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Abstract 

The rapidly growing need for fast and reliable transmission over a wireless channel 

motivates the development of communication systems that can support high data rates 

at low complexity. Achieving reliable communication over a wireless channel is a 

challenging task largely due to the possibility of multipaths which may lead to inter-

symbol interference (ISI). Diversity techniques such as time, frequency and space are 

commonly used to combat multipath fading. Classical diversity techniques use 

repetition codes such that the information is replicated and transmitted over several 

channels that are sufficiently spaced. In fading channels, the performance across some 

diversity branches may be excessively attenuated, making throughput unacceptably 

small. In principle, more powerful coding techniques can be used to maximize the 

diversity order. This leads to bandwidth expansion or increased transmission power to 

accommodate the redundant bits. Hence there is need for coding and modulation 

schemes that provide low error rate performance in a bandwidth efficient manner. If 

diversity schemes are combined, more independent dimensions become available for 

information transfer. 

The first part of the thesis addresses achieving temporal diversity through employing 

error correcting coding schemes combined with interleaving. Noncoherent differential 

modulation does not require explicit knowledge or estimate of the channel, instead the 

information is encoded in the transitions. This lends itself to the possibility of turbo-like 

serial concatenation of a standard outer channel encoder with an inner modulation code 

amenable to noncoherent detection through an interleaver. An iterative approach to joint 

decoding and demodulation can be realized by exchanging soft information between the 

decoder and the demodulator. This has been shown to be effective and hold hope for 

approaching capacity over fast fading channels. However most of these schemes employ 

low rate convolutional codes as their channel encoders. In this thesis we propose the use 

of redundant residue number system codes. It is shown that these codes can achieve 

comparable performance at minimal complexity and high data rates. 
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The second part deals with the possibility of combining several diversity dimensions 

into a reliable bandwidth efficient communication scheme. Orthogonal frequency 

division multiplexing (OFDM) has been used to combat multipaths. Combining OFDM 

with multiple-input multiple-output (MIMO) systems to form MIMO-OFDM not only 

reduces the complexity by eliminating the need for equalization but also provides large 

channel capacity and a high diversity potential. Space-time coded OFDM was proposed 

and shown to be an effective transmission technique for MIMO systems. Space-

frequency coding and space-time-frequency coding were developed out of the need to 

exploit the frequency diversity due to multipaths. Most of the proposed schemes in the 

literature maximize frequency diversity predominantly from the frequency-selective 

nature of the fading channel. In this thesis we propose the use of residue number system 

as the frequency encoder. It is shown that the proposed space-time-frequency coding 

scheme can maximize the diversity gains over space, time and frequency domains. 

The gain of MIMO-OFDM comes at the expense of increased receiver complexity. 

Furthermore, most of the proposed space-time-frequency coding schemes assume 

frequency selective block fading channels which is not an ideal assumption for 

broadband wireless communications. Relatively high mobility in broadband wireless 

communications systems may result in high Doppler frequency, hence time-selective 

(rapid) fading. Rapidly changing channel characteristics impedes the channel estimation 

process and may result in incorrect estimates of the channel coefficients. The last part of 

the thesis deals with the performance of differential space-time-frequency coding in fast 

fading channels. 

iii 



Dedication 

I would like to dedicate this thesis to all working mothers especially those that have 

excelled in their careers. Well, I do not know how you cope but it has been tough on my 

side. 

iv 



Preface 

The research work discussed in this thesis was performed by Mrs. Roseline 

Nyongarwizi Akol, under the supervision of Professor. Fambirai Takawira, at the 

University of KwaZulu-Natal's school of Electrical, Electronic and Computer 

Engineering, in the Centre of Radio Access Technologies which is sponsored by Alcatel 

and Telkom South Africa through the Centre of Excellence programme. 

Part of this thesis has been presented by the author at the South African 

Telecommunications Networks and Applications Conference (SATNAC) in 2003 and 

2004, the International Conference on Telecommunications (ICT), Cape Town, South 

Africa, in 2005, IEEE Wireless Communications and Networking Conference (WCNC), 

Las Vegas, Nevada, USA in 2006. Part of this thesis has also been submitted to the 

IEEE International Conference on Communications (ICC), to be held in Glasgow, 

Scotland, United Kingdom, 2007 and to the IEEE Transactions on Vehicular 

Technology journal. 

The whole thesis, unless otherwise stated, is the author's original work and has not been 

submitted in part, or whole to any other University. 

v 



Acknowledgements 

I wish to thank my supervisor Professor Fambirai Takawira for his insight and guidance 

that has been invaluable both to the substance and spirit of my research. Your unique 

approach to research, professionalism and patience has been crucial to the completion of 

this thesis. I will be forever grateful for having worked under your supervision. 

I would like to express my heartfelt gratitude to my husband Dr. George Yepusa Akol 

and my daughter Charlotte Nyongarwizi Akol for allowing me to pursue my PhD. It has 

been difficult staying apart and I know that time lost can never be replaced. I am 

however relived that finally my studies are coming to an end and we will be reunited, 

leaving happily thereafter. 

Thanks are owed to Alcatel and Telkom South Africa for their valued financial support 

and providing the equipment necessary for the completion of my PhD. 

I would like to thank the Third World Organization for Women in Science (TWOWS) 

for taking the risk and financially investing towards my PhD. I would like TWOWS to 

know that its financial assistance kept me focused towards completing my PhD. 

Special thanks go to Dr. Hongju Xu, for his invaluable suggestions, comments and 

criticism. His door was always open whenever I needed any help or was stuck during 

the course of my research. I would also like to thank Mr. Bruce Harrison our System 

administrator, and all our administrative staff for their help in issues not directly related 

to my research. 

Last but not least, 1 would like express my appreciation to my postgraduate colleagues 

for their help and friendship and for making the place habitable. Special thanks to Dr. 

Telex Magloire Ngatched Nkouatchah for proof reading my thesis. 

vi 



Contents 

ABSTRACT II 

DEDICATION IV 

PREFACE V 

ACKNOWLEDGEMENTS VI 

CONTENTS VII 

LIST OF FIGURES XI 

LIST OF ACRONYMS XIV 

LIST OF NOTATIONS XVI 

CHAPTER 1 1 

INTRODUCTION 1 

1.1 Broadband Wireless Communications 1 

1.2 Wireless Channels 2 

1.3 MIMO and OFDM 3 

1.3.1 Orthogonal Frequency Division Multiplexing (OFDM) 3 

1.3.2 MIMO-OFDM 4 

1.4 Signal Detection and Error Correction 6 

1.4.1 Channel Coding 6 

1.4.2 Coherent and Noncoherent Detection 8 

1.5 Motivation 9 

1.6 Thesis Overview 10 

1.7 Original Contribution 12 

1.8 Publications 13 

CHAPTER 2 14 

vii 



REDUNDANT RESIDUE NUMBER SYSTEM CODED DIFFERENTIAL 

MODULATION 14 

2.1 Introduction 14 

2.2 Residue Number System (RNS) 16 

2.2.1 Representation 16 

2.2.2 Operations in Residue Number System 17 

2.3 Using RNS in Channel Encoding 18 

2.3.1 Redundant Residue Number System (RRNS) Encoder 20 

2.3.2 Error Detection and Hard-Decision Decoding Algorithm 23 

2.4 Bit-Interleaved RRNS Differential Modulation 24 

2.4.1 System Model 24 

2.4.2 Decision Feedback Differential Modulation 26 

2.4.3 Chase and Iterative Decoding Algorithm 28 

2.4.4 Complexity Issues 29 

2.5 Simulation Results and Discussion 31 

2.5.1 Effect of Test Patterns on the BER Performance of RRNS vs. Convolutional 

Code 31 

2.5.2 BER Performance of Iterative DFDM of RRNS vs. Convolutional Code ... 32 

2.5.3 Effect of Increasing the RRNS Error Correction Capability 33 

2.5.4 Effect of Increasing the RRNS Code Rate vs. Convolutional Code 33 

2.6 Conclusion 39 

CHAPTER 3 40 

MIMO SYSTEMS 40 

3.1 Introduction 40 

3.2 Space-Time Block Codes 41 

3.2.1 Signal Model and Performance Criteria 41 

3.2.2 Complex Orthogonal STBC 44 

3.2.3 Quasi-Orthogonal STBC 45 

3.2.4 Space-Time Block Coded OFDM 46 

Vlll 



3.3 Space-Frequency Coding 49 

3.3.1 Signal Model 49 

3.3.2 Performance Criteria 51 

3.3.3 Example of SFBC from STBC 52 

3.3.4 Full Diversity Space-Frequency Codes 54 

3.3.4.1 Signal Design 54 

3.3.4.2 Diversity Criteria 55 

3.4 Space-Time-Frequency Coding 56 

3.4.1 Signal Design 57 

3.4.2 Performance Criteria 59 

3.4.3 Example of STFC Architecture 60 

3.5 Simulation Results and Discussion 61 

3.5.1 Transmit and Multipath Diversity 62 

3.5.2 Time Correlated Fading 62 

3.5.3 Space-Time-Frequency vs. Space-Frequency Coding 63 

3.6 Conclusion 67 

CHAPTER 4 68 

REDUNDANT RESIDUE NUMBER SYSTEM CODED SPACE-TIME-

FREQUENY MODULATION 68 

4.1 Introduction 68 

4.2 Design of RNS-STFC in Block Fading Channels 71 

4.2.1 System Model and Signal Design 71 

4.2.2 Channel Model 73 

4.2.3 Diversity Criterion 74 

4.2.4 Diversity Concept and Coding Gain 76 

4.2.5 Transmission Rate of the RRNS-STFC 77 

4.3 Performance of RRNS coded STFC in Fast Fading Channels 77 

4.3.1 Time and Frequency Selective Fading 77 

4.3.2 The Effect of Time Correlation 80 

ix 



4.3.3 Analytical Model 81 

4.3.3.1 Remarks 84 

4.4 Numerical Results and Discussion 86 

4.5 Conclusion 91 

CHAPTER 5 92 

RRNS CODED DIFFERENTIAL STF CODING IN RAPID FADING 

CHANNELS 92 

5.1 Introduction 92 

5.2 System Model 94 

5.3 Decision Metric 97 

5.4 Hard Decision Iterative Decision Feedback Differential STFC 100 

5.5 Performance Analysis 100 

5.6 Results for Hard Decision Iterative differential STFC 104 

5.7 Soft-Input Soft-Output Decision Feedback Differential STFC 112 

5.7.1 Soft-Input Soft-Output for STBC 113 

5.7.2 Soft-Input Soft-Output Channel Decoder 115 

5.8 SISO Decision Feedback Differential STFC Results 116 

5.9 Conclusion 123 

CHAPTER 6 124 

CONCLUSION 124 

6.1 Summary 124 

6.2 Future work 126 

BIBLIOGRAPHY 127 

x 

•> 



List of Figures 

Figure 1.1: Difference in coding and diversity gain 7 

Figure 2.1: Non-systematic encoding 20 

Figure 2.2: Systematic encoding 21 

Figure 2.3: System model of RNS bit-interleaved differential MPSK 24 

Figure 2.4: BER performance comparison of RRNS(5,3) with error patterns 21, I = 0, 2, 

4, 6 and rate 1/2 CC for conventional differential modulation i.e. N = 2, and 

minimum distance dmm =dfree =?> 34 

Figure 2.5: BER performance comparison of RRNS(9,5) with error patterns 2l, I = 0, 2, 

4, 6, 8 and rate 1/2 CC for conventional differential modulation i.e. N = 2, and 

minimum distance dmm = dfree ~ 5 35 

Figure 2.6: BER performance comparison of decision feedback differential modulation 

i.e. N>2 for RRNS(5,3) code with 2', / = 6 error patterns and rate 1 / 2 CC for 

four iterations, and dmm -dfree =3 36 

Figure 2.7: BER performance of a hard decision decoding of the proposed system at t = 

1, 2, 3 error correcting capability for conventional differential modulation i.e. 

JV = 2 37 

Figure 2.8: BER performance of RRNS at different code rates and 2l, I = 6 error pattern 

in comparison to rate 1/2 CC with same minimum distance dmm =dfree =3 for 

conventional differential modulation i.e. N - 2 .38 

Figure 3.1: Space-time block coded OFDM with two transmit and one receive antennas. 

47 

Figure 3.2: Space-frequency block coded OFDM 52 

Figure 3.3: Illustration of STF coded transmissions 57 

xi 



Figure 3.4: STF scheme realized through concatenating a channel encoder with SF 

encoder 61 

Figure 3.5: BER performance for the space-time block coded OFDM under a frequency 

selective uncorrelated Rayleigh fading channel for one and two transmit 

antennas 64 

Figure 3.6: BER performance for the space-time block coded OFDM and SFBC under a 

frequency flat correlated Rayleigh fading channel 65 

Figure 3.7: BER performance for the SFBC and STF coding under a frequency flat 

Rayleigh fading channel 66 

Figure 4.1: Frequency time coding 69 

Figure 4.2: Transmitter section of the RRNS-STFC system model 71 

Figure 4.3: Receiver section of the RRNS-STFC system model 72 

Figure 4.4: PEP performance comparison of the proposed RRNS coded with the 

uncoded and repetitive STF coding systems 88 

Figure 4.5: Numerical PEP performance for the proposed RRNS-STF coding scheme 

under a rapidly frequency flat fading channel with error correction capability t. 

89 

Figure 4.6: PEP performance of the proposed RRNS-STF coding scheme under 

frequency selective fading 90 

Figure 5.1: Transmitter and receiver block diagrams for RRNS coded differential space-

time-frequency modulation 94 

Figure 5.2: Simulated and numerical BER performance for decision feedback 

differential modulation with N = 5, two iterations 108 

Figure 5.3: rNumerical BER performance for the conventional differential STF coding 

i.e. N - 2 with varying symbol matrices per residue, rate and error correction 

capability? 109 

Figure 5.4: Analytical BER performance for the proposed decision feedback differential 

STF coding with increasing observations N 110 

Figure 5.5: Simulated BER performance for differential STF coding, single antenna 

differential MPSK and differential STBC with N = 2 observations 111 

xii 



Figure 5.6 Receiver block diagram for a SISO decision feedback differential STFC. 112 

Figure 5.7: Simulated and numerical BER performance of the SISO and hard decision 

iterative DFDM for the proposed DSTF coding scheme for N = 2 119 

Figure 5.8: Simulated BER performance of the SISO and hard decision iterative DFDM 

for the proposed DSTF coding scheme for N = 5 observations with increasing 

number of iterations at a fixed test patterns / = 2 120 

Figure 5.9: Simulated and numerical BER performance of the SISO DFDM for the 

proposed DSTF coding scheme for N = 5 observations 121 

Figure 5.10: Simulated BER performance of the SISO DFDM for the proposed DSTF 

coding scheme for JV = 2 and N = 5 observations at / = 4 with increasing 

iterations 122 

xiii 



List of Acronyms 

ADSL Asymmetric digital subscriber line 

AWGN Additive white Gaussian noise 

BCH Bose-Chaudhuri-Houcquenghem (code) 

BER Bit error rate 

BEX Base extension 

BPSK Binary phase shift keying 

CRT Chinese remainder theorem 

DFDM Decision feedback differential modulation 

DM Differential modulation 

IFFT Inverse fast Fourier transform 

ISI Inter-symbol interference 

FEC Forward error correction 

FFT Fast Fourier transform 

LLR Log-likelihood ratio 

MAP Maximum a posteriori (decoding) 

MIMO Multiple-input multiple-output 

ML Maximum likelihood (decoding) 

xiv 



MPSK M-ary phase shift keying 

MRC Mixed radix conversion 

MSDM Multi-symbol differential modulation 

OFDM Orthogonal frequency division multiplexing 

pdf probability density function 

PEP Pairwise error probability 

QPSK Quadrature phase shift keying 

RNS Residue number system 

RRNS Redundant residue number system 

RS Reed Solomon 

SISO Soft-input soft-output 

SNR Signal-to-noise ratio 

SFBC Space-frequency block code 

STBC Space-time block code 

STFC Space-time-frequency code 

STTC Space-time trellis code 

TCM Trellis coded modulation 

Wi-Fi Wireless fidelity 

WiMAX Worldwide interoperability for microwave access 

xv 



List of Notations 

dfree Minimum free distance 

dmm Minimum Hamming distance 

Eb IN0 Signal-to-noise ratio per information bit 

fD Maximum Doppler frequency 

(•) Conjugate transpose 

I„ n x n identity matrix 

Jo(-) Bessel function of the first kind 

L Channel order or number of multipaths 

Mb Temporal diversity component 

M. Number of receive antennas 

M, Number of transmit antennas 

Nc Number of OFDM tones 

N Number of symbol observation periods 

N012 Double sided power spectral density of AWGN 

Re {a} Real part of a 

xvi 



1R Transmission or code rate 

(•) Transpose 

T Symbol duration 

tr(-) Trace of a matrix 

(•)* Complex conjugate 

xvn 



CHAPTER 1 

INTRODUCTION 

1.1 Broadband Wireless Communications 

Due to the enormous growth in the wireless communication industry in the last decade, 

there is need for techniques to reliably communicate at high data rates and efficiently 

use the available bandwidth. Several technologies have been developed to efficiently 

utilize the available bandwidth. One such technology that has shown promising results 

is the use of multiple transmit and receive antennas known as multiple-input multiple-

output (MIMO) communications system. In MIMO systems, the information signal at 

both sides of the communication link i.e. the transmitter and the receiver, is combined in 

such a way that the quality (average bit error rate or BER) or data rates (bits per second) 

is improved. The prospect of improved reliability or high data rates at no extra 

bandwidth has revolutionized the communications industry, with the only hardship 

being the practical implementation especially at the mobile terminal. As the subscriber 

units are gradually evolving from just being pocket telephones to sophisticated wireless 

internet access points and video machines, the stringent size and complexity constraints 

are being relaxed. This makes application of multiple antennas a possibility at both 

sides of the link. 

The channel capacity is the maximum possible transmission rate such that the error 

probability of the received information signal is arbitrarily small. Although the channel 

capacity for additive white Gaussian noise (AWGN) channels was first derived by 

Shannon [1] in 1948, a breakthrough that increases the channel capacity was only 

realized by the use of multiple transmit and receiver antennas [2], [3], [4]. By 

transmitting and receiving information from several antennas that are adequately 
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separated to ensure independent propagation, it was shown that the channel capacity 

increases with increasing number of antennas without increasing the bandwidth [2]. 

Several studies devoted to MIMO channel modelling, information theory and antenna 

design show that the channel capacity substantially increases in particular through the 

principle of spatial multiplexing. 

MIMO systems also possess a potential spatial diversity gain that can be used to combat 

channel fading. By transmitting and receiving information from several antennas, 

multiple independent fade replicas of the data symbols can be obtained at the receiver. 

The probability that all the signal replicas will vanish during a single fade is reduced, 

hence achieving more reliable reception. 

A core idea in MIMO systems is space-time signal processing. In order to protect 

transmission against errors caused by channel fading and AWGN, joint coding across 

transmit antennas and time, known as space-time (ST) coding was introduced [86], [87]. 

In space-time coding, a space-time encoder generates code symbols, equal to the 

number of transmit antennas, that are transmitted simultaneously, one symbol from each 

antenna. A lot of research has been devoted to the design and construction of space-time 

codes. Several space-time architectures have been generalized in terms of diversity 

gains or coding gains or both. Although space-time codes were revisited in form of 

trellis codes (STTC) [86], [95], [96], [97], their popularity took off with the discovery 

of space-time block codes (STBC) [88], [89], [90], [6], [7]. This is mainly due to their 

simple construction and linear signal processing at the receiver of space-time block 

codes compared to a multidimensional Viterbi algorithm required for space-time trellis 

codes. Although space-time block codes achieve the same spatial diversity gains as 

space-time trellis codes, they possess marginal or no coding gains. 

1.2 Wireless Channels 

The major impairments of wireless communication systems are fading caused by 

destructive addition of multipaths in the propagation channel and co-channel 

interference from other users. Multipath is caused by a reflection of the transmitted 

signal from multiple scatters and due to motion of the mobile receivers and transmitters. 

This may result in more than one version of the transmitted signal arriving at the 

receiver at slightly different amplitudes, phases, and times. Hence, increasing the time 
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required for the transmitted signal to reach the receiver. The constantly changing 

channel characteristics may cause inter-symbol interference (ISI). The channel 

characterization may be viewed in the frequency or time domain or both. 

In the frequency domain, the characterization of the channel is dependent on its 

coherence bandwidth. The coherence bandwidth, which is a function of the delay 

spread, is a measure of the transmission bandwidth for which the signal distortion 

across the channel becomes noticeable. If the signal to be transmitted has a much large 

bandwidth than the channel coherence bandwidth, the received signal is distorted and 

the multipath channel is said to be frequency selective. However, if the channel 

coherence bandwidth is lager than that of the transmitted signal, the channel is said to 

be frequency non-selective, or frequency flat. 

Alternatively, if the channel characterization is in the time domain, the parameter of 

concern is coherence time. Coherence time, which is a function of Doppler spread, can 

be defined as the duration of time in which the channel impulse response is effectively 

invariant. Doppler spread is a measure of Doppler frequency (shift) caused by relatively 

high mobility of the wireless propagation channel, transmitter and the receiver. The 

Doppler frequency fD can be as 

fD=^os0, (1.1) 
A 

where X is the wavelength, u is the velocity of the mobile receiver and 9 is the angle-

of-arrival (AOA). The fading channel is said to be time selective if its coherence time is 

small compared to the duration of the received signal, otherwise, time non-selective 

(time invariant). 

1.3 MIMO and OFDM 

1.3.1 Orthogonal Frequency Division Multiplexing (OFDM) 

OFDM is a multicarrier modulation technique known to support high speed 

transmission while mitigating the effects of multipath in wireless broadband 

communication systems. It has been used in standards such as digital audio/video 

broadcasting (DAB/DVB) [8], wireless fidelity (Wi-Fi) IEEE 802.11 group of standards 
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[9], worldwide interoperability for microwave access (WiMAX) IEEE 802.16 group of 

standards [10], [13] and high speed digital transmission over twisted pair cables 

(ADSL) [11], [12]. 

In OFDM, the symbol sequence to be transmitted is split into a large number of low 

speed symbol streams such that each modulates a separate carrier. The carrier spacing is 

chosen such that the modulated carriers are orthogonal over a symbol interval and a 

guard interval (commonly known as a cyclic prefix) is inserted to combat frequency-

selective fading. Hence, OFDM is used to transform a frequency-selective channel into 

a set of independent parallel frequency-flat subchannels. The transmitter and receiver 

employing OFDM techniques can be implemented efficiently by use of fast Fourier 

transform methods. 

1.3.2 MIMO-OFDM 

The key feature of MIMO systems, is the ability to turn multipath propagation, 

traditionally a pitfall of wireless communications, into diversity gain. Despite the fact 

that space-time (ST) codes have successfully increased the channel capacity and 

reliability of a wireless communication system, they were designed for narrowband 

wireless systems i.e. flat fading. Their performance is degraded when applied to 

broadband channels mainly due to multipath fading which generally exhibits time 

selectivity and frequency selectivity [14]. In multipath, the signal power is carried by 

several propagation paths with different powers and delays which may result in inter-

symbol interference. This necessitates use of a channel equalizer along with a space-

time decoder when applied to broadband channels. Extending classical equalization 

methods such as minimum mean square error linear equalizer, decision feedback 

equalizer and maximum likelihood sequence estimation used for a single antenna 

system [39] to space-time coding is a challenging problem. A combination of ST codes 

and orthogonal frequency division multiplexing (OFDM) has been proposed to combat 

the effect of frequency-selective fading by increasing the duration of the transmitted 

symbol [113], [144], [145], [146], [147], [148]. Hence OFDM eliminates the need for 

high complex equalization techniques while offering high spectral efficiency. 

Although OFDM is robust against frequency-selective channels, any time variations in 

the channel characteristics will cause performance degradation. OFDM combats 
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frequency-selective fading by splitting the symbol sequence to be transmitted into low 

speed symbol streams such that each modulates a separate carrier. Increasing the 

number of subcarriers increases the symbol duration. This makes the ST-OFDM system 

more sensitive to time-selective fading which may lead to loss of orthogonality among 

the subcarriers. Without orthoganality, when the signals arriving are down converted to 

their baseband equivalent at the receiver, inter-carrier interference (ICI) occurs. This is 

because signals from one carrier cause interference to the others especially to the 

neighbouring subcarriers. In some instances, the ST-OFDM signal reflections from far 

obstacles will generate inter-block interference due to long time delays. However, in 

most applications, the cyclic prefix is assumed longer than the maximum delay spread. 

Hence interference from previous OFDM symbols is restricted to the cyclic prefix 

which is discarded at the receiver, leaving ICI as the only consideration. Therefore the 

large ST-OFDM symbol duration used to combat frequency-selectivity is limited by 

time-selectivity. 

Applying OFDM to broadband multiple-input multiple-output (MIMO) channels not 

only offers spatial diversity due to multiple antennas, but also frequency diversity due to 

delay spread. Space-frequency (SF) coding has emerged as a technique that aims to 

combine advantages of ST coding and MIMO-OFDM. Space-frequency coded MIMO-

OFDM basically consists of coding across transmit antennas and OFDM tones while 

exploiting both spatial and frequency diversity. SF was first proposed in [149] where 

bandwidth was divided into several overlapping subbands equal to the number of 

multipaths. Other SF schemes utilizing already existing space-time codes by simply 

applying techniques such as delay diversity, multicarrier and permutation diversities to 

transform signals from space-time to a space-frequency were proposed in [150], [151], 

[152], [153], [154], [156], [157]. Although these schemes were able to achieve spatial 

diversity, frequency diversity was not guaranteed. SF schemes that have since been 

developed are able to achieve both spatial and frequency diversities. Techniques such as 

linear precoders or constellation rotation [155], [158], [161], [162], linear constellation 

decimation [164], or simply repetition codes [160] are used to code across multipaths, 

hence maximizing frequency diversity. 

Although SF coding is well suited for fast fading, variations within subcarrier for large 

OFDM blocks and channels with large delay spreads may result in performance 

degradation. Whereas ST-OFDM is limited by time-selective fading, SF is limited by 
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frequency-selectivity fading. Hence space-time-frequency (STF) coding has been 

proposed in an attempt to integrate the advantages of ST-OFDM and SF coding [159]. 

1.4 Signal Detection and Error Correction 

Transmission schemes over MIMO channels have been divided into either data rate 

maximization schemes or diversity maximization schemes. The first category focuses 

on improving the average capacity hence efficient use of the very expensive/valuable 

communication resource i.e. bandwidth, while the second category focuses on outage 

probability (reliability) of the system. The reliability of the MIMO system can further 

be improved through error control coding. Since the actual performance of a 

communication system is evaluated by the average bit error rate (BER) or symbol error 

rate (SER) versus signal-to-noise ratio (SNR), in MIMO systems, the receiver can 

coherently combine the received signal to increase the SNR, a technique known as 

"array gain". Hence the channel state information available at the receiver plays a 

significant role in the performance of MIMO systems. 

1.4.1 Channel Coding 

Error correcting codes also known as channel coding play a significant role in 

correcting errors incurred during transmission. They are divided into forward error 

correction (FEC) codes or automatic repeat request (ARQ). FEC is a one way error 

control strategy in which redundancy is added to the transmitter and automatically 

corrects errors detected at the receiver. Most coded systems use forward error correction 

which includes block codes and convolution codes as well as concatenated codes which 

build upon block and convolutional codes [37], [38], [39]. TCM codes [39] were 

invented in the 80's with the aim of combining coding and modulation as a single entity 

for better bandwidth efficiency. Most of these FEC schemes use hard decision decoding 

where the demodulator judges what the modulator input was and then passes its 

decision on to the decoder. 

In 1993, Berrou et al [34], [35] introduced "turbo codes", a concatenation of two 

recursive convolutional codes whose performance was close to Shannon's limit. Turbo 

codes use the maximum a posteriori (MAP) algorithm introduced by Bahl et al [36] to 

decode convolution codes. Prompted by the discovery of turbo codes which may also be 
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used in a parallel concatenated codes (PCCs) configuration, serial concatenated codes 

(SCCs) and hybrids were constructed with same component convolutional codes to 

provide similar coding gains [40], [41], [63]. Turbo codes combine random like 

behaviour with relative simple structure obtained by concatenating low complex 

compound codes e.g. convolutional codes, block codes such as BCH and RS codes. 

The performance of a coded system can be measured in terms of the probability of error. 

In the high SNR region, the average error probability of a system over a communication 

channel is given by [6], 

P(error)*Gc-SNR- (1.2) 

where Gc is the coding gain/advantage while Gd is the diversity gain/order. 

P (error 

Diversity gain 

Coding gain 

SNR (dB) 

Figure 1.1: Difference in coding and diversity gain. 

The sketch of the probability of error versus the SNR is as shown in Figure 1.1. The 

slope of the curve reflects the diversity gain while the horizontal shift in the curves can 

be interpreted as the coding gain. It can also be seen from (1.2) that the diversity gain 

dominates the error performance at high SNR. 

However, at low SNR, the coding gain plays a significant role in the error performance 

of the code. The turbo decoding principle accentuates the coding gain by iteratively 

passing on soft information to the decoder. 



1.4.2 Coherent and Noncoherent Detection 

Shannon's coding theorem [1] assumed that for a given spectral efficiency, one is free 

to choose a modulation scheme that results in the best possible performance. However, 

the choice of a signalling scheme in real communication systems depends on practical 

considerations. Communication systems that are sensitive to power amplifications 

require constant signalling schemes such as M-ary phase shift-keying (MPSK) and 

frequency shift-keying (FSK), while those that are not, may use amplitude shift-keying 

(ASK) [39]. MPSK is a popular digital modulation technique whereby the information 

signal is encoded in the phase of the carrier signal. For optimum MPSK performance, 

coherent detection which necessitates accurate maintenance of carrier phase 

synchronization across the channel is paramount. At the receiver, the fading process 

needs to be known or estimated in order to recover the carrier and compensate for the 

corrupted signal. Digital signal transmission over fading channels not only suffers from 

varying loss but also from phase ambiguities. This can be overcome by inserting 

training symbols multiplexed in the data stream. However, the power and bandwidth 

efficiencies are somewhat reduced due to overhead. In fast fading, however, the channel 

characteristics of the fading process are changing rapidly and are therefore very difficult 

to track. 

Noncoherent detection using differential modulation (DM) is very attractive for M-ary 

phase-shift-keying (MPSK) signalling over rapid fading channels because of its 

robustness against phase ambiguities and impairments of the received signal [64], [65]. 

There is no channel information required at the receiver, hence, eliminating the need for 

a tedious, impractical channel estimation process for rapidly changing channel 

characteristics. 

Differential space-time modulation has been proposed for multiple antenna systems 

where neither the transmitter nor the receiver knows the fading coefficients [114], [115], 

[116]. This can be generalized as standard differential phase-shift-keying used in the 

single antenna unknown channel link. The success of differential space-time modulation 

is critical to the design of unitary space-time signal constellations [117], [118], [119], 

[120], [121]. 
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1.5 Motivation 

With the ever increasing demand for fast and reliable communication over wireless 

channels, broadband communication systems are required to provide faster data 

processing and higher data throughput at low complexity. One technology that has 

shown promising results is the use of multiple transmit and receive antennas known as 

multiple-input multiple-output (MIMO) communications system. 

A core idea in MIMO systems is space-time signal processing. Multiple transmit space-

time (ST) coding has evolved as one of the promising diversity technique for flat fading 

channels [5], [13]. However, broadband wireless channels are characterized by 

multipath fading which is a design challenge for any communication system [14]. In 

order to eliminate the effects of multipath fading and increase data transmission, a 

combination of ST coding and orthogonal frequency division multiplexing (OFDM) has 

been deployed [13]. 

MIMO systems take advantage of random fading while utilizing multipath delay spread, 

traditionally a pitfall to wireless communications. The prospect of several propagation 

paths at no extra spectrum has opened up new studies to investigate the diversity 

potential of MIMO systems. Space-frequency (SF) coding emerged as a technique that 

combines advantages of both transmit diversity and OFDM while utilizing multipath 

diversity. In SF coding, two dimensional coding is used to spread information across 

space (transmit antennas) and frequency. Although SF coding is well suited for fast 

fading, variations within subcarriers for large OFDM blocks and channels with large 

delay spreads may result in performance degradation. Hence space-time-frequency 

(STF) coding has been proposed [159]. However, STF coding does not necessarily offer 

additional diversity advantages compared to SF coding. This thesis therefore addresses 

maximizing the diversity gain offered by STF coding through the use of residue number 

system code as a frequency encoder. 

In MIMO wireless communication systems, channel estimation is a tedious and 

impractical process because of the rapidly changing channel characteristics and several 

propagation paths. To circumvent the need for channel estimation, we resort to 

noncoherent differential modulation. In conventional differential modulation (CDM) the 

channel characteristics for at least two consecutive symbols N - 2 are considered 
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constant [64], [65], [66]. Multi-symbol differential modulation (MSDM) for M-ary 

phase shift keying (MPSK) was proposed to reduce the error floor effect, and hence 

improve the performance of CDM [68]. MSDM was extended to space-time block 

codes (STBC) [122], [123], [125]. In MSDM for STBC, the performance improves not 

only with increasing observation period i.e. N> 2, but also with the number of antennas. 

A less complex but suboptimal decision feedback differential modulation (DFDM) 

scheme was proposed for STBC [124], [126], [129]. This thesis therefore extends 

decision feedback differential modulation to STF coding. 

Bit-interleaved coded modulation is a concatenation of a channel encoder and symbol 

mapper through an interleaver. This technique was shown to be well suited for 

bandwidth efficient transmissions over fading channels [55], [56], [58], [59]. The 

performance of bit-interleaved coded modulation can be greatly improved through 

iterative information exchange between the decoder and the demapper [58], [60]. It is a 

low complexity alternative to turbo codes rendering it attractive for MIMO systems 

[61]. To maximize the coding gains for bit-interleaved coded modulation, low rate 

convolutional codes are often used, hence reducing the overall rate of the system. This 

is further complicated by the necessity to exchange soft information at bit level, hence 

making convolutional codes easy to decode using already existing algorithms such as 

the Viterbi decoder [62], [63] compared to high rate block (binary or non-binary) codes. 

Through the pioneering work of Pyndiah [45], [46], [47], a soft decision decoding 

algorithm for linear block turbo codes was developed. An approximate maximum 

likelihood decoding algorithm based on list decoding method is described in [45] and 

the references therein. This implies that non-binary linear block codes with higher code 

rates can be used in place of convolutional codes and still achieve approximately the 

same coding gains. This thesis therefore proposes the use of residue number system 

codes as the channel encoder. 

1.6 Thesis Overview 

This thesis is divided into six chapters. It is aimed at developing a technique for 

combining channel coding, frequency diversity and spatial diversity into a bandwidth 

efficient communication scheme, and characterizing the performance of such a system 

in a wireless broadband environment. 
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In Chapter 1, Wireless MIMO and its functionalities are discussed, focussing on 

attributes that render it attractive as a wireless technology for broadband 

communications systems. Motivation for the work done in this thesis is also discussed. 

In Chapter 2, residue number system (RNS) channel encoding is introduced. We discuss 

RNS codes redundancy properties and error control when applied to communication 

systems. Different encoding and decoding algorithms for hard decision are outlined. 

The already existing soft decoding algorithms for block codes are extended to RNS 

codes. A bit-interleaved coded modulation for noncoherent MPSK modulation is 

proposed and its performance investigated. It is shown in some applications that the 

residue number system codes can achieve similar or better bit error rate performance 

than convolutional codes of the same rate and asymptotic coding gain. 

Chapter 3 presents a comparative study of different MIMO systems, i.e. space-time 

coding, space-frequency coding and space-time-frequency coding. The different design 

criteria for the MIMO systems in multipath fading channels are discussed and their 

performance investigated. 

In Chapter 4, an RNS based space-time-frequency (STF) coding scheme is proposed. A 

design criterion similar to already existing space-time-frequency coding schemes is 

presented. It is shown that the proposed RNS space-time-frequency coding scheme 

offers additional frequency diversity independent of the selective nature of the fading 

channel. We investigate the performance of the proposed RNS space-time-frequency 

coding scheme over a rapid fading channel and show its flexibility over different space-

time code designs. 

In Chapter 5, an RNS coded iterative noncoherent differential space-time-frequency 

modulation scheme is presented and its performance characterized. RNS differential 

coding from single antennas systems is extended to MIMO systems. Analytical 

expressions are derived for both the hard and soft decision metric and the decision 

feedback differential space-time-frequency modulation. It is shown that increasing 

diversity can reduce or eliminate the flooring effect in conventional differential 

detection. Results show that significant coding gains can be achieved by passing not 

only hard decisions but also soft information. 
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Chapter 6 presents a summary and conclusions drawn in the thesis. Comments on future 

extensions of the work done in the thesis are also suggested. 

1.7 Original Contribution 

In Chapter 2, a near optimal bit-interleaved coded decision feedback differential 

modulation for single antenna is proposed. This uses a residue number system code 

instead of the convolutional code traditionally used in bit-interleaved coded modulation. 

This scheme achieves high data rates with minimal complexity, in contrast to the 

convolutionally coded schemes. 

An RNS based space-time-frequency coding scheme is proposed in Chapter 4. The key 

feature of the proposed STF coding scheme is the frequency encoder. Most STF 

schemes in the literature use coding across multipaths and OFDM modulation 

techniques to maximize frequency diversity. The main challenge is the code 

construction involving a large number of OFDM carriers in a practical system. By 

dividing the available bandwidth into several non-overlapping subchannels equal to the 

code length, the proposed scheme codes across a number of subcarriers with space-time 

signalling on each subcarrier. Hence the signal design on each subcarrier is the same as 

that of space-time codes and multipath diversity is merely a trivial extension. 

The proposed space-time-frequency code design in Chapter 4 can achieve full rate and 

diversity gain of MlMrMbNc over quasi-static fading channels, where Mt and Mr are 

the number of transmit and receive antennas respectively, Mb is the time diversity and 

Nc the number of OFDM tones. The diversity order incorporates the number of 

subcarriers (OFDM tones) previously not considered in the design of already existing 

space-time-frequency architecture. Hence the proposed STFC scheme can achieve up to 

a maximum possible diversity gain of M,MrMbNcL , where L is the channel order. 

The assumption of block fading is not ideal when transmitting over broadband wireless 

communication channels and channel state information is not easy to track. In Chapter 

5, a residue number system based iterative noncoherent differential STF coding scheme 

for a frequency flat fast Rayleigh fading channel is proposed. The differential STF 

decision feedback metric is derived and the performance characterized. 
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A soft decision decoding for bit-interleaved decision-feedback differential modulation is 

presented and its bit metric derived in Chapter 5. It is shown that this scheme can 

achieve significant coding gains over the hard decision bit-interleaved decision-

feedback differential modulation. The decoding process is not limited to RNS scheme 

but can be used in any iterative decision feedback differential modulation system a with 

channel encoder e.g. convolutional codes. 
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CHAPTER 2 

REDUNDANT RESIDUE NUMBER SYSTEM CODED 

DIFFERENTIAL MODULATION 

2.1 Introduction 

A residue number system (RNS) code is a non-weighted number system, with inherent 

carry-free operations and lack of ordered significance features among its residues [15], 

[16], [17], [18], [19], [20]. The carry-free feature implies that the operations related to 

the different residues such as additions, subtraction or multiplication are mutually 

exclusive, ensuring that errors are not propagated from one residue to another. 

Therefore, it is possible to perform arithmetic on long numbers at the same speed as 

short ones. The arithmetic advantage is due to the ability of RNS to add, multiply or 

subtract in parallel without generating intermediate carry forward digits or internal 

delays. Hence RNS find wide application in high speed arithmetic operations such as in 

general purpose computers [20], [22]. The residues are simply a remainder 

representation of the operand divided by pairwise relatively prime positive integers 

known as moduli. In RNS an integer is represented by a group of residues and can be 

recovered from any combination of subsets formed provided there is sufficient 

information. The lack of ordered significance feature among residue digits implies that 

some residues can be discarded without affecting the final outcome. This property 

heralds redundancy and forms the basis of error control design in RNS. RNS have been 

studied widely in tolerance protection of arithmetic operations such as digital filters and 

their redundancy property has been exploited in theoretical computer science [22]. Due 
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to their flexible data rates, RNS codes are currently being considered for adaptive 

systems [30] and cross layer design [173]. 

The error correction and detection properties of RNS are well established [17], [18], 

[19], [21], [26], [27], [28], making them attractive for channel coding in communication 

systems. These codes belong to maximum distance separable codes and hence have 

similar coding properties to Reed Solomon codes [33]. Liew, Yanga and Hanzo [31] 

showed that the Chase algorithm can be invoked to provide soft input to the hard 

decision RNS decoder and consequently applied the Pyndiah block turbo coding 

principle [29], [32]. These codes were shown to have tremendous improvement when 

the iterative decoding is applied in additive white Gaussian noise (AWGN). 

Noncoherent detection using differential modulation (DM) is very attractive for M-ary 

phase-shift-keying (MPSK) signalling over rapid fading channels because of its 

robustness against phase ambiguities and impairments of the received signal. There is 

no channel information required at the receiver, hence, eliminating the need for a 

tedious, impractical channel estimation process for rapidly changing channel 

characteristics. Initially noncoherent DM was applied to quasi-static fading channels 

where the channel characteristics for at least two consecutive symbols N = 2 are 

considered constant [64], [66], [67], Noncoherent DM has been adopted for continuous 

or fast fading channels. However, conventional noncoherent differential modulation 

leads to a 3 dB loss over coherent modulation due to variations in the autocorrelation 

function of the fading process. Multi-symbol differential modulation (MSDM) for 

MPSK was proposed to improve the performance of noncoherent DM [65], [68]. In 

MSDM the observation period N > 2 is considered for maximum likelihood sequence 

detection instead of symbol-by-symbol detection as in conventional differential 

modulation (CDM). The performance of MSDM improves with increasing observation 

period. This leads to increased complexity at the receiver. Hence, a suboptimal but less 

complex decision feedback differential modulation (DFDM) scheme was proposed [69], 

[70], [71]. This uses maximum likelihood detection for a symbol-by-symbol detection 

(rather than the entire block of N observations) by feeding back previous 7Y - 1 hard 

decisions. It was also shown that the performance of DFDM could be further improved 

through iterative decoding of bit-interleaved coded modulation [72]. In [72], an outer 

convoltional code is serially concatenated with an inner differential encoder. This 
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method was shown to offer comparable performance to the more complex iterative 

schemes proposed in [73], [74], [75], [78], [80], [81]. This method also outperformed 

the less complex coded CDM [76], [77]. The channel encoders employed in iterative 

DFDM and coded CDM schemes are convolutional codes which may require low rates 

or long constraint length to reduce the error floor effect. 

Motivated by the performance of low complex iterative DFDM and soft decoding of 

RNS codes in AWGN, we propose a redundant residue number system iterative coding 

scheme for noncoherent differential MPSK modulation in a Rayleigh fast fading 

channel. Since RNS codes can offer high and flexible data rates, a key parameter in the 

design for today's multimedia communication systems, this research follows a novel 

path. In this scheme, the RNS code is used as a channel encoder and is concatenated 

with the inner differential encoder. Bit-interleaved coded modulation is applied to break 

the error dependence of the channel, hence increasing the code diversity. The soft 

values from the DFDM decoder are fed to the Chase like RNS decoder. Simulation 

results show that the RNS codes can achieve similar or better bit error rate (BER) 

performance than convolutional codes at approximately the same rate and asymptotic 

coding gain for t = 1, 2 error correction capability. 

This chapter is organized as follows; in Section 2.2 we describe RNS representation and 

simple arithmetic. Section 2.3 highlights the RNS coding theory and the encoding 

process followed by the proposed bit-interleaved differential MPSK in Section 2.4. We 

present simulation results in Section 2.5 and conclude in Section 2.6. 

2.2 Residue Number System (RNS) 

2.2.1 Representation 

The decimal number system is the most widely used number system. This system is 

linear, positional and weighted such that all positions derive their weights from the 

same radix (base) i.e. 10. Hence an integer X can be represented by 

& j (2-1) 

;=0 
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where r = 10 for decimal number system. The binary number system is another widely 

used number system with positional weights 2°,2',22, etc. 

The residue number system is a mixed radix system with positional bases that are 

usually relative prime numbers to each other, for example 2, 3, and 5. An integer 

X = 17 is then represented by the bases 2, 3 and 5 by dividing it with the bases and 

retaining the remainder known as the residue digit in their respective positions. To 

convert a decimal number 17 to a residue number, we compute: 

xx = 17 mod 2 = 1, 

x, =17mod3 = 2, 

;c3 = 17 mod 5 = 2, 

hence the decimal 17 is represented by [1,2,2] in the above residue number system. 

This residue number system offers a unique representation of X in the range 

0 < X < 30 = 2 x 3 x 5 . Note that the integer X = 17 can be represented in the decimal 

number system as 

17 = lxlO' + 7xlO°. 

The weighted number system uses constant weights which is the power of the radix 

(e.g. 10 in decimal number system) and is referred to as a fixed radix system. 

2.2.2 Operations in Residue Number System 

Suppose X] and X2 are two decimal numbers, the operation X, • X2 results in a third 

decimal number X3, where • denotes addition, subtraction or multiplication. Likewise 

if X] <rJ>(xu,xi2,---,xu) and X2 <-» (x2l,x22,---,x2k) are uniquely represented in the 

RNS then X3 -XX*X2 can be uniquely represented provided X3 is in the range 

[ 0 , M - l ] , where M is the product of the radices in RNS. Hence 

X3 = Xx • X 2, 

X,^{{xu*x2,)moimr(xu*x22)maimi,---,{x,k*x2k)maim)i, (2.2) 

A3 <r^ \Xil,Xy2," ' ,X3k ) . 
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The following example illustrate the three arithmetic operations namely addition, 

subtraction and multiplication for RNS with radices m, = 5, m2 = 3 and m3-2, 

respectively. 

9 o [4,0,1] 7 <-> [2,1,1] 7 o [2,1,1] 

+ 16 o [1,1,0] x 4 ^ [4,1,0] - 4 <-> [4,1,0] 

25 <-* [0,1,1] 28 <-> [3,1,0] 3 ^ [3,0,1] 

decimal residue decimal residue decimal residue 

There is no information carried forward between the residue digits resulting in high 

speed operations. In the event that an error occurs it is confined within the 

corresponding residue digit and does not affect other operations. 

2.3 Using RNS in Channel Encoding 

A residue number system (RNS) code is defined by a set of V pairwise relatively prime 

positive integers m,(i = l,2,-,V) known as moduli [15], [16], [17], [18], [19], [20]. The 

product of the moduli is called the dynamic range Mv which determines the maximum 

number of bits (log2 Mv) that can be transmitted using the RNS code, 

Mv=Y\m,. (2.3) 

Any positive integer X in the range 0 < X < Mv can be uniquely and unambiguously 

mapped to a set of residue sequence (x ,x ,---,x ) , such that x,=X (mod m,). From the 

Chinese remainder theorem (CRT) [26],[33], for a given set of residues, there exists one 

and only one integer X in the range 0 < X < Mv. This allows unique recovery of the 

information data X from a set of received residues. The CRT is expressed as 

( v \ 
X: 

V ' = l 

^MjXjLj modWv, (2.4) 

where M, = Mv I w, and L, is the multiplicative inverse of Mt mod mj, such that 

(Z,M,) mod m, = 1 . 
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The mixed radix conversion (MRC) can also be used to represent integer X in the from 

X = ̂ a,Y[mj, (2.5) 
M >» 

such that 0 < a, < m, are known as radix coefficients and J~[ rrij = 1 

To incorporate error control, U - V redundant moduli are appended to form a redundant 

residue number system RRNS(t/,F) code with 0 < X < M v being the legitimate 

u 
dynamic range and MV<X<MU, the illegitimate dynamic range, givenMu =Y\mj 

/=i 

[21], [26]. Any received information X falling in the illegitimate range implies that an 

error has occurred. Hence RNS can be used for error detection. 

From information theory, the minimum distance dmm is a key parameter in any error 

control coding. The redundant residue number system (RRNS) code has a minimum 

distance of dmm if and only if the product of the redundant moduli satisfies the 

following inequality [18], [19] 

~~[mj. > > MR > max^ J J mJt L (2.6) 

v 
where MR = \ \ mh and mJt is any of the U moduli and 1 < j , < U. Hence the error 

i=V+\ 

correcting capability of a RRNS code is given by [21], [33] 

t = 
" m i n ^ (2.7) 

where [_zj denotes the largest integer not exceeding z. It was also shown that for 

maximum distance separable RRNS code (i.e. dmm-\-U-V ), the necessary 

condition for the left hand side of (2.6) to be satisfied requires RRNS code to have the 

largest modulus of dmm -1 as the redundant modulus. 
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RRNStt/,!7) code is a block code, since it takes in V information symbols and generates 

U coded symbols. RRNS codes are semi-linear block codes as the condition of linearity 

is satisfied under certain conditions only [18], [33]. The fundamental properties of 

linear block codes are that the all-zero vector is a valid codeword and the sum of two 

valid codewords is also a valid codeword [37], [38], [39]. 

2.3.1 Redundant Residue Number System (RRNS) Encoder 

There are two coding strategies used in RRNS, namely systematic and non-systematic 

encoding. This can literally be viewed as in the case of convolutional codes where the 

information bits have either a direct bearing on the coded symbols i.e. systematic 

encoding, or not i.e. non-systematic encoding. 

b bits 
Mapping 
Function 
(Integer X ) 

RNS 
Conversion 

( I m o d m ) 

Figure 2.1: Non-systematic encoding 

Figure 2.1 shows the block diagram of non-systematic RRNS encoding process. In non-

systematic RRNS encoding, a block of b bits per encoding interval is mapped to an 

integer X such that 

0<X<2h<Mv, (2.8) 

where Mv is the legitimate dynamic range. Note that in most scenarios, the legitimate 

dynamic range is not a typical integer power of 2. Hence 2* « Mv, which implies that 

the dynamic range is not efficiently used. The residue digits corresponding to a given 

set of moduli are then generated using the convectional modular arithmetic 

Xj=Xmodmn (2.9) 
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for j = 1,2,•••£/. Since the moduli are relatively prime to each other, the resultant 

codeword is unique for each given integer X. Each residue digit is converted to its 

binary equivalent such that there are nj number of bits per residue 

rij = l o g 2 m ; + l , (2.10) 

hence the resultant number of coded bits at the output of the non-systematic encoder is 

7=1 

(2.11) 

The rate of the RRNS non-systematic code is given by bib'. Since the residues do not 

directly represent the data, the above encoding process is referred to as non-systematic. 

Z? bits 
Map to 

Non-redundant 
Residues 

Base 

Extension 

Method 

Figure 2.2: Systematic encoding 

- • J C , 

• > % 

- > • * ! ' + ; ' 

>" 
Non-redundant 
Residues 

-+-XU 

Redundant 
Residues 

Figure 2.2 shows the block diagram of systematic RRNS encoding process. In a 

systematic RRNS encoding, a block of b information bits is divided into smaller groups 

of bj - log2 m. bits and mapped to non-redundant residues xx,x2,---,xv such that 

7=1 

(2.12) 

The redundant residues are generated using the base extension (BEX) method [29], [33]. 

Mapping each redundant residue to its binary equivalent, yields b. = log2 m +1 bits and 

*'=IV (2.13) 
j'V+\ 
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where b' is total number of redundant bits. Hence the rate of a RRNS systematic code is 

b l(b + b'). From (2.5), we can expand the MRC representation of integer X to form 

i - 2 *-l 

X - a, +a2w, + a-imxm2 + • • • ak_x T j m; + <3
t]^[>^ > (2-14) 

where a ; are the mixed radix coefficients. Recall from the definition of the dynamic 

range i.e. the product of moduli, and assuming that the moduli are arranged in ascending 

order (which is a necessary condition for the inequality in (2.6) to be satisfied) i.e. 

m, <Wj <"-<mk. It can easily be seen that the terms in (2.14) are all multiples of X 

except for m], hence the radix coefficient a, = X mod m,. To solve for a2, first subtract 

a, from (2.14) and then divide by m,, 

X - a k~2 K 
l- = a2+a3m2 + — ak_lY[mJ+alT[mj. (2.15) 

X — a 
Likewise all the terms in (2.15) are multiples of except for m2. The whole 

mx 

procedure can be repeated until all the radix coefficients are obtained. Hence 

a, = X mod w,, 

a2 =(X/w1)modm2 , 

a3 =[X/m]m2)modm3, (2.16) 

ak =(X / mlm2---mk_l)modmk. 

If another term is added to (2.14), the mixed radix representation would be 

k-2 k-\ k 

X = a]+a2m]+a3m]m2+---ak_]Y[mj+akY[mJ+ak+,Y[mJ, (2.17) 
J-i j-i M 

k 

with 0 < X < Y\mi-1 being the legitimate dynamic range. Therefore, if the integer X 

is to be represented in the extended MRC form, its coefficients beyond k are equal to 

zero. Since the set of moduli is always predetermined, and the non-redundant residues 

are a result of direct mapping from the corresponding bits, the task of representing 
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integer X in the extended MRC form amounts to finding the radix coefficients. The 

fact that coefficients beyond k are equal to zero is used to find the residue digit of the 

extend moduli Xmodm i+1. Hence, redundant residue are generated from (2.16) by 

performing modulus operations since the non-redundant residues are known. The 

process of representing the integer in the extended MRC form is known as BEX. 

2.3.2 Error Detection and Hard-Decision Decoding Algorithm 

The decoding process is dependent on which encoding was used, i.e. systematic or non-

systematic RRNS encoding. From the received residue vector, an integer X is 

computed using either the CRT or the MRC. If X > Mv, it implies that the received 

residue vector is an invalid codeword, hence an error has been detected. Once errors 

have been detected, their respective positions have to be determined and subsequently 

corrected. An RRNS(£/,F) code is able to detect up to U -V residues if they are in 

error and correct up to t = (U -V)/2 residues in error. Any valid codeword represents a 

unique integer which falls within the legitimate range 0 < X < Mv of the RRNS code 

and any invalid codewords are in the illegitimate range MV<X <MU. An algorithm for 

single residue error correction based on modulus projection and the CRT was proposed 

[18] and has been extended to correct multiple residues in [19] and [20]. 

In this subsection we outline the error detection and hard decision decoding procedure 

that will be used to decode RNS codes throughout this thesis. The hard decision 

decoding algorithms are based on BEX and MRC for multiple error correction proposed 

in [33]. 

At the RRNS decoder, the MRC is applied on the set of the received residue vector to 

solve for radix coefficients. If the radix coefficients av+] •••au are equal to zero, there is 

no error in the received residue vector. However, if any of the radix coefficients 

av+l •••au are not equal to zero, there is at least one residue digit in error. The next step 

is to locate the error positions. An RRNS code can correct up to 

t = {dmm - l ) / 2 = (U-V)/2 residues in error. First, t residue positions are assumed to 

be in error and a new set of moduli is obtained by deleting the corresponding / moduli, 

hence a new legitimate and illegitimate dynamic range. MRC is then applied to 
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determine the values of the new radix confinements using the deleted residues and their 

corresponding moduli as the new redundant set. If all the radix coefficients av+l •••av+l 

are zero, correct the error using the BEX method and stop. If not, the above process is 

repeated for all 
W 
\* J 

different combinations. If no zero radix coefficients are found 

after 
^ 

K*J 
trials, there are more than t errors in the received residue vector and the 

decoding process is stopped. 

2.4 Bit-Interleaved RRNS Differential Modulation 

In this subsection we describe the system model for the proposed redundant residue 

number system iterative coding scheme for non-coherent differential modulation. The 

baseband representation of the system model is depicted in Figure 2.3. 

2.4.1 System Model 

RRNS 

Code n 

Chase 
Like RRNS 
Decoder 

cM Mapper 

IT1 
LLR\ji] 

n 
2D0 

v* Differential 
Encoder 

Channel 

Bit-wise 
Metric 

Computation 

Figure 2.3: System model of RNS bit-interleaved differential MPSK 
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The binary information stream to be transmitted is first grouped into blocks of b bits 

M-ary symbols, which are then encoded by the outer RRNS(£/,F) code to a set of U 

parallel residues as described in the preceding subsection. This implies that for b 

information bits to be transmitted using RRNS(C/,F) code, the legitimate dynamic range 

should be equal or greater than 2* (i.e. b = log2 Mv). In this chapter we use systematic 

RRNS encoders that were proposed in [29], [31], [33]. In a systematic RRNS encoding, 

the b block of bits is divided into smaller groups each with bt - log2 mj which are 

mapped to non-redundant residues and the redundant residues are generated using the 

base extension (BEX) method. A block of L residues (with U parallel residues per 

coding interval) is serially converted to its binary equivalent and bit-interleaved. The 

coded bit stream is then mapped to a b bit MPSK symbol such that b = log2 M . The 

MPSK symbols are then differentially encoded and transmitted over rapidly fading 

Rayleigh frequency non-selective channel. 

Consider a differentially coded symbol sk propagating over a fast fading Rayleigh 

fading channel during the Mi symbol interval. The output of the differential encoder is 

given by 

sk=VkSk~\, (2.18) 

where vk is the data carrying symbol and is drawn from 

vk e A = jexpO'2;rv/M)|v = 0,l,--",M-l} MPSK signal constellation. At the receiver, 

the received signal can then be expressed as 

rk=skhk+nk (2.19) 

where nk is the additive white Gaussian noise (AWGN) with zero mean and double 

spectral density N0I2. The zero-mean complex Gaussian random correlated fading 

process hk is based on Jakes model [174] with a normalized autocorrelation function 

given by 

<p„ ( r ) = E„ {hkh'k+T} = <r2
hJ0 {l7cfDT), (2.20) 
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where al is the variance, £/,{.} and (.)* denotes the expectation with respect to h and 

complex conjugate respectively, J0(.) is the Bessel function of the first kind, /b is the 

maximum Doppler frequency and T is the symbol duration. 

2.4.2 Decision Feedback Differential Modulation 

The maximum likelihood decoding process follows decision feedback differential 

modulation (DFDM) which is derived from multi-symbol differential modulation 

(MSDM) for N >2 observation period [69], [70]. Given that there is no channel state 

information at the receiver, the conditional probability density function (pdf) of the 

received vector rk - [rk, rt_,, • • •, rk.N+l ] given the data carrying symbol vector 

v* = [vk>vk-\,•;Vt-jv+2] for the differentially coded symbol vector 

Sk =\_Sk>Sk-]>'">Sk-N+l] IS 

exp(-r*A"\) 
P(r*/vt) = —r-, L, (2.21) 

TV A 

where T is the transpose, H is the conjugate transpose and A is an Nx N correlation 

matrix. The correlation matrix is derived from the autocorrelation matrix <p;i of the 

fading process and AWGN over N > 2 observation periods as 

A = r /Vv, 
N (2-22) 

where the elements of (p̂  are given by (2.20), H denotes the complex conjugate 

transpose and lN is an NxN identity matrix. If the symbols vk are taken from a unitary 

MPSK signal constellation, then s^st = IN and the correlation matrix can be expressed 

as 

\ 
N 

J (2.23) 
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and is independent of the transmitted symbol sequence. Neglecting the constant terms 

and substituting for A in (2.21), the conditional pdf can be rewritten as [70], [71], [72] 

p(rk/vt) = exp —Tic ( St R/,Si 1 n 

r H T»-I H i 
:exp[-r* s tR„s tr*J. 

(2.24) 

The conditional pdf in (2.24) can further be expanded and expressed as 

/>(!*/ v t ) = exp / , / , t,j>'k-iSk-iSk-jrk-
\ (-0 j=0 

(2.25) 

where t„ are elements of the inverse of the correlation matrix Rh in (2.23) defined as 

T = - * ? = -(^J -i 
'oo 

L*AM0 

'oi • 

*JV-1 1 

'0A f - l 

M J f - l (2.26) 

By expanding (2.25) and substituting for sts*_i = v*, the multi-symbol differential pdf 

can be expressed as 

p(r*/v*) = exp 
f N-\ 

Re 7 . tiirk-iSk-iSk-irk-i 
\i=0 

+ 2Re 
J \ M 7=0 C=J ) 

(2.27) 

Note that the first term of the exponential function is a constant and can be ignored, 

hence 

p(rk/\k)*exv 2 Re 
N-] M / - l 

(2.28) 

The maximum likelihood decoding for symbol vk is taken over the entire N block 

symbols by choosing the metric that maximize the conditional pdf in (2.28). To 

minimize the receiver complexity, N-\ previous hard decisions are fed back [69], 

[70], hence, the term decision feedback differential modulation (DFDM). The 

conditional pdf in (2.27) reduces to 
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p(rk/vk) = exp 
^ 

2 Re \ rk\ £ t0jrk_} J~J v w (2.29) 

where vk_c are the hard symbol decisions from the previous detection except for the kth 

symbol interval. From (2.29) the maximum likelihood decoding for vk chooses the 

symbol from the MPSK signal constellation that maximize the conditional pdf in (2.29). 

Since the logarithmic function is a monotonically increasing, maximizing p(rk/\t) 

over vk is equivalent to maximizing log(p(rt /v t ) ) over vk. Hence the bit metric 

from the kth label can be obtained by averaging over signal constellation whose symbol 

metrics have b e {0,1} in the //th bit position as 

^ M = log Z e xP 2 R e 1 r * \ S V w r l V c 
»4.AJ ^ L H <r-i J ; 

(2.30) 

Thus the bit log-likelihood-ratio (LLR) metric for the kth label in the juth bit position is 

given by 

LLRk[M] = ^[M]-^[M]. (2.31) 

The LLR are first deinterleaved and fed to a chase like RRNS decoder. The 

deinterleaved LLR values are the soft input to the Chase RRNS decoder which outputs 

hard decisions. The hard decisions are interleaved and fed back to the bit-wise metric 

computer. The procedure is repeated for several iterations. 

2.4.3 Chase and Iterative Decoding Algorithm 

The hard decision decoding algorithms used in this thesis are based on BEX and MRC 

for multiple error correction as outlined in Section 2.3.2. We invoke the Chase 

algorithm similar to [31] but differ in the generation of soft input to the chase decoder 

and the error pattern. 

For every decoding interval, b + b' LLR values are fed to the Chase like RRNS 

decoder. A hard decision z„ associated to the soft information v =A"'kN 12 is made 

[47]. The confidence values | y \ are then sent to the Chase algorithm which generates 
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a set of 2' error patterns according to the / least reliable confidence values | yM |. The 

error patterns are each added to Z = [ziz2...zb+b,] by modulo two addition to produce a 

new sequence Z which is mapped to corresponding residues and sent to hard decision 

RRNS decoder. At the output of the hard decision decoder a set of valid codewords is 

searched according to (2.32), and the codeword with the minimum metric is decoded as 

the transmitted codeword 

where J' e {+1,-1} in the /rth bit position of the z'th codeword at the output of the hard 

decision decoder. 

If no valid codeword is found, Z is then decoded as the transmitted codeword. The 

decoded codeword is mapped to non-redundant residues as described in Section 2.3.1 

for systematic RRNS encoding. Redundant residues are generated through BEX method 

and the whole process is repeated for the entire block. The residues are then converted 

to their binary equivalent and bit-interleaved. After bit-interleaving the bits are mapped 

to MPSK symbols, which are then differentially encoded and fed back to the DFDM 

decoder for a new metric computation as shown in Figure 2.3. 

For the iterative decoding process, the re-modulated fed back symbols are generated 

from bit decision at the output of the Chase RRNS decoder. For the first iteration, as 

there are no previous decisions available, we use conventional differential modulation 

i.e. N = 2 for the first iteration [72]. For further iterations, re-modulated fed back 

symbols from previous iterations are used to calculate the bit LLR values as in (2.30) 

and (2.31) for N > 2 observations period. 

2.4.4 Complexity Issues 

In this subsection, we comment on the complexity of the proposed system model versus 

the convolutionally coded differential scheme in [72]. Since both schemes use decision 

feedback differential modulation for their differential decoding, our comparisons are 

based on the channel encoders i.e. convolutional code (CC) versus RRNS code. 

29 



Although the d for the block code is different from the minimum free distance 

(dfree) for a CC, they both have the same effect on the asymptotic coding gain. 

For sequential decoding using the standard soft-in hard-out Viterbi decoding algorithm 

for CC, the complexity Ccc is dependent on the number of states (Sst), number of input 

bits {b) to the code and frame length (I) as follows [39] 

CaccLSal(2
b/b), (2.33) 

where Ssl =2C and c is the constraint length. It can be seen from (2.33), that Ccc 

increases exponentially with increasing c and b. Moreover to obtain low BER, large 

constraint lengths are used, hence increasing the complexity. The CC used in [72] are 

low complexity, low rate Mb [38], [39]. Even though puncturing increases the rate of 

Mb CC, the BER performance is not as good as the parent code. 

On the other hand, an approximate maximum likelihood decoding based on the Chase 

algorithm is used for block codes. In [33] the complexity for RRNS code was 

determined and shown to be dependent on the error pattern 2', the code length U and 

the error correction capability t as 

C oc 2 
'•'JIMS ^ 

1-1 
/ U-l-\ \ 

U(U-t-l)-2i 
V f=i J 

u\ 
{U-t)\t\ 

(2.34) 

Although the CC may appear to be less complex than RRNS code, the decision on the 

transmitted sequence is based on the entire frame length as opposed to RRNS code 

where a decision is made per decoding interval. The length of the random interleaver is 

key and the larger it is, the lower BER performance. The complexity equations in (2.33) 

and (2.34) are independent of the length of the interleaver even if it is assumed to be the 

same in both cases for comparison purposes. Therefore, with minimal error patterns, for 

low error correction capability t, the complexity for short RRNS codes becomes 

comparable to CC. Since RRNS codes can achieve high data rates for the same 

complexity, this makes them attractive over CC. 
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2.5 Simulation Results and Discussion 

In this section we demonstrate the performance through simulated results of the 

proposed redundant residue number system bit-interleaved differential MPSK 

modulation as described in Section 2.4.1 compared to the one with convolutional codes 

in [72]. The comparison is based on RRNS and CC with dmm =dfree respectively and 

approximately equal code rates. This implies that the two codes have approximately the 

same asymptotic coding gain, since it is only dependent on the code rate and minimum 

distance of the code. The simulation model is as shown in Figure 2.3. 

Correlated Rayleigh fading coefficients were generated based on Jake's model [174] 

and assumed to be flat over a symbol interval. The RRNS codes used in the simulations 

are systematic and the moduli 211, 217, 223, 227, 229, 233, 239, 241, 247, 251, 253, 

255, 256 were taken from [33]. Error correcting capability of t = 1, 2, 3 according to 

(2.7) for RRNS(5,3), RRNS(9,5), RRNS(13,7) codes respectively were considered. For 

all our simulations, the input to the differential encoder is mapped to QPSK symbols 

with Gray labelling. A random bit-interleaver for each frame of 4000 (or approximately 

4000 for RRNS codes) bits was used. A normalized Doppler frequency was taken to be 

fDT = 0.01 and the measured BER are presented as a function of SNR (Et/N0) in dB. 

The CC simulation model is based on Figure 2.3 by simply replacing RRNS code with 

the CC. The decoding algorithm for the CC is based on standard Viterbi decoder [72] 

and Chase like decoder was invoked as described in Section 2.4.3 for the RRNS code. 

2.5.1 Effect of Test Patterns on the BER Performance of RRNS vs. 

Convolutional Code 

Figure 2.4 shows the bit error rate performance comparison of the proposed system with 

RRNS(5,3) and rate 1/2 CC with a dm\n = 3 in a rapid correlated flat Rayleigh fading 

channel for CDM i.e. TV = 2 . The RRNS(5,3) moduli are m\ = 227, m2 = 229 m3 = 233, 

W4 = 239, m$ = 241, with m\, mi, m^ non-redundant and m^, m$ redundant moduli, hence 

a code rate of b/(b+b') = 21/37. The CC is non-systematic two states code with 

generators g0 - 3 and g, = 1 in octal form and are taken from [38]. 
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It can be seen from Figure 2.4 that as the number of test patterns 2l (I = 0, 2, 4, 6) 

increases, the BER performance of the RRNS code improves tremendously and 

becomes comparably to CC. We also see that that for / = 4, and / = 6, the RRNS code 

performs better than CC at SNR higher than 8 and 5 dB respectively. This is due to the 

repetitive nature of RRNS codes since the same information is transmitted on several 

residues. 

Figure 2.5 shows the bit error rate performance comparison of the proposed system with 

RRNS(9,5) and rate 1/2 CC with a dmm =3 in a rapid correlated flat Rayleigh fading 

channel for CDM i.e. N = 2. The RRNS(9,5) moduli are mx = 227, m2 = 229, m3 = 233, 

ni4 = 239, m$ = 241, m^ = 247, m-i = 251, m% = 253, mg = 255, with m\, rri2, m?,, m^, m$ 

non-redundant and me, mj, mg, mg redundant moduli, hence a code rate of 

b/(b + b') = 35/67. The CC is a non-systematic two states code with generators 

g0 = 5, g-, = 7 in octal form taken from [38]. 

It can be seen from Figure 2.5 that increasing the number of error patterns 2 for (/ = 0, 

2, 4, 6, 8) improves the BER performance of the RRNS code tremendously. However, 

the RRNS code achieves comparable BER performance to CC at high error patterns 2l, 

for / = 8. This is because bit-interleaving spreads errors and destroys the mutually 

exclusive property of residues in fading channels and hence the low coding gains for 

RRNS codes which is a dominant performance factor at low SNR and increasing length 

of the code. However at high SNR, the diversity gain of the RRNS code becomes 

dominant. Hence, the RRNS code performs better than CC at high SNR. 

2.5.2 BER Performance of Iterative DFDM of RRNS vs. Convolutional 

Code 

Figure 2.6 shows the BER performance of the proposed decision feedback differential 

modulation (DFDM) scheme with N > 2 for RRNS(5,3) code at 2l, I = 6 error patterns 

and rate 1/2 CC at four iterations and dmm = 3. The RRNS has the same moduli as in 

Figure 2.4. It can be seen that the BER performance increases with increasing 

observation period TV > 2 as expected. It can also be seen that RRNS code performs 

better than the CC at high SNR. 
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2.5.3 Effect of Increasing the RRNS Error Correction Capability 

Figure 2.7 shows the BER performance of the proposed system at different error 

correcting capabilities (t = 1, 2, 3) for a hard decision decoding of the RRNS code. The 

different RRNS codes employed are as follow: The RRNS(5,3) moduli are m\ = 227, rri2 

= 229, mi = 233 non-redundant and rrn, = 239, m5 = 241 redundant, code rate of 21 /37 ; 

while RRNS(9,5) has mx = 227, m2 = 229, w3 = 233, m4 = 239, m5 = 241 non-redundant 

and me = 247, rm = 251, m% = 253, rri9 = 255 redundant moduli, code rate of 35/67; 

the RRNS(13,7) has m\ = 211, m2 = 217, m3 = 223, m4 = 227, m5 = 229, m6 = 233, rm = 

239 non-redundant and m% = 241, mg = 247, m\o = 251, Wu = 253, wn = 255, mn = 256 

redundant moduli, code rate of 49/97 . 

It can be seen that as the error correction capability increases from t = 1 to t = 2, the 

BER performance improves for a hard decision RRNS code. However, there is no 

significant improvement from t — 2 to t = 3. This is consistent with [33], where it was 

shown that there are no significant coding gains beyond t > 5 for an additive white 

Gaussian noise channel. 

2.5.4 Effect of Increasing the RRNS Code Rate vs. Convolutional Code 

Figure 2.8 shows the BER performance for RRNS at different code rates and 21, I = 6 

error pattern in comparison to rate 1 / 2 CC with the same minimum distance dmm = 3 

for conventional differential modulation (CDM) i.e. N > 2. It can be seen from Figure 

2.8 that the RRNS code can reduce the effect of CDM at a higher code rate compared to 

theCCforcL, = 3 . 
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Figure 2.4: BER performance comparison of RRNS(5,3) with error patterns 21, / = 0, 2, 

4, 6 and rate 1/2 CC for conventional differential modulation i.e. N = 2, and minimum 

distance dmn = dfree = 3 . 
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2.6 Conclusion 

In this chapter, residue number system channel encoding and decoding was introduced. 

We discussed residue number system codes redundancy properties and error control 

when applied to communication systems. The encoding and decoding algorithms for 

hard decision were outlined. We extend already existing soft decoding algorithms for 

block codes to residue number system codes. A bit-interleaved coded modulation for 

noncoherent MPSK modulation was proposed and its performance investigated. 

It is shown through simulation results that, in some applications the residue number 

system codes can achieve similar or better bit error rate performance than convolutional 

codes at approximately the same rate and asymptotic coding gain. 
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CHAPTER 3 

MIMO SYSTEMS 

3.1 Introduction 

Providing fast and reliable transmission over a wireless link at low complexity has been 

the centre of attention in the communication industry in the recent past. This is mainly 

due to the fact that a wireless channel is characterized by multipath [14], which may 

result in the received signal adding destructively, hence performance degradation. This 

can be overcome by introducing diversity into a wireless system. Temporal diversity 

can be achieved through employing error correcting coding schemes combined with 

interleaving, an example of which was discussed in the previous Chapter. If two or 

more diversity schemes are combined, more independent dimensions become available 

for information transfer. 

In the last decade, MIMO systems have been found not only to provide spatial diversity 

but also to offer larger channel capacity [2], [3], [4], [87]. The culmination of MIMO 

systems with OFDM has turned multipath propagation, traditionally a pitfall for 

wireless communications, into diversity gain. Space-time (ST) coding forms an integral 

part of MIMO schemes and architectures. A lot of research has been devoted to the 

design and construction of space-time codes (STC) [86], [88], [89], [90], [94]. STC 

have been extend to OFDM systems [145], [146], [147], [148], [149]. The possibility of 

MIMO and OFDM has prompted a completely new area of research with the aim of 

optimizing/maximizing the potential frequency diversity due to the inherent frequency 

selective nature of the wireless fading channel. This has led to new coding schemes 
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analogous to space-time coding such as space-frequency coding [150], [151], [152], 

[153], [154], [155], [156] and space-time-frequency coding [159], [163], [164], [165]. 

This chapter presents a comparative study of the performance of space-time coded 

OFDM, space-frequency coding and space-time-frequency coding. It is shown that 

space-frequency block codes (SFBC) perform better than space-time block coded 

OFDM when the effect of Doppler spread is large and the effect of delay spread is 

small. However, when the effect of delay spread is small and the effect of Doppler 

spread is small, space-time block coded (STBC) OFDM and SFBC have the same bit 

error rate performance. It is also shown that STF does not necessarily offer extra 

frequency diversity gain than the already existing space-frequency coding. 

This chapter begins with a discussion on the existing space-time coding approaches for 

MIMO flat fading channels in Section 3.2, followed by space-frequency coding 

techniques in Section 3.3. Existing space-time-frequency coding schemes are discussed 

in Section 3.4 followed by a comparative simulation results and discussion in Section 

3.5. A conclusion is then drawn in Section 3.6. 

3.2 Space-Time Block Codes 

This subsection presents a brief overview of space-time block codes (STBC) and 

OFDM. Note that although space-time trellis codes (STTC) can be or have been used 

along with OFDM to offer the same advantages, not many architectures have found 

wide applications in the current research involving space-frequency or space-time-

frequency coding. This is mainly due to the easy construction and implementation of 

STBC, allowing for its application in several diversity techniques while still achieving 

full spatial diversity. Although our discussion throughout this thesis will not be limited 

to STBC, many examples will be based on them. 

3.2.1 Signal Model and Performance Criteria 

Consider a MIMO system with Mt transmit and Mr receive antennas. A STBC is a 

collection of some matrices each with size PxMt, where P is number of time slots or 

time delay for transmitting a codeword. A block of K information symbols 
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X = [JC,;C2 •••xK\ drawn from an arbitrary constellation is encoded by a STBC to a 

codeword 

v, v. M, 

(3.1) 

such that v\ denotes the coded symbol to be transmitted on the /th transmit antenna 

during the rth time slot. The entries of V are complex linear combination of 

information symbols x},x2,---,xK or their complex conjugate. The symbol transmission 

rate $lsr which is defined as the ratio of symbols at the input of the encoder and the 

output of the ST coded symbols are transmitted from each antenna as 

MST=K/P, (3.2) 

where K information symbols are transmitted in one block with P time delay. 

The received signal collected over Mr receive antennas can be modelled as 

R = VH + N, (3.3) 

where R is a PxMr received signal matrix and N denotes a PxMr zero mean 

additive white Gaussian noise (AWGN) matrix. The channel H is assumed to be an 

independent identically distributed Gaussian random process with quasi-static fading, 

i.e. the channel remains constant over the length of the STBC, and is given by 

H = 

h Mr 

"M, ,1 *hi, ,2 " ' ^M, Mr 

(3.4) 

where fy , is the channel gain between the rth transmit antenna and the /th receive 

antenna. Assuming that there is perfect channel state information available at the 

receiver, the maximum likelihood decoding metric can be expressed as 
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V = m i n v | R - V H | 2 

= m i n v f r r ( R - V H ) W ( R - V H ) ] (3.5) 

= min v \tr (R*R) - tr (RwVH + VWHWR) + tr ( Vw VHH* ) ] 

where fr(-) denotes the trace, H the conjugate transpose and |-| the norm of a matrix. 

The minimization is done over all the admissible codewords of V . It can be seen in 

(3.5) that the first term is independent of the transmitted vector, the second and the third 

terms are linear combinations of the first order and second order respectively of 

information symbols x1,x2,'-;xK or their complex conjugate. Recall from the 

orthogonality property of STBC, since there are no terms xtXj, xtx', and x*x* with 

ii±j in the third term, the decision metric in (3.5) can be written as sum of function 

whose variable depend on each information symbol xt, i.e. 

min v | R - V H f = X _/;(*,). (3.6) 

Hence the minimization can be done independently on each symbol which leads to fast 

maximum likelihood decoding of STBC. 

The pairwise error probability for detecting a codeword V assuming V was 

transmitted can be upper bound by [85], [86] 

^(v,v)4[ri4 
V f-i 

-M. 
SNRV 

—) ' 
(3.7) 

where r denotes the rank of a matrix ( V - V l and \,X^,---,Xr are the nonzero 

eigenvalues of ( V - V ) l V - V j . This leads to the rank or diversity and product 

criterion for STBC in quasi-static Rayleigh fading channels [86]. The diversity criteria 

is more attractive and for full diversity the difference matrix V - V should be full rank 

for any pair of distinct codewords V and V. It was shown that ST coding can exploit 

up to a maximum MtMr diversity gain in flat fading channels [6], [7], 
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It was shown in [90] that a good STBC should achieve maximum diversity and 

possesses fast maximum likelihood (ML) decoding algorithm. Hence the special 

structure of orthogonal design not only guarantees maximum diversity but also provides 

for fast ML decoding. The transmitted matrix V is said to be orthogonal if it satisfies 

the following condition, 

VWV= be, + k «*f)l- (3.8) 

One of the advantages of STC is increased channel capacity at no bandwidth expansion. 

It was shown that while the maximum symbol transmission rate of one can be reached 

for any number of transmit antennas for STBC from real orthogonal design, STBC from 

generalized complex orthogonal designs cannot achieve a symbol rate of one for more 

than two transmit antennas [89], [90], [7]. Spatial diversity is independent of 

transmission rate, hence full diversity does not imply full rate. It is therefore possible to 

sacrifice some data rate for more diversity and indirectly compensate through high level 

modulation formats. 

3.2.2 Complex Orthogonal STBC 

A well known example of STBC that achieves full diversity but no coding gains is the 

Alamouti scheme [88]. Originally designed for two transmit antennas, it has been 

extended to three and four transmit antennas with emphasis on the orthogonal 

construction of the signal constellation at the transmitter to ease the detection process at 

the receiver. The Alamouti STBC code matrix for two transmit antennas is given in 

(3.9). Clearly the rate of code matrix G2 is one. 

G2 (x, ,x2 ) - (3.9) 

Examples of the STBC code matrix for three and four transmit antennas are defined as 

^ J r 3 \pC\ ? -*-2 ' 3 ) 

x, 

~x'2 

-x* 

0 

x* 

0 - x 

*o r4 V-^l 5 %2>*•}) ~ 

~1 

-x\ 

-x* 

0 

0 -£ 

(3.10) 
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It can be seen from (3.10) that for three and four transmit antennas, the STBC rate is 

3/4. Note that the code matrix for three transmit antennas G3 is derived from the code 

matrix for four transmit antennas G4 by deleting one of the columns. These codes 

belong to the generalized complex orthogonal design for complex constellations such as 

QAM and PSK [7], [89], [90]. 

3.2.3 Quasi-Orthogonal STBC 

It was shown that increasing the number of transmit antennas increases the spatial 

diversity and orthogonal STBC can achieve full spatial diversity [89], [90], [92]. 

However, complex orthogonal STBC could not guarantee rate one for more than two 

transmit antennas. Hence full rate quasi-orthogonal STBC were proposed [93], [7] by 

relaxing the orthogonality condition to achieve full rate. This however compromises the 

fast ML decoding as is it can no longer be carried out on each symbol but on the pairs of 

candidate symbols. An example of four transmit full rate quasi-orthogonal STBC in [7] 

was constructed as follows 

^ 4 \ 1' 2 ' 3 ' 4 / "~ 
A 

-B* 

B 

A* 

* 
" * 2 

~ * 3 

LX4 

X'I 

-x\ 

-x3 

-x* 

x; 

-x2 

xl 
x\ 

X] 

(3.11) 

where 

A = , B = 

It was proved in [89] that the above code has a maximum rank of 2 over all the distinct 

codewords, hence diversity of 2Mr rather than a full diversity of AMr. In [91] full rate 

full diversity quasi-orthogonal STBC were obtained by rotating the signal constellation 

for not more than four transmit antennas. Other full rate full diversity STBC can be 

found in [101], [102]. 
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3.2.4 Space-Time Block Coded OFDM 

Unfortunately STBC are very sensitive to delays. The orthogonality of the STBC is 

broken in multipath fading channels and inter-symbol interference (ISI) may occur, 

degrading their performance. In this subsection we briefly discuss the space-time block 

coded OFDM (STBC-OFDM) signal model. 

Consider an OFDM communication system employing M, transmit and Mr receive 

antennas propagating through a frequency-selective fading channel. A single stream of 

binary information data enters a ST encoder which transforms it into Mt parallel 

streams of baseband constellation symbols. Each stream is broken into OFDM blocks of 

constellation symbols of length Nc such that the nth block from the /th transmit antenna 

to be transmitted on the wth subcarrier is given by vl [n,u], for u-\,2,--;Nc. The data 

symbols are then modulated using inverse fast Fourier transform (IFFT) into OFDM 

symbols. After adding a guard interval, the OFDM symbols are then transmitted each 

stream from its corresponding antenna. Thus, all the M, transmit antennas 

simultaneously transmit on Nc subcarrier. At the receiver after removing the guard 

interval, the received signal is demodulated by fast Fourier transform (FFT). Hence 

equation (3.3) for an OFDM symbol on the nth block becomes 

R[n] = V[«]H[n] + N[/j], (3.12) 

where V[«] is a collection of Nc STBC symbols and N[n] is a diagonal matrix whose 

elements are FFT of the channel AWGN defined the same way as in (3.3). The fading 

channel matrix on the nth OFDM symbol H[n] is a diagonal matrix whose diagonal 

elements are FFT of the impulse channel response. The channel frequency response 

between the /th transmit and they'th receive antennas in the nth OFDM block, on the uth 

subcarrier and /th path can be defined similarly to (3.4) as 

W=f,<jWe~J2"u,'N'- (3-13) 

In (3.13), a].[«] is an independent identically distributed fading coefficient on the /th 

tap delay line. The maximum number of resolvable paths is L = \rmAu +l"| where rm is 
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the maximum delay spread and A„ =l/[NcT) is the tone spacing of the OFDM system. 

For STBC-OFDM to function normally i.e. no ISI, the channel coefficients of P 

consecutive OFDM symbols are considered constant, i.e, hXj[\~\ = l\jl2] = --- = \j[P~\. 

Hence an OFDM symbol period of PNCT , where P is the delay time or the number of 

time slots required to transmit STBC code symbol. It is further assumed that all the path 

gains between any pair of transmit antenna and receive antenna follow the same power 

profile -EJa 'J \ = <Ji f° r a ny given (i,j,l), and the powers of the L paths are 

normalized such that ^ c r , =1 . The frequency selective fading channel is transformed 
/=0 

into L flat multiplicative subchannels, hence the presence of multipath can lead to 

performance improvement. 

Figure 3.1 shows an example STBC-OFDM based on the Alamouti two transmit one 

receive antennas scheme signalling through a frequency selective fading channel. 

X(n). STBC 
Encoder 

« X(H) 

X[2n],-X*[2n + 1] 

X[2n + l],X*[2n] 

ML 
Decoder 

V, Tx, 

IFFT 

V.2*-2 N 

IFFT -1 \ , [« f^* 

Y[2n],Y[2»+l] 
FFT 

\7 Rx 

Figure 3.1: Space-time block coded OFDM with two transmit and one receive antennas. 

At the transmitter after IFFT modulation, the «th STBC-OFDM symbol defined in terms 

of odd X[2» + l] and even X[2n] is given by 
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X[n] = IFFT {X„[2«]};; 

r '" 1 , 1 ( 3 - 1 4 ) 

X[2H + l] = / F i T {X8[2n + 1]}^ 

where n is the time instance. The received signal after removing the guard interval and 

performing OFDM demodulation can be expressed as 

Y[2«] = X[2n\R\, [2«] + Z[2n + 1]H2, [In+1] + N[2n], 

Y[2n +1] = -X* [2« + 1]H„ [2«] + X* [2«]H2
2, [2« +1] + N[2rc + 1], 

where X[2n] and X[2n + \] is a collection of STBC symbols, N[2n + 1] and N[2n] are 

odd and even FFT of the channel AWGN respectively. For the STBC-OFDM example 

above to function normally i.e. without ISI, the channel coefficients of two consecutive 

OFDM symbols are considered constant, i.e. H[,[2n]«Hf,[2n] and 

H21[2rc + 1] * Hy[2B + l] , hence an STBC-OFDM symbol period of 2NCT. 

However, in a fast fading channel which is normally the case for mobile communication 

systems, the orthogonality condition that the channel response of P consecutive OFDM 

blocks are the same, cannot be satisfied. Any time variation will cause performance 

degradation as the channel coefficients from one OFDM block to another are no longer 

constant. From (3.13), the autocorrelation function of the channel coefficients assuming 

adequate subcarrier spacing and independent multipaths is 

r^EfajKn+KWjrWjWj]} 

= E\YdalJ[(n + K)NJ]e-^^Yl<[n^cT]e-JU',UIN'\ (3.16) 

;=o 

where aj. is the fading coefficients on the /th path, E{-} denotes the expectation, Th is 

the autocorrelation function of the fading channel and R , is the power profile. 

Assuming a normalized autocorrelation function based on Jakes' fading channel model 

£-1 

[174], Ra, =J0(2nfDKNcT)^a,, where K = P for a STBC defined in (3.1), hence a 
1=0 
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normalized Doppler frequency of PfDNcT. Increasing the number of subcarriers Nc 

increases the OFDM period PNCT but unfortunately results in more correlations due to 

relatively high mobility of the wireless communication channel. It can be seen from 

(3.16) that even in time selective fading OFDM systems, the effect of multipaths is 

multiplicative and can lead to performance improvement. 

3.3 Space-Frequency Coding 

Although STBC-OFDM was successful in combating ISI, it could only exploit spatial 

diversity even though there is potential frequency diversity offered by the frequency-

selective fading channels. To exploit the possible additional frequency diversity in 

MIMO-OFDM, several coding schemes were proposed, some of which involved 

concatenating narrowband coding with STBC [146], [152], [166]. Space-frequency 

coding emerged as a technique that aims to combine advantages of ST coding and 

MIMO-OFDM [153], [154]. The strategy of space-frequency (SF) coding is to 

distribute the information symbols over different antennas and OFDM tones. Hence the 

use of OFDM in STC as was illustrated in Section 3.2.4 above offers the possibility of 

coding in the frequency domain. Similar to STC, a good space-frequency code (SFC) 

should possess both full diversity and high coding gains. However, most existing SFC 

studies are focussed on exploring frequency and spatial diversities, hence we focus on 

the diversity component of SFC in this subsection. 

3.3.1 Signal Model 

In this subsection we present space-frequency codes from STBC. The incoming bit 

stream is mapped to K information symbols drawn from a discrete alphabet SK e AK . 

The source symbols are then parsed onto blocks and mapped onto space-frequency (SF) 

codewords. The SF codeword is simultaneously transmitted over Nc subcarriers and 

M, transmit antennas. Each codeword is a Nc x M, matrix and can be expressed as 

Cl(0) c2(0) 

c = c,(l) c2(l) 

c,(JVe-l) c2(Nc-l) 

cMl(0) 

(3.17) 
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where c;(w) denotes the channel symbol transmitted over the wth subcarrier by the rth 

transmit antenna. The SF code is assumed to satisfy the energy constraint 

E | | c | > = NCM,. The Nc point IFFT is then applied to each column of matrix C and 

after appending the cyclic prefix, each OFDM symbol is simultaneously transmitted 

from its corresponding transmit antenna. We define the SF code rate as the symbol rate 

per channel use and is given by 

XSF'K'K- (3.18) 

For proper OFDM operation, we assume that the path gains between each pair of 

transmit and receive antennas remains constant over one OFDM symbol period but is 

frequency selective with L independent paths. Hence after removing the cyclic prefix 

and performing FFT, the received signal at the yth receive antenna and wth subcarrier 

can be expressed as 

Mi 

yt (") = Z C' (*H J («) + Zj (") ' (3.19) 

with a frequency selective fading gain whose complex frequency channel response is 

defined as in (3.13). We rewrite the received signal in vector form as 

Y = DH + Z. (3.20) 

where D is an NcMr x MtLMr matrix derived from the SF codeword and is given by 

D = /„ 

a 
D-

D, M, 

(3.21) 

such that each D,=\diag(*l)W
Hdiag(cl)W

Ti---diag(cl)W
t"~\ for i = \,2,---Mt, 

Wt, -^y,e-i*",M. ...e-j2MrliN.-w».J a n d C( i s t h e 0 F D M s y m b o l o n t h e / t h transmit 

antenna. The received vector Y and the noise vector Z are of the same size NcMr x 1 

and are given by 
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Y=[ymy^)---yM-^y2^>'-y2(Nc-i)yK(oy-'yMr(Nc-i)J, (3.22) 

and 

Z = [zl(0)zx(\)-z](Nc-\)z2(0)-z2(Nc-\)zM(0)-zMr(Nc-\)J, (3.23) 

respectively. The channel vector H is of the size MtLMr xl and is defined as 

where h , . / = [ a ° / a ' . - - - a ^ ' ] T . 

3.3.2 Performance Criteria 

Let D and D be two different matrices derived from two different SF codewords C and 

C respectively. Assuming that the receiver has perfect knowledge of the channel, the 

PEP between Dand D is upper bounded as [104], [160] 

P(D,D)< 
( 2 r - l Y ' ^ 

r PI4 
v r A *-i J 

'SNR^ 

KM,J 
(3.25) 

where r is the rank of matrix ( D - D j r ( D - D j , Al,A2,---Ar are nonzero eigenvalues 

of ( D - D ) r ( D - D ) W and r = £{HHK} is an MrM,LxMrM,L correlation matrix of 

H. Based on the upper bound in (3.25), the design criteria for SF codes was proposed 

to be diversity and product criterion. The product criteria maximizes the coding 

advantage. 

The primary interest of SF code design is the diversity gain. The diversity criteria state 

that to maximize the diversity advantage, the minimum rank of ( D - D ) T ( D - D ) over 

all distinct codewords C and C should be as large as possible. Hence 
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r = rank 

= M.rank 

( D - D ) T ( D - D ) 

(T0diag IC - CI axdiag (C - C) • • • crL^diag (C - CI 
(3.26) 

where crnl = 0,1,•••1,-1 is the power profile on the /th path. It can be easily seen that 

the rank of SF codes in MIMO frequency selective fading channels is given by 

r < mm{MrNc,LMrMt}, (3.27) 

In most scenarios, Nc >M,L, hence the maximum achievable diversity gain is at most 

r < MtMrL. However, for full diversity advantage, r = M,MrL i.e. the maximum 

diversity gain for SF is the product of spatial diversity gain MtMr and frequency 

diversity due to the L multipaths. 

Note that from (3.27), the maximum achievable diversity gain is the same as that of ST 

coded OFDM [147], [153]. In SF the fading channel is assumed constant over one 

OFDM symbol in contrast to an entire STBC-OFDM codeword. Hence in the presence 

of time correlated fading, space-frequency block codes (SFBC) would perform better 

than STBC-OFDM which has a longer symbol period. 

3.3.3 Example of SFBC from STBC 

x[n] SFBC 
Encoder 

x,[n] 

x2[n] 

7x \ 7 

IFFT \\.M 

Tx. \7^ 

IFFT -1 Ki M ~--A.4 

V 

£[«! ML 
Decoder y[«] *— FFT 

Rx 

Figure 3.2: Space-frequency block coded OFDM. 
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Figure 3.2 shows an example of a two-branch SFBC scheme signalling through a 

frequency selective fading channel. The two-branch SFBC is an extension of a simple 

orthogonal transmitter diversity scheme first shown in [88]. The data symbol vector on 

the nth block x[n] is encoded by space-frequency block code (SFBC) to two vectors as 

x[n] = [x, (n)x2(«)••• xNc (n)] 

^[n] = [x}(n)-x'2(n)---xK^{n)-x'K^ . (3.28) 

^2[n] = \_x2(n)^(.n)---xNe(n)x'N,lj 

During the nth OFDM block instance, x,[«] is transmitted from the first transmit 

antenna while x2[n] is simultaneously transmitted from the second transmit antenna. SF 

encoding and decoding processes can be described in terms of odd x0[n] and even 

xe[n] component vectors of x[n] such that 

X 2 , o X e X 2,« X o 

(3.29) 

where x l 0 ,x ] c and x2u,x2e are odd and even vectors of x,[«] and x2[n] respectively. 

It can be seen from (3.29) that the Alamouti's equivalent SFBC transmission matrix is 

given by 

G[n] 
-x* x* 

(3.30) 

At the receiver assuming perfect knowledge of the channel, the receive signal vector 

after removing the cyclic prefix can be expressed in terms of odd and even components 

as 

y „ ["] = x0 (") A, „ («) + xe (n) A2 0 (n) + z0 («) 
(3.31) 

y > ] = -<(n)A,.(n) + x* («)A2 e(n) + ze(n) 

where z0(n),ze(n) and A /0(n),A(e(») are odd and even components of the AWGN and 

the complex fading channel coefficients respectively. The channel coefficients are 

defined as in (3.13). To maintain SFBC orthogonality, the complex channel gains 
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between at least two adjacent subcarriers are assumed constant, i.e. A l 0(«)« \e(n) 

and A2o(«) w A2 e(«), hence A^T OFDM symbol period. In the presence of time 

selective fading, SFBC-OFDM would perform better than STBC-OFDM which has a 

longer symbol period. The transmitted symbols are recovered from the received signal 

in a similar manner to the Alamouti scheme [88]. Since the above example uses the 

Alamouti structure, it thus reasonable to expect SFBC from STBC to have the same 

diversity performance as the STBC-OFDM in Figure 3.1. Hence, although the above 

example can achieve spatial diversity, it still fails to achieve frequency diversity offered 

by channel selectivity. 

3.3.4 Full Diversity Space-Frequency Codes 

The design parameters for good SFC are vastly different from those of STC in 

narrowband fading channels. Employing known STC as SFC by coding across space 

and frequency (rather than space and time) in general provides spatial diversity but fails 

to exploit the available frequency diversity [153], [151]. SF codes offering full diversity 

by coding across the multipaths, hence maximizing the frequency diversity have been 

proposed. These codes use techniques such as linear precoders or constellation rotation 

[161], [162], [163], linear constellation decimation [164], or simply repetition codes to 

code across multipaths in addition to space coding [160]. This subsection presents the 

signal design and criteria for SF codes derived from STC using repetition coding across 

multipath. 

3.3.4.1 Signal Design 

In order to achieve full diversity M,MrL, the matrix ( D - D ) r ( D - D ) in (3.26) has 

to be full rank for every distinct pair of the SF codewords C and C. This subsection 

presents a derivation of how full diversity SF codes can be constructed from STBC 

designed for a narrowband fading channel using repetition coding similar to [160]. Note 

that constellation rotation, cyclic shift, or permutation techniques used to generate full 

diversity SF codes are a form of repetition coding with varying coding gains and code 

rates. Similar techniques have been used in the design of STBC to achieve full diversity 

or full rate [101], [102]. 
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Suppose a STBC codeword V in (3.1) which is a M,xM, square matrix, i.e. P = Mt, 

an Nc x M, SF codeword is formed by concatenating V STBC matrices L times. 

Hence a SF codeword is formed by repeating each row of the V matrix L times and 

adding some zero rows where MtL is less than the number of subcarriers Nc, i.e. 

C = 
GL(y) 

O (Nc-LM,)xM, 

(3.32) 

The mapping GL is defined as 

Gi(V) = [lM,®lM]TV : (3.33) 

where lM is an Mt x M, identity matrix, lix] is an all one matrix with size L x 1 and ® 

denotes the tensor product [177]. It can be seen from (3.32) that the symbol rate per 

channel use 9?SF = LM, I Nc is less than one if LMt < Nc. 

3.3.4.2 Diversity Criteria 

From the performance criteria, the rank/diversity criteria states that the minimum rank 

of the matrix over all distinct codewords C and C should be as 

large as possible, 

= ra«*;j(D-D)r(D-D)W 

=rank< I (c-c)(c-c)' 
(3.34) 

where o is the Hadamard product [177], 

(c-c)(c-c)? ^ ( V - V ^ G ^ V - V ) 

o 'NC~LM, 0 NC-LM, 

(3.35) 

and since for quasi-static fading the channel characteristics for one OFDM smbol are 

assumed constant an JV x N correlation matrix T is defined as 
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r = i M, 
(3.36) 

given htJ = [afjal • • • aft ] T for i = 1,2,• • ;M, • 

The aim of this subsection is to prove that the matrix in (3.34) has a rank of at least 

LMtMr. Since ST codes achieve full diversity for quasi-static flat fading channels, 

( V - V J has Mt rank for any two distinct codewords. Note from (3.36) that 

r = E{hijhZ} = diag{cr„au-• •,C7£_,}, (3.37) 

is an L x L diagonal matrix whose power profile on the /th path is given by a,. Hence 

for any number of transmit antennas Mt the correlation T has a minimum rank of L. 

Therefore the rank of the matrix in (3.34) is 

r = rank {1M ® 
-> \H 

(v-v)(v-v) 

= rank (lM) rank j(v ~v ) (v -\f%ank (r) 
(3.38) 

= MrM,L, 

hence, achieving full diversity. 

3.4 Space-Time-Frequency Coding 

As was pointed out in the preceding subsection, SFC is predominantly focussed on 

achieving high diversity gains and hardly any coding gain. The performance of SF 

codes can be improved by coding across several OFDM blocks in what is known as 

"space-time-frequency" (STF) coding. When OFDM is used in wireless 

communications, the frequency diversity induced by the frequency selective channel 

characteristics can be exploited by interleaving and channel coding to maximize gains. 
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Space 

Time 

Frequency/ 

Figure 3.3: Illustration of STF coded transmissions 

STF coding may be viewed as concatenating several OFDM words in the time domain 

or transmitting different ST codeword on several carriers as illustrated in Figure 3.3. 

STF coding combines the advantages of STC i.e. spatial and temporal diversities with 

frequency diversity from SFC. As the name STF coding suggests, coding is across three 

diversity dimensions i.e. space, time and frequency domains. In order to achieve high 

diversity gains from the three diversity domains, several coding approaches have been 

investigated for block fading channels. 

In this subsection we review the signal design and performance criterion of space-time-

frequency codes (STFC) [159], [164], [165], [167]. It is shown that although SFC can 

achieve maximum diversity of MrMtL, more gain can be realized through channel 

coding (temporal diversity). 

3.4.1 Signal Design 

Consider a STF coding MIMO system with Nc OFDM tones, M, transmit and Mr 

receive antennas. A block of K information symbols drawn from a finite alphabet 

SK e AK is encoded by STFC to a codeword such that C e cN'%M,Mb hence a code rate 

9 1 ^ of 

KSTF=KINcMb. (3.39) 
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Thus one STF codeword contains NcMbMt transmitted symbols spanning over M, 

transmit antennas, Mb OFDM symbols (intervals), and Nc subcarriers which can be 

organized as SF block matrices 

C = [cxC2~-CMb]T eCMbKxM', (3.40) 

where C" is the SF block matrix on the nth time instant defined as 

<(0) cj(0) •• 

_C';(NC-\) C"2(NC-\) ; 

for n = l,2---Mb. After IFFT modulation and cyclic prefix insertion in the nth time 

instant, the OFDM symbols are simultaneously transmitted from the different transmit 

antennas. The STF codeword propagates through a quasi-static MIMO channel 

experiencing frequency selective fading and is assumed to have L independent paths 

between each pair of transmit and receive antennas. Under quasi-static fading 

conditions, the path gains between each pair of transmit and receive antennas is 

considered constant over Nc consecutive symbols but differ from one OFDM block to 

another. 

At the receiver, assuming perfect timing and after removing the cyclic prefix and 

performing FFT demodulation, the received signal on the nth time instance can be 

expressed as 

Y"=D"H"+Z", (3.42) 

where D",Y",Z",H" are defined as in equations (3.20) to (3.24). The received vector 

collected over Mb fading blocks can be further defined as 

<&,(0) 

c"M,(Nc-\) 

eC* (3.41) 
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Y = ( Y ' ) T ( Y 2 ) T - ( Y ^ ) T 

X = diag\D\Y)\-,T)Mt\ 
(3.43) 

H = (H*y (H2)-- . (H^y 

z = [z1z2---zMt], 

hence, 

Y = XH + Z , (3.44) 

where Y e C w ' is the received vector, the matrix X G C " ^ ' * ' ^ ' is the 

transmitted signal, H e cM,LMbM' is the channel vector and Z e cMMbM- denotes the zero 

mean AWGN vector. 

3.4.2 Performance Criteria 

From [104], [160] and (3.25), the diversity/rank criteria for STFC requires the minimum 

rank of I X - X ) r ( X - X ) over all distinct codewords C and C to be as large as 

possible while the product criteria maximizes the product of the eigenvalues over all 

pairs of different codeword C and C, such that 

r = E{imn} = IM®\Mb ®(diag{a„cj„-,aL_,}®lM). (3.45) 

Since the primary interest of the code design is diversity, it can easily be seen that the 

rank of STFC in MIMO frequency selective block fading channels is given by 

r < mm{MrMbNc,MrMhM,L}. (3.46) 

Since the number of subcarriers is usually greater than M,L, r < MrMbMtL, and hence 

STFC can achieve up to a maximum diversity gain equivalent to the product of spatial 

diversity MrM,, temporal diversity Mb and frequency diversity L . Note however that 

STFC do not necessarily guarantee frequency diversity compared to SFC but simply 

add a temporal diversity domain. Therefore it is possible to achieve frequency diversity 
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without coding across multiple fading blocks. Let the matrix D = diag (D 1 , D2, • • • T>M" j , 

and 

( x - X ) f ( X - x ) * = I M < 8 > ( D D w ) . (3.47) 

It can be seen that the rank of the matrix in (3.47) is the sum of the rank rn of each nth 

matrix 

^ = & = S ( D B - D " K 2
5 (3-48) 

and the product 

nrK (3 4 9> 
Equations (3.48) and (3.49) are the sum-of-ranks and product performance criteria 

respectively for STFC design for block fading channels for all pairs of distinct 

codewords C and C [159]. In order to achieve maximum diversity of MrMhMtL, the 

matrix (D" - D") Yn ID" - D" J has to be full rank for every pair of different codeword 

C" and C". 

3.4.3 Example of STFC Architecture 

The idea of coding across OFDM blocks was first proposed in [165] and later developed 

in [159] for block fading channels. In these studies, the MIMO channel was assumed 

constant over multiple OFDM symbols. It was also clearly pointed out that frequency 

diversity can be achieved by any full diversity SFC and does not necessitate coding 

across multiple OFDM block. Moreover because of the large number of OFDM tones 

involved, incurring prohibitive encoding and decoding complexity, no STFC that jointly 

codes across space, time and frequency as a single entity has been developed to date. 

Instead, STF coding has been realized by concatenating a channel encoder or frequency 

encoder with STC through interleaving. A remarkable advantage of concatenating two 

independent encoders is that the design task is simplified and the complexity greatly 

reduced. Also the diversity gain and coding gain can be optimized independently. 
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Several schemes of this nature can be found in the following references [164], [165], 

[171]. 

Figure 3.4 shows a schematic diagram of STF coding scheme realized by concatenating 

a channel encoder with SF encoder. 

V . 

Channel 
Encoder Inter! eaver 

Space-

Time 

Encoder 

OFDM 
~L-

• OFDM J"̂  
Figure 3.4: STF scheme realized through concatenating a channel encoder with SF 

encoder. 

The channel encoder codes across Mb OFDM blocks which are serial to parallel 

converted. After interleaving, K source symbols are mapped to Mt OFDM symbols 

that are transmitted over Mb time instances. A similar scheme has been proposed in 

[165] where a ST trellis code was used to code across OFDM symbols and STBC to 

code across OFDM tones, hence STF coding. The STTC used in [165] may be viewed 

as a repetition code which maps a block of Nc source symbols to MbNc, hence a code 

rate of 1 / Mb. Note that techniques such as linear constellation decimation, permutation 

and rotation may be used for increased time diversity but offer minimal coding gains. 

For more coding gains, more powerful channel codes such as convolutional codes may 

be used. 

3.5 Simulation Results and Discussion 

This subsection presents comparative simulated results for MIMO-OFDM systems. The 

path gains are modelled as zero-mean and variance 1 l{2L) per dimension, where L is 

the total number of multipaths. The space-time block coded OFDM and space-

frequency block code (SFBC) follow the system models in Figure 3.1 and Figure 3.2 
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respectively, while the space-time frequency (STF) system model is as shown in Figure 

3.4. The STF coding scheme in Figure 3.4 was proposed in [165]. The AWGN samples 

are modelled as zero-mean complex random variable with variance N0/2 per 

dimension. The OFDM tones were set to 128 and cyclic prefix equal to the number of 

multipaths (or the channel order) in all the simulations, and it was assumed that perfect 

channel state information is available at the receiver. 

For comparison purposes, the effect of cyclic prefix on the overall transmission rate is 

ignored. Hence the overall transmission rate of the system is based on the MIMO 

system deployed. The channel characteristics are assumed to be quasi-static, frequency 

selective Rayleigh fading, with a uniform power profile and equally spaced multipaths 

on all the subcarriers. 

3.5.1 Transmit and Multipath Diversity 

Figure 3.5 shows the BER performance for the space-time block coded OFDM under a 

frequency selective uncorrected Rayleigh fading channel for one and two transmit 

antennas. The modulation format is based on BPSK for both one and two transmit 

antennas. It can be seen that the BER performance improves with increasing number of 

antennas and multipaths as expected. This is due to increasing transmit diversity gain 

and frequency diversity gain from the frequency selective nature of the fading channel. 

This is in agreement with studies carried out in [6] under similar channel characteristics. 

3.5.2 Time Correlated Fading 

Figure 3.6 shows the BER performance for the space-time block coded OFDM and 

SFBC both using BPSK under a frequency flat correlated Rayleigh fading channel. The 

Doppler frequency is normalized to / „ = fDNcT in both cases, where fD is the 

maximum Doppler frequency. The decision variables for STBC-OFDM are computed 

over two OFDM blocks i.e. 2NCT for the case of two transmit antennas in the Alamouti 

scheme. The correlated Rayleigh fading coefficients were generated using the method 

described in [178]. 

It can be seen from Figure 3.6 that the BER performance of the SFBC outperforms that 

of STBC-OFDM when the normalized Doppler frequency is large. However, when the 
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normalized Doppler frequency is small, there is no significant difference in the BER 

performance at SNR of up to 25 dB. It is thus reasonable to expect the SFBC to have 

approximately the same BER performance as the STBC-OFDM when there is no 

relative motion between the transmitter and the receiver i.e. fD = 0. In such conditions, 

the channel is said to be time invariant. These results are in agreements with the finding 

in [151]. 

3.5.3 Space-Time-Frequency vs. Space-Frequency Coding 

Figure 3.7 shows the simulated BER performance for the SFBC and STF coding under a 

frequency flat Rayleigh fading channel i.e. L = 1. The STF coding scheme follows 

Figure 3.4 and uses the 1/2 rate repetition code as channel encoder [165]. The SFBC 

uses BPSK modulation format while STF coding uses QPSK, hence the overall 

transmission rate is fixed to 1 bit/Hz. It can be seen that the BER performance improves 

when a channel encoder is concatenated with SFBC, hence STF coding. This is due to 

diversity gain from the outer repetition code. 
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Figure 3.5: BER performance for the space-time block coded OFDM under a frequency 

selective uncorrelated Rayleigh fading channel for one and two transmit antennas. 
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Figure 3.6: BER performance for the space-time block coded OFDM and SFBC under a 

frequency flat correlated Rayleigh fading channel. 
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Figure 3.7: BER performance for the SFBC and STF coding under a frequency flat 

Rayleigh fading channel. 
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3.6 Conclusion 

In this chapter, the performance of STBC-OFDM, SFBC and STF coding was compared 

through pairwise error probability. It was shown through simulated bit error rate 

performance that SFBC perform better than space-time block coded OFDM when the 

normalized Doppler frequency is large. However, when the normalized Doppler 

frequency is small, there is no significant difference in the BER performance. This is in 

agreement with the literature since the decision variables for STBC-OFDM are 

computed over two OFDM blocks and it relies on the symbol period to remain constant 

for two block period i.e. 2NCT for the case of two transmit antennas, compared to one 

OFDM block for SFBC i.e. NCT. Note that there is no frequency diversity gain in using 

OFDM when the channel characteristics are considered frequency non-selective. Hence, 

there is no diversity advantage of using STBC as SFBC under frequency flat fading. 
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CHAPTER 4 

REDUNDANT RESIDUE NUMBER SYSTEM CODED 

SPACE-TIME-FREQUENY MODULATION 

4.1 Introduction 

The use of OFDM in MIMO systems provides a platform not only for efficient 

bandwidth transmissions but also for an intriguing signal design. By spreading 

information across several OFDM tones, transmit and receive antennas, it was shown 

that a maximum diversity gain of up to a product of temporal diversity, frequency 

diversity and spatial diversity can be achieved [159], [164]. Most of the proposed space-

time-frequency (STF) architectures in the literature maximize frequency diversity 

predominantly from the frequency selective nature of the fading channel and STF does 

not guarantee frequency diversity. It was shown that frequency diversity could be 

achieved without necessarily coding across several OFDM symbols from space-

frequency codes (SFC). In [161], [162], full diversity SFC was achieved by use of 

constellation rotation. A systematic design of full diversity SFC was proposed in [160] 

by repeating a row of space-time code (STC) matrix L times, where L is equal to the 

channel selective order. The design of space-time-frequency codes (STFC) that achieves 

both high data rates and full frequency diversity were addressed in [164]. 

The use of repetition codes in [160] and similar techniques raises questions as to 

whether they are more sophisticated codes with better distance properties (of course this 

may lead to high complexity). Introducing a trellis in the frequency domain 
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predetermines the transmission path, hence maximizing the frequency gain. Similar to 

STC, which introduces correlation both in space and time, hence maximizing spatial 

diversity, STFC ensures joint spatial-spectral diversity by introducing correlation in 

space, time and frequency in the transmitted signal. 

Figure 4.1 illustrates the frequency-time coding design problem of the frequency 

encoder. The information bit stream to be transmitted enters a frequency encoder, which 

maps them to a series of parallel symbols that are simultaneously transmitted on several 

subcarriers. Since the aim of the frequency encoder is to find a mapping from bits to 

symbols such that the frequency diversity gain is maximized, the choice of a frequency 

encoder and subcarrier allocation is paramount. The coding is across OFDM tones as 

opposed to OFDM symbols in most of the STFC in the literature [164]. 

Frequency 

Parallel 
Symbols 

a) 

l 

Time 
b) 

bit 
Frequency 

Encoder 

o 
Parallel 
Symbols 

Figure 4.1: Frequency time coding. 

Although some STFC designs have addressed this problem in part [159], [165], they are 

preoccupied with maximizing frequency diversity due to the frequency selective nature 

of the fading channel. Designing a code that maximizes the frequency diversity due to 

69 



multipaths presupposes that the transmitter knows the channel characteristics, which 

may not be practically possible in some instances. Also because of the large number of 

OFDM tones involved, it is important to consider a design that maximizes the spatial-

spectral diversity and channel coding without incurring prohibitive decoding 

complexity. One way of achieving that is to concatenate a frequency encoder with 

space-time (ST) encoder. 

In this chapter, a redundant residue number system based STF coding scheme is 

proposed. The design problem is divided into a STBC and a frequency encoder. The key 

feature of the proposed STF coding scheme is the frequency encoder. Most STF 

schemes in the literature use coding across multipaths and OFDM modulation 

techniques to maximize frequency diversity. The main challenge is the code 

construction involving a large number of OFDM carriers in a practical system. By 

dividing the available bandwidth into several non-overlapping subchannels equal to the 

code length, the proposed scheme codes across a number of subcarriers with STC 

signalling on each subcarrier. Hence the signal design on each subcarrier is the same as 

STC and multipath diversity is merely a trivial extension. Besides, any STC design that 

maximizes diversity can easily exploit the frequency diversity from the selective fading 

channel. Another advantage of using this scheme is that the frequency encoder is 

independent of the STC design hence optimizing frequency and space diversities 

independently. 

The rest of this chapter is organized as follows. In Section 4.2 a RRNS based space-

time-frequency coding scheme is proposed for block fading channels and its diversity 

potential investigated. Section 4.3 investigates the proposed RRNS-STF coding scheme 

over a rapid fading channel followed by numerical results and discussion in Section 4.4. 

A conclusion is then drawn in Section 4.5. 
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4.2 Design of RNS-STFC in Block Fading Channels 

4.2.1 System Model and Signal Design 

RRNS 

Encoder 

A; 

Space-

Time 

Encoder 

OFDM 

M, 
• OFDM 

~z_> 

Figure 4.2: Transmitter section of the RRNS-STFC system model 

Consider a RRNS coded STF coding scheme with Mt transmit and Mr receive 

antennas. Figure 4.2 shows the block diagram of the transmitter section. A block of b 

bits per coding interval enters an outer RRNS(JV C ,F) code which systematically 

encodes them to a set of Nc parallel residues as described in Chapter 2. For systematic 

RRNS encoding, the b information bits are mapped to V non-redundant residues and 

Nc-V redundant residues are generated using the base extension (BEX) method (refer 

to Section 2.3). The residues are each converted to their binary equivalent and a zero bit 

appended to every b bits of the non-redundant residue in order to have the same 

V 

number of bits on each parallel stream, b = V bj. Recall that redundant residues are 

each mapped to b. =log2w (+l and non-redundant to b =log m , hence the moduli 

should be chosen close to each other for the above condition to hold. Assuming equal 

number of bits per residue, the code bits on each parallel stream are then mapped to 

MPSK symbols such that each MPSK symbol has b bits per label. 

Suppose there are b, = MhKb bits per residue and for every nth time instant, K MPSK 

symbols on each wth parallel stream enter a STBC encoder. The STBC encoder maps K 

MPSK symbols on each wth stream onto M, transmit antennas. After ST coding, a 

block of Nc STBC matrices, one for each antenna, are OFDM modulated and a cyclic 
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prefix is appended and transmitted on Nc subcarriers. Hence during the nth time instant, 

a block of Nc STBC symbols are simultaneously transmitted on Nc subcarriers and M, 

transmit antennas. Assuming that the STBC matrix is drawn from a discrete alphabet 

S eAK and that each residue forms Mb STBC matrices, the STF code matrix can be 

seen as concatenation of M.N„ STBC matrices defined as 

C = [C(0)C(1) • • • C(Ne -1)] e CK MbPxM, (4.1) 

where 

C(«) = 

c\(u) c\{u) 

c,2(w) c\(u) 

c, ' (u) c , ' (u) 

C M , ( " ) 

CM,(U) 

„Mb \7 («) 

e C MbPxM, (4.2) 

c"(u)~\c^{u)c"z{u)---c"r{u)\, hence the transmission rate of our RRNS-STF code is 

equivalent to that of the STBC in(3.2). 

3? =5? -KIP (4.3) 

V 1 

V M. 
. 
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Figure 4.3: Receiver section of the RRNS-STFC system model 

Figure 4.3 shows the block diagram of the receiver section of the proposed RRNS-STF 

coding system model. The received signal is OFDM demodulated and passed on to a 

space-time decoder. The space-time decoding process transforms the Nc parallel 
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streams of the received signal into a string of MPSK symbols corresponding to the Nc 

parallel residues. The MPSK symbols are then converted to binary form, mapped to 

their corresponding residues and fed to RKNS decoder. The RRNS decoder, in turn 

decodes the Nc parallel residues to b information bits per decoding interval. The 

received signal is assumed to have perfect timing and synchronization. After cyclic 

prefix removal and OFDM demodulation, the received symbol on the wth subcarrier 

during the nth fading block instance is given by 

YB(K) = C ( K ) H B ( « ) + Z ' , (U) , (4.4) 

where H"(«) and Z"(w) are the FFT MIMO channel matrix and AWGN matrix 

respectively on the irth subcarrier during the nth time instance. 

4.2.2 Channel Model 

Consider a MIMO-OFDM system propagating through a quasi-static fading channel 

which experiences frequency selective fading with L independent paths between each 

pair of transmit and receive antennas. Under this assumption, the path gains for each 

pair of transmit and receive antennas are constant over one OFDM symbol duration. 

The path gains are also assumed to be spatially uncorrected and temporally independent 

from block to block. The channel impulse response between the rth transmit and thej'th 

receive antennas during the nth time instance is given by 

KAKT) = £ < , ( W V J - * , ) , (4-5) 

where r, is the delay of the /th path, a* XI) is the fading gain of the /th path between 

the rth transmit and they'th receive antennas during the nth time instance. It is further 

assumed that all the path gains between any pair of transmit and receive antennas follow 

a uniform power profile, normalized such that j £ #,",(/) = 1, for any given (i,j, I, ri). If 
1*0 

we define the fading gains between each pair of transmit and receive antennas in vector 

form as h". - [ a " / 0 ) « " / l ) - - - a " ; ( Z - l ) ] , then the frequency response of the channel 

matrix on the uth subcarrier in the nth block in (4.4) can be expressed as 
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Hn( t t) = [ H ^ I ( « ) - H ^ 1 ( t t ) H ^ ( « ) . - H ^ j 2 ( « ) . - H ^ - H ^ ; M r ( M ) ] T , (4.6) 

where H" j(«) = Wh"J. and 

given that Nc is the total number of OFDM tones. 

4.2.3 Diversity Criterion 

From (4.4), the total received signal can be written as 

Y = XH + Z , (4.8) 

where Y e cNcMbMrF is the received vector defined as 

Y = [Y'(0)Y2(0)---YM'(0)Y1(1)Y2(1)---YW' (l)--- YMb(Nc-\)J. (4.9) 

The transmitted signal matrix X e C
N^M<r*NM»M^< is defined as, 

X = diag{X(0),X(\),-X(Nc-\)}, (4.10) 

such that X(u) = lK®diag[cl(u),C\u),---CMb(u)}. The channel vector matrix 

H e CM-NMbM- is given by 

H = [H1 (0)H2 (0) • • • UMb (O)H' (1) • • • H1 (Nc -1)• • • HMb (Nc - \)J, (4.11) 

and Z e cMlMbMrP denotes the zero mean AWGN vector defined as, 

Z = [Z1 (0)Z2 (0) • • • ZMb (O)Z1 (1) • • • Z1 (Â c -1) • • • ZM> (Nc - \)J. (4.12) 

Without redundancy during the RNS coding process, the pairwise error probability of 

the proposed STF coding scheme between two distinct codewords X and X derived 

from C and C respectively, can be written as [104], [103], [160] 
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P(X,X)< 
'2r-lY^.YYsNlO in 

J \ M J KM< J 

(4.13) 

where r is the rank and [Xt] are nonzero eigenvalues of the matrix 

( X - X ) r ( X - X ) , with r = £ J H H w } . From the diversity/rank criterion, the 

minimum rank o f l X - X i r ( X - X ) over all distinct codewords C and C should be 

as large as possible. Since RNS codes are repetitive in nature, in the absence of 

redundancy (error correction), C"(u) in (4.2) is independent of u, and hence the rank 

of ( X - X ) r ( x - X ) * can be written as 

r = ra^[(x-X)r(X-X)7 

= rank[lK~\rank[lK]2^rank (c" - C " ) r ( c - C " ) * 

= NcM,Ydrank\ (c B -C")(c"-C")™ ° r j , 

(4.14) 

where T = ElH"j(u)\Il"j(u)\ [ and is independent of u and n. According to the rank 

inequality, we can define minimum rank of 

rank ( C " - C " ) ( C - C " ) ' o r > < rank (c"-c")(c-c")w 
rankT. (4.15) 

Since the rank of (C - C") (C - C") is at most M, and the rank of T is at most L , 

( C -C")(C" -C)H ° H is at most mm(P,M,L), where P is defined the rank of 

in (3.1). Thus the achievable diversity product using RNS codes without redundancy in 

STF coding is 

min{NcMrMbP,NcMrMbM,L}. (4.16) 

Since P = M, for square STBC code matrix, the diversity gain of the RNS-STF coding 

scheme is NcMhMrMl, a product of OFDM tones (intrinsic frequency diversity) Nc, 
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time diversity Mb and spatial diversity MlMr. Since the information to be transmitted 

is spread over TV, residues, the use of RNS codes offers intrinsic frequency diversity 

equal to the number of OFDM tones. This frequency diversity is due to the repetitive 

nature of RNS codes and is independent of the frequency selective nature of the fading 

channel. Frequency diversity due to multipath can be further exploited by techniques 

such as constellation rotation [162], repetition [160] and permutation [164], [96]. Hence 

the RNS-STF coding scheme offers a potential frequency diversity gain of up to NCL. 

4.2.4 Diversity Concept and Coding Gain 

With redundancy/error correction, the frequency diversity of RRNS-STF coding scheme 

is limited to the Hamming distance dmin and the channel order, hence the pairwise error 

probability (codeword error) in (4.13) may be written as [27], [28], [38], [39] 

P(X,X)<f;N(l-P^-^)\ (4.17) 
!/=( + ] V " J 

where t = (dmm - l ) / 2 is the error correction capability and Pu is the probability of the 

wth residue/subcarrier symbol in error, given by [104] 

P< 
2MMM,~\\(U^ . V Y S N R ^ ^ ' 

M,MrMb j n * 
\ * t J 

(4.18) 

Assume that the number of transmit and receive antennas together with the time 

diversity components are kept constant. Note that the asymptotic decay 

(SNR/M,) ' in (4.18) is only valid for all eigenvalues A, > 0 . Even then many of 

the eigenvalues may be so small that they are of no relevance at reasonable SNR. Hence 

the decay may be weak and therefore increasing the Hamming distance of the RRNS 

code higher than the relevant number of eigenvalues may not significantly increase the 

steepness of the error curves. It is therefore important to consider the frequency 

diversity degree of the RRNS-STF coding scheme in two dimensions; frequency 

diversity due to the error event given by the Hamming distance and the diversity order 

of the channel influenced by the relevant eigenvalues. In some applications where the 
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channel and the RRNS code fail to provide full diversity, they may still provide a 

coding gain given by 

GRNS(x,X) = lO\og(XRNSdmm) dB, (4.19) 

where 9 ? ^ is the rate of the RRNS code. Since the coding gain is responsible for the 

shift of the error rate curve to the left, if the shift is big enough, the RRNS-STF coded 

system may need a lower SNR at any given bit error rate. Hence the use of RNS codes 

in STF coding offers an intrinsic frequency diversity component that has not been 

considered so far in the literature. Note however that the number of nearest neighbours 

and the number of different error coefficients also play an important part in the BER 

performance. Increasing the Hamming distance leads to increased number of nearest 

neighbours, hence a large error coefficient which may negate the diversity gain on the 

overall bit error rate performance of the system. 

4.2.5 Transmission Rate of the RRNS-STFC 

Although one may argue that introducing redundancy in the OFDM tones may reduce 

the bandwidth, the overall performance improvement and the overall code rate of the 

system may tell a different story. As was stated in (4.3) the transmission rate of the 

proposed STF coding scheme in this chapter is equal to that of the inner STCB ( STTC 

may also be used). By choosing the frequency encoder with a high code rate such as 

RRNS codes and a high modulation format for the inner STBC, one can compensate for 

the loss in bandwidth efficiency due to redundancy. 

4.3 Performance of RRNS coded STFC in Fast Fading Channels 

4.3.1 Time and Frequency Selective Fading 

The channel model is an important parameter in the design of any communication 

system. In the preceding section and in Chapter 3, the MIMO channel was modelled as 

a frequency selective multipath fading channel with wide-sense stationary uncorrelated 

scattering for a given block (quasi-static fading). However, due to high data rates, high 

mobility and transmit diversity using multiple antennas, the above condition may not 

hold for a wireless MIMO channel. One also needs to incorporate spatial characteristics 
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of the channel on top of classical understanding of fading and Doppler spread such as 

angle of arrival, time delay spread and adaptive array geometry. Several studies have 

been devoted to channel modelling in MIMO systems and its effect on the channel 

capacity and bit error rate performance [175], [176], [174]. 

Consider a fast fading frequency selective MIMO channel where the fade gain varies 

from one STC code symbol to another. The fade gain from one STC symbol may be 

considered time invariant i.e. flat fading or time variant i.e. time selective fading. 

Whereas a frequency selective channel provides multipath diversity, a time selective 

channel provides Doppler diversity that might be exploited through the use of a Rake 

receiver [39]. We use Clarke's two-dimensional isotropic scattering model where the 

angle of arrival is uniformly distributed over [0,2;r] to incorporate the spatial element 

of the channel [174]. The received signal statistics on the wth subcarrier during the nth 

time instant are defined the same way as in (4.4) except the channel characteristics 

H"(M). To study the received signal statistics and the correlation properties on their 

envelope as a function of frequency, time, antenna separation and angle of arrival, we 

model spatial-temporal time and frequency selective fading channel impulse response as 

KJ (TV) = I>< fa KJ & 03(7- -l/KAf )Er (p,), (4.20) 

for the rth transmit and the /th receive antenna elements on the nth block. In (4.20) 

above, <f>, denotes the angle of arrival for the /th nonzero tap, whose delay is l/KAf, 

given that A, =\/NcT is the subcarrier spacing, and a"j(l,t) is the complex fading 

coefficient. Er(#>,) and E r(^ ;) are the array gains at the transmitter and receiver 

respectively defined as a function of the antenna geometry and angle of arrival, 

E,g(<p,) = exp[-y'2;rA(/-l)cos<j7/1 X\, where A is the antenna separation. Assuming a 

uniform angle of arrival and adequate antenna separation, the array gain can be set to 

unity i.e. E,(^) = l and Er((p,) = \ .L is the total number of resolvable paths (channel 

order). A detailed study of MIMO channels and their statistical models is not covered in 

this thesis but may be found in [175], [176] and the references therein. If we consider 

our STFC codeword to be time limited over MbNcT hence a bandwidth 1/ MbNcT, 

following a particular /th path of the rth and they'th antenna pair's random process, the 
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Fourier transform of the time response for the complex amplitude can be expressed as 

[175] 

<, ( ' . ' ) - Z KMM)eJ2ml{M>NJ), (4.21) 
q=-foMbNcT 

given that P"j{u,l,q) is the independent circularly symmetric complex Gaussian 

random variable (follows a Rayleigh distribution) and fD is the Doppler frequency . 

We can then express the channel response of the «th time slot and the «th subcarrier as 

J i J (4.22) 

where h", =\a"j(0,uT)a"J(],uT)---afJ(L-l,uT) is the L sized vector of all time 

responses such that 

fDMbNcT 

< , ( / , « 7 > £ ffJ(u,l,qyeJ2'*"(M>N<), (4.23) 
q=~fDMbNcT 

while ou = [ e V J 2 " " ' ' - e - J 2 ™ ( W ) " ' ' ] T contains the corresponding FFT coefficients. 

It can be seen from (4.22) that there is discrete-time and frequency complex exponential 

bases, justifying extrinsic diversity gains. This is due to the time (Doppler) and 

frequency selective nature of the fading channel. For the uncorrected fading channel, 

both time and frequency selectivity have the same effect, i.e. improve the performance 

of the system if collected over several taps. Hence in this thesis, we shall consider only 

a frequency selective channel with L diversity/channel, in which equation (4.23) 

becomes 

alJ(l,uT) = ffJ(u,l)eJ2""N°. (4.24) 
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4.3.2 The Effect of Time Correlation 

In most OFDM systems, the cyclic prefix is assumed large enough so that the effect of 

ISI is limited to the cyclic prefix which is discarded at the receiver. The effects of 

spatial correlation is well investigated and covered in [175], [176] and the references 

therein. Therefore we concentrate on the effect of time correlation in this subsection. 

Assuming that the fading process remains constant over M, consecutive symbol 

intervals, and that there is no spatial or spectral correlation, the zero mean complex 

Gaussian variables based on Jakes' model [174] for T = M,NCT symbols apart in a 

frequency selective time correlated fading channel is given by 

A* 

(4.25) 

^ S { H ^ % ) ( H # > ( I I ) ) * 

= j\2nKfDf)!fjal(l). 

where Tu denotes the autocorrelation function on the wth subcarrier and cru(/) is the 

power profile on the /th path and the irth subcarrier. Note that Tu and crl(l) are 

independent of u. We assume a uniform power profile on all the subcarriers, i.e. 

L-\ 

V a\ (/) = 1 • Focusing on the maximum achievable diversity gain of the proposed 

/=o 

RRNS-STF coding scheme under time correlation, the sum of ranks in (4.14) for a fast 

fading channel can be written as 

r<Mr ̂ rankl ( C ( « ) - C ( M ) ) ( C ( M ) - C ( « ) ) r„ , (4.26) 

given C(w) is defined in (4.1) and Yu is a correlation matrix whose elements are 

defined in (4.25). The rank of (C(zO-C(w))(c(M)-C(«))* is at most PMh and the 
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rank of Fu is at most L, hence the rank of our scheme under fast fading frequency 

selective channel conditions is 

r < mm(MrNcPMb,MrNcMtL). (4.27) 

Considering that L « Mb and P>M, in practice, the maximum achievable diversity 

gain for a fast fading time correlated frequency selective channel is 

r < MrNcM,L . (4.28) 

Note that time correlation only affects the time diversity component of the proposed 

RRNS-STF coded system. The performance may be improved through bit/symbol 

interleaving. 

4.3.3 Analytical Model 

Consider a STF coding MIMO system with Nc OFDM tones, M, transmit and Mr 

receive antennas propagating through a frequency selective fast Rayleigh fading 

channel. The system model is as discussed in Section 4.2.1. Assuming perfect channel 

state information, after removing the cyclic prefix and OFDM demodulation, the 

received signal on the wth subcarrier during the nth time instance is given by 

Y » = C » H » + Z » , (4.29) 

where the transmitted signal matrix C„ (u) e CM'fxM' is defined in (4.2), the received 

vector matrix Y„(w) e CM'F, and AWGN vector matrix Zn(w) e CM,P are as defined as 

Zn(u) = [z;(u)z"2(u)-z"M(u)} . 

The channel vector matrix K„(u) e CMlNMlM' is defined as in (4.6) except for the 

channel coefficients corresponding to the /th transmit and the7th receive antenna during 

the nth time instant on the wth subcarrier defined as H",(M) = Wh",s differ in 
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hj\-=[a"j(u, 0)a"j(u,l) • • • < / « , L-\)J . The PEP of decoding a C„(u) given that the 

codeword Cn(u) was transmitted can be expressed as [39], [104], 

(4.31) 
p(Cn(u),Cn(u)) = P^\Yn(u)-Cn(u)f>\Yn(u)-Cn(u) 

= p ( R e { ^ [ Y > ) ( c > ) - C > ) ) H > ) ] } ) 

Hence the average PEP can be written as 

u 

(4.32) 

where gri(u) = Reltr and P. (x) denotes the pdf of 
g («) 

Y > ) ( C > ) - C > ) ) H „ ( M ) 

g„(w) at x. Note that g„(«) can be written in quadratic form of the correlated complex 

Gaussian random variables, i.e. g„(w) = g*Q"g„, g„ = [Y„ (w)H„ (w)J and 

Q" = 
0 I M ® ( c » - C , » ) ' 

^®(CB(«)-C„(«)) 0 
(4.33) 

Consider a residue symbol on the «th subcarrier spanning Mh matrices per residue, its 

pdf can therefore be written from its characteristic function as [39] 

*oe>(*) = 7 " f ̂ >Giu)(s)6Xipi-sx)ds.. 
In 

(4.34) 

where G„ = G«Q„G„, given that G„ = [§,(«)§,(«)" •§«»], 

Q„ = 
C\u)\ 0 

C(«)Iw 
(4.35) 

given that 0M is a MbxMb zero matrix and C(H) = [CJ(M)C2(«)••• CM (w) whose 

elements are defined as Cn(u) = lM ®(c„(u)-Cn(u)). Assuming a frequency flat 
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independent fading channel i.e. L = 1 with no correlation and a uniform power profile, 

the characteristic function ^>Gffl){s) can be expressed as 

< I > G ( . ) ( * ) = I 2 W , W ^ - - S * . Q » > (4.36) 

where <&„ is the covariance matrix on the Mth subcarrier defined as 

O ..= 
a2+Nn a2 

a 
'M , (4.37) 

for a1 andJV0 are variances of complex channel and AWGN during the nth time 

interval on the wth subcarrier. Note that the Hermitian Gaussian quadratic form 

G„ = G^Q^G,, can be diagonalized by an orthogonal transformation into [177] 

2MrM,Mb 

G?Q.G.- X W . (4.38) 

where Xt are egeinvalues of the correlation matrix <E>„Q„ and Vt are independent zero-

mean, unit variance Gaussian random variables. Using the alternative form of the 

complimentary error function [179] 

2 re Z re 
erfc{x) = — —: dt for x>0, 

n i t +\ 

(4.39) 

the average PEP of the symbol residue on the wth subcarrier can be written as 

OG 

/>(C(«),C(«)) = Jg(V2V)p(V)JV, (4.40) 

which yields 
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.. ww _v'(r'+l) 

/>(c(w),C(«)) = - H——p(y)dVdt 

tf.J ( '+1 

4) 
(4.41) 

2M,Mb 
-dt. 

'•(r»+i)nM,a+^r 
The integral in (4.41) can be solved using the numerical methods such as the Gauss-

Chebyshev quadrature to give [104], [107], [108], [109], [110], [111], [112], [172], 

[179] 

n 2MMt • i n zM^b _M 

p(c(u),c(u)U—£ n (1+4,»,,)~ r+R„> (4.42) 
Jm\ ,=1 

where Xi u , = Xt u sec [{2j-\)nlAn\ and « is a small positive integer. As n increases, 

the remainder term Rn becomes negligible. The probability of decoding codeword X 

given that X was transmitted P(X,X) can be calculated from (4.17) by substituting 

Pu=p(C(u),C(u)). 

4.3.3.1 Remarks 

Firstly, note that when there is no time correlation, the channel fades independently and 

the covariance matrix O^Q,, is full rank. Hence from (4.37) and the dimensions of the 

covariance matrix Oi(Q„, the maximum achievable diversity advantage is 2MrM,Mb. 

This implies that both the STFC and the complex channel are full rank. However, if the 

channel is time correlated, the covariance matrix in (4.37) becomes 

O. .= 

£o,o(") Co.iO) 

£i.o(") <"i,i(w) 

C0Mb-M) 

C,M-,(") 

e, Mh-\Mh-\ («) 

®I. (4.43) 

for ^i j(u) = Eigl(u)(u)gJ(u)\ defined as 
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C,A«) 
£{Y,(K)Y,W(K)} E{Y,(u)B.J(u)} 
£{H, (U)Y*(M)} £{H,(w)H*(w)} 

(4.44) 

Therefore maximum achievable diversity advantage is dependent on the rank of the 

matrix <I>MQ„, which reflects the relative motion between the transmitter and the 

receiver. Note however that when the channel is heavily correlated i.e. fDT » 0, the 

correlation matrix in (4.43) tends to (4.37), which is the correlation matrix for the 

independent fading channel. Hence, the performance improves with increasing fDT. 

This is consistent with the literature [142], where it was shown that for coherent 

reception, the multisampling receiver benefits from the implicit time diversity of the fast 

fading channel. 

Secondly, note that in the presence of multipaths i.e. L > 1, each path is assumed to fade 

independently and hence the autocorrelation of the /th path assuming Jakes' model can 

be defined as E\af f(u,lx)a*T f(u,l2)\ = c„(/) for / ,=/ 2 and zero otherwise, where 

T = MtNcT. For comparison purposes, it is assumed that the total received energy for 

frequency selective fading channel is equal to the received energy for flat fading 

L 

channel, i.e. ^<r 2 ( / ) = a2, where L is the channel odder. Using the same approach as 

for frequency flat fading, the characteristic function in (4.36) can be expressed as the 

product of the channel order 

where O H / is the covariance matrix on the /th path defined as in (4.37) except for the 

variance cr2(/) = Elaf (u,l)a*(u,l)\. Assuming independent fading on each subcarrier, 

then frequency selective fading leads to additional frequency diversity advantage. 

Similarly, the codeword error probability for a frequency selective fading channel can 

be derived using methods for a flat fading channel. 

85 



4.4 Numerical Results and Discussion 

In this subsection, numerical results for the proposed space-time-frequency coding at 

the receiver are presented and discussed. By keeping the transmit diversity order fixed, 

we investigate the effect of time and frequency diversity for the proposed RRNS-STF 

coding scheme. The analytical model is as discussed in Section 4.3.3 with the 

transmitter and the receiver models based on Figure 4.2 and Figure 4.3 respectively. 

The RRNS encoder is used as the frequency encoder and the Alamouti [88] two 

transmit antennas space-time block structure used for space-time encoding (encoder). 

Systematic RRNS coding is used with a zero bit appended on each non-redundant 

residue equivalent bits in order to have equal number of bits on each parallel stream. 

The moduli for eight subcarriers m] = 229, m2 - 233 , m3 = 239 , mA = 241, m5 = 247, 

m6 = 251, m1 = 253 , mg = 255 were taken from [33]. Note that there are eight bits per 

residue/subcarrier. The measured pairwise error probability (PEP) is presented as a 

function of SNR (Eb/N0) in dB and is computed from (4.17). 

Figure 4.4 shows the PEP performance comparison of the proposed RRNS coded with 

the uncoded (i.e. no frequency encoder) and repetition coded space-time frequency 

(STF) coding scheme under frequency flat Rayleigh fading. For fair comparison, the 

overall transmission rate of each system should be equal. The uncoded system uses 

BPSK space-time encoder, hence 1 bit/Hz while the repetition coded and RRNS coded 

STF both use QPSK space-time encoder. For RRNS(8,6), hence 6/8 code rate with 

t = 1 error correction capability, the overall transmission rate is 3/2 bits/Hz, while for 

RRNS(8,4), hence 4/8 code rate with t = 2 error correction capability, the overall 

transmission rate is 1 bits/Hz. Note that since 8 bits moduli, hence 8 bit/residues are 

used, the time diversity component Mb =2. The repetition coded STF coding scheme 

follows STF system model proposed in [165]. The 1/2 rate repetition outer encoder is 

concatenated with the inner two transmit QPSK Alamouti STBC, hence the overall 

transmission rate is 1 bit/Hz. 

It can be seen from Figure 4.4 that the PEP performance improves on application of the 

outer encoder i.e. for the repetition and RRNS code. This is due to diversity gain offered 

by the repetition code and the inherent repetitive nature of RRNS codes. However, the 

PEP performance curves of the proposed RRNS-STF scheme are much steeper than that 
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of the repetition code. This is due to both the repetitive nature of RRNS codes and 

coding across residues (which is equivalent to coding across OFDM tones), which 

maximizes the frequency diversity gain as reflected by the curve's shift to left as we 

move from r = 1 to t = 2 error correction capabilities. Note that when there is no 

multipath, the proposed STF coding scheme in [165] only achieves two dimensional 

diversity gain i.e. spatial and temporal diversities. There is no frequency diversity 

advantage/gain for the uncoded or repetition coded STF coding scheme under frequency 

flat fading. The STF coding scheme proposed in [164] can be categorized as uncoded 

STF in the absence of multipaths. 

Figure 4.5 shows the PEP performance for the proposed RRNS coded STF coding 

scheme under frequency flat Rayleigh fading with and without time correlation. The 

RRNS(8,6) code is used along with QPSK Alamouti's two transmit STBC, hence a code 

rate of 6/8 , Mh-2 and t = 1 error correction capability. It can be seen that the 

independent fading channel (i.e. no time correlation) performs better than rapidly fading 

channel as expected. However, at relatively high mobility (reflected by a high 

normalized Doppler frequency fm = fDT) the PEP performance improves 

tremendously, becoming comparable to the independent fading channel. This is 

because for coherent reception, the multisampling receiver (i.e. Mb > 1 per 

residue/subcarrier) benefits from the implicit time diversity of the fast fading channel. 

This is consistent with the literature [142]. 

Figure 4.6 shows the PEP performance for the proposed RRNS coded STF coding 

scheme under frequency selective Rayleigh fading. The RRNS(8,6) code is used along 

with QPSK Alomouti's two transmit STBC, hence a code rate of 6/8 , Mb=2 and 

t = 1 error correction capability. It can be seen in Figure 4.6 that the PEP performance 

improves with increasing multipaths as expected. 
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Figure 4.4: PEP performance comparison of the proposed RRNS coded with the 

uncoded and repetitive STF coding systems. 
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Figure 4.5: Numerical PEP performance for the proposed RRNS-STF coding scheme 

under a rapidly frequency flat fading channel with error correction capability t. 
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4.5 Conclusion 

In this chapter, a RRNS based space-time-frequency coding scheme was proposed. The 

key feature of the proposed STF coding scheme is the frequency encoder. Most STF 

schemes in the literature use coding across multipaths and OFDM modulation 

techniques to maximize frequency diversity. The main challenge is the code 

construction involving a large number of OFDM carriers in a practical system. By 

dividing the available bandwidth into several non-overlapping subchannels equal to the 

code length, the proposed scheme codes across a number of subcarriers with space-time 

signalling on each subcarrier. Hence the signal design on each subcarrier is the same as 

that of space-time codes and can be easily extended to frequency selective fading. 

The proposed space-time-frequency code design can achieve full rate and diversity gain 

of MlMrMbNc over quasi-static fading channels. The diversity order incorporates the 

number of subcarriers (OFDM tones) previously not considered in the design of already 

existing space-time-frequency architecture. Hence the proposed STF coding scheme can 

achieve up to a maximum diversity gain of M,MrMbNcL . 

91 



CHAPTER 5 

RRNS CODED DIFFERENTIAL STF CODING IN 

RAPID FADING CHANNELS 

5.1 Introduction 

The gain of multiple-input multiple-output orthogonal frequency division multiplexing 

(MIMO-OFDM) comes at the expense of increased receiver complexity. Furthermore, 

most of the proposed space-time-frequency coding schemes assume frequency selective 

block fading channels which is not an ideal assumption for broadband wireless 

communications. Relatively high mobility in broadband wireless communication 

systems may result in high Doppler frequency, hence time selective (rapid) fading. 

Rapidly changing channel characteristics impedes the channel estimation process and 

may result in incorrect estimates of the channel coefficients. 

To circumvent the need for a tedious estimation process in wireless multiple-input 

multiple-output (MIMO) systems, we resort to noncoherent differential modulation 

(DM). However, conventional differential modulation (CDM) suffers a 3 dB penalty 

compared to coherent detection. Multi-symbol differential modulation (MSDM) for M-

ary phase shift keying (MPSK) was proposed to improve the performance of CDM [64], 

[65], [67], [68]. MSDM was extended to space-time block codes (STBC) [122], [123], 

[124], [125]. In multi-symbol differential STBC, the complexity increases with 

increasing observation period i.e. N >2 and the number of antennas. A less complex 

but suboptimal decision feedback differential modulation (DFDM) scheme was 
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proposed for a single antenna [69], [70], [71] and has been extended to STBC [126], 

[127], [128], [129], [130]. It was shown that increasing diversity can eliminate the 

flooring effect [127], [128]. However, to maximize the coding gain, low rate 

convolutional codes were used, hence reducing the overall rate of the system. In [84] 

and Chapter 2, redundant residue number system codes were used in place of 

convolutional codes and shown to achieve higher data rates with minimal complexity. 

In this chapter, a redundant residue number system coded iterative noncoherent 

differential space-time-frequency (DSTF) modulation scheme is proposed. This is an 

extension of the work done in [84] from a single antenna to MIMO systems. To enhance 

the features of RNS codes, i.e. the mutual exclusive nature of residues, each parallel 

stream of residue is mapped onto a separate subcarrier per coding interval. Hence, the 

RNS code is used as a frequency encoder. By dividing the available bandwidth into 

several non-overlapping subchannels equal to the code length, the proposed scheme 

codes across a number of subcarriers with differential STBC signalling on each 

subcarrier. This has some similarities to subcarrier grouping proposed in [159] and 

[164], but differs in the code construction, frequency encoder and decoding strategy. 

Since the frequency encoder is independent of the space-time code (STC) design, the 

proposed DSTF scheme is easy to construct and is not limited to STBC (can be 

extended to space-time trellis codes). Bit-interleaving is employed on each subcarrier to 

break the error dependency of the channel and provide time diversity. Since the same 

information is transmitted over several residues/carriers, the proposed scheme offers 

frequency diversity irrespective of the frequency selective fading nature of the 

wideband channel. It is shown through analytical expressions and simulation results that 

the proposed scheme can maximize diversity gains over space, time and frequency 

domains. 

In the second part of this chapter, a soft-input soft-output decision feedback differential 

modulation (SISO-DFDM) is proposed. This is an extension of the work that was done 

in [169] for multiple antennas. In these studies, iterative DFDM system feeding back 

only hard decisions was employed. It was noted that although there is an improvement 

in the differential demodulation process, not much coding gain was realized through 

iterative decoding. The system performance was mainly dependent on the number of 

test patterns. This is because in iterative DFDM, passing only hard decisions limits the 

advantages of iterative decoding. The DFDM decoding metric is modified to 
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incorporate both soft information and the hard decisions from the channel decoder 

(RRNS). Results show that significant coding gains can be achieved by passing soft 

information. The decoding process is not limited to the proposed scheme but can be 

used in any iterative DFDM system with a channel encoder e.g. convolutional codes. 

Note that for N = 2, the proposed system reduces to conventional iterative decoding, 

opposed to a single pass in the iterative DFDM system proposed in [127], [128]. 

The rest of this chapter is organized as follows, Section 5.2 presents the system model 

of the proposed differential STF coding scheme followed by the decision metric in 

Section 5.3. A hard decision iterative decoding process for differential STF coding is 

discussed in Section 5.4. The characterization and the performance of the proposed 

scheme is presented in Section 5.5, followed by the results for the hard decision 

differential STF coding in Section 5.6. A soft-input soft-output decision feedback 

differential STF coding is presented in Section 5.7 followed by its results in Section 5.8, 

and a conclusion is drawn in Section 5.9. 

5.2 System Model 
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Figure 5.1: Transmitter and receiver block diagrams for RRNS coded differential space-

time-frequency modulation. 
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Figure 5.1 depicts a baseband DSTF coding scheme with Mt transmit and Mr receive 

antennas. Figure 5.1(a) shows the block diagram of the transmitter section. A block of b 

information bits enter an outer RRNS(«,n) code per coding interval. The outer 

RRNS(w,n) code systematically encodes to a set of u parallel residues as described in 

Chapter 2. In systematic RRNS encoding, the information bits are grouped such that 

n 

b. =log2m. and b = Vft, for i = 1,2, •••,«, are mapped to non-redundant residues and 

redundant residues are generated using the base extension (BEX) method. The 

redundant residues are each mapped to b. = log2 m. +1 for 2b' > mj. The residues on 

each parallel stream for a given frame are converted to their binary equivalent and a 

zero bit appended on every bi bits of the non-redundant residues in order to have the 

same number of bits on each parallel stream, hence a code rate of n I u. Each parallel 

stream is bit-interleaved and mapped to MPSK symbols that are fed to a differential 

STBC . The output from each differential encoder is mapped to a separate subcarrier 

and transmitted over M, antennas as shown in Figure 5.1(a). The differential code 

matrix on the wth subcarrier and the ftth symbol matrix interval is given by 

S.[*] = V.[*]S.[*-1], (5.1) 

where \„[k] and Su[k] are M, xM( unitary information and code matrix respectively 

such that yu[k]\^[k] = IM and S„[Jfc]S*[fc] = lK . Superscript H denotes the transpose 

conjugate and IM is an Mt xM, identity matrix. 

The received signal is passed through a bank of matched filters (MF) followed by a 

decision feedback differential STBC decoder based on bit metric computation as 

illustrated in Figure 5.1(b). The decoding process will be discussed in Section 5.3 and 

5.4. The message matrix is obtained by multiplying the conjugate transpose of the 

previous code matrix, 

yM = ^,[kK[k-l] = yu[k]S„[k-\]S^[k-l]. (5.2) 

1 Space-time trellis codes can also be used in which case the differential process would be carried out 
on MPSK symbol. 
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The received signal on the uth subcarrier, vth receive and juth transmit antennas in the 

k = M,k + // symbol interval is 

where nu v[k] is the zero mean complex additive white Gaussian noise (AWGN) at the 

vth receive antenna with N0/2 per dimension and hu/jv[k] is the fading gain between 

transmit antenna fith and receive antenna vth on the wth subcarrier. Assuming the fading 

process remains constant over Mt consecutive symbol intervals and that there is no 

spatial or spectral correlation, the autocorrelation between two zero mean complex 

Gaussian random variables Mt symbols apart is [174] 

ftto - E{\.,j,lkK,Jk + M$ = °>Jo (lM,*fDT), (5-4) 

where E{-} denotes the expectation, * is the complex conjugate, fDT is the normalized 

Doppler frequency and a\ is the normalizing constant equal to unity. Equation (5.3) 

can be rewritten in matrix form as 

R.[*] = S.[*]H,[*] + N.[*], (5.5) 

where the M, x Mr matrices R„ [k] and Nu [k] are the receive and AWGN matrix 

respectively on the uth subcarrier during the kth symbol matrix interval. The continuous 

fading process H„[k] is an M,xMr matrix. For MSDM, the observation interval 

consists of N block matrix symbols. Hence the received matrix per subcarrier R„ k in 

the kth symbol interval defined as function of N is 

R „ , , = S , a H , a + N M , (5.6) 

where 
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Ru,k=[RtimK[k-\]-Ru[k-N + \]f, 

H„,,=[H„WH„[/:-l]-HH[A:-7V + l]]T , 

N..*=[N.[*lN1I[*-l]..-N.[*-JV + l ] f , 

Suk=diag{Su[k],Su[k-\],-,Su[k-N + \]}. 

(5.7) 

5.3 Decision Metric 

Starting from the MSDM stated in [124] we adjust the equations to reflect the frequency 

term. The received vector matrix on the wth subcarrier Ruk conditioned on the 

transmitted vector matrix \uk = Vu\k\V¥[k-Y\..Nu[k-N + 2'\ is a complex-valued zero 

mean multivariate Gaussian random matrix with a probability density function (pdf) 

given by 

P(KJ\,k)-
exp{-fr(R^A,;1

tRMj} 

—MM | 1 K ' A„ 
(5.8) 

where • and tr(») denotes the determinant and the trace of a matrix respectively, AH k 

is the conditional covariance matrix defined as AMt = E{RukR*k l\vk). Assuming 

continuous flat fading, Auk can be expressed in terms of the fading correlation and 

AWGN as 

(5.9) 
A,a = £{(SMH„>t + N M ) ( S M H M +NB>t) 

=Mr(sMr/s« t+Ar0iAWi) 

where Y"h
,k is the fading correlation matrix whose coefficients are given by (5.4) and 

can be expressed as 

1 A "~ 

<PH[-M,} 

9„[M,] 

h[-M,(N-l)] <ph[-M,{N-2)] 

cph[M,(N-\)] 

<ph[M,{N-2)] 

<P„[0] 

®I, 
(5.10) 

= r 4 ® i „ , 
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where ® denotes the Kronecker product. Given the unitary and orthogonalhty 

properties of S„ k the covariance matrix in (5.9) can be expressed as 

Kk=Mr{suk(rh
k

+N0im)s^} (5.11) 

and is independent of the transmitted message sequence. It is assumed that the carriers 

are adequately spaced and independent of each other. A uniform power profile is also 

assumed among the subcarriers. Hence the u and k subscripts on A„ k and superscripts 

on r"h'
k can be dropped, i.e. A„ k = A and r"h'

k = Fh. Using the rules of the Kronecker 

product [177] and applying the orthogonallity property of Suk, the inverse of the 

correlation matrix A in (5.11) can then be calculated as follows, 

A"1 = ^ - { s , a ( ( f , + 7 V 0 I w ) ® I w , ) _ , S ^ 

~{ s .a((f^^r®iM,)s« 

M, 
-{S„,(T®IMI)S^}, 

(5.12) 

Where f h is defined in (5.10) and 

T = (rh + N0iN)' 

'oo 'oi 

Mn M I 

,'JV-IO w-u 

l0N-\ 

'A'-lA'-l 

(5.13) 

Substituting (5.12) in (5.8), expanding the exponential term and ignoring constant 

terms, the conditional pdf can be rewritten as 

^ / V „ , ) - - e x p Reitr t,TttX[k-iK[k-iK[k-mv[k-j] ,(5.14) 

where ttJ are elements of the inverse of the correlation matrix defined in (5.13). 

Expanding (5.14) further, the pdf can be written as 
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P(R„,k/Vll,k) = exp Rejfr £fX[*-OSJ*-/]S?[*-*]RJ*-i-] 

( / -

tri^t^ik-i^Xk-iWlk-mjk-j] 

(5.15) 

Note that the first term in (5.15) is a constant and independent of the transmitted 

sequence, hence the pdfreduces to 

AR„,*/V, a)*exp 2Re<Ur tt'Xtf-Wuik-wZik-nKik-j] 
V ;=i j=o 

(5.16) 

Applying the unitary property and replacing Su[k-i]S™[k- j] as in (5.2), the pdf in 

(5.16) can be rewritten as 

^(R„,*/V.)*exp 
r, 

2Rehr ^^^[k-msk-nYlyAk-i) (5.17) 

As in [127], [128], the decision feedback differential pdf on each subcarrier conditioned 

on the candidate symbol Vu[k] (not on the entire N observation symbols) is derived 

from (5.17) by feeding back JV-1 past decision i.e. {VH[&-/]}, with previously 

detected symbols {Vu [£-/]} except for the kth matrix symbol. Hence the DFDM pdf 

conditioned on the candidate symbol on the wth subcarrier is given by 

P(RM /V„[£])*exp 2Reitr Kik^M^Kik-^UXSk-J] 
v ;=i 7=1 

, (5.18) 

where Vu[k-j] are the hard decision matrix symbols from previous detection. The bit 

metric for the kth matrix symbol interval can be calculated from (5.18) by averaging 

over the STBC constellation whose symbol metrics have b e {0,1} in the pth bit position 

as 

Wk[p] = \og X P(R„,t/V„[£]). (5.19) 
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Thus the bit log-likelihood-ratio (LLR) metric for the kth STBC label in the pth bit 

position and wth subcarrier is given by 

%*>*%*[p]-4;'[p]- (5-20) 

5.4 Hard Decision Iterative Decision Feedback Differential STFC 

The iterative decoding process for the hard decision Chase like RRNS decoder in this 

differential STF coding scheme follows that described in Section 2.4.3 except for the 

emphasis on the parallel structure. The decision feedback differential metric is also 

calculated based on differential STBC matrix. 

For every decoding interval, the soft information generated according to (5.20) is sent to 

a Chase like RRNS decoder. Through the use of the Chase algorithm as described in 

Section 2.4.3, a codeword is then decoded as the transmitted message bits for a given 

frame. The decoded codeword is mapped to non-redundant residues and redundant 

residues are generated based on BEX methods. The residues are then converted to their 

binary equivalent and bit-interleaving carried on each parallel stream. After bit-

interleaving, the bits on each parallel stream are mapped to MPSK symbols, 

differentially coded by STBC and fed back to the DFDM decoder for a new metric 

computation as shown in Figure 5.1(b). The entire process is repeated for the desired 

number of iterations before making the final decision on the possible transmitted 

codeword. 

For the first iteration, there are no previous decisions available and conventional 

differential modulation is used as in [127], [128]. For further iterations, re-modulated 

fed back matrix symbols from previous iterations are used to calculate the bit LLR 

values for N>2 observation periods as described in equations (5.18), (5.19), and 

(5.20). 

5.5 Performance Analysis 

Since the logarithmic function is monotonically increasing, maximizing ^(R,,* /V„[Jfc]) 

over Vu[k] in (5.18) is equivalent to maximizing \og(P(Ruk/Vu[k])) over VJ&]. 
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Hence the decision metric V for detecting VJ&] is obtained by maximizing (5.18) over 

a STBC signal constellation A, 

K = maxvr,1 Rt<tr 
N-\ 

K^K, [*] Sr.R.I* - i\U V. [* - 7] 
7-1 

(5.21) 

Assuming independent subcarrier, genie-aided feedback, the pairwise error probability 

(PEP) of detecting V„[£] given that V„[£]was transmitted is 

/>(VBW,V1,[A:]) = p(Rerr{X1 /> i(VBW-V„W)YM}) (5.22) 

where 

XB i=HJfc] + SB
w[A:]NB[*], 

Y . , = S f « ( H . [ * - f l + S?[*-/]N.[*-/]) , 

•^•»,t = L^O.O-^I.O ' ' ' *Af,-i,o ' •' **/,-»,«,-1 J ' 

*«,* = L̂ 'o.oJ'i.o *"JV,-i,o '"Xn-y/,-iJ ' 

X',„ = 2 X (Kj..,W, (k - 0] + *„,V[M, (* - 0k,„ [M, (* - /)]). 

(5.23) 

Let gw k - [ X ^ YK
T
t J be a vector matrix of two zero mean Gaussian random variables 

on the wth subcarrier and the Mi symbol matrix defined in (5.22). The PEP in 

Hermitian Gaussian quadratic form for the wth subcarrier (or residue) spanning K 

symbol matrices per residue can be expressed as [39], [129], [130] 

(̂V,.V„) = ?(Re[fr(GXG»j]), 

such that G„ = [g„,,,g„,2,---,g„, J , 

(5.24) 

L, = 
I Cn 

o. 
(5.25) 
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where OK is a KxK zero matrix, C„ =[C l l lCI/2 •••CuK]T whose elements are defined 

as C,lk=lM ®(\[k]~y„[k]\. Through eigendecomposition, the characteristic 

function can be expressed as [128] 

v , , , , , , ^ ! ^ , ) ! . ^ ^ ^ , (5.26) 

where the correlation matrix O,, = £{G?G„} is defined as 

<D. = 

Co,o(") ô.i (") 

£.o(M) Ci.i(") 

Co.JC-l(") 

4"l,iC-l(") 

Si?-i,o'M) SA:-I,IVW / ' " ^>K-I,K-IVW/ 

V' (5.27) 

for 

Cj(") = ̂ {g,.,g.j} = (5.28) 

Note that for perfect channel state information, the coefficients in (5.28) of the 

correlation matrix in (5.27) reduce to 

£jJ(u) = E{guigIIJ} = 
0 0 

= E{XXJ. (5.29) 

The pdf of a function can be calculated from its characteristic function as [39] 

1 w 

/ (* ) = — l®x(s)exp(-sx)ds 
2n 

(5.30) 

Thus the PEP in (5.24) can be directly calculated from its characteristic function in 

(5.26) and expressed in terms of eigenvalues j * as 

P(\X)^Jie-^M\X)UU(l+sxtM) '*. (5-31) 
k=\ /i=\ 

But 

102 



fe-<v-V')rf(V.,y,) = - i , (5.32) 
o s 

Hence the PEP in (5.31) reduces to 

Letting s = c + jw and extracting the real part, the integral in (5.33) can be rewritten as 

A closed form expression for PEP is obtained by solving the one dimensional integral in 

(5.34) using numerical integration methods such as the Gauss-Chebyshev quadrature 

along the region of convergence [172], [107], [104], [108], [109], [110], [111], [112]. 

Let co = ctan(<9), then (5.34) can be expressed as 

, nil 2K M, __M ^(v„,v„)=- i n n ( i + c 2 s e c 2 ^ ) ^ ) 'de- (5-35) 
n 0 i=l ii=\ 

An upper bound on PEP can be obtained from (5.35) by setting 0 = nil [103]. Note 

that if M, and Mr are kept constant, the correlation matrix 0„ in (5.27) is independent 

of u but dependent on K symbol matrices. Since the same information is transmitted 

over several subcarriers, RNS coding offers frequency diversity, independent of the 

frequency selective nature of the fading channels. Without error correction, assuming 

equal egeinvalues from carrier to carrier which is often the case when signal matrices 

are drawn from orthogonal design, the total PEP (probability of symbol error Ps) is 

given by 

p*=- jnn( i + c 2 s e c 2 ^)4<) r w> (5-36) 
n 0 k=\ n=\ 

where U is the total number of residues/subcarriers. It can be seen from (5.36) that the 

total PEP is maximized by increasing K and u. Maximizing u maximizes the inherent 

frequency diversity of the RNS codes while K maximizes the product of the eigenvalues 
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linked to the code length of the STC code, a design criteria for STC in fast fading 

channels [86]. Alternatively K can be seen as the temporal component in STF [159]. 

Introducing redundancy across subcarriers limits the frequency diversity to the 

Hamming distance (dmm) in the proposed DSTF coding scheme. It is well known that 

under certain conditions STBC guarantees M, transmit diversity [89], [90], [88], hence 

the proposed scheme can achieve a maximum diversity order of KM,MrU (derived in 

Chapter 4). For K = 1, U = 1, the proposed DSTF signal model reduces to differential 

STBC, similar to [128]. The advantage of using this scheme is that the frequency 

encoder is independent of the STC design hence maximizing frequency and space 

diversity independently. The frequency encoder is concatenated through a bit-

interleaver to a STC code and iterative decoding is used to maximize the time diversity. 

It was shown in [53] that the performance of generalized minimum distance decoding is 

dominated by errors at the algebraic decoding stage. Assuming ideal bit-interleaving 

and independent subcarriers with a uniform power profile, the maximum likelihood 

upper bound on the BER (Pt,) for RRNS code is obtained in a similar manner to that of a 

Reed Solomon code [38], [39], [27], [28] as 

Pb < -K Y u Fl, (5.37) 

where t is the error correction capability of the RRNS code, U is the total number of 

residues, mK is the number of bits per residue and Prf" is the probability that the 

received residue sequence has u erroneous residues, given by [39] 

n = (1 - p ( \ , V , ) p (P(V„, V„))". (5.38) 

5.6 Results for Hard Decision Iterative differential STFC 

In this section simulation and numerical results for the proposed hard decision iterative 

differential STF coding are presented and discussed. The simulation model is as shown 

in Figure 5.1. A random interlevear is applied on each subcarier and bits mapped to 

QPSK symbols using Gray labelling. The differential encoder on each subcarrier 
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follows the Alamouti M, =2 and Mr =\ signal model [88]. Thus the received matrix 

in is given by [115] 

RM = 
r„[2k] 

ru[2k + \] 

su[2k] stl[2k + l] 

s'u[2k + \] s'u[2k] _ 

hu[2k] ' 

K[2k + l] 

nu[2k] 

nv[2k+l) 
(5.39) 

where all the elements of the matrices are defined in (5.3). The differential code matrix 

S„[fc] is defined as in (5.1). The information matrix Vu[k] and the initial differential 

code matrix SJO] are defined as 

S„[0] = 
l/V2 l/V2 

-l/V2 l/V2 
. V„[*] = 

/t2k+\ 

"2 t+ 

where 

jinn IU 

a&A = 
4i 

-,m = 0,l,---,Af-l 

Time correlated flat fading Rayleigh coefficients are generated based on Jake's model 

[174] for a normalized Doppler frequency fDT = 0.02. Systematic RRNS coding is 

used for all simulations and a zero bit appended on each non-redundant residue 

equivalent bits. Moduli ^ = 2 2 9 , m 2=233, w 3=239, w 4 =241, w 5 =247, 

w6 = 251, m 7=253, mi=255 are taken from [33]. Since the RRNS code has 8 

moduli, the 8 parallel residue streams for DSTF were mapped to 8 subcarriers. The 

numerical BER is computed from (5.37). 

Figure 5.2 shows numerical and simulated BER performance for DFDM with N = 5 

observation periods, two iterations, m],m2,m:i,mA,m5,m6 non-redundant and m7,mi 

redundant moduli. Hence RRNS(8,6) code rate of 3/4, error capability t = \ and 

minimum distance dmm = 3. It can be seen that increasing the test patterns from 2° to 

210 improves the performance of the Chase like RRNS decoder bringing the simulation 

in close proximity with the upper bound on the BER. This is due to increasing number 

of valid codewords, which increases with increasing the number of test patterns. This 

leads to increased coding gain hence the BER performance improvement. However, 
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increasing the number of test patterns amounts to increasing the Hamming distance 

between the received codeword and error patterns. This leads to increased Hamming 

weight, hence poorer BER performance at low SNR observed with increasing test 

pattern. Note that although iterative decoding is used, hard decisions are fed back to the 

decision feedback differential STBC metric computer. Hence the BER performance is 

predominantly limited by the number of test patterns. To achieve comparable simulation 

results to the analysis, many test patterns are used. Even then, there's still a discrepancy 

mainly due to the suboptimal nature of the DFDM decoding process compared to the 

maximum likelihood analytical bound. 

Figure 5.3 shows numerical BER performance for the DSTF coding for CDM (i.e. 

iV = 2) with K varying symbol matrices per residue, varying rate and t. Since QPSK 

mapping was used for the two transmit antenna Alamouti scheme, the number of bits 

per residue is 4K. It can be seen that for a fixed error correction capability / = 1, 

increasing K improves the BER performance. The information per residue is spread 

over K symbol matrices during the STBC signal processing. This is equivalent to 

increasing the effective code length hence maximizing the product gain for STF on each 

subcarrier. It can be seen that the curve for RRNS(12,10) code is steeper than that of 

RRNS(8,6) which in turn is steeper than that of RRNS(4,2) code. This is because 

increasing the number of parallel paths (subcarriers) increases the inherent repetitive 

nature of RNS codes, hence increasing frequency diversity. As can be seen from the 

above mentioned curves, this leads to superior BER performance at high SNR and is 

consistent with the results in [33]. It can also be seen from Figure 5.3 that BER 

performance improves tremendously with increasing K and t for a fixed rate of 1 / 2. 

This is due to a combination of increasing product gain (K), parallel paths (U) and error 

correction capability t, hence maximizing the time and frequency diversities for a given 

fixed number of transmit antennas. The increasing coding gains play a predominant part 

as is reflected by shift in the curves. 

Figure 5.4 shows the numerical BER performance of the proposed scheme with 

increasing observation N. It can be seen that the BER performance improves with 

increasing observation as expected, reducing the performance gap between coherent and 

CDM. However there is no significant performance improvement from N = 5 to 

N = 10. This is mainly due to the suboptimal nature of DFDM decoding process. 
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Figure 5.5 shows the simulated BER performance for the proposed DSTF, differential 

QPSK and differential STBC with N = 2 observations. The test patterns are set to 24 

and a RRNS(8,6) channel encoder used in all the threes systems, hence a rate of 3/4. 

The simulation model for a single antenna differential QPSK follows [84] and 

differential STBC is similar to DSTF except that all the residues are serially transmitted 

on a single carrier. For TV > 2 symbol observations, the number of iteration is set to 2. It 

can be seen from Figure 5.5 that the BER performance improves not only with 

increasing observations N but also with increasing number of transmit antenna M, as 

expected. However, the performance for DSTF scheme improves more rapidly than that 

of differential STBC. This is due to parallel transmission of residues which enhances 

their mutual exclusive property. Serially transmitted bit-interleaved differential STBC 

modulation spreads errors across parallel residues (per coding interval) in contrast to 

bit-interleaving carried out on each independent parallel stream in the proposed DSTF. 

This destroys the mutually exclusive property of residues in fading channels resulting in 

poorer BER performance of differential STBC than the proposed DSTF. 
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Figure 5.2: Simulated and numerical BER performance for decision feedback 

differential modulation with N = 5, two iterations. 
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5.7 Soft-Input Soft-Output Decision Feedback Differential STFC 

X| 
2tif) 

Mr 

1 
MF 

: 

MF 

u 

— • 

—» 

V W 

DFDM 
SISO 

• 

DFDM 
SISO 

1 . i » 

4*[p] 

n 

n-1 

b. 

• 

• 

, 
Kip\ rr1 

n 
*, 

W
P 

R 
R 
N 
S 

S 
I 
S 
0 

! w> 

— • 

- • 
— • d= 

— • d= 

Figure 5.6 Receiver block diagram for a SISO decision feedback differential STFC 

The system model for SISO decision feedback differential STF coding scheme follows 

that of Section 5.2 except for the decoder. The receiver section of the block diagram in 

Figure 5.1(b) is replaced with Figure 5.6. At the receiver, the received signal is passed 

through a bank of matched filters (MF) followed by a decision feedback differential 

STBC soft-input soft-output (SISO) decoder as illustrated in Figure 5.6. 

The basic structure of the iterative receiver which consists of two stages SISO decoders 

is shown in Figure 5.6. The first stage is the soft-output of the differential STBC 

demodulator based on the DFDM. It takes the soft-input from the channel (received 

signal matrix over JV observation periods), the hard decisions and the a priori 

information from the channel decoder. Using these inputs, the DFDM SISO computes 

the a posteriori log-likelihood ratios (LLR) which are deinterleaved and passed onto the 

second stage of the receiver. 

The second stage of the receiver comprises of RRNS SISO decoder. It takes the 

deinterleaved soft-output from the DFDM SISO as its only soft-input. The RRNS SISO 

decoder then computes a new set of a posteriori LLR values as the soft-output. It is from 
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this soft-output that the extrinsic information is calculated and fed back to the DFDM 

SISO as the a priori information together with decoded bits as hard decisions. The 

whole process is then repeated for a specified number of iterations after which a final 

decision on the decoded bits is made. Note that there is no direct received signal from 

the channel to the input of the RRNS SISO decoder as in the case of block turbo codes 

[45], [46], [37]; instead the DFDM metric is adjusted to include the a priori information. 

For the first iteration, there are no previous decisions available so the SISO uses the 

decoding process for CDM i.e. N = 2 . For further iterations, re-modulated fed back 

matrix symbols and the extrinsic information from previous iterations are used to 

calculate the bit log-likelihood ratios for N>2 observation periods as in (5.46). It is 

also worth noting that iterative decoding can still be carried out for the case of N = 2, 

as opposed to a single pass in iterative DFDM proposed in [72], [128], [84]. This is 

because in the aforementioned references, iterative decoding is geared towards 

improving the performance of DFDM. Therefore when N = 2, there is no feedback 

hence no iteration. 

5.7.1 Soft-Input Soft-Output for STBC 

The a posteriori code bit LLR for a decision feedback differential demodulator is 

derived in this subsection. Substituting (5.19) into (5.20), the LLR of the code bit in the 

pth position of the Vu[k] label on the wth subcarrier can be expressed as 

^k[p] = \ o g ^ ^ , (5.40) 

where A£ is the subset of all symbols V„[k] e A£ whose labels have value b in the p\\\ 

position. For m bits in each label, the conditional probability in (5.40) can be expanded 

as follows 

P(R„,JV,l[k]) = P(Rlik/b],...,bp...,bm) 

= P{Ruk,bv...,bp_x,bp+v..,bJbp)lY\P{bl). <5-41) 
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It is well known that the a posteriori log-likelihood ratio (LLR) of the code bit 

b G {+1,-1} at the output of the decision-feedback differential demodulator is given by 

^"•*[p] = log 
P(bp=+\/R,lk) (5.42) 

Applying the Bayes' rule, (5.42) can be written as 

P(Ruk/b=+\) P(b=+l) 
rk[p] = \og K "•* p - + l o g — ^ -. 
^ iyi &p(nk/b=-\) BP(b=-\y 

(5.43) 

where 

P(bp) = H\ + bptmh(wp/2)].. (5.44) 

and wp is the normalized extrinsic information from the channel decoder. It can easily 

be seen that the first term in (5.43) is the extrinsic information about the code bit and 

the second term, the a priori information. Substituting (5.41) in (5.43) yields, 

£ P(R,l„bl,...,bp_l,bp+]...,bJbp)/YlP(b,) 

#*[/>] = log 
v.i*MUi P(bp=+l) 

X P(RVJC,bl,-,bp.i,bp+i...,bJbp)/YlP{bl) ' ~*P(bp=-l) 
-flog . (5.45) 

Substituting (5.18) into (5.45), the soft-output of the DFDM decoder can be written as 

X exp 

Z exp 

2ReUr Kw\ M&AE* - nfl v. i* - •>'] 
7=1 

np^) 
r 

2Re^r RB
MWVBw£^RJ*-']flvj*-y] 

v ;=' 
np^) 

+, ^ = + i ) . 
log 

P(bp = -\) 
(5.46) 

The soft-output is then deinterleved and passed on to the channel decoder (RRNS-

SISO) as the soft-input as illustrated in Figure 5.6. 
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5.7.2 Soft-Input Soft-Output Channel Decoder 

The RRNS SISO is used as the channel decoder. The soft decision decoding algorithm 

is based on that of linear block turbo codes [45], [46], [37]. The hard decision decoding 

algorithm is as described in Section 2.3.2. The Chase algorithm was discussed in 

Section 2.4.3 and is repeated here for clarity. 

The deinterleaved soft-output from the first stage SISO module on each parallel stream 

is normalized and fed to the RRNS SISO as soft-input. A hard decision z~ associated to 

the soft information y =X"'kN0/2 is made [47], which yields a binary sequence 

Z = [zlz2...zm....zmK...zmKli] per coding interval. Note that the deinterleaved LLR values 

computed in (5.46) are used by the RRNS SISO channel decoder as if they were 

observations from BPSK modulation over an AWGN channel. The confidence values 

| yp | are then sent to the Chase algorithm which generates a set of 2 error patterns 

according to / least reliable confidence values \y \. The error patterns are each added to 

Z by modulo two additions to produce a new sequence Z which is mapped to u residues 

respectively and sent to the hard decision RRNS decoder. At the output of the RRNS 

hard decision decoder, a set of valid codewords is searched and the codeword with the 

minimum metric decoded as the candidate codeword C according to 

v. = | |Y-Z ' f . (5.47) 

In (5.47), Z'is the z'th codeword at the output of the hard decision decoder and |-| 

denotes the norm. The algorithm is then extended to find a competing (or discarded) 

codeword D which decodes to b & bp and has a minimum Euclidean distance 

compared to the other codewords which decode to b-^bp. The soft-output is then 

calculated as [46] 

yP = bp 

Thus normalized extrinsic information wp in the p th position can be obtained by 

Y - D - Y - C 
(5.48) 
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™P=yP-yP- (5-49) 

If there is no such discarded codeword that decodes to bp * bp in the p th position, the 

extrinsic information is estimated as in [46] and [32] as 

wp*fixbp, (5.50) 

where /? is a normalizing coefficient. The extrinsic information corresponding to a bit in 

each residue is fed back as the a priori information to the DFDM S1SO. For each 

iteration, a hard decision on the transmitted bit is made based on (5.48). The decoded 

codeword is mapped to non-redundant residues as described in Section II. Redundant 

residues are generated through BEX method and the whole process is repeated for the 

entire frame. The residues on each parallel stream are then converted to their binary 

equivalent, bit-interleaved and fed back to the DFDM SISO as hard decisions. 

In order to find the most likely candidate codeword and successfully calculate the soft-

output, a high number of least reliable positions / hence a large number of test patterns 

is required. If no valid codeword is found, Z is then decoded as the transmitted 

codeword and the extrinsic information set to zero for a given coding interval. Note that 

the proposed scheme passes on both soft information and hard decisions to the DFDM 

decoding process. 

5.8 SISO Decision Feedback Differential STFC Results 

In this section simulation and numerical results are presented and discussed. The 

transmitter section for the simulation model is based on Figure 5.1(a) and soft-input 

soft-output decoder/receiver is as described in Section 5.7 and illustrated by Figure 5.6. 

A random bit-interleaver is applied on each subcarrier and bits are mapped to QPSK 

symbols using Gray labeling. The differential STBC on each subcarrier follows the 

Alamouti M,=2 and Mr =1 signal model [88]. Time correlated flat fading Rayleigh 

coefficients are generated based on Jake's model [174] for a normalized Doppler 

frequency f T = 0.02. Systematic RRNS coding is used for all simulations and a zero 

bit appended on each non-redundant residue equivalent bits. Moduli ml = 229, 

m2 = 233 , m3 = 239 , m 4=241, m5=247, m6 = 251, m7 =253, m8 = 255 are taken 
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from [33]. Unless otherwise stated the RRNS(8,4) code is used, hence f = 2 error 

correction capability and 8 parallel residue streams for DSTF are mapped to 8 

subcarriers. The maximum likelihood upper bound on the BER is computed from (5.37) 

. Simulation results for the SISO DFDM are indicated as S0 and hard decision as Hd 

respectively. The number of test patterns is indicated by / least reliable positions while 

"it" stands for iteration. 

Figure 5.7 shows the simulated and numerical BER performance of the SISO and hard 

decision iterative DFDM for the proposed DSTF coding scheme for N = 2 observations 

with increasing test patterns and number of iterations. It can be seen that for 1 = 2 at 

it = 1, the SISO and hard DFDM have the same BER performance. However the BER 

performance of the SISO DFDM system can be improved further by increasing the 

number of iterations as illustrated by the curve So, 1 = 2, it = 4••.It can also be seen from 

Figure 5.7 that the simulated BER performance tremendously improves with increasing 

test patterns and number of iterations, becoming comparable to the maximum likelihood 

based analytical results. 

Figure 5.8 shows the simulated BER performance of the SISO and hard decision 

iterative DFDM for the proposed DSTF coding scheme for N = 5 observations with 

increasing number of iterations at a fixed test patterns 1 = 2. It can be seen that for 

1 = 2, it = 2, the BER performance improves by almost 1 dB at high SNR from the hard 

DFDM to the soft DFDM proposed DSTF scheme. No significant performance 

improvement for the hard DFDM scheme is realized by increasing the number of 

iterations from it = 2, to it = 4. This is mainly because feeding back hard decision limits 

the coding gains that should be achieved through iterative decoding process. Hence the 

BER performance of hard decision iterative DFDM is predominantly dependent on the 

number of test patterns and the error correction capability of the code. However for the 

SISO DFDM, the BER performance improves tremendously with increasing number of 

iterations as expected. 

Figure 5.9 shows the simulated and numerical BER performance of the SISO DFDM 

for the proposed DSTF coding scheme for N = 5 observations. The simulated results are 

fixed to it = 6 with increasing test patterns. It can be seen that as the number of test 

patterns increases, the BER performance of the simulated results approach the bounds. 
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Figure 5.10 shows the simulated BER performance of the SISO DFDM for the proposed 

DSTF coding scheme for N = 2 and N = 5 observations at / = 4 with increasing 

iterations. It can be seen that the BER performance improves with increasing 

observation periods i.e. N> 2 as expected. However the performance of N = 5 improves 

more rapidly than that of N = 2 with increasing iterations. This is because of the 

increased number of observations and passing not only hard decision but also soft 

information to the iterative DFDM decoding process. 
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Figure 5.7: Simulated and numerical BER performance of the SISO and hard decision 

iterative DFDM for the proposed DSTF coding scheme for N - 2 . 
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Figure 5.8: Simulated BER performance of the SISO and hard decision iterative DFDM 

for the proposed DSTF coding scheme for N -5 observations with increasing number 

of iterations at a fixed test patterns 1-2. 
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Figure 5.9: Simulated and numerical BER performance of the SISO DFDM for the 

proposed DSTF coding scheme for N - 5 observations. 
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Figure 5.10: Simulated BER performance of the SISO DFDM for the proposed DSTF 

coding scheme for N = 2 and N = 5 observations at / = 4 with increasing iterations. 
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5.9 Conclusion 

In this chapter, the hard decision and soft-input soft-output DFDM schemes for a STF 

modulation systems were presented. The a posteriori bit LLR values for both hard and 

SISO DFDM were derived. The PEP and BER expressions were also derived. 

Analytical and simulation results are in agreement, validating the analysis. 

It was shown that the BER performance improves with increasing observation periods 

i.e. N > 2. The BER performance of hard decision iterative DFDM is predominantly 

dependent on the number of test patterns. However for the SISO DFDM, the BER 

performance improves not only with increasing number of test patterns but also with 

increasing iterations. In SISO DFDM, the BER performance for high observation 

periods improves more rapidly with increasing iterations. 

It was shown that RNS codes offer extrinsic frequency diversity and parallel 

transmission enhances residue features. Furthermore, coding across subcarriers 

maximizes the frequency diversity gain. It was also shown that increasing symbol 

matrices per residue improves the performance of the proposed DSTF system, 

maximizing time diversity. Since STBC signalling is used, the proposed scheme under 

certain constraints guarantees transmit diversity equal to the number of transmit 

antennas, while maximizing the time and frequency diversities. 

The use of SISO DFDM instead of hard DFDM maximizes the coding gain realized 

through iterative decoding process which plays a predominant role in the decoding 

process. 

The proposed scheme can be deployed in existing standards which require high speed 

data rates such wireless LAN, wideband CDMA to mention but a few. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

This thesis deals with the design of a technique for combining channel coding, 

frequency diversity and spatial diversity into a bandwidth efficient communication 

scheme, and characterizing the performance of such a system in a wireless broadband 

environment. 

Firstly, this thesis discusses achieving temporal diversity through employing error 

correcting coding combined with interleaving. Turbo-like serial concatenation of a 

standard outer channel encoder to an inner code was realized by deploying noncoherent 

differential MPSK modulation as the inner code. An iterative decision feedback 

differential modulation approach to joint decoding and demodulation process was 

discussed, whereby soft information is exchanged from the demodulator to the decoder, 

and hard decisions from the decoder to the demodulator. Redundant residue number 

system (RRNS) coding was proposed to be used as the channel encoder. It was shown 

that RRNS codes can offer better or similar bit error rate performance in bit-interleaved 

coded modulation schemes than the traditionally used convolutional codes, at minimal 

complexity and high data rates. 

The rapidly growing need for fast and reliable transmission over a wireless channel 

motivates the development of communication systems that can support high data rates 

at low complexity. Combining OFDM with multiple-input multiple-output (MIMO) 
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systems to form MIMO-OFDM not only reduces the complexity by eliminating the 

need for equalization but also provides large channel capacity and a high diversity 

potential. The wireless broadband channel characterized by multipaths is transformed 

into a series of frequency flat fading subchannels, which through appropriate signal 

design can result in additional diversity advantage. The signal design and the diversity 

potential of the MIMO systems namely space-time coded OFDM, space-frequency and 

space-time-frequency coding schemes were presented and discussed. By concatenating 

a channel encoder with MIMO-OFDM in what is known as space-time-frequency 

coding, it was shown that the performance is greatly improved mainly due to a 

combination of spatial, temporal and spectral diversity gain. 

In this thesis, the use of residue number system as the frequency encoder in space-time-

frequency coding scheme was proposed. Most space-time-frequency (STF) coding 

schemes in the literature use coding across multipaths and OFDM modulation 

techniques to maximize frequency diversity. There is no additional diversity advantage 

in using such schemes under frequency flat fading channel characteristics. It was shown 

that RNS codes' repetitive nature can be exploited to offer additional intrinsic frequency 

diversity advantage, and coding maximizes the diversity gain. In the proposed STF 

coding scheme, the available bandwidth is divided into several non-overlapping 

subchannels equal to the code length with space-time signalling on each subcarrier. The 

signal design on each subcarrier is the same as that of space-time codes and multipath 

diversity is merely a trivial extension. Hence, spatial diversity and frequency diversity 

can be optimized/maximized independently. It was shown that the proposed STF coding 

scheme has potential diversity gain equal to the product of spatial diversity MtMr, 

temporal diversity Mb, number of OFDM tones Nc and channel order L. 

Two differential STF coding schemes were presented and discussed. One deals with 

hard decision metric for decision feedback differential STF coding. This is an extension 

of RNS coded differential modulation from a single antenna system to a STF coded 

MIMO system proposed in Chapter 4. The second differential STF coding scheme deals 

with soft decision decoding for bit-interleaved decision-feedback differential 

modulation. The hard and soft decision metric for decision feedback differential STF 

modulation bit metrics were derived and the performance characterized. It is was shown 

that increasing diversity can reduce or eliminate the flooring effect in conventional 
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differential detection and significant coding gains can be achieved by passing not only 

hard decisions but also soft information in iterative decision feedback differential 

modulation. The soft-input soft-output decoding process is not limited to RRNS coded 

scheme but can be used in any iterative decision feedback differential modulation 

system with channel encoder e.g. convolutional codes. 

6.2 Future work 

It was observed that the current soft decoding algorithms for RRNS codes are 

suboptimal in nature. These algorithms can be improved in several ways. The 

implementation of the optimal trellis based decoding algorithms to RRNS codes needs 

to be investigated. 

Further studies need to be carried out in search of a joint space-time-frequency code 

analogous to space-time codes that can maximize spatial, temporal and frequency 

diversity gain as a single entity. 

126 



BIBLIOGRAPHY 

[1] C.E. Shannon, "A mathematical theory of communications," Bell Systems Technical 

Journal, 1948. 

[2] G.J. Foschini, M. Gans, "On the limits of wireless communication in a fading 

environment when using multiple antennas," Wireless Personal Commun., vol. 6, 

pp. 311-335, Mar. 1998. 

[3] E. Telatar, "Capacity of multi-antenna Gaussian channels," AT&T Technical Report 

Bell Lab., Jun. 1995. 

[4] T. Marzettz, B. Hochwald, "Capacity of a mobile multiple-antenna communication 

link in Rayleigh flat fading," IEEE Trans. Inform. Theory, vol. 45, pp. 139-157, Jan. 

1999. 

[5] D. Gesbert, M. Shafi, D. Shiu, P.J. Smith, A. Naguib, "From theory to practice: An 

overview of MIMO space-time coded wireless systems," IEEE J. Selected Areas in 

commun., vol. 21, pp. 281-301, Apr. 2003. 

[6] E.G. Larsson, P. Stoica, Space-Time Block Coding for Wireless Communications, 

Cambridge University Press, 2003. 

[7] H. Jafarkhani, Space-Time Coding: Theory and Practice, Cambridge University 

Press, 2005. 

[8] L.j. Cimini Jr., "Analysis and simulation of digital mobile channel using orthogonal 

frequency division multiplexing," IEEE Trans. Commun., vol. 33, pp. 665-675, Jul. 

1985. 

[9] B.P. Crow, I. Widjada, J.G. Kim, P.T. Sakai, "IEEE 802.11 wireless local area 

network," IEEE Commun. Magazine, vol. 35, pp. 116-126, Sept. 1997. 

127 



[10] L. Philippe, B. Ditrich, B. Christophe, F. Laurence, "WiMAX, making ubiquitous 

high-speed data services a reality," Alcatel Strategy White Paper, 

http://www.alcatel.com/pulications. 

[11] R. Nee, R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 

2000. 

[12] D.C. Jones, "Frequency domain echo cancellation for discrete multitone asymmetric 

digital subscriber line transceivers," IEEE Trans. Commun., vol. 43, pp. 1663-1672, 

Feb./Mar./Apr. 1995. 

[13] T.S Rappaport, A. Annamalai, R.M. Buehrer, W.H. Tranter, "Wireless 

communications: Past events and future perspective," IEEE Commun. Magazine, 

50th Anniversary Issue, pp. 148-161, May 2002. 

[14] E. Beglieri, J. Proakis, S. Shamai, "Fading channels: Information theoretic and 

communications aspects," IEEE Trans. Inform. Theory, vol. 44, pp. 2619-2692, Oct. 

1998. 

[15] D.M Mandelbaum, "On a class of arithmetic codes and a decoding algorithm," IEEE 

Trans. Inform. Theory, pp. 85-88, Jan. 1976. 

[16] R.S. Katti, "A new residue arithmetic error correction scheme," IEEE Trans. 

Computers, vol. 45, pp. 13-19, Jan. 1996. 

[17] L.L. Yang, L. Hanzo, "Redundant residue number system based on error correction 

codes," in Proc. IEEE VTC'OI Fall, pp. 1472-1476, Oct. 2001. 

[18] H. Krishna, K.Y. Lin, J.D. Sun, "A coding theory approach to error control in 

redundant residue number systems-Part I: Theory and single error correction," IEEE 

Trans. Circuits Systems, vol. 39, pp. 8-17, Jan. 1992. 

[19] J.D. Sun, H. Krishna, "A coding theory approach to error control in redundant 

residue number systems- Part II: multiple error detection and correction," IEEE 

Trans. Circuits Systems, vol. 39, pp. 18-34, Jan. 1992. 

128 

http://www.alcatel.com/pulications


[20] H. Krishna, J.D. Sun, "On theory and fast algorithms for error correction in residue 

number system product codes," IEEE Trans. Computers, vol. 42, pp. 840-853, Jul. 

1993. 

[21] L.L. Yang, L. Hanzo, "Minimum-distance decoding of redundant residue number 

system codes," mProc. IEEE ICC'01, pp. 2975-2979, Jun. 2001. 

[22] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, F.J. Taylor, Modern Applications of 

Residue Number System Arithmetic to Digital Signal Processing, IEEE Press: New 

York, 1986. 

[23] A.S. Madhukumar, F. Chin, "Performance studies of a residue number system based 

CDMA system over burst communication channels," Wireless Personal Commun., 

vol. 22, pp. 89-102, Jul. 2002. 

[24] L. Yang, L. Hanzo, "Residue number system arithmetic assisted m-ary modulation," 

IEEE Commun. Letters, vol. 3, pp. 28-30, Feb. 1999. 

[25] L. Yang, L. Hanzo. "Residue number system based multiple code DS-CDMA 

systems," in Proc. VTC'99 Spring, pp. 1450-1454, May 1999. 

[26] O. Goldreich, D. Ron, M. Sudan, "Chinese remaindering with errors," IEEE Trans. 

Inform. Theory, vol. 46, pp 1330-1338, Jul. 2000. 

[27] L.L. Yang, L. Hanzo, "A residue number system based parallel communication 

scheme using orthogonal signalling- Part I: System Outline," IEEE Trans. Veh. 

Technol., vol. 51, pp. 1534-1546, Nov. 2002. 

[28] L.L. Yang, L. Hanzo, "A residue number system based parallel communication 

scheme using orthogonal signalling- Part II: Multipath fading channels," IEEE 

Trans. Veh. Technol, vol. 51, pp. 1547-1559, Nov. 2002. 

[29] T.H. Liew, L. Yang, L. Hanzo, "Systematic redundant residue number system 

codes: Analytical upper bound and iterative decoding performance over AWGN and 

Rayleigh channels," IEEE Trans. Commun., vol. 54, pp. 1006-1016, Jun. 2006. 

129 



[30] T. Keller, T.H. Liew, L. Hanzo, "Adaptive rate redundant residue number system 

coded multicarrier modulation," IEEE J. Selected Areas Commun., vol. 18, pp. 

2292-2300, Nov. 2000. 

[31] T.H. Liew, L.L. Yang, L. Hanzo, "Soft-decision redundant residue number system 

based error correction coding," in Proc. IEEE VTC'99 Fall, pp. 2546-2550, Sept. 

1999. 

[32] T.H. Liew, L.L. Yang, L. Hanzo, "Iterative decoding of redundant residue number 

system codes," in Proc. IEEE VTC'OO Fall, pp. 576-580, May 2000. 

[33] L. Hanzo, T.H. Liew, B.L. Yeap, Turbo Coding, Turbo Equalization and Space-

Time Coding for Transmission over Wireless Channels, L. Hanzo, T.H. Liew, B.L. 

Yeap, 2002. 

[34] C. Berrou, A. Glavieux, P. Thitimajishima, "Near Shannon limit error correcting 

coding and decoding: Turbo codes," in Proc. IEEE ICC'93, pp. 106-1070, May 

1993. 

[35] C. Berrou, A. Glavieux, "Near Shannon limit error correcting coding and decoding: 

Turbo codes, " IEEE Trans. Commun., vol. 44, pp. 1261-1271, Oct. 1996. 

[36] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, "Optimum decoding for linear codes for 

minimizing symbol error rate," IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, 

Mar. 1974. 

[37] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, John Wiley & Sons, 

2002. 

[38] S. Lin, D. J. Costello, Error Control Coding, 2nd ed., Pearson Prentice Hall, 2004. 

[39] J.G. Proakis, Digital Communications, 4th ed., McGraw-Hill, 2001. 

[40] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, "A soft-in soft-out APP module 

for iterative decoding of concatenated codes," IEEE Commun. Letters, vol. 1, pp. 

22-24, Jan. 1997. 

130 



[41] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, "Serial concatenation of 

interleaved codes: Performance analysis, design, and iterative decoding," IEEE 

Trans. Inform. Theory, vol. 44, pp. 909926, May 1998. 

[42] R. Kotter, "Fast generalized minimum-distance decoding of algebraic geometry and 

Reed-Solomon codes," IEEE Trans. Inform. Theory, vol. 42, pp. 721-738, May 

1996. 

[43] M. P. C. Fossorier, S. Lin, "Chase type and GMD coset decoding," IEEE Trans. 

Commun., vol. 48, pp. 345-350, Mar. 2000. 

[44] H. Tang, Y. Liu, M. Fossorier, S. Lin, "On combining Chase-2 and GMD decoding 

algorithms for nonbinary block codes," IEEE Commun. Letters, vol. 50, pp. 209-

211, May. 2001. 

[45] R. M. Pyndiah, "Near-optimum decoding of product codes: block turbo codes," 

IEEE Trans. Commun., vol. 46, pp. 1003-1010, Aug. 1998. 

[46] O. Aitsa, R. Pyndiah, "Performance of Reed-Solomon block turbo code," in Proc. 

IEEE GLOBECOM'96, pp.121-128, Nov. 1996. 

[47] A. Picart, R. Pyndiah, "Adapted iterative decoding of product codes," in Proc. IEEE 

GLOBECOM'99, pp. 2357-2362, Dec. 1999. 

[48] P. A. Martin, D. P. Taylor, "Distance based adaptive scaling in sub-optimal iterative 

decoding," IEEE Trans. Commun., vol. 50, pp. 869-871, Jun. 2002. 

[49] Z. Chi, L. Song, K. K. Parhi, "On the performance/complexity tradeoff in block 

turbo decoder design," IEEE Trans. Commun., vol. 52, pp. 173-175, Feb. 2004. 

[50] M. K. Cheng, P. H. Siegel, "Iterative soft-decision Reed-Solomon decoding on 

partial response channels," in Proc. IEEE GLOBECOM'03, pp. 1588-1592, Dec. 

2003. 

[51] J. Jiang, K. R. Narayanan, "Iterative soft decoding of Reed-Solomon codes," IEEE 

Commun. Letters, vol. 8, pp. 244-246, Apr. 2004. 

131 



[52] R. Koetter, A. Vardy, "Algebraic soft-decision decoding of Reed-Solomon codes," 

IEEE Trans. Inform. Theory, vol. 49, pp. 2809-2825, Nov. 2003. 

[53] D. Agrawal and A. Vardy, "Generalized minimum distance decoding in the 

Euclidian space: Performance analysis," IEEE Trans. Inform. Theory, vol. 46, pp 

60-83,Jan. 2000. 

[54] M. P. C. Fossorier, S. Lin, "Error performance analysis for reliability based 

decoding algorthms," IEEE Trans. Inform. Theory, vol. 48, pp 287-293, Jan. 2002. 

[55] E. Zehavi, "8-PSK Trellis codes for a Rayleigh channel," IEEE Trans. Commun., 

vol. 40, pp. 873-884, May 1992. 

[56] G. Caire, G. Taricco, E. Biglieri, "Bit-interleaved coded modulation," IEEE Trans. 

Inform. Theory, vol. 44, pp. 927-946, May 1998. 

[57] X. Li, J.A. Ritcey, "Trellis-coded modulation with bit interleaving and iterative 

decoding," IEEE J. Selected Areas Commun., vol. 17, pp. 715-723, Apr. 1999. 

[58] F. Simoens, H. Wymeersch, H. Bruneel, M. Moeneclaey, "Multi-dimensional 

mapping for bit-interleaved coded modulation with BPSK7QPSK signalling," IEEE 

Commun. Letters, vol. 9, pp. 453-455, May 2005. 

[59] F. Schreckenbach, N. Gortz, J. Hagenauer, G. Bauch, "Optimization of symbol 

mappings for bit-interleaved coded modulation with iterative decoding," IEEE 

Commun. Letters, vol. 7, pp. 593-595, Dec. 2003. 

[60] N. Fajar, H. Ogiwara, "Performance evaluated method of bit-interleaved turbo 

trellis-coded modulation and its optimization," IEICE Trans. Fundamentals, vol. 

E87-A, pp. 1583-1590, Jun. 2004. 

[61] J.J. Bouiros, F. Boixadera, C. Lamy, "Bit-interleaved coded modulation for 

multiple-input multiple-output channel," in Proc. IEEE ISSSTA'00, pp. 123-126, 

Sep. 2000. 

[62] J. Hagenaur, P. Hoeher, "A viterbi algorithm with soft-decision output and its 

applications," in Proc. IEEE GLOBECOM'89, pp. 1680-1686, Nov. 1989. 

132 



[63] J. Hagenaur, E. Offer, L. Papke, "Iterative decoding of binary block and 

convolutional codes," IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar. 1996. 

[64] X. Ma, G.B. Georgios, B. Lu, "Block differential encoding for rapid fading 

channels," IEEE Trans. Commun., vol. 52, pp. 416-425, Mar. 2004. 

[65] D. Divsalar, M.P. Simon, "Multiple-symbol differential detection of MPSK," IEEE 

Trans. Commun., vol. 38, pp. 300-308, Mar. 1990. 

[66] D. Divsalar, M.P. Simon, "Maximum-likelihood differential detection of uncoded 

and trellis coded phase amplitude modulation over AWGN and fading channel 

metrics and performance," IEEE Trans. Commun., vol. 42, pp. 76-89, Jan. 1994. 

[67] F. Edbauer, "Bit error rate of binary and quaternary DPSK signals with multiple 

differential feedback detection," IEEE Trans. Commun., vol. 40, pp. 457-460, Mar. 

1992. 

[68] M.K. Simon, M. Alouini, "Multiple symbol differential detection with diversity 

reception," in Proc. IEEE GLOBECOM'00, pp. 985-989, Nov. 2000. 

[69] F. Adachi, M. Sawahashi, "Decision feedback multiple-symbol differential 

detection for M-ary DPSK," Electronic Letters, vol. 29, pp. 1385-1387, Jul. 1993. 

[70] R. Scober, W.H. Gestacker, J.B. Huber, "Decision feedback differential detection of 

MDPSK for flat Rayleigh fading channel," IEEE Trans. Commun., vol. 47, pp. 

1025-1035, Jul. 1999. 

[71] L.H.J. Lampe, R. Schober, "Decision -feedback differential demodulation of bit-

interleaved coded MDPSK for flat Rayleigh fading channels," in Proc. IEEE 

GLOBECOM'00, pp. 965-969, Nov. 2000. 

[72] L.H.J. Lampe, R. Schober, "Iterative decision-feedback differential demodulation of 

bit-interleaved coded MDPSK for flat Rayleigh fading channels," IEEE Trans. 

Commun., vol. 49, pp. 1176-1184, Jul. 2001. 

[73] P. Hoeher, J. Lodge, "Turbo DPSK: iterative differential PSK demodulation and 

channel decoding," IEEE Trans. Commun., vol. 47, pp. 837-843, Jun. 1999. 

133 



[74] K.R. Narayan, G.L. Stuber, "A serial concatenation approach to iterative 

demodulation and decoding," IEEE Trans. Commun., vol. 47, pp. 956-96, Jul. 1999. 

[75] I.D. Marsland, P.T. Mathiopoulos, "On the performance of iterative noncoherent 

detection of coded M-PSK signals," IEEE Trans. Commun., vol. 48, pp. 588-596, 

Apr. 2000 

[76] D. Raphaeli, "Noncoherent coded modulation," IEEE Trans. Commun., vol. 44, pp. 

172-183, Sept. 1996. 

[77] G. Colavolpe, R. Raheli, "Noncoherent sequence detection," IEEE Trans. Commun., 

vol. 47, pp. 1376-1385, Sept. 1999. 

[78] G. Colavolpe, G. Ferrari, R. Raheli, "Noncoherent iterative (turbo) decoding," IEEE 

Trans. Commun., vol. 48, pp. 1488-1498, Sept. 2000. 

[79] G. Colavolpe, R. Raheli, "Theoretical analysis and performance limits of 

noncoherent sequential detection of coded PSK," IEEE Trans. Inform. Theory, vol. 

46, pp. 1483-1494, Jul. 2000. 

[80] I. D. Marsland, P.T. Mathioploulos, "Multiple differential detection of parallel 

concatenated convolutional (turbo) codes in correlated fast Rayleigh fading," IEEE 

J. Selected Area Commun., vol. 16, pp. 265-275, Feb. 1998. 

[81] P. Vanichchanut, C. Sritiapetch, S. Nakpeerayuth, L. Wuttisittikulkij, "APP 

demodulator for turbo coded multiple symbol differential detection under correlated 

Rayleigh fading channels," in Proc. IEEE GLOBECOM'04, CD-ROM , Dec. 2004. 

[82] C. Chung, F. Hwang, "Diversity codes for differential phase modulation in a 

correlated Rayleigh fading channel," IEEE Trans. Commun., vol. 49, pp. 1154-

1157, Jul. 2001. 

[83] Y. Ma, T.J. Lim, "Bit error probability for MDPSK and NCFSK over arbitrary 

Rician fading channels," IEEE J. Selected Areas Commun., vol. 18, Nov. 2000. 

[84] R.N. Akol, F. Takawira, "Performance of coded residual arithmetic differential 

MPSK modulation," in Proc. IEEE WCNC'06, pp. 1927-1932, Apr. 2006. 

134 



[85] J.C. Geuy, M.P. Fitz, M.R. Bell, W.Y. Kuo, "Signal design for transmit diversity 

wireless communication systems over Rayleigh fading channels," in Proc. IEEE 

VTC"96 Spring, pp. 136-140, Apr./May 1996. 

[86] V. Tarokh, N. Seshadri, A.R. Calderbank, "Space-time-codes for high data rate 

wireless communication: Performance criterion and code construction," IEEE 

Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998. 

[87] A.F. Naguib, N. Seshadri, AR. Calderbank, "Increasing data rate over wireless 

channels," IEEE Signal Process. Magazine, vol. 48, pp. 76-92, May 2000. 

[88] S. Alamouti, "A simple transmitter diversity scheme for wireless communications," 

IEEE J. Selected Areas Commun., vol. 16, pp. 1451-1459, Mar. 1998. 

[89] V. Tarokh, H. Jafarkhani, A.R. Calderbank, "Space-time block codes from 

orthogonal designs," IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, Jul. 1999. 

[90] W. Su, X. Xia, "On space-time block codes from complex orthogonal designs," 

Wireless Personal Commun., vol. 25, pp. 1-26, Apr. 2003. 

[91] W. Su, X. Xia, "Signal constellations for quasi-orthogonal space-time block codes 

with full diversity," IEEE Trans. Inform. Theory, vol. 50, pp. 2331-2347, Oct. 2004. 

[92] O. Tirkkonen, A. Hottinen, "Square-matrix embeddable space-time block codes for 

complex signal constellations," IEEE Trans. Inform. Theory, vol. 48, pp. 384-395, 

Feb. 2002. 

[93] N. Hassanpour, H. Jafarkhani, "A class of full diversity space-time codes," in Proc. 

IEEE GLOBECOM'03, pp. 3336-3340, Dec. 2003. 

[94] G. Han, "Generalized PSK in space-time coding," IEEE Trans. Commun., vol. 53, 

pp.790-801, May 2005. 

[95] S. Li, X. Tao, W. Wang, P. Zhang, C. Han, "Generalized delay diversity code: A 

simple and powerful space-time coding scheme," in Proc. IEEE ICCT'00, pp. 

1697-1703,2000. 

135 



[96] M. Tao, R.S. Cheng, "Space code design in delay diversity transmission for PSK 

modulation," in Proc. IEEE VTC'02 Fall, pp. 444-448, Sept. 2002. 

[97] J. Tan, G.L. Stuber, "Multicarrier delay diversity modulation," in Proc. 

GLOBECO'03, pp. 1633-1637, Dec. 2003. 

[98] R. Vaze, V. Shashindhar, B.S. Rajan, "A high-rate generalized coded delay diversity 

scheme and its diversity-multiplexing tradeoff," in Proc. IEEE ICC '05, pp. 448-452, 

May. 2005. 

[99] J. H. Winters, "The diversity gain of transmit diversity in wireless systems with 

Rayleigh fading, " IEEE Trans. Veh. Technol., vol. 47, pp. 119-123, Feb. 1998. 

[100] Q. Yan, R.S. Blum, "Robust space-time block coding for rapid fading channels," in 

Proc. IEEE GLOBECOM'OI, pp. 460-464, Nov. 2001. 

[101] Y. Xin, Z. Wang, G.B. Giannakis, "Space-time constellation-rotating codes 

maximizing diversity and coding gains," in Proc. IEEE GLOBECOM'OI, pp. 455-

459, Nov. 2001. 

[102] Y. Xin, Z. Wang, G.B. Giannakis, "Space-time diversity systems based on linear 

constellation precoding," IEEE Trans. Wireless Commun., vol 2, pp. 294-309, 

Mar.2003. 

[103] H. Lu, Y. Wang, P.V. Vijay, K.M. Chugg, "Remarks on space-time codes including 

a new lower bound and an improved code," IEEE Trans. Inform. Theory, vol. 49, 

pp. 2752-2757, Oct. 2003. 

[104] S. Siwamogsatham, M.P. Fitz, J.H. Grimm, "A new view of performance analysis of 

transmit diversity schemes in correlated Rayleigh fading," IEEE Trans. Inform. 

Theory, vol. 48, pp.950-956, Apr. 2002. 

[105] W. Su, Z. Sofar, K.J.R. Liu, "Diversity analysis of space-time modulation over 

time-correlated Rayleigh fading channels," IEEE Trans. Inform. Theory, vol. 50, 

pp.1832-1839, Aug. 2004. 

136 



[106] Y. Huang, J.A. Ritcey, "Tighter bounds for iteratively decoded bit-interleaved 

space-time coded modulation," IEEE Commun. Letters, vol. 8, pp. 153-155, Mar. 

2004. 

[107] G. Taricco, E. Biglieri, "Exact pairwise probability of space-time codes," IEEE 

Trans. Inform. Theory, vol. 48, pp.510-513, Feb. 2002. 

[108] C.B. Peel, A.L. Swindlehurst, "Effective SNR for space-time modulation over a 

time-varying Rician channel," IEEE Trans. Commun., vol. 52, pp. 17-23, Jan. 2004. 

[109] H. Shah, A. Hedayat, A. Nosratinia, "Performance of concatenated channel codes 

and orthogonal space-time block codes," IEEE Trans. Wireless Commun., vol. 5, pp. 

1406-1414, Jun. 2006. 

[110] M. Byun, B. G. Lee, "New bounds of pairwise error probability for space-time 

codes in Rayleigh fading channels," in Proc. IEEE WCNC'02, pp. 17-21, Mar. 

2002. 

[ I l l ] H. Shin, J.H. Lee, "Upper bound on the error probability for space-time codes in fast 

fading channels," in Proc. IEEE VTC'02 Fall, pp. 243-246, Sept. 2002. 

[112] R. Li, P.Y. Kam, "New tight bounds on the pairwise error probability for unitary 

space-time modulation," IEEE Commun. Letters, vol. 9, pp. 289-291, Apr. 2005. 

[113] Y. Li, J. Moon, "Performance of bit-interleaved space-time coding for OFDM in 

block fading channels," in Proc. IEEE VTC'04, 2004. 

[114] G. Ganesan, P. Stoica, "Differential modulation using space-time block codes," 

IEEE Signal Process. Letters, vol. 9, pp. 57-60, Feb. 2002. 

[115] V. Tarokh, H. Jafarkhani, "A differential detection scheme for transmit diversity," 

IEEE J. Selected Areas Commun., vol. 18, pp. 1169-1174, Jul. 2000. 

[116] B.L. Highes, "Differential space-time modulation," IEEE Trans. Inform. Theory, 

vol. 46, pp. 2567-2578, Nov. 2000. 

137 



[117] B.M. Hochwald, T.L. Marzetta, "Unitary space-time modulation for multiple-

antenna communications in Rayleigh flat fading," IEEE Trans. Inform. Theory, vol. 

46, pp. 543-564, Mar. 2000. 

[118] B.M. Hochwald, W. Sweldens, "Differential unitary space-time modulation," IEEE 

Trans. Commun., vol. 48, pp.2041-2052, Dec. 2000. 

[119] X. Liang, X. Xia, "Unitary signal constellations for differential space-time 

modulation with two transmit antennas: Parametric codes, optimal designs and 

bounds," IEEE Trans. Inform. Theory, vol. 48, pp. 2291-2322, Aug. 2002. 

[120] W. Zhao, G. Leus, G.B. Giannakis, "Algebraic design of unitary space-time 

constellations," in Proc. IEEE ICC '03, pp. 3180-3184, May 2003. 

[121] B. Hassibi, B.M. Hochwald, "Cayley differential unitary space-time codes," IEEE 

Trans. Inform. Theory, vol. 48, pp. 1485-1503, Jun. 2002. 

[122] C. Gao, A.M. Haimovich, "Multiple-symbol differential detection for space-time 

block codes," in Proc. CISS'02, CD-ROM, Mar. 2002. 

[123] B. Bhukania, P. Schniter, "Multiple-symbol detection of differential unitary space-

time modulation in fast-fading channels with known correlation," in Proc. CISS'02, 

CD-ROM, Mar. 2002. 

[124] R. Schober, L.H.J. Lampe, "Noncoherent receivers for differential space-time 

modulation," IEEE Trans. Commun., vol. 50, pp. 768-777, May 2002. 

[125] R. Schober, L.H.J. Lampe, "Differential modulation diversity," IEEE Trans. Veh. 

Technol, vol.51, pp. 1431-1444, Nov. 2002. 

[126] Y. Liu, X. Wang, "Multiple-symbol decision-feedback space-time differential 

decoding in fading channels," EURASIP Journal on Applied Signal Process., pp. 

297-304, Mar. 2002. 

[127] L.H.J. Lampe, R. Schober, "Bit-interleaved coded differential space-time 

modulation," in Proc. IEEE ICC'02, pp. 1434-1438, May 2002. 

138 



[128] L.H.J. Lampe, R. Schober, "Bit-interleaved coded differential space-time 

modulation," IEEE Trans Commun., vol. 50, pp. 1429-1439, Sept. 2002. 

[129] C. Ling, H. Li, A.C. Kot, "On decision-feedback detection of differential space-time 

modulation in continuous fading," IEEE Trans. Commun., vol. 52, pp. 1613-1617, 

Oct. 2004. 

[130] B. Bhukania, P. Schniter, "On robustness of decision-feedback detection of DPSK 

and differential unitary space-time modulation in Rayleigh-fading channels," IEEE 

Trans. Wireless Commun., vol. 3, pp. 1481-1489, Sept. 2004. 

[131] W. Zhao, G. Leus, G.B. Giannakis, "Orthogonal design of unitary constellation for 

uncoded and trellis-coded noncoherent space-time systems," IEEE Trans. Inform. 

Theory, vol. 50, pp. 1319-1327, Jun. 2004. 

[132] M.L. McCloud, M. Brehler, M.K. Varanasi, "Signal design and convolutional 

coding for noncoherent space-time communications on the block-Rayleigh-fading 

channel," IEEE Trans. Inform. Theory, vol. 48, pp.1186-1194, May 2002. 

[133] F. Alesiani, A. Tarable, "Differential space-time CDMA with turbo decoding," in 

Proc. IEEE GLOBECOMW, pp. 616-620, Dec. 2003. 

[134] M. Tao, R.S. Cheng, "Trellis coded differential unitary space-time modulation over 

flat fading channels," IEEE Trans. Commun., vol. 51, pp. 587-596, Apr. 2003. 

[135] I. Bahceci, T.M. Duman, "Combined turbo coding and space-time modulation," 

IEEE Trans. Commun., vol. 50, pp. 1244-1249, Aug. 2002. 

[136] S.K. Jayaweera, H.V. Poor, "Turbo (iterative) decoding of a unitary space-time code 

with a convolutional code," in Proc. IEEE VTC'02 Spring, pp. 1020-1024, May 

2002. 

[137] K.J. Han, J.H. Lee, "Iterative differential space-time block code with low 

complexity," in Proc. IEEE VTC'02 Spring, pp. 1322-1325, May 2002. 

[138] A. Nallanathan, L.P. Yan, "Turbo differential space-time block codes with iterative 

demodulation and decoding," in Proc. IEEE ICC'05, pp. 1891-1895, May 2005. 

139 



[139] C. Ling, H. Li, A.C. Kot, "Noncoherent sequence detection of differential space-

time modulation," IEEE Trans. Inform. Theory, vol. 49, pp. 2727-2734, Oct 2003. 

[140] D.P. Liu, Q.T. Zhang, Q. Chen, "Structures and performance of noncoherent 

receivers for unitary space-time modulation on correlated fast-fading channels," 

IEEE Trans. Veh. Technol., vol. 53, pp. 1116-1125, Jul. 2004. 

[141] C. Gao, A.M. Haimovich, "BER analysis of MPSK space-time block codes with 

differential detection," IEEE Commun. Letters, vol. 7, pp. 314-316, Jul. 2003. 

[142] C. Ling, K.H. Li, A.C. Kot, Q.T. Zhang, "Multisampling decision-feedback linear 

prediction receivers for differential space-time modulation over Rayleigh fast-fading 

channels," IEEE Trans. Commun., vol. 51, pp. 1214-1223, Jul. 2003. 

[143] M. Brehler, M.K. Varanasi, "Asymptotic error probability analysis of quadratic 

receivers in Rayleigh-fading with applications to a unified analysis of coherent and 

noncoherent space-time receivers," IEEE Trans. Inform. Theory, vol. 47, pp. 2383-

2399, Sept. 2001. 

[144] G. Bauch, "Differential modulation and cyclic delay diversity in orthogonal 

frequency-division multiplexing," IEEE Trans. Commun., vol. 54, pp. 798-801, May 

2006. 

[145] Y. Li, J.C. Chuang, N.R. Sollenberger, "Transmit diversity for OFDM systems and 

its impact on high-rate data wireless networks," IEEE J. Selected Areas Commun., 

vol. 17, pp. 1233-1243, Jul. 1999. 

[146] R.S. Blum, Y. Li, J.H. Winters, Q. Yan, "Improved space-time coding for MIMO-

OFDM wireless communications," IEEE Trans. Commun., vol. 49, pp. 1873-1878, 

Nov. 2001. 

[147] B. Lu, X. Wang, K.R. Narayanan, "LDPC-based space-time coded OFDM systems 

over correlated fading channels: Performance analysis and receiver design," IEEE 

Trans Commun., vol. 50, pp. 74-88, Jan. 2002. 

[148] X. Zhuang, F.W. Vook, "Performance of trellis coded OFDM with antenna 

diversity," in Proc. IEEE GLOBECOM'01, pp. 3106-3110, Nov. 2001. 

140 



[149] D. Agrawal, V. Tarok, A. Naguib, N. Seshadri, "Space-time coded OFDM for high 

data-rate wireless communication over wideband channels," in Proc. IEEE VTC '98 

Spring, pa 2232-2236, May 1998. 

[150] D. Tujkovic, M. Juntti, M. Latva-aho, "Space-frequency turbo coded OFDM," in 

Proc IEEE GLOBECOM'OI, pp. 876-800, Nov. 2001. 

[151] K.F. Lee, D.B. Williams, "A space-frequency transmitter diversity technique for 

OFDM systems," in proc. IEEE GLOBECOM'OO, pp. 1473-1477, Nov. 2000. 

[152] Z. Hong, B.L. Hughes, "Robust space-time codes for broadband OFDM systems," 

in Proc. IEEE WCNC'02, pp. 105-108, Mar. 2002. 

[153] H. Blolcskei, A.j. Paulraj, "Space-frequency coded broadband OFDM systems," in 

Proc IEEE. WCNC'OO, pp. 1-6, Apr. 2000. 

[154] H. Blolcskei, A.j. Paulraj, "Space-frequency coded M1MO-OFDM with variable 

multiplexing-diversity tradeoff," In Proc. IEEE ICC '03, pp. 2837-2841, May 2003. 

[155] L. Sho, S. Roy, S. Sandhu, "Rate-one space frequency block codes with maximum 

diversity gain for MIMO-OFDM." In Proc. IEEE GLOBECOM'03, pp. 809-813, 

Dec. 2003. 

[156] A. Huebner, F. Schuehlein, M. Bossert, E. Costa, H. Haas, "A simple space-

frequency coding scheme with cyclic delay diversity for OFDM," in Proc. IEE 

EPMCC '03, pp. 106-110, Apr. 2003. 

[157] H. Sampath, R. Narasimhan, "A simple scalable space-frequency coding scheme for 

MIMO-OFDM," in Proc. IEEE VTC'04 Fall, pp. 640-644, Sept. 2004. 

[158] W. Zhang, X. Xia, P.C. Ching, "A design of high-rate space-frequency codes for 

MIMO-OFDM systems," in Proc. IEEE GLBECOM'04, pp. 209-213, Dec. 2004. 

[159] Z. Liu, Y. Xin, G.B. Giannakis, "Space-time-frequency coded OFDM over 

frequency-selective fading Channels," IEEE Trans. Signal Process., vol. 50, pp. 

2465-2476, Oct. 2002. 

141 



[160] W. Su, Z. Safar, M. Olfat, K.J.R. Liu, "Obtaining full-diversity space-frequency 

codes from space-time codes via mapping," IEEE Trans. Signal Process., vol. 51, 

pp. 2905-2916, Nov. 2003. 

[161] Y. Chen, E. Aktas, U. Tureli, "Optimal space-frequency group codes for MIMO-

OFDM system," IEEE Trans. Commun., vol. 54, pp. 553-562, Mar. 2006. 

[162] W. Su, Z. Sofar, K.J. Ray Liu, "Full-rate full-diversity space-frequency codes with 

optimum coding advantage," IEEE Trans. Inform. Theory, vol. 51, pp. 229-249, Jan. 

2005. 

[163] Ma, G. Leus, G.B. Giannakis, "Space-time-Doppler block coding for correlated 

time-selective fading channels," IEEE Trans. Signal Process., vol. 53, pp. 2167-

2181, Jun. 2005. 

[164] H. Li, "Differential space-time modulation over frequency-selective channels," 

IEEE Trans. Signal Process., vol. 53, pp. 2228-2242, Jun. 2005. 

[165] Y. Gong, K.B. Letaief, "Space-frequency-time coded OFDM for broadband wireless 

communications," in Proc. IEEE GLOBECOM'01, pp. 519-523, Nov. 2001. 

[166] Y. Gong, K.B. Letaief, "An efficient space-frequency coded wideband OFDM 

system for wireless communications," in Proc. IEEE ICC'02, pp. 5474-479, Jun. 

2002. 

[167] Y. Gong, K.B. Letaief, "An efficient space-frequency coded wideband OFDM 

system for wireless communications," IEEE Trans. Commun., vol. 51, pp. 2019-

2029, Nov. 2003. 

[168] Q. Ma, C. Tepedelenlioglu, Z. Liu, "Full diversity block diagonal codes for 

differential space-time-frequency coded OFDM," in Proc. IEEE GLOBECOM'03, 

pp. 868-872, Dec. 2003. 

[169] R.N. Akol, F. Takawira, "On performance of arithmetically coded differential 

space-time-frequency coding," submitted to IEEE International Conference on 

Communications, to be held in Glasgow, Scotland, United Kingdom, Jun. 2007. 

142 



[170] D. Rende, T.F. Wong, "Bit interleaved space-frequency coded modulation for 

OFDM systems," in Proc. IEEE ICC '03, pp. 2827-2831, Jun. 2003. 

[171] D. Tujkovic, M. Juntti, M. Latva-aho, "Space-frequency-time turbo coded 

modulation," IEEE Commun. Letters, vol. 5, pp. 480-482, Dec. 2001. 

[172] E. Biglieri, G. Caire, G. Taricco, J. Ventura, "Simple method for evaluating error 

probabilities," Electronic Letters, vol. 32, pp 191-192, Feb. 1996. 

[173] J. Chen, T. Lv, H. Zheng, "Joint cross layer design for wireless QoS content 

delivery," EURASIP Journal on Applied Signal Process., pp. 167-182, Feb. 2005. 

[174] W. C. Jakes Jr., Microwave Mobile Communication, New York: Wiley, 1974. 

[175] R. Janaswamy, Radiowave Propagation and Smart Antennas for Wireless 

Communications, Kluwer Academic Publishers, 2001. 

[176] K. Yu, B. Ottersten, "Models for MIMO propagation channels, a review," J. 

Wireless Commun. Mobile Comput., vol. 2, pp. 653-666, Nov. 2002. 

[177] T.K Moon, W.C. Stirling, Mathematical Methods and Algorithms for Signal 

Processing, New Jersey: Prentice-Hall 2000. 

[178] T. Poutanen, J. Kolu, "Correlation control in multichannel fading simulators," in 

Proc. IEEE VTC'01, Spring, pp. 318-322, May 2001. 

[179] M. Abramovitz, LA. Stegun, Handbook of Mathematical Functions, New York: 

Dover, 1972. 

143 


