should be raised to ensure that a 

single phase supercritical fluid is present during SFE to avoid possible solute partitioning 

between the two phases that might coexist. Hence it is important to recognise the 

magnitude of this change so as to adjust the experimental parameters accordingly. The 

solubility of the co-solvent in the supercritical fluid is also determined by the extraction 

pressure, therefore the quantity of the cosolvent that can be added to the fluid phase must 

be regulated. For example, Figure 2.8 shows the relationship between the critical 

temperature, pressure and mole fraction of a CO2-methanol mixture. Clearly, if a 

methanol mole fraction of 0.2 in CO2 was required for extraction, it would be necessary 

to operate above 150 bar (15 MPa) and 80°C in order to maintain a homogenous 

supercritical fluid (23). Water is also scarcely soluble in liquid carbon dioxide (around 

0.1 % mlm at 20°C); its solubility increases in fluid CO2 with increasing temperature 

(around 0.3% mlm at 50°C) 
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Figure 2.8 Relationship between the critical temperature, pressure and mole fraction of 

CO2-methanol mixtures according to Saito and Nitta. (35) 
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Furthermore, depending upon the modifier identity, the nature of the analytes of interest, 

as well as the type of sample matrix, there is a need to apply an equilibration period when 

using modifiers in SFE. If the modifier has not reached a level of equilibration with the 

supercritical fluid (i.e. existing as a one phase system) as well as the sample matrix, there 

could be situations where the enhancement of the extraction efficiencies using modifiers 

are not seen. In these cases, what happens is that the modifier is displaced out of the 

extraction vessel into the collection vial without achieving an interactive extraction. In 

most situations, when a modifier is required to enhance SFE efficiencies, a static 

equilibration period is recommended. 

2.9 Modes of SFE 

Two common modes are used for SFE; dynamic and static. For dynamic SFE, the sample 

is constantly swept with fresh supercritical fluid at a flow rate determined by the extraction 

pressure and the dimensions of the outlet restrictor. Dynamic SFE continually provides 

new fluid to the sample, and is more effective when the supercritical fluid is likely to 

become saturated with the target analytes. 

For static SFE, the extraction vessel is pressurised with the fluid and the sample is 

extracted with no outflow of the supercritical fluid. After the extraction is thought · to be 

completed, a valve is opened at the outlet of the cell to allow the analytes to be swept 

from the cell into the collection vial. Typically, a static extraction is followed by several 

minutes of dynamic extraction to recover the analytes. Static extraction has the 

advantages that less fluid is used and that liquid polarity modifiers can be used by simply 

adding them to the cell prior to pressurisation. However, in a static mode, extraction 

times may be longer because the movement of components must rely on diffusion as 

opposed to the mass action of the carrier in dynamic systems. 
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2.10 Kinetics of SFE 

It is important to understand the kinetics of SFE. Extraction by a supercritical fluid is 

never complete in finite time. It is relatively rapid initially, but then there follows a long 

tail in the curve of percent extracted versus time as illustrated in Figure 2.9. In a typical 

situation, 50% is extracted in ten minutes, but it may be a hundred minutes before 

approximately 99% is extracted. It is not correct, therefore, to assume that extraction is 

essentially complete if it has been carried out for two consecutive equal periods of time 

and the second period produces only a fraction of the compound extracted in the first 

period. 

Maximum % Extracted 

Equlibrium­
Controlled 

Phase 

Transition 
Phase 

DiHusion-Controled Phase 

Volume of Fluid 
Time of Extraction 

Figure 2.9 Generalised extraction curve of percent solute extracted as a function of 

volume of extraction fluid or time of extraction. 
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As shown in the above figure, the initial portion of the extraction curve is linear, indicating 

that quasi-equilibrium conditions are governing the partition of the solute into the mobile 

dense fluid phase. After a finite time, the yield curve starts to become convex with respect 

to the time axis as the extraction experiences a transition from equilibrium to diffusion 

controlled kinetics. In the final stage of the extraction, the kinetics are dominated by 

diffusive mechanisms which may be quite complex, depending on the morphology of the 

substrate being extracted. For the case of the solid substrate, factors such as the degree of 

swelling of the substrate can have a profound effect on the yield curve. 

Three interrelated factors influence recovery as shown in the SFE triangle below. 

Solubility 

Diffusion Matrix 

For extraction to be successful, the analytes must firstly be sufficiently soluble in 

supercritical fluid. This factor is especially important at the beginning of extraction, . when 

extraction is occuring at a higher rate. 

Secondly, the solute must be transported sufficiently by 'diffusion' from the interior of the 

matrix in which it is contained. The 'diffusion' process may be normal diffusion of the 
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solute, or it may involve diffusion of the fluid into the matrix and perhaps subsequent 

replacement of solute by solvent molecules on surface sites. 

The third factor is that of the matrix. Even though a particular compound may be soluble 

in a supercritical fluid, not all of it may be necessarily extracted from the matrix due to 

adsorption effects. 

2.11 Physical matrix effects 

The physical morphology of the substrate undergoing SFE can have a pronounced 

influence on the efficiency of the extraction and the rate at which it is conducted. In 

general, the smaller the particle size of the substrate, the more rapid and complete the 

extraction will be. This effect is largely due to the shorter internal diffusional path lengths 

over which the extracted solutes must travel to reach the bulk fluid phase. Synder et al. 

have carried out studies and shown that the geometric size of the matrix particles can 

influence the speed and completeness with which SFE can be conducted (36). As in solid­

liquid extraction, an increase in the matrix's porosity will generally promote a more 

efficient and rapid SFE. 

2.12 Impact of matrix on extraction kinetics 

The rate of removal of a solute from a matrix using SFE is a function of its solubility in the 

fluid media and the rate of mass transport of the solute out of the sample matrix. Rate 

liiniting kinetics can adversely impact on the rapid extraction of an analyte despite 

favourable solubility charactersitics in the supercritical fluid medium. As shown in Figure 

2.10, there are four major mass transport mechanisms to consider: 

1. analyte diffusion through the internal volume of the sample, 

2. surface desorption of the analyte, 

3. diffusion of the analyte through a surface boundary layer, and 

4. transport in the bulk supercritical fluid phase. 

26 



SF flow 

• 

3 4 ... -~ . 

Figure 2.10 Mass transport steps for the SFE of an analyte from a porous matrix partcle. 

If the rate detennining step is intraparticle diffusion, then the rate of extraction will be a 

function of the particle size of the sample matrix. It should be recognised however, that 

some sample matrices when exposed to supercritical fluids swell, thereby facilitating the 

mass transport of the analyte from within a sample matrix (37). An excellent example of 

this principle is the observation that polymeric films are plasticized by supercritical gases 

(38). This undoubtably contributes to the success in applying SFE for the analysis of 

additives in plastics (39). 

Surface desorption of an analyte by a supercritical fluid (step 2) is an important step in 

SFE for many sample types. For certain analyte-matrix combinations, the solvating 

power of the supercritical fluid alone will not suffice to assure a complete or rapid 

extraction. The use of a modifier will frequently accelerate the desorption of an analyte 

from the surface of the sample matrix. Wheeler and McNally have shown that the 

extraction efficiencies of herbicides from soil can be increased by direct addition of 

micro litre quantities of ethanol or methanol to the sample before commencement of 

extraction (40). 
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Diffusion of the analyte through a surface boundary layer (step 3) may also kinetic ally 

influence analyte extraction. As noted by King (41) and Porcher (42), many solid 

samples will promote condensation of a surface layer of the dense extraction fluid at the 

fluid-solid interface. The density of the adsorbed surface film will partly depend on the 

pressure applied to the supercritical fluid and the affinity of the sample matrix for the 

fluid. The development of a condensed fluid film at the surface of the sample matrix can 

aid in the recovery of certain analytes through competitive adsorption at the sample 

interface (41) as well as inhibit the transport of the analyte into the fluid phase. The 

kinetics of transport through a rate limiting surface film will primarily depend on the 

thickness of the surface film and the total surface area of the sample matrix. 

The final step (step 4) depicted in Figure 2.10 is the transport of the analyte in the bulk 

fluid phase. Such transport is governed primarily by the diffusion coefficients of the 

analyte in the fluid medium and is independent of the sample matrix. 

Various models for SFE, mostly based on mass balance, have been proposed (43, 44, 45, 

46). However, as most models proposed require matrix characteristics which, in the case 

of natural products, are difficult to understand, and, since samples are never spherical and 

vary in particle size, it is not possible to model an extraction exactly. In many cases, the 

simple first order extraction rate law or hot ball model applies (43). The model describes 

a solid sphere of radius r with a uniform initial concentration of material that is immersed 

in a fluid in which the concentration of extracted material is zero. If the mass of the 

solute is mo initially and m after a given time period, then a plot of In (mlmo) against 

time has the form shown in Figure 2.11. The initial steep fall represents the extraction of 

the majority of the material. The exponential behaviour of the extraction after this initial 

period means that extrapolation may be used to obtain the actual mass of the analyte 

without exhaustively extracting the sample. If the extraction is carried out to obtain an 

extracted mass m 1, followed by two subsequent time periods to obtain masses m 2 and 

m3, then it can be shown that the total mass of sample is 
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Figure 2.11 Plot ofln (mlmo) against extraction time for the supercritical fluid extraction 

of camphor from rosemary.(47) 
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2.13 Class-selective SFE 

The coextraction of unwanted solutes along with target analytes frequently occurs in 

analytical SFE, whether conducted in the off-line or on-line mode. As discussed earlier, 

one of the potential advantages of SFE over liquid solvent extraction is that the solvent 

strength of a SF can be changed by simply changing its density. Thus, the potential to 

achieve class-selective extractions exists by extracting the same sample at different 

pressures with the same fluid. Although obtaining a pure analyte from complex matrices 

using SFE is unlikely, sequential extractions of different compound classes have been 

demonstrated. For example, alkanes can be extracted from urban air particulates with CO2 

at 75 atm (45°C) whereas the polyaromatic hydrocarbons (PARs) remain unextracted 

until the pressure is raised to 300 atm. By sequentially extracting the air particulates at 

these two pressures, 85-90% selectivities can be achieved (48). Class selective SFE has 

also been applied to the extraction of target analytes from a bulk matrix (e.g., fat) which is 

itself soluble in supercritical CO2 under most conditions. Even though fat components are 

highly soluble above pressures of ca. 120 atm, selective extracts of non-polar analytes 

have been achieved by extracting the samples at lower pressures. King has used this 

approach and achieved quantitative recovery of pesticides from fat samples, yet the 

extracts were sufficiently fat-free to allow direct GC analysis (49). Selective extraction of 

lactones from milk fat triglycerides has also been reported (50). A single extraction 

concentrated the lactones by 20 to 50 times, while a two step extraction yielded a 

concentration factor of ca. 500 times. Class selective extractions have also been achieved 

by depositing the analytes onto a sorbent column, then eluting them with SFs in SFC 

mode. Such approaches have been used to achieve rapid fractionation of alkanes, alkenes, 

and aromatics from gasoline (51, 52) and fractionation of saturates, aromatics and 

asphaItenes from crude oil (53). These favourable extraction properties of supercritical 

fluids makes this technique appropriate for a wide variety of applications and there is no 

doubt that SFE will continue to find use in the analyicallaboratory. 
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CHAPTER 3 

Application of SFE to natural products: 

A literature review 

3.1 Introduction 

Supercritical fluids were used as a mobile phase in a chromatographic separation as early 

as 1962 by Klesper et al. (1). Despite the report of this application, the advantages of 

supercritical fluids in the extraction and chromatography of natural products have only 

been properly realised recently (2). SFE is being increasingly used as a sample preparation 

method for the analysis of solutes in solid and liquid matrices. Traditionally SFE was used 

for many years for preparative scale isolation of compounds from plant matrices. 

Currently, commercialized industrial scale processes such as the decaffeination of coffee 

and the extraction of hops, spices and tobacco exist. 

The extraction of caffeine from green coffee beans is achieved by soaking the beans in 

water and then extracting them in the pressure range of 160 to 220 bar and at 

temperatures between 70 to 90°C. Under these conditions, the extraction is extremely 

selective and the caffeine content can be reduced from 0.7-3% to 0.02%. (3). The caffeine 

is food grade and is incorporated into beverages such as cola. 

Extraction of hops is an important development in the brewing industry. The valuable 

constituents of the hop resins give the characteristic bitter taste of the beer. Both are 

unsaturated acids containing about 25 carbon atoms together with hydroxy and keto 

groups. With supercritical CO2, almost 99% extraction of the humulones is achieved , 

well above the required minimum of95% (4). 
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Spice extraction has also become a commercial operation. Many spices are extracted, 

usually with dichloromethane and, of these, extractions with supercritical CO2 have been 

reported for black pepper, nutmeg and chillies. Piperine [3.1], makes up 98% of the hot 

principle of pepper. 

o 
> o 

[3.1 ] 

Extraction of ground black pepper, followed by transfer of the supercritical phase to a 

vessel held at below supercritical temperature and pressure, produced a yellow pasty 

extract containing nearly 98% of the piperine. Similarly, extraction of ground chillies gave 

a red oil containing 97% of the main alkaloid, capsaicine [3.2] (5). 

[3.2] 

Tobacco differs as a starting material in that it is the extraction residue, the treated 

tobacco, that is wanted, whereas the extracted nicotine is of secondary interest. Since 

tobacco treated with organic solvents often acquires a rubbery texture, special processes 

have to be considered to avoid this, as it is disadvantageous to further processing. 
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Extraction with SC-C02 is one possible means, though it causes some expansion of the 

tobacco. 

Many other applications involving process scale SFE have been documented (6,7) . These 

include refining of triglycerides and fatty acids, the production of essential oil extracts 

from natural products, and the production of low fat and low cholesterol foods. Apart 

from these processes, current trends are towards the application of SFE as an analytical 

extraction method (8) and numerous analytical scale SFE procedures have been 

published. These procedures are concerned more with the extraction of analytes of 

interest from a bulk matrix as a sample preparation technique prior to their 

characterisation by other analytical methods such as chromatographic, spectrometric, 

spectroscopic and gravimetric techiques. It is therefore potentially very useful for the 

extraction of natural products prior to structural characterisation. 

This chapter reviews the use of SFs for the analytical scale extraction of natural products. 

Different classes of compounds have been discussed and each highlights the applications 

where SFE was shown to be advantageous. 

3.2. Alkaloids 

Alkaloids are structurally the most diverse class of secondary metabolites encounted, most 

commonly, in the plant kingdom, but representatives have been isolated from fungi and 

mammals (9). Their manifold pharmacological activities have always excited man's 

interest. The most common alkaloid which has been extracted by SFE is caffeine. 

Sugiyama et al. (10) demonstrated the extraction and analysis of caffeine from roasted 

coffee beans by direct coupling of SFE-SFC. The extraction conditions such as pressure, 

temperature, water content and extraction times were initially investigated by off-line 

SFE-SFC. SFE was performed with CO2 at 20 rvIPa; 20% added water and 48°C for 60 

minutes. A JASCO Fine Pak Sn.. C18 HPLC coLumn was used with a methanol-water 

(55:45) mobile phase at a flow rate of 1.2 ml per minute. UV detection was performed at 

272 nm. 
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Ndiomu and Simpson (11) compared SFE with liquid extraction for the isolation of 

caffeine from kolanuts. Low SFE recoveries of 53.7% were obtained while liquid 

extraction with tetrahydrofuran and methanol yielded 97,0% and 99,4% respectively. The 

SFE recoveries were attributed to two factors . Firstly, the extraction was carried out at a 

comparatively low density although the system was operated at its maximum pressure, and 

secondly thekolanuts were dried before extraction. The presence of water in the sample 

is known to enhance the solubility power of the SF and this has been demonstrated by 

Janicot et al. (12) for the extraction of alkaloids thebaine, codeine and morphine from 

poppy straw. Elizabeth et al. (13) also isolated caffeine from coffee powder and 

performed structural confirmation by FTIR and FTN1vIR. 

The extraction of monocrotaline, a hepatotoxic pyrrolizidine alkaloid, from the seeds of 

Crotalaria spectabilis was successfully performed by Schaeffer et al. (14). Supercritical 

CO2 with 5-10 mol percent ethanol was employed at a pressure of 10.34 1vfPa and 22.15 

1vfPa and 35-55 0c. However, the presence of highly soluble lipid material in the seeds 

resulted in low monocrotaline percentage (approximately 24% mlm) in the extracts. A 

cation-exchange resin trap was incorporated to selectively trap the alkaloids after SFE, in 

preference to the co-extracted lipid material (15). The reported yield of monocrotaline 

increased to 95% mlm. 

The pyrrolizidine alkaloid fraction of two Senecio species (Senecio inaeqllidens and S. 

cordatlls) was extracted by off-line SFE and analysed by capillary GC (16). SFE was 

carried out with a home-assembled apparatus, using methanoVC02 as the extracting 

medium, at 55°C and 15 1vfPa. This technique was found to produce cleaner extracts and 

higher recoveries. Figures 3.1 and 3.2 show the capillary GC/FID pattern of the extracts 

from S. inaequidens and S. cordates respectively. SFE required a smaller amount of 

sample, gave a quicker extraction, a simplified fraction clean-up and a higher recovery. 
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Figure 3.1 . Capillary GC/FID pattern of Senecio inaequidens pyrrolizidine alkaloid 
fraction extracted by off-line SFE. (16) 
1, senecivernine; 2, senecio nine; 3, seneciphylline; 4, integerrimine; 
5, retrorsine; 6, usaramine; 7, desacetyl doronine; 8, doronine. 
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Figure 3.2. Capillary GCIFID pattern of Senecio cordatus pyrrolizidine alkaloid fraction 
extracted by off-line SFE. (16) 
1, seneciverine; 2, senecionine; 3, seneciphylline; 4, spartiodine; 
5, integerrimine; 6, jacobine; 7, jacozine. 
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The extraction of alkaloids thebaine, codeine and morphine from poppy straw was also 

investigated. (1 2). Extraction with pure SC-C02 at 20 MPa and 40.5 QC was unsuccessful, 

hence the influence of various polarity modifiers were considered. It was found that 50 % 

methanol in CO2 was necessary in order to achieve quantitative extraction yields for 

morphine. A mixture of 25% methanol, 0.22% methylamine and 0.34% water produced 

the same effect as 50 % methanol in CO2 . The methylamine:water mixture, however, had 

a major drawback in that morphine in the presence of the amine degraded in the presence 

of light. Hence, CO2:methanol:water mixtures were investigated and it was observed that 

by increasing the water content in the extraction fluid, the extraction rate for thebaine was 

dramatically enhanced (Figure 3.3). 
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Figure 3.3. Influence of water on the extraction curves of thebaine at constant mass flow­
rate (12). SFE was performed at 20 MPa and 40.5 QC using CO2:methanol: 
water mixtures of the following w:w:w compositions: 

050:32:18; A 50:36:14; .50:40:10; • 50:44:6; .50:46:4; 
o 50:49: 1; 0 50:49.5 :0.5; 650:50:0 
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Sharma et al. investigated the use of SC-C02 for the extraction of moist snuff (17) . Pure 

and methanol modified SC-C02 was used at 54.4 NIPa and 60 QC over a 20 min period. 

Methanol modified CO2 extracted compounds such as benzyl alcohol, benzothiazole and 

cotinine which were not present in the extracts obtained using pure CO2. 

The extraction of vindoline, an indole alkaloid from Catheranthus rose us was investigated 

by Kyu-Min et al. (18). Vindoline is the biosynthetic precursor of the dimeric alkaloids, 

vinblastine and vincristine. These two dimeric alkaloids have been used in chemotherapy 

for the treatment of Hodgkin's disease and acute leukemia (19,20) . The extraction was 

carried out using pure CO2 at various temperature and pressure conditions and the 

resulting extracts analysed by LCIMS. Figure 3.4. illustrates the dependence of extraction 

yield on CO2 consumption at various pressures and constant . temperature (50 QC). 

Extraction of the leaves at 300 bar and 70 QC was found to produce the highest yield of 

vindoline. 
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Figure 3.4. The dependence of extraction yield on CO2 consumption at 50 QC. (18) 
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Bugatti et al. used SC-C02 in the extraction of isoquinoline alkaloids, O-methylcariachine, 

protopine, a-allocryptopine, escolzine, californidine, sanguinorine and chelerythine from 

the aerial parts of Eschscholtzia californica (Papaveraceae) (21). Extractions were 

performed at 40 QC using pressures from 8 to 30 MPa and analysis performed by reversed 

phase HPLC with UV photodiode array detection. 

A study was also undertaken to investigate SFE as an alternative method for the selective 

recovery of drugs of abuse, specifically cocaine, from hair (22). While urine anaysis can 

detect only relatively recent drug exposure, hair analysis has potential for providing long­

term information about drug usage. ' A variety of CO2-modifier mixtures were 

investigated as extractants. Modifier was added directly to the sample by injection into 

the CO2 stream upon initiation of a static extraction step. Quantitative analysis of the 

SFE extracts was performed using capillary GC with nitrogen-phosphorous detection 

(GC - NPD). The most efficient recoveries of cocaine were obtained using CO2 modified 

with 100 ~l water/triethylamine (TEA) (85:15 v/v) or with 100 ~l methanol/ water / TEA 

(76:10:14 v/v) and extracting the hair sample at 40 MPa and 110 QC for 10 min static ally, 

followed by a 15 minute dynamic extraction period. 

Supercritical fluid extraction has also been investigated to isolate some of the major 

oxindole alkaloids of Uncaria tormentosa (23). U. tormentosa is a woody vine and is 

used for the treatment of gastritis, ulcers, cancer, arthritis, etc (24). Pure and methanol 

modified SC-C02 were used to generate the extracts that were subsequently analysed by 

both GCIMS and HPLCIMS. The extractions were first performed with pure CO2 at 250 

atm at 60 QC for 30 minutes in dynamic mode to yield fraction 1. The extraction was then 

performed with 10% methanol modified CO2 for 60 minutes to yield fraction 2. Fraction 

1 was found to contain two isomers of mitraphylline while fraction 2 contained 5 isomers 

of mitraphylline and two isomers of rhynchophylline. The average SFE yield (3 

determinations) was 82,6% (with a coefficient of variation of 17.8%) for mitraphylline 

and 99.5% (coefficient of variation of 6.2%) for rhynchophylline. 
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3.3 Steroids 

The steroids are a subclass of the triterpenoids and are known for their outstanding 

chemical, biological and medical importance. Analytical SFE has been investigated on 

moderately polar compounds such as cholesterol, stigmasterol, testosterone, cortisone and 

the anabolic steroid trebolone. Solublility data for cholesterol, stigmasterol and egosterol 

in SC-C02 was obtained by Wong and Johnstone (25). The solubility of cholesterol in 

pure CO2 was found to be approximately three times greater than that of stigmasterol, and 

fifty times that of ergosterol although these sterols have similar structures. Furthermore, 

the addition of methanol or ethanol to CO2 increased the solubility of the sterols by up to 

two orders of magnitude. In studies using ascending pressure profile extraction, milk fat 

was stripped of 90% of its cholesterol using pure SC-C02 (26) . The efficiency of 

separation was measured on each fraction collected at each pressure interval and 

cholesterol assayed using an AOAC procedure and GC. The extraction of cholesterol 

from egg yolk and blood serum was also carried out by Ong et al. (27;28). Pure SC-C02 

at 45 QC and 17.7 MPa was used and the extraction carried out for about 60 min. The 

result obtained were comparable to classical methods for cholesterol analysis. 

Polar SFs such as Freon-22 have also been used for the extraction of estrone, 

testosterone, estriol, cortisone, methyl testosterone and hydro-cortisone from spiked glass 

wool (29). Li et al. compared the results obtained using Freon-22 with those using pure 

CO2. Extractions were performed with CO2 at 50 QC for 30 min and with Freon-22 at 100 

QC for 15 min using pressures up to 18 MPa. The extraction efficiency with Freon-22 was 

significantly better than that with CO2. However, Freons are not recommended as 

extraction fluids owing to their adverse environmental effects. 

SFE was also investigated as a fast laboratory method to determine the levels of fungal 

infection in foodstuffs (30). The extraction of ergosterol (a fungal metabolite) from flour, 

mouldy bread and mushroom caps was performed using CO2 at 40 QC and a density of 

. 0.90 glm!. Analyte trapping was performed using an octadecylsilyl (ODS) material. The 

analyte, after being washed off with methanol, was subsequently analysed by packed 



column SFC on a Spherisorb amino column (3 ~m) using CO2 with 10% methanol, and 

employing UV detection at 282 nm. The observed levels of ergosterol ranged from 0.08 

~g/g in cake flour to 14,3 mg/g in freeze-dried mushroom caps. 

Ouabain is a steroid-derived polar compound with eight hydroxyl groups. It belongs to a 

group of drugs known as digitalis cardioglycosides, which are derived from plants and 

used in the treatment of heart failure. These drugs are used at very low concentrations, 

that is in the 1-20 ng/ml range. On-line SFE-SFC with fraction collection was performed 

on this compound and important information pertaining to solute elution density, 

efficiency of extraction, solute trapping, and chromatography was obtained (31) . The cell 

was packed with an adsorbent containing the sample of interest and extraction carried out 

with CO2 at 400 atm, 80 °C for 30 min. Solute trapping was performed in a deactivated 

capillary solute concentrater within a cryogenic trap. The capillary solute concentrator 

was directly connected to the SFC column (3m X 50 urn i.d. SB-Methyl 100) and 

chromatography performed by density programming. 

The SFE extract of the bark ofCedrela toona (Meliaceae) was also analysed by Modey et 

al. (32). SFE was performed with CO2 at 40 °C and 39:MPa for 50 min (25 min static 

extraction followed by 25 min dynamic extraction). GC-MS analysis of the extract 

revealed the presence of stigmasterol and the 22,23-dihydro- derivative of stigmasterol. 

Synthetic anabolic steroids such as trenbolone [3.3] speed muscle development in animals 

but are known to be hazardous to man. 

OH 

[3.3] 
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Administration of anabolic steroids to food-producing animals has been prohibited in the 

UK since 1986, but on-going monitoring is clearly necessary. SFE was evaluated for the 

quantitative extraction of trenbolone from beef (33). Experiments on beef spiked with 

trenbolone suggested that SFE is best carried out on freeze-dried samples. The presence 

of methanol modifer was necessary to increase solubility and reduce matrix interaction. 

Extraction was near-complete (98 % recovery) within 60 min at 75 QC and 400 atm using 

0.1 methanol mole fraction in CO2. Under these conditions, extraction of fats and other 

endogenous materials is minimised. However, the authors stated that these results could 

not be used to illustrate the extraction behaviour from naturally contaminated samples, as 

in naturally contaminated samples, the trenbolone may, for example, be exposed to 

different active sites and a greater fraction of it encapsulated within cells. Despite these 

and other possible differences, this study does provide a useful prediction for the 

extraction conditions that might be required. 

3.4 Flavour and Fragrance Compounds 

The extraction of flavour and fragrance compounds from plants has been successfully 

achieved using supercritical CO2. The sesquitepenoid bitter principals, calamus, acorone 

and isoacorone present in Acarus calamus are thermally unstable and partially decompose 

using steam distillation. SFE was carried out at 9 MPa and 40 QC to successfully extract 

these components (34). The yield of the bitter principle improved and the decomposition 

problems were eliminated. 

On line extraction and analysis of flavour and fragrance compounds was performed by 

Hawthome et al. (35). Extracted components were transferred directly from the 

extraction cell onto the GC column via an on-column injector. A variety of samples 

including herbs, spices, orange peel and spruce needles were analysed to demonstrate the 

potential of this technique. As shown in Figure 3.5, the on-line SFE-GC results were 

comparable to the off-line analysis of a variety of SFE extracts which were injected 

manually into the Gc. Cryogenic trapping at -30 QC was employed during the extraction 
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of thyme and compounds such as borneol, thymol and carvacrol were identified by mass 

spectrometry. 
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Figure 3.5. Comparison of chromatograms generated by 
(A) SFE-GC-FID analysis of rosemary and by 
(C) Standard on-column injection of a methylene chloride extract. 
Chromatogram (B) shows the result of a second SFE-GC-FID analysis 
of the same sample. (35) 
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The extraction of a number of herbs used in herbal remedies have also been carried out 

using SFE. In 1991, Ma and coworkers (36) extracted and analysed three kinds of herbs 

used in traditional Chinese medicine viz. frankincense, myrrh and Evodia rutaecarpa. SFE 

with CO2 was performed at 20 MPa and 50°C followed by GC-MS analysis. Large 

amounts of sesquiterpenes were found to be present in the extract of myrrh while the 

Evodia extract was found to contain monoterpenes, sesquiterpenes, diterpenes and 

aliphatic hydrocarbons. The study revealed the potential of SFE as an analytical tool for 

the study of medicinal plants. 

The medicinal herb, feverfew, Tanacetum parthenium, was also analysed for the presence 

of the sesquiterpene lactone, porthenolide by GC (37, 38). Extraction was first performed 

using SC-C02 at 25 MPa and 45°C and the analyte trapped in a cryogenically cooled flask 

at 17°C using liquid nitrogen. The addition of methanol or acetonitrile as a modifier 

increased yields of porthenolide. 

Work was performed on tumeric, the ground rhizome of the plant Curcuma /onga, a 

species of the Zingiberaceae family which is native to Southern Asia (39). It is valued for 

its yellow-colouring components and its use as a spice, as well as being an ingredient in 

traditional medicines and cosmetics. SFE employing pure CO2 at 25 MPa and 60°C was 

used initially to remove low polarity components. However, CO2 modified with 20% 

methanol was required to extract the more polar curcuminoids and under optimized 

condititions, gave more than 90% recovery of curcumin. 

The plant Zingiber zen/mbe! also belongs to the Zingiberaceae family. The rhizome of 

this species is an important ingredient for the famous Indonesian traditional medicine, 

Jamu. Supercritical CO2 at 60°C and 20 MPa was used to extract the non-polar 

components of the dried rhizome of this plant (40) and analysis carried out by GC. SFE of 

Z. zerumbet was performed initially using pure CO2 at 60°C, and the sample was 

extracted sequentially at 10 MPa and then at 20 MPa. The combined SFE extracts gave a 

1,92% yield compared to the dichloromethane extract which gave a 1.98% yield of the 
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dried plant material. The extracts were examined by capillary GC and the peaks were 

identified by GC-electron ionization MS and coinjection with authentic samples. 

Comparison of the SFE extracts with the dichloromethane extract by capillary GC 

showed that similar components were extracted and the composition of the SFE extracts 

were comparable to that of the dichloromethane extract. 

Barton et al. (41) extracted volatile compounds from Mentha piperita. The flavour and 

fragrance of the CO2 mint extracts were closer in quality to actual mint leaves compared 

with mint oils extracted by conventional steam distillation. The extraction conditions 

were CO2, 6-18 MPa, 24 - 43 QC and 4-9 hours. 

Simandi et al. (42) also reported on SFE of the leaves of M. piperita and found the extract 

to contain more of the fragrance characteristic compound menthofuran than the distilled 

oil. In addition, these workers extracted the flavours of Lavandula intermedia using a 

step-wise pressure programme. Unlike the SFE extract, the distilled oil contained high 

levels of linalool resulting from the hydrolysis of linanyl acetate once again illustrating 

the disadvantages of steam distillation. The results indicate that the most natural and 

true-tasting extracts are obtained by techniques which utilize low temperature and avoid 

degradative heat processes and reactive solvents. Moyler (6) has reviewed the published 

literature pertaining to the extraction of forty two natural botanical extracts. 

SFE has also been utilized for the selective extraction of the essential oils myrcene, 

caryophyllene, humulene and the u- and B- bitter acids of hops, Humulus lupulus (43). 

At a density of 0.2 glml and a temperature of 50 QC, 98% myrcene, 91 % humulene and 

95% B-caryophyllene were extracted. The bitter acids only became soluble in CO2 at 

0.25 glml and were completely extracted at about 0.9 glm!. The essential oils were 

analysed by capillary GC and the bitter acids by micro-LC and MECC. 

A procedure to extract free aroma terpenic components in musts and wines was also 

presented by Carro et al. (44). Due to the high number of variables that potentially affect 
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SFE, experimental designs were used to simultaneously optimize the operational 

parameters and to establish their possible interactions. Plackett Burman Factorial designs 

were applied on a synthetic hydroalcoholic model solution of five terpenic compounds, 

linalool, a-terpineol, citronellol, nerol, and geraniol. The following experimental variables 

were optimized: SC-C02 density and flow, static and dynamic extraction times, extraction 

cell and trap temperatures. Best results were obtained at 0.9 glml at 54°C after a static 

extraction time of 5 minutes followed by dynamic extraction of 40 minutes. The trap 

temperature was maintained at 10°C and a CO2 flow of 2ml1min. 

The extraction of aroma compounds in fruits has also been investigated. Kerrola et af. 

(45) used on-line SFE-GC in the analysis of carvone and limonene in caraway fruits of 

various origins. Extractions were performed at 9.7:MPa and 50°C. Fractionation of 

lemon peel oil by SFE-preparative SFC was also investigated (46,47). The SFE results 

indicated that CO2 extracts were similar in composition to cold-pressed oil, but contained 

less limonene, 10 times the concentration of alcohols, and three to five times the 

concentration of linalyl acetate. 

3.5 Carotenoids 

The high degree of unsaturation in carotenoids has rendered them heat and light sensitive 

making carotenoids the most experimentally demanding group of terpenes. The polyene 

chain is responsible for the intense colour of the carotenoids, which are pigments that 

occur in many plant and animal sources (47) . Many SFE studies have focused on 

carotenoid compounds, firstly because of their possible role in reducing the incidence of 

certain cancers in humans, secondly because of the provitamin A activity of ~-carotene 

and thirdly because of the anti-oxidant activity of ~-carotene . 

Favati et al. (48) investigated SC-C02 for the extraction of carotene and lutein from 

alfalfa leaf protein concentrate (LPC). Over 90% of the carotene contained in LPC was 

removed at extraction pressures in excess of 30 :MPa. However, the removal of lutein 

from the LPC required higher extraction pressures (70 MPa) to attain 70% recovery. 
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Extractions were performed on 45-50 gram samples of LPC and chromatographic analysis 

was performed using HPLC. SFE provided the possibility of obtaining a selective 

extraction of natural colourants free of solvent residuals for food dyes. 

The SFE of carotenoids from algae has also been investigated (49, 50). Extractions from 

a mediterranean brown alga were conducted by applying a controlled stagewise pressure 

increase and different fractions in terms of colour and composition were obtained 

depending on the density of the extracting fluid . The pressure was stepped from 8 to 10, 

to 15, 20 and 25 MPa at temperatures of 35, 45 and 55°C. Subsequent analysis of the 

extracts by TLC and HPLC showed the presence of ~-carotene amongst many other 

unidentified components. 

The extraction of carotenoids from foodstuffs, specifically tomato paste, canned pumpkin, 

spinach, red palm oil, butter and cheese was also carried out with SC-C02 and various 

modifiers (51). Static and dynamic extractions were investigated using CO2 modified with 

1% methanol, ethanol or isopropanol at pressures of 13,6-68 MPa and temperatures of 40, 

55 and 70°C. HPLC was used to confirm the presence of specific carotenoids including 

lycopene. A poor yield (24%) was reported for tomato paste however the yield increased 

to 78% when modified CO2 was employed. 

The extraction of a-carotene from sweet potatoes has also been reported (52) . 

Supercritical CO2 was employed at 41.4 MPa and 41°C. The extract was found to 

contain about 94% a-carotene, but the yield varied depending on the moisture content of 

the sample, the method of sample dehydration and the particle size. Marsilli and Callahan 

(53) compared SFE using CO2 with classical solvent extraction using ethanol:pentane for 

the extraction of carotenes from a number of vegetable samples. The SFE method proved 

favourable in terms of both extraction yield and speed. 
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3.6 Lipid materials 

Pure and modified CO2 has been successfully applied to the extraction of many lipid 

materials such as vegetable oils, fatty acids, fatty acid esters, phospholipids and 

tocopherols. Many reports have outlined the use of SC-C02 for large-scale (54-56) and 

analytical-scale (57, 58) extraction of oilseeds. Dry milled corn-germ was also extracted 

using supercritical CO2 at 34-54 MPa and 50°C (59). The oil was found to be lower in 

free fatty acids and refining loss and was lighter in colour compared with commercial 

expeller-milled oil. 

Friedrich et al. (60) also extracted oil from soyabeans using pure SC-C02 at 50°C and 

pressure of 68 MPa. The oil was found to be lighter in colour and to contain less iron and 

about one-tenth the phosphorous content as was obtained by hexane extractions on the 

same sample. 

Tocopherols in wheat germ have also been studied extensively (61, 62). SFE was used in 

tandem with SFE for on-line separation of the tocopherols. SFE was performed with pure 

SC-C02 at 25 MPa and 40°C. 0,03% tocopherol and 10% oil by weight was extracted. 

SFC was performed with ethanol modified CO2 and the eluent monitored with a 

multiwavelength UV detector. 

Prostaglandins were also selectively analysed without derivatization using SFE and open 

tubular column SFC (63). These C20 polyunsaturated fatty acids containing a substituted 

cyclopentane ring, posses a strongly diversified physiological activity and are potent at sub 

- ppm levels. Aqueous prostaglandin samples were extracted from adsorbents onto which 

the samples had been loaded, using CO2 at a density of 0,800 glml and at 35-50 0c. The 

extract was then trapped in a solute trap cooled with liquid CO2 prior to SFC analysis. 

Eleven prostaglandin standards were seperated in thirty five minutes using this method. 

50 



Supercritical CO2 has shown advantages for the extraction of oils from grape seeds (64) . 

A 3 hour extraction with CO2 at 35 MPa and 40 DC gave similar yields to a 20 hour 

Soxhlet extraction with hexane. The SFE extract had a lower percentage of free fatty 

acids and unsaponifiables than the solvent extract and did not require degumming or alkali 

refining. Further, extraction with CO2 at low temperature enabled the seed proteins to be 

recovered. These are normally denatured on extraction with hot organic solvents. 

The extraction of polar phospholipids from soyabeans has also been investigated (65) . A 

two step extraction sequence was performed. Initial extraction aided in the removal of the 

soyabean oil while the second extraction with ethanol modified CO2 was undertaken to 

isolate the phospholipid enriched fractions. Analysis were performed by HPLC. It was 

observed that at methanol mole fraction of 0.52, the recovery of phospholipids was very 

low, however recoveries increased considerably to around 10 glkg of soyabean using 

0.102 and 0.162 mole fractions of ethanol respectively. 

The quantitative extraction of pecan oil was undertaken by Maness et al. (66) employing 

CO2 as the extraction solvent, and chilled · hexane as the trapping solvent. The fatty acid 

composition for the total lipid fraction of oils extracted as well as the total oil content 

obtained with SFE was the same as for oils extracted with organic solvents. Extraction 

was carried out at 69l\1Pa and 75 DC with a 250 mlImin restrictor for specified durations. 

The extraction of fatty and waxy material from rice bran was also investigated with SC­

CO2 at pressures up to 28 MPa and temperatures between 40 and 70°C (67). Although 

the yields obtained with SF were only 16-60% of those obtained by Soxhlet extraction 

with hexane, the extract was lighter in colour and richer in wa, content and long chain 

fatty acids C20-C34. 

3.7 Miscellaneous applications 

SFE has been employed for the extraction of taxanes. SFE of taxicin from the dried 

needles of the English yew tree, TaxlIs baccata was carried out at 400 atm and 50 DC with 
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pure CO2 (68) . Extraction times varied between 15 and 105 minutes and restrictor 

temperatures were between 100 and 175 QC. Subsequent analysis by SFC and proton 

NMR confirmed the identity and purity of taxicin. SFC was performed on 10 m x 50 Ilm 

i.d. SB-Biphenyl-30 (30% biphenyl-substituted polydimethylsiloxane) or carbowax 

. column. Pure CO2 was used as the mobile phase, the oven temperature was 120 QC and 

sample introduction was via a 50 n1 timed-split injection valve. The extraction efficiency 

of SFE was comparable with that obtained using liquid solvents. 

Furanocoumarins are representatives of the compounds commonly present in higher plants 

from the Umbelliferae and Rutaceae families. Linear furanocoumarins have been found to 

exhibit a pronounced photosensitizing activity and have thus been used in clinical 

treatment of skin lesions (psoriasis and vitiligo) (69, 70). The fruit of Archange/ica off. 

Hoffin. constitute one of the richest sources of furanocoumarins. SFE has been 

successfully employed in the extraction of these compounds. Fractionating SFE was 

perfonned by varying both the temperature and pressure of CO2. Under optimal 

conditions, the overall SFE recoveries of the compounds extracted were close to those · 

obtained by soxhlet extraction (71). 

The isolation of sulfonamides from chicken eggs has also been carried out using SFE (72). 

Sulfonamides are routinely used in veterinary medicine in raising cattle and poultry 

because of their broad range of activity against gram-positive and gram-negative bacteria. 

Whole egg was mixed with hydro matrix and the sample extracted at 40 QC with SC-C02 at 

680 bar. The sulfonamides were trapped in-line on an alumina sorbent bed and eluted with 

phosphate buffer and methanol for subsequent analysis by HPLC. 

From this literature review, it has become quite evident that SFE has a wide application 

area and is capable of extracting a wide range of diverse compounds from a variety of 

sample matrices. Although SFE does not provide the solution to every problem, the use 

of SFE in other areas of natural products still await investigation. 
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CHAPTER 4 

Separation techniques 

4.1 Introduction 

Plant extract analysis for phytoremediation and the development of phytochemicals for 

medicinal applications requires the characterisation of a wide variety of compounds. 

Analysing the extracts of plants involves matrices thaf are unavoidably complex and often 

requires manipulation of a mixture of components with varying solubilities and volatilities 

present in different proportions. Many different chromatographic techniques have been 

applied to the separation and identification of individual components from these matrices 

(1-3) depending on the requirements to be fulfilled in order to achieve an effective 

separation. More recently, capillary electrophoretic techniques have also found use in the 

analysis of plant extracts (4-6). This chapter outlines the basic conditions and theory of the 

chromatographic and capillary electrophoretic processes used in the characterisation of 

plant extracts. The general equations applicable to gas chromatography (GC), 

supercritical fluid chromatography (SFC), liquid chromatography (LC) and capillary 

electrophoresis (CE) are discussed. 

4.2 Theory of Chromatography 

Chromatography is defined as a separation method whereby individual chemical 

compounds which were originally present in a mixture are resolved from each other by the 

selective process of distribution between two heterogeneous (immiscible) phases. The 

distribution of chemical species to be separated occurs in a dynamic process between the 

mobile and the stationary phase (7). The stationary phase is a dispersed medium, which 

usually has a relatively large surface area, through which the mobile phase is allowed to 

flow. The chemical nature of the stationary phase exercises the primary control over the 

separation process (8). The greater the affinity of a particular solute for the stationary 

medium, the longer it will be retained in the system. The mobile phase can be either gas, 
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liquid or supercritical fluid hence the name gas, liquid or supercritical fluid 

chromatography. Each technique has its own niche. For example, GC is most useful for 

small volatile molecules that are thermally stable whereas SFC is often applied to thermally 

labile compounds and those which are too involatile to be analysed by Gc. HPLC is 

usually used to separate polar and high molecular weight compounds and is the technique 

which is most appropriate for the majority of sample types which are not amenable to GC 

or SFC. 

All chromatographic separations are based upon differences in the extent to which solutes 

are partitioned between the mobile and the stationary phase. The equilibrium involved can 

be described quantitatively by means of a partition coefficient Ki, for each solute (t) in the 

sample which for chromatography is defined as 

C .s 
Ki = (4 .1) 

C ,rn 

Here, Ci,,r and C ,rn are the concentrations of a solute in the stationary phase and mobile 

phases respectively. 

The distribution of each solute between the stationary and mobile phase is described by the 

capacity factor (k) 

Xi.s K, 
k' = (4.2) 

f3 

where x represents the masses of components i (in each phase), Vs and Vm are the volumes 

of the stationary and mobile phases, respectively, and f3 is the phase ratio of the column, 

that is, 

Vrn 
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Figure 4.1 shows a typical chromatogram and its characteristic features. 
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Figure 4.1 A chromatogram with its characteristic features. 

Here w is the peak width at the baseline and to is the dead time or retention time of an 

unretained solute (i.e. the time required by the mobile phase to pass through the columns). 

Hence the average linear flow velocity, ii can be calculated as 

L 
if= (4.3) 

where L is the column length. The retention time tr is the period between sample injection 

and recording of the peak maximum while t'r is the net retention time. Two compounds 

can be separated if they have different retention times. Figure 4.1 shows that 

tr = to + t'r . (4.4) 

60 



The retention time of a solute is a function of mobile phase flow velocity and column 

length. If the mobile phase is flowing slowly or if the column is long, then to is large and 

hence so is I,. Therefore I, is not suitable for characterising a compound and instead, the 

capacity factor, also known as the k' value is prefered: 

k' = = (4.5) 

The capacity factor is independent of the column length and mobile phase flow-rate 

(provided that u does not exceed 5 cm S·I) 

4.2.1 Column Efficiency 

Efficiency is used to describe the potential separation capabilities of the chromatographic 

system. The results are expressed in terms of theoretical plates (n), which can be thought 

of as a certain number of separation stages. The more stages in a given separation, the 

higher the column efficiency (n). There are several ways to calculate n from the 

chromatogram. The most simple approach utilizes the retention time (t,) and the baseline 

width (w). 

(4.6) 

As the column length (L) increases, n increases. In order to compare the efficiencies of 

columns of different lengths, the height equivalent to a theoretical plate, HETP, is used 

instead of n: 

L 
HETP = (4.7) 

n 
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4.2.2 Selectivity 

The ease of separating two different components on a column is given by the selectivity, 

a. It is calculated from the ratio of k' values and is always expressed as a number greater 

than 1. . 

a = (4.8.) 

where k'j, and k'2 are the capacity factors of each component and k'2 is the capacity factor 

of the later eluting component. Conceptually, a represents the spacing between peak 

maxima. With a large a (wide spacing),components separate and as a approaches unity, 

the peaks fuse. 

In GC, selectivity is a result of the vapour pressure of the solute and intermolecular force 

interactions with the stationary phase. In LC and SFC, the selectivity can also be affected 

by interactions between solutes and the mobile phase. The interactions can either be by 

dispersion, dipole-dipole or dipole-induced dipole. Dispersion interactions account for 

separations based on differences in solute boiling points and sizes. Dipole-dipole 

interactions account for separations of polar compounds on a polar stationary phase and 

dipole-induced dipole interactions occur when dipolar solute molecules act as an electron 

donor or electron acceptor. 

4.2.3 Resolution 

The basic equation defining the resolution (R), between any two compounds is: 

211t 
R = ---- (4.9) 

(Wb/ + Wb2) 

In terms of the column efficiency, n, the selectivity, a , and the capacity factor, k', R is 

given by: 

R= (4 .10) 
4 
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4.2.4 The van Deemter equation in Chromatography 

A number of valuable concepts are embraced by the van Deemter equation (7), which 

permits evaluation of the relative importance of a series of parameters on column 

efficiency and relates H to the average mobile phase linear velocity u. 

For packed columns 

2Dm d p 2 ( 1 + 6k' + llk,] ) i1 

H=2Adp +-- + 
ii 24Dm (1 + k,)2 

(4.11) 

where dp is the column packing particle diameter and A. is the eddy diffusion coefficient. 

Dm is the diffusion coefficient of the solute in the mobile phase. 

Simplifying the equation becomes 

B 
H=A+ + Ca (4 .12) 

11 

The A term includes packing and multi-flowpath factors, B is the longitudinal diffusion 

term and C is the resistance to mass transfer term. The A term can be influenced by 

particle size, geometry and tightness of packing of the stationary phase in a packed column 

while the B term arises from the tendency of molecules to migrate from the concentrated 

central part of a band towards more dilute regions on either side and is directly 

proportional to the rate of diffusion of the solute in the mobile phase and inversely 

proportional to the linear velocity of the moblile phase. The above equation can also be 

represented graphically in Fig':lre 4.2 which shows the effect of H with changes in mobile 

phase linear velocity. Equation 4.12 represents a hyperbola that has a minimum at linear 

velocity (uopt) 

B 112 

Uopt = (4.13) 
C 
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and a minimum H value (Hmin) at A + 2 (BC) 112. The constants may be graphically 

calculated from an experimental plot of H versus mobile phase linear velocity as shown in 

Figure 4.2. From this figure it can be seen that the A term (2Adp) is independent of mobile 

phase linear velocity. The second term is a measure of the effect of molecular diffusion on 

zone spreading and becomes significant at very low flow rates. The third term accounts 

for resistance to mass transfer and this term becomes significant at higher mobile phase 

linear velocities. 

H 

2Adp { 

\ 
\ 
\ 
\ 
\ 
\ 
\ ",--
\ --", 

\ " 
\ "" 

---~---- "" \ I __ , 
\ I ", ,-

8/ - \ ,-,--
U \ ,--', Ca 

--"'\ I -' , 
~~-----~~~---------------------------." 

A ' .......... I ... ----- _____________ ,.. ___ _ 
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U, cmlsec 

Figure 4.2 van Deemter plot 

Change in H versus linear mobile phase velocity u. 
Hmin = A + (2BC)112; uopt = (B/C)1I2 

64 



Open tubular columns contain no packing and the A term becomes zero, reducing the van 

Deemter equation to a form known as the Golay equation (8): 

Wm d 2
e (1 + 6k'+ Ilk,]) ii 2k'd 2

f U 

H = + + (414) 

U 96Dm ( 1 +k,)2 3( l+k'i2Ds 

where df is the stationary phase film thickness, de is the column internal diameter and Ds is 

the diffusion coefficient of the solute in the stationary phase. Simplifying, the equation 

becomes: 

B 
H= (4.15) 

U 

The C term results because of laminar flow through the open tube which gives rise to the 

characteristic parabolic velocity profile over the tube cross section. Solutes in the centre 

of the flow move faster than solutes near the wall. Failure of the solute to rapidly diffuse 

in a radial direction tends to keep the solute distributed on streamlines of differing 

velocity, thus broadening the peak. The Cs term is usually negligible if thin films are used 

but can become appreciable if thick films are used. By differentiation of equation 4.15, it 

can be seen that the optimum mobile phase velocity (i.e. the velocity that produces a 

minimum value for H and maximum value for n) is: 

B 112 4.2Dm 

UOP1 = =--- (4.16.) 

4.3 Theory of electrophoretic separation 

Another technique receiving attention for the analysis of natural products is capillary 

electrophoresis. It is a separation technique that has rapidly developed over the past few 

years and has been widely applied to the analysis of macromolecules, amino acids, chiral 

drugs, vitamins, inorganic acids, proteins and peptides (9). 
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Electrophoresis is defined as the different,ial movement of charged species by attraction or 

repulsion in an electric field hence CE permits the rapid and efficient separations of 

charged components present in small volumes. Separations are based on the differences in 

electrophoretic mobilities of ions in elecrophoretic media inside small capillaries. 

4.3.1 Background electrolyte 

The electrophoresis buffer is of key importance in CE because its composition 

fundamentally determines the migration behaviour of the analytes. A suitable electrolyte 

must ensure the correct electrophoretic behaviour of all individual solutes, the overall 

stability of the sytsem and satisfactory .separation of the analytes. A wide variety of 
:, " 

electrolyte systems have been used in CEto effect the required separations. The majority 

of these are aqueous buffers. Table 4.1 lists some commonly used buffers in CE. 

Table 4.1 Commonly used buffers in CE (4). 

* See list of abreviations 

Buffer Useful pH range 

Borate 8.24 - 10.24 

Phosphate 1.12 - 3.12 

Acetate 3.75 - 5.75 

Phosphate 6.21-8.21 

'le Zwitterionic buffers 

MES 5.15-7.15 

PIPES 5.80 - 7.80 

HEPES 6.55 - 8.55 

Tricine 7.15 - 9.15 

Tris 7.30 - 9.30 
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The choice of the · electrolyte system in a CE separation involves consideration of many 

fact9rs , such as the solubility and stability of the analytes in the electrolyte, the degree of 

ionization of the analytes, the influence of the anions and cations present in the electrolyte 

on the electromigration of the solutes, the effect of pH, the effects of organic modifiers 

and other additives, and the dissipation of heat generated in the electrolyte during the 

passage of the current 

4.3.2 Instrumentation 

The equipment consists of five units: the anode and the cathode reservoirs with the 

corresponding electrodes, the separation capillary, the injection system and the detector. 

The basic instrumental setup to accomplish capillary eietrophoresis is depicted in Figure 

4.3 . 

" C 
/ 

/ 
I 

I 
I , 

~s 
E 

HVPS 

Figure 4.3 Basic Scheme of a CE instrument 
C = separation capillary; 

E 

E = electrolyte reservoirs with platinum electrodes 
S = sample vial 
D = detector 
R = signal recorder 
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A capillary tube filled with the buffer solution is placed between two buffer resevoirs. The 

electric field is applied by means of a high voltage power supply which can generate 

voItages up to 30 kV. Injection of the sample is performed by replacing one buffer 

reservoir with the sample vial and a defined sample volume is introduced into the capillary 

by either hydrodynamic flow or electromigration. An on-column ultraviolet absorbance 

detector is located at the end of the capillary which is opposite to the injection side. If an 

uncoated . open-tube fused silica capillary is used as the separation chamber, two 

electrokinetic actions occur under the influence of the electric field . First electrophoresis 

of the ions takes place, secondly, electroosmosis, which takes place due to the immovable 

charge of the capillary walls being effective from the basic to the weak acid pH range. 

Separation, however, is based solely on electrophoresis while electroosmosis causes a 

liquid transport analogous to a mechanical pump. Because the electroosmosis flow in 

aqueous solution is mostly directed toward the cathode, the sample is injected at the 

anode. The sample components migrate with different migration velocities, depending on 

their charge densities, towards the corresponding electrodes. They are all carried through 

the detection system by the electroosmotic flow (EOF), which is higher than the migration 

velocities of the ions. 

4.3.3 Electrophoresis 

Electrophoresis is the movement of charged particles in response to the applied field . 

Upon the application of a constant electric field E (£ = VIL where V is the voltage applied 

across the capillary of length L), ionic species undergo an electrostatic force, Fe, which is 

proportional to the electric field strength and the charge (q) of the particular ion. This 

electric force can be given by: 

Fe=qE (4.17) 

This force causes the acceleration of ions toward the oppositely charge electrode. As the 

velocity of the ions increases, the counteracting frictional force (Ff ) caused by the 

surrounding solution slows down the species. The frictional force (assuming a spherical 

ion) can be expressed in terms of Stokes law as: 

(4.18) 
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where 17 is the solution viscosity; r, the ion radius and v is the ion velocity. 

After reaching a steady state, the ions move with a constant velocity (v) which is 

proportional to the applied electric field and is given by 

v = PeE (4.19) 

where Pe is the electrophoretic mobility and is a characteristic property of a given 

medium at a given temperature. 

During electrophoresis: 

(4.20) 

hence: qE = 6mp1l (4.21) 

Solving for velocity: 

qE 
v=-- (4.22) 

and substituting equation 4.22 into equation 4.19 yields an equation that describes the 

electrophoretic mobility in terms of physical parameters: 

q 

Pe = (4.23) 

6mp-

Hence small, highly charged species have high mobilities whereas large, minimally 

charged species have low mobilities. 

4.3.4 Electroosmosis and the electrical double layer 

. Electroosmosis of ions is an important phenomenon in CE and originates from the 

negative charges on the innerwall of the capillary tube. In uncoated fused silica 

capillaries, an electric double layer is formed from the ionization of silanol groups present 

on the surface of the capillary. The double layer (Figure 4.4) is generally explained using 

the Gouy-Chapman model (11-14). According to this treatment, the double layer consists 

of a fixed layer of negative charges and a positive part formed by a net excess of positive 
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ions in the background electrolyte. The cations are arranged in two layers, a fixed layer 

(Stem layer) and a diffuse layer, and at a position just outside of the compact-diffuse 

layer interface a plane of shear is established. 

Surface or shear 

Silica Stern / 
wall layer ~ 

Diffuse I 
layer 

8 I I 

8 cbG? 8 
8 I I C\ 

I 

I ,8 
80 I \!J I 

- ci2~ 80 
10. I 

~:8 ~ 
e:~ p 

Bulk solution 

Disunce from capillary wall 

Figure 4.4 Double layer structure at a silica wall. 

) 

The potential at this boundary is known as the zeta potential, s. The potential in the 

diffuse layer falls exponentially to zero. The negative charge on the capillary surface is 

balanced by the positively charged layer of hydrated cations. Upon application of the 

electric field, this layer begins to move toward the cathode and, owing to viscous drag, 

transports the bulk liquid inside the capillary. The zeta potential (S), is given by the 

Helmholtz equation: 

4m]f.1e 

s= (4.24) 
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where '7 is the viscosity, e is the dielectric constant of the solution, and J.le is the 

electrophoretic mobility. The linear velocity, v, of the e1ectroosmotic flow is given by 

v = --Et; (4.25 .) 

The double layer is typically a very thin layer (up to several hundred nanometers) relative 

to the radius of the capillary (typically 50-100 Ilm). Therefore, the electroosmotic flow 

may be considered to originate at the walls of the capillary. 

The magnitude of the zeta potential is determined by the surface charge on the capillary 

wall. This charge is pH dependent; thus the magnitude of EOF varies with pH. At high 

pH, the silanol groups are predominantly deprotonated and the EOF is much greater than 

at low pH where the silanol goups become protonated. The EOF can vary by more than 

an order of magnitude between pH 2 and 12. The pH and applied voltage have been 

found to increase flow linearly. The zeta potential is also dependent on the ionic strength 

of the buffer. Increased ionic strength leads to double layer compression, decreased zeta 

potential and reduced EOF. 

4.3.5 Efficiency 

Efficiency is gauged by the number of theoretical plates generated by the column. In CE, 

the number of theoretical plates is not dependent on the length of the column as in HPLC 

or GC but rather on the applied voltage as expressed in equation 4.26 . 

IlV 
N=-

2Dm 

where ~l is the mobility and V is the applied voltage. 

4.3.6 Flow Profile 

(4.26) 

An important feature of the electroosmotic flow is its velocity flow profile. In an 

electrically driven system, the liquid flow caused by electroosmosis shows a plug profile 
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driving force is uniformly distributed along the capillary. Consequently, a uniform flow 

velocity vector across the tube occurs. Unlike in pressure-driven flow system such as 

HPLC, frictional forces at the liquid-solid boundaries cause a strong pressure drop across 

the capillary. These forces result in a laminar or parabolic flow profile. As a consequence, 

a cross-sectional velocity gradient occurs within the capillary resulting in a velocity profile 

such that the velocity vector is highest in the middle of the tube and goes toward zero 

approaching the walls. Hence zone broadening caused by the laminar flow profile in 

HPLC is therefore negligible in CE. Figure 4.5 illustrates the velocity profiles of liquid 

flowing in a capillary under the action of (a) electroosmosis and (b) hydrostatic pressure. 

(a) 

(b) 

Figure 4.5 Velocity profiles of liquid flowing in a capillary under the action of (a) 
electroosmosis and (b) hydrostatic pressure. 

72 



4.3.7 Modes of capillary electrophoresis. 

The versatility of CE is partially derived from its numerous modes of operation. The 

separation mechanisms of each mode are different and thus can offer orthogonal and 

complementary information. The basic methods encompassed by CE include capillary 

zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MECC), 

capillary gel electrophoresis (CGE), capillary isoelectric focusing (ClEF), and capillary 

isotachophoresis (CITP). In this study MECC was used in the separation of the plant 

extracts as a complementary technique to the other chromatographic methods employed 

and is hence the only mode that is discussed further. 

4.3.7.1 Micellar Electrokinetic Capillary Chromatography 

Micellar electrokinetic chromatography (MECC) is a mode of CE in which surfactants are 

added to the buffer solution. Surfactants are molecules which exhibit both hydrophobic 

and hydrophilic character. They have polar "head" groups that can be cationic, anionic, 

neutral, or zwitterionic and they have nonpolar, hydrocarbon tails. The formation of 

micelles or "micellization" is a direct consequence of the "hydrophobic effect." The 

surfactant molecules can self-aggregate if the surfactant concentration exceeds a certain 

critical micelle concentration (CMC). The hydrocarbon tails will then be oriented toward 

the center of the aggregated molecules, whereas the polar head groups point outward. 

Micellar solutions may solubilize hydrophobic compounds which otherwise would be 

insoluble in water. Every surfactant has a characteristic CMC and aggregation number, 

i.e., the number of surfactant molecules making up a micelle. The size of the micelles is in 

the range of 3 to 6 nm in diameter; therefore, micellar solutions exhibit properties of 

homogeneous solutions. 

4.3.7.2 Principles of separation in MECC 

The separation principle of MECC is based on the differential partition of the solute 

between the micelle and water. Figure 4.6 shows a schematic representation of the 

principle ofMECC. 
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Figure 4.6 Schematic representation of the separation principle ofMECC. 

When an anionic surfactant such as sodium dodecyl sulfate (SDS) is employed, the micelle 

migrates toward the positive electrode by electrophoresis. The electroosmotic flow 

transports the bulk solution toward the negative electrode due to the negative charge on 

the surface of fused silica. The electroosmotic flow (EOF) is normally stronger than the 

electrophoretic migration of the micelle under neutral or alkaline conditions and, therefore, 

the anionic micelle also travels towards the negative electrode at a retarded velocity. 

When a neutral analyte is injected into the micelle solution, a fraction of it is incorporated 

into the micelle and it migrates at the velocity of the micelle. The remaining fraction of the 

analyte remains free from the micelle and migrates at the electroosmotic velocity" The 

migration velocity of the analyte thus depends on the distribution coefficient between the 

micelle and the non-micellar (aqueous) phase. The greater the percentage of analyte that 

is distributed into the micelle, the slower it migrates. The analyte must migrate at a 

velocity between the electroosmotic velocity and the velocity of the micelle, provided the 

analyte is electrically neutral. In other words, the migration time of the analyte, t" is 
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limited between the migration time of the bulk solution, to , and that of the micelle, tme . 

This is often referred to in the literature as the migration time window in MECC and is 

illustrated clearly in Fi~ure 4.7. This technique, originally introduced by Terabe et at. in 

1984, has been well applied to the separation of both neutral and ionic molecules present 

in natural product matrices (15-19) . 

(A) 
Micelle Solute Water 

I I I 
inj. column del 

Water Solute Micelle 
(8) 

'------'~. ·~L..---_l 
------.---..,.-------------r-+~ Time 
o 

Figure 4.7 Schematic representation of the zone separation in MECC. 

4.3.7.3 Theory of MECC 

In the previous chromatographic techniques described, the capacity factor is obtained by 

the use of equation 4.5. However in MECC, k' can be obtained by the following equation 

(20): 

k'=----- (4.27) 
to (1 - t,llme) 

As tme becomes infinite (micellar phase becomes stationary), equation 4.27 reduces to the 

analogous equations for conventional chromatography. The parameters to al!d tme are 
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experimentally determined by injecting methanol, which is assumed not to interact with the 

micelles and Sudan III which is assumed to be fully· solubilised. , , 

Resolution in MECC is given by (21): 

R= (4.28) 
4 a 

'----J 

\ \ \ . 
Efficiency Selectivity Retention 

where Cl is the separation factor given by k'2/k', . The differences between MECC and 

conventional chromatography are accounted for in the last term of the equation. As tme 

becomes infinite, the latter term equates to unity and results in an expression for resolution 

that is identical to that of conventional chromatography. 

In MECC fast efficient separations can be obtained because of three important 

phenomena. First, the flat flow profile of the EOF does not require mass transfer in the 

mobile phase across the capillary diameter. Secondly, fused silica capillaries dissipate heat 

efficiently, thereby minimizing thermal effects. Thirdly, micelles are dynamic structures, 

allowing for fast solute entrance/exit kinetics. 
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CHAPTERS 

Experimental techniques 

5.1 Introduction 

This chapter describes the experimental details of the techniques employed for the 

extraction and analysis of the plant extracts from Ekebergia capensis, Clivia miniata and 

Grewia occidentalis and the individual components isolated. Both the off-line and on-line 

bioassay techniques are discussed as well as the various chromatographic and 

spectroscopic techniques used. 

5.2 Plant material 

Initially, when this project was initiated, fresh plant material of Ekebergia capensis 

Sparrrn. was obtained from a patient attending the ante-natal clinic at King Edward VIII 

hospital in May 1995. The identity of this plant was authenticated by comparison with a 

reference specimen at the Natal Herbarium. Plant material of Grewia occidentalis L. and 

Clivia miniata L. was obtained from the Silverglen Medicinal Plant Nursery (KwaZulu­

Natal, SA). Thereafter, for further analysis, a second batch of all three plants was 

obtained from the Medicinal Plant Nursery in November 1995. The wood of E. capensis, 

G. occidentalis and C. miniata was debarked, finely ground and left to air dry for 72 

hours. Due to the high moisture content of C. miniata the roots were initially dried and 

then ground into a fine powder. 

5.3 Preparation of crude aqueous extracts 

Aqueous extracts of the plants were prepared by heating 6.0 g of milled plant material in 

50 rnl distilled water for 30 minutes. The resulting decoction was filtered through a fluted 

Whatman 542 filter paper (Whatman International Ltd, Maidstone, England, UK) and 

freeze dried. 

78 



5.4 Off-line supercritical fluid extraction of plant components. 

Initial SFE studies were performed on a home assembled SFE system. The SFE apparatus 

comprised of a Lee Scientific Series 501 syringe pump (Dionex, Sunnyvale, CA, USA) 

controlled by Lee Scientific software and a Perkin-Elmer Sigma chromatographic oven 

(Perkin Elmer, Norwalk, Connecticut, USA) to house the extraction cell (Figure 5.1). A 

simple schematic diagram is shown in Figure 2.4. 

Figure 5.1 Photograph of the home assembled SFE system. 

5.4.1 Pump 

The syringe pump (Figure 5.2) had a cylinder capacity of 150 ml and could deliver a fluid 

up to 400 atm in pressure. An electronically-actuated valve within the pump was switched 

so as to connect the pump cylinder with either the gas cylinder or the extraction vessel. 

Direct introduction of a liquid from a high pressure tank into a cooled pump cylinder head 

was the recommended method for filling the pump with CO2. It is usually necessary to 

cool the pump head when working with eluents that are gaseous at ambient temperatures. 
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Cooling reduces the tendency of the liquid eluent to undergo gasification in the pump head 

and also enhances the pumping efficiency. As an added advantage, cooling results in a 

maximum fill of the pump cylinder. The pump cylinder jacket was therefore cooled by 

circulating cold water at 5 °C around it. This cold water was generated by a cooling unit 

(Grant Inst., Cambridge, UK). A piece of rubber tubing was connected from the outlet of 

the water bath to the 114 inch brass bulkhead fitting on the pump labelled coolant inlet. 

Another piece of rubber tubing was connected from the coolent outlet bulkhead fitting on 

the pump back to the inlet of the water bath to ensure the constant flow of the cooling 

solvent around the pump cylinder jacket. Both the pump cylinder jacket and the coolant 

transfer lines were insulated using a cut-to-fit polymer foam material. This step was 

essential to prevent excessive air moisture condensation and loss of cooling efficiency. 

3-wayvalve 

. inlet - ===t:::-... ...-: 'F== outlet 

cylinder 

piston 

ball screw & nut 

computer/controller 

stepper motor 

Figure 5.2 Schematic diagram ofa syringe pump (1). 
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5.4.2 Plumbing 

The plumbing was accomplished as follows: A 1.5 m x 1116 inch o.d. stainless steel tube 

soldered onto a 10 cm x 1/8 inch o.d. tubing was used to connect the high pressure tank 

containing SFE/SFC grade liquid CO2 (Air products and Chemicals Inc., Allentown, PA 

USA) to the 1116 inch bulkhead fitting labelled gas source at the back of the series 501 

pump. The ends of the stainless steel tubing were pushed through (A) a 1116 inch 

swagelok nut and a 1116 inch stainless steel Swagelok ferrule (Swagelok Co. , Solon, OH, 

USA) at the end for connection to the pump, and (B) a 118 inch swagelok nut and a 118 

inch brass swagelok ferrule at the end to the high pressure CO2 tank. Both ends were 

connected to the pump and tank respectively. A piece of 1116 inch o.d. stainless steel 

tubing with 1116 inch nuts and ferrules fitted at both ends were connected from the 1/16 

inch bulkhead on the pump labelled carrier fluid to a 4-port valve (Valco Inst., TX, USA) 

fixed outside the GC oven. This served as an on/off valve to control the entry of the fluid 

into the extraction vessel. A short piece of 1/16 inch o.d. stainless steel tubing was again 

connected from the 4-port valve to the extraction vessel housed in the GC oven. Finally, 

the outlet of the extraction vessel was connected to a high pressure 2-way valve (Supe\co, 

Bellefonte, P A, USA) placed outside the oven. This served to control extractions either in 

the static or dynamic mode. A 20 cm x 50 IJ.m i.d. deactivated fused silica capillary (SGE, 

Australia) was placed on the outlet of the 2-way high pressure valve for fluid 

decompression and also as a back pressure regulator. One end of the capillary was 

threaded through a short 1116 inch o.d. polyetheretherketone (PEEK) sleeve (Upchurch 

Scientific, Washington, USA) which was pushed through a 1116 inch nut and stainless 

steel ferrule in that order before connecting that 2-way pressure valve. The end of the 

capillary restrictor was immersed into 15 rnl methanol (BDH Laboratory Supplies, Poole, 

England) contained in a round bottom flask for trapping of the extracted anal)rtes. 

5.4.3 Extraction vessels 

Two stainless steel commercially available extraction vessels (Keystone Scientific, 

Bellefonte, P A, USA) were used in this study. One vessel had a volume of 24 ml while 

the other a volume of 10 rnI. Figure 5.3 below shows a diagram of a 24 rnl vessel with 
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high pressure end caps. Both end caps were fitted and sealed manually and housed a 5 Jlm 

bed support and a spring-loaded polytetrafluoroethylene (PTFE) cap seals. The vessels 

had a maximum pressure rating of 666 atm (10 000 psi). 

BED SUPPORT 
HIGH 

PRESSURE 
FITTING 

MALE 
FITTING 

Figure 5.3 A diagram of a commercially available stainless steel extraction vessel with 
fingertight end caps. (2) 

5.4.4 Extraction parameters 

Total extractions were performed on the dry milled samples at 400 atm and 80°C. The 

samples were spiked with 2 mol % H20 as modifier to increase the solvating power of 

supercritical C02. The plant samples were packed tightly into the extraction vessel to 

reduce the vessel void volume. The masses of the plant samples varied due to the particle 

size of the material and will hence be given in the later chapters when discussed 

individually. The vessel was placed horizontally in the oven and the extraction performed 

for 50 minutes static period followed by a 20 minute dynamic extraction period. Although 

this orientation of the vessel is generally not recommended, it was not possible to keep the 

the vessel vertical due to the dimensions of the oven. Supercritical fluid fractionation was 

also performed to decrease the complexity of the total extract. Sequential extracts were 

thus obtained by simply increasing the pressure at constant temperature while performing 

extractions on the same sample. 
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5.5 Uterotonic bioassay 

A schematic diagram of the bioassay setup is seen in Figure 5.4. Mature non-pregnant 

guinea pigs were obtained from the Biomedical Resource Centre, University of Durban­

Westville (KwaZulu-Natal, RSA). 20% pentobarbitone (Maybaker, Port Elizabeth, RSA) 

was administered intramusculariy as an anaesthetic, at a dose of 0.2 glkg. The uterus was 

removed by a midline incision into the lower abdominal cavity and washed immediately in 

Tyrodes solution at 4°C. The bioassay was performed by placing a 2 cm longitudinal strip 

of uterine muscle into the muscle bath containing 10 ml Tyrodes solution maintained at 

37°C. The lower end of the muscle was fixed to a glass capillary tube while the upper end 

was suspended by a thread attached to a Harvard 386 smooth muscle isotonic transducer 

(Harvard Apparatus Company, Inc., Massachussets, USA) which transformed the change 

in muscle length into a proportional electrical signal. A continuous supply of 95% O2 and 

5% CO2 (MG Fedgas, Durban, RSA) was administered through the glass capillary tube at 

a flow rate of 60 mlImin to provide tissue oxygenation and act as a suitable buffer. This 

signal was recorded using an electrically driven Beckmann R511 A chart recorder 

(Beckman, Inc., Illinois, USA) at a chart speed of 0.05 mm1sec. Caution was exercised in 

ensuring that the lumen of the uterus remained open at both ends during the assay. 0-

Acetylcholine hydrochloride (ACh) (BDH Chemicals, England, UK) was used as a 

standard smooth muscle stimulant at a concentration of 1 IlglIOO Ill. The extracts were 

dissolved in 0.9% sodium chloride (Sabax Ltd, Johannesburg, RSA) at known 

concentrations and dispensed into the muscle bath using Eppendorf pipets. Physiological 

fluid (Tyrodes solution) was prepared by dissolving 2.70 mmol KCI, 1.05 mmol 

MgCh.6H20, 0.40 mmol NaH2P04, 1.80 mmol CaCh, 137.00 mmol NaCl, 11.90 mmol 

NaHC03 and 5.60 mmol o-glucose in distilled water. 
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Figure 5.4 Schematic diagram of the uterotonic bioassay setup used to monitor muscle 
activity. 
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5.6 On-line SFE-Bioassay. 

The schematic diagram of the on-line SFE-bioassay setup is shown in Figure 5.5. SFE 

was performed using a Lee Scientific series 600 SFC pump (Dionex, Sunnyvale, CA, 

USA) to deliver the SFE fluid, and the series 600 SFC/GC oven to house the extraction 

vessel. A 24 ml stainless steel extraction vessel (Keystone Scientific; Bellefonte, P A) was 

housed vertically in the oven maintained at 80°C. A Lee Scientific supercritical fluid 

extraction injection accessory controlled the passage of CO2 to and from the extraction 

vessel. This consisted of a temperature controlled block maintained at the same 

temperature as the oven and a multi port valve which enabled switching between dynamic 

and static modes of extraction. As shown by the schematic diagram of the system in 

Figure 5.6, fluid from the pump was intially allowed to pass through onloffvalve VI into 

the extraction vessel, while keeping the vent valve at position 10 closed, and the multiport 

valve in the static mode. This allowed the vessel to pressurise to the required pressure, 

hence allowing static extraction to proceed for 50 minutes. The multiport valve was 

thereafter switched from position 9 to position 8 thereby linking ports 1 and 2 to facilitate 

dynamic extraction. The 1/16 inch stainless steel tubing connected to port 2 was redirected 

back into the oven in an attempt to maintain constant temperature during transport of the 

extracted analytes. Upon exit from the oven, the fluid passed through a 50 !lm tapered 

restrictor (SGE; Australia) and decompressed into the muscle bath at a flow of 18 mllmin 

at 150 atm (Figure 5.5). 
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Figure 5.5 Schematic diagram of the on-line SFE-bioassay setup 
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Figure 5.6 Plumbing schematic of the multiport valve used for switching 
between static and dynamic modes of extraction. 
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SFC grade CO2 (Air products and Chemicals; Allentown, PA) was used as the extraction 

fluid. Each plant sample was tightly packed into the extraction vessel and 200 III H20 

added to the matrix. Extraction was carried out at 400 atm and 80 QC for 50 minutes 

static followed by a 20 minute dynamic extraction period. Further, SFE fractions were 

obtained by sequentially increasing the pressure at constant temperature and modifier 

concentration. Extractions were performed at 200, 300 and 400 atm respectively. After 

the 20 minute dynamic extraction period for each sample, the multiport valve was 

switched back to the static mode (port 9) followed by closure of valve VI (Figure 5.5). 

Valve V2 was thereafter opened allowing pure CO2 of the same density as the extracting 

fluid, to flow through ports 3 and 2. This procedure enabled flushing and cleansing of the 

1/16 inch transfer line as well as the tapered restrictor, thereby eliminating the possibility 

of memory effects during analysis. The vessel was simultaneously vented through port 

10. The bioassay was performed as described in section 5.4, however modifications to 

the Tyrodes solution as well as the muscle bath were carried out to alleviate the side 

effects of excess CO2• These are discussed in chapter 8. 
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5.7 Muscle bath construction. 

5.7.1 Muscle bath A 

Muscle baths were constructed in house from 10 ml polypropylene syringes (T erumo 

Corporation, Tokyo, Japan) . The first bath was designed for horizontal flow of CO2 

directly into the muscle bath. This was accomplished by attaching a 10 cm length of 

PEEK tubing (Up church Scientific, Washington, USA) from the wall of the polypropylene 

syringe to the wall of the Perspex water bath (Figure 5.7). The restrictor passed through 

the PEEK tubing until it protuded into the muscle bath. 

PEEK tubing 
~ 

25 ).lm i.d~d 
restrictor 

~ 
isotonic transducer 

Figure 5.7 Polypropylene muscle bath designed for horizontal flow of CO2 with direct 
introduction into the muscle bath. 
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5.7.2 Muscle bath B 

A second bath was designed for vertical flow of CO2 due to failure of the first horizontal 

flow bath to perform efficiently. The reasons for this are discussed in Chapter 8. This 

second bath consisted of a second chamber of 6 ml capacity called the extract collection 

chamber, linked via a detachable side arm to the muscle bath (Figure 5.8). The extract 

collection chamber functioned as a CO2 reduction interface with extractions performed 

directly into this chamber while the muscle remained in the muscle bath. The muscle bath 

was filled with Tyrodes solution by upward displacement until the level of Tyrodes in the 

extract collection chamber had reached a volume of 4 ml. 

extract collection chamber 
(COzreduction interface) t 

------

~. t· d ISO OnlC trans ucer 

carbogen inlet 

\ 
r;:::::===~ 

strip of uterine muscle 

Figure 5.8 Polypropylene muscle bath designed for vertical flow of CO2 with direct 
introduction into a CO2 reduction interface. 
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5.8 Tapered restrictor fabrication. 

The end of a length of 25 J.lm and 50 J.lm i. d. deactivated capillary tubing (SGE; Australia) 

was held in the tip of a bunsen burner flame. Tension was applied by hand on both sides 

of the heated area. As the fused silica melted, the capillary was pulled to a hair like taper 

and removed from the flame (Figure 5.9). The restrictor orifice was thereafter adjusted by 

cutting back the taper and measuring the gaseous flow rate at room temperature and at a 

pressure of 150 atm (3). 

1. 

3. 

4. 

poIyimide resin 

:6::::2:: =:::O:>l:.=======7==(~)---"--J , 
capillary sleeve 

t 
cured poIyimide resin 

Figure 5.9 Schematic steps showing the preparation of a tapered capillary restrictor. 
(1) a mico-Bunsen burner is used for localized heating of the capillary. 
(2) tension is applied and the capillary pulled to a hair like taper. 
(3) polyimide resin is applied to the taper which is subsequently positioned 

with a capillary sleeve. 
(4) the resin cures and glues the taper to part of the inner wall of the sleeve .. (3) 
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5.9 pH measurements of Tyrodes solution. 

The effects of CO2 on the pH of Tyrodes solution was monitored by using the pH meter 

300 (Zeiss, W. Germany) with a combination pH electrode (Beckmann Instr. CA, USA). 

The instrument was calibrated with pH 7 and pH 4 buffer solutions supplied by Beckman 

Instruments (Fullerton, ·CA, USA). 

5.10 Isolation and structural elucidation of plant components 

5.10.1 Column Chromatography 

Exhaustive supercritical fluid extractions of the plant samples were performed into 

methanol using the 24 ml extraction vessel until subsequent extractions yielded no further 

extractables. Column chromatography was thereafter performed repeatedly in order to 

separate and purify the compounds present in the extracts. The length and diameter of the 

columns as well as the particle size of the stationary phase had to be varied in order to 

optimize resolution of the compounds. 

Initially, use was made of a 50 cm x 5 cm i.d. glass column packed with silica gel 60 

(0,2-0,5 mm particle size, 35-20 mesh ASTM, Merck Art 7734, Merck Chemicals, 

Darmstadt, Germany), with gravity elution. This was followed by the use of gravity 

columns (50 cm x 3.5 cm) packed with silica gel 60 (0,040-0,053 mm particle size 230-

400 mesh ASTM, Merck Art. 9385, Merck Chemicals, Darmstadt, Germany). In certain 

cases, flash chromatography was found useful for the speedy separation of mixtures. The 

latter technique involved the use of pressure in order to elute the various fractions from 

the column. The flow rate was maintained at approximately 60 mlfrnin for flash 

chromatography. 

5.10.2 Thin layer chromatography 

Thin layer chromatography was conducted on the crude extracts and the various fractions 

collected, using pre-coated 0,2 mm thick aluminium-backed silica gel 60 TLC plate 

(Merck Art 5553, Merck Chemicals, Darmstadt, Germany). The spots on the plates were 

visualised by spraying with a reagent comprising anisaldehyde (Fluka Chemicals; Buchs, 
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Switzerland), concentrated sulphuric acid (BDH Chemicals, England, UK) and methanol 

(polychem Supplies, Durban, RSA) in the ratio 1.25: 2.5 : 96.25 . Coloured spots were 

observed after heating the plates with a heatgun. 

5.11. Spectroscopic techniques 

5.11.1 IH and I3C NMR spectroscopy 

All IH NNfR, l3C NMR and 2-dimensional NMR spectra were recorded at room 

temperature on a Varian Gemini 300 MHz spectrometer (Varian Instruments, Palo Alto, 

California, USA). The solvents used were deuteriochloroform (CDCh) and 

deuteriomethanol (Merck Chemicals, Darmstadt, Germany) and all 6 values were relative 

toTMS. 

5.11.2 Infrared Spectroscopy 

The samples were prepared on KBr discs and infrared spectra recorded on a Mattson 2020 

Galaxy series FTIR spectrophotometer (Mattson Instruments, Inc., Madison, USA). The 

samples were dissolved in dichloromethane (Saarchem Holpro, Krugersdorp, RSA) and 

added dropwise onto the surface of the KBr disk (FTIR grade, Sigma-Aldrich S.A. (Pty) 

Ltd, Midrand, RSA). The solvent was allowed to evaporate off, leaving a thin film of 

sample on the disk for analysis. The data was acquired using the Mattson software 

(copyrighted 1989). 

5.11.3 High Resolution Mass Spectrometry 

High resolution mass spectra at the recorded at the Cape Technikon on VG 70E WRM 

spectrometer while mass measurements were performed on a Kratos High Resolution MS 

9/50 mass spectrometer by Dr P. Boshoff The voltage of the ion source was maintained 

at 70 eY. 
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5.11.4 Acetylation of compound 4 from Ekebergia capensis Sparrm. 

Compound 4 (2 mg) was dissolved in pyridine (1 ml) (Holpro Analytics, Midrand, RSA) 

and the solution gently warmed on a steam bath. Acetic anhydride (1 ml) (Saarchem 

(Pty). Ltd, Muldersdrift, RSA) was then added to the solution, which was stirred and left 

to stand overnight at room temperature. Thereafter methanol (10 ml) was added to 

hydrolyse the residual anhydride. Two portions of toluene (each 10 ml) (BDH Chemicals 

Ltd, Poole, England) were then added to the mixture and successively removed under 

reduced pressure in order to remove traces of pyridine. The residual toluene was 

removed under reduced pressure by the addition of aliquots of methanol (each 10 ml). 

5.12 Chromatographic and electrophoretic analysis of the plant extracts 

5.12.1 High performance liquid chromatography. 

HPLC was carried out using a Hewlett Packard HP 1090 liquid chromatograph equipped 

with dual pumps, a Model 7010 sample injection valve, an automatic injector capable of 

injecting up to 25 Jll and a UV photodiode array detector (Hewlett Packard, Waldbronn, 

Germany). A 50 JlI aliquot of a solution of the extract dissolved into methanol was 

injected onto' a Bondclone-lO C18 reverse phase column packed with 5 Jlm particles (300 

x 3.9 mm i.d., Phenomenex, Torrance, CA, USA). A 70 x 3.9 mm guard column packed 

with 5 Jlm C18 packing (phenomenex, Torrance, CA, USA) was inserted between the 

solvent delivery system and the column to increase column lifetime and ensure that 

contaminants did not interfere with analyses. Solvents were made up from HPLC grade 

solvents and Milli_Q50 water and filtered through Millipore 0.45 Jlm RV organic-aqueous 

compatible filters. All solvents were degassed with helium prior to use. Columns were 

washed with methanol after runs and stored in methanol. All injections were performed 

through the automatic injector. 

A UV photodiode array (PDA) detector was used and the absorbance measured at 280 

nm. The PDA detector was used to scan the entire UV wavelength region and 280 nm 

was found to be the optimum wavelength at which most of the eluting compounds were 

detected. The mobile phase was composed of both water (A) and methanol (B) at varied 
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compositions as gradient elution was employed in order to separate the components. The 

elution programme is given in Table 5.1. 

Table 5.1. Gradient elution programme employed to separate the plant components. 

time (min) Eluent A Eluent B gradient 

(water) (methanol) 

% vlv % vlv 

0 100 0 -

5 80 20 linear 

10 60 40 linear 

15 40 60 linear 

20 20 80 linear 

25 0 100 linear 

5.12.2 Capillary electrophoresis 

A Beckmann 2200 PlACE electrophoresis system (Beckmann Instruments, Inc., Fullerton, 

CA, USA) was used. In the instrument, a fused-silica capillary, which is contained within 

a temperature controlled cartridge, bridges two electrolyte vials located on an 

autosampler. The autosampler trays rotate until the vials containing the necessary fluids 

for specific operations are in position beneath the ends of the capillary. The vials are then 

pneumatically raised so that the ends of the capillary are immersed in the fluid in the vials. 

Also immersed in one of these vials is a positive electrode (anode) while a negative 

electrode (cathode) is immersed in the other. The PlACE instrument was controlled 

automatically via an mM-compatible personal computer with the Beckman System Gold 

Software. 

The column used was a 85 cm x 50 /.lm i.d fused silica capillary (SGE, Australia) inserted 

into a specially constructed cartridge. Within the cartridge, the capillary was wound 
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around a mandrel a number of times depending on its length (Figure 5.10). The effective 

length of the column was 75 cm and the polyimide coating was removed by heating over a 

bunsen flame leaving an optically transparent window. This window was fastened to an 

aperture and to the housing itself so that it was permanently aligned with an opening in the 

housing for use with the detector optics. PI ACE capillary cartridge coolant (a 

fluoroorganic fluid) flowed through the cartridge via two openings in the bottom of the 

housing (located between the ends of the capillary). This fluid circulated around the 

capillary within the cartridge and maintained a preset temperature (25°C) through 

convective heat removal. The cartridge was inserted into the rear of the autosampler. A 

variable wavelength detector was used to monitor the complexity of the extracts. 

Components from Ekebergia capensis and Clivia miniata were monitored at 280 nm 

while that of Grewia occidentalis monitored at 254 nm. Other detection wavelengths 

could be obtained by changing the filter. 

Mandrel 

Figure 5.10 Interior of the capillary cartridge. (4) 
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The column was pressure rinsed with 0.1 M NaOH for 1 minute before being rinsed with 

the running buffer for another minute. Samples were prepared in methanol and introduced 

onto the column by pressure injection for 1 second. The column ends were then 

automatically placed back into the buffer vials and a voltage of 20 kV was applied. The 

run time was set at 40 minutes but could be stopped manually when necessary. At the end 

of each day the column was first pressure rinsed with 0.1 M NaOH followed by a rinse 

with water for 5 minutes each respectively. This ensured that there was no buffer present 

in the capillary which could crystallize out and hence block the capillary column. 

5.12.2.1 Buffer preparation 

The analysis of E. capensis was performed using 20 mM Na2B407.1 OH20 (BDH 

Chemicals Ltd, Poole, England, UK) and 120 mM sodium cholate (Sigma Chemicals, St. 

Louis, MO, USA). Extracts of G. occidentalis were analysed with 20 mM 

Na2B407.10H20 (BDH Chemicals Ltd, Poole, England, UK) and 100 mM sodium cholate 

(Sigma Chemicals, St. Louis, MO, USA). The extracts of C. miniata were analysed using 

30 mM dt-sodium phosphate buffer (BDH Chemicals Ltd, Poole, England, UK) with 120 

mM sodium cholate (Sigma Chemicals, St. Louis, MO, USA). All buffers were prepared 

in deionised water and ultrasonicated for 10 minutes to remove any dissolved air and then 

subsequently cooled to room temperature. The buffers were filtered prior to use by 

passage through a 0.2 mm syringe filter (Lida, Kenosha, WI, USA). 

5.12.2.2. Sample preparation and injection 

All samples were prepared in methanol and filtered through a synnge filter (Lida, 

Kenosha, WI, USA) prior to injection onto the capillary. The samples were placed in 

microvials (Beckmann Instruments, Inc., Fullerton, CA, USA) making possible the 

injection of sample in the micoliter scale (Figure 5.11). 
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with water 

Figure 5.11 Assembly for sample-injection in the microliter scale. (4) 
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5.12.3 Supercritical fluid Chromatography 

In this work, packed capillary SFC analysis was carried out on a Lee Scientific Series 600 

supercritical fluid chromatograph with a Series 600 Controller interfaced with a Varian 

4270 integrator. CO2 (Air Products and Chemicals, Allentown, PA) and HFC-134a (lCI 

Fluorochemicals, New Castle, USA) was evaluated as mobile phases using two separate 

pumps to avoid contamination of the mobile phases. 

The density of the mobile phase was controlled by alSO ml syringe pump equipped with a 

refrigeration unit. The pressurised fluid was delivered from the pump to a Valco C14W 

microvalve injector (Valco Instruments, USA) which was a pneumatically actuated timed­

split injector. The injection valve was fitted with a 200 nl internal sample rotor and set up 

for time-split injection by installing precoloumn directly into the injection valve (Figure 

5.12). Initiation via an electronic signal caused the valve to be switched rapidly (in the 

order of milliseconds) from the load to the inject position and back again. Helium was 

used to power the actuator because the fast valve action requires a low viscosity gas. Due 

to the speed of the valve switching action, only a portion of the loop contents (-50 nL) 

was transferred onto the column by a mobile phase, the rest of the sample remaining in the 

injection loop. Therefore, injection volumes could be easily altered by increasing or 

decreasing the time of injection. The injector was cooled to 5 °C with a cooling jacket. 

Valve body 

Rotor 
Pre-load 
'assembly 

Figure 5.12 Schematic diagram of injection valve for SFC (5). 
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A 30 cm x 50 ~m i.d. fused silica tubing was connected between the injector and the 

packed column. This so called precolumn functioned as a retention gap. A 30 cm x 100 

~m Ld. column packed with 5 ~m ODS-2 was used to investigate the complexity of the 

extracts. The column was housed inside the oven, with one end leading from the 

precolumn and the other end connected to a 70 cm x 50 ~m fused silica capillary. This 

capillary acted as a transfer line to a Spectra-Physics UVIOOO variable wavelength UV 

detector (Spectrasystem, San Jose, CA, USA). A transparent window was formed as 

described in section 5.11.2 and mounted to the detector optics to facilitate detection of the 

compounds that they passed through the transfer line. The end of the transfer line was 

then connected to a 20 cm x 10 ~m i.d. linear restrictor with a flow between l.20 and 

1.50 mlImin at 150 atm at room temperature. All connections were made via a SGE 

minimum dead volume butt connector (SGE, Australia) which consisted of a stainless steel 

screw-tightened assembly (Figure 5.13). The linear restrictor was directed into the heated 

block (325°C) of the FID to prevent restrictor blockages. 

butt 
capillary connector 

Slee.~ ! 
LI_ LJ.~ 

'i 

capillary c olumn~~=======rQ=~·-===:ll"==~==:::;~;;;;U:::::;:=======re=s=tn=·=ct=or 

graphite ferrule 

Figure 5.13 Schematic diagram of butt-connection of column to restrictor 
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Before use, the SFC pump was filled with CO2 using the pump "fill" function. Once the 

required amount was present in the pump, the pump valve function was switched to 

"carrier" which directed the flow to the column. The CO2 from one filling could easily 

last several days if the pump pressure was maintained when not in use. The required 

operating method for the analysis was programmed into the Series 600 controller. This 

involved setting the oven temperature, detector temperature, pump conditions and the 

duration of inj ection. 

Once the system had stabilized and was ready for use, the required operating method was 

loaded. An excess of analyte was injected into the loop using a Unimetrics blunt-tipped 

50 /ll syringe, and at the electronic prompt the injector was fired and the integrator 

activated manually. At the end of the analysis, the SFC was returned to its original 

position in readiness for next analysis. 

5.13 Column packing 

Packed capillary columns with ODS-2 were prepared using supercritical fluid CO2 by a 

method outlined by Bartle et al. in 1994 (6). A schematic diagram of the packing system 

is shown in Figure 5.14. A Lee Scientific Series 600 syringe pump was used to deliver 

the CO2 to the column via the packing reservoir. The reservoir was a 6 cm x 1/8 inch 

stainless steel tubing with a stainless steel frit (pore size < 0.2 /lm) mounted in the inlet 

union. The reservoir was connected to a length of fused silica capillary tubing via a 

reduction union. An appropriate amount of packing material depending on the length of 

the column was placed into the reservoir. A porous ceramic frit, as discussed in section 

5.14, was made at the exit end of the column and this was connected to a linear restrictor 

(15 cm x 10 /lm i.d. fused silica capillary). The column tubing and the restrictor were 

placed under water in an ultrasonic bath. Liquid carbon dioxide was introduced by 

opening the high pressure valves, VI and V2. The column was sonicated during the 

whole packing process, and the temperature of the water was maintained at approximately 

50°C. The carbon dioxide in the reservoir and in the section of the column above the 

water was in the liquid state. This aided the dispersion of the packing material. 
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However, the carbon dioxide flowing through the section of the column beneath the water 

was in the supercritical fluid state with consequent faster velocity and lower viscosity 

than in the liquid state. Slow pressure programming was used during the packing 

procedure. After the packing bed in the column had grown to the required length, the 

packing pressure was kept constant for approximately 30 minutes at 300 atm before 

cessation of sonication and depressurization. Sudden depressurization was avoided, since 

this causes backfilling of the packing material or break up of the packed bed resulting in a 

significant decrease in column efficiency. The pressure was slowly reduced to 80 atm at 

a rate of 3 atmlmin. Valves VI and V2 were thereafter closed. The restrictor was 

removed once the column was taken out of the water bath. The column was left 

overnight so that the pressure drop across the column fell to zero. At this point, no 

bubbles were observed coming from the end of the column. A porous ceramic frit was 

finally made at the inlet of the column to hold the packing material in place. 

vent 

valve V2 
valve VI 

on/off valve 

reservoir 

ultrasonic ba t h 

column 

warm water \ 
Pump 

restrictor 

Figure 5.14 Schematic diagram of the supercritical fluid CO
2 

packing system. (6) 
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5.14 Preparation of porous ceramic frits 

Porous ceramic frits were prepared from potassium silicate. A few drops of 20 % 

potassium silicate was added to solid silica of 5 mm particle size to form a paste. The 

paste was then pressed 0.2 - 0.33 mm into the capillary. The capillary was then heated 

over a bunsen flame and the silica paste sintered as a result of the high temperature to 

form a porous frit. 

5.15 GC-MS Analysis of Clivia miniata L. 

The fatty acid fraction of C. miniata was analysed using a Hewlett Packard (HP) 5890 

series Gas Chromatograph with an HP 5971 Series Mass selective detector (electron 

impact) (Hewlett Packard, Waldbronn, Germany) controlled by an HP Vectra 486/33N 

computer. The column used was a HP-5 M.S. (Crosslinked 5 % phenylmethyl silicone) 

(Hewlett Packard, Waldbronn, Germany), 25 m x 250 J..lm i.d. capillary column with a film 

thickness of 0.25 J..lm. All injections were performed with an SGE syringe (SGE, 

Australia) with the injector in the splitless mode. Helium was used as the mobile phase at 

a flow 0.5 mlImin (6.43 psi). The following conditions were used: 

Solvent delay: 3.00 minutes 

EM Voltage: 70 eV 

Inlet temperature: 150 QC 

Initial inlet pressure: 21. 0 psi 

Detector temperature: 280 QC 

A temperature programme was executed as follows: 

An initial oven temperature of 150°C that was held for two minutes. Thereafter, a 

temperature ramp of 7 QC/min was irutiated to a temperature of 180 QC. After a hold time 

of 10 minutes at this temperature, the ramp was continued at 7 QC/min to a final 

temperature of250 QC. The final hold time was 20 minutes. 
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5.16 Esterification of fatty acid mixture 

Since the free fatty acids are highly polar, they often have great difficulty in eluting from a 

GC column. Hence, the methyl esters of these fatty acids have to be formed so that 

analysis could be made possible. The fatty acid mixture was esterified as follows: 

The esterification mixture was made by mixing methanol (10 rnI), chloroform (10 rnI) and 

concentrated sulphuric acid (0.1 rnI) in a beaker. The sample (20 mg) was placed in a 

small test tube and to it the esterification mixture added to make the tube 3/4 full . The 

sample was mixed well with the reaction mixture and placed in the bomb. The bomb in 

turn was placed in a heatable block that was preheated to 170°C. An empty tin was 

inverted and placed over the bomb to contain possible explosions. The sample was left in 

the heated block for 20 minutes. The bomb was thereafter removed from the heated block 

and allowed to cool to room temperature. The test tube was removed and the contents 

washed several times with water. All the washings were discarded and the chloroform 

solution of the methyl esters were transferred into a clean test tube. The solution was 

finally placed on the heated block together with the passage of air into it until the solution 

became clear. The solution now consisted of the methyl esters that were ready for 

injection into the GC (7). 

5.17 Identification of active components and assessment of mode of action 

The compounds isolated from the three plant extracts were further subjected to in vitro 

screening as described in section 5.5 and the uterotonic compounds identified. An 

assessment on the mode of action of the active compounds was carried out by the use of 

two receptor agonists and antagonists. Bradykinin (Sigma Chemicals, St. Louis, MO, 

USA) was used as the standard B2 receptor agonist while acetylcholine (BDH Chemicals, 

England, UK) was used as the cholinergic receptor agonist. The biological activity of the 

compounds were assessed both before and after addition of the receptor blockers. HOE 

140 (a peptide antagonist) (Sigma Chemicals, St. Louis, MO, USA) was used as the B2 

receptor blocker while atropine (Sigma Chemicals, St. Louis, MO, USA) was used as the 

cholinergic blocking agent. Bradykinin and acetylcholine were prepared to a final 

concentration of30 ng/100 III and I 1lg/100 III respectively while HOE 140 and 'atropine 

104 



were made to a final concentration of 1000 1lg/100 III and 60 1lg/100 III respectively. 

Accurate doses were dispensed into the muscle bath using Eppendorf pipettes. The plant 

compounds were dissolved in 0.9% saline and in 1 % DMSO solution and administered to 

the strips of uterine muscle accordingly as described in chapter 12. 

5.18 Extractives from Ekebergia capensis 

5.18.1 Physical data of compound 1 

24-Ethylcholest-5-en-3/3-01, /3-sitosterol 

Yield: 5.5 mg 

Mass spectrum (spectrum la): 

EIMS rnlz 414.3848 (C29HsoO, req. 414.3861), 396 [M - H20r 

Infrared spectrum (spectrum 1 b): 

Umax (KBr): 3430 cm-I (O-H stretching), 2936 cm-I, 2867 cm-I (saturated C-H 

stretching), 1049 cm-I (C-O stretching), 1460 cm-I, 1378 cm-I (C-H deformation) 

Optical rotation: 

[a]D = -34.1 ° (CHCI3, c 0.050), (lit value -35 0) (8) 

Melting point: 

134-136 °c (lit. value 136-137 QC) (8) 

IH NMR (spectrum 1c) 

8 (ppm): 0.66 (3H, s, H-18), 0.78 (3H, d, J= 7.1 Hz, H-27), 0.80 (3H, d, J= 

7.9 Hz, H-26), 0.82 (3H, t, J= 7.2 Hz, H-29), 0.91 (3H, d, J= 6,4 Hz, H-2I), 

0.99 (3H, s, H-19), 3.50 (IH, rn, H-3a), 5.32 (lH, rn, H-6) 

13C NMR (Table AI) 

5.18.2 Physical data of compound 2 

3-0xo-12-0Ieanen-28-oic acid, oleanonic acid 

Yield: 8.5 mg 

Mass spectrum (spectrum 2a): 

EIMS rnlz 454.3471 (C3oli4603' req. 454.3447), 439[M - CH3r, 410 [M - co
2
t 
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Infrared spectrum (spectrum 2b) : 

U max (KBr): 3421 cm-I (O-H stretching), 2922 cm-I, 2850 cm-I (saturated C-H 

stretching), 1749 cm-\ 1726 cm-I (C=O stretching), 1049 cm-I (C-O stretching), 

1462 cm-I, 1377 cm-I (C-H deformation), 1271 cm-I (C-O stretch) 

Optical rotation: 

[0.]0 = +99.4 ° (CHCb, C 0.022), (lit value + 101 0) (9) 

Melting point: 

225-228 °C (lit. value 226-229 °C) (9) 

lH N11R (spectrum 2c) 

o (ppm): 0.75 (3H, S, H-26), 0.82 (3H, S, H-30), 0.88 (3H, S, H-29), 0.98 (3H, S, 

H-24), 0.99 (3H, S, H-25), 1.03 (3H, S, H-23), 1.04 (2H, m, H-21), 1.06 (lH, m, 

H-15b), 1.09 (3H, S, H-27), 1.10 (lH, m, H-19b), 1.26 (1H, m, H-5), 1.28 (2H, 

rn, H-7), 1.34 (lH, dd, i l = 3.7 Hz, i2 = 12.0 Hz, H-1a), 1.28 (2H, d, i= 5.6 Hz, 

H-6), 1.57 (IH, m, H-19a), 1.60 (IH, rn, H-9), 1.62 (IH, m, H-16a), l.72 (2H, 

dd, i l = 4.0Hz, i2 = 15.7 Hz, H-15a), 1.81 (lH, rn, H-1b), 1.88 (2H, m, H-22), 

l.93 (2H, m, H-II), l.99 (lH, m, H-16b), 2.30 (IH, rn, H-2a), 2.50 (lH, rn, H-

2b), 2.78 (1H, dd, i l = 3.5 Hz, i2 = 12.1Hz, H-18), 5.24 (lH, bs, H-12) 

l3C N11R (Table AI) 

5.18.3 Physical data of compound 3 

3 a-Hydoxy-12-oleanen-28-oic acid, 3-epioleanolic acid 

Yield: 5.2 mg 

Mass spectrum (spectrum 3a): 

EIMS mlz 456.3590 (C3olI4s03, req. 456.3603), 

Infrared spectrum (spectrum 3b): 

U nux (KBr): 3404 cm-l (O-H stretching), 2947 cm-I, 2879 cm-l (saturated C-H 

stretching), 1709 cm-I (C=O stretching), 1444 cm-I (O-H in-plane bending), 1379 

cm- l (C-H deformation), 1249 cm-I (C-O stretch) 

Optical rotation: 

[0.]0 = +69.20 (CHCI3, c 0.0l3), (lit value +68 0) (10) 
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Melting point: 

>250°C (lit. value 294-296 °C) (10) 

IH NMR (spectrum 3c) 

8 (ppm): 0.73 (3H, s, H-26), 0.81 (3H, s, H-30), 0.88 (3H, s, H-29), 0.90 (6H, s, H-24, 

H-25), 0.93 (3H, s, H-23), 1.10 (IH, m, H-la), 1.12 (3H, s, H-27), 1.15 (lH, m, 

H-19a), 1.30 (lH, m, H-1b), 1.60 (lH, m, H-19b), 1.66 (lH, m, H-2a), 1.74 (2H, 

m, H-11), 1.87 (lR, m, H-2b), 2.79 (lH, dd, J1 = 3.9 Hz, J2 = 13.3 Hz, H-18), 

3.39 (lH, s, H-3B), 5.23 (lH, m, H-12) 

13CNMR (Table AI) 

5.18.4 Physical data of compound 4 

2,3,22,23 -Tetra hydroxy-2,6,10,15,19,2 3-hexamethyl-6, 1 0, 14, 18-tetracosatetrene 

Yield: 16.0 mg 

Infrared spectrum (spectrum 4b): 

Umax (KEr): 3437 cm-I (O-H stretching), 3000 cm-I - 2879 cm-I (saturated C-H 

stretching), 1638 cm-I (C=C stretching), 1459 cm-I, 1381 cm-I(C-H deformation), 

763 cm-I (C-R out-of-plane bending) 

Optical rotation: 

[a]D = +22 ° (CRCI3, c 0.035), (lit value +23°) (11) 

IH NMR (spectrum 4c) 

8 (ppm): 1.12 (6H, s, 2 x CH3), 1.17 (6H, s, 2 x CH3), 1.38 (2H, m, H-4a, H-21a), 1.50 

(2H, m, H-4b, H-21b), 1.57 (6H, s, 2 x CH3), 1.59 (6H, s, 2 x CH3), 1.98 (8H, m, 

H-9, H-I2, H-13, H-16), 2.04 (6H, m, H-5a, H-20a, H-8, H-I7), 2.19 (2H, m, H-

5b, H-20b), 3.32 (2H, dd, J1 = 2.0 Hz, J2 = 10.3 Hz, H-3, H-22), 5.14 (4H, m, H-

7, H-II, H-I4, H-I8), 

13C NMR (Table AI) 
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5.18.5. Physical data of compound 5 

7 -Hydroxy-6-methoxycoumarin, scopoletin 

Yield: 4.2 mg 

Mass spectrum (spectrum Sa): 

ETh1S mlz 192.0418 (C lOHg0 4, req. 192.0422),177 [M - CH3f, 149 [M - CH3 -

COr, 121 [M - CH3 - 2cof 

Infrared spectrum (spectrum Sb): 

Uma.'C (KBr): 333S cm-1 (O-H stretching), 28S0cm-1 (symmetrical stretch of -OCH3), 

1706 cm-1 (C=O stretching), lS6S cm-t, lS09 cm-1 (C=C stetching), 922 cm-\ 860 

cm-1 (C-H out-of-plane bending), 

Melting point: 

201-202°C (lit. value 204°C) (12) 

IH NMR. (spectrum Sc) 

o (ppm) : 3.94 (3H, s, OCH3), 6.10 (lH, s, OH), 6.24 (lH, d, J3,4 = 9.6 Hz, H-3), 6.83 

(lH, s, H-S), 6.90 (lH, s, H-8), 7.S8 (lH, d, J3,4 = 9.6 Hz, H-4) 

5.19 Extractives from Clivia miniata 

5.19.1 Physical data of compound 6 

{Z,Z)-9,12-octadecadienoic acid, Linoleic acid 

Yield: l.0842 g 

Mass spectrum of methyl lino le ate (spectrum Sa): 

ETh1S mlz 294,262, ISO, 136, 123, 9S 

5.19.2 Physical data of compound 7 

5-Hydroxymethyl-2-furancarboxaldehyde 

Yield: 6.6 mg 

Mass spectrum (spectrum 7a): 

EIMS mlz 126.0307 (C lOH80 4, req. 126.0317), 109 [M - OHf, 97 [M - CHOr 

108 



Infrared spectrum (spectrum 7b): 

U max (KEr): 3423 cm-I (O-H stretching), 2924 cm-\ 2855 cm-I , 1670 cm-I (a.,~ 

unsaturated aldehyde C=O), 1190 cm-I (C-O-C symmetric stretching), 1521 cm-I 

(C=C stretching) 

IH NMR. (spectrum 7c) 

8 (ppm): 3.39 (lH, s, OH), 4.65 (2H, s, OCH2), 6.62 (1H, d, J3,4 = 3.6 Hz, H-4), 7.42 

(lH, d, J3,4 = 3.6 Hz, H-3), 9.57 (lH, s, CHO) 

l3c NMR. (Table A2) 

5.20 Extractives from Grewia occidentalis 

5.20.1 Physical data of compound 8 

3-( 4-hydroxy-3-methoxyphenyl)-2-propenal, coniferaldehyde 

Yield: 7.5 mg 

Mass spectrum (spectrum 8a): 

ElMS mlz 178.0625 (C IOH IO0 3, req. 178.0630),177 [M - Hr, 163 [M - CH3r 

149 [M - CHOr 

Infrared spectrum (spectrum 8b): 

U max (KEr): 3424 cm-I (O-H stretching), 2700 cm-I, 2850 cm-I, 1664 cm-I (a.,~ 

unsaturated aldehyde), 1587cm- l
, 1514 cm-I (C=C stretching), 971 cm-I (C-H out­

of-plane bending) 

IH NMR. (spectrum 8c) 

8 (ppm): 3.93 (lH, s, OCH3), 5.95 (lH, s,OH), 6.57 (1H, dd, JI' ,2' = 15.9 Hz, J 2',3' = 

7.65 Hz, H-2'), 6.94 (lH, d, 15,6 = 8.2 Hz, H-5), 7.05 (lH, d, J2,6 = 1.8 Hz, H-2), 

7.10 (IH, dd, J5,6 = 8.2 Hz, J2•6 = l.8 Hz, H-6), 7.38 (1H, d, JI',2' = 15.9 Hz, H-l'), 

9.63 (1H, d, J1:,3' = 7.65 Hz, CHO) 
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5.20.2 Physical data of compound 9 

2,2',6, 6'-Tetramethoxy-4'-al-4-( oroxo-E-propenyl)-biphenyl 

Yield: 15.5 mg 

Infrared spectrum (spectrum 9b): 

U max (KEr): 3418 cm-' (O-H stretching), 2939 cm-I, 2847 cm-I, 1677 cm-' (a,B 

unsaturated aldehyde), 1588 cm-' (C=C stretching) 

IHN1v1R (spectrum 9c) 

cS (ppm): 3.92 (6H, S, 2 x OCH3), 3.95 (6H, S, 2 x OCH3), 6.59 (57 (lH, dd, J1",2" = 

15.9 Hz, J2",3" = 7.65 Hz, H-2"), 6.79 (2H, S, H-3, H-5), 7.13 (2H, S, H-3', H-5'), 

7.36 (lH, d, J1",2" = 15.9 Hz, H-1"), 9.64 (lH, d, J2",3" = 7.65 Hz, CHO); 9.80 (IH, 

S, CHO) 

l3C NMR. (Table A2) 

5.20.3 Physical data of compound 10 

Data as for compound 2 
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CHAPTER 6 

SFE optimization by application of dynamic extraction model for the 

extraction of plant components 

6.1 Introduction 

Optimization of conditions in any SFE experiment is important as it ensures maximum 

recovery of analytes. However, in natural product matrices this is sometimes difficult to 

achieve unless the structures of the target analytes are known prior to extraction. A 

knowledge of the physical and chemical properties of the solutes can be of considerable 

aid in establishing optimal conditions for conducting the extraction, since this will effect 

the time required for executing a particular extraction. Utilizing the solubility parameter 

theory developed by Giddings, King and Friederich (1) developed a method which 

permitted the quantitative estimation of solute solubility levels in dense and liquified gas 

media over a range of pressures and temperatures. The method incorporates the ratio of 

the solubility parameter of the extraction gas to that of the dissolved solute, thereby 

permitting correlations to be made for number of solute-gas combinations as well as 

solute solubilities to be estimated from a knowledge of the solute's molecular structure. 

However, when dealing with complex matrices of unknown chemical constituents, 

conditions can be optimised on the basis of total extractable material obtained per unit 

time (2, 3). Although the optimization would have been more meaningful if one 

particular important analyte was targeted, in reality this was not possible at this time 

because the structural elucidation was not complete and the active components not 

identified. It was therefore uncertain whether the active components followed an 

extraction profile similar to that illustrated in Figure 2.9 or whether the active 

components were extracted largely at a particular point within the extraction period. In 

order to effectively utilize SFE, the fundamental thermodynamic and kinetic parameters 

that impact on the distribution of the analyte between the dense fluid phase and the 
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substrate being extracted, needed to be evaluated. Initial extraction conditions were 

selected on an empirical basis. 

6.2 The Extraction Model 

For the extraction of uterotonic compounds from Ekebergia capensis, Grewia 

occidentalis and Clivia miniata, the "hot ball" model (4) was employed which describes 

the kinetics of extraction with supercritical fluids. This model, as discussed in section 

2.12, requires a knowledge of the matrix characteristics, which in the case of natural 

products is difficult to understand due to irregular particle shapes and sizes. The model 

also assumes that the rate of flow of the fluid is so high that the fluid remains infinitely 

dilute, and also the solute is uniformly distributed throughout the matrix. It is then 

necessary to solve the diffusion equation for the system with appropriate boundary 

conditions. The problem is mathematically similar to that of the immersion of a hot 

sphere into a cold fluid (hence the name "hot ball" model) for which the solutions are 

given by Carslaw and Jaeger (5). 

In a later publication, Crank (6) translated the equations into diffusion terms. Adaption 

of the published solutions (7, 8) leads to the following equation for the ratio of the mass, 

m, of extractable material that remains in the matrix sphere after extraction for time, t, to 

that of the initial mass of extractable material, mo" 

co 

mlmo = (6/;r2) L (lln2) exp (-n2;r2Dtl,2) 
n=l 

(6.1) 

where n is an integer and D the diffusion coefficient of the material in the sphere. 

Equation 6.1 may be simplified by defining quantity tr , which is proportional to time for 

any given system (and is therefore a reduced or scaled time) by the following equation: 

(6.2) 

In terms of the scaled time, equation 6.1 becomes 
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mlmo = 617r 2 [exp (-tr) + 1/4 exp (-4t,) + 1/9 exp (-9tr) + ... ] (6.3) 

The solution is therefore a sum of exponential decays, and at long times the later (more 

rapidly decaying) terms will decrease in importance and the first exponential term in the 

square brackets will become dominant. A plot of In (m/ma) verses time, or a quantity 

proportional to time, therefore becomes linear at long times as shown in Figure 2.9. The 

curve falls steeply initially, the rate of fall then drops and becomes approximately linear 

after a time corresponding to a value of tr of around O.S. Extrapolation of the linear 

portion of the curve to the t = 0 axis gives an intercept of approximately -0.5 [in fact 

In (6/;r2) = -0.4977]. The physical explanation of the shape of the extraction curve is that 

initially there is a step in concentration at the surface of the sphere and diffusion out is 

rapid. As the extraction continues, this step becomes eroded, but nevertheless the 

concentration gradient near the surface is large, and diffusion, which is proportional to 

the concentration gradient, continues to be at a high rate. Eventually, however, a 

smoother concentration profile is established over the whole sphere and diffusion loss 

becomes a simple exponential decay. 

6.3 Selection of extraction temperature 

Supercritical fluid extractions of the three plants with water modified CO2 were 

performed under the following conditions: 80°C, 400 atm, 2 mol % H20 in a 10 ml 

extraction vessel. The oven temperature of 80°C ensured that the CO2-water mixtures 

were fully miscible (7), but minimised the risk of unnecessary thermal decomposition 

before extraction, although it was not clear whether such a temperature was effective in 

extracting the uterotonic components. It is important to remember that when extracting 

solid substrates, a knowledge of the solute melting point is critical as supercritical fluids 

are more effective extracting agents when the extraction is performed at a temperature 

above the melting point of the substrate. In this case, both mass transfer of the solute into 

the supercritical fluid is improved as well as solute solubility due to the weakening of the 

cohesive forces of the solid. Likewise, knowledge of the vapour pressure of the solute as 
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a function of temperature can have a profound effect on both the recorded solubility and 

the separation factors that are obtained in multi-component solute separation schemes (8). 

6.4 Selection of extraction pressure 

The fluid pressure of 400 atm gave rise to a high fluid density which usually ensures high 

solubility. The solubility of a substance in a supercritical fluid is primarily a function of 

the density of the fluid. The solubility of a substance at constant temperature is a 

function of pressure and in terms of mole fraction has the schematic form of Figure 6.1. 

In section A-B, which is at very low pressures not of concern in most extraction 

processes, the mole fraction (x) falls as the solute is diluted by the fluid. In section B-C 

there is a rapid rise in x at a so-called threshold pressure characteristic of the solute-fluid 

system, which is a pressure somewhat above the critical pressure of the fluid. This occurs 

because of the rapid rise in the density, and therefore solvating effect of the fluid at 

around this pressure. One must also remember that the solubility maximum is also 

determined by the extraction temperature since by increasing temperature the volatility of 

the solute also rises and eventually this effect exceeds the effect of the falling solvation 

and the solubilty rises (11). 

c: 
.Q 
-0 
co .... - / ~ E 0 C / E 
~ 
.2 
0 
Cl) 

pressure 

Figure 6.1 Generalized solubility isotherm as a function of pressure at constant 
temperature.(9) 
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6.5 Selection of dynamic extraction time 

The optimum extraction time is dependent on the experimental pressure and temperature 

as well as on the flow rate of the fluid through the extraction cell. For unknown samples, 

the extraction time can best be found by experimentally conducting successive 

extractions to determine the completeness of extraction. The extraction time was 

determined by assessing the cumulative weight of the extract obtained from the three 

plants after extraction times of 10 - 80 minutes at 10 minutes intervals. These results 

indicate the total rates of supercritical fluid extraction of the target analytes and these 

analytes account for only a proportion of the total mass of the extract. It is therefore 

uncertain whether the extraction of these compounds follows a curve with the form of 

that in Figure 2.9, or whether these compounds are largely extracted at a particular point 

within the extraction period. 

6.6 Supercritical fluid extraction of Ekebergia capensis 

Milled wood of E. capensis (3.0 grams) was extracted into methanol. From Figure 6.2, it 

can be seen that approximately 85% of the extraction occured within 60 minutes. 

Thereafter the rate of extraction dropped rapidly, the mass barely increasing after 70 

minutes. The extraction was carried out for 25 minutes to obtain an extracted mass m 1, 

followed by two successive extractions to obtain extracted masses m 2 and m 3. Equation 

2.2 (section 2.12) was then used to determine the total mass of the extractable material in 

the matrix. The results of the extraction are given in Table 6.1. 

Table 6.1 Data used to obtain mo for Ekebergia capensis Sparrm. 

Extraction time mass extracted 

(min) (mg) 

50 17.1 

100 19.2 

150 20.3 
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arm m 

mo was calculated to be 21.51 mg and from this, the plot of In (m/maJ vs. time was 

obtained (Figure 6.3). The data used to obtain this plot is given in Table 6.2. 

The curve was found to differ from the theoretical curve of Figure 2.11, in that it did not 

fall steeply from zero, and this is thought to be due to the effect of solubility limitation 

(12). Extrapolation of the linear portion of the curve to the time-zero axis, gives an 

intercept of -0.87 that is, 1= 0.87, compared with a value for the sphere of 0.4977. 

Table 6.2 Data used to obtain Kinetic Plot for the extraction of Ekebergia capensis 

Sparrm. 

Extraction time me (mg) m (mg)* mlmo In mlmo 

(min) 

10 4.80 16.71 0.7768 -0.2525 

20 10.20 11.31 0.5258 -0.6428 

30 13.80 7.71 0.3584 -1.0260 

40 15.90 5.61 0.2608 -1.3440 

50 17.10 4.41 0.2050 -1.5846 

60 18.30 3.21 0.1492 -1.9022 

70 18.60 2.91 0.1353 -2.000 

* m = ma - me where me IS the mass of extract 
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Figure 6.2 Extraction curve of mass of extract from Ekeberia capensis Sparrm. as a 
function of extraction time (min). 

--
--

80 

-2.2 +-----+------+------+-----t------+------i-----+---_-..; 
o 10 20 30 40 50 60 70 

Extraction time (min) 

Figure 6.3 Plot of In (ml moJ against extraction time (min) for the supercritical fluid 
extraction of Ekebegia capensis Sparrm. 
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6.7 SupercriticaI fluid extraction of Grewia occidentalis 

Milled wood of G. occidentalis (2.0 grams) was extracted. From Figure 6.4, 

approximately 72% was extracted within 50 minutes. The data provided in Table 6.3 

below enabled calculation of moo 

Table 6.3 Data used to obtain mo for Grewia occidentalis 

Extraction time mass extracted 

(m in) (mg) 

50 6.40 

100 7.90 

150 8.50 

mo was calculated to be 8.90 mg. The data used to obtain the plot of In (mlmJ vs. 

extraction time is given below in Table 6.4. 

Table 6.4 Data used to obtain Kinetic Plot for the extraction of Grewia occidentalis L. 

Extraction time m,,(mg) m (mg) mlmo In mlmo 

(min) 

10 . 1.80 7.10 0.7977 -0.2260 

20 3.80 5.10 0.5730 -0.5568 

30 5.00 3.90 0.4382 -0.8251 

40 5.80 3.10 0.3483 -1.0546 

50 6.40 2.50 0.2809 -1.2698 

60 6.60 2.30 0.2584 -1.3531 

70 6.80 2.10 0.2360 -1.4441 
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Figure 6.4 Extraction curve of mass of extract from Grewia occidentalis L. as a function 

of extraction time (min). 
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Figure 6.5 Plot of In (m/mo) against extraction time (min) for the supercritical fluid 
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From Figure 6.5, the I intercept was extrapolated to -0.68. In the case of the spherical 

model, the occurrence of an intercept below that of the theoretical value indicates either 

non-uniform distribution of extractable compounds or irregular particle shape with a larger 

surface-to-volume ratio than that of the sphere. With real samples, the particles will not 

be exact spheres, but of irregular shape, and the concentration of extractable components 

in the supercritical fluid will not be zero, but often, and, especially at the beginning of the 

extraction, an appreciable fraction of the solubility. Furthermore, the species to be 

extracted may not be uniformly distributed within the matrix. Exact modelling of these 

more complex situations is difficult, as the parameters involved will vary and will generally 

not be known. The steep fall as depicted by the theoretical model is once again absent. 

Instead, a similar trend is seen as for Ekebergia capensis indicating a solubility limitation 

possibly due to the highly polar nature of the chemical constituents. The effect of 

solubility limitation is to reduce the high rate at the beginning of the extraction and also to 

reduce the slope of the linear portion, with the extent of these effects increasing as the 

pressure falls and the solubility decreases. 

6.8 Supercritical fluid extraction of Oivia miniata 

Dry milled root of C. miniata (2.0 grams) was extracted and from Figure 6.6, it was 

evident that approximately 92% of the extraction was complete within 50 minutes. The 

plot of In (mlmoJ vs. time yielded an intercept of -2.00, indicative of irregular particle 

shape (Figure 6.7). The curve was also flattened indicating solubility limitation due to 

high polarity of the compounds being extracted. The kinetic data can be seen in Tables 

6.5 and 6.6. 

Table 6.5 Data used to obtain mo for Clivia miniata L. 

Extraction time mass extracted 

(m in) (mg) 

50 153 .80 

100 162.50 

150 165.00 
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Table 6.6 Data used to obtain Kinetic Plot for the extraction of Clivia miniata L. 

Extraction time me(mg) m (mg) mlmo In mlmo 

100 

90 

80 

70 

60 

so 

40 

30 

20 

10 

0 

(min) 

10 61.20 104.80 0.6313 -0.4599 

20 104.20 61.80 0.3722 -0.9881 

30 136.40 29.60 0.1783 -1.7242 

40 150.20 15 .80 0.0952 -2 .3520 

50 153.80 12.20 0.0735 -2 .6106 

60 155 .60 10.40 0.0626 -2 .7702 

70 156.40 9.60 0.05783 -2.8502 

0 10 20 30 40 so 60 70 80 

Extraction time (min) 

Figure 6.6 Extraction curve of mass of extract from Clivia miniata L. as a function of 
extraction time (min). 
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Figure 6.7 Plot of In (mlmoJ against extraction time (min) for the supercritical fluid 
extraction of C/ivia miniata L. 

6.9 Conclusion 

In all three cases, solubility was the controlling factor in achieving an interactive 

extraction. The extraction pressure could not be raised to increase the fluid density as this 

was a limitation of the instrument. The extraction temperature could not be lowered since 

water was used as the modifier and modifiers greatly increase the critical point of the fluid 

and it was therefore important that the temperature remained high enough to maintain a 

single phase region during extraction. Another reason for the solubility limitation even 

after adding a modifier could have been the possible displacement of the modifier out of 

the extraction vessel upon commencing with dynamic extraction. It was therefore 

necessary to include an equilibration period during extraction to prevent the modifier 

from being displaced in order to achieve an interactive extraction. This was 

accommodated for by using an initial 50 minute static extraction period followed by 20 

minutes of dynamic extraction. Although the model indicated that only 43-67% of the 
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extractables were obtained within 20 minutes, the introduction of a static extraction period 

would most certainly enhance the extraction. Longer dynamic extraction times could have 

been employed however the total extraction time would have increased tremendously and 

as the final aim was to couple this technique to the uterotonic bioassay as described in 

Chapter 8, the extraction had to be performed within a short time together with a 

sufficient quantity of the extractables to induce a uterotonic response. Hence, a 

compromise had to be reached. 

In companson of the theoretical model with experimental extraction data, the model 

performed reasonably well in spite of the non-ideal nature of of the samples studied. The 

results obtained can be explained in individual cases in terms of particle shape, solubility 

limitation, and non-homogeneous distribution of extractable components within the 

sphere. For the systems studied, the model and associated treatment appears to be a 

suitable basis for the analysis and discussion of kinetic extraction data. Although the 

model gives information about the early stages of extraction, in which the majority of 

material is extracted, previous considerations of solubility will be more helpful. However, 

the extraction of the remaining amount of extractables is vital in quantitative analytical 

applications and of economic importance in industrial extraction processes. For process 

engineering, a kinetic study and analysis of the result using this model is an important tool 

in designing extraction processes for maximum economic performance. 
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CHAPTER 7 

The role 0/ bioassays in medicinal plant analysis and a preliminary 

investigation o/the plant extracts/or uterotonic activity 

7.1 Introduction 

Once a medicinal plant has been identified, a good initial investigation is biological 

screening. The objectives of this screening are [1] to provide a rationale for clinical use of 

traditional drugs even if activity is not of an order high enough to warrant development of 

the active moiety as a new drug [2] to find new drugs and [3] to discover lead molecules 

(essentially novel chemical moieties) which can be modified through chemical means into 

new drugs. Furthermore, the role of bioassays on a batch to batch basis is important to 

confirm consistency and, hence, clinical efficacy and safety for specific case studies (1-3). 

A bioassay is a semi-quantitative procedure using a functional response, either in vivo or 

in vitro, for the determination of the amount of active substance usually against a standard 

calibrant. Bioassays can reflect the mode of action of a drug and the purity or potency of 

a product. As the composition of plant components vary from one season to another 

together with the co-occurrence of undesirable or perhaps toxic compounds, it becomes 

necessary to also evaluate the risk associated with these compounds. This might involve 

screens for antibiotic activity; in vitro inhibition tests; pharmacologic, agricultural, or 

veterinary screens that require diverse in vitro assays; and/or in vivo animal models and 

cytotoxicity testing using cells in culture. The rapid progress in the field of bioactive 

metabolites is due in large part to the utilization of bioassay-guided fractionation 

techniques. With this method most substances isolated will be those that have activity in a 

particular bioassay or set of bioassays, although metabolites occurring in significant 

quantities should not be overlooked. 
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7.2 Selection of bioassays 

Several bioassays can be performed on plant derived products in order to identify the 

activities they possess. Bioassays can be selective in order to detect substances having a 

particular activity or broad based in order to find out if it has any exploitable potential. 

The cost of bioassays can be high, in terms of the animals used, labour, facilities and time. 

The legal requirements governing the design, safety, staffing and use of animal facilities 

are also becoming ever more demanding. Hence careful consideration is required for the 

selection of the most appropriate bioassay system for a particular purpose. It is essential 

to evaluate the practical elements of assay precision, ruggedness, cost and speed. The 

assay must then be validated, and its relevance for its intended purpose demonstrated. 

7.3 The uterotonic bioassay 

Isolated tissues have been used effectively in medicinal plant research to obtain 

information on the activity and toxicity of plant extracts. In this work selective screening 

was undertaken using strips of guinea pig uterine smooth muscle in vitro to detect 

uterotonic components in plant extracts. Guinea pigs were used as they are small, cheap 

and easily available models for certain aspects of human reproductive endocrinology. 

They have spontaneous ovulations with cyclic, progresterone-secreting corpora lutea of 

about 14 days duration (4), their uterine motility is not influenced by progesterone (5) and 

the placenta is steroid-secreting (4). Uterine smooth muscle in vitro has been used 

extensively for many years, not only for the purpose mentioned above but also for an 

understanding of the relationship between the structure and activity of biologically active 

peptides (6), to help with the characterization of drug receptors and the understanding of 

receptor mechanisms in the uterus (7, 8). An important advantage of in vitro analysis is 

the elimination, to a large extent, of pharmacokinetic variables. The response to an 

agonist is proportional to the concentration of that agonist and the density of its receptor 

sites. Unfortunately, in intact animals, this concentration is determined by many other 

factors besides the dose of the agent administered. Thus, a change in the response to a 

fixed dose might be brought about, not because the target organ has become more or less 

sensitive, but because a different concentration of the agent is reaching the receptor site as 
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a result of changes in pharmacokinetics. Although changes of a pharmacokinetic nature 

can occur in vitro, the number of variables is considerably reduced and interpretations are 

more direct. The pharmacokinetic influences are illustrated in Figure 7.1. 

Agent 
administered 

! 
/1 Absorption I 

! Metabolic 
~ inactivation 

1 

Pool of readily Pool of agent 
~I I ;;;==!':: available agent excretion not readily available 

in body 

1 
Agent in biophase 
at receptor sites 

Figure 7.1 The pharmacokinetic influences on a biologically active agent. 

In setting up the experiment, many factors were considered to ensure the pnmary 

requisites for isolated tissues, namely uniformity and stability. The first factor that was 

considered was preservation of tissue viability. Historically, pioneering work by many 

researchers such as Tyrode (9) and Krebs (10) has led to the definition of nutrient 

solutions capable of preserving isolated tissues in a viable state. Different tissues require a 

different milieu of ions and nutrients. Changes in ionic content and composition can affect 

tissue reactivity and base-line activity. For example, high osmotic pressure depresses 

cardiac pacemaker activity (11) while changes in levels of potassium ions (12, 13, 14) or 
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magnesIUm Ions (15) can greatly modify isolated blood vessel tone and reactivity to 

agonists. Specific changes in ionic composition can eliminate spontaneous activity in 

some tissues and allow stable steady-state responses to agonists (16, 17). Tyrodes 

solution of constant ionic strength was therefore prepared prior to each set of experiments 

to provide the isolated tissues with the necessary nutrients. 

Adequate delivery of oxygen to the tissue is another prime consideration. The basal 

activity of smooth muscle and cardiac muscle can be affected by changes in the partial 

pressure of oxygen (Po2) in the organ bath. For example, the contractile responsiveness of 

arterial smooth muscle decreases with decreasing Po2, the effects being more pronounced 

for thick- rather than thin-walled vessels and also for high levels of contractile stimulus 

(18, 19). Once the tissues were removed from the animal, they were placed immediately 

in cold Tyrodes together with the passage of 95 % O2 and 5 % CO2 at a flow rate of 60 

mlIrnin. This ensured that the muscle remained in a viable state during the experimental 

period. 

7.4 Theory of smooth muscle contraction 

Smooth muscle is found in the walls of blood vessels, intestines, urinary and reproductive 

tracts. The long spindle-shaped cells associate to form a muscle in patterns appropriate to 

their function, such as an annular arrangement in blood vessels and a crisscross network in 

the bladder (20). The basic principles of contraction are the same as in striated muscle in 

that myosin molecules exert force on actin filaments, using ATP hydrolysis as the source 

of energy. Ca2
+ is essential for smooth muscle contraction. In the head of each myosin 

molecule are two small polypeptides known as myosin light chains (NILC); this is in 

addition to the heavy myosin chains. In smooth muscle, one of these . light chains (the p­

light chain) inhibits the binding of the myosin head to the actin fibre, and thus prevents 

contraction. Ca2
+ activates a myosin kinase that, with ATP, phosphorylates the p-light 

chain and abolishes its inhibitory effect, thus triggering contraction. The Ca2
+ does not 

directly activate the kinase; instead it combines with a protein, calmodulin to form a 

calcium-calmodulin complex which induces a conformational change in the latter such that 
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it combines with the inactive kinase and activates it. When the Ca2
+ level falls, the process 

reverses and a phosphatase dephosphorylates the myosin light chain causing muscle 

relaxation. The scheme is summarised in Figure 7.2. Free calcium levels are regulated by 

the intracellular calcium pool, by the actions of the storage vesicles and of the myometrial 

cell membrane. The membrane contains the calcium channels and the calcium-magnesium­

stimulated ATPase system, both of which are important in the regulation of the 

transmembrane calcium transport. 
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7.5 The effect of acetylcholine (ACh) on smooth muscle 

ACh was used as the standard smooth muscle stimulant as this is the natural agonist or 

mediator at postganglionic parasympathetic nerve endings in the myometrium. ACh is 

synthesised in cholinergic neurons by the enzyme-catalysed transfer of the acetyl group 

from acetyl coenzyme A (acetyl CoA) to choline, a quaternary ammonium alcohol (21). 

The enzyme catalysing this reaction, choline acetyl transferase is also synthesised by the 

neuron (Figure 7.3). 

~COOH 
HO I 

NH2 

o 
)l ~N(CH3h 

H3C 0 

ACh 

Serine 
~ 

Decarboxylase 

Choline N-methy'-l S-Adenosyl-
transferase methionine 

Acetyl-S~oA 
~ 

Choline Acetyl­
transferase 

+ 
. ~N(CH3b 

HO 

choline 

Figure 7.3 Biosynthesi<; of Acetylcholine 

Most newly biosynthesised ACh is actively transported into cytosolic storage vesicles 

located in the presynaptic nerve endings, where it is maintained until a release is initiated 

by an action potential that has been carried down the axon to the presynaptic nerve 

membrane. This action leads to the opening of voltage-dependent calcium channels 

affording an influx of Ca2
+ and an exocytotic release of ACh into the synapse. ACh in the 

synapse can bind with receptors on the postsynaptic or presynaptic membranes to produce 

a response. Free ACh, that which is not bound to a receptor, is hydrolysed by 

acetylcholinesterase. This hydrolysis is the physiologic mechanism for terminating the 

action of ACh together with the rapid sequestering of intracellular Ca2
+. Bot~ applied 
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ACh and parasympathetic nerve stimulation have similar effects on smooth muscle. In this 

experiment the muscle was separated from the nerve endings hence ACh was administered 

directly to the muscle. Figure 7.4 displays the electrical recording of a guinea pig uterine 

smooth muscle contraction induced by 1 Ilg acetylcholine hydrochloride (ACh). 

Administration of this drug induced an immediate contraction. Thereafter the muscle was 

washed by flushing the tissue bath twice with Tyrodes solution at 37°C. 
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Figure 7.4 Electrical recording of Guinea Pig uterine smooth muscle contraction 
induced by 1 Ilg O-Acetylcholine hydrochloride (ACh). 
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In certain cases a higher dose of ACh was required to induce an agonistic response as a 

result of tissue variation. A great deal of pharmacological inference is derived from the 

relative senstivity of tissues to agonists. Many factors including animal variation with 

respect to agonist uptake mechanisms, numbers of viable receptors, and differences in the 

efficiency of stimulus-response mechanisms can cause heterogeneity in sensitivity of 

tissues to agonists. The most common problem is animal maturity which affects receptor 

density and the reactivity of the isolated tissue (22). 

The adsorption of drugs to the surface of the organ bath can serve as a physicochemical 

process of drug removal from the receptor compartment. This methodological problem 

has been encountered with basic antihistamines such as promethazine (23) where 

substantial dilution errors were introduced into experiments by use of glass containers. 

Adsorption to glass surfaces has been encountered with peptides such as substance P (24). 

Hence, to overcome surface adsorption and subsequent leaching into fresh physiological 

fluid, polypropylene organ baths were used as this was observed to eliminate the problem 

in previous experiments (25). 

In this study, the uterotonic effects of three plants viz. Clivia miniata (Lindl.) Regel., 

Ekebergia capensis Sparrm., Grewia occidentalis L. were evaluated. These plants are 

used frequently during the late stages of pregnancy. 

7.6 Analysis of extracts of Ekebergia capensis Sparrm. 

7.6.1 Aqueous extract 

The aqueous extract of Ekebergia capensis was prepared as outlined in section 5.3 . An 

irreversible increase in uterine contractility was initiated 100 seconds after administration 

of 588 Ilg of the aqueous extract of Ekebergia capensis into the organ bath (Figure 7.5a). 

Attempts to reduce or stop the contractions by the addition of mepyramine, an 

antihistamine, were ineffective and as a result, a second strip of muscle tissue had to be 

prepared in order to confirm our initial findings. The second strip of muscle responded to 

134 

--



2 J..l.g ACh however 12.5 Ilg of mepyramine was required to reduce the spontaneous 

contractile activity of the muscle. The muscle thereafter failed to respond adequately to 

up to 12 Ilg ACh, however when 700 Ilg of the aqueous extract was dispensed into the 

bath, a similar irreversible contractile response was initiated (Figure 7.5b). Subsequent 

addition of antihistamine failed to decrease the uterine contractions. Activation of HI 

receptors (histamine sites blocked by mepyramine) stimulates the contraction of smooth 

muscles in many organs such as gut, uterus and bronchi. Such effects are readily blocked 

by compounds known as HI antagonists (26) . In this study mepyramine, an antihistamine, 

was used to reduce the activity induced by the extract however the results indicated that 

the active components stimulated muscle contraction through other receptors. Further 

investigations into the receptor pharmacology are discussed in a later chapter. These 

results however confirm that the aqueous extract of the wood of Ekebergia capensis is 

indeed uterotonic and that the active components do not act via histamine receptors since 

the addition of extract after mepyramine stimulated muscle contractions and the 

subsequent addition of antihistamine to the organ bath after administration of the extract 

failed to reduce the contractile actvity of the muscle. 
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b 

Figure 7.5 
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Electrical recording of non pregnant guinea pig uterine smooth muscle 
contraction induced by (a) 588 Ilg of the aqueous extract of milled wood of 
Ekebergia capensis and (b) 700 ~Lg of the aqueous extract after administration 
of mepyramine. w = muscle wash 
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7.6.2 SFE extracts 

Initial SFE extracts of the first batch of dry, milled plant material obtained at various 

densities of pure supercritical CO2 were uterotonically inactive probably due to the low 

solubility of active compounds and limited polarity or solvent strength of CO2. The 

polarity of the fluid was increased by the addition of 200 III water directly to 6.5 grams 

plant matrix; a common practice in SFE. The addition of modifier aided the recovery of 

target analytes possibly due to the enhanced solubility of the analytes in the modified fluid. 

The addition of modifiers has also been shown to change the morphology of the substrate 

that is being extracted resulting in an improved extraction flux, e.g. in the extraction of 

caffeine from coffee (27) and also to aid in the desorption of analytes from highly 

adsorptive sample matrices by displacing the analyte from the surface (28) . However, 

modifiers greatly increase the critical point of the fluid and it was therefore important that 

the experimental parameters were altered to maintain a single phase region during 

extraction. An equilibration period was also necessary to prevent the modifier from being 

displaced out of the extraction vessel in order to achieve an interactive extraction. This 

was accommodated for by using an initial 50 minute static extraction period followed by 

20 minutes of dynamic extraction. The extractables were collected into methanol which 

was later evaporated and weighed. Thereafter, the extracts were reconstituted in 0.9% 

normal saline solution at known concentrations. 

The SFE extracts were subsequently evaluated. Figure 7.6 displays the muscle 

contractions induced ~y the total 400 atm SFE extract on a non pregnant uterus. The 

response to 760 Ilg of the extract was monitored for 260 seconds. Once the crest of the 

contraction peak was reached, the muscle was immediately washed to facilitate rapid 

relaxation. Thereafter a similar dose of the extract was repeated however the muscle 

wash was performed after the muscle had spontaneously relaxed. A third dose of 3800 Ilg 

was finally administered and on each response, an increase in the area beneath the 

contraction peak tracing was observed indicating that the SFE extract produced a dose 

response uterotonic activity. A larger dose of 7500 Ilg of the SFE extract was 

administered to the muscle and an irreversible contractile response was initiated. This 
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study confirms that water modified supercritical CO2 possessed the solvating power to 

extract the uterotonic components. 
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Figure 7.6 Electrical recording of contractions induced by the SFE extract of 
Ekebergia capensis.on a non-pregnant uterus. w = muscle wash 
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When these results were compared to those obtained using a pregnant uterus, it was found 

that a lower dose of the extract was required to bring about a contractile response in the 

pregnant uterus (Figure 7.7). This may be explained due to increased sensitivity of the 

uterus as a result of hormonal changes during pregnancy. During pregnancy, the uterus is 

exposed to, and is altered by, the changing hormonal environment. Circulating estrogen 

and progesterone increase substantially due primarily to enhanced production of these 

hormones from the ovaries and placenta. There is also a substantial increase in the agonist 

receptors in the myometrium (29). 
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Figure 7.7 Electrical recording of contractions induced by the SFE extract of 
Ekebergia capensis.on a pregnant uterus. w = muscle wash 

7.6.3 Supercritical fluid fractionation of Ekebergia extracts 

45 50 

Co-extraction of unwanted solutes along with target analytes frequently occurs during 

extraction. Just as one can extract chemical compounds of varying polarity with solvents 

of different polarity, so too can one extract compounds of different classes using 

supercritical fluids. In an attempt to decrease the complexity of the extract, SFE fractions 

were obtained by sequentially increasing the pressure at constant temperature and ~odifier 
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concentration, hence changing the density of the fluid. Non polar to intermediate polarity 

compounds would be removed at lower pressures while the highly polar compounds were 

extracted at higher pressures. Subsequent physiological testing enabled active fractions to 

be differentiated from inactive ones as well as the detection of a fraction that was observed 

to have a spasmolytic effect on uterine muscle. The sequentially fractionated extract at 

400 atm produced a muscle response at a dose of 315 J.lg (Figure 7.8). A similar response 

to ACh as initially observed led to the conclusion that the extract did not elicit any adverse 

effects on the muscle at the dose administered. A lower dose of 70 J.lg was administered 

in order to establish the lowest concentration required to bring about stimulant activity. 

The dose was further decreased to 35 J.lg at which level no activity was observed. 
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Figure 7.8 Electrical recording of non pregnant guinea pig uterine smooth muscle 
contraction induced by the sequentially fractionated extract of Ekebergia 
capensis at 400 atm w = muscle wash 
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The extract at 350 atm also displayed stimulant activity at a dose of 317 J.lg. However, 

this was followed by a reduction in the muscle response to 1 J.lg ACh indicating the extract 

to be active as well as spasmolytic to a certain extent (Figure 7.9). Spasmolytic activity 

was observed by the decrease in muscle response to ACh after addition of the extract to 

the muscle chamber. This antagonistic behaviour of the extract would defeat its intended 

purpose. 
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Figure 7.9 Electrical recording of non pregnant guinea pig uterine smooth muscle 
contraction induced by the sequentially fractionated extract of Ekebergia 

capensis at 350 atm. w = muscle wash 
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The 300 atm extract was inactive at all three doses, i.e 325 (..lg, 659 (..lg and 1300 ~lg . The 

ACh response decreased with each dose indicating spasmolytic activity (30) (Figure 7.10). 
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Electrical recording of non pregnant guinea pig uterine smooth muscle 
contraction induced by the sequentially fractionated extract of Ekebergia 
capensis at 300 atm. w = muscle wash 

The extract obtained at 250 atm was non-reactive even at doses up to 2600 f..lg. It was 

difficult to evaluate the aqueous extract as opposed to the fractionated SFE extracts for 

toxicity due to the irreversible contractile response exerted by the aqueous extract on the 

muscle. Many traditional healers believe that herbal remedies are non toxic, however it is 

possible that due to the complex nature of the aqueous extract, the toxic effects of certain 

compounds are masked especially if the toxins are present at low concentrations. 

Supercritical fluid fractionation (SFF) has thus displayed tremendous potential in the 

evaluation of these extracts. 
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possible that due to the complex nature of the aqueous extract, the toxic effects of certain 

compounds are masked especially if the toxins are present at low concentrations. 

Supercritical fluid fractionation (SFF) has thus displayed tremendous potential in the 

evaluation of these extracts. 

7.7 Analysis of extracts of Clivia miniata (Lindl.) Regel 

The aqueous and SFE extracts of the root of Clivia miniata were screened on a pregnant 

guinea pig uterus. 

7.7.1 Aqueous extract 

The guinea pig uterine smooth muscle was observed to produce an agonistic response to 1 

)lg ACh. The subsequent addition of 400 )lg of the aqueous extract induced a contractile 

response of similar amplitude as the ACh response (Figure 7.11). The contractions were 

observed to occur at almost equal time periods however the decrease in tension was 

followed by a more spasmolytic type of response. The aqueous extract of the leaves of 

this plant was also evaluated by Veale et al. (29) and found to produce concentiation­

dependent contractions in rat ileum and uterus. However there are no reports on the 

evaluation of SFE extracts nor the identification of the active components. 
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Figure 7. I I Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by the aqueous extract of Clivia miniata (Lindl.) 
Regel. w = muscle wash 
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7.7.2 SFE extract 

After responding to a dose of 1 Ilg ACh, the muscle was exposed to 250 ~lg of the 400 

atm SFE extract of Clivia miniata. The extract was found to elicit an immediate 

contractile response of high amplitude which persisted following three subsequent washes 

with Tyrodes solution (Figure 7.12). The muscle was monitored for a period of 45 

minutes during which time there was no indication of a reduction in the contractile 

response. The contractions were observed to be irregular and more prolonged. Unlike 

the aqueous extract, a smaller dose of the SFE extract brought about a much larger effect 

on the muscle indicating the SFE extract to be more potent as a result of the increased 

selectivity of the extraction technique hence obtaining an extract with a much larger 

concentration of the active component. 
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Figure 7.12 Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by the SFE extract of Clivia miniata (Lindl.) Regel. 
w = muscle wash 
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7.8 Analysis of Grewia occidentalis L. 

The aqueous and SFE extracts of the wood of Grewia occidentalis were screened on a 

pregnant uterus. 

7.8.1 Aqueous extract 

The aqueous extract was found to elicit a muscle response of similar amplitude as that 

induced by 1 J.lg ACh. 250 J.lg of the extract was administered and an immediate 

development in tension was observed (Figure 7.13). Upon washing the muscle with 

Tyrodes solution, the contractile response decreased. A subsequent addition of 200 J.lg of 

the extract to the muscle bath confirmed that the aqueous extract was uterotonic by 

producing a concentration dependent muscle response. 
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Figure 7.13 Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by the aqueous extract of Grewia occidentalis L. 
w = muscle wash 
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7.8.2 SFE extract 

The SFE extract was tested and found to stimulate muscle contraction although at much 

lower doses. Unlike the aqueous extract, only 112 Ilg was sufficient to induce a 

contractile response. The increase in tension was followed by spasmodic type behaviour 

however, upon washing the muscle, the response decreased (Figure 7.14). A repetition of 

the dose produced a similar effect as the first, confirming uterotonic activity of the SFE 

extract. Once again, the low doses of the SFE extract necessary can be explained due to 

the increased selectivity of the extraction technique and the increased sensitization of the 

uterus as a result of hormonal changes during pregnancy. 
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Figure 7.14 Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by ~he SFE extract of Grewia occidentalis L. 
w = muscle wash 

7.9 Conclusion 

Supercritical fluid extraction was found to be rapid and effective in isolating target 

analytes that displayed distinctive results when screened for uterotonic activity. The 

screening technique employed also proved to be successful in evaluating the plant extracts 

Having outlined the theory of muscle contraction, it can be stated that the components 
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contained in the plant extracts may have stimulated muscle contraction by either increasing 

the permeability of the cell membranes to calcium ions or by acting directly on the 

contractile proteins or the receptor sites. Nevertheless, this preliminary investigation 

warranted a further detailed study of the plant extracts in order to identify the active 

compounds in the hope of finding new drug leads and to study the mode of action. 
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CHAPTERS 

Coupling supercritical fluid extraction to uterotonic bioassay: 

An on-line approach to analysing Medicinal Plants 

8.1 Introduction 

Current trends in analytical science are directed towards the analysis of the components 

through on-line approaches. SFE has been successfully coupled on-line to various 

chromatographic and spectroscopic methods. Modey et al. (1) used on-line SFE-GC for 

the analysis the limonoid cedrelone in the wood and bark of Cedrela toona (Meliaceae). 

SFE has also been successfully coupled to SFC. This approach is recommended when 

the sample contains thermally unstable, reactive or involatile compounds. Xie et al. (2) 

used this approach to extract and separate ouabain, a biologically active cardiac 

glycoside, spiked onto an inert adsorbent. SFE-HPLC has been performed by Nair and 

Huber (3) for the analysis of ground tablets for ibuprofen, however, the pumping of the 

mobile phase became difficult and erratic when gas was present in the plumbing of the 

HPLC system. On-line SFE-TLC has been shown to provide a rapid and simple insight 

into the extraction performance of compounds from various matrices (4, 5), however 

quantification was found to be difficult and the stability of the components on the support 

material or in the presence of oxygen posed a problem. For compounds showing unique 

regions of absorbance in the infrared region, direct coupling of the SFE effluent to an 

FTIR can be of great importance. The recovery and detection on n-tetracosane from a 

solid matrix by directly coupled SFE-FTIR was carried out by Kirschner and Taylor (6). 

In addition, Kalinoski et al. (7) used on-line SFE with chemical ionisation MS .detection 

and collision-induced dissociation tandem MS (MS-MS) for the rapid identification of 

trichothecene mycotoxins. The limitation of SFE-MS is the possibility of overloading the 

mass spectrometer with co-extracted compounds when complex samples are analysed. 

Nevertheless SFE has proved to be an extremely versatile technique and we have thus 

exploited its potential in an attempt to couple this technique directly on-line to the 
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uterotonic bioassay to serve as a rapid screening tool to assess plants for uterotonic 

activity. 

Bioassays are a common adjunct to chemical analysis. Traditionally, samples to be used 

for bioassay have been prepared by solvent extraction, vacuum distillation, membrane 

processes, lyophilization, etc (8). These techniques offer some success but also 

significant disadvantages. SFE has proven to be a valuable alternative method of 

extraction that has received tremendous attention in recent studies (9). In comparison 

with classical liquid-solid extraction methods, SFE offers many potential advantages as 

discussed in section 2.3 . In addition, CO2 provides an extraction environment free from 

molecular oxygen, thereby limiting potential oxidation of the extracted solutes (10). 

Although there have been reports of SFE coupled to immunoassay analysis, these studies 

have been performed using off-line collection of the extracted analytes (11, 12). On-line 

approaches provide potential for combined sample preparation and analysis and the 

ability to transfer every extracted analyte molecule to the detection system thereby 

increasing sensitivity. A further advantage is the elimination of sample handling prior to 

the bioassay hence eliminating the possibility of sample contamination. 

Supercritical CO2, unlike many liquid extraction solvents, is a nontoxic extraction 

medium making it appropriate for interfacing with the bioassay since the problems of 

artifactual solvent toxicity inherent in conventional extraction and fractionation schemes 

is eliminated. Unfortunately, CO2 is not sufficiently polar to extract highly polar 

components. Polar compounds therefore show limited solubility in pure CO2 and in such 

cases either a more polar supercritical fluid should be used or a modifier added. For our 

purpose, water was used as a modifier and added directly to the matrix. Although water 

is scarcely soluble in liquid carbon dioxide (around 0.1 % mfm at 20°C), its solubility 

increases with increasing temperature (around 0.3% mfm at 50°C), and has thus proven 

effective in many extraction applications (13, 14). 
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Using the on-line system, the uterotonic effects of three plants viz. Clivia miniata (Lindl.) 

Regel., Ekebergia capensis Sparrm., Grewia occidentalis L. were evaluated. These 

plants are used frequently during the late stages of pregnancy. The aqueous extract of C. 

miniata was previously found to be active (15). Off-line studies have shown the aqueous 

and SFE extracts of E. capensis, G. occidentalis and A. fruticosa to stimulate uterine 

contractions in vitro. These plants were selected to demonstrate the potential of SFE 

linked directly to the bioassay, which could be used to rapidly screen various other plants 

containing uterotonic compounds. 

8.2 Results and Discussion 

Prior to coupling SFE to the bioassay, two factors were considered, viz. the effects of 

supercritical CO2 decompression on temperature and pH of the muscle bathing solution. 

8.2.1 Temperature effects 

Carbon dioxide depressurises at the exit of the restrictor resulting in adiabatic cooling of 

the collection solvent. One of the problems with this is that the temperature of the 

collection solvent was not maintained and the collection solvent became so cold that 

samples containing water caused restrictor plugging from freezing water. Excessive 

cooling can also alter muscle physiological activity. Veale et al. (15) showed that when 

the organ bath temperature was reduced to 26°C, spontaneous contractions were 

inhibited. However factors that interfere with spontaneous contractility may also affect 

agonist-induced contractility. There may also be cases where postreceptor mechanisms 

involved in the response of one agonist are more temperature dependent than those of 

another (16). For these reasons, it was decided to study muscle activity at, or near, body 

core temperature. Cooling experiments were performed on muscle bath A (section 5.7.1) 

with 25 ~m i.d. fused silica capillaries. A 24.5 cm x 25 ~m i.d. linear restrictor was 

initially used at a pump pressure of 400 atm and a reduction in the bath temperature to 

35.4 QC was observed within ten minutes after commencing with dynamic extraction 

(Figure 8.1). Despite the problems with cooling, the linear restrictor was further evaluated 

during extraction of a real sample and was found to plug within 10 minutes of dynamic 
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extraction. This was due to decompression taking place over the entire length of the 

capillary resulting in the formation of analyte clusters and small particles during this 

process. Frit restrictors were also evaluated and were found to provide excellent 

temperature control due to the low flow rate of CO2, Frit restrictors are also more 

resistant to plugging due to their multitude of decompression paths, however the frit 

failed on many accounts to withstand high pressures. A tapered restrictor of the same 

inner diameter as the linear restrictor was subsequently used and found to provide better 

temperature control and hence less cooling. 

17 

tapered restrictor 
H.J 

H 

linear restrictor 

~-~+-~~~~~~~~~~-+~~--~+-+-~~-+~~~~+-+-~~-+~~ - - - - -.. :: - - - - - -..; .; .. - .. .. .. = -= :! : 
time (min) 

Figure 8.1 The effect of CO2 decompression on temperature of Tyro des solution. 
~02 was decompressed from an internal pressure of 400 atm through a 25 Ilm 
1. d. tapered restrictor (.) and a linear restrictor (.) 
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The bath temperature decreased to 36.5 °C within 1.5 minutes of commencing CO2 flow 

and remained constant at this temperature for the 15 minute period of the experiment. 

Hence it is quite apparent that the degree of cooling is controlled by the flow of CO2 or 

the rate of decompression. Tapered restrictors allow for the flexibility of optimising flow 

rate by simply cutting back at the taper. By perfonning such a procedure, the inner 

diameter of the orifice at the end of the taper increases thereby allowing increased flow 

rates. Hence a compromise was reached between the rate of decompression and restrictor 

plugging, as low flow rates due to small inner diameters of the taper orifice would have 

led to blockages by the extract. A flow rate of 18 ml/min at 150 atm was found to be most 

appropriate and did not result in blockages. The temperature decrease was also minimized 

and found to be close to the desired experiment temperature. 

8.2.2 pH effects 

When CO2 is introduced into water, it forms carbonic acid resulting in a decrease in pH. 

Some of the carbonic acid dissociates to bicarbonate and hydrogen ions. Because 

alteration in [It] will alter cellular metabolic processes in which it is a participant, pH 

measurements were carried out by placing a pH electrode into the muscle bathing solution 

with CO2 flow directed into the muscle bath A. As shown in Figure 8.2, within 30 

seconds of commencing flow of CO2, the pH decreased from pH 7.0 to 6.61. The rate of 

decrease thereafter became moderate and finally remained constant after 10 minutes at a 

pH of 5.75. The pH range compatible with life is about 7.8 - 6.8, however values as low 

as 6.0 have been reported for skeletal muscle (17). 5% CO2 present in carbogen forms an 

excellent buffer with bicarbonate present in Tyrodes solution. Since the pK of the HC03-

/C02 system is 6.1, extracellular fluid at a pH of 7.4 is not very effective in resisting 

changes in pH arising from changes in Peo]. Furthermore, deviations in pH may influence 

ionization of drugs or charged chemical groups on receptors thereby changing the moieties 

which interact to produce a response (18,19). Intracellular fluid, with high levels of 

protein and organic phosphates, is responsible for most of the buffering that occurs when 

Peo] changes in biological systems. Since CO2 was used as the extracting fluid in SFE, the 

Peo] in extracellular fluid, intracellular fluid and Tyrodes most certainly changed. It was 
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therefore necessary for Tyrodes solution to exhibit buffer action even in the absence of 

carbogen and this was accomplished by introducing a phosphate buffer as this buffer has a 

pK value of 6.8. The concentration of NaH2P04 originally present in Tyrodes solution 

was reduced from 0.4 mM to 0.2 mM together with the addition 0.2 mM Na2HP04 . 

Subsequently, the pH over a 15 minute period decreased from pH 7.45 to 6.02 and 

remained constant (Figure 8.2). An improvement by 0.27 pH units was observed and this 

solution was used for all future assays as it provided an improved buffering capacity than 

the previous solution. 

7.S 

c:: 7 
.2 
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original Tyrodes solution 

u 

10 11 12 12 11 
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Figure 8.2 The effect of CO2 decompression on pH of modified (0.2 mM Na2HP04, 
0.2mM NaH2P04) and original Tyrodes solution (0.4 mM NaH2P04) . 

CO2 was decompressed from an internal pressure of 400 atm through a 25 J.!m 
i.d. tapered restrictor; CO2 flow was measured at 150 atm after decompression 
and found to be 18 ml/min. 
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a 
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Tyrodes solution is a well known nutrient solution capable of preserving tissues in a viable 

state and although other buffers may have improved buffering capacity, changes in ionic 

content and composition are known to affect tissue reactivity and base line activity (20, 

21). Hence minimum alterations to the recipe of Tyrodes solution were performed. The 

physiological activity of a strip of uterine muscle was monitored under these conditions. 

The muscle was allowed to develop spontaneous contractions and a dose of 1 Ilg ACh 

was administered as a standard smooth muscle stimulant (Figure 8.3a). 

Dynamic extraction 
commenced 

1J-lg ACh l contracted 

l 
spontaneous 
contractions 

I I 

~ 

5 min 

SFE eItract of Antihistamine Dynamic extraction 
E capensrs (2X12~~ commenced 
(190~) 

~ ~ t ~ 

I I 
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Figure S.3 The di~ect effect of CO2 on muscle cont~actility. Muscle activity was inhib·t d 
followmg a blank extra~ti?n with CO2 at 400 atm and S00C after (a) . I e 
spontane.ous musc~e activity and (b) after adminstration of an SFE extract f 
Ekebergla capenS1S. 0 
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A blank extraction was performed at 400 atm and 80 QC and the CO2 flow directed into 

the muscle bath via the tapered restrictor. Immediately upon commencing with the 

dynamic extraction, a contraction was observed. As the extraction proceeded, the muscle 

began to relax and a flat baseline was observed thereafter. The spontaneous contractions 

initially observed had ceased altogether. After 45 minutes, the extraction was stopped and 

this was followed by the addition of 2 x 1 J..lg quantities of ACh. No response was 

observed, however upon administering 3 !J,g ACh, a mild response was observed. The 

. effects of CO2 were further seen when an off-line extract of the wood of E. capensis 

induced muscle contractions. The contractions failed to stop even after administration of 

mepyramine, a (H2) histamine receptor blocker. However when CO2 was directed from 

the SFE vessel into the muscle bath, the development of tension was initially noted but this 

was followed by muscle relaxation and a flat baseline (Figure 8.3b). These results 

demonstrated that apart from the pH decrease, CO2 was directly inhibiting spontaneous 

contractility of the muscle. Upon commencing with the dynamic extraction, the pH of 

Tyrodes solution decreased resulting in increased tension of the muscle in response to 

extracellular acidosis. A similar trend was observed by Cole et al. (22) when investigating 

contractile responses of isolated human ureteric smooth muscle to extracellular pH 

changes. However, a continuous influx of CO2 into the organ bath resulted in the 

inhibition of muscle activity as CO2 entered the cell and acidified the intracellular fluid. 

CO2 is an easily diffusable gas and is able to pass through membranes and alter 

intracellular metabolic processes. Alterations in intracellular pH could alter smooth 

muscle contractility as the following physiological processes are pH sensitive: 

1) the rate of myosin ATPase activity (23); 

2) the sensitivity of the contractile unit to Ca2
+ (24, 25); 

3) transmitter release and receptor sensitivity (26); 

4) competition at calcium binding sites (27); and 

5) late energy production (28). 

Hypoxia could also alter force development and has been shown to impair contractility in 

tracheal smooth muscle (25) . During hypoxia there is an increase in glycolysis and a 

concomitant increase in intracellular lactate. Thus the reduction in force during hypoxia is 
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assumed to be due to a decrease in pH. Nevertheless, no matter what mechanism 

prevailed in altering the force development during hypercarbia, it was a reversible process. 

Once the flow of CO2 ceased and the Tyrodes solution changed, the muscle regained 

normal physiological activity after passing carbogen through the solution for a few 

minutes. Having undertaken various measures to avoid temperature and pH effects, it was 

concluded that muscle bath A was not appropriate for on-line coupling since the muscle 

was in direct contact with the incoming CO2 from the extraction vessel. The high Peo2 

influenced muscle activity thereby making it impossible to analyse for uterotonic activity 

induced by plant extracts. Since CO2 penetrates through cell membranes easily and alters 

the intracellular activities, this excess had to be minimised. A second muscle bath was 

therefore designed to eliminate the effects of excess CO2. It consisted of two 

polypropylene chambers attached via a detachable sidearm. Dynamic extraction was 

performed into 4 m1 of Tyrodes present in the extract collection chamber while the muscle 

equilibrated in the 10 m1 muscle bath (Figure 5.5). In this way the muscle was protected 

from the direct effects of high Peo2. The passage of carbogen into the extract collection 

chamber further assisted in the rapid displacement of CO2. It was hypothesised that as the 

dynamic extraction proceeded, the concentation of the extracted material in the extract 

collection chamber would increase and mix with the Tyrodes solution in the muscle 

chamber. The carbogen flowing into the muscle chamber facilitated the rapid mixing of 

the plant extracts until the uterotonic components reached a sufficient concentration to 

induce a contractile response. If required, at the end of the dynamic extraction period, the 

Tyrodes solution from the extract collection chamber could be flushed into the muscle 

chamber to provide a higher concentration of the extract. A 50 Ilm i.d. tapered restrictor 

designed to produce the optimum flow of CO2 was used in this setup together with the 

passage of carbogen into the extract collection chamber. The passage of carbogen was 

found to assist in maintaining the desired pH of the Tyrodes solution by rapidly displacing 

any excess CO2. 
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8.2.3 Evaluation of Extracts 

The plants used for the on-line analysis were collected during October 1995 and were 

hence different to the batch used for the preliminary analysis. Each plant was initially 

evaluated by extraction at a pressure of 400 atm and 80 QC to ascertain whether the 

uterotonic components were of sufficient concentration to initiate a muscle response using 

this new technique. Subsequent analysis was performed by sequentially extracting the 

components at 200, 300 and 400 atm respectively in order to decrease the complexity of 

the extracts and hence minimise possible antagonistic effects from interfering compounds. 

Fractionation also aided in determining the most potent extract of the plant which would 

be useful in further analysis. The response of the muscle to ACh before and after 

extraction of the plant components was determined for each assay. 

8.2.3.1 Analysis of Ekebergia capensis 

Following an equilibration period of 30 minutes, during which time static extraction was 

perfonned, the muscle was found to produce an adequate response to 5 ~g ACh (Figure 

8.4a.). Ten minutes after dynamic extraction at 400 atm commenced, the muscle was 

observed to develop tension. The probability of cold zone contracture was ruled out as 

the fluid temperature in the muscle bath during this period was found to be 37 QC. The 

contractile process lasted approximately 3 minutes. Once the 20 minute dynamic 

extraction period had lapsed and the contents of the extract collection chamber transferred 

to the muscle bath, the muscle developed rythmic activity of increasing amplitu~e followed 

by a period of sustained contraction-relaxation cycles, which were observed for a period 

of 30 minutes. Subsequent addition of 5 ~g ACh to the muscle bath produced a 

prolonged response of greater amplitude than the original cholinergic stimulation. A 

similar cholinergic response following a muscle wash with Tyrodes indicated that the 

extract may have sensitized the contractile mechanism thereby increasing the agonistic 

response of ACh. 

Sequential extractions at 200, 300 and 400 atm were thereafter performed and Figure 

8.4b-c displays the contractions induced by the sequentially fractionated ' extracts. 
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Approximately 6 minutes after commencing dynamic extraction at 200 atm, the muscle 

developed extreme tension of much larger amplitude than the ACh response (Figure 8Ab). 

This contraction lasted approximately 10 minutes. After completing dynamic extraction, 

the extract was flushed into the muscle chamber producing an increase in muscle tone. 

This was monitored for a 17 minute period followed by administration of ACh. Once 

again, in the presence of the plant extract, the muscle produced an enhanced agonistic 

response to ACh, however, when the muscle was washed, the response elicited was 

observed to be similar to the initial response. The 300 atm extract also produced a 

contraction approximately 15 minutes after commencing with dynamic extraction, 

however, when the extract was transferred to the muscle chamber, muscle activity was 

enhanced and a period of sustained contraction-relaxation cycles was initiated within 3 

minutes (Figure 8.4c.). These contractions were monitored for approximately 20 minutes 

followed by the administration of ACh. Figure S.4d displays the contractions induced by 

the sequentially fractionated 400 atm extract. An increase in muscle tension was observed 

approximately 15 minutes after commencing with the 400 atm extraction. As the extract 

concentration increased the muscle developed contractile activity of much larger amplitude 

than the 400 atm total extract indicating that the sequential extract contained a larger 

quantity of the active components or perhaps a smaller concentration of the interfering 

compounds that may have induced antagonsitic effects. This extract indeed produced 

stimulating action followed by an increase in the frequency of contractions. The ACh 

response was also enhanced even after washing of the muscle with Tyrodes solution. 

Upon comparison of these results with those obtained from the off-line studies, one could 

possibly attribute the difference in the biological activity of the sequentially fractionated 

extracts to seasonal changes. Seasonal changes are known to cause variation in the 

concentration of compounds in plants due to changes in biosynthetic conditions. Unlike 

the first batch of E. capensis, this batch did not elicit spasmolytic activity. 
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Figure 8.4 The effect of SFE extract of E. capensis on Guinea Pig uterine smooth 
muscle. 
a) total 400 atm extract, b) sequentially fractionated extract obtained 
at 200 atm, c)300 atm and d) 400 atm demonstrating that the 400 atm extract 

was most potent. 

o point at which contents of the extract collection chamber was transferred to the 
muscle bath; W = muscle wash with Tyrodes solution. 

159 



8.2.3.2 Analysis of Grewia occidentalis 

The total 400 atm extract of G. occidentalis produced active tension within 2 minutes of 

commencing dynamic extraction, however at the end of the dynamic extraction period, a 

tonic rythm of extremely Iow amplitude was observed. This was followed by an extremely 

low response to ACh indicating the possibility of toxic components, however this 

inference remains to be confirmed (Figure 8.Sa). The 200 atm sequential extract did not 

provide conclusive evidence of uterotonic activity although a single contraction lasting 

approximately 30 seconds was observed (Figure 8.Sb). However, the 300 atm extract 

produced a well synchronised response leading to the production of regular, rythmic 

contractions that were monitored for a 30 minute period (Figure 8.5c). Addition of ACh 

was observed to produce a contraction similar to the initial response. The 400 atm extract 

was also found to induce phasic contractions, however of much lower amplitude than that 

induced by the 300 atm extract (Figure 8.Sd). This study clearly demonstrated the 

potential of supercritical fluid fractionation as the 300 atm sequential extract was observed 

to be the most potent. 
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Figure 8.5 The effect of SFE extract of G. occidentalis on Guinea Pig uterine smooth 
muscle. 

o 

a) total 400 atm extract, b) sequentially fractionated extract obtained at 
200 atm, c) 300 atm and d) 400 atm demonstrating that the 300 atm extract 
was most potent. 
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8.2.3.3 Analysis of Clivia miniata 

The total 400 atm extract of the roots of C. miniata was found to initiate contractile 

activity within 4 minutes of commencing with dynamic extraction. An increase in muscle 

tension was observed together with occasional spiking. The muscle remained in this state 

of contraction for approximately 8 minutes, however upon completion of dynamic 

extraction an intense contractile activity of high amplitude was detected (Figure 8.6a). 

The contractions were observed to be more irregular, more prolonged and less frequent 

than the contractions induced by G. occidentalis. The 200 atm sequential extract 

produced regular contractions of varied amplitude (Figure 8.6b) while the 300 atm extract 

was found to develop contractile activity approximately 5 minutes after stopping dynamic 

extraction. The contractions were observed to be phasic together with tension 

development (Figure 8.6c). Unlike the activity induced by the 200 atm extract, these 

contractions were of a greater amplitude and frequency. These contractions were 

monitored for a 35 minute period followed by two muscle washes in order to stop 

contractile activity. Addition of ACh was found to elicit a much greater response than the 

initial contraction and this could once again be explained by the sensitizing nature of the 

extract on the contractile mechanism of the uterine muscle. The 400 atm sequential 

extract also produced contractions which initially increased in amplitude with periods of 

quiescence alternating with periods of activity. The contractions were initially observed to 

be irregular and prolonged however with time, the amplitude decreased, followed by an 

increase in the frequency of contractions (Figure 8.6d). The decrease in amplitude of the 

contractions could be attributed to muscle fatigue . 
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Figure 8,6 The effect of SFE extract of C. miniata on Guinea Pig uterine smooth muscle. 
a) total 400 atm extract, b) sequential extract at 200 atm, c) 300 atm d) 400 

atm demonstrating that the 400 atm extract was most potent. 

o point at which contents of the extract collection chamber was transferred to the 
muscle bath; W = muscle wash with Tyrodes solution. 
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8.3 Conclusions 

The results presented herein show that the on-line assay is a rapid, safe and sensitive 

method for determining the uterotonic activity of medicinal plants. The selectivity of the 

extraction was successfully varied through pressure control thereby minimising the 

possibility of interfering compounds. The method could be adapted to screen plants with 

other therapeutic potential (eg. plants used in the treatment of diabetes mellitus and 

hypertension). On-line bioassay guided fractionation further enhanced the potential of this 

technique as it allowed expeditious identification of the most potent fractions which could 

then be subjected to further analysis. 
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CHAPTER 9 

Extractives from Ekebergia capensis Sparrm. 

9.1 The Genus Ekebergia 

The genus Ekebergia belongs to the family Meliaceae. Previous investigations into the 

chemical constituents of this genus resulted in the isolation and identification of a group of 

tetranortriterpenoids known as limonoids. Structurally, the limonoids are derived from 

tetracyclic triterpenoids similar to euphol or tirucaIlol by a series of oxidative changes, 

brought about by peroxidase enzymes in the plant, interspersed with molecular 

rearrangements. A step wise oxidation has been proposed for this process during which 

four of the side chain carbon atoms are eliminated. According to the proposed mechanism 

(1), the tirucallol side chain is first oxidised to form a C-21 aldehyde group, a C-23 

hydroxy group and a C-24,25 epoxide in place of the double bond to afford, after a 

subsequent cycIisation, a turraeanthin side chain (Scheme 9.1). 

-
tiucallol-l)pe side chain 

1 
o 0 

HO~ -
~ 

Schem: 9.1 Oxidation of s ide chaD 
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Further oxidation goes VIa the formation of a C-24 ketone, either directly by 

rearrangement of the epoxide, or by formation of the diol from the epoxide with further 

oxidation of the C-24 hydroxy group into a ketone followed by Baeyer-Villiger oxidative 

cleavage. This process affords a ~-substituted furan ring at C-17u (Scheme 9.2) 

o 0 

~ 
OH 

~ 

turraeantbin-twe siie chan 

o 

! OJOO""n 

H~yO 
R~ 
! ckavage 

-~O .. COOH -+- + 
HO 

Scherre 9.2 .furan ring fmmtion 
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The validity of the proposed pathway was also supported by a number of synthetic 

studies where partial synthesis of the furan ring was carried out (2, 3). Limonoids are 

classified according to the modifications of their triterpenoid rings, which brings about 

twelve possible groups. 

Ekebergia capensis is a fairly large tree, widespread in eastern Africa from Sudan to the 

Cape. The timber is not durable, but the tree is cultivated for shade and as an ornamental 

on account of its striking clusters of cherry-like but inedible red fruit. The tree is also 

known to be used for medicinal purposes. Decoctions made from the chopped bark are 

taken as emetics for heartburn and for respiratory chest complaints and coughs (4). 

Leaves are used in an unfusion as a purgative parasiticide. The work reported in the 

previous chapters has shown this plant to contain uterotonic properties supporting its 

claim to induce or augment labour (5). 

A previous investigation of the seed of E. capensis collected in the Eastern Cape yielded 

a crystalline limonoid to which the name ekebergin was given (6). This compound was 

identified as a diacylated methyl angolensate derivative. 

o 

HO'" 
", 

Ekebergin 
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Continued investigations into the hexane extract of the seed of Ekebergia capensis yielded 

a number of different esters of the ekebergolactones as seen below (14). 

capensolactone 1 

RI = 2- methylbutymte, R2 = ni:otinate 

capensolactone 2b 

,?Ac 
; 

o 

R = nicotinate, 2-methyIpropionate 

capensolactone 4 
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o 

RI = ni:otinate, R2 = 2-methylbutyrate 

capensolactone 2a 

~AC 

R = nicotinate, 2-rnethyIpropionate 

capensolactone 3 

~Ac 
:: 

o 

capensolactone 5 



Further investigations into the chemical constituents of the bark of E. bengue!ensis 

resulted in the isolation of two acyclic triterpenoids [A] and [B] along with oleanonic acid 

and 3-epi oleanolic acid (7) . 

[A] 

[B] 

oleanonic acid 3-epioleanolic acid 
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A previous investigation of the timber of E. senegalensis (collected in Nigeria), which is 

now considered conspecific with E. capensis (8), yielded the ekebergolactones A and B 

(9). 

Ekebergolactore A (R1' Rz = Ac, iBu; R3 = 2-MeBu) 

Ekebeigolactore B (R1, Rz = Ac, iBu; ~ = Ac) 

Investigations undertaken by Taylor et al. (10) on the seeds of E. pterophylla revealed the 

presence of ekebergin as well as compounds named E.P.l (methyl 2a-acetoxy-3a­

hydroxy-3-deoxoangolensate), E.P.2 (methyl 3a-hydroxy-3-deoxoangolensate), and E.P .3 

(methyl 2a, 1513-diacetoxy-3 a -hydroxy-3 -deoxoangolensate). 

E.P.l RI = OH, R2 = OAc, R3 = H 

E.P.2 RI = 0 H, R2 = H, R3 = H 

E.P.3 RI = OH, R2 = OAc, R3 = OAc 

E.P.6 RI =OH,R2= '>==<. 
R3 =OH . H COO 
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Further studies on the seed of E. pterophylla by Kehrli et al. (11) led to the isolation of 

the above mentioned compounds including two other compounds named E.PA and E.P.5, 

whose structures were shown to be similar to those of the trijugins isolated from Heynea 

trijuga (12). 

?Ae Co 9Ae po 
A eO", 

'" 0 
AeO", 

'" 0 

COO""" HO"'\\\ 

>=< COOMe 

E.PA E.P.5 

Although coumarins are not common in the Meliaceae family, in recent studies (14), the 

seed of E. pterophylla yielded six novel coumarins, the structures of which are given 

below. 

OH 

pterophyllin 1 pterophyllin 2 pterophyllin 3 

o 

pterophyllin 4 pterophyllin 5 pterophyllin 6 . 
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In the current investigation of the supercritical fluid extract of E. capensis wood, 

extensive silica gel chromatography led to the isolation of five compounds. From spectral 

evidence and chemical transformation, the compounds were identified as ~-sitosterol; 

oleanonic acid; 3 -epioleanolic acid; 2,3,22,23 -tetrahdroxy-2,6,10,15,19,23 -hexamethyl-

6,10, 14, 18-tetracosatetraene and 7 -hydroxy-6-methoxycoumarin. The structure 

elucidation of these compounds is discussed. 

9.2 Structure elucidation of compounds isolated 

9.2.1 Compound 1 

[1] 

This compound was isolated as a white precipitate and displayed an Rc value of 0.67 with 

a mixture of ethyl acetate (10%), hexane (15%) and methylene chloride (75%). High 

resolution mass spectrometry indicated that the compound had a molar mass of 414.3848 

g.mor1 consistent with a molecular formula C29HSOO (calculated 414.3861) (spectrum la). 

The mass spectrum displayed a peak at mlz 396 [M - H20f, due to the ready dehydration 

of the compound, indicating the presence of one hydroxy group. 

The infrared spectrum (spectrum lb) displayed a strong band at 3430 cm-1 indicating the 

presence of a hydroxyl group. Differentiation between primary, secondary and tertiary 

alcohols is possible in many cases from the position of the C-O stretching bands. In this 
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spectrum, the strongest C-O stretching band at 1049 cm- l suggested a secondary hydroxy 

group. The strong bands at 2936 cm- l and 2867 cm- l arose due to the presence of alkyl 

groups and the presence of methyl groups was shown by C-H deformation bands at 1460 

cm-I and 1378 cm-I. 

The IH NMR spectrum (spectrum 1c) was compared with library spectra which suggested 

the compound to be f3-sitosterol. Characteristic resonances of this compound were the 

multiplet at 05.32 assigned to the H-6 proton in the steroid skeleton. Another multiplet at 

03 .50 (W1l2 = 15 Hz) was ascribed to the H-3a. proton, with a hydroxyl group attached at 

C-3f3. 

The l3C NMR spectrum (spectrum Id) indicated a doublet occurring at 871.8, a typical 

chemical shift for a carbon atom with an attached oxygen and was assigned to the C-3 

carbon atom. The singlet at 0141.0 and doublet at 0121.9 indicated the presence of one 

trisubstituted double bond and were assigned to C-5 and C-6 respectively. Chemical shifts 

for the methyl group protons as well as the melting point and optical rotation correlated 

well with published data. This compound was hence undoubtedly confirmed to be f3-

sitosterol. This compound is frequently found in the plant kingdom. 
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9.2.2 Compound 2 

[21 

This compound was isolated as colourless needles after recrystallisation from chloroform 

and displayed an Revalue of 0.50 with a mixture of ethyl acetate (10%), hexane (15%) and 

methylene chloride (75%). High resolution mass spectrometry of this compound showed 

that the M'" peak occurred at mlz 454.3471 which correlated with the molecular formula 

C30f4;03 (calculated 454.3447 g.mor!) suggesting that compound 2 was a triterpenoid 

(spectrum 2a). The mass spectrum also displayed peaks at mlz 439 [M - CH3f and mlz 

410 [M - C02r, the latter indicative of a carboxylic acid. 

The infrared spectrum (spectrum 2b) displayed two prominent bands at 2922 cm-! and 

2850 cm-! indicating the presence of alkyl groups and this was confirmed by the band at 

1462 cm-! while the band at 1377 cm-! indicated that methyl groups were present. The 

bands at 1749 cm'! and 1726 cm-! were due to the carbonyl streching vibrations of a 

ketone and a carboxylic acid group respectively while the band at l271 cm-! was due to C­

O stretching vibrations. The medium band at 3421 cm-! was due to the O-H stretching 

vibrations. 

The l3C NMR. spectrum (spectrum 2d) displayed strong resonances for 30 carbons. 

Multiplicity assignments made from the DEPT spectrum indicated seven quartets, ten 

triplets and four doublets. The remaining nine carbon resonances were assigned as 
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singlets. The resonances at 6122.3 (d) and 6143.6 (s) confirmed the presence of a 

trisubstituted double bond, the chemical shifts of which are charactersitic for oleanane 

triterpenoids with a ~12 double bond (13). The two singlet resonances at 6184.4 and 

6217.8 were ascribable to the carboxylic acid carbonyl carbon and the keto group carbon 

respectively. 

The IH NMR spectrum (spectrum 2c) displayed a resonance at 65 .24 (lH, bs) assigned to 

H-12. In the HETCOR spectrum (spectrum 2e), this was observed to correlate with the 

carbon resonance at 6122.3 (d). A comparison of the data with that of a previously 

isolated compound indicated that this compound was oleanonic acid. The carbon and 

proton resonances were found to correspond with values reported in earlier studies (14). 

Furthermore, from the COSY spectrum (spectrum 2t), H-12 was seen to be coupled to a 

broad multiplet at 61.93 (2H, m) and this resonance was ascribed to 2H-11. The 

resonance assigned to 2H-ll was, in turri, coupled to a multiplet at 61.60 (IH, m) 

ascribed to H-9. The doublet of doublets at 62.80 (1H, dd) was assigned to the H-18 

proton, which was seen to be coupled to H-19a (61.56, m) and H-19b (6 1.10, m). 

Hence on the basis of this information, compound 2 was confirmed as being oleanonic acid 

and has been isolated previously from this species. 
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9.2.3 Compound 3 

[3] 

This compound displayed an Rr value of 0.20 with a mixture of ethyl acetate (5%), hexane 

(15%) and methylene chloride (80%) and was isolated as colourless needles after 

recrystallization from methanol. High resolution mass spectrometry of this compound 

showed a molecular ion peak at m/z 456.3590, suggesting a molecular formula C30~803 

(required 456.3603 g.mor l
) (spectrum 3a). 

The infrared spectrum (spectrum 3b) displayed an intense band at 3404 cm- l due to O-H 

stretching vibrations. The bands at 2947 cm- l and 2879 cm- l arose from alkyl groups 

while the presence of methyl groups were shown by the presence of a band at 1379 cm-I. 

The strong sharp band at 1709 cm- l was due to a carbonyl stretching vibration while the 

band at 1249 cm- l was attributed to a C-O stretch. These bands suggested that a . 

carboxylic acid group was present in the molecule. The band at 1444 cm- l was due to the 

O-H in-plane bending vibration. 

The l3C NMR and IH NMR spectra closely resembled the spectra of oleanonic acid with a 

few minor changes observed. The l3C NMR spectrum (spectrum 3d) showed resonances 

for 30 carbon atoms. Multiplicity assignments indicated seven quartets, ten triplets and 

five doublets, while the remaining eight signals were assigned as singlets. The l3C NMR 
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spectrum, unlike that of oleanonic acid, lacked the singlet ascribed to the C-3 keto group 

carbon at 8217.8 however a doublet at 876.2 was now observed. The double bond carbon 

resonances occurred at 8122.7 and 8143 .6 while the resonance at 8183.1 ascribable to the 

carbonyl carbon of the carboxylic acid group, remained unchanged. 

The IH N?v1R spectrum (spectrum 3c) showed the resonances for H-12 of the ~12 double 

bond at 85 .23 and the characteristic H-18 doublet of doublets at 82.79. The two H-2 

proton multiplets at 82.20 and 82.50 in the spectrum of oleanonic acid, now occurred at 

81.87 and 81.66 and a new broad singlet appeared at 83.39. This suggested that the keto 

group at C-3 had been replaced by a hydroxy group. Furthermore, a WI12 value of 7 Hz 

indicated that H-3 was ~ orientated leaving the hydroxy group in the a. position. This 

compound was hence identified as being 3-epioleanolic acid. Though it has been 

demonstrated that the biosynthesis in plants leads to the 3 ~-configuration, subsequent 

epimerisation could occurr to produce the 3a. compounds (15). 3-epioleanolic acid is a 

known compound in the plant kingdom although not as widely spread as the 3 ~-isomer. 
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9.2.4 Compound 4 

24 

OH 

[4] 

This compound was isolated as a colourless oil and displayed an Rr value of 0.17 with a 

mixture of ethyl acetate (50%) and methylene chloride (50%). The highest peak in the 

mass spectra occured at rnJz 348.2287, however the molecular formula obtained 

(C2IHn 0 4) for this analysis did not agree with other spectroscopic data, indicating that the 
, 

compound may have decomposed or undergone a rearrangement reaction in the ion source 

or perhaps the molecular ion may have been too weak to be detected (spectrum 4a). The 

IH NMR. and the l3C NNfR spectra indicated that this compound closely resembled 

squalene. 

The infrared spectrum (spectrum 4b) showed a strong band at 3437 cm-I indicative of a 

hydroxy group. The bands between 3000 cm-I and 2800 cm-I are due to alkyl groups, and 

the presence of methyl groups is shown by bands at 1459 cm-l and 1381 cm-I . The band at 

1638 cm-
I 

is due to C=C stretching vibrations while the strong sharp band at 763 cm- l 

arises due to the C-H out of plane bending vibrations. 

The structure of this compound was established on the basis of the lH NNfR and l3C NNfR 

data, all of which compared well with data for these compounds which were recently 

isolated from Ekebergia bengueiensis from Tanzania. The BC NNfR spectrum (spectrum 

4d) showed resonances for fifteen carbons however the lH NNfR spectral features 

(spectrum 4c) indicated that this compound structurally resembled squalene [4a], an 

acyclic triterpenoid. Consequently, a symmetrical structure with thirty carbons was 

suggested. 
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24 

[4 a] 

The l3C NMR spectrum displayed strong resonances for fifteen carbons. Since squalene is 

formed from the alignment of two C 15 units in a tail-to-tail fashion, it was quite evident 

that the l3C NMR spectrum represented one of these units as it was a symmetrical 

molecule. Multiplicity assignments made from the DEPT spectrum indicated four 

quartets, five triplets and three doublets. The remaining three carbon resonances were 

assigned as singlets. The four resonances at 0134.9 (s), 0134.8 (s), 0125 .1 (d) and 0124.4 

(d) were due to olefinic carbons in the molecule while the signals at 078.3 (d) and 073.0 

(s) indicated the presence of a secondary and tertiary carbinol group respectively. Since 

squalene is known to form the 2,3-epoxide, the two oxygen-bearing carbons were placed 

at positions 2 and 3 since this was the most biosynthetically probable position. 

The IH NMR spectrum displayed resonances at 01.12 (6H, s, 2 x CH3) and 01.17 (6H, s, 

2 x CH3) indicative of four methyl groups. In squalene, the four terminal methyl groups 

are attached to Sp2 carbons and hence resonate at 01.68 and 01. 60. In contrast, the 

corresponding methyl groups of this compound suggested that these methyl groups were 

attached to Sp3 carbons as the signals appeared higher upfield. A further two signals 

occuring at 01.57 (6H, s, 2 x CH3) and 01.59 (6H, s, 2 x CH3) were indicative of four 

methyl groups attached to Sp2 carbons. The spectrum also showed a four proton multiplet 

at 05. 14 ascribable to H-7, H-Il, H-14 and H-18. Two equivalent CH group protons 

were present as observed by the resonance at 03.32 (2H, dd, JI = 2.1 Hz, J2 = 10.3 Hz, H-

3, H-22). 
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To confirm whether the molecule contained an epoxide or hydroxy groups, acetylation of 

[ 4] with acetic anhydride/pyridine at room temperature was carried out. A diacetate [4b] 

was formed . This product was isolated as a colourless oil. The IH NMR of [4b] showed 

a signal at 82.08 (6H, s) due to two acetate group methyl protons (spectrum 4e). The 

double doublet that initially resonated at 83.32 was shifted downfield to 84.35 due to 

deshielding induced by the acetate carbonyl groups. Because both C-3 and C-22 hydroxyl 

groups were acetylated, [4b] was a symmetrical compound. The tertiary hydroxy groups 

at C-2 and C-23 did not acetylate as special conditions are required for the acetylation of 

tertiary hydroxy groups. Hence, based on these results, structure [4] was concluded to be 

the acyclic triterpenoid 2,3,22,23-tetrahydroxy-2,6, 10, 15, 19,23-hexamethyl-6, 10,14,18-

tetracosatetrene. This suggested that [4] was a derivative of squalene in which two 

hydroxyl groups were added to each of the terminal double bonds. The rest of the signals 

closely matched literature values. 

[4b] 

181 

emS' 



9.2.5 Compound 5 

[5] 

This compound was found to be a coumarin known as scopoletin and was isolated as 

colourless needles after recrystalisation from methanol. This compound did not show up 

on a TLC plate after using the anisaldehyde spray reagent. Instead, it fluoresced with a 

bright blue spot under UV light at 365 nm having an Rr value of 0.25 with a mixture of 

ethyl acetate (10%), methylene chloride (80%) and hexane (10%). The most obvious 

physical property of most natural coumarins is the fluorescence they display under UV 

light at 365 nm and this feature has been employed widely for their detection on paper (16, 

17). It is often possible to make tentative assignments of the structural class of a 

coumarin from the colour it displays (18). 7-Alkoxycoumarins generally have a purple 

fluorescence whereas 7 -hydroxy coumarins and 5,7 -dioxygenated coumarins tend to 

fluoresce blue. The structure given below outlines the numbering system of a basic 

coumarin. The vast majority of natural coumarins carry an oxygen substituent at C-7. 

o 

coumarm 
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High resolution mass spectrometry indicated that [5] had a molar mass of 192.0418 g. 

mor! consistent with a molecular formula C lOHg0 4 (calculated 192.0422 g.mor!) 

(spectrum 5a). Characteristic peaks were displayed at mlz 177 [M - CH3f ; mlz 149 [M -

CH3 - COr and mlz 121 [M - CH3 - 2COr. 

The infrared spectrum (spectrum 5b) showed an intense band at 3335 cm'! due to the O-H 

stretching vibration. The medium band at 2850 cm'! was due to the symmetrical stretch of 

a methoxy group with the symmetric bend at 1450 cm'! . The strong sharp band at 1706 

cm'! is due to the carbonyl stretching vibrations of an a,p unsaturated lactone. The sharp 

bands at 1565 cm'! and 1509 cm'! indicated that this was an aromatic compound. The 

sharp bands at 922 cm'! and 860 cm'! were due to the C-H out-of-plane bending vibrations 

of the aromatic ring while the C-H in-plane bending vibrations occurred at 1020 cm'!. The 

strong band at 1292 cm'! was due to C-H in-plane bending of olefinic carbons. 

The !H-NMR spectrum (spectrum 5c) showed a resonance at 03.94 (3H, s) arising due to 

methoxy group protons. A pair of doublets at 07.58 (lH, J3,4 = 9.5 Hz) and 86.24 (lH, 

J3,4 = 9.5 Hz) were characteristic of the H-4 and H-3 signals respectively. The H-4 

resonance is found in the region of 87.5-7.9 in coumarins lacking a C-5 oxygen function 

(19) as an oxygen or alkyl substituent at C-5 will characterstically shift the resonance of 

H-4 downfield by -0.3 ppm (the peri effect) with H-4 being found at 07.9-8.2 (20, 21). 

The signal at 86.10 (lH, s) was due to a hydroxy proton while the H-5 (lH,s) and H-8 

(IH, s) resonances were observed at 86.83 and 86.90 respectively. 

Nuclear Overhauser Effect (NOE) experiments were carried out to establish the position 

of the methoxy and hydroxy groups. This experiment is useful for studying molecular 

conformation and depends on the dipolar relaxation of one proton by another. The effect 

is proportional to the inverse sixth power of the internuclear distance and is thus sensitive 

to conformational changes. Irradiation of the signal at 87.58 (H-4) led to the observation 

of difference peaks at 86.83 (s) and 86.24 (d) hence verifying the close proximity of these 
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protons to H-4 (spectrum 5d). The doublet at 66.24 has already been assigned to H-3, 

hence the resonance at 86.83 was assigned to H-S . Upon saturation of the H-5 signal, the 

intensities of the resonances at 87.58 (H-4, d) and 83.94 (OCH3) were increased 

(spectrum Se). From this it was concluded that the methoxy group was in close proximity 

to H-5 and hence must be located at C-6. Subsequent irradiation of the methoxy signal 

only increased the intensity of the H-5 signal (spectrum Sf). This indicated that the 

substituent at C-7 was the hydroxy group. The resonance at 86.90 (H-8) was irradiated 

but there was no NOE observed between H-8 and the other protons confirming the 

position of the hydroxy group at C-7. 

The l3C NMR spectrum (spectrum 5g) however only showed resonances for five carbons 

as the sample was extremely weak. The signals at 8143.3 (d), 8113.4 (d), 8107.5 (d) and 

8103 .2 (d) were due to methine carbons while the signal at 856.4 (q) was due to the 

methoxy group at C-6. The singlet carbons were not observed. Based on the data 

obtained, compound 5 was assigned structure [5] and identified as 7 -hydroxy-6-

methoxycoumarin, the common name of which is scopoletin. 

Scopoletin [5] is possibly biosynthetically derived from ferulic acid following the scheme 

outlined below. Normally the ortho - hydroxy group undergoes glucosylation (which 

results in isomerisation of trans ferulic acid derivatives to the cis form). The subsequent 

hydrolysis of the sugar moiety leads to closure of the ring leading to scopoletin (22). 
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fen.iic add trans-derivative 

j 
~CO~ 

- ~rlCOOH 
HO O_glucose 

scopoletin ds-<lerivative 

Sdx:rre 9.3 Biosynthesis of scopo£tin 

This compound occurs widely in the plant world and could possibly be used as a 

spasmolytic agent. Patnaik et a/. isolated angelicin from the aerial parts of Heracleum 

thomsoni (Apiaceae) and found this compound to exhibit nonspecific spasmolytic activity 

in a variety of in vivo and in vitro test models (23). This compound had a relaxant effect 

on a wide variety of smooth muscle preparations from various species. 

angelicin 

Various other coumarins have been isolated and all have displayed spasmolytic activity 

(24-27). 
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CHAPTER 10. 

Extractives from Clivia miniata (LindL) Regel. 

10.1 The genus Clivia 

Clivia miniata belongs to the Amaryllidaceae family which is extremely widespread. This 

family contains a large number of species that are indigenous to nearly every part of the 

world except the tropics where only few species have been found (1). The Amaryllidaceae 

alkaloids have aroused interest in a wide range of biological fields . They are known to 

exhibit different pharmacological and microbiological effects such as antiviral, antitumoral 

and anticholinergic (2). Some of them have been used in the treatment of myasthenia 

gravis, myopathy, and diseases of the nervous system. 

Clivia miniata is indigenous to KwaZulu-Natal and is used for a number of medical 

purposes. The root is used as a snake-bite remedy by the Zulu and by the Xhosa in the 

Transkei (3). The Zulu also use the root in treating febrile conditions and the herb to 

facilitate delivery at childbirth or to initiate parturition when its onset is retarded (4). The 

bulb decoctions are also used by the Xhosa for infertility and urinary complaints (3). 

Previous investigations into the chemical constituents of this plant has resulted in the 

isolation of several alkaloids. The alkaloids ciivonine, ciivatine, lycorine and clivonidine 

were isolated from the total plant cultivated in Egypt (5). 
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Small amounts of clivi mine and lycorine have also been isolated from the leaves by 

Jaspersen-Schib (6). 
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Other alkaloids isolated from the plant include cliviahaksine, cliviamartine, clivojuline 

and clivisyaline (8-11) 

OH 

o 
CJiviahaksine CJiviamutine 

OH 

Clivisyaline CJivojuline 

Lycorine is the most widespread of the Amaryllidaceae alkaloids and is responsible for 

the antiviral activity this plant is said to exhibit (12). Poliomyelitis virus inhibition 

occurred at lycorine concentrations as low as 1 Jlglml, while concentrations exceeding 25 

Jlglml were cytotoxic. Clivimine, clivonine and cliviamartine showed no antiviral 

properties. 

In this study the supercritical fluid extract of the roots of C. miniata were analysed in an 

attempt to identify the uterotonic principle present. While the literature review of this 

plant indicated that alkaloids were the main group of compounds present, there were no 

alkaloids found in the SFE extract of this plant suggesting that the extraction conditions 

employed were not favorable for the extraction of these compounds. 
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10.2 Structural elucidation of compounds isolated from Oivia miniata 

10.2.1 Compound 6 

[6] 

Compound 6 was identified as linoleic acid [6] and it was the major component contained 

in the fatty acid mixture. This mixture was insoluble in methanol and it appeared as a 

white precipitate as the SFE extract was passed into methanol during extraction. 

However, upon removing this precipitate from methanol, it turned into a colourless oil. 

The IH NMR spectrum of this compound (spectrum 6a) revealed that it was a fatty acid. 

Since fatty acids generally occur as mixtures and are difficult to separate by gravity 

column chromatography, GC-MS analysis was carried out on this mixture. The 

experimental condItions for analysis are outlined in section 5.15 . Free fatty acids are 

highly polar and often have great difficulty in eluting from a GC column. Hence, the 

methyl esters of these fatty acids were formed so that analysis could be made possible. 

The fatty acid fraction was esterified following the method described in section 5.16. 

Figure 10.1 shows the total ion chromatogram of the esterified fraction with the major 

component having a retention time of 34.74 minutes. The mass spectrum of this 

compound compared well with the mass spectrum of methyl lino le ate (Figure 10.2), hence 

the major component in the esterified fraction was identified as linoleic acid. 
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Figure 10.1 GC-MS total ion chromatogram of esterified fatty acid mixture showing 
methyllinoleate as the major component. 
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Linoleic acid is of great significance in this plant as it may attribute to the uterotonic 

effects of this extract and hence support the ethnomedical claims of its use in initiating 

labour. It is a precursor of the eicosanoids (20-carbon fatty acids) which include 

leukotrienes, prostaglandins, thromboxanes and related compounds. Linoleic acid is 

esterified to form phospholipids (primarily phosphatidylethanolamine or 

phosphatidylcholine) in cell membranes activating phospholipase A2 which, in turn , 

hydrolyses membrane phospholipids resulting in the release of arachidonic acid. The 

arachidonic acid is then acted on by the enzyme arachidonic acid cyclooxygenase 

(prostaglandin endoperoxide synthetase) to produce prostaglandins (13) . Prostaglandins 

F2a. and E2a. have direct stimulatory effects on uterine contractility and are synthesised in 

large quantitities during initiation of labour. In support of the proposition that the release 

of arachidonic acid is crucial to the onset and maintenance of labour, it was found that the 

concentration of nonesterified arachidonic acid in amniotic fluid obtained after the onset of 

labour increased six-fold compared with that in amniotic fluid obtained at term before the 

onset oflabor (14). 
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10.2.2 Compound 7 

[7] 

High resolution mass spectrometry indicated that the compound had a molar mass of 

126.0307 g.mol-' correct for the formula C6H60 3 (calculated 126.0317) (spectrum 7a). 

Characteristic fragments occurred at mlz 109 [M - OHt and at mlz 97 [M - CHOt. The 

small signal at mlz 234 may have resulted due to dimer formation resulting in [7a] below. 

[7a] 

This may have occurred in the GC-MS due to dehydration ofthe molecule. 

The infrared spectrum (spectrum 7b) showed a strong band at 3423 cm-' indicative of a 

hydroxy group_ The intense sharp band at 1670 cm-' together with the signals at 2924cm­

, and 2855 cm-' confirmed the presence of an a,~ unsaturated aldehyde. The small, sharp 

band at 1190 cm-' suggested that an ether linkage was present as this band arose from the 

C-O-C symmetric stretching vibrations. The band at 1521 cm-' indicated unsaturation in 

the molecule. 
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indicated that the aldehyde group was attached to a quaternary carbon. Two resonances 

occurring at 67.42 (lH, d, J3•4 = 3.6Hz) and 66.61 (1H, d, J3•4 = 3.6 Hz) were due to 

vicinal protons in an unsaturated heterocydic system and were assigned to H-3 and H-4 

respectively. The signal at 63 .39 was due to a hydroxy group proton while the -CH20 

group protons resonated at 64 .65 (2H). 

The BC NMRspectrum displayed resonances for six carbons (spectrum 7d). Multipicity 

assignments from the DEPT spectrum indicated three doublets and orie triplet. The 

remaining two signals were assigned as singlets. The doublet at 6177.7 was due to the 

aldehyde carbon while the resonances at 8122.7 (d) and 8110.0 (d) were due to C-3 and 

C-4 respectively. The signal at 857.6 (t) was due to a -OCH2 group carbon and this was 

supported by the resonance in the IH NMR spectrum at 84.65 (2H). The two singlets at 

8160.5 and 8152.4 were due to quaternary carbons and were assigned to C-5 and C-2 

respectively. This compound was established as a 2,5-disubstituted furan. The carbon 

resonances compared well with published data (15). 

An NOE experiment was carried out by irradiating the aldehyde proton signal at 89.57. 

This led to an incease in the intensity of the signal at 67.42 revealing the close proximity of 

H-3 (spectrum 7e). Based on the spectral data, this compound was identified as 5-

hydroxymethyl-2-furancarboxaldehyde. This compound is obtainable from various 

carbohydrates and is a constituent of numerous plants. Recently, it was found to be 

present in a Chinese crude drug (15) where it was found to possess aldose reductase CAR) 

inhibitory activity. 
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CHAPTER 11 

Extractives from Grewia occidentalis 

11.1 The genus Grewia 

The genus Grewia belongs to the Tiliaceae family which is a fairly large family found 

throughout the world but especially abundant in the tropical and subtropical regions (1). 

Grewia is a large genus of more than 400 species widely distributed in Africa, Asia and 

Australia.. Extracts from Grewia asiatica Linn. produces significant hypoglycaemic 

effects in diabetic rats (2). Lakshmi and Chauhan (3) isolated grewinol, a long chain keto­

alcohol from the flowers of this plant 

grewinol 

Further investigations into this species resulted in the isolation of a new B-Iactone 7-

hydroxy-3 ,21 ,24-trimethylhentriacontan-5-olide (1). 

7-h ydroxy-3,21,24-trimethythentriacontan-5-olide 
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Bashir et al. (4) carried out chemical investigations on the roots of Grewia villosa and 

isolated 12-ursene-3, 19,28-trioI. 

12-u rsene-3 ,19,28-triol 

There have been no reports on the analysis of extracts from Grewia oecidenta/is. This 

plant is much used by the Zulu as a medicine. The root and wood are used to facilitate or 

procure delivery while the bark is used for bladder ailments (5) . There have been no 

reports cited in the literature of chemical investigations being carried out on this plant. 

Hence the SFE extracts of the wood of this plant were analysed in order to determine the 

active principle responsible for its uterotonic effects. 

199 



11.2 Structural elucidation of compounds isolated from Grewia occidentalis 

11.2.1 Compound 8 

HO 

[8] 

This compound was isolated as a light yellow amorphous material displaying an Rr value 

of 0.33 with a mixture of hexane (50%), methylene chloride (40%) and methanol (10%). 

High resolution mass spectrometric analysis (spectrum 8a) of this compound showed that 

the ~ peak occurred at mlz 178.0625, correct for the formula C lOH lO0 3 (calculated 

178.0630). The fragmentation pattern was consistent with a monomethoxy monohydroxy 

cinnamaldehyde (6). Characteristic peaks occured at mlz 177 [M - Hr, mlz 163 [M -

CH3r and mlz 149 [M - CHOr. 

The infrared spectrum (spectrum 8b) displayed a strong band at 3424 cm-\ indicating the 

presence of a hydroxy group . The sharp band at 1664 cm-\ was due to the presence of an 

a.,~-unsaturated carbonyl group while the two bands between 2700 cm-\ and 2850 cm- l 

strongly suggested that the compound possessed an aldehyde group. Strong sharp bands 

at 1587 cm- l and 1514 cm-\ indicated that the compound was of an aromatic nature while 

the bands at 1286 cm-\ and 1130 cm-\ suggested that the aromatic nucleus was 1,3,4-

trisubstituted. The band at 971 cm- l was due to the C-H out-of -plane bending of a trans 

methine group. 
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The IH NMR spectrum (spectrum 8c) displayed resonances at 89.63 (lH, d, J 2',3' = 7.65 

Hz), 87.38 (lH, d, J 1',2' = 15.9 Hz) and a double doublet at 86.57 (lH, dd, J 1',2' = 15 .9 

Hz, J 2',3' = 7.65 Hz) indicating the presence of a trans CH=CH-CHO moiety as shown 

below, 

l ' 3'CHO 
Ar~ z 

From the above diagram it can be seen that both H-3' and H-l' are split into doublets as a 

result of H-2' while H-2', in turn, is split by H-l' into a doublet and further by H-3' 

resulting in a double doublet. The coupling of H-2' to both H-l' and H-3' was confirmed 

. by the COSY spectrum (spectrum 8d) 

The IH NNfR spectrum also showed resonances at 83.93 (IH, s, OCH3) and 85.95 (lH, 

OH) due to methoxy and hydroxy group protons respectively. The hydroxy group proton 

signal was confirmed by its disappearance after addition of D20 to the sample (spectrum 

8e). The resonances in the region 86.88 to 87.20 were due to the protons on the aromatic 

nucleus. The resonance at 86.94 (lH, d, J 5,6 = 8.2 Hz) was due to H-5 and was arrha 

coupled to H-6. The resonance at 87.10 (lH, dd, J 5,6 = 8.2 Hz, J 2,6 = 1.8 Hz) was 

attributed to H-6 as it was observed to be arrha coupled to H-5 resulting in a doublet 

followed by further splitting into a double doublet as a result of meta coupling to H-2, the 

signal of which was observed at 87.05 (lH, d, J2,6 = 1.8 Hz). While at this point it was 

known that the aromatic ring was 1,3,4-trisubstituted, the position of the methoxy and 

hydroxy groups was uncertain. 

NOE experiments were carried out by irradiating the methoxy group proton signal at 

83.93. This resulted in an enhancement of the H-2 signal at 87.05 as shown below 

(spectrum 8t). As there were no more NOE signals observed, it was clear that the 

hydroxy group was attached to the neighbouring carbon. 
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Irradiation of the H-2 signal at B7.05 resulted in the enhancement of the resonances at 

B3 .93, B6.57 (H-2') and 07.38 (H-I') indicating that this proton was in close proximity to 

the propanoid side chain (spectrum 8g). There is free rotation about the C-I, C-l' bond, 

thus one would expect to get positive signals for both these protons when H-2' is 

irradiated. 

This compound was hence deduced as 3-( 4-hydroxy-3-methoxyphenyl)-2-propenal, the 

common name of which is coniferaldehyde. This compound compared well to published 

data and has also been reported to occur in the roots of Tamarix nilotica (Tamaricaceae) 

(6) . 
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11.2.2 Compound 9 

[9] 

This compound was isolated as a brown amorphous substance displaying an Rf value of 

0.25 with a mixture ofhexane (50%), methylene chloride (20%) and ethyl acetate (30%). 

High resolution mass spectrometric analysis indicated a molar mass of 208 .0700 g.mor! 

correct for the molecular formula CllH120 4 (calculated 208 .0735) (spectrum 9a) but 

subsequent elucidation of the structure using NMR techniques indicated that this was not 

the molecular ion. Hence, the mass spectrum results were inconclusive as the molecular 

ion peak may have been too weak to be detected or the molecule may have fragmented 

prior to detection of the molecular ion. 

The infrared spectrum (spectrum 9b) displayed a resonance at 3418 cm-I due to OH 

stretching vibrations. This band was later attributed to traces of water contained in the 

sample as the final structure did not possess a hydroxy group. The strong, sharp band at 

1677 cm-! was due to the presence of a carbonyl group while the bands at 2939 cm-! and 

2847 cm-! suggested that the compound contained an aldehyde group. The strong band 

at 1588 cm-! indicated unsaturation in the molecule while the bands in the region 1513 

cm-! to 1330 cm-! indicated that the compound was of an aromatic nature. 
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The IH NMR spectrum of this compound (spectrum 9c) showed certain similarities to that 

of the previous compound. The resonances at 69.64 (lH, d, J 2",3" = 7.65 Hz), 67 .36 (lH, 

d, J \",2" = 15.9 Hz) and a double doublet at 86.59 (IH, dd, J 1",2" = 15 .9 Hz, J 2",3" = 7.65 

Hz) once again indicated the presence of a trans CH=CH-CHO group. A second 

aldehyde proton resonance at 69 .80 (IH, s) indicated that this group was attached to a 

quaternary carbon atom as no splitting of the signal was observed. The resonances at 

87.13 (2H, s) and 66.79 (2H, s) were each due to two chemically equivalent aromatic 

protons as observed from the integration signal. The resonances at 63 .92 (6H, s) and 

63 .95 (6H, s) were each due to the protons of two chemically equivalent methoxy groups. 

The l3C NMR spectrum (spectrum 9d) displayed twelve resonances. Multiplicity 

assignments revealed six doublets and one quartet. The remaining five signals were 

assigned as singlets. The signals at 8153 .1 (d) 6126.8 (d) correlated with proton 

resonances at 67.36 (H-l") and 66.59 (H-2") respectively in the HETCOR spectrum 

(spectrum ge), while the signals at 6106.7 (d) and 6105 .6 (d) correlated with proton 

resonances at 67.13 (2H) and 66.79 (2H) respectively. The latter observation indicated 

that the carbon signals were each due to two equivalent carbon atoms. The carbon 

resonance at 656.4 (q) was found to correlate with the four methoxy group proton signals 

at 63 .92 (6H) and 63.95 (6H). The signal at 6147.3 (s) was attributed to the four 

chemically equivalent fully substituted carbons bearing the methoxy groups while the 

resonances at 6125 .3 (s), 6128.4 (s), 8138.0 (s) and 8140.9 (s) were attributed to the 

quaternary aromatic carbons. It was evident that the compound possessed twenty carbons 

and the spectral information gathered thus far indicated two symmetrical benzene rings 

each with two equivalent methoxy groups and two equivalent protons, hence the following 

biphenyl derivative was proposed: 
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R1} R2 OMe or H 

R3} ~ OMe or H 

NOE experiments were carried out to establish the position of the methoxy groups and 

aromatic protons. Irradiation of the signal at 87.36 (H-I") led to the enhancement of the 

signals at 89.64 (H-3") and 86.79 (2H, s) (spectrum 9f). This led to the conclusion that 

the two equivalent aromatic protons were in close proximity to the propanoid skeleton 

and were placed at carbons 3 and 5 indicating two methoxy groups to be placed at C-2 

and C-6. Irradiation of the other aromatic proton signal at 87.13 (2H) led to the 

enhancement of the signals at 89.80 (IH, s, CHO) and 83.92 (6H, s, 2 x OCH3) 

confirming the position of H-3' and H-5' as well as showing that these protons occurred 

adjacent to the aldehyde and methoxy groups (spectrum 9g). Hence this compound was 

identified as 2,2' ,6,6'-tetramethoxy-4'-al-4-( ro-oxo-E-propenyl)-biphenyl. This compound 

has not been isolated previously although biphenyl derivatives such as zeyherol [9a] 

which was isolated from the wood of Zeyhera digitalis (Bignoniaceae) (7) are known. 

[9a] 
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11.2.3 Compound 10 

This compound was identified as oleanonic acid [2] on the basis of its lH_NMR spectrum 

and was also isolated from the SFE extract of the wood of Eke b ergia capensis. The 

structure elucidation of this compound is discussed in section 9.2.2. 
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CHAPTER 12 

In vitro screens and functional assays of isolated compounds 

12.1 Introduction 

In the drug discovery process, compounds that demonstrate therapeutic potential must 

have limited, or preferably be free, of undesirable side effects. Compounds that interact 

with more than one target, such as membrane and cytoplasmic proteins and receptors, 

have the potential to elicit side effects; in comparison to those compounds that are 

selective for a single target. One predictive measure of whether a compound demonstrates 

specificity is to profile a compound's activity through a series of receptor binding assays in 

what is termed a safety screen. For example, activity in an a- or ~-adrenergic receptor 

assay may be indicative of potential cardiovascular side effects. If a compound shows 

activity in an opiate receptor assay, then further studies to determine analgesic activity or 

addictive liability need to be considered. This chapter discusses the muscle activity 

induced by some of the pure compounds isolated from the three plant extracts followed by 

a further study on receptor pharmacology. 

12.2 Receptors and biological response 

The interaction of a drug with a receptor is analagous to a lock and a key. Thus, certain 

compounds would fit into the receptor and activate it, leading to a high degree of 

specificity. Although such a situation might be considered ideal for drug therapy, in 

actuality, few drugs interact only with their intended receptors. A receptor site may bind 

only one of many conformations of a flexible drug molecule (1). This pharmacophoric 

conformation has the correct spatial arrangement of all the binding groups of the drug 

molecule for alignment with the corresponding binding sites on the receptor, as shown in 

Figure 12.1. Molecules that can adopt the conformation required for binding may act as 

agonists or antagonists to the action of the receptor. An antagonist molecule may be 

bound to a receptor site and therefore not trigger the pharmacologic response because of 
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the absence of some key functional groups in the molecule. Alternatively, in the bound 

state, the molecule may be conformationally constrained in such a way that the functional 

group that effects the response cannot interact with the receptor to elicit the reaction. 

a. Agonist molecule with 
essential groups for 
binding and eliciting 
response 

b. Antagonist molecule with 
essential binding groups but 
lacking the group necessary 
for eliciting response. 

c~ Antagonist and optical 
Isomer of molecule in a, which 

. can bind but cannot elicit 
response. 

Figure 12.1 lllustration of the different conformations of drug molecules and their ability 
to bind to the receptor surface (7). 

For example, in Figure 12.1a, groups A and B are essential for binding, and group C 

triggers the response. A molecule possessing groups A and B and not possessing group C 

(Figure 12.1 b) will probably bind to the receptor surface but the receptor will not elicit a 

response because of the absence of group C's effect on it. In Figure 12.1c, the optical 

isomer of the original molecule (Figure 12.la) would possibly be an antagonist, because it 

can adopt a conformation that permits binding to the receptor but cannot adopt the 

conformation that permits both binding and correct alignment of group C, which elicits the 

response. 

The activation of receptors by drugs in isolated tissues can be divided into three processes: 

[I] the delivery of the drug from the organ bath solution to the receptor compartment, [2] 
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compartment, [2] the interaction of the drug with the receptor, and [3] in the case of 

agonists, the transduction of receptor stimulus into tissue response (2). These latter two 

processes are termed the "pharmadynamic" phase of drug action (3,4). The first step is 

the delivery of the drug to the drug receptor, a bulk diffusion phenomenon that can be 

affected by chemical, physical, and biochemical processes. 

12.3 The role of chemical bonding 

When a drug interacts with a receptor, several chemical attractive forces are responsible 

for the initial interaction. Assuming a compound has been distributed properly to the 

general area of the receptor in the body, a function simply of its physical characteristics, 

the ability of that compound to diffuse in close enough proximity to the receptor to 

interact with it depends initially on the types of chemical bonds that can be established 

between the drug and the receptor. The overall strengths of these bonds vary (Figure 

12.2) and determine the degree of affinity between the drug and the receptor (5). Most 

therapeutically useful drugs bind only transiently to their intended receptor. The 

combination of a variety of bonds including ionic, hydrogen and van der Waal's attractive 

forces can contribute to the initial binding of a drug to the receptor. Once the drug has 

bound, a biological response may result (if an agonist). Following binding of the 

receptor, a conformational change in the receptor may occur that initiates the activation of 

the biological response and also changes the attractive environment between the drug and 

the receptor, thereby allowing for the dissociation of the drug-receptor complex. Specific 

three-dimensional requirements must be satisfied for a compound to act effectively as an 

agonist. 
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Figure 12.2 Various drug-receptor bonds. 

A, covalent; B, x,n£; C, hydrogen; D, hydrophobic 

In this study, all the compounds isolated from the three plants were subjected to further 

uterotonic bioassays to identify those responsible for uterine muscle contraction. 

Compounds 1, 4, 5 and 9 did not induce muscle contractions at the doses administered 

hence, these compounds were not discussed any further in this chapter. The solubility of 

the compounds in certian cases posed a problem because of limited solubility in 0.9% 

saline solution. Tan et al. (6) reported on the use of a 1 % DMSO solution to overcome 

the solubility problem. In this study, the muscle did not show any adverse effects to 1 % 

DMSO and was hence used to solubilise the sparingly soluble compounds prior to the 

bioassay. After having identified the active compounds, these compounds were subjected 

to further functional assays to assess their receptor pharmacology in order to gain an 

understanding of their mode of action. The activity induced by the active compounds are 

discussed. 
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12.4 Analysis of compounds from Ekebergia capensis 

12.4.1 Compound 2 

Oleanonic acid [2] was dissolved in a 1% DMSO solution at a concentration of 1.83 

1-lg/1-lI. Following an agonistic response to 5 I-lg ACh, the muscle was observed to develop 

spontaneous contractions that were monitored over a 15 minute period (Figure 12.3). 

Oleanonic acid was found to elicit a muscle response after five cumulative additions of366 

I-lg quantities of this compound to the organ bath. Subsequent addition of ACh produced , 

a larger response than initially observed. This trend with the increase in ACh response has 

been consistent throughout the screening process of Ekebergia extracts. The contractile 

activity induced by oleanonic acid was of varied amplitude, with each contractile pulse 

lasting approximately 40 seconds. 

5 J.lg ACh 

J 5 x 366 J.lg of compound 2 

J J J J J 

w w 

I 
5 min 

Figure 12.3 Electrical recording of contractions induced by compound 2 of 
Ekebergia capensis on a non-pregnant uterus. w = muscle wash 
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12.4.2 Compound 3 

3-epioleanolic acid [3] was dissolved in a 1% DMSO solution at a concentration of 1.77 

Ilg/Ill. 10 Ilg ACh was administered to produce a muscle response followed by the 

addition of3541lg quantities of3-epioleanolic acid to the organ bath (Figure 12.4). Apart 

from the spontaneous contractions of the muscle, a cumulative dose of 708 Ilg was 

observed to increase the amplitude of the contractions in the spontaneously contracting 

uterus. Further additions of 354 Ilg quantities of this compound was found to further 

increase the amplitude of the contractions in a concentration-dependent manner. The 

muscle was thereafter washed and a subsequent addition of 10 Ilg ACh showed an 

increased ACh response once again. 

10 v.g ACh 

10 v.g ACh l 

4 x 354 )lg of compOlUld 3 

w 

15 . mm 

Figure 12.4 Electrical recording of contractions induced by compound 3 of 
Ekebergia capensis on a non-pregnant uterus. w = muscle wash 
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Unlike oleanonic acid, this compound displayed efficacy at much lower doses. An 

increase in both the tonicity and frequency of contractions was also observed. The only 

difference between these two compounds was the presence of a keto group at carbon 3 for 

oleanonic acid and the a-hydroxy group for 3-epioleanolic acid. These minor changes in 

the molecule can affect its intrinsic activity on the muscle (7) . 3-epioleanolic acid was 

found to induce muscle contraction at much lower doses and within a shorter time period 

than oleanonic acid. This may have resulted from the ability of the 3-epi compound to 

reach the active site of the receptor or to be metabolised more readily than oleanonic acid. 

The longer time period necessary for oleanonic acid to induce activity may have resulted 

due to a longer diffusion period required for the compound to enter the receptor 

compartment. 

The dissolution of a drug from the point of injection into a well mixed organ bath occurs 

relatively rapidly, however the diffusion coefficient of drugs in tissues is slower than in 

free solution (8). This is due to the longer path that a drug must take through a tissue to 

accomodate the numerous obstructions in the morphological organization of the muscle. 

One factor thought to be responsible for the difference in diffusion rates is tissue 

thickness. The diffusion time is related to tissue thickness (L) by the following equation 

(9): 

t (12.1) 
2D 

Considering the morphological architecture of the tissues to be reflected by the tortuosity 

factor (2), this equation can be modified to: 

L222 
t 

2D 
(12.2) 

where D is the diffusion coefficient of the drug in free solution. Factors which affect L 

will correspondingly alter the diffusion time. 
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Physicochemical properties, such as electronegativity, polarizability, bond angles, van der 

Waal's radii, number of substituents and charge of the atom can greatly influence the 

physicochemical characteristics of the molecule. Drug molecules in turn exert their effect 

by influencing receptor sites through their physicochemical properties. It follows 

therefore, that alteration of a group in a molecule will change the physicochemical 

properties of the molecule and thereby the biological response to it. The other 

compounds that were isolated from this plant were also subjected to bioassays however 

these were found to be inactive as there was no indication of uterine muscle stimulation. 

12.5 Analysis of compounds from Clivia miniata 

12.5.1 Compound 6 

Compound 6 was identified as linoleic acid [6] and has a limited solubility in aqueous 

media and even a 1 % DMSO solution failed to adequately dissolve this compound. 3 ml 

of 1 % DMSO solution was added to 37.8 mg of this compound and the vial shaken to 

adequately disperse the compound in solution. Thereafter a cumulative volume of 150 III 

(3 x 50 J..lI) was added before a maximum contractile response was observed (Figure 

12.5). The dose was repeated however this time the muscle was set into a series of 

irreversible, irregular contractions. Further washing failed to stop the contractile process. 

Linoleic acid is able to penetrate cellular membranes rapidly to exert its effect, as it is 

extremely fat soluble. Washing with tyrodes solution failed to wash away the compound 

due to its hydrophobic nature. The significance of linoleic acid is important as it serves 

as a precursor to arachidonic acid which, in turn, leads to the production of the 

eicosinoids, two of which are the prostaglandins E 2 and F2u' During pregnancy, the uterus 

produces large quantities of these prostaglandins which increase myometrial tone hence it 

is not surprising that this compound induced uterine muscle contractions. 

One must always be aware that when performing in vitro assays, disparity between the 

concentration of the drug in the organ bath and the active drug at the receptor site can 

arise if the drug promotes release of an endogenous substance in the tissue. It would be 
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expected that the magnitude of the response would be increased if the endogenous 

substance produced the same qualitative response. 

2 ).1gACh 
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Figure 12.5 Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by compound 6 of Clivia miniata (Lindl.) 
Regel. w = muscle wash 
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12.5.2 Compound 7 

Compound 7 was identified as 5-hydroxymethyl-2-furancarboxaldehyde [7] and was 

dissolved in 0.9 % saline at a concentration 1.27 Ilg/Ill. This compound (190 Ilg) was 

dispensed into the muscle bath and a contractile response was observed (Figure 12.6). 

Subsequent washing of the muscle decreased the muscle tension that initially developed 

however the contract ions failed to stop. The compound set the muscle into a series of 

contraction-relaxation cycles with the contractile responses being of an irregular nature. 

The contractions were observed over a 35 minute period before removal of the muscle 

from the bath. Although previous investigations have shown this plant to contain 

alkaloids, alkaloids were not detected, however, in the SFE extracts. 

1 J.lgACh 

~ !\ 

190 J.lg of 
compound 2 

~ 
I I 
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I I 

W w 

I 
I 

5 min 

Figure 12.6 Electrical recording of pregnant guinea pig uterine smooth muscle 
contraction induced by compound 7 of Clivia miniata (Lindl.) Regel. 
w = muscle wash 
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12.6 Analysis of compounds form Grewia occidentalis 

12.6.1 Compound 8 

Compound 8 was identified as coniferaldehyde [8] and was dissolved in 0.9% saline at a 

concentration ofl.67 Ilg/Ill. The muscle was found to respond adequately to 1 Ilg ACh 

after which the addition of this compound in known doses were carried out. A cumulative 

dose of 250 Ilg was observed to bring about a maximum contractile response (Figure 

12.7a). This was followed by a muscle wash and a subsequent addition of 175 Ilg of the 

compound elicited a contraction in a dose-response manner. The addition of a cumulative 

dose of 500 Ilg (2 x 250 Ilg quantities) produced muscle contractions of irregular 

amplitude but of almost equal time intervals (Figure 12.7b). 
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Figure 12.7 Electrical recording of pregnant guinea pig uterine smooth muscle 
. contraction induced by compound 8 of Grewia occidentalis L. after a 
cumulative dose of (a) 250 Ilg and (b) 500 Ilg. w = muscle wash 
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12.7. Assessment of mode of action through receptor binding assays 

In order to determine the receptor/s through which these compounds mediated their 

effects, use was made of two receptor agonists and antagonists. Two receptors that can 

be involved in smooth muscle contraction are the bradykinin B2 receptor and the 

muscarinic cholinergic receptor. Bradykinin was used as the standard B2 receptor agonist 

while acetylcholine was used as the cholinergic receptor agonist. It is well accepted that 

bradykinin can contract or dilate vascular smooth muscle (10) depending on (a) the type of 

kinin receptor, (b) the type and potency of kininases present on endothelial cells and ( c) 

the ability to generate nitric oxide (NO) also known as endothelium derived relaxing factor 

(EDRF) (11). The cholinergic receptors are also responsible for stimulating contractions 

of smooth muscles. The biological activity of the compounds were assessed both before 

and after addition of the receptor blockers. HOE 140 (a peptide antagonist) (Sigma 

Chemicals, St. Louis, MO, USA) was used as the B2 receptor blocker while atropine 

(Sigma Chemicals, St. Louis, MO, USA) was used as the cholinergic blocking agent as it 

blocks postganglionic receptors by binding to them and preventing access of acetylcholine. 

12.7.1 Compound 3 from Ekebergia capensis 

Bradykinin (15 ng) was administered to the uterine muscle to elicit a maximum response 

(Figure 12.8). Thereafter 500 Ilg of HOE 140 was added to the muscle bath to block the 

B2 receptors. Bradykinin was added once again to establish whether the B2 receptors 

were blocked. Failure of a muscle contraction indicated that B2 receptors were blocked as 

bradykinin did not produce a muscle response. Compound 3 was thereafter added to the 

muscle bath. A dose of 354 Ilg induced a maximum response indicating that this 

compound did not mediate its response through the B2 receptors as the muscle still 

contracted even after blocking off the bradykinin receptors. 

A subsequent addition of 1 Ilg ACh elicited a response and this showed the specificity of 

the B2 receptor blocker in that, although it blocked the B2 receptor, it did not block the 

cholinergic receptor since acetylcholine acts via the cholinergic recpetors. 30 Ilg atropine 

was thereafter dispensed into the organ bath to block off the cholinergic receptors. To 
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confirm this, a ten fold increase of ACh was added to the bath and this failed to produce 

an agonistic response. Subsequent addition of two 354 Ilg doses of compound 3 did not 

initiate a muscle response indicating that the compound mediated its effect through the 

cholinergic receptor since blocking the receptor failed to produce a muscle response. 

15 ng 
Bradykinin 

t HOE 140 
I ~ 500IJg 

i J 

IS ng 

354IJgof 

T~ 
Bradykinin 
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J 
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~ ~ I 

w 

Smin 

IlJgACh 

30 IJg 
Atropine 

w_ 

compound 3 
2x354IJg 

Figure 12.8 Receptor binding assays of compound 3 from E. capensis. 
w = muscle wash 
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12.7.2 Compound 7 from Clivia miniata 

Compound 7 also produced a muscle response at a dose of 190 Ilg even after blocking off 

the B2 receptors with HOE 140 (Figure 12.9). The cholinergic receptors were blocked 

with 30 Ilg atropine and the addition of 190 Ilg of the compound failed to elicit a 

response. A further dose of 190 Ilg however produced an increase in tone followed by a 

spasmolytic type of activity. This could be explained by the fact that at high 

concentrations the compound has the ability to competitively displace the cholinergic 

receptor blocker and bind to the receptor thereby bringing about a biological response. 

These results indicate that this compound is a competitive or surmountable agonist hence 

bringing about responses at high concentrations in the presence of the receptor blocker. 
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Figure 12.9 Receptor binding assays of compound 7 from C. miniata. 
w = muscle wash 
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12.7.3 Compound 8 from Grewia occillentalis 

Compound 8 was tested against the cholinergic receptor. The muscle was found to elicit a 

contractile response to 10 IJ,g ACh. This was followed by a dose of 60 IJ,g atropine to 

block off the cholinergic receptors (Figure 12.10). However this dose was insufficient as 

the subsequent addition of 10 IJ,g ACh still produced a response. The dose of atropine 

was increased to 150 IJ,g. Addition of the compound at an initial dose of 400 IJ,g failed to 

elicit a response. A further of 1000 IJ,g was added and there was no response monitored 

indicating that the compound was non-competitive or insurmountable since the inhibition 

by atropine could not be overcome at the doses used. Hence this compound was also 

found to mediate its effect through the cholinergic receptors as shown in the figure below. 

10 IJ,gACh 

~ 10 IJ,g ACh 

~ 
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atropine 

~ 150 Ilg 
atropine 

~ 
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~ 
W W 

t 
5 min 1 119 ACh 

Figure 12.10 Receptor binding assays of compound 8 from G. occidentalis. 

w = muscle wash 
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12.8 Conclusion 

These studies have indicated that the compounds analysed mediated their effects through 

the cholinergic receptors . This indicates that apart from uterine muscle contractions, such 

compounds may also have the potential to cause vasodilation or decrease the cardiac rate. 

The compounds may have also brought about muscle contraction by increasing the 

permeability of the cell membranes to calcium ions, however, there were no studies 

performed using ionic channel blockers to confirm such a mechanism. Receptor 

pharmacology can phl.y an important role in the area of general pharmacology, including 

the identification of new lead compounds and the evaluation of these compounds for 

potential side effects in a safety screen. 
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CHAPTER 13 

Chromatographic and electrophoretic analysis of the plant extracts 

13.1 Introduction 

The quality control of plant products is a general requirement and is necessary if plant 

products are to fill the need for cheap and reliable medicines, or if natural products are to 

be used as templates for new drug molecules. Plants biosynthesize a large variety of 

compounds and the variation of the active principles from batch to batch needs to be 

monitored so that dosage forms can be altered to maintain consistency in pharmacological 

activity. In the previous chapter, the active principles were identified, hence it is the aims 

of this chapter to characterise the plant extracts and identify the active components within 

the plant matrix using different chromatographic techniques. 

13.2 Reverse-phase HPLC 

Reverse-phase HPLC is a widely accepted, well established and reliable analytical 

method, and numerous applications in the field of natural products have been developed 

(1-4) 

13.2.1 Analysis of extracts from Ekebergia capensis 

The total extract of the wood of E. capensis obtained at 400 atm was dissolved in 2 ml 

methanol and 25 ~l aliquots injected onto the column. Figure 13.1 shows the HPLC 

separation of the Ekebergia components by gradient elution using the conditions 

described in section 5. The components were eluted within 30 minutes and the identity of 

the peaks were confirmed by injecting the pure compounds that were isolated and further 

confirmation was obtained by comparison of the DV spectrum on the photodiode array 

detector. Scopoletin, being more polar eluted first from the column while oleanonic acid 

and 3-epioleanolic acid eluted at higher methanol concentrations. 
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Figure 13.2 shows the chromatograms of the sequentially extracted fractions. It is quite 

evident that the extraction yield of the isolated compounds increased at higher extraction 

pressures. Other subtle differences in chemical composition was also observed. The 

column efficiency (N) was calculated for each of the isolated compounds using equation 

4.6 and was found to be 7862, 9409, and 18010 for scopoletin, oleanonic acid and 3-

epioleanolic acid respectively. The mild uterotonic effects of the 200 atm extract can be 

explained due to the lower concentration of the active components than at 400 atm. 

Although SFF was initially performed to fractionate the extracts and differentiate active 

from inactive fractions, one must realise that in complex matrices, fractionation by SFE is 

frequently difficult unless appreciable differences exist in molecular sizes, polarities or 

volatilities of the mixture components. However it was observed that by increasing the 

pressure of the extraction fluid, enrichment of the solute fractions occurred, however this 

result is countered by a time-based fractionation effect. 

Upon comparison of Figure 13.3 with Figure 13.1, one can see appreciable differences in 

the two batches of Ekebergia capensis. It is quite evident that the first batch, obtained in 

autumn, possesses a much lower concentration of the active components than the second 

batch, obtained in spring. Seasonal changes are known to affect the chemical 

composition of plants (5) and the magnitude of this effect has been observed in this study. 

In the first batch, the 300 atm sequentially fractionated extract was observed to be toxic to 

uterine muscle while the 300 atm sequentially fractionated extract of the second batch 

indicated uterotonic activity with an increased agonistic response to ACh. 
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Figure 13.1 Reverse-phase HPLC chromatogram of total SFE extract of E. capensis 
wood obtained at 400 atm and 80°C. 

Conditions: Bondc1one-l0 C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40°C; UV detection at 280 nm. 
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Figure 13.2 Reverse-phase HPLC chromatogram of sequentially extracted SFE 
fractions of E. capensis wood. 

Conditions: Bondclone-10 C18 reverse phase column; gradient elution 
(methanol/water); column temperature 40 QC; lTV detection at 280 nm. 
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Figure 13.3 Reverse-phase HPLC chromatogram of first batch of SFE extract of E. 
capensis wood showing the variation of chemical composition with 
seasonal changes. 

Conditions: Bondclone-lO C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40 QC; UV detection at 280 nm. 
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13.2.2 Analysis of extracts from C/iv;a miniata 

The total 400 atm extract was chromatographed under similar conditions as for Ekebergia 

capensis. Two major peaks were observed at 7.71 and 23 .09 min (Figure 13.4). This 

extract showed a positive response when tested for uterotonic activity. Bioassay-guided 

fractionation indicated that the sequential extract at 400 atm was most potent. Further 

chromatography on the sequentially extracted fractions showed the influence of extraction 

pressure on selectivity of the components. Upon increasing the extraction pressure, the 

extraction yield of peak 1, identified as 5-hydroxymethyl-2-furancarboxaldehyde, was 

found to increase (Figure 13 .5). Peak 2 however decreased suggesting that this was 

unlikely to be the active component. Peak 1 was subsequently identified as the active 

component. Attempts to isolate peak 2 and identify the compound failed as this 

compound decomposed. Figure 13.6 shows the effect of seasonal changes on the 

chemical constituents of this plant. In spring, the concentration of the active principle was 

observed to be high as judged from the peak intensities of this compound in both the 
IIWI 

batches. XIX) 
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Figure 13.4 Reverse-phase HPLC chromatogram of total SFE extract of C. miniata 
root obtained at 400 atm and 80°C. 
Conditions: BondcIone-l0 C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40°C; UV detection at 280 nm. 
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Reverse-phase HPLC chromatogram of sequentially extracted SFE 
fractions of C. miniata root. 
Conditions: Bondclone-lO C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40°C; UV detection at 280 nm. 
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Figure 13.6 Reverse-phase HPLC chromatogram of total 400 atm SFE extracts ofe. 
minata root showing the variation of chemical composition with seasonal 
changes. (A) second batch of plant material obtained during Spring 

(B) first batch of plant material obtained during Autumn 
Conditions: Bondclone-l0 C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40°C; UV detection at 280 run. 
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13.2.3 Analysis of extracts from Grewia occidentalis 

The total 400 atm extract showed the presence of two major components although other 

minor chemical constituents were observed to co-elute (Figure 13 .7). The results obtained 

following bioassay-guided fractionation indicated that the sequentially fractionated extract 

at 300 atm was most potent. Hence the sequential extracts were chromatographed in 

order to observe the differences in the complexity of the matrix as a result of pressure 

changes (Figure 13.8). The 200 atm extract showed three minor peaks however the 300 

atm extract displayed two major peaks at 12.78 and 14.83 min respectively, as observed 

for the total 400 atm extract. The extract at 400 atm displayed an increase in the second 

peak height indicating an increase in the concentration of this compound (Figure 13 .8, n = 

4089). Peak 1 was found to be the active component and the difference in uterotonic 

activity between the 300 atm and 400 atm extracts can be attributed to the possible 

antagonistic effects of peak 2 hence limiting the agonistic ability of peak 1 to induce 

uterine muscle contractions. 

Upon comparison of this batch of extract with the first batch, it is quite apparent from the 

chromatographic results that seasonal changes influence the complexity of the extracts 

(Figure 13 .9). The extract obtained from the first batch showed positive uterotonic effects 

although trace levels of the active component was present. There were also trace levels of 

interfering compounds, unlike in the second batch, where both high levels of the active and 

interfering compounds were present. In such cases, SFF does prove to be a valuable 

method for fractionating extracts as observed in Figure 8.5. 
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Figure 13.7 Reverse-phase HPLC chromatogram of total SFE extract of G. 
occidentalis wood obtained at 400 atm and 80°C. 
Conditions: Bondclone-l0 C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40°C; UV detection at 254 nm. 
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Figure 13.8 Reverse-phase HPLC chromatogram of sequentially extracted SFE 
fractions of G. occidentalis root. 
Conditions: Bondc1one-l0 C 18 reverse phase column; gradient elution 
(methanoVwater); column temperature 40°C; UV detection at 254 nm. 
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Figure 13.9 Reverse-phase HPLC chromatogram of total 400 atm SFE extracts of G. 
occidentalis wood showing the variation of chemical composition with 
seasonal changes. 
(A) second batch of plant material obtained during Spring 
(B) first batch of plant material obtained during Autumn 
Conditions: Bondclone-lO C 18 reverse phase column; gradient elution 
(methanol/water); column temperature 40 °C; UV detection at 254 run. 
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13.3 Capillary electrophoresis 
" 

CE has attracted considerable attention and the main reason for this is the possibility of 

generating very high efficiencies due to its charactersitic flat flow profile as discussed in 

section 4.3.5. The fundamental difference in flow profile is the main reason for the 

extremely high efficiencies achievable in CE, where narrower peaks and potentially better 

resolution can be readily obtained. Furthermore, peak capacity in CE is much higher than 

that in HPLC. Column efficiencies in CE of several hundred thousand to millions of 

theoretical plates have been reported (6-11), allowing the resolution of closely eluting 

peaks and the separation of a large number of components in a mixture. 

This technique has received wide acclaim and has thus been used widely in natural product 

analyses. Shue and Lu (12) used this technique for the determination of six bioactive 

ingredients in a Chinese herbal formula. A carrier composed of aqueous buffer solution 

(50 mM sodium cholate, 15 mM sodium dihydrogen phosphate, and 4.25 mM sodium 

borate) - acetonitrile (3:2) was found to be the most suitable electrolyte for the separation. 

Gil et al. (13) used MECC with sodium borate buffer and SDS micelles to analyse herbs 

and spices for thirty four methylated flavone aglycones. The effect of the structures on 

their electrophoretic mobilities were also studied. A MECC method was also developed 

by Li and Sheu (14) for the simultaneous assay of six scute flavanoids and four coptis 

alkaloids in the scute-coptis herb couple. The effect of pH value, surfactant concentration 

and acetonitrile concentration of the carrier on the migration and separation of the solutes 

were studied. The electrolyte comprising of 5 mM sodium borate, 15 mM sodium 

dihydrogen phosphate and 50 mM sodium cholate together with acetonitrile (3 :2) was 

found to be most suitable. illCC methods were also developed for the separation of 

coumarins from Chrysanthemum segetum L. (15) and in a crude drug of Angelicae Tuhou 

Radix. (16). 

In this study MECC was investigated to separate the components and evaluate the 

complexity of the extracts in an attempt to identify the active principles as perfonned by 
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HPLC. Comparisons were made with respect to analysis time, resolution and efficiency. 

Both SDS and sodium cholate were added to the buffers to influence selectivity. 

13.3.1 Analysis of extracts from Ekebergia capensis 

The components contained in this extract were successfully separated in a single run under 

suitable conditions. The separation was achieved through selection of an appropriate 

buffer and surfactant and further optimization of the concentration of surfactant, pH of the 

buffer and applied voltage. 

13.3.1.1. ButTer selection 

Buffer selection is important in CE as the sensitivity of EOF to pH changes requires the 

use of buffers that maintain a constant pH. The effect of pH drift in CE was studied by 

Zhu et al. (17) and they found that if a buffer solution with high buffering capacity was 

chosen as the background electrolyte, then the pH of this electrolyte during CE 

separations will remain constant for a relatively long period. Di-sodium tetraborate (20 

mM) was chosen as the background electrolyte as it had a useful pH range of8 .24 - 10.24 

which ensured ionization of the solutes of interest. 

13.3.1.2 Optimization of surfactant concentration 

Preliminary experiments were first carried out using 20 mM di-sodium tetraborate with 

SDS in the electrophoretic medium. With SDS, the components in the mixture are 

separated on the basis of their relative affinities for the micellar environment against the 

bulk aqueous phase. In order to study the effect of SDS concentration on the separability, . 

two electrolyte systems containing 30 mM and 60 mM SDS were used. The migration 

time of all the compounds increased with increasing SDS concentration. At 30 mM three 

peaks were observed at migration times of 24.99, 26.27 and 28.17 minutes respectively. 

At higher SDS concentrations, the peaks began to resolve however this was countered by 

a tremendous increase in migration time. At this point, SDS did not seem to be an 

appropriate surfactant to influence the separability. The results obtained are shown in 

Figure 13.10. 
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Figure 13 .10 Electropherogram of total 400 atm extract of E. capensis wood obtained 
with 20 mM Na2B4.07.10H20 and (A) 30 mM SDS and CB) 60 mM SDS, 
pressure injection for 1 sec, UV detection at 280 run. 
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MECC with sodium cholate was thereafter investigated with 20 mM di-sodium 

tetraborate. Four electrolyte systems containing 50, 100, 120 and 150 mM sodium 

cholate were used to study the effects of sodium cholate concentration on separability. 

The results obtained are shown in Figure 13.11, where the migration times of the 

components are plotted against sodium cholate concentrations. There was an increase in 

the migration times of the components when the sodium cholate concentration in the 

electrophoretic solution increased. This increase can be explained by the fact that at 

higher sodium cholate concentration, the' phase ratio of the micelle to the aqueous phase 

would be larger. Hence the probability of solubilization of the components by the micelles 

would be higher, resulting in an increase in the migration times for these compounds. 
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Figure 13.11 Variation of migration time as a function of sodium cholate concentration. 
CA oleanonic acid,. scopoletin,. 3-epioleanolic acid) 
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Bile salts differ significantly in molecular structure from the long chain alkyl surfactants 

such as SDS. They consist of a relatively flat-shaped steroid portion, in which the A ring 

is cis with respect to the B ring, and a side chain having either a carboxyl or amino group 

(18). All hydroxyl groups at the 3a.-, 7a.- and 12a.- positions in the 5f3- cholane structure 

are orientated in the same direction, nearly perpendicular to the steroidal frame. 

Therefore, the bile salts have both a hydrophilic and a hydrophobic face and tend to 

combine together at the hydrophobic face in an aqueous phase. Hence bile salts are 

considered to form a primary micelle with up to ten monomers. The structures of bile 

salts are shown in Figure 13 .12. The fact that the bile salt monomer is more polar than 

SDS leads to a general reduction in k' in .MECC (19). This is particularly advantageous in 

dealing with hydrophobic compounds, as separations which prove difficult with 

conventional SDS systems are more easily attained with bile salts. In addition, the unique 

inverted bile salt micelle appears to tolerate high concentrations of solvents such as 

methanol without drastic loss of efficency or dramatic increase in analysis time. 

CO~ 

Bile salt RI R2 R3 R4 

Sodium coolate OH OH OH ONa 

Sodium taurocholate OH OH OH NHCH2CH2S03Na 

Sodium deoxycholate OH H OH ONa 

Sodium taurodeoxycholate OH H OH NHCH2CH2S03Na 

Figure 13.12 Stru::ture of bile salts 
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SDS displayed poor selectivity when compared to sodium cholate. Since the SDS micelle 

has a strong solubilization affect, these solutes possibly migrate with almost the same 

migration time as that of the micelle. Sodium cholate, on the other hand, exhibits several 

useful chromatographic properties such as the ability to recognise specific enantiomeric 

conformations and an increased micelle polarity. Unique selectivity is achieved by the 

highly ordered nature of the micelle. In this study, sodium cholate appeared to have a 

lower solubilization affect relative to SDS for the extracted components and clearly 

exhibited enhanced selectivity over SDS surfactant. The optimum concentration of 

sodium cholate was found to be 120 mM. 

13.3.1.3 pH optimization 

The pH of the buffer is a critical parameter for the separation of ionizable analytes (20). 

In separations with closely spaced peaks, it is often essential to find the optimum pH. The 

magnitude of the EOF can be expressed in terms of velocity or mobility by: 

or 

Ve = (8~ / ll)E 

Ue = (8~ / ll) 

(13.1) 

(13 .2) 

where e is the dielectric constant of the solvent; ~, the zeta potential at the capillary wall; 

ll, the bulk solution viscosity. 

The zeta potential is essentially determined by the surface charge on the capillary wall. 

Since this charge is strongly pH dependent, the magnitude of the EOF varies with pH (21). 

At high pH, where the silanol groups are predominantly deprotonated, the EOF is 

significantly greater than at low pH where they become protonated. While the EOF is 

usually beneficial, it often needs to be controlled. At high pH, for example, the EOF may 

be too rapid resulting in elution of solute before separation has occurred. Conversely, at 

low or moderate pH, the negatively charged wall can cause adsorption of cationic solutes 

through coulombic interactions. 

The pH dependence of migration times was examined with a buffer comprising of 20 mM 

borate with , l20 mM sodium cholate in the pH range 9.37 to 10.10 and the results shown 

240 



in Figure 13 .13. The pH of the run buffer was adjusted with 0.1 M NaOH. The migration 

times of the components decreased negligably with increasing pH, although the 

electroosmotic velocity remained almost constant, as judged from the migration time of 

methanol which can be detected from the ultraviolet absorption due to the slight change in 

the refractive index (22). These results can be attributed to the fact that the surface silanol 

groups on the fused silica capillary are almost fully ionised resulting in the production of a 

constant EOF. In addition to this, another contributing factor is that the electrophoretic 

mobility of the solutes in this pH region is constant, indicating that no further ionisation of 

the compounds occurred. At low pH it would be expected that the oleanane triterpenoids 

isolated would exist in un-ionised forms and would be strongly retained resulting in higher 

k' values. The optimum pH was observed to be 9.7 and Figure 13 .14 shows the 

electrophoretic separation of the compounds from Ekebergia capensis at this pH. 
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Figure 13.13 Variation of migration time of the Ekebergia components as a function of 
buffer pH. Run buffer: 20 mM NazB4.07.10HzO with 120 mM sodium 
cholate. (A oleanonic acid,. scopoletin,. 3-epioleanolic acid) 
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Figure 13.14 Electropherogram of total 400 atm extract of E. capensis wood obtained 

at pH 9.70. 

242 



13.3.1.4 Variation of applied voltage 

Variation of the voltage and changing the electric field can have several effects (e.g. 

variation in the migration time of samples, EOF, analysis time, resolution, peak sharpness, 

and Joule heating) (23). The Joule heating that results from an increase in voltage might 

lead to changes in EOF, ion mobility, analyte diffusion and band broadening (24). Figure 

13.15 shows the electropherogram of the extract running in 20 mM borate buffer with 120 

mM sodium cholate at different applied voltages. The migration times decreased with 

increasing voltages. At 25 kV, the migration times of the components were halved in 

comparison to the migration time at 15 kV. The elution time was shortened due to the 

increased velocity of the analytes and EOF. This is to be expected as equation 13.1 

predicts an increase in electroosmotic flow velocity as the field strength increases. The 

peak shapes were also greatly improved, however there was a slight compromise on 

resolution. High concentration (ionic strength) buffers also produce good peak efficiency 

and symmetry because there is effective suppression of electrophoretic dispersion. EOF 

can also be affected by adjusting the concentration and ionic strength of the buffer. High 

buffer concentrations limit coulombic interactions of solutes with the capillary walls by 

decreasing the effective charge at the wall. The zeta potential is also dependent on the 

ionic strength of the buffer, as described by the double-layer theory. Increased ionic 

strength results in double layer compression, decreased zeta potential, and reduced EOF. 

The disadvantages however, include high conductivities, high temperatures, Joule heating, 

and viscosity changes that results in poor migration time reproducibility (25). 

13.3. 1.5 Separation of components under optimized conditions 

Figure 13 .16 shows the electropherogram of the total extract obtained at 400 atm using 

the optimised separation conditions. Analysis was complete within 15 minutes unlike the 

30 minute analysis time required for HPLC. Furthermore, high efficiency separations were 

achieved. The number of theoretical plates (N) for oleanonic acid, scopoletin and 3-

epioleanolic acid was calculated to be 7.676 x 106
, 9.752 X 106 and 10.815 x 106 

respectively. The high N values obtained is the primary driving force for the better 

separations that are possible through capillary electrophoretic techniques. 
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MECC was also perfonned on the sequentially fractionated extracts and similar 

conclusions, as drawn from the HPLC analysis, were made (Figure 13 .17). There were no 

distinct differences in the electropherograms although the active components did increase 

with increasing extraction pressures. 

During the injection of samples into the capillary, short injection times were used. Large 

injections times would have resulted in sample overload with the end result being a 

compromise on the high efficiency of this technique. The injection volume can affect 

efficiency by two distinct mechanisms (26) . One mechanism relates to the volume of the 

sample injected (qinj) relative to the total volume of the capillary (qc). From equation 13 .3 

below, it can be seen that the maximum number of theoretical plates (Nma.,) of the overall 

system is constrained to a value proportional to the square root of the ratio of the volume 

of the injected sample to the volume of the column. 

(13 .3) 

The second mechanism imposes a limit on the concentration of the sample injected and is 

related to the difference in electrical conductivity of the sample and the electrophoretic 

medium. At high sample concentration, system efficiency can be degraded due to 

perturbation in the potential field gradient by the sample within the column. Severely 

distorted peaks may result. A pressure injection time of 1 second was found to provide 

adequate solute signals without any loss in efficiency or the appearance of distorted peaks. 
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Figure 13.15 Variation of migration time of Ekebergia components as a function of 
applied voltage. 
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Figure 13.16 Electropherogram of total 400 atm extract of E. capensis wood obtained 
under optimised pH conditions 
Conditions: 20 mM Na2B4. 0 7.1 OH20 with 120 mM sodium cholate at pH 
9.70, pressure injection for 1 sec, UV detection at 280 nm. 
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Figure 13.17 Electropherograms of sequentially extracted fractions of E. capensis wood 
obtained under optimised pH conditions 
Conditions: 20 mM Na2B4. 0 7.1 OH20 with 120 mM sodium cholate at pH 
9.70, pressure injection for 1 sec, UV detection at 280 nm. 
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13.3.2 Analysis of extracts from Clivia miniata 

The extracts of C/ivia miniata were separated using a phosphate buffer (pH range 6.21-

8.21) comprising of 30 mM Na2HP04, 30 mM NaH2P04 and 120 mM sodium cholate. 

Separation was performed at 20 kV at pH 6.95 . Figure 13 .18 shows the 

electropherograms of the sequentially fractionated extracts. The results obtained are 

similar to those obtained by HPLC analysis however, the analysis time was reduced by 7 

minutes. 5-Hydroxymethyl-2-furancarboxaldehyde had a migration time of 6.18 minutes 

as opposed to a retention time of 7.7 minutes. Although, the migration time of this 

compound did not vary considerably from the retention time, a comparison of the 

efficiencies clearly indicated the superiority of this technique. The number of theoretical 

plates was calculated to be 1.350 x 106
. There was no need to carry out further 

optimisation of conditions as the matrix did not reveal any complexity. 

When 5-hydroxymethyl-2-furancarboxaldehyde was isolated, it was thought to be an 

artefact of the extraction process as this compound can result from sucrose under acidic 

conditions and high pressure (27). Since water modified CO2 was used as the extracting 

fluid, it was likely to be an artefact due to carbonic acid formation in the extraction vesseL 

However, such thoughts were dismissed upon comparison of the electropherograms of the 

pure compound with that of the aqueous extract of this plant (Figure 13 .19). It was quite 

evident that this active compound was present in large quantities in the aqueous extract 

and that water modified CO2 possessed the solvating ability to extract this water soluble 

compound. 
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Figure 13.18 Electropherograms of sequentially extracted fractions of C. miniata root. 
Conditions: 30 mM Na2HP04, 30 mM NaH2P04, 120 mM sodium 
cholate, pH 6.95, applied voltage of20 kV, presure injcetion for 1 sec, UV 
detection at 280 nm. 
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Figure 13 .19 Electropherograms of (A) SFE and (B) aqueous extracts of C. miniata root 
showing the presence of 5-hydroxymethyl-2-furancarboxaldehyde in both 
extracts. 
Conditions: 30 mM Na2HP04, 30 mM NaH2P04, 120 mM sodium 
cholate, pH 6.95, applied voltage of20 kV, pressure injection for 1 sec, UV 
detection at 280 run. 
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13.3.3 Analysis of extracts from Grewia occidentalis 

The components in this extract were separated using 20 mM borate buffer with 100 mM 

sodium cholate at 20 kV. The effect of pH on migration time was studied in the pH range 

8.10 to 10.30 and the results shown in Figure 13.20. The EOF was almost constant 

however the migration times of the components increased with increasing pH. 
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Figure 13 .20 Variation of migration time as a function of pH for the components of G, 
occidentalis obtained at 400 atm. (. oleanonic acid, • coniferaldehyde, 
... 2,2',6, 6'-tetramethoxy-4'-al-4-( ro-oxo-E-propenyl)-biphenyl) 

10.3 

The constant EOF can be attributed to the fact that the surface silanol groups on the fused 

silica capillary are almost fully ionised. The increase in migration times may have resulted 

due to electric effects since this is an electrodriven separation. The compounds contained 

in this extract contain hydroxy and methoxy groups which are susceptible of ionisation at 

high pH and will have a negative charge and therefore an electrophoretic migration to the 
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anode (injection end) and will show higher migration times. Increasing the pH increases 

the number of negative charges on the molecules and hence the electrophoretic migration 

towards the anode. Nevertheless, all the components are finally carried by the EOF 

towards the cathode. The optimum pH for the separation of these compounds was 9.80. 

Figure 13 .21 shows the electrophoretic separation obtained under optimised conditions. 

The analysis time was similar to HPLC, however, while it was envisaged that only two 

compounds were present in the extract following HPLC analysis, MECC was able to 

provide a true reflection of the complexity of the extract. Four peaks were observed with 

only three of the compounds being identified. Coniferaldehyde and oleanonic acid are 

active principles and are well separated using this technique. This application clearly 

demonstrates the high resolving power of CE. 
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Figure 13.21 Electropherogram of total 400 atm extract of G. occidentalis wood 
obtained under optimised conditions 
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• 

Conditions: 20.~ !'l"a2B4.0 7.10H20 with 100 mM sodium cholate at pH 
9.80, pressure mJectlOn for 1 sec, UV detection at 254 run. -
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:MECC of the sequentialIy fractionated extracts revealed the sensitivity of the compounds 

to the extraction pressures (Figure 13 .22). At 200 atm, a negligible concentration of 

oleanonic acid was extracted while at 300 atm and 400 atm, the compounds becames 

extremely soluble in the extraction fluid . Oleanonic acid was also extracted from 

Ekebergia capensis at 200 atm, however in larger concentrations, and one may argue how 

such phenomenon is possible. The limited solubility of oleanonic acid at 200 atm in this 

case could be attributed to matrix effects. In certain cases, chemical compounds can be 

very strongly bound to the matrix they are contained in hence the sample matrix can have 

a profound effect on the results that are obtained, as discussed in chapter 2. 
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Figure 13 .22 Electropherograms of sequentially extracted fractions of G. occidentalis 
wood. 
Conditions: 30 mM Na2HP04, 30 mM NaH2P04, 120 mM sodium 
cholate, pH 6.95, applied voltage of20 kV, pressure injection for 1 sec, UV 
detection at 254 run. 
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13.4 Packed capillary column SFC 

Open tubular SFC has received considerable attention and has been used widely in 

separating a wide variety of natural products (28-35). However, in this study an attempt 

was made in using packed column SFC as a possible separation technique for 

characterising the components contained in the fractionated 400 atm extract of Ekebergia 

capensis. Both pure CO2 and a hydrofluorocarbon were evaluated as mobile phases. 

Slurry packing methods are commonly employed and can be successful in the preparation 

of both packed conventional and packed capillary columns. Recently, dry and 

supercritical CO2 packing techniques have been developed to prepare packed capillary 

columns (36, 37). The physical properties of CO2, such as low viscosity and low surface 

tension, favour efficient packing which leads to the formation of a dense and uniform 

packed bed. These columns can advantageously combine many of the valuable properties 

of both low flow rates (38), moderate sample capacities and loadabilities (39), high 

analysis speeds (40) and the possibility of using a wide variety of commercially available 

stationary phases. The results of a number of SFC separations using packed capillary 

columns are reported (41). 

In this study a 30 cm length of fused silica capillary was packed with Spherisorb ODS2 

using the method outlined in chapter 5. The stability of the packed bed is very important 

in SFC because pressurisation and depressurisation are repeated quite often. From a 

practical point of view, a loose packing will cause instability and result in voids at the top 

of the column, which markedly decreases the column effciency due to extensive 

rearrangement of the packing material. However, under the experimental conditions 

studied, no such voids were observed. 

13.4.1 SFC with CO2 

Prior to injection of the sample, naphthalene was injected as a test sample using a timed­

split injection of 100 msec and excellent peak symmetry was obtained under the conditions 

used (Figure 13 .23). However there were no positive results for the extract of Ekebergia 
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capensis. The pressure was initially ramped to increase the solvating power of the mobile 

phase followed by an increase in the temperature in order to reduce the solutes' cohesive 

energy density, but all attempts failed . This may be due to interaction of the compounds 

with the residual active sites on the packing material. 

• 
N 

I I I 

0.00 5.00 
time (min) 

Figure 13.23 Packed capillary SFC of 5 mg/ml naphthalene standard 
Conditions: 300 atm, 50°C, 30 cm x 1 00 ~m i.d. column 
packed with ODS2, UV detection at 254 nm 

Anthony et al. (42) studied the interaction of aldehydes and ketones on silanol groups and 

reasoned that these compounds behaved similarly to chlorosilanes With the bonded 

silanols, a concerted effect may have been possible in which the proton of one silanol 

interacted with the electronegative oxygen atom, while the oxygen of the other hydroxyl 

would interact at the electropositive silicon atom as shown in Figure 13 .24. 
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Figure 13 .24 Possible interaction of chlorosilanes and carbonyl 

compounds with residual silanols (42). 

Carbonyl compounds can also interact preferentially at bonded silanols through the 

formation of a "bifurcated" hydrogen bond as seen in Figure 13 .25. 

Figure 13.25 Forrnafun of , 'bifurcated" hydrogen bond 

Finally, it was concluded that pure CO2 was not a suitable mobile phase for these 

compounds. Other alternatives would have been to use a modified fluid or a more polar 

mobile phase such as a hydrofluorocarbon. 
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13.4.2 SFC with hydrofluorocarbon 

1 1 1 2-Tetrafluoroethane (HFC-134a) was thereafter investigated as a mobile phase as , , , 

earlier studies with packed columns indicated that hydrofluorocarbons are comparable in 

eluotropic strength to CO2 for polar compounds (43, 44). It has also been stated that 

hydrofluorocarbons are more polarizable than CO2 and compounds capable of interacting 

with this mobile phase via hydrogen bonding interactions should also be more strongly 

solvated and eluted. Attempts to elute the compounds of Ekebergia capensis from the 

column failed, possibly due to the strong hydrogen bonds between the silanol and the 

carbonyl compounds. At this point the prospect of using SFC for the current studies did 

not seem viable and further analysis of the extracts was terminated. 

13.5 Conclusion 

From this study, it was concluded that both HPLC and CE can be successfully used to 

separate the components contained . in the extracts of Ekebergia capensis and C/ivia 

miniata. The principles of separation in HPLC are entirely different to MECC and, 

therefore, a good agreement between the two techniques strongly supports the integrity of 

the data. The differences in selectivity between HPLC and MECC, as observed for the 

extracts of Grewia occidentalis, resulted in discrepancies in results with HPLC showing 

an underestimation of the complexity of the extract. This occurrence signifies that further 

method optimization is required for HPLC. MECC has clearly demonstrated superiority 

by its high resolving capabilities and high efficiencies as judged from the theoretical plate 

numbers. Although packed capillary column SFC has many advantages, the use of this 

technique with both CO2 and 1,1,1 ,2-tetrafluoroethane as mobile phases did not prove 

successful in the analysis of the extracts from Ekebergia capensis. This indicated that 

modifiers were necessary to overcome possible interactions between solutes and residual 

silanol groups in order to elute the compounds. The CE methods can be successfully used 

to monitor the occurrence of these compounds at various periods during the year in order 

to obtain a concentration profile of the active components in these plants. In this way 

total quality assurance of the plant products can be established. 
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CHAPTER 14 

Overview o/this study and concluding remarks 

This study successfully validated the uterotonic properties of the three selected medicinal 

plants through a multidisciplinary approach. Water modified supercritical CO2 

demonstrated a high solvating ability by producing plant extracts that displayed 

distinctive results when screened for uterotonic activity. The activities were comparable 

to those induced by the aqueous plant extracts. The application of a dynamic extraction 

model to optimize extraction conditions was successful although little was known about 

the solutes' molecular structures at the time. During the extraction of all three plants, the 

model indicated that solubility was the controlling factor in achieving an interactive 

extraction. 

In vitro biological assays using guinea pig uterine smooth muscle wer~ found to be a 

simple and sensitive method for detecting uterotonic compounds. Furthermore, the 

success of coupling SFE directly on-line to the bioassay made this approach more 

attractive due to the shorter analysis times and elimination of sample handling prior to the 

bioassay hence eliminating the possibility of sample contamination. On-line bioassay 

guided fractionation further enhanced the potential of this technique as it increased its 

specificity by identifying the most potent fractions which were sUbjected to further 

analysis. 

Repetitive gravity column chromatography of the plant extracts using various mobile 

phases yielded pure compounds whose structures were elucidated through various 

spectroscopic and chromatographic techniques. Two compounds from Ekebergia 

capensis, two from C/ivia miniata and one from Grewia occidentalis were found to 

induce uterine muscle contractions. A further evaluation on the physiological mode of 

action indicated that these compounds mediated their effects through the cholinergic 
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receptors. It still remains speculative that these compounds may also have increased the 

permeability of the cell membranes to calcium ions, however there were no ionic channel 

blockers used to confirm such a mechanism. 

CE and HPLC displayed good resolving capabilities for the evaluation of the complexity 

of these extracts. However, from a practical viewpoint, the small sample, buffer, and 

waste volumes required and generated by CE were less than those generated by HPLC 

making this technique an attractive one. The optimized analytical conditions were used 

to observe the effect of seasonal changes on the composition of the extracts. As the 

composition of the plant components varied with seasonal changes, it becomes important 

to monitor the magnitude of these changes so that the doses of the extract can be 

regulated to maintain consisistency in activity. A further evaluation on the toxicity of 

these compounds is required and can be done using cells in culture. 
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APPENDIX 1 

l3C NMR data/or compounds isolated 

Table Al: l3C NMR data for compounds 1,2,3 and 4 (75MHz, CDCh, TMS as internal 
standard). All chemical shift values are expressed in ppm (8) and multiplicities 
are included in brackets. 

Carbon Compound Compound Compound Compound 
number 1 2 3 4 
1 37.3 (t) 39.3 (t) 32.5 (t) 23.3 (q) 

2 31.7 (t) 34.1 (t) 27.6 (t) 73.0 (s) 

3 71.8 (d) 217.8 (s) 76.2 (d) 78.3 (d) 

4 42.3 (t) 45 .8 (s) 37.2 (s) 29.i(i) 

5 140.8 (s) 55 .3 (d) 48.9 (d) 36.8 (t) 

6 121.7 (d) 19.6 (t) 18.2 (t) 134.8 (s) 

7 31.9 (t) 32.2 (t) 32.8 (t) 125.1(d) 

8 31.9 (s) 39.1 (s) 39.4 (s) 26.5(1) 

9 50.1 (d) 47.4 (d) 47.4 (d) 39.6 (t) 

10 36.5 (s) 36.8 (s) 37.3 (s) 134.8 (s) 

11 21.1(t) 23.4 ill 23.3 (t) 124.4 (d) 
12 39.8 (t) 122.3 (d) 122.2 (d) 28.26) 
13 42.3 (s) 143.6 (s) 143.5 (s) 28.2 (t) 
14 56.8 (d) 41.1 (s) 41.7 (s) 124.4 (d) 
15 24.3 (t) 27.7 (t) 25.2 (t) 134.9 (s) 
16 28.2 (t) 23 .0 (t) 22.9 (t) 39.6 (t) 
17 56.1 (d) 46.9 (s) 46.5 (s) 26.50 (t) 
18 11.9 (q) 41.8 (d) 40.9 (d) 125.1 (d) 
19 19.4 (q) 46.5 (t) 45.9 (t) 134.9 -C-s) 
20 "36.1 (d) 30.7 (s) 30.3 (s) 36.8 (t) 
21 18.8 (q) 33 .8 (t) 33.8 (t) 29.7 (t) 
22 33.9 (t) 32.4 (t) 32.5 (t) 78.3 (d) 
23 26.1 (t) 26.4 (q) 28.3 (q) 73.0 (s) 
24 45 .8 (d) 21.4 (q) 22.2 (q) 23 .3 (q) 
25 29.1 (d) 15.0 (q) 15.1 (q) 26.4 (q) 
26 19.1(q) 16.9 (q) 17.2 (q) 16.0 (q) 
27 19.0 (q) 25 .8 (q) 26.1 (q) 15.9(q\ 
28 23.1 (t) 184.4 (s) 183.9 (s) 15.9 (q) 
29 11.9 (q) 33.0 (q) 33.1 (q) 16.0 (q) 
30 23 .6 (q) 23.6 (q) 26.4 (q) 
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Table AI : l3C N1v1R data for compounds 7 and 9 (75MHz, CDCh, TMS as internal 
standard). All chemical shift values are expressed in ppm (6) and multiplicities 
are included in brackets. 

Carbon Compound Compound 
number 7 9 

1 128.4 (s) 
2 152.4 (s) 147.3 (s) 
3 122.8 (d) 105 .6 (d) 
4 110.0 (d) 125.3 (s) 
5 160.5 Js) 105.6{d) 
6 147.3 (s) 
I' 138.0 (s) 
2' 147.3 (s) 
3' 106.7 (d) 
4' 140.9 (s) 
5' 106.7 (d) 
6' 147.3 (s) 
1" 153 .1 (d) 
2" 126.8 (d) 
3" 193.5 (d) 

CHO 177.7 (d) 19l.0 (d) 
4 x OCH3 56.4 (q) 

OCH2 57.6 (t) 
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APPENDIX 2 

List of Spectra Page 

Spectrum la Mass spectrum of f11 267 

Ib Infrared spectrum of f11 268 

lc IH NMR spectrum of[1] 269 

. Id BC NMR spectrum of[1] 270 

Spectrum 2a Mass spectrum of f21 271 

2b Infrared spectrum of f21 272 

2c IH NMR spectrum of f21 273 

2d BC NMR spectrum of [21 274 

2e HETCOR spectrum of [21 275 

2f COSY spectrum of [21 276 

Spectrum 3a Mass spectrum of f31 277 

3b Infrared spectrum of [3] 278 

3c IH NMR spectrum of [3] 279 

3d BC NMR spectrum off31 280 

Spectrum 4a Mass spectrum of f 41 281 
4b Infrared spectrum of r 41 282 
4c IH NMR spectrum of r 41 283 
4d BC NMR spectrum of[41 284 
4e IH NMR spectrum of [4b] 285 

Spectrum 5a Mass spectrum of f 51 286 
5b Infrared spectrum of f 51 287 
5c IH NMR spectrum of rS1 288 
5d NOE spectrum offS1 showing irradiation ofH-4 289 
5e NOE spectrum of f51 showing irradiation ofH-5 290 
5f NOE spectrum of rS1 showing irradiation of methoxv protons 291 
5g l3C NMR spectrum offS1 292 

Spectrum 6a IH NMR spectrum r 6] 293 

Spectrum 7a Mass spectrum of r71 294 
7b Infrared spectrum of r71 295 
7c IH NMR spectrum of f71 296 
7d l3C NMR spectrum of [7] 297 
7e NOE spectrum of [7] 298 
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S~ectrum 8a Mass spectrum of [8] 299 
8b Infrared spectrum of [8] 300 
8c lH NNfR spectrum of [8] 301 
8d COSY spectrum of [8] 302 
8e lH NNfR spectrum of [8] with D20 303 

8f NOE spectrum of [8] showing irradiation of metho~protons 304 

8g NOE spectrum of [8] showing irradiation ofH-2 305 

Spectrum 9a Mass spectrum of [9] 306 
9b Infrared spectrum of [9] 307 
9c lH NNfR spectrum of [9] 308 
9d 13C NNJR spectrum of [9] 309 
ge HETCOR spectrum of [9] 310 
9f NOE spectrum of 19] showing irradiation ofH-1" 311 
9g NOE spectrum of [9] showing irradiation of chemically 312 

equivalent H-3' and H-5' 
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