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Abstract 
Common bean (Phaseolus vulgaris L.) is widely grown and consumed in Zambia but its 

production is limited by drought and high temperature stresses. In the country there is 

limited information on farmers’ preferences and the genetics of drought and heat 

tolerance of common bean for breeding to enhance its production.  Therefore, the 

objectives of this study were to: 1) determine farmers’ selection criteria and preferences 

for common bean varieties, 2)   evaluate the Zambian bean germplasm for drought and 

heat tolerance, and 3) determine the genetic effects and inheritance of drought and heat 

stress tolerance in Zambian common bean germplasm.  

A participatory rural appraisal and survey studies established that the preferred bean 

varieties by the farmers in Siavonga (Lusitu) and Gwembe districts were of determinate 

bush type growth habit, red speckled seeds, large and elongated seed shape, early 

maturing, and prolific with high numbers of pods per plant.  Lyambai, a red speckled seed 

variety, was chosen as their most preferred type meeting most of their selection criteria. It 

was also established that women were better able to distinguish between common bean 

varieties in terms of taste and cooking time than men.  It was further established that the 

educated farmers based their variety selections on a background understanding of 

varietal characteristics.  

A screening study involving 120 common bean genotypes identified LY4-4-4-B as the 

most drought tolerant genotype followed by LY1-2-B, ZM 3831, KAL–ZA, SCCI 13, ZM 

4512-5 and LYA–ZA based on yield and yield related traits. Two genotypes, a mutant, 

LY4-4-4-B and a landrace, ZM 3831 were selected among the most drought tolerant 

genotypes for developing F1 populations used in the genetic study. This study also 

established that 100-seed weight was not affected by drought stress, probably due to the 

compensatory effects of reduced numbers of pods per plant and number of seeds per 

pod.  

 

  
The evaluation of the 120 genotypes under elevated temperatures (>33oC) established 

that ZM 4143, ZM 4497, SCCI 4, KE 1,  and ZM 07, were more tolerant to heat stress. 

ZM 4143 and ZM 4497 were further selected among the most heat tolerant genotypes for 

developing F1 populations used in the genetic study.  The significant (P≤0.05) GCA 

effects for 14 parental lines for yield, number of seeds pod-1, and number of pods plant-1 
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indicated that additive gene effects were important in the inheritance of these traits under 

heat stress. The significant (P≤0.05) and positive SCA effects for the F2 families of 

Kapisha X SEN 39, Kapisha X ZM 4497, Kalungu X SEN 39, and Lyambai X ZM 4143  

were generated from parental lines with high and positive GCA values indicating their 

potential for further selection for high temperature tolerance from these populations. 

 

Further genetic studies on drought tolerance for the 14 parents and the 48 F2 populations 

established that ZM 4143 and ZM3831 were drought tolerant male parents with 

significant (P≤0.05) and high positive GCA effects.  The crosses with high SCA values for 

the F2 population emanating from Chambeshi X ZM 4143, Pan 148 X ZM 4143, Lyambai 

X SER 124, Chambeshi X ZM 3831, SCCI 2 X Ly 4 -4-4-B, ZM 05 X SER 124 and 

Lyambai and ZM 3831 had parents with high and positive GCA effects indicating potential 

for making further selections for drought tolerant genotypes. The high heritability estimate 

for yield of 60% found in drought stressed conditions also indicated that breeders can 

make progress in breeding for drought tolerance.   
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THESIS INTRODUCTION 
 

0.1. Background 
The common bean (Phaseolus vulgaris L.) is an important pulse crop worldwide. The 

crop provides a cheap source of protein and fetch higher prices compared to cereals and 

has become a major source of farmer’s incomes (Cortés et al., 2013). This crop is 

estimated production is about 23,816,123 t, covering a total of about 18 million ha, out of 

which 17 % are in Africa (Graham and Rannali, 1997; Wortmann et al., 1998;FAO, 2014). 

Common bean production fits in many farming systems, ranging from small-scale with 

limited technology in poor economies, to large scale farming systems with improved 

technology in developed economies. Most of the common bean production in Africa is 

dominated by resource poor small-scale farmers who grow the crop in various 

intercropping mixtures with cereals and other major crops (Adams et al., 1985; Wortmann 

et al., 1998).   However, common bean yields realised in Africa are very low averaging 

below half a ton per hectare compared to those obtained in other regions of the world 

such as North America where yields reach about 1.5 ton per hectare (FAO, 2012). The 

low yields have been attributed to several biotic (pests and diseases) and abiotic factors 

(drought, heat and low soil fertility) (Thung, 1991; Giller et al., 1992).  

 

The common bean is rich in protein and iron, making it an ideal crop to provide the much 

needed nourishment for the resource poor households (Bennink and Rondini, 2003). The 

crop has also been reported to contain medicinal qualities that are important to prevent 

cancer (Hangen and Bennink, 2003). Furthermore, it has been reported that the common 

bean contains favourable peptides which can be used to slow down the AIDS virus 

multiplication in HIV infected patients (Patrick and Ng, 2004; Wang and Ng, 2006; Wong 

et al., 2006). 

 

The Republic of Zambia has a high prevalence of malnourished people (35-45% of 

population), which has been attributed to poor diets (Rogers, 1995). The total daily 

protein consumption per day is estimated at 48.1 g person-1 day-1 which is extremely low 

compared to other countries of the similar economic bracket in the region, such as 

Tanzania, whose daily protein consumption is higher (FAO, 2014). The government of 

Zambia has recognized the poor health status of most of its people and has included an 



2 
 

explicit goal in the agricultural policy which seeks to fight household food insecurity and 

reduce the malnutrition prevalence (Chizuni, 1994). The National Nutrition Policy in 

Zambia also recognizes the need to promote crop diversification to reduce malnutrition 

(GRZ, 2006). Common bean production has for along time been recognised as a cheap 

way of mitigating food insecurity and the malnutrition status of many poor families who 

cannot afford other expensive sources of protein in their diets (Schwartz and Corrales, 

1989). The crop is becoming an increasingly important crop in the Zambian agriculture 

and ranks as the second most important food legume crop after groundnut, based on the 

area planted annually (Table 0.1).  

 
Table 0. 1. Hectarage and production estimates for selected food legume crops grown in 
Zambia over three agricultural seasons 
 

Source: Technical Compendium: Descriptive Agricultural Statistics and Analysis for 
Zambia, 2013 

 

Common bean production in Zambia is predominantly rain fed. The crop is faced with 

serious negative impacts of the extreme climate events which are believed to be 

manifestations of the long term climate change (De Wit, 2006; UNFCCC, 2007). The 

climatic conditions in Zambia vary greatly as a result of variations in altitude, temperature, 

relative humidity, radiation and air masses which are highly influenced by the Inter-

Tropical Convergence Zone (ITCZ). The climatic variations, especially in rainfall, have 

resulted in the country being sub-divided into three sub-regions namely, Regions I, II and 

III, (Figure 0.1) (Veldkamp et al., 1984).  Zambia’s rainfall patterns are very unreliable and 

poorly distributed, especially in Regions I and II which receive 400-800 mm and 800-1000 

mm of rainfall annually, respectively (Veldkamp et al., 1984), and this has a negative 

impact on bean production (Sponchiado et al., 1989). Wortmann et al. (1998) estimated 

that on average, a ton per ha of potential common bean yield is lost in regions receiving 

  Area planted (ha) Production(,000) kg ha-1 Average yield (kg ha-1) 

Crop/Year 2004/5 2005/6 2007/8 2004/5 2005/6 2007/8 2004/5 2005/6 2007/8 

Cowpea 6 687                7 120                3 688                1 249              3 146               1 506  190 440 520 

Common 

bean 

50,496              54,532              59,590              23,098           27,697             44,464            460 510 670 

Groundnut 161,962         144,250          144,200          74,218         84,010           70,527          460 580 660 

Bambara nuts 3 407 2 387 2 204 1 237 1 593 2 513 360 670 840 

Soybean 83 735 69 923 96 232 95 333 45 557 59 835 1 139 741 697 
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less than 300 mm of rain annually. These estimates are expected to be even higher for 

Southern Africa where the problem is compounded with extremely high temperatures 

(Boyer, 1982; Wortmann et al., 1998).  

 

 

 

 
Figure 0.1: Agro-ecological regions of Zambia. Source: (Zambia Agricultural Research 
Insitute (ZARI), 2006) 

 

Common bean yields in Zambia have remained low for a long time and currently are 

averaging between 460 and 670 kg ha-1 on farmers’ fields (Table 0.1). During the period 

1991-2004 common bean yields shrank on average by 1.3% annually, while the area 

planted with the crop increased by 1.8% annually during the same period (Jayne et al., 

2007).  

 

Generally, the abiotic stresses contribute about 66.9% yield loss worldwide and this value 

seems to be increasing with time and affects the bean adoption and production 

distribution in the country (Wortmann et al., 1998). Common bean production is 

concentrated in Region III where rainfall and temperatures are not limiting (Figure 0.2). 

However, serious moisture stress has been limiting bean production in the southern parts 

of the country due to recurrent droughts and high temperatures. 
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Figure 0.2: Common bean spatial distribution in Zambia (Note: AEZ- Agro-ecological 
zones) (ZARI, 2006) 

  

The most important abiotic stresses are drought and heat stress and the effects are 

manifested when the two stresses occurs at reproductive stage in beans (Ort and Long, 

2003; Bates et al., 2008). Widely adaptable common bean varieties open up great 

opportunities for improving the livelihoods of farmers who currently occupy marginal 

pieces of land characterised by unfavourable weather patterns (Ramalho et al., 2009).  

Breeding crops for abiotic stresses has however received limited attention and has only 

recently been recognized as an option to minimize stress effects and found to be an 

economically viable tool for improvement of crop production in stressful environments 

(Blum, 1988). Studies related to heat tolerance are scarce in the literature. However, the 

few studies done have reported that the trait is inherited quantitatively and screening for 

heat tolerance is difficult. Some success has been achieved in the development of heat 

tolerant cultivars (Rosas et al., 2003; Beaver et al., 2008). There are large genotypes by 

environment (G X E) interactions in breeding for drought and heat tolerance and this 

poses difficulty in selecting an appropriate breeding method for the two traits.  The 

genetic variability for resistance to abiotic stresses tends to be low and the heritability is 

also low with the G X E interaction having great influence on the phenotypic expression of 

the genotypes (Ramalho et al., 2009). However, selecting genotypes in environments that 
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experience frequent drought stress and high temperatures will remain an important 

research topic (Ehlers and Hall, 1998; UNFCCC, 2007; Williams et al., 2007). Genotypes 

achieving high yield under stress conditions have been considered tolerant (Fernandez, 

1992). The use of yield to screen for drought tolerance is considered a difficult subject as 

yield is a complex trait that is controlled by many genes and need careful analysis in 

order to preclude other factors before making generalized conclusions. 

 

Furthermore, there is still limited adoption of improved varieties, which is an indication of 

a disconnection between research and the small-holder farmers (DeVries and 

Toenniesen, 2001). Despite common bean’s importance to the majority of the population 

in Zambia, its production continues to be too low to meet the food demand of the growing 

population and for export. This can be explained in part by low uptake of improved 

technology and limited use of farm inputs (Buruchara, 2007). The main reasons 

advanced for low adoption of varieties range from social to cultural beliefs of the farming 

communities (DeVries and Toennisen, 2001). This has been confirmed for the common 

bean by Sperling et al. (2001) who reported that consumer preferences are important in 

developing common bean varieties which are likely to be adopted by small scale farmers.  

It has been emphasized that breeding should involve farmers in setting the breeding 

goals, variety design and development to enhance adoption of improved varieties by the 

farmers. According to Buruchara et al. (2011), many new agricultural technologies are 

currently available in Zambia, including improved common bean varieties production  

packages (e.g. fertilizers, and pesticides). Unfortunately, while available in principle, 

households’ awareness of and access to these new technologies is distinctly limited in 

practice. 

 

It has been estimated that about 40% of the common bean is grown under drought and 

relatively high temperatures particularly at low altitudes (Broughton et al., 2003). The 

majority of small-scale farmers in Africa depend on natural climatic conditions for their 

crop production (CIAT, 2005). These farmers are heavily constrained with financial 

resources and have no capacity to make investments into irrigation facilities or 

greenhouses unlike their counterparts in the commercial farming sector (CIAT, 2005). As 

a result, huge yield losses resulting from droughts and elevated temperatures are 

incurred in the low altitude areas. Farmers in most situations usually abandon the 

cultivation of improved varieties in preference for their own landraces, which have the 
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ability to adapt to various temperatures, rainfall, soil and other abiotic limitations (Mekbib, 

2006). Although use of landraces ensures that farmers harvest something in times of 

harsh weather conditions, these genetic resources are inherently low yielding.  Designed 

breeding provides an option to integrate important genes from farmers’ germplasm with 

known improved cultivars to enhance productivity and serve the diverse needs of 

farmers.  

 

0.2 Rationale of the study 
In Zambia, most breeding efforts have focused on breeding for disease tolerance for 

optimal environments. The varieties that have been developed have not been adopted 

because they lack farmer preferred traits. There is no published information available on 

breeding for heat and drought tolerance in common bean populations and integration of 

farmers’ preferences for the common bean in Zambia. The scarcity of this information is a 

constraint to the development of drought and heat tolerant bean genotypes adapted to 

the low lying attitudes and also a limitation to increased farmer adoption of common bean 

varieties in the country.  Knowledge on genetics of heat and drought tolerance in the 

common bean genotypes and farmer criteria for accepting varieties is therefore an 

invaluable resource in a breeding programme and hence, this study was conducted. 

 

This study was designed with the following objectives: 

1. To assess farmers preferences for bean varieties in the low altitudes areas in 

Zambia, 

2. To identify drought tolerant common bean genotypes for use in breeding 

programmes and cultivation by farmers in the low altitudes in Zambia,  

3.  To evaluate and identify heat tolerant common bean genotypes in the Zambian 

landraces and determine the gene action, and   

4.  To determine the inheritance of yield and yield related traits under managed 

drought stressed conditions. 

 

0.3. Organisation of thesis 
The thesis is written in the form of discrete research chapters, each following the format 

of a stand-alone research paper (whether or not the chapter has already been published). 

This is the dominant thesis format adopted by the University of KwaZulu-Natal, because it 
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facilitates the publishing of research out of the theses far more easily than the monograph 

form of thesis structure. As such, there is some unavoidable repetition of references and 

some introductory information between chapters.  

The referencing system used in the chapters of this thesis is based on the “The American 

Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Soil Science 

Society of America (SSSA) Publications Handbook and Style Manual, referencing 

style,” and follows the specific style used in “Crop Science Journal”. 

 
The outline of the thesis is therefore as follows: 

1. Thesis Introduction 

2. Chapter One: Literature review 

3. Chapter Two: Farmers preferences and influencing factors for acceptance of 

common bean varieties in the low altitude areas of Zambia 

4. Chapter Three: Evaluation of common bean genotypes for tolerance to drought 

stress  

5. Chapter Four: Assessment of common bean landraces and genetic effects for 

high temperature tolerance under field conditions  

6. Chapter Five: Genetic analysis of common bean for yield and yield components 

under managed drought stress conditions 

7. Chapter Six: An overview , breeding implications and conclusions of the study 
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CHAPTER ONE 

Literature Review 

1.1 Introduction 
The focus of this review is on the drought and heat stresses, the main yield reducing 

factors in common bean production, and its effects on the biological mechanisms It 

highlights the common bean diversity, its origin and biology and spells out strategies for 

crop improvement in order to increase the bean yields under drought and heat stressed 

conditions. The common bean is sensitive to low moisture and heat stress, and their 

occurrence in combination does limit the spread of the crop to marginal climates (low 

altitudes), which are dominated by small-scale farmers. The review focuses on bean 

production constraints, genotype by environment effects on common bean breeding, 

methods on screening and breeding strategies for drought and heat tolerance in common 

beans. The farmer preferences for common bean varieties is also reviewed for purposes 

of setting the breeding goals. 

1.2. Diversity, origin and taxonomy of common bean 
The common bean (Phaseolus vulgaris L.) belongs to the family Leguminosae,  subfamily 

Papilonoideae, tribe Phaseoleae and sub-tribe Phaseolinae (Debouck, 1999). It is a 

diploid with 2n=2x=22 chromosomes. The cultivated forms of the common bean are 

herbaceous annuals which are either determinate or indeterminate in growth habit. The 

common bean has a tap root system with adventitious roots that develop along the tap 

root which grows to about 10-15 cm in length (Duke, 1981). The common bean is a C3 

crop and is poorly adapted to extremes of temperature compared to C4 plants. The crop 

is known to be highly polymorphic and has high variations in terms of growth habit, 

vegetative characters, flower colour and size, shape and colour of pods and seeds 

(Purseglove, 1968).  The seed shape varies   from round, elliptical, flattened or rounded 

and elongated with many different decorative colours. The seed mass ranges between 50 

to 2000 mg seed-1 (Debouck, 1991).  

 

The origin of the common bean is controversial (Gentry, 1968; Kaplan, 1981). However, 

recent data from molecular markers and sequence information provide increasing 

molecular evidence for the Mesoamerican origin of common bean (Kwak and Gepts, 

2009; Bitocchi et al., 2012). According to Gepts and Debouck (1991), the common bean 
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was domesticated in the highlands of Latin America. Two gene pools for the crop are 

recognized, the Mesoamerican and Andean (Gepts et al., 1986).  These have further 

been divided into races namely, Mesoamerican, Durango, and Jalisco belonging to the 

Mesoamerica gene pool; and the Peru, Nueva Granada, and Chile races belonging to the 

Andean gene pool. The landraces belonging to the Andean gene pool have wide genetic 

variation in plant and grain morphology and are adaptable to a wide range of 

environments (Tohme et al., 1995).  The Andean gene pool has also been established to 

reflect much of the human intervention through breeding and cultivation resulting into a 

narrow genetic base (Beebe et al., 2001). The landraces from the Mesoamerican group 

have been reported to contain greater variability than those from the Andean origin 

(Chiorato et al., 2007).   

 

Most of the cultivars currently cultivated worldwide originate from two centres of 

domestication, the southern Andes and Mesoamerica (Gepts, 2001). The Centro 

Internacional de Agriculture Tropical (CIAT) maintains a large collection of both 

domesticated and wild forms of the common bean while a reference collection is 

maintained at the National Botanical Garden of Meise, in Belgium.  

 

The common bean is a warm season crop which consists of several types based on 

growth habit and its flower biology has been well described by Debouck (1991). The crop 

is predominantly self-pollinated with less than one percent possibility of natural 

outcrossing (Brunner and Beaver, 1989). It exhibits two growth habits, determinate and 

indeterminate (Smoliak et al., 1990). Cultivars may be classified according to plant growth 

habits and described as follows: determinate habit, stem elongation ceases when the 

terminal flower racemes of the main stem or lateral branches have developed. With the 

indeterminate habit, flowering and pod filling will continue simultaneously or alternately as 

long as temperature and moisture availability permits growth to occur.  

 

In addition to the distinction between determinate and indeterminate plant habits, four 

plant growth types have been identified.  These are: Type I –determinate bush; Type II – 

upright short vine, narrow plant profile, three to four branches; Type III – indeterminate, 

prostrate vine; Type IV – indeterminate with strong climbing tendencies requiring trellis 

systems for optimal production. Kelly (2000) suggested that growth habit in beans can be 

used as a selection criterion for drought tolerance (Kelly, 2000). The expression of 
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genotypes in the growth habit was found to relate how genotypes differ in the root 

architecture. More branching shoots indicate a fibrous root system while less branching 

shoots may indicate less roots (Kelly and Miklas, 1998). While it is generally appreciated 

that early maturing genotypes would escape terminal drought, caution needs to be 

exercised, as early maturity may lower yields (Kelly and Miklas, 1998).  

 

 During emergence, the bean produces the hypocotyl arching from the soil with its large 

cotyledons suspended on the sides. The hypocotyl straightens after the cotyledons 

emerge from the soil forming the first unifoliate leaves and later grows trifoliate leaves 

that develop along the terminal and auxiliary buds. The crop also has perfect flowers that 

contain both the pistilate and the staminate parts. The flowers are set along the auxiliary 

and terminal racemes, which may be more than one in number. They contain ten 

stamens and one ovary. The bean produces three different colours of flowers, white, 

purple and pink. The biology of the common bean determines to a larger extent how the 

crop would adapt to drought and heat stress. 

 

The genetic diversity of domesticated common beans is generally narrow as compared to 

wild forms (Koenig and Gepts, 1989; Chacon et al., 2005). The Andean gene pool is 

genetically narrower than the Middle American gene pool (Kwak and Gepts, 2009; 

Bitocchi et al., 2012). This is suggestive that limited progress would be made if crosses 

are made between the same gene pool. The common bean races have, however, made it 

easy to understand the genetic diversity and for use of the germplasm for crop 

improvement (Kelly et al., 1998). The interracial, intergene pool and even interspecific 

crosses of common bean with the wild forms of the Phaseolus sp have been exploited for 

bean improvement. For example, interracial crosses between races Durango and 

Mesoamerica have been useful in breeding for yield and drought resistance (Singh, 

1995). However, this study has limitations to use these wild forms and therefore low 

progress would be expected.  

 

1.3. Drought 

1.3.1 Drought and its effects on common bean 
Drought stress is said to occur if there is insufficient moisture for normal plant growth and 

may occur at any stage in crop development. The topography and the type of soils can 
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also cause drought stress. Sloppy landscapes encourage water-run off while sandy soils 

do not hold water, hence causing water stress to plants (White and Singh, 1991). Two 

types of drought are recognized, agricultural drought and meteorological drought. 

Meteorologists define drought as the absence of rainfall for a long period of time causing 

moisture depletion in the soil and a decrease of water potential in plant tissue (Kramer, 

1980).   

 

For agricultural purposes, drought is defined as the inadequacy of water that is available 

to plants which could be as a result of having no rain or just non-availability of soil 

moisture in the soil. In agriculture, therefore, drought is a situation where soil moisture is 

limiting for normal plant growth caused by excessive water loss through 

evapotranspiration (Begg and Turner, 1976).   Two types of droughts are known, 

intermittent and terminal drought (Acosta-Gallegos and Adams, 1991; Foster et al., 

1995). Intermittent drought is due to climatic patterns of sporadic rainfall or inadequate 

irrigation during the growing season (Schneider et al., 1997a). In contrast, terminal 

drought occurs when plants suffer lack of water during later stages particularly at 

reproductive growth stage (Frahm et al., 2004). In many cases intermittent drought is 

usually experienced at high altitudes, whereas terminal drought is common at low 

altitudes. Intermittent droughts have been known to be difficult to manage while early 

maturing varieties have been used to manage terminal droughts (Chauhan et al., 2002).  

 

The type of drought is very important for breeding since genotypic response and 

mechanisms to resist or tolerate terminal or intermittent drought differ in beans (Hall, 

2001). It is therefore important that the type of drought stress the breeder imposes on the 

experiments resembles the type of drought stress that occurs in the target environment 

(White and Singh, 1991). Selection of genotypes may also be guided by the type of 

drought stress. Early maturing and determinate cultivars would be selected for areas 

affected by terminal drought because they would mature before the drought stress occurs 

while indeterminate and long season varieties would be selected and suitable for 

intermittent drought prone areas because they have the ability to recover after a long dry 

spell (Hall and Patel, 1985). Terminal drought has been known to affect the reproductive 

stages of the crop, especially during flowering and seed set (Nigam et al., 2002). 
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In general, low availability of moisture to the bean plant affects the metabolism of the 

plant during flowering time and pod-fill, as these are stages when drought causes the 

greatest yield reduction (Frahm et al., 2004a; Sponchiado et al., 1989). The traits that 

have been found to be important in both terminal and intermittent drought include 

earliness and early partitioning of photosynthates into reproductive structures for higher 

harvest index (Acosta-Gallegos and Adams, 1991; Foster et al., 1995). However, 

selection based on high harvest index has been criticized because breeders can only use 

yield after harvest in order to make selections based on yield and this could lead to 

discarding tolerant genotypes in an event that the genotypes differ in maturity dates and 

fail to yield (Gebeyehu, 2006). The crop cover in relation to leaf area was found to 

correlate with seed yield in both drought stressed and non-stressed conditions and is 

therefore important for measuring drought tolerance in common bean (Gebeyehu, 2006).  

The choice of traits to use in breeding for drought tolerance in common bean will depend 

on the type of drought the breeder is targeting (Beaver et al., 2003).  

 

The extent to which drought affects the plants depends on the type and duration of the 

drought and the time it occurs. Intermittent droughts usually affect common bean by 

reducing yields through reduction of the leaf area (Maiti et al., 1996; Clarke and Dudley, 

1981). The extent to which the leaf area reduction occurs depends on the individual 

genotypes. The reduced leaf area is usually associated with reduced evapotranspiration 

enabling genotypes to conserve and utilize the limited moisture in the soil effectively. 

Selection for drought tolerance based on leaf area is therefore possible, especially when 

genotypes are exposed to intermittent drought (Mohamed et al., 2002). Yield differences 

are said to be very visible when intermittent drought stress occurs at the initiation of 

meiosis (Westgate and Grant, 1989). Terminal drought on the other hand distinguishes 

genotypes on the basis of their ability to mobilize photosynthates into grain (Ludlow and 

Muchow, 1990).  Bean genotypes tend to lose leaves during senescence in order to 

reduce the evapotranspiration and conserve moisture (Ramirez-Vallejo and Kelly, 1998).  

 

The effect of drought depends upon the stage of crop development and the greatest 

impact occurs during the reproductive stage. The traits such as plant type, the root 

system and early flowering play a major role in adapting common bean to drought stress 

(Acosta-Gallegos et al., 1995).  Early flowering is associated with partitioning of 

photosynthates into economic yield in common bean (Beaver and Rosas, 1998). The 
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early maturing genotypes are less likely to suffer terminal droughts as is the case with 

indeterminate late maturing genotypes (Kelly and Miklas, 1998). When conducting 

drought stress experiments, it has been suggested that grouping the genotypes 

according to their growth habit and maturity dates is of paramount importance in order to 

reduce the error in the experiments.  Some reports have indicated that growth habit in 

beans can also influence its adaptation to drought stressed environments (Kelly, 2000).  

 

1.3.2 Mechanisms of drought tolerance 
Plants have evolved different strategies to avoid deleterious effects of drought. These 

include escape, avoidance, and tolerance mechanisms (Levitt, 1972). Plants may 

combine various strategies to reduce damage associated with drought. The mechanisms 

of drought resistance are broadly grouped into three categories namely, drought 

avoidance, drought escape and drought tolerance (Levitt, 1972; Mittler et al., 2001).  

 

1.3.2.1 Drought escape 
Drought escape is usually manifested as early maturity and this involves quick plant 

development, early flowering and early maturity and is defined as the ability of the crop to 

complete its life cycle before drought sets in (Acosta-Gallegos et al., 1995; Foster et al., 

1995). Times of flowering and early maturity are major traits associated with drought 

escape. However, earliness is usually associated with a yield penalty in most crops since 

higher yields generally require a longer growing period (White and Singh, 1991). In areas 

where terminal drought constrains production, a moderate shortening of vegetative 

growth period combined with a high growth rate might be advantageous. Agricultural 

practices that match crop growth with availability of soil moisture can significantly reduce 

yield losses. Another important mechanism that maintains crop productivity under 

terminal drought stress is associated with the efficiency of some genotypes in the 

partitioning of assimilates to developing fruits or seeds. This involves the plant’s ability to 

store reserves in the shoot which are remobilized into the fruit or seed when the crop is 

exposed to drought stress. This response is common in cereals where stem and leaf 

reserves are used to support grain filling (Blum, 1996; 2005; Gebbing and Schnyder, 

1999; Aggarwal and Sinha, 1984; Bruce et al., 2002), and in legumes where 

remobilization of assimilates from stems, leaves, and pod walls to the growing seed has 

been observed (Rodrigues et al., 1995; Chaves et al., 2002; Beebe et al., 2008). The 
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extent of assimilates partitioning depends on plant species, stage of crop development, 

duration of drought, and severity of drought (Farooq et al., 2009). The mobilization of 

photosynthates to the seed under terminal drought in common bean has been found to 

be an important trait in some landraces belonging to the Mesoamerica race (Rao, 2001).  

 

1.3.2.2 Drought avoidance 
Drought avoidance implies that a plant can maintain high water potential despite the 

limitation in the soil moisture levels. Genotypes avoid drought stress by maintaining 

relatively high tissue water potential, despite the low soil moisture condition. Such 

genotypes are usually characterized by an efficient deep, long and fibrous root system,  

reduced water loss through reduced leaf conductance, reduced absorption of radiation by 

leaf rolling, and reduced evapotranspiration surface (leaf area) (Mohamed et al., 2005; 

Wakrim et al., 2005). 

 

Plants avoid drought by maximizing water uptake or limiting water loss and by retaining 

cellular hydration despite the reduction in water potential (Blum et al., 2005). Water 

uptake in deep soil layers is of particular importance in production areas where crops are 

grown on stored soil moisture. Soil water uptake depends on the degree of water loss 

throughout the shoot (Vadez et al., 2008) or water management by the shoot. Therefore, 

it is important to understand the root/shoot interactions in terms of plant water 

management as well as the combination of both shoot and root traits interactions with the 

environment (Vadez et al., 2008). For example, in lowland rice, it has been observed that 

water uptake by deep roots was consistent throughout stress periods in drought tolerant 

genotypes (Gowda et al., 2012). In legumes, the most critical component of drought 

avoidance was associated with conservative soil water use during early stages of 

development to allow a significant amount of water to remain for reproduction and pod 

filling (Devi et al., 2010; Sinclair et al., 2008; Zaman-Allah et al., 2011). Many studies 

have reported positive associations between yield and root depth under water deficits in 

cereal crops at grain filling stage (Bernier et al., 2007, 2009; Lopes and Reynolds, 2010; 

Manschadi et al., 2006). In other studies in some selected legumes such as common 

bean, chickpea, soybean and cowpea; root length density, maximum root depth, and 

fibrous root systems have been found to be associated with drought avoidance (Beebe et 

al., 2010; Gaur et al., 2008; Pantalone et al., 1996; Hall, 2012). However, studies indicate 
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that the root traits associated with drought stress in groundnut and pigeon pea are still 

unclear (Vadez et al., 2008).  

 

On the other hand shoot drought avoidance mechanisms are mainly associated with 

stomatal closure to limit water loss through transpiration. The plants may also reduce light 

absorbance through leaf rolling, narrow leaf angles, shedding of older leaves, a dense 

trichome layer, leaf epicuticular wax, and lighter leaf color (Ehleringer and Cooper, 1992; 

Chaves et al., 2002; Srinivasan et al., 2008). This mechanism has however been 

unpopular for use in plant breeding due to the complexity of the mechanisms. The  

regulation of leaf water losses using various water saving traits as alluded to by most of 

the research work done towards ensuring seed development have been associated with 

drought tolerance in legumes (Sinclair et al., 2008; Zaman-Allah et al., 2011; Devi et al., 

2010).  

 

Drought avoidance through deep soil profile moisture extraction by use of deep and high 

root density have been reported to confer improved adaptation to drought stressed 

conditions (Sponchiado et al., 1989). Some photoperiod sensitive genotypes were found 

to use the phenotypic plasticity where genotypes of the same maturity groups are able to 

produce differently but are repeatable as a way of avoiding drought stress while some 

shorten their growing cycle even when planted late and are able to mobilise 

photosynthates and partition it to grain formation, increase of pod harvest index, pod 

partition index and leaf area index (Acosta-Gallegos et al., 1995;). 

 

1.3.2.3 Drought tolerance 

Drought tolerance in legume crops has been characterized by restricting their 

transpiration rates to a certain level under extreme high temperature and high moisture 

deficit. It is recognised therefore that most legume plants manage themselves in moisture 

limited environments by reducing transpiration rate, a trait related to vapor pressure 

deficit. For instance, breeding for morphological traits related to limited water loss 

resulted in development of drought tolerant soybean with delayed wilting trait (Sinclair et 

al., 2008). In cereals (sorghum, rice, and maize), the stay green trait characterized by 

delayed leaf senescence during grain filling under water limited conditions is an important 

drought tolerance trait (Takeda and Matsuoka, 2008).  Osmotic adjustment is another 

dehydration postponing trait that is expressed under soil drying conditions and this 
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involves the accumulation of a wide range of compatible solutes and ions such as soluble 

sugars, sugar alcohols, proline, glycinebetaine, organic acids, calcium, and potassium to 

maintain cell water balance(Blum, 2009; Blum et al., 2005, Farooq et al., 2009).  

 

The osmotic adjustment maintains leaf turgor and improves the root capacity for water 

uptake (Blum, 2009). It is the ability for the crop to withstand low moisture levels while 

maintaining low tissue water potential.  This enables the plants to withstand severe stress 

for a relatively long period of time. Drought tolerance therefore entails crop adaptation 

through sustained plant/cell function in a dehydrated state (Blum et al., 2005). This is 

done through specific mechanisms that may consist of accumulation of detoxifying and 

cell structure stabilizing components and various organelles including chloroplasts, 

mitochondria and peroxisomes which are key under drought stress (Farooq et al., 2009, 

Blum, 2005). Drought stress affects photosynthesis and plant growth and is usually 

associated with changes in the metabolism of sugars within the plant cells 

(Mwanamwenge et al., 1999).  

 

The antioxidant enzymes in plants such as superoxide dismutase, glutathione reductase 

and ascorbate peroxidase remove toxic substances from the plants and therefore reduce 

damage to the plant tissue when plants are exposed to low moisture stress (Moore et al., 

2009; Sofo et al., 2005).  The plants also are able to produce stabilizing proteins during 

periods of drought stress (Kavar et al., 2008; Pinheiro et al., 2008). These proteins may 

accumulate in the stems and protect plants from serious damage from low moisture 

stress (Moore et al., 2009; Pinheiro et al., 2008). They are commonly referred to as late 

embryonic abundant (LEA) and have shown greater drought tolerance compared to the 

wild type in various crops (Xiao et al., 2005). Other types of proteins such as heat and 

cold shock proteins confer drought tolerance by acting as molecular chaperones that 

stabilize the mRNA which confers drought tolerance (Kavar et al., 2008; Pinheiro et al., 

2008). The ability of plants to function well when exposed to low plant-water status and 

recover from dehydration is an important aspect of drought tolerance. The recovery in 

some crops has been shown to be a consistent and useful trait for selection to improve 

early drought adaptation where it is associated with secondary traits such as green leaf 

area or stem greenness (Kamoshita et al., 2004; Muchero et al., 2008). For instance 

some cowpea genotypes exhibit vegetative stage drought tolerance conferred by its 

capacity to recover from severe drought (Hall, 2004). 
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The responses of plants to tissue water-deficit determine their level of drought tolerance. 

The common bean like other related crop species employs a combination of these 

mechanisms to adapt to drought stressed conditions (Beebe et al., 2013). Many 

researchers have used and capitalised on these mechanisms, either separately or in 

combination, to develop common bean cultivars that would adapt to drought stress 

conditions (Amede et al., 2004; Beebe, 2012; Beebe et al., 2008; Rao, 2001).  

 

1.3.3 Screening for drought tolerance  
The effect of soil moisture stress on common bean has been well explained in literature 

(Boutraa and Saunders, 2001). Different methods have been used to identify genotypes 

that are adaptable and productive in drought stressed conditions (Begg and Turner, 1976; 

Yadav and Bhatnagar, 2001; Raynolds et al., 2007). Mathematical models have been 

used to compare the change in yield between stressed and non-stressed conditions 

(Rosielle and Hamblin, 1981). However, bean breeders are more interested in selecting 

genotypes based on yield performance using indices other than drought tolerance per se. 

Drought tolerance in this case has been defined as relative yield of a genotype compared 

to other genotypes subjected to the same drought stress conditions, enabling the breeder 

to use various drought stress indices to distinguish genotypes (Ramirez-Vallejo and Kelly, 

1998; Subbarao et al., 1995).  

 

Seed yield has been reported as the most practical and appropriate way to screen for 

drought tolerance (Acosta-Gallegos and Adams, 1991; Terán and Singh, 2002a; White 

and Singh, 1991). In some cases drought tolerance is confounded with diseases. For 

example, drought tolerance may also confer resistance to fusarium and rhizoctonia root 

rots (Navarette-Maya et al., 2002b; Subbarao et al., 1995). Screening for drought 

tolerance takes into account the differences in genotype response mechanisms and yield 

under stressed and non-stressed conditions. Breeders have used several selection 

criteria to identify genotypes based on their performance in stress and non-stress 

environments (Fischer and Maurere, 1978; Rosielle and Hamblin, 1981; Fernandez, 

1992). Drought indices which provide a measure of drought tolerance based on loss of 

yield under drought conditions in comparison to normal conditions have been used for 

screening drought tolerant genotypes (Mitller et al, 2001).  Rosielle and Hamblin, (1981) 
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defined stress tolerance (TOL) as the differences in yield between the stress (Ys) and 

non-stress environments (Yp) and mean productivity (MP) as the average yield of Ys and 

Yp. Fischer and Maurer, (1978) proposed a stress susceptibility index (DSI) which 

measures the drought stress intensity. Fernandez (1992) proposed and stated that 

geometric mean productivity (GMP) can be used to determine relative performance of 

genotypes, since drought stress can vary in severity in field environments over years 

while stress tolerance index (STI) would be a useful tool for determining high yield and 

stress tolerance potential of genotypes. The stress tolerance index can be used to 

identify genotypes that produce high yield under both stress and non-stress conditions. 

Sio-se Mardeh et al. (2006) used drought tolerance indices in wheat and found that under 

moderate stress, MP, GMP and STI were more effective in identifying high yielding 

cultivars in both drought-stressed and non-stressed conditions. Under severe stress, 

none of the indices used were able to identify and group high yielding cultivars. Clarke et 

al. (1992) used SSI  for evaluation of drought tolerance  in  wheat  genotypes  and  found  

a  year-to-year variation  in DSI  for  genotypes  and  their  ranking  pattern. Guttieri et al. 

(2001) using the SSI criterion suggested that an SSI value more than 1 indicates above-

average susceptibility while a value less than 1 indicates below-average susceptibility to 

drought stress. Fernandez (1992) proposed STI for identifying mungbean genotypes with 

high yield and stress tolerance potentials.  

 

In general, selection for drought is done based on phenotypic traits (Acquaah, 2007) and 

among them, it is recommended that measurement of seed yield is the most efficient way 

of screening for drought tolerance (White and Singh, 1991). The selection based on 

geometric mean seed yields and the use of drought susceptibility index is an effective tool 

to choosing drought tolerant genotypes in beans (Ramirez-Vallejo and Kelly, 1998). In 

other studies, it was found that the use of indices such as Drought Tolerance Index, Pod 

Harvest Index and Pod Partitioning Index are important phenotypic traits reflecting 

greater potential for genotypes to remobilize photosynthates from vegetative plant parts 

to pods (Beebe et al., 2008). Various selection indices provide different dimensions on 

the details of selection and provide more information regarding the mechanism of 

tolerance towards drought. All the indices will therefore be used to explore the drought 

tolerance mechanisms in this study.  
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1.3.4 Genetics of drought tolerance 
Drought tolerance is a complex trait and its inheritance is considered to be quantitative 

(Beebe et al., 2008; Blair et al., 2011). The inheritance of drought tolerance therefore 

requires specialized biometric methods to determine the gene action. However, many 

factors are known to confer drought tolerance and these may include morphological, 

physiological and chemical genotypic responses (Blum, 1988). The genetics of 

inheritance of tolerance to drought stress in common bean has been studied and reported 

by different researchers. Some of the key traits reported to be relevant in explaining the 

genetics of drought tolerance include seed mass, rooting pattern, partitioning of 

carbohydrate, flower and pod abortion, number of seeds per pod and number of pods per 

plant (Rao, 2001; Sponchiado et al., 1989).   

 

Dominant gene effects have been reported to be predominant for the inheritance of 

drought tolerance in common bean (Hinkossa et al., 2013; Shahab et al., 2012). 

However, while it has been widely acknowledged that additive gene action is important 

for drought tolerance; non-additive gene action particularly epistatic gene effects have 

also been found to be significant for some traits (Shahab et al., 2012). The additive gene 

effects have been reported for number of seeds per pod and above ground biomass 

under stressed conditions (Hinkossa et al., 2013). The race Durango has been reported 

to contain drought tolerance genes and was recommended for genetic studies in drought 

tolerance (Frahm et al., 2004; Terán and Singh, 2002).  The use in breeding for drought 

tolerance of the race Durango in combination with other races has proved to be a 

consistent source of drought tolerance for lowland tropics, indicating that polymorphism 

between races is adequate. Very little work has been done to determine the mechanisms 

of drought tolerance in legumes compared to cereal crops despite the fact that legumes 

have demonstrated an ability to grow in diverse and harsh environments (Turner et al., 

2001). The screening of improved genotypes and landraces therefore provides great 

potential in identifying appropriate genotypes for adaptation to drought prone conditions.  

 

1.3.5 Breeding for drought tolerance 
Breeding progress in legumes for drought resistance has been slow due to the polygenic 

nature of drought resistance and due to the fact that breeding for drought resistance has 

relied on empirical selection for yield in target production zones. However, yield is a 

complex trait which is influenced by various factors with a high dependency on genotype 
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by environment interaction (Sinclair, 2011). Various secondary traits have been studied 

and used to select drought resistant genotypes. Among these, the most widely used traits 

in breeding have been traits related to phenology and adaptation. For example, selection 

for early maturing genotypes to escape terminal drought has led to drought tolerant 

chickpeas and this led to the expansion of the production area as well as the productivity 

of chickpeas (Gaur et al., 2008). Cowpea is recognized to be the most drought tolerant 

legume. The high leaf water status in cowpeas has been used to select genotypes for 

drought tolerance (Hall, 2012).  A combination of vegetative drought resistance and 

earliness has been used to develop early maturing genotypes (Hall, 2012). Delayed 

senescence was also found useful to confer drought tolerance in cowpeas and this has 

been reported to combine very well with remobilization of stem reserves providing an 

opportunity for re-growth (Hall, 2012). Delayed wilting in soybean genotypes has been 

used to select drought tolerant genotypes (Sinclair et al., 2008).  

 

Breeders have been able to exploit different mechanisms to develop improved cultivars 

that cope with drought stress. Most of the work done so far has been the identification of 

drought tolerant lines (White et al., 1994b). In breeding for drought tolerance, selection 

may be made for early maturing varieties that escape the stress, or make crosses 

between tolerant genotypes and susceptible ones in order to develop superior genotypes 

(Beebe et al., 2010). The Durango race has been identified as a potential donor for 

drought tolerance following intensive screening of large numbers of germplasm in 

different altitudes (Tohme et al., 1995). Using the race Durango, many breeding 

programmes have utilized intra-specific crosses to improve drought tolerance in 

susceptible genotypes of common bean genotypes (Beebe et al., 2008). Some inter-

genepool crosses were also found to offer superior segregants for drought tolerance 

(Singh, 1995). Many drought tolerant cultivars have been reported to sustain their 

production through their favorable response in protecting reproductive traits (Beebe et al., 

2008).   

 

Genotypic differences in common bean for biomass partitioning are reflected through two 

key traits and these include: pod partitioning index and pod harvest index (Rao et al., 

2004). Pod partitioning index is determined as the ratio of dry weight of pods at harvest to 

dry weight of total biomass at mid-pod fill expressed as a percentage while, pod harvest 

index is calculated as the ratio of dry weight of seed to dry weight of pod at harvest 
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expressed as a percentage. These two traits have been used to determine the 

physiological differences in the drought tolerance levels in common bean and measures 

the photosynthate accumulation and partitioning. The International Center for Tropical 

Agriculture has widely used bean genotypes with superior pod harvest index and pod 

partitioning index as selection criteria for genotypes that reflect a greater ability to 

mobilize photosynthates to grain under drought stress (Ramirez-Vallejo and Kelly, 

1998).The selection based on high geometric mean seed yields and drought susceptibility 

index values were reported effective approaches to select for drought tolerance in beans 

(Ramirez-Vallejo and Kelly, 1998).  

 

The crosses between the race Durango and Mesoamerican genotypes have been used in 

common bean breeding to develop drought tolerance (Singh et al., 1991; Frahm et al., 

2004; Beebe et al., 2008; Singh et al., 2001; Singh, 2007). Breeding for drought tolerance 

has progressed using various selection criteria such as biomass accumulation, seed yield 

traits, and pod filling under drought stress and non-stress conditions (Schneider et al., 

1997; Frahm et al., 2004; Beebe et al., 2008). Selection under both irrigation and drought 

stress allowed the selection of elite cultivars that maximize yield potential in stress-free 

environments but which also produce acceptable yields under drought stress. In addition, 

screening in both drought and non-stress conditions allowed breeders to quantify yield 

gap caused by drought conditions so that they can be able to select cultivars with minimal 

yield loss under water stress.  

 

Generally, breeders and plant physiologists are in agreement to use root traits such as 

root depth, density, and biomass, to select for terminal drought avoidance (Gaur et al., 

2008; White and Castillo, 1989, Beebe et al., 2010; Manavalan et al., 2009; Kumar et al., 

2012; Khan et al., 2010). However, breeding for improved water uptake using root traits 

has been limited due to practical difficulties to take the measurements. In addition, root 

architectural differences have been observed (Ho et al., 2005).  In spite of the challenges 

associated with breeding for root traits, the identification and use of QTLs associated with 

root traits for better water uptake would improve breeding efficiency for drought tolerance 

(Asfaw and Blair, 2012). These QTLs can facilitate the breeding for root traits in common 

bean irrespective of water conditions once confirmed. This may provide bean breeders 

with an opportunity to capitalize on marker assisted selection (MAS) for chromosomal 
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regions carrying these QTLs. Some traits such as deep rooting have been found useful 

for drought tolerance in common bean (Sponchiado et al., 1989). 

 

Another avenue to improve legumes for drought tolerance is through genetic engineering 

(GE) to introduce genes from other species known to have drought tolerance attributes. 

Many transcription factors that regulate downstream genes involved in drought tolerance 

have been identified and cloned (Ko et al., 2006; Torres et al., 2006; Kavar et al., 2008; 

Haake et al., 2002; Rodriguez-Uribe and O’Connell, 2006). These genes could be targets 

for legume transformation in an effort to improve drought stress tolerance. 

1.4 Heat stress 

1.4.1 Heat stress and its effects on common bean 
There is currently about 20% of common bean production that takes place in the low- and 

mid-altitudes areas at high temperatures in Sub-Saharan Africa (Wortmann et al., 1998). 

Heat stress effects tend to increase under limited soil moisture. It is said to occur when 

the temperatures are above optimum ranges for normal plant growth (usually 10-15oC 

above optimum) over a period of time. The optimum temperatures for growing common 

bean are between 15 and 23oC (Wortmann et al., 1998). Extremes of temperatures, high 

or low, cause damage to most legumes at various growth stages that may include 

vegetative and/or reproductive stages (Ismail et al., 2000). Heat stress usually occurs 

together with drought stress and has become a common phenomenon in most of tropical 

Africa.   Heat stress that occurs during the reproductive stage of growth may result into 

total crop failure in common bean (McCarthy et al., 2001). The common bean is known to 

be a warm season crop, and suffers under extremely high temperatures (>30oC) stresses 

which cause flower abortion (Tischner et al., 2003). Flower abortion has serious 

implications on common bean yields. White and Izquierdo (1991) reported flower abortion 

levels of between 60-80% due to low moisture and high temperature stresses in common 

bean. However, studies specifically done to determine loses in common bean due to heat 

stress alone are scarce.  

 

The effects of heat stress in common bean range from poor floral bud formation, flower 

drop to poor pod development. The heat affects the viability of pollen grains and anthers, 

thereby resulting in low pod setting (Khattak et al., 1998). High night temperatures have 

been reported to cause high flower abortion (Warrag and Hall, 1984). In other related 
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studies, high flower abortion has been reported in kidney beans and snap beans 

(Navarette-Maya et al., 2002; Shonnard and Gepts., 1994). The optimum temperature for 

pollen germination and tube growth depends on species and varies between cultivars 

(Loupassaki et al., 1997).  However, no reports were found that establish the temperature 

threshold levels for pollen growth in common bean.  

 

The plants’ sensitivity and response to heat stress differs among the species and the 

genotypic constitution (Howarth, 2005). It is known that C4 plants have a higher 

temperature minimum than C3 plants due to the operation of a CO2-concentrating system 

that inhibits rubisco oxygenase activity (Berry and Bjorkman, 1980; Edwards and Walker, 

1983). The C3 plants generally grow optimally and remain productive at temperatures 

between 20 and 30 oC (Larcher 1995), whereas, C4 and CAM plants generally have 

higher optimal temperatures (30 to 40 oC) (Larcher, 1995). Critical temperatures for 

thermal tolerance are often plastic within species (Froux et al., 2004, Nicotra et al., 2008). 

Recent comparative studies show plasticity, but few consistent differences among 

species from different environments in thermal tolerance of photosynthesis (Knight and 

Ackerly 2002; 2003). In C3 plants, where the common bean belongs, high temperatures  

affect the ratio of rubisco oxygenase:rubisco carboxylase activities (Britz and Kremer, 

2002). As temperature increases, the ratio of dissolved O2/CO2 and the specificity of 

rubisco for O2 increase, thus favoring oxygenase activity inhibiting net photosynthesis 

(Monson et (Britz and Kremer, 2002).  

Heat stress has been reported to influence the nutritional quality such as accumulation of 

phytosterols and tocopherols (collectively called tocols), which have health promoting 

effects in humans (Britz et al., 2007; Wolf et al., 1982). For example in soybeans, heat 

and drought may affect the presence of tocols (Britz and Kremer, 2002). Slight increases 

in temperature combined with extreme drought may cause a large increase in α-

tocopherol that is almost precisely matched by decreases in δ-tocopherol and γ-

tocopherol content (Tsukamoto et al., 1995; Caldwell et al., 2005). In soya beans, growth 

at high temperature and low moisture stress was found to influence the isoflavins content 

both positively and negatively (Tsukamoto et al., 1995; Caldwell et al., 2005).  
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1.4.2  Genetics of heat tolerance 
The common bean is known to be highly sensitive to extremes of temperatures (low or 

high) and this has resulted into unstable yields in environments where high or low 

temperatures occur (Lynch, 2007). However, literature on the impact of temperature on 

common bean production is still limited. Gisela and Gepts (1994) reported the 

significance of additive and non-additive gene action in the inheritance of flower bud 

abortion and pod fill. Differential heat tolerance reactions were observed by Rainey and 

Griffiths (2005b), suggesting that they could be affected by non-allelic heat tolerance 

genes. Significant heterosis has been reported to be significant in common bean when 

exposed to heat stress indicating a possibility of high allelic interactions in the parents 

(Shonnard and Gepts, 1994). In related studies, heat tolerance was improved in cowpeas 

using pollen traits (Morfo and Hall, 1992). Susceptible cowpea genotypes to heat stress 

were found to produce sterile pollen while resistant genotypes produced fertile pollen 

(Singh et al., 1997). Some genotypes fail to dehisce with extreme drought and high 

temperature stress in cowpeas (Mutters and Hall, 1992).  It was established that the 

genes controlling abortion of reproductive organs (flowers, buds and pods) in cowpeas 

was controlled by a single recessive gene (Rainey and Griffiths, 2005c).  The genetics of 

heat tolerance seem to be better understood in cowpeas than in the common bean (Hall, 

2004). However, the information could be used interchangeably as the two crops belong 

to the same family (Hall, 2004). In view of this, the reports indicating that a single 

recessive gene and some minor genes reported to enhance the ability of cowpea to set 

pods under heat stress could be relevant information for common bean selections in the 

F2 generation (Rainey and Griffiths, 2005a). Similarly the additive and non-additive gene 

action reported in the inheritance of flower bud abortion and pod fill in common bean is 

useful information and could be explored in breeding for heat tolerance.  

 

1.4.3 Heat stress interaction with drought stress  
The occurrence of heat and drought stress at the same time affects the uptake and 

discharge of CO2 in common bean (Yordanov et al., 1997).  Heat and drought stresses 

have been reported  to affect leaf growth in sorghum; cause low leaf water content in 

wheat (Chen et al., 1988); dehydrate plant tissues causing irreversible plant damage and 

eventually death of the plant (Bartels and Sunkar, 2005; Bray et al., 2000). To cope with 
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these constraints, plants induce complex modifications of both their physiological state 

and metabolic pathways, which are still not very clear.  

 

1.5 Breeding for drought and heat tolerance 

1.5.1 Sources of tolerance for drought and heat  
Plant breeding is continually contributing to improving people’s lives through release of 

new varieties. Breeding efforts to develop common bean genotypes that are tolerant to 

drought and heat stress, particularly in Africa, have been limited. Sources of resistance 

for drought (Beebe et al., 2008; Brick et al., 2001; Singh, 2001) and heat (Beaver et al., 

2008; Rosas et al., 2003) have been reported. Most of these tolerant genotypes have 

been developed through screening of large numbers of bean collections. Very few 

sources of resistance have been identified among the African germplasm and no known 

sources of resistance have been identified in Zambia. Many researchers have reported 

variation for drought tolerance in seed yield in response to well-known disruption of 

reproductive processes in common bean (Rao, 2001; Rosales-Serna et al., 2004; 

Rosales-Serna et al., 2005; Singh, 2001; Terán and Singh, 2002a). Most of the 

genotypes identified as drought tolerant were found to be early maturing and basically 

utilized the escape mechanism to adapt to drought stressed conditions. Crosses between 

Durango and Mesoamerican genotypes have generated drought tolerant lines (Terán and 

Singh, 2002a).  

 

Common bean landraces are also a good resource for resistance although their use has 

been limited. Farmers and local gene banks maintain large collections of cultivated 

common bean landraces which are often variable in appearance, adaptation and some of 

them are known by local names. Most of these landraces retain special attributes such as 

early maturity, and their adaptation to adverse weather patterns, and tolerance to biotic 

stresses (Harlan, 1992). These could therefore be exploited in breeding for drought 

tolerance by screening them to identify tolerant genotypes.  

 

1.5.2 Breeding for heat tolerance in common beans and screening techniques 
Breeding crops for heat stress tolerance has received little attention and has only started 

to be recognized in recent years as an option to minimize the heat stress effects (Porch 

and Hall, 2013). Breeding for heat tolerance is based on clear understanding of the 
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physiology and genetic mechanisms in response to heat stress. The physiological 

response to heat stress is well documented but there is limited information on the 

genetics of heat tolerance.  Heat tolerance is a quantitatively inherited trait which is poly-

genically controlled (Beaver et al., 2008). Despite the difficulties in screening for heat 

tolerance, some reports have indicated success in the development of heat tolerant 

cultivars (Beaver et al., 2008; Rosas et al., 2003).    

 

Screening for heat tolerance in common bean has been difficult. However, based on the 

common bean physiology, some selections have been done.  Few heat stress indices 

have been developed for the evaluation of high ambient temperature stress in plants. 

Some of the key indices used include the thermal stress index in cotton (Burke et al., 

1990), which is based on selecting genotypes based on canopy and leaf temperature.  

Other indices that have been used to select heat tolerant genotypes include a number of 

yield-based stress indices such as geometric mean (GM) and the stress tolerance index 

(STI) (Fernandez, 1993). The stress tolerance index was developed to identify genotypes 

that perform well under both stress and non-stress conditions. Fisher and Maurer (1978) 

proposed the stress susceptibility index (SSI) and defined it as a ratio of genotypic 

performance under stress to non-stress conditions, adjusted for the intensity of each trial, 

and has been found to be correlated with yield and canopy temperature in wheat (Rashid 

et al., 1999). Both the GM and SSI have been applied in the selection of heat tolerant 

bean genotypes (Vallejo and Kelly, 1998).  

 

1.6 Breeding methodology for drought and heat tolerance 
Various breeding methods have been used to breed for drought and heat tolerance in 

common bean. Several workers have used the pedigree method to breed common bean. 

However, the method has been criticized to be long and takes too much time to 

implement (Frahm et al., 2004b). Some studies have reported the use of single seed 

descent (SSD) which has been applied in the breeding of soybean. This method, though 

useful in maintaining variability (Kelly and Miklas, 1998), has not been applied often in 

common bean breeding because of the many traits to be considered in common bean 

selection as compared to soybeans where it has worked well. In order to alleviate the 

disadvantages of the SSD method, the use of gamete selection was proposed when 

dealing with multiple traits (Singh, 1994). Gamete selection allows an early evaluation of 
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promising genotypes and this enables the breeder to remove lines with less desired 

characteristics early enough thereby eliminating chances of wastage of resources. The 

method of gamete selection assumes multiple-parent crosses and simultaneous 

improvement of multiple traits. The parental population (male and/or female parents) 

should be heterozygous and that each zygotic seed results from a separate and 

independent fertilization event. This method can only be used when dealing with few 

populations since it is labor-intensive and therefore may prove irrelevant in screening for 

heat tolerance which requires that one deals with bigger populations (Singh, 1998).   

 

Bulk selection breeding method has been used successfully on yield improvement and 

successes were recorded in early generations (F3 and F4) in common bean (Singh et al., 

1999). Although recurrent selection would be more useful in population breeding 

techniques in the field and could be the best suited for quantitatively inherited 

characteristics such as drought and heat tolerance in bean, its application in self 

pollinated crop species is difficult. Some researchers have successfully achieved high 

yielding, adaptable and stable genotypes using recurrent selection (Garcia et al., 2003; 

Ranalli, 1996; Singh et al., 1999; Johnson and Gepts, 2002). Beebe et al. (2008) still 

recommended recurrent selection as an effective breeding strategy for drought and heat 

stresses. 

 

Breeding for heat and drought tolerance has several limitations due to large effects of 

genotype by environment (G x E) interactions. Selection for drought and heat tolerance 

has been reported to be difficult because the drought stress may occur at different times, 

with different intensity modified by soil type and fertility (Rao, 2001). In the harsh 

environments in which the majority of smallholder farmers in developing countries grow 

crops, mechanisms of drought and heat tolerance are difficult to analyze because of the 

interaction of drought with other stress factors, such as high temperature, low soil fertility, 

and soil acidity. These factors pose difficulties in identifying an appropriate selection 

method for drought and heat tolerance. However, it has been cited that selecting 

genotypes in environments that experience frequent high temperatures may be useful 

(Ehlers and Hall, 1998). However, despite the growing evidence that selection under 

target environments enhances breeding gains for stress environments (Atlin and Frey, 

1990; Bänziger et al., 1997; Ceccarelli et al., 1992), the difficulty of choosing appropriate 

selection environments, given a highly variable target environment, may limit the 

http://www.g3journal.org/content/2/5/579.full#ref-28
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identification of superior genotypes (Blum, 1979). Genotype by environment interactions 

may originate from environmental variation in the timing and severity of water deficits, 

genetic variation in flowering time, and nutrient deficiencies and toxicities whose 

occurrence and severity usually interact with water deficits (Banziger and Cooper, 2001; 

Cooper et al., 1999).  

 

1.7 Participatory Variety selection and farmer variety preferences 
Participatory plant breeding (PPB) is the development of a plant breeding programme in 

which breeders may collaborate with farmers, marketers, processors and consumers or 

policy makers. Variety trials conducted on the research station are often managed very 

differently from farmer practices.  For example, researchers apply more fertilizer, achieve 

more complete weed and pest control, and irrigate more frequently than farmers can.  

High-yielding varieties that perform well under these “high-input” conditions may not 

perform well under more stressful conditions faced by poor farmers who cannot spend 

much on purchased inputs or who lack the labor to completely control weeds.  

 

Participatory plant breeding techniques have successfully been used to develop and 

increase adoption of common bean varieties to farmers (Danial et al., 2007).  This 

approach allows the participation of farmers in the development of bean varieties which 

enhances the adoption rates (Sperling et al., 2001). The approaches and context in which 

farmers have been engaged to participate in common bean breeding have been well 

defined (Sperling et al., 2001). The specific bean trait combination of preferred colour and 

growth habit is possible to achieve through participatory plant breeding (Morris and 

Bellon, 2004). However, many selection criteria using participatory plant breeding may 

result in compromise between selection for meaningful genetic combinations and farmers 

preferred traits such as between yield and taste (Sperling et al., 2001). Participatory plant 

breeding has been used as a strategy for increased use of improved varieties (Brush, 

2000) because it can be used to breed divergent cultivars for subtly different 

environments and for diverse end uses. The PPB can also add value to traditional 

landraces that would otherwise be lost from the system (Sthapit et al., 2001). 
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CHAPTER TWO 

Farmers’ preferences for common bean varieties and factors 
influencing their choices in the low altitudes in Zambia 

 

 
 
 

Abstract 
Breeding programmes have released many improved varieties of common bean but very 

low adoption of the improved varieties has been reported. The main reason behind the 

low adoption levels is that breeding programmes have done little to understand the 

incentives that govern varietal choices among small-holder farmers. Farmers’ 

preferences for common bean varieties were investigated in two Zambian populations, in 

two districts, using formal surveys and focus group discussions (FGD). Results from the 

study indicated that small-holder farmers were willing to adopt common bean varieties 

that were adaptable to their environments. The adoption criteria set by the farmers were 

that they preferred a bush type growth habit, red speckled bean colour, large bean size 

and elongated shape, bean taste, early maturity and high number of pods per plant. 

Lyambai, a red speckled seed variety was chosen as their preferred type of bean meeting 

most of their selection criteria. Gender and formal education levels of the farmers were 

also found important and influenced farmers in making common bean adoption decisions.  
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2.1 Introduction 
The common bean is one of the most important food legumes in the low altitudes of 

Zambia as a source of cheap protein, mineral nutrients and vitamins (Musonda, 2008). 

The crop also serves as a source of cash for the poor rural populations. This crop 

supplements the nutrition status of the Tonga people, who are the major occupants of the 

Gwembe valley and who were displaced from the area that is now covered by Lake 

Kariba when the dam was built in the 1960s. Due to its relatively low altitude, the climate 

is mostly hot and dry, with average rainfall of about 600-700 mm per year. The livelihood 

pattern in this zone is small-scale subsistence agriculture and livestock rearing (Ndiyoyi 

and Phiri, 2010). The farmer’s preferences for crop cultivars in this region are highly 

influenced by the weather patterns.  

 

Formal crop breeding programmes have in many cases not benefited farmers. This has 

been attributed to a huge disparity between research priorities and farmer preferences 

(Devi and Singh, 2011). This is particularly the case for small-scale farmers in sub-

Saharan Africa (SSA), especially Zambia where yield levels have remained low despite 

researchers releasing high yielding varieties (Sperling et al., 2001). There is general 

understanding that modern varieties have not addressed the farmers’ preferences and 

this has resulted in low adoption rates of these varieties (DeVries, and Toenniessen, 

2001). Breeders may emphasize yield and disease resistance, giving less (or no) weight 

to grain or straw quality, threshability, or other traits that may be important to farmers.  

Many agronomically superior varieties have failed because they were deficient in traits 

important to farmers, which were not considered by breeders (Sperling et al., 2001).  

 

The common bean is among the crops with the lowest adoption rates for improved 

varieties in Zambia (Sperling et al., 2001). The low adoption has been attributed to failure 

by the varieties to meet farmers’ preferences (Foolad and Bassari, 1983). A further 

complicating factor is that many improved varieties of common bean have been selected 

on the basis of their agronomic performance in on-station trials.  Often, these trials are 

conducted under high management practices, which are very different from those of the 

small-scale farmers (Chirwa personal communication, 2010) 

 

Farmer participation in the breeding of crop varieties for low-resource farmers has now 

been recognized as essential in a breeding programme as an excellent means of 



50 
 

improving farmer acceptance and the adoption of improved varieties (Chirwa personal 

communication, 2010; Cokkizgin et al., 2013; Durson, 2007; Selehi et al., 2010). Owing to 

the nature of the common bean, it varies in colour, growth habit and taste, with varied 

consumer and farmer preferences (Idahosa and Alika, 2013). These preferences are 

more likely to be in new bean varieties if farmers participate in the research, and this will 

ensure increased adoption rates.  

 

In light of the above background, this research was conducted to a) assess farmers’ 

preferences for common bean varieties in the low altitude regions of Zambia, and b) 

identify and describe factors that influence the adoption and non-adoption of common 

bean varieties by these farmers.  

 

2.2 Materials and methods 

2.2.1 Study sites 
The participatory study was conducted in two districts, namely, Siavonga and Gwembe 

districts (Figure 2.1) which are located approximately 140 and 180 km south and south 

west of Lusaka, the capital city of Zambia. The research focused on these two districts 

because they are both prone to droughts and high temperatures during the crop 

production seasons. According to CSO (2003), the population of Siavonga and Gwembe 

was 89,787 and 52,711 respectively and comprised 49% male and 51% female 

inhabitants in both districts.  The districts vary in size and population density. 
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Figure 2.1: Map of Southern province showing the location of Siavonga and Gwembe 
districts Source:  
http://upload.wikimedia.org/wikipedia/commons/8/8c/Southern_Zambia_districts.png 
 

Most of the farmers in these two districts operate on a small-scale, occupying low farming 

potential, customary land under the control of traditional authorities (Central Statistical 

Office of Zambia, 2000). Siavonga and Gwembe lie within the tropical region with 

temperatures reaching above 30oC for most of the year. The districts receive the least 

rainfall in the country. This rainfall is usually erratic and the area is characterised by dry 

spells (Veldkamp et al., 1984; Zambia Agriculture Research Institute, 2006) but because 

of a lack of resources to invest in irrigation, farming in this area is predominatly rain-fed. 

The growing season in the two districts is very short (between 60 – 90 days), from late 

November to early March. The districts lie along the Zambezi river basin which is low, flat, 

and widely embedded with brown red clay loams and highly prone to soil degradation. 

The two districts are occupied largely by the Tonga speaking community who are 

traditionally pastoralists but who grow crops for daily food needs, and whose maize diets 

are heavily supplemented by beans.  

http://upload.wikimedia.org/wikipedia/commons/8/8c/Southern_Zambia_districts.png
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2.2.2 Data collection 
The data was collected through two approaches; focus group discussions (FGDs) and a 

formal survey using a semi-structured questionnaire and structured questionnaire 

(Appendix 2.1 and 2.2).  

2.2.3 Focus group discussions  
The FGDs were held with four groups of farmers in December, 2010, in four selected 

camps; two groups came from each of the two districts, Siavonga and Gwembe (Figure 

2.1). The agricultural camps are the smallest administrative units of the Ministry of 

Agriculture and Livestock for provision of extension services. In each of the selected 

camps, farmers were drawn from two different villages. These villages were selected on 

the basis of accessibility, and also because they practised bean growing. The 

identification of individual farmers was guided by key informants and the Ministry of 

Agriculture and livestock extension officers working in the selected areas. The sampling 

was done purposively as described by Ruane (2005) and Scheyvens and Storey (2003). 

This approach of sampling is designed to reach a desired target and was used to achieve 

a balance between women and men. The focus groups comprised 15 farmers each giving 

a total of 60 FGD participants. The discussions were open, with farmers using flip charts 

to summarise their discussions (Figure 2.2). The focus group discussions were held in 

different camps from those where the surveys by questionnaires were conducted to 

eliminate bias on answers from the farmers. 

 

 
Figure 2.2: Farmers in focus group discussions, capturing main points on flip charts 
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Using the principles outlined by Grudens-Schuck (2003) and Grudens-Schuck et al. 

(2004), the composition of the groups was made with caution, with advice from the local 

extension agents, to ensure similarities in the general demographic data of the sampled 

households. The farmers’ ages ranged between 40 and 60 years. Of the selected 

farmers, 40 were men while 20 were women and this also represented a balance of men 

to women ratios in the whole farming population of the districts. The discussions were 

moderated by the researcher to focus the discussions on what was being investigated 

and lead questions from the semi structured questionnaire were used to guide the 

discussions. Prior to these focus group meetings, the researcher met with extension 

officers and lead farmers to gain an insight into the communities’ socio-economic 

characteristics in order to map the discussions to ensure accurate results.  

 

The FGDs were held for a maximum of two hours at each site in order to limit prolonged 

discussions.  The open-ended questions used were structured in such a way that they 

were more general at the beginning but later narrowed down to specific subjects. The 

farmers introduced themselves and ground rules were set in order to encourage 

openness in the discussions. The data were recorded on flip charts, together with 

moderator notes. The data from the FGDs were analysed through theme coding and 

qualitative data charts (Acosta-Gallegos et al., 1995; Halterlein et al., 1980). Valid themes 

were taken as those that were mentioned by two or more participants at least. Reviews of 

the discussions were done by a volunteer participant briefly going over the discussions to 

ensure the notes were accurate. During the FGDs, five released and already popular 

common bean varieties were used to identify seed characteristics that farmers would use 

in selecting their preferred varieties. The scores and ranking for seed traits were taken as 

a relative trait value on a scoring scale of 1 to 4 where 1 was highly preferred by the 

farmers while 4 was least preferred.  

2.2.4 Farmer survey and questionnaire administration 
The survey covered four agricultural camps in the two districts. Thus eight villages were 

included. The farmers were selected at random from entire village lists by the headmen 

who are the village administrative authorities. Enumeration was done with the assistance 

of local people who understood the local language and the farmers’ culture. Grade 12 

school-leavers in each area were recruited to work as enumerators. They were trained to 

conduct an interview and enter information in the questionnaires. The interviews were 

conducted in the Tonga language and enumerators entered the information in English 
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(Figure 2.3). In addition, general information on the sampled villages was collected from 

the village administrative authorities 

 

 
Figure 2.3: Researcher conducting a farmer survey using a questionnaire 

 

Five copies of the questionnaires were administered prior to the main survey as a 

preliminary test of the questionnaires, to train enumerators on data collection, and to 

check farmers' level of understanding of the questions. The necessary adjustments were 

made to the questionnaires based on the feedback from the preliminary test. The final 

questionnaire comprised of three major sections: questions relating to participant 

demographic and socio-economic factors; factors that influenced the decisions on choice 

of a variety by the members; and preferred crop traits.  

 2.2.5 Data analysis 
The collected information was analysed using the statistical package for social scientists 

(SPSS) computer programme. A probit regression model was used to test the 

significance of the measured characters for farmers’ preferences (Asante et al., 2013). 

The variables included in the analysis were chosen on the basis of the general economic 

theory on adoption (Comin and Hobijn, 2003). Under this model specification, a standard 

logistical distribution of the error terms is assumed. The standard logistical distribution 

has a mean equal to zero and a variance of π2/3 where π represents farmers’ 

preferences and is symmetric around zero mean. This model further assumes that there 

is no correlation among the error terms and that it applies logistic regression, where 

farmers’ decisions of choice are assumed to be dichotomous in nature. Contextual 

characteristics, such as district were included in the analysis, as they might have 

captured (though in a minor way), the agro-climatic differences, infrastructure variations, 
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and district preferences. Farm attributes such as total land size and the major season for 

growing beans and farmer attributes, such as major source of income, age, education, 

and varietal preferences (farmers' preferred seed traits), were expected to influence 

farmer preferences and adoption of varieties.  

 

2.3 Results  

2.3.2 Demographic data 
The demographic data for Siavonga and Gwembe exhibited similar trends (Figure 2.4). 

The age groups of the respondents ranged from those less than 40 years, between 40 

and 50 years and those above 50 years (Figure 2.4). On average, 79% were male 

headed while only 21% were female headed households. Figure 2.4 provides 

demographic summaries for the interviewed households. 
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Figure 2.4: Demographic data description for Siavonga and Gwembe  

 

2.3.3 Inherent factors influencing farmers choices for bean varieties 
The general trends for factors influencing farmers’ decisions were similar between the 

two districts (Figure 2.5). Most farmers (about 60%) indicated that they belonged to 

farmers’ organisations (FO) from which they derived good support, including seed. It was 

also observed that the government extension service was the major source of extension 

messages in both districts. Most farmers in these districts confirmed that they owned less 

than 5 ha of land and thus qualified as small-scale based on the Zambian government 

classification.   
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Figure 2.5: Factors influencing decisions on choices for common bean 

 

2.3.4 Farming systems used for bean cultivation influencing choices for common 
bean varieties 
The crop factors influencing farmers’ decisions showed similar trends with the 

demographic and other influencing factors (Figure 2.6). The seed used for common bean 

planting in both districts was mostly taken as part of harvest for grain, although a few 

farmers indicated that they bought seed from agro-dealers. Over 80% of the farmers 

practiced crop rotation and most of them rotated legumes with cereal crops. On average, 

70% of the farmers who used legumes in crop rotation used beans indicating the 

significance of the common bean in the farmers’ farming systems. The main reason given 

for rotating beans with cereals was to improve the soil fertility. However, bean yields in 
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both districts were reported to be poor, below 300 kg ha-1. High temperatures and drought 

were cited as the main factors that limited bean production in the two districts.   

 
 

Figure 2.6: Production systems and contraints in bean production 

 

2.3.5 Probit regression model for farmers’ preferences 
The results of the pooled regression coefficients for both districts are presented in Table 

2.1 in a probit model. Gender and education levels were significant (P≤0.001) from the 

demographic data category on bean adoption indicating its importance and its influence 

in the selection of varieties by the farmers.   

 

The model shows that bean marketability, growth habit, time to maturity, number of pods 

per plant, seed colour and seed shape were significant in influencing farmers’ choices of 

bean varieties. The farmers indicated they preferred elongated and curvy seed shape, 

red speckled seed coat, high yield with a high number of pods per plant, and early 

maturity. They also preferred the bush type of beans for ease of harvesting. Of the 

significant selection criteria, only education level (-0.005), and maturity dates (-0.106) had 

negative coefficients while the rest exhibited positive coefficients.  Gender and source of 
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income for the farmers also significantly (highlighted in Table 2.1 at significance of 

P≤0.001) influenced farmers’ choices while the rest of the factors were not significant.  

 

Table 2.1: Probit regression model: analysis of parameters measured in the two districts 
Measured terms in the model Model Std. Error t Significance 
(Constant) -2.407 2.818 -0.854 0.933 
Gender 0.095 0.159 0.598 0.000 
District 0.899 0.591 1.521 0.785 
Age -0.015 0.134 -0.112 0.869 
Household head 0.175 0.181 0.963 0.118 
Marital status -0.015 0.111 -0.138 0.973 
Education level -0.005 0.121 -0.045 0.000 
Major sources of income 0.073 0.354 0.207 0.000 
Member of farmers organisation 0.267 0.32 0.833 0.464 
Period of membership 0.143 0.125 1.148 0.808 
Support from organisation -0.161 0.237 -0.678 0.441 
Benefits from membership -0.259 0.297 -0.87 0.610 
Sources of extension messages 0.245 0.205 1.199 0.718 
Size of farm -0.021 0.153 -0.139 0.957 
Practice crop rotation -0.037 0.36 -0.102 0.001 
Rotate with legume 0.122 0.321 0.38 0.700 
Other crops rotated with beans 0.033 0.118 0.28 0.360 
Reason for rotating with beans -0.071 0.143 -0.497 0.747 
Yield levels for beans 0.1 0.107 0.937 0.679 
Reasons for poor yield -0.008 0.103 -0.076 0.645 
Which beans sell better 0.093 0.136 0.682 0.000 
Source of seed -0.064 0.211 -0.304 0.599 
Bean colour 0.106 0.213 0.497 0.000 
Growth habit 0.502 0.173 2.894 0.000 
Yield -0.412 0.331 -1.244 0.151 
Drought tolerance 0.097 0.295 0.329 0.138 
Heat tolerance -0.297 0.254 -1.168 0.623 
Cooking time -0.138 0.286 -0.481 0.181 
Taste 0.453 0.537 0.844 0.045 
Maturity -0.106 0.849 -0.124 0.000 
Grain size 0.379 0.278 1.364 0.554 
Shatter resistance -0.1 0.273 -0.366 0.310 
Number of pods/plant -0.067 0.61 -0.109 0.001 
Number of seeds/pod -0.012 0.265 -0.044 0.102 
Resistance to storage pests -0.039 0.281 -0.14 0.238 
Seed shape 0.403 0.468 0.861 0.000 

 
Note: Bold terms in the model were significant at P≤0.001 

2.3.6 Correlation  
The correlations measured among crop factors showed that grain size, heat tolerance, 

maturity, number of pods per plant, bean colour, drought tolerance and source of seed 
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were significantly (P≤0.01) correlated with choices of varieties of beans (Table 2.2). There 

was general consistence of preference of choice from the correlation for common bean in 

both districts. The results also showed that farmers were more inclined to select bean 

varieties that would be more profitable because they depended on farming as their main 

source of income.    

 

Table 2.2: Correlation coefficients for factors measured when correlated with farmer 
preferences 

Criteria  
Correlation coefficients with bean 
varieties grown 

Grain size -0.0805 
Growth habit  0.5636** 
Heat tolerance  0.0894** 
Maturity  0.7033** 
Number of pods plant-1  0.4629** 
Number of seeds pod-1 -0.2224 
Bean colour  0.0716** 
Resistance to storage pests  0.1605 
Seed shape -0.5657 
Source of seed  0.0148** 
Taste -0.2726 
Yield -0.1956 
Cooking time  0.1819 
Drought tolerance  0.2018** 
Shatter resistance -0.1383 

** = significance at 1%; the type of bean grown was correlated with each of the key 
selection criteria 
 
 

2.4 Focus group discussions 
 

2.4.1 Selection criteria and farmer preferences for cultivar traits 
The selection criteria for bean varieties varied widely between districts, with the following 

key criteria included in the model: drought tolerance, heat tolerance, large seeds, bush 

type growth habits, early maturity, and a good yield (20-30 pods plant-1). However, 

farmers from Siavonga considered marketability as extra unique selection criteria while 

those from Gwembe considered cooking time. It was noticeable that, although men had 

more experience in the field, the women found it easier to evaluate and select, and 

rapidly saw differences between traits in the different bean materials. Their evaluations 

and selections were often more discriminating than those of the men.  
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2.4.2 Ranking of seed related traits 
The results from the FGDs (Figure 2.7) indicated that farmers preferred to eat beans 

compared to cowpeas despite challenges with its production. Table 2.3 summarises the 

outcome of the discussions on preferred variety attributes and traits.   

 

 

Figure 2.7: Farmers discussing and taking note of the discussions on flip chart paper 

 

While, the farmers were engaged in discussion, the notes from their discussions were 

translated into a 3 x 3 table matrix and summarised into three farmers selection criteria 

(Table 2.3).These notes largely informed farmer selection criteria for bean varieties and 

were used to compare them with the results of the survey. 
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Table 2.3: List of farmer preferred variety attributes and traits listed during focus group 
discussions in the two districts 

Preference Reason cited for 
preference   

Farmer illustration and quotes on their 
preference 

Highly preferred 
heat tolerant and 
high yield beans 

Highly preferred 
owing to the high 
temperatures 
prevailing in the 
region.  

“It is hot here and beans does not grow at all” 

“Legumes do grow here. We only manage to 
grow sorghum better than other crops” 

 “The temperatures are high and there is very 
little rain” 

“we do grow some beans during winter when 
temperatures are low and we supplement 
with irrigation since water for irrigation is 
abundant here” 

Least preferred 
small and dark 
coloured bean 
grains 

Least preferred 
because they are 
not liked for eating – 
although they 
usually grow better 
in the valley 

‘’Small grain beans have no market’’. 

‘’Dark beans make dark soup and are not 
appealing for consumption’’. 

‘’Dark and small grain beans grow better in 
the valley’’. 

Other preferred traits 
related to growth 
habit, size, taste, 
cooking time, and 
colour. Seed traits: 
large seed, red 
speckled beans 

 

Agronomic- bush 
type because it is 
early maturing and 
drought tolerant 

 

good taste and fast 
cooking 

“We need bush type of beans because they 
mature early” 

 

 

“Reddish type makes good soup” 

“Like good taste and fast cooking beans” 

 
 
 

2.4.3 Ranking of preferred seed traits by district and by bean type 
The ranking of seed traits during the FGDs indicated that the farmers made choices 

based on seed shape, size, colour, texture, taste and aroma. The results of the ranking of 

bean traits by bean type in Siavonga showed that Lyambai, a large seeded red speckled 

bean was most preferred by the farmers over other types (Table 2.4). The rankings of the 

beans in Gwembe was however, largely uniform for all varieties (Table 2.5). Interestingly, 
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the ratings for all bean varieties were higher in Siavonga than in Gwembe. In addition to 

the traits listed in Table 2.4 and 2.5, the farmers also indicated their preferences for 

varieties that could withstand low moisture stress and high temperatures. The notes 

(Table 2.3) from the FGDs also showed that cooking time, yield, growth habit, drought 

tolerance, heat tolerance and seed size were the most important attributes that farmers 

considered. However, emphasis was also made during the FGDs on productivity traits 

such as number of pods per plant, high yielding and good pod filling (Table 2.4). Though 

farmers preferred Lyambai, a red speckled bean, they found it difficult to describe and 

interpret the colour. In Gwembe, the ranking shows that farmers would eat any type of 

beans among those presented to them. 

.  

Table 2.4: Scores for farmers’ preferences for seed traits in Siavonga 

Variety Shape Size Colour Texture Taste Aroma 
Overall 
score Rank 

Lyambai 3 3 3 3 3 3 18 1 
Chambeshi 2 2 2 4 4 3 17 2 
Lukupa 2 2 2 4 3 3 16 3 
Kabulangeti 2 2 2 3 3 3 15 4 
Kalungu 3 2 1 3 3 3 15 4 
Note:  Overall variety assessment by farmers (Scoring criteria; 4=very good, 3=good, 2=fair, 
1=bad) -  

 
 
Table 2.5: Scores for farmers’ preferences for seed traits in Gwembe 

Variety Shape Size Colour Texture Taste Aroma 
Overall 
score 

Rank 

Lyambai 2 2 2 2 2 2 12 1 
Chambeshi 2 2 2 2 2 2 12 1 
Lukupa 2 2 2 2 2 2 12 1 
Kabulangeti 2 2 2 2 2 2 12 1 
Kalungu 2 2 2 1 1 2 10 2 

Note:  Overall variety assessment by farmers (Scoring criterion; 4=very good, 3=good, 2=fair, 
1=bad) -  

The seed characteristics of the varieties used, Lyambai, Chambeshi, Lukupa, 

Kabulangeti, and Kalungu are provided in Figure 2.8. These five are currently released 

varieties used by the farmers in the two districts. 
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Figure 2.8: Important characteristics of bean varieties used in the research 

 

2.5 Discussion 
For ease in identifying farmers’ preferences, this study grouped factors that may influence 

farmers’ preferences into three broad categories: crop factors, inherent demographic 

Variety Important Variety Characteristics Variety Appearance 
Lyambai Non-climber, 

Seed colour – red speckled 
Large seed size 
82-90 days to maturity 
Potential yield – 1500kg ha-1 

 
Chambeshi  Non-climber 

 Seed colour – brownish 
speckled 

 Large seed size 
 78-80 days to maturity 
 Potential yield – 1500kg ha-1 

 
Lukupa  Non-climber 

 Seed colour – tan 
 Large seed size 
 78-80 days to maturity 
 Potential yield – 1500kg ha-1 

 
Kabulangeti  Climber 

 Seed colour – Purple mottled 
 Large seed size 
 80-100 days to maturity 
 Potential yield – 1000kg ha-1 

 
Kalungu  Non-climber 

 Seed colour – white 
 Seed size – medium 
 78 – 80 days to maturity 
 Potential yield – 1000 – 1500kg 

ha-1 
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(internal factors), and influencing factors (external factors). A simple ordered probit model 

which produces coefficients (positive or negative) for variety attributes and other factors 

was used. The negative coefficients imply that the farmers would decrease their 

preference for the variety if appropriate farmer preferred traits are not integrated into the 

variety, while the positive values imply that the traits are more likely to enhance adoption 

of the varieties.  

 

Results from this study indicated that farmers in the two districts considered yield related 

traits as very important crop factors in variety choices. Seed shape, growth habit, seed 

colour, early maturity, and number of pods per plant, were key criteria used for selecting 

common bean varieties.  

 

According to the probit model, gender influenced farmers’ choices. Common bean is 

traditionally considered a woman’s crop if it is grown by women and meant for home 

consumption; thus decisions on these beans are made by women and choices take into 

consideration the entire family preferences. Men, on the other hand, considered mostly 

what the market preferred. This finding concurs with other similar studies on the adoption 

where gender was found to influence decisions on adoption of new varieties (Duvick, 

1999; Robertson, 1966). The finding that age did not significantly influence farmers’ 

choices for varieties according to the probit model is also consistent with similar studies 

conducted on the adoption of rice in Guinea (Katungi et al., 2009). The level of formal 

education did however, influence farmers’ bean choices. Farmers who had formal 

education used their knowledge to read about and understand the traits of beans in 

making their choices. This finding contradicts research findings by Harper (2006) who 

claimed that education level was not a necessity in interpreting farmers’ choices as most 

choices did not require a deep understanding but could be interpreted as being based on 

social values and community tastes.  This finding is supported by other authors who 

established that the effect of education on the adoption of agricultural technologies 

related to the years farmers spent in formal schooling (Chaudhary et al., 2000; Lee and 

Parsons, 1968). However, this finding is not supported by other researchers working on 

adoption of other technologies who have argued that education did not have any 

influence on farmer choices (Harper, 2006). 
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The income levels of farmers significantly influenced the farmers’ decisions on 

preferences. It was clear from the FGD that farmers with high levels of income made 

quick decisions and adopted varieties earlier than less wealthy farmers. Farmers who 

were engaged in fishing were a little wealthier than those who relied entirely on farming; 

they were able to make choices based on the fact that they could buffer their loss with 

income from fish sales if the variety they chose failed to perform.  

 
The study also revealed that farmers would select bean varieties suitable for integration 

into their crop rotation activities and also those that sold at a better price on the market. 

The distance to these markets was therefore critical as concluded by Langyintuo and 

Mungoma (2008) in their research on maize variety adoption in Zambia.  

 
Among crop related factors, bean colour, growth habit, taste, maturity, number of pods 

per plant and elongated kidney seed shape influenced farmer choices for common bean 

varieties.  The farmers preferred red speckled large beans with good taste and early 

maturing. These six key crop characteristics were driven by the visual appeal, social 

factors, and farmer satisfaction and not necessarily by monetary considerations.   

 

The FGDs identified high yield, early maturity, heat tolerance and drought tolerance as 

key factors for farmers’ choices of varieties.  Early maturity was considered an important 

criterion for two main reasons:  It enabled the crop to escape drought and ensured early 

provision of food to the households to alleviate hunger. Taste was rated as an important 

trait although farmers considered it as an important factor only when they had adequate 

quantities of beans. Most households often grew less than they required for home 

consumption.  

 

Most of the traits farmers use for their choices of bean varieties such as taste is usually 

ignored in conventional plant breeding because they are seen to compromise the 

progress to selection. As a result most of the varieties developed are less preferred and 

not adopted by the farmers. 

 

2.6 Conclusions  
The research objective that guided this study was to determine farmers’ preferences in 

order to increase common bean variety adoption in low altitude regions in Zambia. The 
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research provides insights into the farmers’ preferences for common bean varieties and is 

unique in the sense that it is the first to be conducted with farmers in low altitudes of 

Zambia. 

The research results reveal that the strongest predictors influencing the likelihood of 

common bean varieties being adopted by farmers were as follows: a bush type growth 

habit, a red speckled bean colour, a large bean size and shape, the taste of the bean to 

farmers, early maturity and high number of pods per plant. Taking this into account, the 

results further show that the farmers chose Lyambai during the FGD, as their best variety 

with key preferred characteristics such as red speckled seeds, large seeds, indeterminate 

growth habit and preferred taste although the rankings in Gwembe did not show any 

differences. This implies that new varieties with the genetic back ground of Lyambai were 

more likely to be adopted. 

The research showed that other influencing factors, inherent in the population affected 

common bean adoption. These included some socio-economic factors such as income 

levels, education level, and the use of common bean in crop rotations, and demographic 

characteristics such as gender.    

There are a number of breeding implications emanating from this research. The breeder 

has to take into consideration farmers’ preferences and develop bean varieties that meet 

farmers’ needs.  The incorporation of farmers’ preferences in the selection of bean 

varieties for the breeding process would increase the likelihood of adoption of the 

varieties.  

In addition to identifying farmer preferences, consumer needs and preferences should 

also be studied to guide breeding. Failure to do this may hinder other important 

processing traits targeting different products made from bean which would make the bean 

marketable. 
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Appendix 2. 1:  Focus group discussion check list 

 

 

 

 

 

Number of farmers 
participating 

Total Females Males 

   
 

Age categories 18-25 26-35 36-45 46-60 Above 
60 

     
 

Date and Time of 
Meetings: 

 

Participating villages  

Location (Camp/Block)  

District 

 

 

 

 

 

 

 

GPS Coordinate(latitude, 
longitude, altitude)  
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Common Bean PRA Check-list, 2010 

 

1. List crops you grow in the area and rank them in order of importance 
2. Production practices, yield levels, marketing issues, seed sources for common 

bean 
3. What are the production constraints for beans 
4. Is drought and heat one of the problems 
5. Extent? Yield loses attributed to the heat and drought 
6. How does drought and heat rate in comparison to other constraints in the area 
7. How do farmers manage droughts and heat stress/copying strategies 
8. List and rank the bean varieties grown in the area in terms of preferences by the 

farmers 
9. Make preferences between traditional varieties versus improved varieties  
10. Highlight farmer variety selection criteria 
11. What are the preferred bean attributes farmers like most? List and rank them in 

order of importance 
12. What is the awareness level of the existence of drought and heat tolerant varieties 
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Appendix 2.2: Questionnaire used for formal survey to collect bean preference data 

 

 

 

 

 

Common Bean Production Survey Questionnaire, 2010 

 

 
Questionnaire/HH 
Number: 

 

 
Date and Time of 
interview: 

 

 
Name of Farmer: 

 

 
Sex: 

 

 
Village: 

 

 
Camp/Block: 

 

 
District/Province: 

 

 

 

 

GPS Coordinate(latitude, 
longitude, altitude)  
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GENERAL INFORMATION 

 [The respondent must be the head or de-facto head of the household] 

1.  Name of respondent:  ______________________________ 

2. . Gender of respondent:  [1] Male  [2] Female   

3.  Age of respondent (in years): [1] 18-25  [2] 26-35  [3] 36-45 
 [4] 46-60 

4.  Is the respondent head of the household?   [1] Yes  [2] No   

If NO continue from Q14, BUT if YES, skip to Q9. 

5.  Name of household (HH) head: ______________________________ 

6.  Gender of HH head:  [1] Male  [2] Female [3] N/A  

7. Age of HH head (in years): [1] 18-25  [2] 26-35  [3] 36-45  [4] 46-
60 [5] above 60  

8.  Where is the household head? [1] Temporarily away from the house  

[2] Absent from home at least 6 months in a year 

9.  Who is the main decision maker on farming activities?  [1] household head
 [2] Spouse [3] Children [4] Household head and spouse [4] Household 
head and children [5] Spouse and children [6] All members 

If household head is “TEMPORARILY AWAY FROM THE HOUSE” then 
RESPONDENT should provide answers for him/ her otherwise RESPONDENT 
should answer as the de-facto head of household 

10.  Marital status of HH head:  [1] Single     [2] Married [3] Divorced   [4] Separated 
[5] Widowed 

11.  Educational level of HH head:      [1] Illiterate  [2] Primary school.  [3] 
Secondary school [4] Tertiary education (College & university) [5] Adult education 

 

HOUSEHOLD COMPOSITION AND INCOME 

12.  We are interested in knowing more about the composition of your household (all 
the people living in the same compound, eating from the same “pot” and working on the 
family farm) 
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Age group 
 

Gender 
 

Indicate type 
of off farm-
income HH 
members is 
earning  
(Code below) 

Number of months (in a 
year) available for farm 
work 

Under 5 
years 

F= 
M= 

  

5-17 F= 
M= 

  

18-25 F= 
M= 

  

26-35 F= 
M= 

  

36-45 F= 
M= 

  

46-60 F= 
M= 

  

Above 60 F= 
M= 

  

  1=Off farm 
employment 
2=Trader 
3=Non 
4=Others 
(Specify)….. 

 

 

13.  What are the sources of income for your household in 2005/06? (Tick 
appropriate) 

Category Category 
Crops (grains/seeds) 
sales 

Paid employment 

Fruits and vegetables 
sales 

Self employed 

Livestock/fish sales Remittances 
Petty trading Other (specify) 

 

ACCESS TO AGRIC EXTENSION (PUBLIC OR PRIVATE) SERVICES AND FARMER 
GROUPINGS 

14. Do you belong to any farmers’ associations/cooperatives in your Community?    
[1]=Yes    [2] = N0 

15.  If YES, to Question 14 how many years have you been a member? 
 ______________ 
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16.  During the 2009/10 cropping season did you attend field days/demonstrations 
organized by staff of the following organizations?   [1] Government Agric extension staff
 [2] FoDiS project [4] Public research institutions   [5] Private 
companies  [3] NGOs, Specify……………………………. [4] Others 
(specify)……………………… 

17.  What are your frequent sources of extension messages? 

 [1] Agric extension staff [2] Extension bulletins [3] News paper [4] 
Radio 

 [5] Television [6] other (specify): _________________________________ 

18.  How many times did you interact with agricultural extension workers on crop 
production in 2009/10 season? [ 1] Once [2] 1-3times [3] more than 3 times  

PROBLEMS IN COMMON BEAN CROP PRODUCTION AND MARKETING 

CROP PRODUCTION  

19.  What is the total size of the farm land you have/own?  

20. What crops do you grow on your farm (list all of them in the order of importance. 

 Crops grown Size of plot Cropping 
pattern 

Tenure 
system 

Main water 
source?  Unit of measure 

(specify)………… 
Plot abandoned      
Plot under fallow      
Pasture land      
Tree crop plot      
Plot cropped (1)      
Plot cropped (2)      
Plot cropped (3)      
Plot cropped (4)      
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  1=ha,2=acre, 3=lima 
 

1=Pure 
stand 
2=Intercrop
ped 
3=Other 

Tenure 
codes 
1= Own 
land 
2= Land 
rented in 
3= Land 
rented out 
4= 
Sharecropp
ed  
5= Family 
land 
6=Outright 
purchase 
7=Commun
al 
8=Other 

Water sources 
1=Rain 
2=Irrigated 
3=residual 
moisture 

 

21.  Rank the three most important factors that determine how large your cultivated 
farm should be in any season (1 = most important, 3=less important) 

---- 1) Expected family labor availability ---- 2) Cash availability to hire labor 

---- 3) Cash availability to purchase other inputs  ---- 4) Current grain prices 

---- 5) Expected grain prices after harvest ---- 6) Food needs ---- 7) Availability of 
seed ---- 8) other: 

22. What are the major problems with common bean production? Rank the following 
problems from 1 to 5 where 1 is no problem and 5 is a severe problem (tick where 
appropriate): 

Problem 1  
No problem  

2 3 4 5 (Serious 
problem) 

Uncertain climate (drought or heat)      
Livestock damage to common bean crops       
Inputs not available at affordable prices      
More work than the family can handle      
Insufficient cash and credit to finance inputs      
Insufficient technical advice when needed      
Insufficient information about alternative markets      
Lack of proper storage facilities      
Uncertain prices for beans sold locally       
Uncertain prices for beans sold to hawkers      
Farm is too small      
Limited local labour for hire      
Other: Please specify 
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24. Has your household been affected by a serious shock* in the last 10 years?  

Specific shocks Rank the five most 
serious shocks 
(1=most,  
5=least important) 

Indicate in 
which year it 
occurred out 
of the last 10 

Has this risk/shock 
affected Common 
bean production 
directly? (1=Yes, 
2=No) 

Drought    
Heat    
Heat and drought    
Too much rain or flood      
Land slide    
Plant pests and diseases    
Destruction of crops by animals     
Dangerous weeds     
Large increases in input prices    
Large drop in crop prices    
Loss of farm land     
Burning of property (or arson)    
Birds    
Conflict     
Other______ _________    

* An event that led to a serious reduction in the household’s food security status resulting 
in a significant reduction in consumption 

25.  Approximately how many years do you crop your land before putting it to fallow? 
_________ 

26. Approximately, how many years do you fallow a piece of land? 
_________________ 

27.  Which crop(s) is/are grown following a fallow period?  

1=Maize  2=Rice  3=Sorghum  4=Pearl millet   5=Finger millet  
 6=Cowpea  

b=Common Beans  8=G’nuts  9=Cassava  10=Soybean  11=Tree crop 

12=N/A 13=Other(specify)……….  

 

 

G. AGRICULTURAL MARKETING DECISIONS 

28.  How did you dispose off your beans harvested in the 2009/10 season? 
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 Quantity 
harvested 

Quantity 
Consumed 

Quantity 
Sold 

Quantity 
Given out 
as gift 

Quantity 
reserved as 
seed for 
next season 

Quantity 
loss due to 
handling 

Local bean 
variety 

      

Improved 
bean 
variety 

      

 

29. When do you sell your beans? 

Time of the year Quantity sold Place of sale* Av. Price per unit Buyer** 
Soon after harvest     
Six months after 
harvest 

    

Just before planting     
*Places codes:  [1] At home  [2] In a market  [3] Market 
cooperatives  

**Buyer codes:  [1] Traders  [2] Local community [3] Town/city consumers 

30. . We are interested in finding out your perceptions about output price (or 
marketing) risk  

Bean category Is the selling 
price for bean 
an important 
factor in 
determining 
how much of 
the crop you 
sell or not? 
 
1. Yes 
2. No 

How will you 
change your 
beans sales 
if the selling 
prices are 
higher than 
normal? 
 
1. Less  
2. Same  
3. More  

How would 
your fertilizer 
and other 
input use 
change if the 
selling price 
was attractive 
for beans? 
 
1.Increase 
2. Same 
3. Decrease 

Would you 
acquire more 
credit if the 
selling price 
was attractive 
for beans? 
 
1. Yes 
2. No 

Local variety     
Improved 
variety 

    

 

 

SEED PROVISION 

31. Provide a list of common bean varieties you grow on your farm (use codes 
provided where appropriate)  
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32. If you use your own bean seed, provide the following: 

Variety Characteristics considered in selection 

  

  

  

 

33. Which variety would you prefer growing during drought and hot seasons? 
List…………………….……………………………………………………………………………
………………………………………………………………………………………………………
………………………………………………………………………………………………………
……………………………………………………….. 

 

 

 

 

 

 

Variety Category (local 
or improved) 
 

Seed Source When sourced What are the attributes 
you like on the variety 
(Multiple answers 
accepted) 

 Improved=1 
Local = 2 

Fellow farmers 
Seed company 
NGO/projects 
Research institute 
 

Every season 
After 2 seasons 
After 5 seasons 

Good colour 
Cooking time 
Taste 
Seed size 
Shape 
Early maturity 
Drought tolerant 
Heat tolerant 
Drought and heat tolerant 
Texture 
Aroma 
Others specify………….. 
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CHAPTER THREE 

Evaluation of common bean genotypes for tolerance to drought 
stress  

 

Abstract 

Drought stress is a limiting factor in common bean production in the low altitude areas of 

Zambia. The objective of this study was to identify drought tolerant genotypes for use in 

breeding programmes in order to develop appropriate varieties for cultivation by farmers 

in these regions. One hundred and twenty genotypes comprising landraces, mutants 

developed through UV mutagenesis and accessions obtained from the National Gene 

Bank, University of Zambia, farmers and other sources were evaluated under managed 

drought-stress (DS) and non-drought stressed (NDS) conditions for two growing seasons 

(2011-2012) in two locations. The genotypes were planted using alpha lattice design with 

two replications on two sites. Data on seed yield under DS and NDS were used to 

calculate drought tolerance indices. The indices including mean productivity (MP), 

geometric mean productivity (GMP), yield index (YI) and harmonic mean (HM) classified 

genotype LY4-4-4-B as the most drought tolerant followed by ZM 3831, ZM 4496, KAL–

ZA and ZM 4512-5.  LY4-4-4-B, a mutant of a released variety Lyambai could be further 

selected as a variety while the other genotypes identified had some un desirable seed 

colour for farmers and are therefore recommended for breeding drought tolerant 

genotypes. A biplot analysis grouped the four indices, MP, GMP, YI and HM together and 

confirmed their suitability for identifying high yielding bean genotypes under drought-

stressed conditions. The study further established that the genotypes were efficient at 

photosynthate mobilisation and 100-seed mass was similar under DS and NDS 

conditions.  Based on correlation analysis between yield in DS and NDS conditions, 

GMP, HM and STI supported Rank Sum in identifying genotypes with high yield under 

both stressed and non-stressed conditions and this was further confirmed by cluster 

analysis.  
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3.1 Introduction 
The common bean (Phaseolus vulgaris L.) is an important food legume in Africa. The 

crop provides the much needed protein in the diets of many low income households 

(Broughton et al., 2003; Wortmann et al., 1998). Africa produces about 2 million tons of 

common bean annually on about 3.5 million ha (FAO, 2014) while, Zambia grows only 

about 60,000 ha under common bean annually. The crop ranks second to groundnut in 

Zambia among food legumes in terms of area under production; its importance can be 

reflected in the number of households growing and consuming it (Tembo and Sitko, 

2013).  

 

The common bean incurs high yield losses resulting from several biotic and abiotic 

stresses worldwide. Drought stress has been reported to be the worst among the abiotic 

stresses, causing yield losses of up to 60% in farmers’ fields in sub-Saharan Africa 

(Barnabas et al., 2008; White and Singh, 1991). High common bean demand has caused 

an expansion of production into more marginal environments in sub-Saharan Africa 

where crop performance is often affected by even more extreme abiotic stresses, key of 

which has been severe drought (Porch et al., 2009).  

 

The effects of droughts are complex, differing depending on the frequency with which the 

droughts occur, their duration, their intensity, and the stage of plant development at which 

they occur (Halterlein, 1983). The common bean is very sensitive to drought stress during 

the pre-flowering and flowering stages, when it causes excessive abortion of flowers, 

pods, and seed (Nielsen and Nelson, 1998; Ramirez-Vallejo and Kelly, 1998; Singh, 

2007; Terán and Singh, 2002). The extent of the effects of drought stress in common 

bean is further compounded by high temperatures (Ramirez-Vallejo and Kelly, 1998). 

Research has shown, however, that drought stress can be mitigated by genetic 

improvement using the variability that exists within the common bean germplasm. The 

few market class varieties of common bean released and available in Zambia were bred 

mainly for the high agricultural potential regions and are limited for expansion to low 

potential regions (own observation). Landraces, therefore, offer a valuable resource for 

novel untapped genetic variation that should be explored to obtain more varieties for 

adaptation to low altitudes.  
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The performance of landraces in Zambia under drought stress has not, however, been 

studied and their genetic potential for the development of resistance to drought stress 

remains unknown.  

In pursuit of the genetic resources for the drought stress resistance, it is important to note 

that genetic diversity changes with the continued biological evolution of crops under 

pressure from climatic pressure, disease, or human management. The study of landraces 

with respect to drought stress tolerance, therefore, has challenges of reliability resulting in 

few studies worldwide because of the difficulty in conducting such studies. However, a 

number of selection criteria have been used to select genotypes based on their 

performance in stress and non-stress environments (Fernandez, 1992; Fischer and 

Maurer, 1978; Rosielle and Hamblin, 1981).  

 

As tools for selecting desired drought resistant materials, scientists have used drought 

tolerance indices that provide a measure of drought response based on loss of yield 

under drought when compared to normal conditions (Mittler et al., 2001). Some of these 

tolerance indices include a stress tolerance index (STI), a stress susceptibility index 

(SSI), a tolerance index (TOL), harmonic mean (HM), geometric mean productivity 

(GMP), mean productivity (MP), a yield index (YI), a yield stability index (YSI), and a 

sensitive drought index (SDI). These indices have been mathematically defined: TOL and 

GMP by Rosielle and Hamblin (1981); SSI by Fischer and Maurer (1978); and GMP and 

STI by Fernandez (1992). The STI out of the listed indices is designed to identify 

genotypes that produce high yield under both stress and non-stress conditions because 

the genotypes identified by the use of this index will have higher stress tolerance 

(Fernandez, 1992). These indices measure different parameters and provide a complete 

picture of the behavior of the genotypes when exposed to drought stress. The use of all 

the indices therefore provides complete understanding of the germplasm collection by 

studying their stability and tolerance mechanisms.  

 

The research reported on here was therefore designed to build on research conducted 

elsewhere on drought tolerance in the common bean. It was expected to generate new 

information on the adaptability of Zambian common bean germplasm to low lying 

altitudes in the southern parts of the country. The specific objective of this study was to 

assess the performance of common bean genotypes in Zambia under drought stress. 

.  
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3.2 Materials and methods 

3.2.1 Plant material 
 A collection of 120 genotypes was assembled from the University of Zambia, the 

National Gene Bank, small-scale farmers in the low altitude areas of Zambia and others 

(Table 3.1). The detailed list of the genotypes and general phenotypic description of the 

genotypes is presented in Appendix 3.1. The landraces from the genebank and farmers 

had not been characterized before and there was no information available about their 

performance in different agro-ecologies.  The larger portion (about 52%) of the collected 

germplasm was gene bank accessions. However, the elite genotypes and the mutants 

had limited agronomic information but had not been studied for drought stress.  Most 

mutants were generated from released varieties such as Lyambai, and Solwezi beans.  

 

 

Table 3.1: Composition of the collected common bean germplasm assembled from the 
National Gene Bank, Farmers, University of Zambia, seed companies and Zambia 
Agriculture Research Institute 

Source Number of lines Description/Type 

University of Zambia 18 Mutants 

National Gene Bank/Farmers 94 Landraces 

Seed companies 3 Elite cultivars 

Legumes Research Team (ZARI) 5 Elite Cultivars 

Total collections 120  

 

3.2.2 Experimental sites 
The experiments were conducted at two sites namely Mount Makulu in Chilanga and the 

National Agricultural Irrigation Research Station, commonly referred to as Nanga, in 

Mazabuka.  Mount Makulu is located in Lusaka at latitude 15o13.10’S, longitude 

28o14.93’E, and at 1206 m above sea level. The soils at this site are chromemi-

haplicliclixols with fine sandy loam to clay characteristics. The soil pH is around 5.8. The 

site receives between 800 and 1000 mm of rainfall from November to April with mean 

relative humidity of 69.8%. The site experiences, on average, three ten-day drought 
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spells during each crop season, spread between planting time, vegetative stages and 

flowering time (Veldkamp et al., 1984).  

 

The other site, Nanga, is located in Mazabuka, Southern Province, at latitude 15046’S, 

longitude 270 55’ E and an altitude of 1190 m above sea level. The soils at this site are 

reddish clays, deep, well-structured, and well-drained with a sandy clay top soil. The soil 

pH ranges from 5.5 to 6.0. The mean annual rainfall received at this site is about 850 mm 

during the period November to March, with an average humidity of about 54.8%. 

Temperatures vary from freezing point in July to about 38°C in October.  This site also 

experiences about three ten-day drought spells each season spread across the crop 

growing season from planting to flowering stage. The chosen sites do not fall in the dryer 

regions of the Zambia but were chosen for their suitability to control drought stress 

artificially. However, the sites had favourable weather conditions and soil for the imposing 

of artificially managed drought stress. The managed drought stress experiments were 

conducted during the dry season from the end of July to the end of October at both 

locations; this allowed for the imposition of the drought stress treatments at the flowering 

stage. 

.  

3.2.3 Experimental layout, trial management, data collection and computation of 
indices 
The germplasm were pre-assessed and found to be of similar maturity groups but of 

different growth habits including climbers, semi-dwarf, and dwarf plants. The trials were 

planted at the end of July each year to allow the bean genotypes to grow to maturity by 

early October. During these months, the two sites are dry and temperatures lie between 

20 and 30oC which are favourable for common bean growth. They were laid out in a 10 X 

12 alpha lattice, incomplete block design, with two replications over the two years, 2011 

and 2012. Thirty (30) seeds were sown in single rows, 5 m in length, at an inter- and 

intra-row spacing of 75 cm and 15 cm.   

Compound D fertilizer (N = 10%, P = 20%, K = 10%) at the rate of 200 kg ha-1 was 

applied as recommended to all the plots at planting time. During growth, optimal and 

recommended management practices of weeding and pest control were used. Drought 

stress was imposed on the experiments following the methodology described by Teran 

and Singh (2002). Line-source sprinkler irrigation was used to irrigate both stressed (DS) 
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and non-stressed (NDS) plots during the seedling stage. At 50% flowering, irrigation was 

withdrawn for about three weeks from the DS treatment, while irrigation was maintained 

at the NDS treatments. Climatic conditions at both sites were recorded using HOBO U12 

data loggers (Make - U12-001 manufactured by Onset-USA).  

Data on seed yield, one hundred seed mass (HSW), number of pods per plant (NPP) and 

number of seeds per pod (NSP) were collected during the growing season and were 

measured as follows:.   

 

I. Days to 50% flowering (DAF) – This was taken as the number of days from 50% 

seedling emergence to the date when the genotype reached 50% flowering.  

II. Days to physiological maturity (DPM) – This was taken as the number of days 

from 50% seedling emergence to the date when 50% of the plants showed 

senescence and pods turned brown. 

III. Leaf area retention (LAR) - The leaf area retention was taken as the difference 

of the percentage leaf cover between the leaf area at 50% flowering and leaf area 

three weeks after 50% flowering.  

IV. Yield – Grain yield was obtained after hand harvesting and was taken as whole 

plot harvests, shelled bean. The grain masses were adjusted to 12.5% moisture 

content. The grain yield was determined and expressed as ton per hectare.  

V. Hundred seed mass (HSW) – This was taken as the weight of 100 grains 

counted individually and weighed.  

 

Across the sites, data on genotypic mean yield in DS and NDS plots was used to 

calculate various indices: STI, MP, YI, YSI, SSI, SDI, and GMP in order to identify the 

best index for identifying high yielding genotypes under drought stress conditions. The 

STI, MP, and GMP have been suggested as the best criteria for selecting high yielding 

genotypes for both stressed and non-stressed environments (Nazari and Pakniyat, 2010). 

The indices were calculated as follows:  

1. STI = (Yp + Ys)/       ; the genotypes with high STI values are tolerant to drought 

stress (Fernandez, 1992).  

2. YI =    /   ; the genotypes with high YI values are suitable for drought stress 

environments (Gavuzzi et al., 1997; Lin et al., 1986). 
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3. MP =       
 

; the genotypes with high values of the MP are more desirable (Rosielle 

and Hamblin, 1981). 

4. GMP =         ; the genotypes with a high value of the GMP are desirable for 

drought stressed environments (Schneider et al. 1997). 

5. YSI =     ; the genotypes with high YSI values are considered as stable 

genotypes under stress and non-stressed conditions (Gavuzzi et al., 1997; Lin et 

al., 1986).   

6. SSI = (1-                    
         

      where,            
         

    is the stress intensity; 

the genotypes with SSI values less than 1 are more tolerant to drought stress 

conditions (Fischer and Maurer., 1978).  

7. HM = (2(         )/ (Ys + Yp); the genotypes with high HM values are considered 

more desirable for drought stressed conditions (Chakherchaman et al., 2009).  

8. Mean rank  (MR) = is the average of the ranks and is given by ∑R/n, R= ranks 

and n=number of indices summed together. 

9. RS (Rank sum) = Rank mean (R) + Standard deviation of rank (SDR) (Farshadfar 

and Elyasi, 2012). 

 

In the above formulae, Ys refers to yield under stress, Yp  is yield under non-stress,     is 

mean yield in stress and     is mean yield in non-stressed conditions measured for each 

genotypes. The stress intensity was also determined for the drought stressed 

experiments using the equation; SI = 1 – (Ys/Yp), where Ys=mean total yield in stress 

conditions and Yp = mean total yield in normal conditions (Fenandez, 1992). 

3.2.4 Monitoring soil moisture content on the drought stressed plots 
Soil moisture was monitored using the gravimetric method through daily collection of soil 

samples from the date of withdrawing irrigation water for about 17 days (Figure 3.1). Soil 

samples were collected from drought stressed plots at different depths (0 to 90 cm below 

soil surface) as shown in Figure 3.1 and taken to Mount Makulu soil testing laboratory for 

analysis.  

 

 

 

http://thericejournal.springeropen.com/articles/10.1186/1939-8433-5-31#CR26
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The soil samples were collected from each plot to ensure the results represented the trial. 

These samples were submitted to the Zambia Agricultural Research Institute (ZARI) for 

analysis; the results obtained were used to calculate various parameters of the moisture 

content of the soils. .  

 

The soil field capacity was determined by applying water to a depth of 1 m until the soil 

profile was saturated. This was determined through digging a soil profile after applying 

water. The plot was then covered with black polythene sheets to stop evaporation. The 

soil moisture content was determined at 24 h intervals until the differences between 

measurements were almost negligible; this was taken as the field capacity (ZARI soil 

analysis results). The permanent wilting point was also determined when the depletion 

became almost parallel to the X-axis (Figure 3.2). This, by interpretation, was about 15 

bars and the soil moisture content had dropped to about 15 to 20% moisture content; that 

is, it was not available to the plant in the root zone (Odendo et al., 2002) and the results 

of the soil depletion curve are as presented in Figure 3.2. 

 

Figure 3. 11 Soil sample collection from drought stressed and drought stressed plots at 
Mount Makulu and Nanga 
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3.2.5 Statistical data analysis 
The data collected were subjected to the analysis of variance (ANOVA) for various 

agronomic traits recorded to obtain mean sum of squares and the residual, according to 

Steele and Torrie (1980).  

A mean rank for each genotype was calculated by taking the average of the total ranking 

of the indices. The biplot analysis was performed for ranking the genotypes and to 

describe the nature of the relationships that existed between grain yield and the drought 

screening indices for the 12 selected drought tolerant genotypes in order to avoid 

overcrowding of the plot (Figure 3.3). Principal components of the original data set, 

consisting of n measurements on p variables, were reduced to one consisting of n 

measurements on k principal components. The biplot display of principal component 

analysis was used to identify suitable stress tolerance indices, and stress tolerant and 

high-yielding genotypes. Analysis of principal components often reveals relationships that 

were not previously suspected and thereby allows more detailed interpretations (Johnson 

and Wichern, 1996). The genotypes could be categorised into four groups based on their 

performance in stress and non-stress environments; genotypes suitable for both stress 

and non-stress environments, those suitable for non-stress environments; genotypes 

suitable for stress environments; and genotypes not suitable for either stress or non-

stress environments.  

- 140 

- 120 

- 100 

- 80 

- 60 

- 40 

- 20 

0 

Mount Makulu 

Nanga 

1    2    3    4    5    6    7    8    9    10    11    12    13    14   15   16   17 

Days after withholding irrigation 

Averages soil moisture 
levels in NDS plots for 

both sites 

Permanent wilting 

point Soil moisture depletion 

curve measured   

Field capacity 

Figure 3.2: Average water depletion curve from the root zone after withdrawing water 
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3.3 Results  

3.3.1 Across site analysis of variance  
 

The results of the analysis of variance for the pooled results across the sites (Nanga and 

Mount Makulu) and years (2011 and 2012) indicated genotypic differences which were 

significant  for yield (P≤0.05) and for NPP and LAR (P≤0.01) (Table 3.2). The main effects 

for water treatment were significant for NPP and DAF (P≤0.05) and for yield, HSW, NSP 

and LAR (P≤0.01) (Table 3.2). Site effects were significant for yield and NPP (P≤0.01); for 

HSW and HSP (P≤0.001) and; for DAF (P≤0.05). The year effects were significant for 

yield (P≤0.01) and for HSW, NPP and LAR (P≤0.001). The genotype by water treatmentt 

effect was significant for HSW (P≤0.01) only. The genotypes by site interactions were 

significant for HSW, NPP and LAR (P≤0.01), while the water treatment by site interaction 

was significant for yield and LAR (P≤0.01) and for HSW and NPP (P≤0.05). Site by year 

interactions were significant for yield, HSW, NSP, NPP and DAF (P≤0.01). Genotypes by 

water treatment and site interactions were not significant for the traits measured, while 

genotypes by water treatment by year interactions were only significant for NPP (P≤0.01). 

Genotype by site by year interactions was significant for NPP and LAR (P≤0.01). The four 

way interaction between genotypes, water treatment, site and year was not significant for 

all the traits. The significant differences between means are only discussed for the three 

way interactions, two way interactions and main effects for which results were significant.  

 
Table 3.2: Across site and season mean squares for yield and selected agronomic traits 

Source df LAR DAF  NPP NSP  Yield HSW 
 Genotype 119 82.71** 97.52  1138.3** 8240  1.992* 41.38 
 Water trt 1 21.14** 39.23*  385.6* 5528**  72** 15.03* 
 Site 1 14.27 505.05*  5421** 110549***  58.748** 46487.75*** 

 Year 1 9476.66*** 323.25 
 

56222.6*** 16148 
 

12.493** 131050*** 
 Genotype. Water trt 119 38.39 99.19  197.1 7687  1.988 31.19** 
 Genotype.Site 119 779** 91.89  1316.7** 8290  2.135 44.71** 
 Water trt.Site 1 733.03** 93.97  2.1* 521  13.658** 13.31* 
 Genotype.Year 119 78.41** 96.56  576.8* 8100  2.01 38.63 
 Water trt.Year 1 587.32** 116.38  1191.4** 3213  1.574 2102 
 Site.Year 1 115.19 4559**  58942** 33625***  26.917 22308.86*** 
 Genotype. Water trt.Site 119 47.7 95.9  222.6 7896  1.901 32.39 
 Genotype. Water trt.Year 119 36.83 95.12  538.7** 7890  1.984 32.33 
 Genotype.Site.Year 119 57.45** 97.05  462.2** 7999  2.063 31.63* 
 Water trt.Site.Year 1 1475.85** 5.27   - 33283***  003 28127 
 Genotype. Water 
trt.Site.Year 119 35.92 94.64 

 
 - 7742 

 
1.94 32.61 

Residual 930 41.47 98.95  318 7396  2.035 34.68 
CV (%)  36.8 18.2  16.7 22.0  21.3 38.1 

Note: Water trt = water level (drought stressed vs non drought stressed); LAR =leaf area retention ; DAF = days to 50% 
flowering; NPP = number of pods per plant; NSP = number of seeds per pod; HSW = hundred seed mass; df = degrees of 
freedom; * = significanct at 5%; ** = significant at 1%; *** = significant at 0.1% 
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3.3.2 Genotypic response of agronomic traits to drought stress  
 
The main site effects were significant for HSW and NSP (P≤0.001); significant for yield 

and NPP(P≤0.01)  and; significant) for DAF(P≤0.05), (Table 3.2). The genotypic mean 

performance of the 12 highest ranked genotypes based on selection indices under DS 

and NDS and corresponding percentage trait reduction for LAR, NPP, NSP, DAF, and 

HSW, are presented in Tables 3.3 and 3.4 for both sites. Drought stress generally 

decreased LAR, NPP, DAF and NSP. Based on the selection indices, the 12 highest 

ranked genotypes at Mount Makulu expressed between 0.30% and 50.00% loss for DAF, 

0.23% and 1.75% for NPP, 0.25% and 5.17% for LAR, 3.70% and 38.07% for NSP, and 

0.23% and 21.93% for HSW (Table 3.3 ).  

 

The lowest yielding genotypes lost between 53.00% and 66.25% for DAF, 37.10% and 

50.06% for NPP, 45.24% and 75.14% for LAR, 1.96% and 20.44% for NSP and 21.14% 

and 50.59% for HSW. The lowest yielding genotypes generally yielded the least under 

drought stressed conditions implying that they were susceptible to drought stressed 

conditions. 

 

At Nanga, the 12 high yielding  genotypes recorded reductions between 0 to 0.71% for 

DAF, 1.41 to 25.00% for NPP, 0.05 to 17.33% for LAR, 6.45 to 37.91% for NSP and 1.12 

to 1.33% for HSW  (Table 3.4). The lowest yielding genotypes on the other hand had a 

trait reduction between 3.17 and 13.88% for DAF, 54.12 and 68.49% for NPP, 54.4 and 

72.22% for NSP, 56.54 and 93.84% for LAR, and 22.94 and 95.81% for HSW. 



 
 

Table 3.3: Percentage reduction in selected trait performance for 12 highest and 12 lowest yielding genotypes at Mount Makulu 
under drought stressed and non-stressed plots 

  DAF NPP LAR NSP HSW 
Genotype NS NDS % Rd NS NDS %Rd NS NDS %Rd NS NDS %Rd NS NDS %Rd 

SCCI 8 53.75 53.59 0.30 22.05 22.00 0.23 39.60 39.50 0.25 6.75 6.50 3.70 22.05 22.00 0.23 
SCCI 3 51.25 51.00 0.49 23.00 22.88 0.52 57.50 57.30 0.35 6.90 6.50 5.80 23.00 22.88 0.52 
LY4-4-4-B 51.50 51.25 0.49 18.75 18.63 0.64 27.80 27.70 0.36 7.70 6.36 17.40 18.75 18.63 0.64 
SCCI 4 50.50 25.25 50.00 28.50 28.25 0.88 52.50 52.30 0.38 7.60 5.56 26.84 28.50 28.25 0.88 
ZM3831 48.00 47.75 0.52 26.00 25.75 0.96 45.20 45.00 0.44 7.60 5.43 28.55 26.00 25.75 0.96 
SCCI 7 48.50 48.25 0.52 23.75 23.50 1.05 43.80 43.60 0.46 7.70 5.45 29.22 23.75 23.50 1.05 
LY1-2-B 56.00 55.56 0.79 23.75 23.49 1.09 37.50 37.30 0.53 5.27 3.70 29.79 23.75 23.49 1.09 
ZM4512-5 47.75 47.25 1.05 22.25 22.00 1.12 18.50 18.40 0.54 8.70 5.98 31.26 22.25 22.00 1.12 
KAL-ZA 54.00 53.25 1.39 24.00 23.70 1.25 35.00 34.80 0.57 8.40 5.45 35.12 24.00 23.70 1.25 
SCCI 13 48.25 47.50 1.55 22.55 22.25 1.33 52.80 52.50 0.57 7.10 4.55 35.92 22.55 22.25 1.33 
ZM4496 53.59 52.75 1.57 21.00 20.69 1.48 58.00 55.00 5.17 8.60 5.40 37.21 26.90 21.00 21.93 
LYA-ZA 48.84 48.00 1.72 22.25 21.86 1.75 49.10 48.80 0.61 8.80 5.45 38.07 22.25 21.86 1.75 
ZM3681 53.75 45.50 15.35 42.25 26.25 37.87 42.00 23.00 45.24 6.40 5.80 9.38 42.25 26.25 37.87 
ZM3624 54.00 45.50 15.74 34.50 21.38 38.03 58.60 31.50 46.25 5.30 5.09 3.96 34.50 21.38 38.03 
ZM4302 54.00 45.25 16.20 39.50 23.88 39.54 65.20 32.20 50.61 6.60 5.79 12.27 39.50 23.88 39.54 
ZM4144 57.50 42.00 26.96 45.00 26.50 41.11 33.00 15.80 52.12 6.90 5.97 13.48 45.00 26.50 41.11 
ZM3636 55.00 45.50 17.27 39.75 23.19 41.66 37.90 17.80 53.03 7.70 6.44 16.36 39.75 23.19 41.66 
ZM4490 54.50 44.75 17.89 34.75 20.25 41.73 33.80 15.20 55.03 9.00 7.16 20.44 34.75 20.25 41.73 
ZM4520 59.25 48.25 18.57 41.63 22.50 45.95 47.50 20.00 57.89 6.30 5.53 12.22 41.63 22.50 45.95 
ZM6713 55.25 44.25 19.91 39.50 20.80 47.34 32.30 13.00 59.75 4.60 4.51 1.96 39.50 20.80 47.34 
NP5 53.00 41.50 21.70 52.19 27.25 47.79 45.50 17.50 61.54 5.60 5.07 9.46 52.19 27.25 47.79 
ZM3203-3 56.00 43.00 23.21 43.25 22.25 48.55 27.50 9.10 66.91 5.60 5.06 9.64 43.25 22.25 48.55 
ZM4511 58.41 44.75 23.39 50.06 25.00 50.06 24.60 6.50 73.58 7.30 6.04 17.26 50.60 25.00 50.59 
KAB-ZA 66.25 46.25 30.19 32.94 20.70 37.16 35.40 8.80 75.14 6.40 5.44 15.00 32.59 25.70 21.14 

Grand mean 32.85 32.32 1.62 16.22 12.86 19.61 52.87 36.56 29.03 5.78 4.42 10.46 35.07 24.76 28.24 
LSD 3.30 2.80   1.93 2.10   5.20 3.80   1.12 1.80   8.70 6.30   
CV   1.30     9.20     3.00     9.30     12.00   

Note: HSW = hundred seed mass; NSP = number of seeds per pod; NPP = number of pods per plant; LAR = leaf area in retention; DAF = Days to 50% flowering; %Rd = percentage reductions; 
NS = non –drought stressed; NDS = drought stressed. The dotted line separates high yielding from low yielding 
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Table 3.4: Percentage reduction in selected trait performance for 12 highest and lowest yielding genotypes at Nanga under drought 
stressed and non-stressed conditions 

 DAF NPP LAR NSP HSW 
Genotype NS NDS % Rd NS NDS %Rd NS NDS %Rd NS NDS %Rd NS DS %Rd 

SCCI 8 32.50 32.50 0.00 28.00 21.00 25.00 42.02 42.00 0.05 5.45 4.44 18.58 45.30 44.79 1.12 
SCCI 3 32.00 32.00 0.00 35.50 35.00 1.41 53.35 53.25 0.19 5.8 5.17 10.92 39.50 39.03 1.19 

LY4-4-4-B 36.95 36.94 0.03 34.80 34.30 1.44 47.12 47.00 0.25 5.09 4.63 9.14 41.10 40.59 1.23 
SCCI 4 33.04 32.98 0.18 14.80 14.50 2.03 37.39 37.29 0.27 5.79 5.42 6.45 50.30 49.68 1.23 
ZM3831 32.25 32.15 0.31 35.00 33.80 3.43 37.12 37.00 0.32 5.97 5.25 12.06 32.50 32.09 1.25 
SCCI 7 32.10 31.98 0.37 35.00 29.30 16.29 37.50 31.00 17.33 6.44 4.19 34.98 30.50 30.12 1.25 
LY1-2-B 37.75 37.50 0.66 28.80 27.50 4.51 36.87 36.10 2.09 7.16 4.50 37.15 55.70 55.00 1.25 

ZM4512-5 38.00 37.75 0.66 33.00 31.50 4.55 47.50 46.38 2.36 5.53 4.56 17.50 39.40 38.91 1.25 
KAL-ZA 36.75 36.50 0.68 31.30 29.80 4.79 46.13 44.98 2.49 5.56 4.51 18.92 40.40 39.89 1.26 
SCCI 13 36.50 36.25 0.68 28.00 22.00 21.43 73.58 71.63 2.65 6.50 5.07 22.00 25.30 24.97 1.30 
ZM4496 35.00 34.75 0.71 36.00 34.00 5.56 64.34 62.37 3.06 5.06 4.25 16.01 32.30 31.88 1.30 
LYA-ZA 35.25 35.00 0.71 33.80 31.80 5.92 53.96 52.00 3.63 6.04 3.75 37.91 45.30 44.70 1.33 
ZM3681 31.50 30.50 3.17 38.80 17.80 54.12 93.77 47.50 49.34 5.44 3.31 39.11 55.70 42.92 22.94 
ZM3624 38.25 37.00 3.27 31.00 13.80 55.48 53.63 21.98 59.02 4.67 3.50 25.05 39.40 29.91 24.08 
ZM4302 30.25 29.25 3.31 94.40 41.50 56.04 69.19 28.25 59.17 5.64 3.88 31.29 40.40 30.32 24.95 
ZM4144 33.73 32.60 3.35 22.00 9.50 56.82 87.03 33.75 61.22 5.74 3.81 33.58 25.30 18.96 25.05 
ZM3636 32.77 31.65 3.42 26.50 11.00 58.49 58.75 21.11 64.07 6.31 4.25 32.65 32.30 24.05 25.54 
ZM4490 32.25 31.00 3.88 23.50 9.50 59.57 68.90 25.00 63.72 5.25 4.38 16.67 45.60 32.11 29.58 
ZM4520 39.85 38.25 4.02 11.00 3.80 65.45 66.79 19.37 71.00 6.29 5.56 11.62 39.50 27.67 29.96 
ZM6713 33.00 31.50 4.55 42.00 14.00 66.67 58.25 13.92 76.10 5.45 4.56 16.28 37.80 24.62 34.87 

NP5 33.00 31.50 4.55 28.30 9.00 68.20 64.12 15.19 76.31 5.8 5.13 11.64 37.20 23.37 37.17 
ZM3203-3 33.75 31.75 5.93 45.80 14.50 68.34 55.75 11.48 79.41 4.47 4.25 4.92 45.60 23.93 47.52 
ZM4511 32.75 28.75 12.21 36.50 11.50 68.49 38.00 7.55 80.13 5.02 3.75 25.30 39.50 19.04 51.79 
KAB-ZA 31.35 27.00 13.88 37.80 15.00 60.32 43.00 2.65 93.84 5.13 3.31 35.43 37.80 37.74 0.16 

Grand mean 32.85 32.32 1.62 16.22 12.86 19.61 52.87 36.56 29.03 5.78 4.42 10.46 35.07 24.76 28.24 
LSD 3.30 2.80   1.93 2.10   5.20 3.80   1.12 1.80   8.70 6.30   
CV   1.30     9.20     3.00     9.30     12.00   

Note: HSW = Hundred seed mass; NSP = number of seeds per pod; NPP = number of pods per plant; LAR = Leaf area in retention; DAF = Days to 50% flowering; % Rd    = Percentage reductions; NS = 
Non –drought stressed; NDS = Drought stressed. The dotted line separates high yielding from low yielding genotypes
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3.3.3 Comparison and selection of genotypes based on tolerance indices and 
yield 
 

Water stress generally reduced yield of bean genotypes in DS conditions as compared 

to NDS conditions. Based on the stress tolerance indices, MP, STI, GMP and HM ranked 

the genotypes similarly while YI and SSI ranked the genotypes similary as well with 

relatively low ranks ranging between 3 and 30 (Table 3.5). The genotypes SCCI 13, Ly4-

4-4-B, SCCI 2, ZM 3831, Ly1-2-B, ZM 4512, ZM 4512-5, Kal-Za, LYA-ZA, LY2-7-B, ZM 

3683 and ZM 4496 (described in apeendix 3.1) were found to be highly drought tolerant 

based on the low standard deviations of the means and Rank Sums. Yield Index and 

SSI ranking was also similar in ranking to MP, STI, GMP and HM. The Rank Sum for the 

best 12 genotypes ranged between 15.48 and 32.56. Among them LY4-4-4-B was the 

highest ranked genotype. The indices largely used yield to identify drought tolerant 

genotypes.  

 

According to STI, MP and GMP values, the 12 genotypes namely SCCI 3, SCC I3, SCC 

I4, SCCI 7, ZM 3831, ZM 4512-5, SCCI 9, LY1-7-B, KAL-ZA, ZM 4496 and LY1-2-B 

were identified as drought tolerant genotypes. The indices recorded for the 12 highest 

ranked genotypes on the basis of the three indices were higher than the rest of the 

genotypes (Appendix 2). The relatively high values for the indices MP, GMP, YI and HM 

are desirable for selecting high yielding genotypes for drought stressed conditions.  

 

The genotypes SCCI 12, ZM 3683, Ly 2-2-B, ZM 4296, ZM 07, ZM 3202, NP 6, Kaba-

Za, ZM 4482, ZM 3749, ZM 4491, and ZM 3624 were ranked high on YSI indicating they 

were stable in both DS and NDS environments. Further analysis by calculating the 

individual ranking of each genotype for each index, mean ranking showed that Ly 1-2-B, 

ZM 01, ZM 4496, Ly 1-7-B, Kal-Za, SCCI 9, ZM4512-5, ZM 3831, SCCI 7, SCCI 4, Ly4-

4-4-B, SCCI 8 and SCCI 3 had high mean rankings (Table 3.5). 

 

The ranking based on individual indices are detailed in Appendix 3.2. The selection 

based on individual indices were and to a lesser extent not completely consistent despite 

the fact that some genotypes were consistently ranked in the top 12 and bottom 12. 
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Table 3.5: Twelve high ranked and 12 lowest ranked genotypes based on yield in drought stressed plots across sites and across years with corresponding 
selection indices, ranks(R) and Rank sum 
Genotype Yp R Ys R MP R GMP R STI R YI R YI R YSI R SSI R HM R 

Mean 
Rank Sdev RS 

LY4-4-4-B 0.833 5 0.779 3 0.806 4 0.806 4 0.029 4 1.679 3 1.998 3 0.935 32 -0.679 3 0.805 4 6.5 8.98 15.48 
LY1-2-B 0.682 17 0.658 7 0.670 12 0.670 11 0.020 11 1.419 7 1.688 7 0.966 23 -0.419 7 0.670 10 11.2 5.22 16.42 
ZM3831 0.723 10 0.671 5 0.697 6 0.697 6 0.022 6 1.446 5 1.721 5 0.928 34 -0.446 5 0.696 6 8.8 8.98 17.78 
KAL-ZA 0.702 13 0.650 9 0.676 10 0.675 10 0.021 10 1.401 9 1.667 9 0.927 35 -0.401 9 0.675 9 12.3 8.07 20.37 
SCCI 13 0.692 14 0.647 10 0.670 13 0.669 13 0.020 13 1.394 10 1.659 10 0.935 33 -0.394 10 0.669 11 13.7 6.96 20.66 
ZM4512-5 0.726 9 0.654 8 0.690 7 0.689 7 0.022 7 1.409 8 1.676 8 0.901 43 -0.409 8 0.688 7 11.2 11.19 22.39 
LYA-ZA 0.690 15 0.631 12 0.660 15 0.660 14 0.020 14 1.359 12 1.617 12 0.914 38 -0.359 12 0.659 14 15.8 7.90 23.70 
ZM4496 0.703 12 0.637 11 0.670 11 0.669 12 0.020 12 1.373 11 1.634 11 0.906 42 -0.373 11 0.669 12 14.5 9.68 24.18 
LY2-7-B 0.641 22 0.591 15 0.616 19 0.615 19 0.017 19 1.273 15 1.515 15 0.922 36 -0.273 15 0.615 18 19.3 6.34 25.64 
ZM3683 0.546 36 0.572 20 0.559 23 0.559 23 0.014 23 1.233 20 1.467 20 1.048 14 -0.233 20 0.559 23 22.2 5.57 27.77 
SCCI 2 0.529 38 0.507 26 0.518 31 0.518 29 0.012 29 1.093 26 1.301 26 0.958 27 -0.093 26 0.518 27 28.5 3.75 32.25 
ZM4512 0.520 40 0.518 25 0.519 30 0.519 28 0.012 28 1.117 25 1.329 25 0.997 18 -0.117 25 0.519 26 27 5.56 32.56 
NP5 0.267 108 0.152 117 0.209 115 0.201 116 0.002 116 0.327 117 0.389 117 0.568 116 0.673 117 0.193 116 115.5 2.72 118.22 
ZM3788-2 0.264 109 0.259 94 0.262 105 0.262 105 0.003 105 0.559 94 0.665 94 0.983 21 0.441 94 0.262 104 92.5 25.81 118.31 
ZM3203-3 0.232 114 0.116 118 0.174 118 0.164 118 0.001 118 0.250 118 0.298 118 0.500 119 0.750 118 0.155 118 117.7 1.34 119.04 
KAB-ZA 0.158 119 0.098 120 0.128 119 0.124 119 0.001 119 0.211 120 0.251 120 0.620 115 0.789 120 0.121 119 119 1.49 120.49 
ZM3636 0.249 111 0.199 113 0.224 113 0.223 113 0.002 113 0.429 113 0.511 113 0.801 75 0.571 113 0.221 113 109 11.96 120.96 
ZM4830 0.263 110 0.234 106 0.249 109 0.248 109 0.003 109 0.505 106 0.601 106 0.891 45 0.495 106 0.248 108 101.4 19.88 121.28 
ZM4490 0.237 112 0.197 114 0.217 114 0.216 114 0.002 114 0.425 114 0.506 114 0.832 68 0.575 114 0.216 114 109.2 14.49 123.69 
ZM4491 0.223 115 0.254 99 0.239 111 0.238 111 0.003 111 0.547 99 0.651 99 1.137 9 0.453 99 0.238 111 96.4 31.38 127.78 
ZM3681 0.237 113 0.229 109 0.233 112 0.233 112 0.002 112 0.492 109 0.586 109 0.966 24 0.508 109 0.232 112 102.1 27.49 129.59 
ZM4511 0.126 120 0.114 119 0.120 120 0.120 120 0.001 120 0.246 119 0.292 119 0.908 41 0.754 119 0.120 120 111.7 24.85 136.55 
ZM3624 0.179 117 0.227 110 0.203 116 0.201 115 0.002 115 0.489 110 0.582 110 1.270 3 0.511 110 0.200 115 102.1 34.94 137.04 
ZM6713 0.178 118 0.178 116 0.178 117 0.178 117 0.001 117 0.384 116 0.457 116 1.005 16 0.616 116 0.178 117 106.6 31.84 138.44 
Mean 0.46   0.39   0.42   0.85   0.84   0.85   0.16   0.14   0.42   0.46 

  
    

Note: Yp=yield under non drought stressed conditions; Ys =yield under drought stressed conditions; HM = hamonic mean, MP=mean productivity; STI = stress tolerance index; SSI=stress susceptibility index; 
GMP=geometric mean productivity; SDI=susceptibility drought index; YI=Yield index; YSI=yield stability index;  R=rank; Mean ranking is calculated as an average of the rankings for each of the indices; RS=Rank 
sum (Rank sum (RS)= Rank mean ( R ) + Standard deviation of rank (SDR) (Farshadfar and Elyasi, 2012), Sdev (R) = standard deviation of the ranks. 
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3.3.4 Genotype ranking based on the rank sum 
The ranking based on rank sum which takes into consideration the deviation observed in 

each index and, this based on the mean rank and standard deviation of the ranks, 

identified LY 4-4-4-B, ZM3831, ZM4512-5, KAL-ZA and ZM4496 as most drought 

tolerant genotypes and identified ZM3203-3, KAB-ZA, NP5, ZM3624 and ZM6713 as 

most sensitive genotypes (Table 3.5). The Rank Sum for the highest yielding genotypes 

ranged between 15.48 and 32.56 while the lowest yielding genotypes had mean ranking 

between 118 and 138. Fifty two genotypes had yields above the mean (390 kg ha-1 ) in 

DS plots while the rest (68) showed yields below the mean performance (Appendix 3.2). 

This translates to the fact that 43.0% of the genotypes yielded normally above the trial 

mean.  

 

3.3.5 Yield response of the genotypes to drought stress on yield  
The yield loss for most of the highly ranked genotypes based on the selection indices 

was less than 10% except for SCCI 8, SCCI 3, SCCI 4 and SCCI 7 which recorded yield 

reductions of 29.6%, 25.0%, 29.5% and 28.8% respectively. The 12 lowest ranked 

genotypes based on the selection indices had yield loses ranging between 0.5% and 

50.0%. Most of the genotypes ranked least by the selection indices had yield reductions 

of between 16.8% and 50.0% except for ZM 3681, ZM 6713, and ZM 4511 that recorded 

relatively low yield reductions of 3.4%, 0.5% and 9.2% respectively.  

 

3.3.6 Correlations between yield and selected agronomical traits under drought 
stress 
The results of the correlations between yield in DS plots and measured traits are 

presented in Table 3.6. Significant positive correlations were recorded in DS conditions 

between yield and HSW (r= 0.689, P≤0.01), and NPP (r = 0.82, P≤0.01). The 

correlations between yield under stressed plots with HSW (r=0.689), LAR (r=-0.81), 

NPP(r=0.82) and NSP (r=0.75) were significant (P=≤0.01). However the results indicated 

that yield and LAR were negatively correlated with yield while LAR (r = -0.81, P≤0.01), 

and with NSP (r =-0.75, P≤0.01) positively correlated with yield under DS conditions. The 

correlation between HSW and NPP was significant and positive (r = 0.64, P≤0.01). 

Similarly, NSP was positively correlated with NPP (r=0.474, P≤0.05). There was also 
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significant (r=0.64, P≤01) and positive correlation between HSW and NPP. The DAF was 

significantly correlated with HSW, LAR, NPP (P≤0.01)  and with NSP(P≤0.05). 

 

Table 3.6: Correlation between yield and selected agronomic traits under drought stress 

  DAF HSW LAR NPP NSP Yield 
DAF 1 

     HSW 0.72** 1 
    LAR 0.55** -0.48 1 

   NPP 0.84** 0.64** 0.85** 1 
  NSP  -0.46* 0.155 0.925** 0.474*  1 

 Yield -0.27 0.689** -0.81** 0.82** 0.75** 1 
Note: HSW = Hundred seed mass; NSP =Number of seeds per pod; NPP = Number of pods 

per plant; LAR = Leaf area in retention; DAF = Days to 50% flowering 
 

3.3.7 Principal component analysis 
The biplot analysis (Figure 3.3) described the relationships that existed between grain 

yield and the screening indices in accounting for general trends in the behavior of the 

120 genotypes when exposed to drought stress. The first principal component (PC-1) 

accounted for 75.9% of the variation while the second principal component (PC-2) 

accounted for only 23.7%. Hundred seed mass contributed the most (99.9%) to PC-1.  

From the biplot (Figure 3.3), it can be observed that most of the genotypes (about 80%) 

were more concentrated to the middle of the biplot implying that they were moderately 

susceptible or tolerant. The genotypes denoted by the numbers 1 to 10 are lying on the 

right side of the biplot forming another cluster of the genotypes identified as highly 

drought tolerant comprising SCCI 4, SCCI 7 ZM 3831, ZM 4512-5, Ly1-2-B, ZM 4512-5, 

LyA-ZA, ZM 4496, SCCI 3, Ly4-4-4-B and SCCI 2.  The genotypes denoted by the 

numbers 110 to 120 represent the genotypes that have been classified as highly 

susceptible to drought by the indices.  
 
 
This cluster of genotypes forms the bulk of the germplasm and it agrees with the 80.0% 

majority identified as moderately tolerant to susceptible by the principal component 

analysis (Figure 3.3). These results are in line with the description of the indices and 

their relationships. The SSI values recorded for the top 12 ranked genotypes were less 

than 1 denoting more drought tolerant genotypes when compared with the rest of the 

genotypes. 

  



98 
 

 
Figure 3.3: Biplot display of the 120 genotypes across all environments. The biplot 
shows the first two principal components for the 120 selected genotypes based on 
selection indices 

 
3.4 Discussion 
The results of the analysis of variance (Table 3.2) showed significant differences in 

terms of all traits under drought stress condition. The results showed significant 

differences in terms of all traits for LAR, HSW, DAF, NPP, NSP and yield. This indicates 

that the magnitude of differences between cultivars was sufficient for selection for 

drought resistance. The results revealed that water decreased the grain yield of all 

cultivars significantly. Similar observations have been reported in wheat (Farshadfar, 

2012). Significant variability was observed on the basis of yield and yield components, 
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providing a good starting point in the development of improved varieties that are tolerant 

to drought stress. About 40% of the genotypes screened under drought stress yielded 

above the trial mean which could classify them as relatively tolerant to drought stress. 

This result is also presented graphically in the biplot analysis (Figure 3.3). This result 

implies that breeding for drought tolerance would generally successfully use of the local 

germplasm. The clear distinction between high yielding and low yielding genotypes when 

screened under drought stress is a good indicator that shows diversity for drought 

tolerance. Drought affected average yield at both sites. The results also indicated this 

group of genotypes had flowered earlier and yielded above the mean when exposed to 

drought stress when compared to non-drought stress conditions.  

 

The mean NPP was reduced as a result of drought stress. The high yielding genotypes 

generally had low pod reduction indicating the possible ability of the genotypes to 

mobilise photosynthates from vegetative parts to developing pods when exposed to 

drought stress. There was a positive and significant correlation between NPP and yield 

under drought. It would therefore be implied that drought tolerant genotypes were 

possibly using their ability to remobilize photosynthates to adapt to drought stressed 

conditions and achieve some yield. The drought tolerant genotypes showed minimal 

reduction in leaf area. Out of the 12 highest yielding under drought stress, about 10 were 

landraces.  Among the notable genotypes, is Lyambai, which had the ability to yield high 

under DS and was also preferred by the farmers as shown earlier in a PRA study 

reported in this thesis. The mutants of Lyambai such as LYA-ZA, LY4-4-4-B and LY 1- 2-

B could be released as cultivars. However, it needs to be noted that most of these high 

yielding genotypes had many undesirable characteristics such as small seeds, and dark 

colours.  

 

There were no significant differences in HSW between genotypes under drought stress. 

This finding contradicts the findings made by Munroz-Perea et al. (2006) who found 

significant differences in seed mass between drought stressed and non- stressed 

conditions which could be attributed to the differences in the germplasm used.  The yield 

components, number of pods per plant and number of seeds per pod were both reduced 

by drought stress and would have contributed to yield reduction.   
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The ranking of the genotypes at the two sites showed a mixed pattern. However, 

although the ranking differed, genotypes in the top 12 maintained their superiority in 

terms of yield while the bottom 12 also maintained their lower ranking. These results 

show that the rank order of the genotypes for yield, NPP, and HSW between seasons, 

sites, and water treatments was consistent for high yielding genotypes. This translates to 

the fact that 40% of the genotypes yielded normally above the trial mean.  

 

The significant and negative correlations between yield and LAR and with NSP implies 

that genotypes that had fewer seeds per pod and low leaf area retention had more grain 

yield and would be desirable for selecting in drought stressed conditions. This may imply 

that genotypes with fewer numbers of seeds per pod concentrated all their 

photosynthates into the few seeds set in each pod. Furthermore, the genotypes that had 

low leaf area retention probably conserved most of the photosynthetic products and 

partitioned them to seed development other than supporting vegetative growth resulting 

into slightly higher yield. The selection for low number of seeds per pod and low leaf 

area retention under drought stress would therefore be desirable in common bean to 

achieve relatively high yields. The biplot analysis on the mean ranking and correlation 

matrix showed that the first PCA explained most of the variation between yield and 

drought tolerance indices. The genotypes lying near and around zero were considered 

high yielding and stable in both DS and NDS conditions and correlated with high MP, 

GMP and HM values supporting the findings of Farshadfar et al. (2012). The breeders 

use principal component analysis to describe a pattern to complement other methods of 

grouping genotypes. The main advantage of principl component is that the statistics are 

well assigned to each particular group of genotypes (Khodadadi et al., 2011). 

 

The GMP, MP, YI, HM discriminated the genotypes into classes based on their 

adaptation to drought stress (Table 3.6). The high values for GMP, MP, YI and HM are 

desirable for high yielding genotypes in drought stressed environments. SCCI 8, SCCI 3, 

LY4-4-4-B, SCCI 4, ZM 3831, SCCI 7, LY1-2-B, ZM 4512-5, KAL-ZA, SCCI 13, ZM 4496 

and LYA-ZA were ranked in the top 12 high yielding genotypes by these indices 

indicating that they were high yielding and suitable for DS environments. ZM3681, ZM 

3624, ZM 4302, ZM 4144, ZM 3636, ZM 4490, ZM 4520, ZM6713, ZM 3203-3, ZM 4511, 

NP5 and KAB-ZA on the other hand were ranked as lowest yielding in the bottom 12.  



101 
 

This result is confirmation of the appropriateness of the indices in identifying high 

yielding common bean genotypes for DS environments.  

The more sensitive genotypes (ZM3681, ZM 3624, ZM 4302, ZM 4144, ZM 3636, ZM 

4490, ZM 4520, ZM 6713, ZM 3203-3, ZM 4511, NP5 and KAB-ZA) comprised landraces 

and these expressed severe depression in trait expression while the less sensitive 

genotypes (SCCI 8, SCCI 3, LY4-4-4-B, SCCI 4, ZM 3831, SCCI 7, LY1-2-B, ZM 4512-5, 

KAL-ZA, SCCI 13, ZM 4496 and LYA-ZA) expressed less trait depression. This 

difference could be seen in the extent of trait reductions for NPP, LAR and NSP for each 

of the genotypes when contrasted between the 12 highest and 12 lowest yielding 

genotypes. The differences are attributed to the differences in the genetic makeup and 

their adaptation ability. The genotypes identified as drought tolerant in this study 

seemingly used different adaptation mechanisms and were all selected based on yield 

potential.  For instance, Ly4-4-4-B had higher yield than the drought sensitive genotypes 

like KAB-ZA based on the three traits (NPP, NSP and LAR).  However, it needs to be 

noted that drought tolerance is not a single trait but rather the sum of the different 

mechanisms that occur in the plant. It was observed that low NSP and high NPP 

resulted in high yield and this may imply that the fewer the seeds in a pod the better as 

they would grow to maturity. This may relate to the ability of the genotypes to mobilize 

photosynthates. The property of genotypes to mobilise photosynthates when exposed to 

drought stress has also been reported by Klaedtke et al. (2012) but was not tested in this 

study. However, potential yield provides the most effective way for selecting drought 

tolerant genotypes and worth testing to confirm if applicable in this case.  

The various methods of determining drought tolerance in the genotypes namely, rank 

sum, mean rank, correlation, and biplots were consistent in ranking drought tolerant 

genotypes, though with very minor and insignificant variation. This confirms information 

already published that selection for drought tolerance should be based on tolerance 

indices for yield under stressed and non-stressed conditions. The GMP, MP, YI and HM 

though showing variations were useful in identifying high yielding genotypes adaptable 

to both drought stressed and non-drought stressed conditions. The results agree with 

separate and similar observations made by Fernandez (1992) and Mohammadi et al. 

(2010). These results show the consistency of performance of the genotypes under 

drought stress and non-drought stress conditions. The genotypes with high values of 

stress tolerance (STI), geometric mean productyivity, and mean productivity (MP) can be 
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selected as tolerant genotypes to water stress. The estimates of indicators of drought 

tolerance (Table 3.5) indicated that the identification of drought-tolerant cultivars was 

contradictory based on a single criterion. To determine the most desirable drought 

tolerant cultivar according to all the indices rank and mean rank of all drought tolerance 

criteria were calculated and the most desirable drought tolerant cultivars were identified 

based on these two criteria. The ranking based on one index has been critised as it has 

been established that in many cases, the indices contradict each other. Thus each index 

provides different order of tolerance when considered individually (Ashraf et al., 2015). 

Therefore the use of rank sum gives a good statistical ranking and removes bias due to 

error. In consideration to all indices, LY4-4-4-B, LY1-2-B, ZM3831, KAL-ZA, ZM4512-5, 

ZM4496 and SCCI 13 showed the best mean rank and low rank sum in water deficit 

stress condition, hence they were identified as the most drought tolerant cultivars which 

are in agreement with most indices.  

 

3.5 Conclusion 
According to the results collected in this research, genotypic differences were evident. 

The genotypes could be grouped into three categories, those that were highly drought 

tolerant lying in the top 10% of the 120 genotypes screened, moderately susceptible or 

tolerant comprising about 80% and most susceptible lying at the bottom 10%. Overall 

about 40% of the 120 genotypes yielded above the mean.  

 

Selecting the top five genotypes of the 120 genotypes and based on the rank sum, LY4-

4-4-B, LY1-2-B, ZM3831, KAL-ZA, and ZM4512-5, as highly tolerant to drought. Ly4-4-4-

B is a mutant derived from a released cultivar, LYA – ZA (Lyambai), while, KAL- ZA is a 

released cultivar, and ZM 3831 and ZM 4512-5 are landraces. The landraces were small 

seeded, reddish brown in colour and appeared less attractive for human consumption 

based on results of the PRA work. The mutants retained the background of red speckled 

and the original size and colour as Lyambai from which they were derived. These could 

be released as cultivars with further selection. The released cultivars on the other hand 

provided more choices for use in breeding programmes as a sources of tolerance to 

drought stress.  
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The local landraces have shown a lot of undesirable characteristics in terms of seed size 

and seed color. From the results of this study, these landraces would require to be 

improved upon. The recommendation would be, to breed for large seed size and red 

speckled seed colour in the selected landraces to make them acceptable by the farmers 

while maintaining their levels of drought tolerance.  

 

This study also established that HSW mass was not affected by stress and was similar 

both in DS and NDS conditions. All the tested genotypes showed reduced number of 

days to flowering when grown under drought stress.  
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Appendix 3.1: List of germplasm used, the source and phenotypic characteristics 

No. Germplasm Category Source Seed 
Colour 

Seed 
shape Growth 

habit 

Flower 
colour 
standard 

Plant 
growth 
type HSW 

1 KE 5 Landrace National gene bank 
(Zambia) red Kidney III 1 2 35.6 

2 KE 1 Landrace National gene bank 
(Zambia) white Kidney I 1 1 24.3 

3 KE 3 Landrace National gene bank 
(Zambia) brown Kidney III 1 2 25.8 

4 KE 2 Landrace National gene bank 
(Zambia) brownish Kidney I 2 1 16.5 

5 KE 4 Landrace National gene bank 
(Zambia) brownish Kidney I 2 1 14.3 

6 ZM 4497 Landrace National gene bank 
(Zambia) white Kidney III 1 2 20.1 

7 ZM3200 Landrace National gene bank 
(Zambia) red Kidney I 1 1 40 

8 ZM 4143 Landrace National gene bank 
(Zambia) red Kidney III 1 2 35.6 

9 ZM 4512-3 Landrace National gene bank 
(Zambia) red cuboid I 2 1 39.4 

10 ZM 4830 Landrace National gene bank 
(Zambia) white oval IV 1 2 32.8 

11 ZM 4144 Landrace National gene bank 
(Zambia) brownish Kidney IV 1 2 25.1 

12 ZM 4296 Landrace National gene bank 
(Zambia) bicolour oval IV 2 2 14.8 

13 ZM 4520 Landrace National gene bank 
(Zambia) bicolour oval III 2 2 21.2 

14 ZM 07 Landrace National gene bank 
(Zambia) white oval I 1 2 29.7 

15 ZM 4303 Landrace National gene bank 
(Zambia) brown oval III 1 1 25.6 

16 ZM 6713 Landrace National gene bank 
(Zambia) brownish oval I 2 1 27.9 

17 ZM 4489 Landrace National gene bank 
(Zambia) brownish oval I 2 1 20.8 

18 ZM 3730 Landrace National gene bank 
(Zambia) white oval III 2 1 32 

19 ZM 4488 Landrace National gene bank 
(Zambia) red oval I 2 1 29.6 

20 ZM 3831 Landrace National gene bank 
(Zambia) red oval I 2 1 33.4 

21 ZM 3788 Landrace National gene bank 
(Zambia) red oval I 3 1 29.4 

22 ZM 04 Landrace National gene bank 
(Zambia) white cuboid I 2 2 22.2 

23 ZM 4833 Landrace National gene bank 
(Zambia) brownish cuboid I 2 1 37.2 

24 ZM 4831 Landrace National gene bank 
(Zambia) bicolour cuboid I 2 1 15.7 

25 ZM 3636 Landrace National gene bank 
(Zambia) bicolour Kidney IV 2 2 35.2 

26 ZM 3688 Landrace National gene bank 
(Zambia) brownish Kidney I 1 1 27.9 

27 ZM 5128 Landrace National gene bank 
(Zambia) brownish Kidney III 2 2 46.8 

28 ZM 02 Landrace National gene bank 
(Zambia) white Kidney III 2 2 28 

29 ZM 3793 Landrace National gene bank 
(Zambia) red Kidney I 1 1 11.5 

30 ZM 4840 Landrace National gene bank 
(Zambia) red cuboid III 2 2 10.8 

31 ZM 4829 Landrace National gene bank 
(Zambia) red oval IV 1 2 23 
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32 ZM 4289 Landrace National gene bank 
(Zambia) white Kidney III 2 2 28.2 

33 ZM 4516 Landrace National gene bank 
(Zambia) brownish oval IV 2 2 7.8 

34 ZM 4490 Landrace National gene bank 
(Zambia) bicolour oval I 1 1 29.8 

35 ZM 4482 Landrace National gene bank 
(Zambia) bicolour oval I 1 1 17.8 

36 ZM 03 Landrace National gene bank 
(Zambia) white oval * 1 2 25.5 

37 ZM 6612 Landrace National gene bank 
(Zambia) brown oval IV 1 2 28.5 

38 SCCI 6 Landrace National gene bank 
(Zambia) brownish oval III 1 2 5.3 

39 ZM 3696 Landrace National gene bank 
(Zambia) brownish oval III 1 2 16.4 

40 ZM 4836 Landrace National gene bank 
(Zambia) white oval III 2 1 20.5 

41 ZM 6602 Landrace National gene bank 
(Zambia) red oval III 2 2 23.5 

42 ZM 3202 Landrace National gene bank 
(Zambia) red oval IV 2 2 23.8 

43 ZM 6604 Landrace National gene bank 
(Zambia) red cuboid III 3 2 27.1 

44 ZM 3694 Landrace National gene bank 
(Zambia) white cuboid I 2 2 19.7 

45 ZM 6603 Landrace National gene bank 
(Zambia) brownish cuboid III 2 2 27.9 

46 ZM 4514 Landrace National gene bank 
(Zambia) bicolour Kidney III 1,2 2 28.2 

47 ZM 4302 Landrace National gene bank 
(Zambia) brownish Kidney III 2 2 20.4 

48 ZM 3624 Landrace National gene bank 
(Zambia) white cuboid III 1 2 25.2 

49 ZM 3203 Landrace National gene bank 
(Zambia) red oval I 2 2 30.3 

50 ZM 4483 Landrace National gene bank 
(Zambia) red Kidney IV 1 2 40.6 

51 SCCI 3 Landrace National gene bank 
(Zambia) red oval III 2 2 18.3 

52 ZM 3831-4 Landrace National gene bank 
(Zambia) white oval III 2 2 23.1 

53 ZM 4491 Landrace National gene bank 
(Zambia) brownish oval IV 1 2 13.5 

54 ZM 4496 Landrace National gene bank 
(Zambia) bicolour oval * 2 2 31.6 

55 ZM 3200 Landrace National gene bank 
(Zambia) bicolour oval I 2 2 31 

56 ZM 3677 Landrace National gene bank 
(Zambia) brownish oval III 4 2 34.2 

57 SCCI 12 Landrace National gene bank 
(Zambia) brownish oval III 2 2 23.2 

58 ZM 3681-2 Landrace National gene bank 
(Zambia) white oval IV 2 2 27.5 

59 SZ3 Landrace National gene bank 
(Zambia) red oval III 1 1 9.3 

60 ZM 3683 Landrace National gene bank 
(Zambia) red oval IV 4 2 21.9 

61 ZM 05 Landrace National gene bank 
(Zambia) red cuboid III 3 2 30.6 

62 ZM 5136 Landrace National gene bank 
(Zambia) white cuboid III 2 2 33.1 

63 ZM 4508 Landrace National gene bank 
(Zambia) brownish cuboid III 2 2 32.5 

64 ZM 5127 Landrace National gene bank 
(Zambia) bicolour Kidney IV 1 2 16.9 

65 ZM 4512-4 Landrace National gene bank 
(Zambia) bicolour Kidney IV 1 2 19.1 
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66 ZM 6601 Landrace National gene bank 
(Zambia) white Kidney IV 2 2 10.5 

67 ZM 4524 Landrace National gene bank 
(Zambia) brown Kidney III 2 2 33.7 

68 ZM 4305 Landrace National gene bank 
(Zambia) brownish Kidney IV 2 2 13 

69 ZM 4525 Landrace National gene bank 
(Zambia) red Kidney III 2 2 28.9 

70 ZM 4502 Landrace National gene bank 
(Zambia) red Kidney III 4 2 29 

71 ZM 4294 Landrace National gene bank 
(Zambia) white Kidney I 1 1 14.2 

72 ZM 06 Landrace National gene bank 
(Zambia) brownish Kidney III 4 2 30.6 

73 ZM 3749 Landrace National gene bank 
(Zambia) bicolour Kidney IV 2 2 29.6 

74 ZM 3838 Landrace National gene bank 
(Zambia) bicolour Kidney IV 2 2 21.8 

75 ZM 4512 Landrace National gene bank 
(Zambia) white Kidney IV 2 2 17.6 

76 ZM 3206 Landrace National gene bank 
(Zambia) brown Kidney IV 2 2 26.5 

77 ZM 4479 Landrace National gene bank 
(Zambia) brownish Kidney III 1 2 29.4 

78 ZM 4512-2 Landrace National gene bank 
(Zambia) brownish Kidney III 2 2 34.1 

79 ZM 4298 Landrace National gene bank 
(Zambia) white Kidney III 1 2 18.1 

80 SCCI 1 Landrace National gene bank 
(Zambia) red Kidney IV 4 2 20.5 

81 ZM3681 Landrace National gene bank 
(Zambia) red Kidney III 1 2 28.6 

82 ZM 4478 Landrace National gene bank 
(Zambia) red Kidney III 2 2 38 

83 SCCI 9 Landrace National gene bank 
(Zambia) white Kidney III 2 2 27.2 

84 SCCI 5 Landrace National gene bank 
(Zambia) brownish Kidney III 2 2 5.2 

85 SCCI 7 Landrace National gene bank 
(Zambia) bicolour Kidney IV 1 2 20.8 

86 SCCI 13 Landrace National gene bank 
(Zambia) bicolour Kidney III 4 2 39.1 

87 SCCI-5 Landrace National gene bank 
(Zambia) brownish Kidney III 2 2 20.5 

88 SCCI 10 Landrace National gene bank 
(Zambia) brownish Kidney III 1 2 23.7 

89 SCCI 11 Landrace National gene bank 
(Zambia) white Kidney III 1 2 30 

90 SCCI 11 Landrace National gene bank 
(Zambia) red Kidney I 1 1 18.8 

91 SCCI 2 Landrace National gene bank 
(Zambia) red Kidney IV 1 2 40.6 

92 SCCI 4 Landrace National gene bank 
(Zambia) red Kidney III 2 2 26 

93 SCCI 8 Landrace National gene bank 
(Zambia) white Kidney I 2 1 38 

94 KAB-ZA Landrace National gene bank 
(Zambia) brownish Kidney III 1 2 21.7 

95 MEX 54 Kenyan 
bean Seed Company red cuboid III 1 2 14.4 

96 G10909 Kenyan 
bean Seed Company red cuboid III 4 2 26.5 

97 GADRA RSA cultivar Seed Company sugar 
bean Kidney III 2 2 20.1 

98 SCCI/LYA Mutant UNZA brownish Kidney III 2 2 28.6 
99 KABA-ZA Mutant UNZA brownish Kidney IV 4 2 38 

100 LY2-7-B Mutant UNZA brownish Kidney III 1 2 27.2 
101 LY2-3-B Mutant UNZA brownish Kidney III 2 2 5.2 
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102 LY2-8-B Mutant UNZA brownish Kidney III 2 2 20.8 
103 LY4-4-B Mutant UNZA brownish Kidney * 2 2 39.1 
104 LY1-2-B Mutant UNZA brownish Kidney III 2 2 20.5 
105 LY2-2-B Mutant UNZA brownish Kidney III 4 2 23.7 

106 SZ-4-B-B Mutant UNZA red 
speckled Kidney IV 2 2 30 

107 SZ31BB1 Mutant UNZA red 
speckled Kidney III 2 2 18.8 

108 SZ33BB2 Mutant UNZA red 
speckled Kidney III 2 2 40.6 

109 SZ7-4-B-B Mutant UNZA red 
speckled Kidney III 1 2 26 

110 LY1-7-B Mutant UNZA brownish Kidney III 1 2 38 

111 SZ33BB1 Mutant UNZA red 
speckled Kidney IV 2 2 30 

112 SZ9-B-B-B2 Mutant UNZA red 
speckled Kidney III 4 2 18.8 

113 SZ32BB1 Mutant UNZA red 
speckled Kidney III 1 2 40.6 

114 LY-UNZA Mutant UNZA brownish Kidney III 1 2 26 
115 CAR Mutant UNZA 

 
Kidney III 2 2 38 

116 LYA-ZA Released 
cultivar ZARI Red 

speckled Kidney III 2 2 21.7 

117 CHAM-ZA Released 
cultivar ZARI brownish Kidney III 3 2 14.4 

118 KAL-ZA Released 
cultivar ZARI white cuboid III 2 2 26.5 

119 LUK-ZA Released 
cultivar ZARI tan cuboid III 1 2 20.1 

120 LWA-ZA Released 
cultivar ZARI whittish Kidney III 2 2 30 

 

Note: UNZA-University of Zambia, ZARI=Zambia Agriculture Research Institute 
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Appendix 3.2: List of all the genotypes ranked by Rank Sum 

Genotype Yp R Ys R MP R GMP R STI R YI R YI R YSI R SSI R HM R 
Mean 
Rank (X) Sdev RS 

LY4-4-4-B 0.833 5 0.779 3 0.806 4 0.806 4 0.029 4 1.679 3 1.998 3 0.935 32 -0.679 3 0.805 4 6.5 8.98 15.48 
LY1-2-B 0.682 17 0.658 7 0.670 12 0.670 11 0.020 11 1.419 7 1.688 7 0.966 23 -0.419 7 0.670 10 11.2 5.22 16.42 
ZM3831 0.723 10 0.671 5 0.697 6 0.697 6 0.022 6 1.446 5 1.721 5 0.928 34 -0.446 5 0.696 6 8.8 8.98 17.78 
KAL-ZA 0.702 13 0.650 9 0.676 10 0.675 10 0.021 10 1.401 9 1.667 9 0.927 35 -0.401 9 0.675 9 12.3 8.07 20.37 
SCCI 13 0.692 14 0.647 10 0.670 13 0.669 13 0.020 13 1.394 10 1.659 10 0.935 33 -0.394 10 0.669 11 13.7 6.96 20.66 
ZM4512-5 0.726 9 0.654 8 0.690 7 0.689 7 0.022 7 1.409 8 1.676 8 0.901 43 -0.409 8 0.688 7 11.2 11.19 22.39 
LYA-ZA 0.690 15 0.631 12 0.660 15 0.660 14 0.020 14 1.359 12 1.617 12 0.914 38 -0.359 12 0.659 14 15.8 7.90 23.70 
ZM4496 0.703 12 0.637 11 0.670 11 0.669 12 0.020 12 1.373 11 1.634 11 0.906 42 -0.373 11 0.669 12 14.5 9.68 24.18 
LY2-7-B 0.641 22 0.591 15 0.616 19 0.615 19 0.017 19 1.273 15 1.515 15 0.922 36 -0.273 15 0.615 18 19.3 6.34 25.64 
ZM3683 0.546 36 0.572 20 0.559 23 0.559 23 0.014 23 1.233 20 1.467 20 1.048 14 -0.233 20 0.559 23 22.2 5.57 27.77 
SCCI 2 0.529 38 0.507 26 0.518 31 0.518 29 0.012 29 1.093 26 1.301 26 0.958 27 -0.093 26 0.518 27 28.5 3.75 32.25 
ZM4512 0.520 40 0.518 25 0.519 30 0.519 28 0.012 28 1.117 25 1.329 25 0.997 18 -0.117 25 0.519 26 27 5.56 32.56 
KE 2 0.683 16 0.585 17 0.634 17 0.632 17 0.018 17 1.260 17 1.500 17 0.856 56 -0.260 17 0.630 17 20.8 12.37 33.17 
SCCI 9 0.748 7 0.623 13 0.686 8 0.683 8 0.021 8 1.342 13 1.596 13 0.832 67 -0.342 13 0.680 8 15.8 18.18 33.98 
KE 5 0.601 25 0.525 24 0.563 22 0.562 22 0.014 22 1.132 24 1.347 24 0.875 49 -0.132 24 0.560 22 25.8 8.23 34.03 
CHAM-ZA 0.704 11 0.594 14 0.649 16 0.647 16 0.019 16 1.280 14 1.524 14 0.844 63 -0.280 14 0.645 16 19.4 15.40 34.80 
ZM4483 0.583 30 0.505 27 0.544 26 0.543 24 0.013 24 1.089 27 1.296 27 0.867 50 -0.089 27 0.541 24 28.6 7.75 36.35 
SCCI 3 1.050 2 0.788 2 0.919 2 0.910 2 0.038 2 1.698 2 2.021 2 0.750 86 -0.698 2 0.901 2 10.4 26.56 36.96 
SZ3 0.619 23 0.527 23 0.573 21 0.571 21 0.015 21 1.135 23 1.351 23 0.851 59 -0.135 23 0.569 21 25.8 11.71 37.51 
SCCI 5 0.531 37 0.477 32 0.504 35 0.503 35 0.011 35 1.027 32 1.222 32 0.898 44 -0.027 32 0.502 33 34.7 3.71 38.41 
SCCI 12 0.457 55 0.577 18 0.517 32 0.514 31 0.012 31 1.244 18 1.481 18 1.262 4 -0.244 18 0.510 31 25.6 13.70 39.30 
ZM4525 0.504 43 0.487 30 0.495 38 0.495 38 0.011 38 1.049 30 1.248 30 0.965 25 -0.049 30 0.495 37 33.9 5.61 39.51 
KAP-ZA 0.559 32 0.480 31 0.520 29 0.518 30 0.012 30 1.034 31 1.231 31 0.859 54 -0.034 31 0.517 28 32.7 7.57 40.27 
ZM 01 0.740 8 0.587 16 0.663 14 0.659 15 0.020 15 1.265 16 1.505 16 0.794 77 -0.265 16 0.655 15 20.8 19.89 40.69 
LY2-2-B 0.471 51 0.530 22 0.500 36 0.499 36 0.011 36 1.142 22 1.358 22 1.125 10 -0.142 22 0.499 36 29.3 11.72 41.02 
KE 4 0.680 18 0.559 21 0.619 18 0.616 18 0.017 18 1.204 21 1.433 21 0.822 72 -0.204 21 0.613 19 24.7 16.68 41.38 
LY-UNZA 0.591 27 0.498 29 0.545 25 0.542 25 0.013 25 1.073 29 1.276 29 0.842 65 -0.073 29 0.540 25 30.8 12.16 42.96 
SCCI 8 1.134 1 0.798 1 0.966 1 0.951 1 0.041 1 1.719 1 2.046 1 0.704 103 -0.719 1 0.937 1 11.2 32.26 43.46 
SCCI 7 0.934 4 0.665 6 0.800 5 0.788 5 0.028 5 1.434 6 1.706 6 0.712 99 -0.434 6 0.777 5 14.7 29.63 44.33 
SCCI 4 0.974 3 0.687 4 0.830 3 0.818 3 0.030 3 1.480 4 1.761 4 0.705 102 -0.480 4 0.805 3 13.3 31.17 44.47 
ZM3200 0.468 52 0.443 36 0.455 43 0.455 42 0.009 42 0.955 36 1.136 36 0.947 31 0.045 36 0.455 42 39.6 5.85 45.45 
LY1-7-B 0.790 6 0.577 19 0.684 9 0.675 9 0.021 9 1.244 19 1.480 19 0.730 94 -0.244 19 0.667 13 21.6 25.95 47.55 
ZM4298 0.477 48 0.406 48 0.441 45 0.440 45 0.009 45 0.875 48 1.041 48 0.852 57 0.125 48 0.438 45 47.7 3.59 51.29 
ZM4840 0.678 19 0.503 28 0.591 20 0.584 20 0.016 20 1.084 28 1.290 28 0.742 90 -0.084 28 0.578 20 30.1 21.44 51.54 
ZM4831 0.453 56 0.399 51 0.426 49 0.425 48 0.008 48 0.859 51 1.022 51 0.879 48 0.141 51 0.424 48 50.1 2.51 52.61 
ZM 04 0.513 41 0.426 42 0.470 41 0.468 41 0.010 41 0.918 42 1.093 42 0.830 69 0.082 42 0.466 41 44.2 8.73 52.93 
SCCI/LYA 0.555 33 0.443 37 0.499 37 0.496 37 0.011 37 0.954 37 1.136 37 0.798 76 0.046 37 0.493 38 40.6 12.51 53.11 
SZ3-1-B-B 0.445 59 0.404 49 0.425 50 0.424 49 0.008 49 0.871 49 1.036 49 0.908 40 0.129 49 0.424 49 49.2 4.49 53.69 
ZM3202 0.413 67 0.462 35 0.438 46 0.437 46 0.009 46 0.995 35 1.184 35 1.117 11 0.005 35 0.436 46 40.2 14.20 54.40 
ZM6602 0.442 60 0.394 52 0.418 53 0.417 51 0.008 51 0.848 52 1.009 52 0.890 46 0.152 52 0.416 50 51.9 3.45 55.35 
ZM6604 0.492 46 0.406 47 0.449 44 0.447 44 0.009 44 0.876 47 1.042 47 0.827 71 0.124 47 0.445 43 48 8.23 56.23 
SCCI 11 0.451 57 0.383 54 0.417 54 0.415 52 0.008 52 0.825 54 0.982 54 0.849 61 0.175 54 0.414 52 54.4 2.76 57.16 
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Genotype Yp R Ys R MP R GMP R STI R YI R YI R YSI R SSI R HM R 
Mean 
Rank (X) Sdev RS 

KE 1 0.587 28 0.434 38 0.510 34 0.505 34 0.012 34 0.935 38 1.113 38 0.739 91 0.065 38 0.499 35 40.8 17.91 58.71 
ZM 02 0.553 35 0.419 44 0.486 40 0.481 40 0.011 40 0.903 44 1.074 44 0.758 83 0.097 44 0.477 40 45.4 13.53 58.93 
SZ9-B-B-
B2 0.555 34 0.418 45 0.486 39 0.481 39 0.011 39 0.900 45 1.072 45 0.754 84 0.100 45 0.477 39 45.4 14.08 59.48 
ZM6601 0.423 64 0.401 50 0.412 58 0.412 55 0.008 55 0.864 50 1.028 50 0.948 30 0.136 50 0.412 53 51.5 8.80 60.30 
ZM4516 0.595 26 0.430 40 0.512 33 0.506 33 0.012 33 0.927 40 1.103 40 0.723 96 0.073 40 0.499 34 41.5 19.70 61.20 
ZM4833 0.609 24 0.431 39 0.520 28 0.512 32 0.012 32 0.928 39 1.104 39 0.708 101 0.072 39 0.504 32 40.5 21.89 62.39 
ZM 07 0.368 78 0.464 34 0.416 55 0.413 54 0.008 54 0.999 34 1.188 34 1.259 5 0.001 34 0.410 55 43.7 19.77 63.47 
ZM4296 0.365 82 0.471 33 0.418 52 0.414 53 0.008 53 1.014 33 1.207 33 1.290 2 -0.014 33 0.411 54 42.8 21.09 63.89 
SZ31BB1 0.493 45 0.382 55 0.437 47 0.434 47 0.009 47 0.824 55 0.980 55 0.776 81 0.176 55 0.430 47 53.4 10.57 63.97 
ZM4524 0.645 21 0.430 41 0.538 27 0.527 27 0.013 27 0.926 41 1.102 41 0.666 108 0.074 41 0.516 30 40.4 24.93 65.33 
LY2-3-B 0.435 62 0.360 60 0.397 64 0.395 63 0.007 63 0.775 60 0.923 60 0.828 70 0.225 60 0.394 60 62.2 3.16 65.36 
ZM3688 0.480 47 0.366 56 0.423 51 0.419 50 0.008 50 0.789 56 0.939 56 0.763 82 0.211 56 0.415 51 55.5 9.87 65.37 
SCCI 1 0.670 20 0.420 43 0.545 24 0.530 26 0.013 26 0.905 43 1.077 43 0.627 113 0.095 43 0.516 29 41 26.92 67.92 
ZM 06 0.450 58 0.356 62 0.403 62 0.400 59 0.007 59 0.766 62 0.912 62 0.791 78 0.234 62 0.397 57 62.1 5.92 68.02 
ZM3788 0.404 68 0.359 61 0.382 66 0.381 66 0.007 66 0.774 61 0.921 61 0.889 47 0.226 61 0.380 64 62.1 5.93 68.03 
ZM4488 0.392 70 0.362 59 0.377 70 0.377 69 0.006 69 0.779 59 0.927 59 0.921 37 0.221 59 0.376 67 61.8 10.06 71.86 
SCCI 6 0.460 54 0.345 65 0.402 63 0.398 60 0.007 60 0.743 65 0.885 65 0.750 85 0.257 65 0.394 59 64.1 8.18 72.28 
ZM 05 0.391 71 0.330 71 0.361 72 0.359 71 0.006 71 0.710 71 0.845 71 0.842 64 0.290 71 0.358 73 70.6 2.41 73.01 
ZM4305 0.376 74 0.385 53 0.380 67 0.380 67 0.007 67 0.830 53 0.987 53 1.025 15 0.170 53 0.380 65 56.7 16.60 73.30 
ZM4508 0.471 50 0.344 67 0.408 59 0.403 57 0.007 57 0.742 67 0.883 67 0.731 93 0.258 67 0.398 56 64 11.83 75.83 
KE 3 0.568 31 0.365 57 0.467 42 0.455 43 0.009 43 0.786 57 0.935 57 0.642 111 0.214 57 0.444 44 54.2 21.86 76.06 
KABA-ZA 0.346 85 0.412 46 0.379 68 0.378 68 0.006 68 0.888 46 1.057 46 1.190 7 0.112 46 0.376 66 54.6 21.48 76.08 
SZ33BB2 0.434 63 0.323 75 0.378 69 0.374 70 0.006 70 0.695 75 0.827 75 0.743 88 0.305 75 0.370 69 72.9 6.59 79.49 
ZM4836 0.366 80 0.351 63 0.359 74 0.359 72 0.006 72 0.757 63 0.901 63 0.959 26 0.243 63 0.359 71 64.7 14.82 79.52 
ZM3831-4 0.368 79 0.350 64 0.359 75 0.359 73 0.006 73 0.754 64 0.897 64 0.952 29 0.246 64 0.358 72 65.7 14.02 79.72 
NP8 0.391 72 0.308 79 0.349 78 0.347 77 0.005 77 0.664 79 0.790 79 0.789 79 0.336 79 0.345 77 77.6 2.17 79.77 
SCCI 10 0.373 77 0.339 68 0.356 76 0.355 75 0.006 75 0.730 68 0.868 68 0.909 39 0.270 68 0.355 74 68.8 11.12 79.92 
LUK-ZA 0.464 53 0.329 72 0.397 65 0.391 64 0.007 64 0.710 72 0.844 72 0.710 100 0.290 72 0.385 63 69.7 12.25 81.95 
CAR 0.475 49 0.331 70 0.403 61 0.396 62 0.007 62 0.713 70 0.848 70 0.697 104 0.287 70 0.390 62 68 14.26 82.26 
ZM5128 0.375 75 0.295 84 0.335 79 0.332 80 0.005 80 0.635 84 0.755 84 0.785 80 0.365 84 0.330 81 81.1 2.96 84.06 
ZM4514 0.359 83 0.310 78 0.335 80 0.334 79 0.005 79 0.669 78 0.796 78 0.863 51 0.331 78 0.333 79 76.3 9.02 85.32 
ZM5127 0.502 44 0.326 74 0.414 56 0.405 56 0.007 56 0.703 74 0.837 74 0.650 110 0.297 74 0.396 58 67.6 18.30 85.90 
ZM 03 0.419 66 0.300 81 0.359 73 0.354 76 0.006 76 0.646 81 0.769 81 0.716 98 0.354 81 0.350 76 78.9 8.23 87.13 
ZM3730 0.349 84 0.300 80 0.325 84 0.324 83 0.005 83 0.647 80 0.770 80 0.861 53 0.353 80 0.323 83 79 9.30 88.30 
ZM4289 0.507 42 0.317 76 0.412 57 0.401 58 0.007 58 0.683 76 0.813 76 0.625 114 0.317 76 0.390 61 69.4 19.43 88.83 
ZM4482 0.303 92 0.362 58 0.332 81 0.331 82 0.005 82 0.779 58 0.927 58 1.196 6 0.221 58 0.329 82 65.7 24.77 90.47 
ZM4489 0.335 90 0.329 73 0.332 82 0.332 81 0.005 81 0.708 73 0.843 73 0.981 22 0.292 73 0.332 80 72.8 18.70 91.50 
LY4-4-B 0.344 87 0.291 87 0.317 88 0.316 86 0.005 86 0.628 87 0.747 87 0.848 62 0.372 87 0.315 85 84.2 7.84 92.04 
LY2-8-B 0.437 61 0.293 85 0.365 71 0.358 74 0.006 74 0.632 85 0.752 85 0.671 107 0.368 85 0.351 75 80.2 12.33 92.53 
ZM3749 0.302 93 0.345 66 0.323 85 0.322 84 0.005 84 0.743 66 0.884 66 1.144 8 0.257 66 0.322 84 70.2 24.15 94.35 
SZ32BB1 0.420 65 0.285 89 0.352 77 0.346 78 0.005 78 0.615 89 0.732 89 0.680 106 0.385 89 0.340 78 83.8 11.06 94.86 
ZM6603 0.345 86 0.256 95 0.300 90 0.297 91 0.004 91 0.551 95 0.656 95 0.743 89 0.449 95 0.294 92 91.9 3.11 95.01 
ZM3838 0.373 76 0.267 93 0.320 86 0.315 87 0.005 87 0.575 93 0.685 93 0.716 97 0.425 93 0.311 87 89.2 5.94 95.14 
ZM4829 0.527 39 0.287 88 0.407 60 0.389 65 0.007 65 0.618 88 0.736 88 0.545 117 0.382 88 0.372 68 76.6 21.56 98.16 
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Genotype Yp R Ys R MP R GMP R STI R YI R YI R YSI R SSI R HM R 
Mean 
Rank (X) Sdev RS 

ZM3694 0.338 88 0.249 101 0.294 93 0.290 93 0.004 93 0.537 101 0.639 101 0.738 92 0.463 101 0.287 93 95.6 4.88 100.48 
ZM3696 0.315 91 0.255 97 0.285 95 0.284 95 0.004 95 0.550 97 0.655 97 0.811 73 0.450 97 0.282 95 93.2 7.33 100.53 
NP6 0.291 98 0.313 77 0.302 89 0.302 89 0.004 89 0.674 77 0.802 77 1.075 12 0.326 77 0.302 89 77.4 24.13 101.53 
ZM4478 0.583 29 0.270 91 0.427 48 0.397 61 0.007 61 0.582 91 0.693 91 0.463 120 0.418 91 0.369 70 75.3 26.48 101.78 
MEX 54 0.299 94 0.297 82 0.298 91 0.298 90 0.004 90 0.640 82 0.762 82 0.994 19 0.360 82 0.298 90 80.2 21.99 102.19 
NP3 0.400 69 0.255 98 0.328 83 0.319 85 0.005 85 0.549 98 0.653 98 0.637 112 0.451 98 0.311 86 91.2 11.93 103.13 
G10909 0.384 73 0.252 100 0.318 87 0.311 88 0.004 88 0.543 100 0.646 100 0.657 109 0.457 100 0.304 88 93.3 10.34 103.64 
ZM3206 0.297 97 0.296 83 0.297 92 0.297 92 0.004 92 0.638 83 0.759 83 0.997 17 0.362 83 0.297 91 81.3 23.17 104.47 
ZM5136 0.298 95 0.256 96 0.277 100 0.276 98 0.003 98 0.551 96 0.656 96 0.858 55 0.449 96 0.275 97 92.7 13.33 106.03 
ZM3793 0.336 89 0.231 108 0.283 96 0.279 97 0.004 97 0.498 108 0.593 108 0.689 105 0.502 108 0.274 98 101.4 6.83 108.23 
ZM4497 0.297 96 0.241 104 0.269 102 0.268 102 0.003 102 0.519 104 0.618 104 0.810 74 0.481 104 0.266 100 99.2 9.20 108.40 
ZM3677 0.287 101 0.274 90 0.280 98 0.280 96 0.004 96 0.590 90 0.702 90 0.953 28 0.410 90 0.280 96 87.5 21.28 108.78 
ZM4303 0.278 104 0.293 86 0.285 94 0.285 94 0.004 94 0.631 86 0.751 86 1.055 13 0.369 86 0.285 94 83.7 25.51 109.21 
ZM4479 0.289 99 0.242 103 0.266 103 0.264 103 0.003 103 0.522 103 0.622 103 0.840 66 0.478 103 0.263 102 98.8 11.59 110.39 
NP4 0.219 116 0.336 69 0.277 99 0.271 99 0.003 99 0.723 69 0.861 69 1.534 1 0.277 69 0.265 101 79.1 32.55 111.65 
ZM4294 0.286 102 0.243 102 0.265 104 0.264 104 0.003 104 0.524 102 0.624 102 0.850 60 0.476 102 0.263 103 98.5 13.56 112.06 
ZM4302 0.288 100 0.215 111 0.251 108 0.249 108 0.003 108 0.463 111 0.551 111 0.746 87 0.537 111 0.246 109 106.4 7.57 113.97 
ZM4144 0.283 103 0.206 112 0.244 110 0.241 110 0.003 110 0.445 112 0.529 112 0.730 95 0.555 112 0.238 110 108.6 5.48 114.08 
ZM6612 0.271 107 0.269 92 0.270 101 0.270 100 0.003 100 0.579 92 0.688 92 0.992 20 0.421 92 0.270 99 89.5 24.95 114.45 
ZM4502 0.278 104 0.239 105 0.258 106 0.258 106 0.003 106 0.515 105 0.613 105 0.862 52 0.485 105 0.257 105 99.9 16.84 116.74 
ZM4143 0.273 106 0.233 107 0.253 107 0.252 107 0.003 107 0.501 107 0.596 107 0.851 58 0.499 107 0.251 107 102 15.46 117.46 
ZM4520 0.366 81 0.197 115 0.281 97 0.268 101 0.003 101 0.424 115 0.504 115 0.537 118 0.576 115 0.256 106 106.4 11.65 118.05 
NP5 0.267 108 0.152 117 0.209 115 0.201 116 0.002 116 0.327 117 0.389 117 0.568 116 0.673 117 0.193 116 115.5 2.72 118.22 
ZM3788-2 0.264 109 0.259 94 0.262 105 0.262 105 0.003 105 0.559 94 0.665 94 0.983 21 0.441 94 0.262 104 92.5 25.81 118.31 
ZM3203-3 0.232 114 0.116 118 0.174 118 0.164 118 0.001 118 0.250 118 0.298 118 0.500 119 0.750 118 0.155 118 117.7 1.34 119.04 
KAB-ZA 0.158 119 0.098 120 0.128 119 0.124 119 0.001 119 0.211 120 0.251 120 0.620 115 0.789 120 0.121 119 119 1.49 120.49 
ZM3636 0.249 111 0.199 113 0.224 113 0.223 113 0.002 113 0.429 113 0.511 113 0.801 75 0.571 113 0.221 113 109 11.96 120.96 
ZM4830 0.263 110 0.234 106 0.249 109 0.248 109 0.003 109 0.505 106 0.601 106 0.891 45 0.495 106 0.248 108 101.4 19.88 121.28 
ZM4490 0.237 112 0.197 114 0.217 114 0.216 114 0.002 114 0.425 114 0.506 114 0.832 68 0.575 114 0.216 114 109.2 14.49 123.69 
ZM4491 0.223 115 0.254 99 0.239 111 0.238 111 0.003 111 0.547 99 0.651 99 1.137 9 0.453 99 0.238 111 96.4 31.38 127.78 
ZM3681 0.237 113 0.229 109 0.233 112 0.233 112 0.002 112 0.492 109 0.586 109 0.966 24 0.508 109 0.232 112 102.1 27.49 129.59 
ZM4511 0.126 120 0.114 119 0.120 120 0.120 120 0.001 120 0.246 119 0.292 119 0.908 41 0.754 119 0.120 120 111.7 24.85 136.55 
ZM3624 0.179 117 0.227 110 0.203 116 0.201 115 0.002 115 0.489 110 0.582 110 1.270 3 0.511 110 0.200 115 102.1 34.94 137.04 
ZM6713 0.178 118 0.178 116 0.178 117 0.178 117 0.001 117 0.384 116 0.457 116 1.005 16 0.616 116 0.178 117 106.6 31.84 138.44 

Note: Yp=yield under non drought stressed conditions; Ys =yield under drought stressed conditions; HM = hamonic mean, MP=mean productivity; STI = stress tolerance index; SSI=stress 
susceptibility index; GMP=geometric mean productivity; SDI=susceptibility drought index; YI=Yield index; YSI=yield stability index;  R=rank; Mean ranking is calculated as an average of the 
rankings for each of the indices; RS=Rank sum (Rank sum (RS)= Rank mean ( R ) + Standard deviation of rank (SDR) (Farshadfar and Elyasi, 2012), Sdev (R) = standard deviation of the ranks. 
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CHAPTER FOUR 

Heat stress tolerance and its genetic basis in common bean 
 

Abstract 
 
Common bean production has expanded to lowland regions of Zambia where high 

temperatures are prevalent during the cropping season.  This study was undertaken to 

identify heat tolerant genotypes through selection at the pod filling stage and to 

determine the genetics of the heat tolerance trait. The experiments were conducted in 

the field at Lusitu and Nanga over two seasons where supplementary irrigation could be 

applied when needed. One hundred and twenty landraces were evaluated in an alpha 

lattice design with two replications. A second experiment comprised of 48 F2 populations 

derived from crosses of eight female by six male using NCD II mating was also planted 

at the same site to study the gene action for heat tolerance. The trials were sown in early 

August in order for the seed development and pod filling stages to coincide with the 

period when temperatures are above 33oC to induce heat stress. The genotypes ZM 

4143, ZM 4497, SCCI 4, KE 1 and ZM 07, were found to be the highest yielding 

genotypes under high temperatures. ZM 4497 was found to be genetically superior for 

tolerance to heat stress and recommended as a donor parent in breeding for heat 

tolerance. Significant GCA mean squares for yield, number of seeds per pod and 

number of pods per plant were detected implying that additive gene effects were 

important for the expression of heat tolerance in common bean. The female parents ZM 

05, Chambeshi, Pan 148 and SCCI 2, and the male parent ZM 4143 recorded high GCA 

effects for yield and therefore good for use in generating segregating populations for 

high temperature stress tolerance.    
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4.1 Introduction 
The common bean (Phaseolus vulgaris L.)  is a good source of cheap protein especially 

in Africa (FAO, 2009).  It is one of the five cultivated species from the genus Phaseolus 

and currently ranks first among the legumes in human diets especially for the poor  

(Broughton et al., 2003; Singh, 1999).  In sub-Saharan Africa, the common bean is 

grown both for food and for cash (Broughton et al., 2003). It is also important in crop 

rotations with cereals and contributes to enhanced soil fertility (Peoples and Craswell, 

1992; Ledgard and Giller, 1995; Mafongoya and Bationo, 2006) 

 

In recent years, the demand for the common bean has been steadily increasing in sub-

Saharan Africa. The rise in demand has been attributed to the rise in population and 

intra-regional trade. Despite the increasing demand for the common bean, production 

has remained low, more especially in the low lying regions where temperatures are high 

(Graham and Rannali, 1997). Elevated temperatures (>30oC during the day and >20oC 

at night) in the summer lead to low yields in common bean emanating from flower and 

pod abortion (Nakano et al., 1998).  

The common bean is known to be sensitive to high temperatures which affect most of 

the reproductive processes (Konsens et al., 1991). Poor fertilization due to high 

temperature stress can also cause low yield as the common bean pollen is very sensitive 

to heat stress (Halterlein et al., 1980). Despite the well documented effects of heat stress 

on the common bean, literature on the genetics of heat tolerance is still scanty. 

Quantitative inheritance with large environmental interference has been suggested in 

pod set and seed set in bean (Dickson and Petzoldt, 1989). 

In Zambia, the common bean is grown in the northern parts of the country where climatic 

conditions are favorable (Zambia Agriculture Research Institute, 2012). The climatic 

conditions are not favorable for most of the southern parts of the country (Zambia 

Agriculture Research Institute, 2012). High temperatures (>30oC) and low moisture 

stresses cause flower and pod abortion and reduce yields of common bean (Baligar and 

Jones, 1997). For example, White and Izquirdo (1991) reported flower abortion levels of 

60-80% in the common bean due to high temperatures.   

Common bean landraces are an important genetic resource that are commonly grown by 

small scale farmers and preferred because of their adaptability, quality (taste and 
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appearance), but they are generally low yielding (Debouck et al., 1993; Gepts and Bliss, 

1986). Despite the low yields, the landraces cannot be neglected as they possess 

important traits such as early maturity (Beebe et al., 2000; Harlan, 1992).  

In order to enhance common bean production in hot environments in Zambia, the 

landraces need to be studied. This study was therefore designed to identify genotypes 

that would perform well under elevated temperatures and determine the genetic effects 

for heat tolerance.  

 

4.2 Materials and methods 

4.2.1 Experimental materials and site 
 

The materials used in this study were as outlined in 3.2.1 in Chapter 3 of this thesis. 

The study was conducted at Lusitu in Siavonga district located in Region I of Zambia. 

Region I receive the least rainfall (less than 400 mm) in the country and is characterised 

by high summer temperatures. Figure 4.1 shows the location of Lusitu in Siavonga and 

the current spatial distribution of common bean production in Zambia.   
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Figure 4.1: Map of Zambia showing the location of Lusitu and spatial distribution of 
common bean production. AEZ stand for Agro-ecologiocal Zone.  

Lusitu lies between latitude 16.13°S and longitude 28.83°E in the south of the country. 

The soils at Lusitu are sandy loam and have a pH of about 7.5. Lusitu has an elevation 

of 480 m above sea level.  This site was chosen because it lies in Region I where the 

temperatures are persistently high (>33oC) during most of the summer months (October 

to January) when compared with region II during the same period of time (Figure 4.2).   

 

Lusitu area 
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Figure 4.2: Average annual temperatures for region I and region II 

 

4.2.2 Weather conditions during the growing season 
Temperature data (Figure 4.3) was recorded at regular intervals during the two years 

using the Hobo U12 of data loggers (Make - U12-001 manufactured by Onset-USA). The 

monthly average air temperatures at Lusitu ranged between 25 and 39ºC from the date 

of sowing to harvesting (Figure 4.3). High temperatures (> 33oC) occurred at six weeks 

(September-October) after planting and coincided with the time when the crops were at 

the vegetative to the flowering stages. Water was provided as and when required to 

ensure it was not limiting.  
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Figure 4.3: Mean temperatures recorded during the cropping seasons over the three 
years (2011, 2012 and 2013) 

 

4.2.3 Experiment 1: screening of common bean genotypes for heat tolerance 
 

A collection of 120 genotypes was assembled and evaluated under field conditions in 

Lusitu in 2011 and 2012 as outlined in 3.2.1 in Chapter three and further elaborated in 

Table 3.1.  

 

The planting layout was similar to that used in Chapter 3 (refer to 3.2.1). The trials were 

planted in mid-August to synchronise the flowering with the occurrence of high 

temperatures in the month of October. Supplementary irrigation was provided through 

flood irrigation when needed. Thirty seeds were sown in single rows 5 m in length, at 

inter- and intra- row spacing of 75 cm x 15 cm. During the growing season, data were 

recorded on the following: 
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i. Days to 50% flowering (DAF) – This was taken as the number of days from 

50% seedling emergence to the date when the genotype reached 50% flowering.  

ii. Days to physiological maturity (DPM) – This was taken as number of days 

from 50% seedling emergence to the date when 50% of the plants showed 

senescence and pods turned brown. 

iii. Leaf area retention (LAR) - The leaf area retention was taken as the difference 

in percentage leaf cover between the leaf area at 50% flowering and leaf area 

three weeks after 50% flowering.  

iv. Yield – Yield was taken as whole plot harvest, shelled bean seeds adjusted to 

12.5% moisture content. The grain mass was adjusted to 12.5% moisture content 

using the following formula:  Y(M2) = {(100 – M1)/(100-M2)}X Y (M1); where 

Y(M2) = mass of grain at 12.5% moisture content, Y (M1) = mass of grain at 

actual moisture content, M1 = actual moisture content and M2 = expected 

moisture percentage. The grain yield (GY) was determined and expressed as 

tonnes per hectare (t ha-1).  

v. Hundred seed mass (HSW) – This was taken as the weight of 100 grains 

counted individually and weighed.  

 

Compound D (Composition N = 10, P= 20 and K=10) fertilizer at the rate of 200 kg ha-1   

was applied at planting time. Recommended management practices of weeding and 

pest control were practised during crop growth.   

4.2.4 Experiment 2: Genetic study 
This study was conducted using 48 F2 populations developed between the eight selected 

female parents with six male parents in a North Carolina design II mating scheme as 

described in Chapter 3. The eight female parents were elite and popular genotypes 

among the farmers as described in Figure 2.8 in chapter 2 of this thesis. The male 

parents on the other hand were selected from the genotype screened for heat tolerance 

in an earlier study, and some were provided by CIAT and University of Zambia.  

 

ZM 4143, ZM 3831, ZM 4497, SER 124, SEN 39 and LY 4-4-B were used as male 

parents in the crosses. Genotypes ZM 4143, ZM 3831 and ZM 4497 were medium 

seeded and selected from the landraces screened for high temperatures. The three 

genotypes are small seeded and have dark seed coats. Genotypes SER 124 and SEN 

39 were provided by CIAT as heat tolerant genotypes and were all red and small seeded 
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while LY 4-4-B was developed through mutagenesis by the University of Zambia from 

Lyambai variety, a released large seeded red speckled bean.  The mutant was screened 

along with other 119 genotypes and was found to be heat tolerant. North Calolina design 

II was used to develop the F1 populations. The parents were planted in pots in the 

screen house and cross-pollinated to give the F1 seed. The F1s were grown in pots and 

self-pollinated to generate the F2 populations. A total of 48 F2 populations, 14 parental 

lines and two checks (from CIAT) were planted in an 8 x 8 alpha lattice design with two 

replications. The seeds were sown at the beginning of August, 2011. Each plot consisted 

of two rows of 30 seeds per plot planted at a spacing of 75 cm between rows and 25 cm 

between plants. The trial was managed following normal recommended agronomic 

practices for beans.  

 

Individual plant measurements were taken for 30 plants in each plot to obtain data on 

yield, HSW, NSP, DAF, and NPP and were recorded as described in section 4.2.2 of this 

chapter. In addition, flower abortion was taken as the difference between the average 

numbers of flowers recorded when the crop reached 50% flowering and the harvested 

mature pods. Each plant was tagged to ensure the same plants were used to count the 

number of flowers at 50% flowering and the number of mature pods. The data was 

analysed as an RCBD as there were no differences in the results after analyzing it as an 

alpha lattice design. The genetic analysis was done using the line by tester proc ANOVA 

SAS software.  

4.3 Results 

4.3.1 Experiment 1: Analysis of variance 
Results of the analysis of variance (ANOVA) for selected agronomic traits are given in 

Table 4.2 while the results on the genotype performance for all the 120 genotypes are 

presented in Appendix 4.1. 

Table 4.2: Mean squares for yield and selected agronomic traits recorded for 120 
genotypes grown in Lusitu, Zambia in 2011 and 2012 

Source df LAR DAF NPP NSP PM  Yield HSW 
Year 1        654.70 36.94**          35.39   1 3052** 32.86*     0.399        43.30 
Genotype 119 15 0551.50* 44, 286.88* 931931.50** 63.8793**   0.8** 134.5512**  55684.72 
Genotype X Year  119        603.80 42.74**          39.66   1.2785 15.09     0.3597        41.75 
Error  196        520.00 25.70          33.87 0.8364 12.12 102.7297        69.64 
Note: LAR = leaf area retention; DAF = days to 50% flowering; PM = physiological maturity; NPP 
= number of pods per plant; NSP = number of seeds per pod; and HSW = hundred seed weight; * 
= significance at P≤0.05; ** = significance at P≤0.01 
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4.3.3 Yield and its correlation to yield components 
The mean square for genotype performance was significant for yield (P≤0.01) (Table 

4.2). There was no significant genotype by year interaction for yield, PM, NSP, NPP, 

LAR and HSW (P≤0.001). Hundred seed mass was significant for genotype by year 

interaction (P≤0.001). None of the elite market class genotypes in Zambia were ranked 

in the top 12 high yielding genotypes when exposed to heat stressed conditions. The 12 

highest ranked genotypes based on yield comprised mostly landraces and mutants 

(Table 4.3). ZM 4497 recorded the highest yield (0.78 Mt ha-1 ) under high temperataure 

stress. (Table 4.3). The 12 highest and 12 lowest yielding genotypes showed mixed 

patterns in terms of ranking for PM, NSP, NPP, LAR, and DAF. Yield was correlated with 

other traits including the yield components and the results of the correlations are 

presented in Table 4.4. Significant variation for yield components was observed among 

the genotypes at high temperatures. Fifty nine out of the 120 genotypes screened under 

high temperatures yielded above the overall mean of 0.318 t ha-1 (appendix 4.1).   
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Table 4.3: Trait mean performance for the 12 highest and 12 lowest ranked genotypes 
grown during the 2011 and 2012 season 
 

 
Note: LAR = leaf area retention; DAF = days to 50% flowering;; PM = physiological maturity; NPP = number of pods 
per plant; NSP = number of seeds per pod; R = Ranking 
 

All the correlations between yield and yield components (HSW, NPP and NSP) were 

significant (P≤0.05). The correlation coefficient with HSW with yield was significant and 

negative (P≤0.05, r= -0.648) (Table 4.4). The correlation coefficients (r=0.637 for DAF; 

r=0.345 for NSP) were significant and relatively strong and positive with yield (Table 

4.4).  

 

 

 

 

 

Genotypes LAR R DAF R PM R NPP R NSP R Yield R 
ZM 4497 11.4 79 44.1 84 91.0 26 9.5 52 5.3 66 0.780 1 
ZM3200 29.5 1 45.6 103 92.0 41 6.8 110 5.1 55 0.687 2 
LY2-3-B 16.8 26 41.0 16 101.3 114 8.6 80 5.7 101 0.631 3 
SCCI 2 6.8 111 44.9 93 98.9 107 8.5 83 5.7 102 0.627 4 
SZ-4-B-B 3.0 118 44.4 89 101.4 115 10.4 30 4.5 14 0.624 5 
SCCI 4 5.8 112 39.4 3 90.3 16 10.2 36 6.3 113 0.603 6 
KE 5 12.8 63 41.5 27 94.6 76 9.7 47 4.5 6 0.592 7 
ZM 4143 14.4 47 41.9 39 99.5 108 7.8 94 5.1 59 0.570 8 
ZM 4512-3 6.9 110 41.4 24 94.0 68 9.4 56 5.7 97 0.563 9 
MEX 54 4.9 114 41.4 23 101.2 113 6.0 116 5.1 53 0.543 10 
KE 1 12.1 70 42.5 57 93.7 62 7.3 104 5.7 99 0.535 11 
KAB-ZA 9.9 97 48.1 114 91.6 37 10.2 37 4.8 31 0.533 12 
ZM 4512 21.3 11 37.9 2 93.6 60 11.6 13 5.3 69 0.140 109 
SZ32BB1 19.8 16 42.8 63 96.7 99 8.9 70 4.7 26 0.135 110 
ZM 3206 17.7 24 39.6 4 91.1 27 11.8 10 5.1 52 0.133 111 
ZM 4479 25.6 6 45.0 98 90.3 15 13.3 5 4.6 20 0.121 112 
ZM 4512-2 22.6 10 43.3 71 94.3 71 3.1 120 4.5 9 0.092 113 
ZM 4298 14.2 49 41.6 28 90.4 20 5.4 119 5.3 74 0.069 114 
SCCI 11 27.5 4 39.8 5 97.6 101 10.3 33 5.2 61 0.043 115 
SCCI 11 15.6 34 53.9 120 102.4 117 8.9 67 6.0 110 0.041 116 
LY-UNZA 14.6 45 47.1 111 95.6 84 8.2 87 5.0 50 0.040 117 
SCCI 1 15.3 40 41.6 29 93.3 55 9.1 62 5.3 67 0.040 118 
ZM3681 11.4 82 42.9 64 90.3 17 13.1 6 3.3 1 0.035 119 
ZM 4478 10.7 91 41.8 32 89.7 11 6.3 113 4.5 7 0.008 120 
Mean 13.9  43.3  94.3  9.4  5.3  0.318  
LSD 3.0  1.1  5.3  2.6  0.8  0.130  
CV (%) 4.1   3.7  3.0   1.7   5.7   18.5   
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Table 4.4:  Correlation between yield and yield traits 

 
LAR DAF PM NPP NSP HSW Yield 

LAR 1     
 

 
DAF 0.372** 1    

 
 

PM 0.318** 0.101*** 1   
 

 
NPP -0.277** -0.265** -0.173** 1  

 
 

NSP -0.161** -0.288** 0.063 0.162** 1    
HSW -0.443** -0.690* -0.086 -0.582** 0.309** 1  
Yield 0.289** 0.637** -0.057  0.189** 0.345** -0.648** 1 

  
Note: LAR = leaf area retention; DAF = days to 50% flowering, PM = physiological maturity; NPP 
= number of pods per plant; NSP = number of seeds per pod; HSW = hundred seed mass 
 

4.3.4 Physiological maturity (PM) 
Highly significant differences were detected for PM (P≤0.01) (Table 4.2). No significant 

differences were detected for the year (seasons) and genotype by year interactions. Of 

the 12 highest yielding genotypes, ZM 4497, ZM 3200, ZM 4512-3, KE 1, KAB ZA and 

SCCI matured earlier when compared to the mean while others matured above the 

mean (Table 4.3). The days to physiological maturity for the top 12 highest yielding 

genotypes ranged between 91.0 and 101.4 days (Table 4.3). Most of the 12 lowest 

yielding genotypes matured below the mean. The difference between the earliest to 

mature and the latest was about 21 days. 

The mean number of days to physiological maturity was 94.3 and 68 genotypes (56%) of 

the 120 matured earlier than the mean. Out of the 12 highest yielding genotypes, ZM 

3200 (92), SCCI 4 (90.3), ZM 4497 (91), KE 1(93.7), ZM 4512-3 (94), ZM 6602 (93.2), 

KAB-ZA (91.6) matured earlier than the mean PM while the rest of the high yielding 

genotypes comprising; MEX 54 (101.2), Ly2-3-B (101.3), SZ4-B-B (101.4), SCCI 2 

(98.9), ZM 4143 (99.5), and KE 5 ( 94.6), reached their PM above the mean (Table 4.4).   

The genotypes SCCI 11 (102.4), G10909 (95.1), SZ 32BB1 (96.7), Ly-Unza (95.6), 

ZM4512-2 (94.3), ZM 4512 (93.6) and SCCI 1(93.3) were among the 12 low yielding 

genotypes and reached their PM later above the mean. ZM 4478 (89.7), ZM 4479 (90.3), 

ZM 3681 (90.3), ZM 4298 (90.4) and ZM 3206 (91.1) on the other hand though low 

yielding, matured earlier than the mean PM (Table 4.2).  

The correlation between yield and PM was negative and not significant (Table 4.4) 

Gadra was the earliest to maturity at 87.3 days while KE 2 was the latest to maturity at 
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108.8 days (Appendix 4.1). The highest yielding genotype, ZM 4497 took 91 days to 

physiological maturity and was ranked among the early maturing genotypes. The lowest 

yielding genotype took 93.3 days to physiological maturity.  

4.3.5 Number of seeds per pod (NSP) 
Highly significant differences were detected for genotypes and year (P≤0.01) (Table 4.2).  

Large differences between numbers of seeds per pod were detected between the 

seasons.  The mean number of seeds per pod was 5.27. Sixty five out of the 120 

genotypes representing 54% recorded NSP values greater than the mean.   

The results showed a mixed picture on the number of seeds per pod for the 12 highest 

yielding genotypes (Table 4.3). Out of the 12 high yielding genotypes, the following 

genotypes recorded low numbers of seeds per pod as presented in parenthesis; KE 5 

(4.5), SZ 4-B-B (4.5), KAB-ZA (4.8), ZM 6602 (4.8), MEX 54 (5.1), ZM 3200 (5.1) and 

ZM 4143 (5.1) (Table 4.4.). SCCI 4 (6.3), SCCI (5.7), LY2-3-B (5.7), KE 1 (5.7), ZM 

4512-3 (5.7) and ZM 4497 (5.3) were among the 12 highest yielding genotypes and also 

recorded high numbers of pods greater than the mean.  

The correlation coefficient (r= 0.345) between yield and NSP was positive and significant 

(P≤0.05). The correlation coefficients between NSP and other traits were significant 

(P≤0.05) and positive for NPP (r=0.162) and HSW (r=0.309) and; significant and 

negative for DAF (r=-0.288) and LAR (r=-0.161) (Table 4.4) 

4.3.6 Number of pods per plant (NPP) 
The main effects of genotype were highly significant (P≤0.01) for number of pods per 

plant (NPP) (Table 4.2). The genotype and year were not significantly (P>0.05) different 

for NPP (Table 4.2). The 12 highest ranked genotypes recorded relatively high numbers 

of pods per plant. Forty six (46%) of the 120 genotypes screened recorded NPP above 

the mean of 9.35 (Appendix 4.1). Of the 12 highest ranked genotypes, SZ4-B-B, SCCI 4, 

KAB-ZA, KE 5, ZM 4497 and ZM 4512-3 recorded high NPP while ZM 6602, LY2-3-B, 

SCCI 2, ZM 4143, KE 1, ZM 3200 and MEX 54 recorded low NPP (Table 4.4). Among 

the lowest ranked genotypes, ZM 4479, ZM 3681, ZM 3206, ZM 4512, G 10909 and 

SCCI 11 recorded NPP values above the mean of 9.35 while SCCI 11, SZ32BB1, LY-

UNZA, ZM 4478, ZM 4298  and ZM 4512-2  recorded   NPP values lower than the mean. 
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The correlation between NPP and seed yield was significant and positive (r=0.189, 

P≤0.05) (Table 4.5). ZM 4497, the highest ranked genotype recorded 9.5 pods per plant 

which was not different from the mean (9.35) for the 120 genotypes (Table 4.4).  The 

lowest yielding genotype, ZM 4478, recorded 9.1 pods per plant and this was also not 

different from the mean (9.35) for the 120 genotypes screen (Table 4.4). ZM 4512-2 was 
amongst the lowest (3.1) in terms of number of pods per plant while the highest was ZM 

06 with 20.3 pods per plant.   

 
4.3.7 Leaf area retention (LAR) 
There were significant differences between genotypes for LAR(P≤0.05) (Table 4.2). The 

interaction between genotype and year was not significant. The 12 highest yielding 

genotypes recorded LAR values between 3 and 29.5% while the lowest yielding 

genotypes recorded between 10.5 and 27.5% (Table 4.3). The mean LAR for the 120 

genotypes was 13.9%. ZM 4497 retained fewer leaves (11.4%) after the three weeks 

stress period and was quite comparable with lowest yielding genotype, ZM 4478 with 

10.7%. Fifty one genotypes (representing 42% of the 120) recorded LAR values greater 

than the mean. 

 

Out of the 12 highest yielding genotypes, ZM 3200 (29.5%), ZM 6602 (23.2%), LY2-3-B 

(16.8%) and ZM 4143 (14.4%) recorded high LAR values greater than the trial mean 

while SZ-4-B-B (3%), MEX 54 (4.2%), SCCI 4 (5.8%), SCCI 2 (6.8%), ZM 4512-3 

(6.9%), KAB-ZA (9.9%), ZM 4497 (11.4%), KE1 (12.1%) and KE 5 (12.8) recorded lower 

LAR than the mean. The highest ranked 12 genotypes comprised those  that recorded 

high LAR values {SCCI 11 (27.5%), ZM 4479, ZM 4512-2 (22.6%), ZM 4512 (21.3%), 

SZ32BB1 (19.8%), ZM 3206 (17.7%), SCCI 11 (15.6%), SCCI 1 (15.3%), LYA-UNZA 

(14.6%), ZM 4298 (14.2%)}, and those that recorded low LAR values lower than the 

mean { ZM 4478 (10.7%), G10909 (10.7%) and ZM 3681 (11.4%), (Table 4.4). The 

highest yielding genotype ZM 4497 recorded LAR retention level of 11.4% while the 

lowest yielding genotype recorded 15.3% for LAR.   

 

The correlations between LAR with seed yield (r=0.289) and PM (r=0.318) were positive 

and significant while the correlations between LAR with NSP (r=-0.161) and NPP (r= -

0.277) were negative and significant (P≤0.05).  
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4.3.8 Days to 50% flowering (DAF) 
Mean squares for the number of days to 50% flowering were significantly different for 

genotypes, year and for their interaction (Table 4.2). The 12 genotypes that flowered 

early ranged between 36.6 to 40.8 days after 50% field emegence while the 12 

genotypes that flowered latest ranged between 46.0 and 48.8 days from 50% field 

emergence (Appendix 4.1).  

 

Out of the 12 lowest yielding genotypes, ZM 4512(36.6), ZM 3206 (39.6), SCCI 11 

(39.8), ZM 4298 (41.6), SCCI (41.6), ZM 4478 (41.8), SZ32BB1 (42.8), ZM 3681(42.9) 

and ZM 4512-2 (43.3) recorded DAF lower than the mean while SCCI 11 (53.9), LY-

UNZA (47.1), G10909 (45.3) and ZM 4479 (45) recorded DAF higher than the mean. Of 

the 12 highest yielding, SCCI 4 (39.4), LY2-3-B (41), MEX 54 (41.4), ZM 4512-3 (41.4), 

KE 5 (41.5) and ZM 4143 (41.9) recorded low number of DAF while KAB-ZA (48.1), ZM 

6602 (47.6), ZM 3200 (45.6), SCCI 2 (44.9), SZ4BB1 (44.4) and ZM 4497 (44.1) 

recorded high numbers of DAF. The earliest genotype to reach 50% flowering was ZM 

4512 and flowered at 36.6 days while the latest to flower was SCCI 9 which flowered at 

48.5 days (Table 4.4). The mean flowering days for the 120 genotypes was 43.3 days.  

 

4.3.9 Hundred seed mass 
The mean squares for the year, genotype and their interaction were not significant for 

100 seed mass (HSW) (P≤0.05).  The correlation between HSW and yield and with PM 

was also not significant. However, significant (P≤0.05) and negative correlation 

coefficients between HSW with LAR (r= -0.443), NPP (r= -0.582) and DAF (r=-0.690) 

were detected.   

 

4.4 Experiment 2: Genetic study 

4.4.1 Analysis of variance 
The results of the analysis of variance for GCA effects and SCA effects are presented in 

Table 4.5. The analysis of variance showed significant GCA effects for females for yield, 

NSP, and NPP (P≤0.01) and highly significant for flower abortion (P≤0.001). The GCA 

effects for male were significant (P≤0.01) for NSP, yield, and flower abortion and highly 

significant for NPP (P≤0.001). Specific combining ability effects were highly significant 

effects for yield (P≤0.001), and flower abortion, and significant for NSP (P≤0.01), and 
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were not significant for NPP (P≤0.01).  The GCA mean squares were predominant over 

the SCA mean squares for yield, NPP and flower abortion (Table 4.5). However, the 

opposite was observed for NSP. The GCAm mean square was higher that GCAf and 

SCA effects. 

Table 4.5: Mean squares for genetic effects for common bean in the F2 populations 

Source DF Yield NSP NPP Flower abortion 
Rep 1 113161.46 2769.57 189.10 360.55 
GCAF 7 212907.80** 1403.30** 305.24** 526.04*** 
GCAM 5 146821.62** 2588.84** 199.32*** 790.65** 
SCAF*M 48 102523.68*** 4249.35** 144.58 491.07*** 
Error 43   81322.70   921.74 161.85 393.71 

Note: PM = physiological maturity; NSP = number of seeds per pod; NPP = number of pods per 
plant; LAR = leaf area retention; D50F = days to 50% flowering; **=significant at P≤0.01; 
***=significant at P≤0.001 

 

4.4.3 GCA and SCA effects for yield and yield components   
The GCA effects for both female and male parents for yield, number of seeds per pod, 

number of pods per plant and flower abortion is presented in Table 4.6. The female lines 

ZM 05, Chambeshi, Pan 148, and SCCI 2 recorded positive GCA effects for yield while 

Kabulangeti, Kalungu, Kapisha and Lyambai showed negative GCA effects for yield. All 

the female lines except Chambeshi and Lyambai which had negative GCA effects for 

NSP, showed positive GCA effects for number of seeds per pod. The genotypes Pan 

148 and Kapisha had positive GCA effects for number of pods per plant. All the male 

lines recorded positive GCA effects for yield, while the GCA effects for number of pods 

per plant and number of seeds per pod showed a mixed outlook with both negative and 

positive GCA effects recorded for some parents.  All the female parents except 

Kabulangeti and Kalungu recorded positive GCA effects for flower abortion (Table 4.5).  

Male parents ZM 4143 and SER 124 recorded negative GCA effects for flower abortion 

while the remaining male parents recorded positive GCA effects for this trait.  
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Table 4.6: General combining ability effects for yield and agronomic traits  

 

Note: NSP = NPP = Number of pods per plant; Number of seeds per pod  

 

The male genotypes ZM 4497 and SER124 recorded the highest positive GCA effects 

for yield and number of pods per plant, while ZM 4143 had the lowest positive GCA 

effects for yield (Table 4.7). ZM 05 and SCCI 2 recorded the highest positive GCA 

estimates among the female lines for yield while Kapisha recorded the lowest negative 

GCA value. SEN 39 recorded the highest GCA value for NSP among the male lines 

while SCCI 2 recorded the highest GCA value among the female genotypes. The lowest 

GCA values for NSP were recorded for ZM 3831 amongst the male parents and Lyambai 

amongst the female genotypes. SER 124 and ZM 4143 recorded the lowest GCA values 

for flower abortion amongst the male genotypes while Kabulangeti and Kalungu 

recorded the lowest amongst the female genotypes. ZM 4497 recorded the highest GCA 

value for flower abortion among the male lines while SCCI 2 recorded the highest GCA 

value for flower abortion among the female lines.   

The SCA effects were significant for yield (P≤0.01), NSP (P≤0.05) and flower abortion 

(P≤0.01). The SCA effects though significant were inferior to GCA effects. However, 

even though the SCA effects were significant for the three traits, they are not critical as 

they cannot be fixed in common bean which is self-pollinating. 

Female lines 
Flower 

abortion 
NPP NSP 

Yield 
ZM 05 3.5 -9.01 0.03 201.6 
Chambeshi 9.2 -2.29 -0.03 38.1 
Pan 148 7.6 17.71 0.076 163.03 
Kabulangeti -5.1 -4.88 1.18 -182.1 
Kalungu -2.1 -1.54 1.30 -180.4 
Lyambai 4.7 -9.01 -1.75 -101.71 
Kapisha 6.1 7.514 0.90 -301.88 
SCCI 2 10.2 -8.29 2.02 240.55 
Male lines 
ZM 4143  -6.1 5..29 0.29 1.23 
ZM 4497  12.9 10.04 -0.12 314.88 
SER 124 -7.4 12.38 0.31 357.88 
Ly4-4-4-B  6.5 -6.71 -0.11 228.25 
ZM 3831 ) 4.7 -10.13 -0.47 171.25 
SEN 39  1,8 6.38 0.37 265.06 
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4.5 Discussion 

4.5.1 Experiment 1 – Screening for heat stress 
The mean monthly temperature values recorded were high during the months of 

September, October and November in both seasons. The maximum temperature that 

occurred between vegetative and flowering stages was 33oC in September, 38oC in 

October, and 37oC in November, which exceeded the critical upper limit for beans. The 

average temperatures required for normal common bean growth is 20 - 25oC (Rainey 

and Griffiths, 2005b; Wantanbe, 1953), an indication that the site was heat stressed for 

beans.  

 

The absence of the interactions between season and genotype for yield, PM, NSP, LAR 

and HSW suggests that the order for ranking of the genotypes for these traits was the 

same in both years. This may further suggests that the genotype performance can be 

determined over one season in Lusitu. However, it is important to note that the intensity 

of heat stress varies greatly and this assumption would entirely depend on the stress 

levels and the durations. The results showed that it was possible to distinguish 

genotypes between those that were tolerant to high temperature stress and those that 

were not on the basis of yield and the yield components such as NSP and NPP. This 

finding concurs with that reported by Fernandez (1992) and Kristin et al. (1997) who 

alluded to the fact that yield and its components were good measures of heat and 

drought tolerance.  

 

Yield has always been used as a key trait and very often ranked the highest in variety 

selection by the farmers (PRA own work, 2013). From the results of this research, the 

correlation coefficients between yield and its components were significant. Hundred seed 

mass, number of pods per plant, NSP and LAR were positively correlated to yield. 

However, even though the correlations indicated these positive associations the 

genotypes showed a mixed pattern. For example, some genotypes such as KE 5, SZ 4-

B-B, KAB-ZA, ZM 6642, MEX 54, ZM 3200 and ZM 4143 were high yielding but recorded 

low NSP. Some of genotypes could be having compensating effects for high yield 

through having many pods per plant and a heavier seed. This is shown by the positive 

correlation between NSP and NPP. This group of genotypes could be selected for 

tolerance to drought stress on the basis of NPP. Some genotypes however recorded 

high yield and high NSP. These genotypes could be compensating for high yields on the 
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basis of having many seeds in a pod. This is generally accepted and agrees with reports 

by many authors. 

 

Some high yielding genotypes such as ZM 4497, KE 1, ZM 4512-3, ZM 6602 and KAB-

ZA were found to reach PM early in less than the mean of 94.29 days while some 

reached PM later than the mean. This result shows the wide genetic variation from which 

selections could be made. For instance, selection for high yielding genotypes and early 

maturity would be ideal for developing genotypes that may escape high temperatures.  

Some of the genotypes that reached 50% flowering early reached their PM late. This is 

an indication that the genotypes had prolonged seed set and maturity periods. This 

could imply that the genotypes were slow at grain filling.  

 

The correlation between yield and NSP (r=0.345**) was positive and significant. Some 

high yielding genotypes such as ZM 6642, MEX 54, ZM 3200 and ZM 4143 recorded 

fewer pods. This result could imply that this group of genotypes compensated on their 

yield by having heavier seeds. The high yielding genotypes with more pods such as 

SCCI 4, ZM 4512-3 and ZM 4497 also recorded more NPP. This could imply that this 

group of genotypes achieved their yield by having more NSP and more NPP. Therefore 

high NSP contributed to high yield.  

 

Knowledge of the relationship between yield and its yield components under high 

temperature stress is important in plant breeding. Therefore the simple correlations 

between these traits and yield would contribute to great understanding on the selection 

for high temperature stress. The results of this study have shown that there were positive 

correlations between NSP and NPP with yield. However, the relationship between NPP 

and yield was shown to be weaker than what has been reported by other authors 

(Duarte and Adams, 1972; Westerman and Croathers, 1977; Prakash and Ram, 1981; 

Yorgancilar et al., 2003). This variation in the genotypes provides more selection 

opportunities in breeding for heat tolerance. Ideally, based on the positive correlation 

between yield and NSP, it would be advantageous to select genotypes that are high 

yielding and have high NSP. The poor yielding cultivars in this study were late maturing 

and had low number of pods per plant. These results are similar to those of Masaya and 

White (1991) who reported excessive flower abortion due to high temperatures. It has 

been well and widely accepted that bean plants are generally sensitive to high 
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temperatures which may lead to high flower drop (Rainey and Griffiths, 2005b). The 

general indication that numbers of days to physiological maturity, numbers of pods per 

plant and  number of seeds per pod affect yield as observed by the correlation 

coefficients, is expected and is similar to the results reported by several other 

researchers (Porch and Jahn, 2001; Prasad et al., 2002). 

 

The genotypes identified as high yielding in Lusitu offer a great opportunity for 

developing heat tolerant genotypes suitable for hot, low altitude regions in Zambia and 

other parts of the world with similar weather conditions. SCCI 4, KAB-ZA, KE 5 and ZM 

4512-3, which were among the high yielding genotypes had high NPP, low LAR, few 

DAF and few days to maturity. These traits could be used therefore in combination with 

the selection high yielding genotypes but early maturing. The individual traits could also 

be used singularly to select high yielding genotypes. These results are however not 

conclusive as the heat stress was not quantified and there was no control experiment 

since heat is difficult to control in the field. The root systems and canopy temperatures 

were also not studied and could have contributed to the differences in performances 

expressed by the genotypes.  

 

The extreme ranges between the highest yielding and the lowest yielding genotypes 

shows that there is adequate variation in the germplasm for heat tolerance and good 

genetic progress can be made towards breeding for heat tolerance.  

 

4.5.2 Experiment 2 - Genetic study 
The analysis of variance results indicated highly significant (P≤0.01) GCA effects for 

yield, NSP, NPP and flower abortion (Table 4.5) and this is supported by other studies 

(Rainey and Griffiths, 2005c).These findings are a clear indication that additive genetic 

effects were important for yield, NSP and NPP. The SCA effects were significant for 

yield, NSP and flower abortion at P≤0.01 implying the importance of non-additive genetic 

effects for the expression of the characters influencing heat tolerance (Table 4.5). The 

positive and highly significant GCA effects for yield, NSP, NPP and negative GCA effects 

for flower abortion are a good indicator that good progress can be made in breeding for 

heat tolerance. However, very few genotypes expressed desirable negative GCA effects 

for flower abortion. Rainey and Griffiths (2005b) also found significant GCA effects for 

NSP and NPP.  
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The estimates of GCA effects for yield, NSP, NPP and flower abortion are presented in 

Table 4.6. The female parental lines ZM 05, Chambeshi, Pan 148 and SCCI 2 with 

positive GCA effects for yield indicate that they are good combiners and yielded above 

the mean. The male parents all recorded positive GCA effects. These seemingly have 

favorable alleles for yield with additive effects. This may imply therefore that these 

female parents when crossed with male parents with positive GCA effects would be 

good for the generation of segregating populations with high mean yield from which 

better combinations can be selected.   

 

On the contrary, the positive GCA effects for flower abortion for most female lines except 

for Kabulangeti and Kalungu implies that, despite the fact that they could be good 

parents for yield, they are prone to negative effects of heat stress. This implies that 

Kalungu and Kabulangeti would be the best parents to select for low flower abortion. The 

male lines ZM 4143 and SER 124 with negative GCA effects for flower abortion and 

positive GCA effects for yield would be the best suited to develop segregating 

populations from which selection could be done for heat stress tolerance. Among them is 

a line used as a check from CIAT, SER 124. ZM 05, Chambeshi, Pan 148 and SCCI 2 

with high and positive GCA effects would be appropriate to cross with male parents with 

negative GCA effects for flower abortion.  

 

According to Griffing (1956), parents which present the highest GCA estimates should 

generate a population with a higher mean yield. However, in the process of choosing 

parents, the highest GCA for yield alone is not sufficient for this choice, since, if the 

parents are susceptible to flower abortion, and genetically similar, the population may 

have a reduced chance to select improved lines. From the results of this study therefore, 

the genotypes with relatively good level of flower abortion (low) would be more suitable 

for developing segregating populations. However, realising that most female parents 

were quite susceptible to flower abortion, but high yielding, crosses between the female 

parental lines with high GCA effects and male parents with negative GCA effects for 

flower abortion would be recommended for developing segregating populations from 

which high yielding heat tolerant genotypes could be selected.  
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ZM 4497 had the highest positive GCA effect for yield. Its combination with other lines 

gave high and positive SCA values. This could imply that ZM 4497 was a good 

combiner. The parental lines that recorded high and positive GCA effects and produced 

crosses with positive SCA effects such as ZM 4497 and ZM 05 may indicate that both 

additive and non-additive gene effects were important. However, it can be concluded 

that the GCA effects and the SCA effects for such parents and crosses had the same 

effect towards one direction to increase yield. Among the high yielding genotypes, Ly4-4-

B had high and positive GCA values but gave negative SCA values implying that non-

additive gene action was important when in combination with other parental lines. These 

F2 populations may therefore not give meaningful segregants for further selection. It may 

also imply that the two parents involved in such a cross were very closely related and not 

meaningful to cross.  

  

4.6 Conclusion 
On the basis of results from this study it was concluded that: 

  

 Out of the 120 genotypes screened for heat tolerance, about 5-10% yielded 

above the trial mean indicating the genotypes could be possessing the genes for 

tolerance to heat stress.  

 Among parental genotypes used, female parents with positive GCA effects for 

yield ZM 05, Chambeshi, Pan 148 and SCCI 2 would be appropriate for use in 

combination with male parental lines ZM 4143 and SER 124 with negative GCA 

effects for flower abortion to generate segregating populations from which heat 

tolerant genotypes could be derived. ZM 4143 recorded high SCA values in 

combination with some female parents implying that they are good combiners.  

 Genotypes ZM 4143, ZM 4497, SCCI 4, KE 1, and ZM 07, were the most heat 

tolerant and can therefore be used as sources of resistance to heat tolerance in 

breeding programmes. These comprise two landraces (ZM 4143, ZM 4497), and 

three cultivars (SCCI 4, KE 1 and ZM 07) that were still undergoing official variety 

release trials.  
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Appendix 4.1: Genotype performance over the two year under high (>33oC) 
temperatures 

Genotypes Yield R PM R NSP R NPP R LAR R D50E R D50F R Mean R 
ZM 4497 0.780 1 91.0 26 5.3 66 9.5 52 11.4 79 9.5 83 44.1 84 56 
ZM3200 0.687 2 92.0 41 5.1 55 6.8 110 29.5 1 10.3 114 45.6 103 61 
LY2-3-B 0.631 3 101.3 114 5.7 101 8.6 80 16.8 26 8.7 32 41.0 16 53 
SCCI 2 0.627 4 98.9 107 5.7 102 8.5 83 6.8 111 9.8 100 44.9 93 86 
SZ-4-B-B 0.624 5 101.4 115 4.5 14 10.4 30 3.0 118 8.6 24 44.4 89 56 
SCCI 4 0.603 6 90.3 16 6.3 113 10.2 36 5.8 112 8.6 25 39.4 3 44 
KE 5 0.592 7 94.6 76 4.5 6 9.7 47 12.8 63 8.6 23 41.5 27 36 
ZM 4143 0.570 8 99.5 108 5.1 59 7.8 94 14.4 47 10.2 113 41.9 39 67 
ZM 4512-3 0.563 9 94.0 68 5.7 97 9.4 56 6.9 110 10.6 118 41.4 24 69 
MEX 54 0.543 10 101.2 113 5.1 53 6.0 116 4.9 114 10.0 111 41.4 23 77 
KE 1 0.535 11 93.7 62 5.7 99 7.3 104 12.1 70 8.6 22 42.5 57 61 
KAB-ZA 0.533 12 91.6 37 4.8 31 10.2 37 9.9 97 9.0 54 48.1 114 55 
ZM 4830 0.519 13 94.7 79 5.4 81 8.9 65 13.1 59 9.4 80 41.1 19 57 
ZM 4144 0.506 14 95.9 87 5.7 98 8.1 88 11.0 86 9.5 96 43.7 77 78 
ZM 4296 0.495 15 91.2 29 6.0 109 10.1 38 16.7 27 9.0 59 42.0 42 46 
ZM 4520 0.492 16 90.2 14 5.6 92 11.8 11 11.4 80 9.5 82 46.2 107 57 
SZ31BB1 0.491 17 94.4 73 3.7 2 12.4 8 5.8 113 8.1 4 43.9 82 43 
KABA-ZA 0.490 18 91.5 33 4.5 7 8.9 69 13.9 51 8.9 47 40.3 8 33 
SCCI 7 0.490 19 100.9 112 4.6 17 11.0 22 15.6 35 8.7 27 51.7 118 50 
ZM 07 0.483 20 91.7 38 6.2 112 9.4 54 12.0 73 8.9 43 43.1 66 58 
ZM 4303 0.466 21 94.9 80 5.5 91 5.5 118 7.5 107 10.3 116 46.3 108 92 
SCCI 8 0.459 22 100.6 111 5.1 58 9.6 51 7.5 106 9.3 74 36.6 1 60 
ZM 6713 0.447 23 95.7 86 6.4 116 8.3 86 3.9 116 8.7 30 41.9 39 71 
ZM 4489 0.443 24 90.5 22 5.5 88 10.3 34 15.7 32 8.5 15 39.9 6 32 
ZM 3730 0.437 25 94.6 76 4.6 16 9.2 59 24.1 7 9.8 101 42.1 44 47 
ZM 4488 0.433 26 91.4 32 5.8 103 11.3 18 27.1 5 8.6 26 42.0 43 36 
ZM 3831 0.421 27 98.3 104 5.3 76 9.9 43 11.3 84 8.7 29 42.5 53 59 
ZM 3788 0.418 28 91.3 31 5.8 105 11.6 15 13.6 56 9.4 75 42.4 51 52 
ZM 04 0.416 29 90.4 19 4.9 42 10.0 41 10.2 94 10.0 103 41.9 35 52 
SZ33BB2 0.414 30 90.7 25 4.8 30 8.9 67 12.8 62 9.5 87 43.7 78 54 
ZM 4833 0.413 31 96.5 96 4.9 38 8.7 74 10.7 89 9.0 60 46.0 105 70 
LY2-8-B 0.408 32 96.5 97 5.8 104 9.4 53 12.3 67 8.5 19 41.7 31 58 
ZM 4831 0.404 33 91.2 30 5.5 89 8.6 77 9.4 101 9.0 56 42.5 53 63 
LY4-4-B 0.397 34 96.3 93 4.6 18 7.4 103 14.9 43 8.7 34 41.9 36 52 
SCCI 13 0.386 35 100.0 110 4.4 5 8.1 90 14.6 46 9.7 98 44.7 91 68 
LY1-2-B 0.385 36 92.2 42 5.4 83 6.9 109 10.9 87 9.4 77 40.6 10 63 
ZM 3636 0.385 37 92.3 45 4.9 36 8.8 71 15.5 36 9.4 78 42.6 61 52 
ZM 3688 0.384 38 92.4 47 5.1 54 8.7 73 15.8 31 9.0 51 48.6 116 59 
SZ7-4-B-B 0.381 39 0.0 1 5.1 55 11.5 16 20.6 14 10.3 115 43.9 80 46 
ZM 5128 0.377 40 94.2 69 5.6 96 6.0 115 11.8 74 9.5 87 42.5 53 76 
ZM 02 0.376 41 88.7 5 5.4 78 9.2 60 10.0 96 10.0 106 40.5 9 56 
ZM 3793 0.367 42 89.5 7 5.6 95 6.2 114 12.9 61 9.3 72 40.7 11 57 
ZM 4840 0.366 43 94.3 70 6.4 114 9.8 46 8.9 105 8.5 15 40.9 14 58 
KE 3 0.355 44 0.0 1 6.4 117 7.2 106 19.1 19 8.4 9 45.9 104 57 
ZM 4829 0.354 45 93.4 57 5.3 72 9.4 54 9.6 100 8.9 49 44.1 85 66 
ZM 4289 0.350 46 90.6 23 7.2 119 7.5 99 11.5 78 9.4 76 42.1 44 69 
ZM 4516 0.349 47 93.9 66 5.5 86 7.2 105 11.6 76 8.7 31 45.0 98 73 
ZM 4490 0.342 48 93.4 59 4.7 25 8.1 88 12.5 65 9.5 92 43.5 72 64 
KE 2 0.341 49 108.8 120 5.0 45 10.1 39 19.0 20 9.0 50 52.0 119 63 
ZM 4482 0.340 50 96.3 91 5.1 60 9.8 44 7.1 109 9.5 95 43.5 74 75 
ZM 03 0.340 51 92.9 52 4.5 11 7.5 99 10.9 87 8.6 21 43.6 75 57 
LYA-ZA 0.339 52 92.7 51 5.0 46 9.3 57 9.8 98 9.0 61 43.2 69 62 
ZM 6612 0.334 53 94.4 72 4.7 23 12.1 9 15.7 32 9.2 68 43.0 65 46 
SCCI 6 0.332 54 91.8 39 4.5 14 8.6 77 3.3 117 8.7 35 41.9 36 53 
SCCI-5 0.331 55 93.8 64 4.7 26 8.0 91 28.0 2 8.9 48 40.8 12 43 
ZM 3696 0.330 56 93.8 65 5.3 73 9.7 49 13.7 54 9.5 85 44.7 92 68 
LY1-7-B 0.322 57 93.4 58 5.4 82 10.8 24 7.4 108 8.9 45 44.1 86 66 
ZM 4836 0.319 58 92.4 46 4.8 29 7.6 97 11.4 81 8.9 41 42.6 60 59 
KE 4 0.319 59 93.8 63 4.1 3 8.8 72 10.1 95 8.9 42 45.1 101 62 
ZM 6602 0.312 60 93.2 54 4.8 32 8.9 66 23.2 9 10.4 117 47.6 112 64 
ZM 3202 0.311 61 96.1 90 4.6 20 11.3 17 11.3 83 8.1 6 42.5 56 48 
LY2-7-B 0.303 62 95.9 87 5.0 44 10.5 28 21.2 12 9.1 62 44.9 97 56 
ZM 6604 0.303 63 92.6 49 5.3 69 10.5 29 15.2 41 9.8 102 41.3 21 53 
ZM 3694 0.301 64 102.6 118 6.0 108 9.7 48 11.6 76 9.0 52 45.0 100 81 
ZM 6603 0.301 65 94.6 75 4.9 33 9.7 50 19.8 17 9.5 91 42.3 49 54 
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SCCI 9 0.298 66 101.8 116 5.7 99 10.4 31 11.0 85 9.0 56 48.5 115 81 
ZM 4514 0.297 67 98.1 102 5.3 69 11.1 21 14.9 44 8.8 38 40.1 7 50 
ZM 4302 0.295 68 94.6 74 5.4 79 9.1 63 13.2 57 9.0 58 44.9 96 71 
ZM 3624 0.287 69 99.8 109 5.6 92 8.6 76 17.2 25 8.5 13 43.5 72 65 
SCCI 5 0.281 70 95.2 82 4.7 22 9.3 58 13.2 58 10.0 109 41.1 17 59 
ZM 3203 0.277 71 96.4 95 5.2 65 8.6 79 9.3 103 10.0 104 41.5 25 77 
ZM 4483 0.276 72 91.8 39 5.5 85 5.8 117 12.0 71 9.5 87 46.5 109 83 
GADRA 0.273 73 87.3 4 5.0 49 14.4 4 4.2 115 9.0 52 42.6 58 51 
SCCI 3 0.270 74 90.1 13 5.4 80 9.9 42 16.3 29 9.0 55 40.8 13 44 
SCCI/LYA 0.269 75 95.6 85 4.9 40 9.2 61 15.4 39 8.5 10 43.1 66 54 
ZM 3831-4 0.269 76 89.6 9 6.7 118 8.4 85 10.3 93 9.1 66 43.9 81 75 
ZM 4491 0.265 77 98.4 106 4.9 35 12.7 7 -0.8 120 9.6 97 40.9 14 65 
CAR 0.262 78 93.3 56 5.5 90 10.5 27 12.0 72 8.9 44 47.7 113 69 
ZM 4496 0.262 79 91.5 34 5.9 106 16.7 2 9.3 102 9.3 70 42.3 50 63 
SZ33BB1 0.260 80 0.0 1 5.3 68 10.2 35 1.7 119 7.7 1 44.9 94 57 
ZM 3200 0.259 81 97.5 100 4.9 37 7.7 95 16.0 30 10.0 107 44.6 90 77 
ZM 3677 0.259 82 93.1 53 4.9 34 8.0 92 15.5 37 8.5 18 41.8 32 50 
SCCI 12 0.249 83 96.3 91 5.5 87 8.5 84 9.6 99 8.5 15 41.5 26 69 
ZM 3681-2 0.242 84 98.1 103 5.0 47 8.7 75 19.6 18 9.5 84 42.7 62 68 
CHAM-ZA 0.239 85 90.6 24 4.5 10 10.8 25 13.1 60 9.5 87 41.9 36 47 
SZ3 0.236 86 92.2 44 5.0 43 6.7 112 14.0 50 8.8 37 43.8 79 64 
ZM 3683 0.236 87 94.0 67 5.3 74 10.0 40 12.4 66 8.5 14 43.7 76 61 
ZM 05 0.235 88 92.7 50 5.4 84 6.8 110 12.2 69 9.5 81 46.7 110 85 
ZM 5136 0.232 89 92.2 42 5.2 62 15.5 3 10.4 92 8.8 40 42.1 44 53 
KAL-ZA 0.230 90 89.6 10 5.1 51 9.8 45 9.2 104 10.9 119 44.2 87 72 
ZM 4508 0.227 91 91.5 34 5.2 63 10.4 32 20.3 15 9.3 73 41.1 18 47 
ZM 5127 0.225 92 94.7 78 5.2 64 10.6 26 14.2 48 9.1 65 42.5 52 61 
ZM 4512-4 0.221 93 96.3 94 4.5 13 7.7 96 20.7 13 10.0 108 41.2 20 62 
ZM 6601 0.220 94 90.5 21 4.9 41 8.5 82 13.7 52 9.7 99 44.9 94 69 
ZM 4524 0.220 95 89.4 6 6.4 114 7.6 98 18.0 23 9.1 63 41.9 41 63 
ZM 4305 0.216 96 91.6 36 4.6 19 7.9 93 23.3 8 8.7 27 44.0 83 52 
ZM 4525 0.215 97 91.1 28 4.9 39 9.1 64 12.7 64 8.8 36 42.1 44 53 
LUK-ZA 0.213 98 96.1 89 13.8 120 11.3 19 27.7 3 8.2 7 42.2 48 55 
ZM 4502 0.204 99 89.6 8 4.7 28 6.9 108 12.2 68 10.0 105 41.3 22 63 
SZ9-B-B-B2 0.186 100 98.3 104 5.4 77 7.5 101 18.1 22 8.2 8 43.2 70 69 
ZM 4294 0.180 101 95.4 83 5.1 57 11.7 12 13.7 54 9.1 67 44.3 88 66 
SCCI 10 0.180 102 107.6 119 5.0 47 11.1 20 18.5 21 9.2 69 46.2 106 69 
LY2-2-B 0.178 103 93.6 61 5.9 107 8.6 80 15.5 37 8.5 20 43.1 66 68 
ZM 06 0.177 104 92.6 48 4.2 4 20.3 1 11.8 75 8.5 10 41.8 32 39 
ZM 3749 0.174 105 89.7 11 4.5 11 7.5 101 13.7 53 9.5 86 41.6 30 57 
ZM 3838 0.157 106 90.3 17 4.7 24 11.6 14 16.3 28 10.1 112 42.6 58 51 
LWA-ZA 0.148 107 96.6 98 6.0 111 7.2 107 15.2 41 8.8 39 49.3 117 89 
G10909 0.144 108 95.1 81 5.6 94 10.8 23 10.7 90 9.5 93 45.3 102 84 
ZM 4512 0.140 109 93.6 60 5.3 69 11.6 13 21.3 11 8.0 3 37.9 2 38 
SZ32BB1 0.135 110 96.7 99 4.7 26 8.9 70 19.8 16 8.9 46 42.8 63 61 
ZM 3206 0.133 111 91.1 27 5.1 52 11.8 10 17.7 24 8.5 10 39.6 4 34 
ZM 4479 0.121 112 90.3 15 4.6 20 13.3 5 25.6 6 8.7 32 45.0 98 41 
ZM 4512-2 0.092 113 94.3 71 4.5 9 3.1 120 22.6 10 8.1 5 43.3 71 57 
ZM 4298 0.069 114 90.4 20 5.3 74 5.4 119 14.2 49 9.3 71 41.6 28 68 
SCCI 11 0.043 115 97.6 101 5.2 61 10.3 33 27.5 4 10.9 120 39.8 5 63 
SCCI 11 0.041 116 102.4 117 6.0 110 8.9 67 15.6 34 9.1 63 53.9 120 90 
LY-UNZA 0.040 117 95.6 84 5.0 50 8.2 87 14.6 45 9.4 79 47.1 111 82 
SCCI 1 0.040 118 93.3 55 5.3 67 9.1 62 15.3 40 10.0 109 41.6 29 69 
ZM3681 0.035 119 90.3 17 3.3 1 13.1 6 11.4 82 8.0 2 42.9 64 42 
ZM 4478 0.008 120 89.7 11 4.5 7 6.3 113 10.7 91 9.5 93 41.8 32 67 

Mean 0.318  94.29  5.27  9.35  13.88  9.1394  43.30   
LSD 0.130  5.32  0.76  2.6  3.0  0.67  1.1   

CV 1.3  3  5.7  1.7  4.1  2.6  3.7   
Note: PM = physiological maturity; NSP = number of seeds per pod; NPP = number of pods per 
plant; LAR = leaf area retention; D50E=days to 50% flowering; D50F = days to 50% flowering; R 
= Ranking 
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CHAPTER FIVE 

Genetic analysis of common bean (Phaseolus vulgaris L.) for 
yield and yield components under managed drought stress 

conditions  
 

Abstract 
 
Many of the world’s common bean (Phaseolus vulgaris L.) growing regions are prone to 

either intermittent or terminal drought stress, making drought the primary cause of yield 

loss under farmers’ field conditions. The aim of the study was to assess the inheritance 

of yield and yield related traits under moisture stress conditions among Zambian grown 

common bean genotypes. Sixty four (64) genotypes comprising of 14 parental lines, two 

checks and 48 F2 populations were grown in an 8 x 8 alpha-lattice design with two 

replications at two sites, Nanga and Mount Makulu under managed drought conditions 

during 2013 in Zambia. Significant differences were recorded among the genotypes for 

yield and number of seeds per pod. General combining ability effects (GCA) and specific 

combining ability (SCA) effects were significant for the two traits under managed drought 

stress conditions implying that both additive and non-additive gene effects were 

important in their inheritance. ZM 4497 and Ly4-4-4-B were found to be the most drought 

tolerant male parents with positive GCA effects and their F2 combinations were in the top 

10 highest yielding F2 populations for SCA effects for yield. The heritability estimate for 

yield was 60% which implied that progress can be made during selection for yield.  
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5.1 Introduction 
The common bean (Phaseolus vulgaris L.) is an important food legume in sub-Saharan 

Africa. In Zambia the crop is popular as a source of protein among low income 

households (Kimani, 1999). It supplements the cereal based diets in Zambia with the 

much needed protein (Ribeiro et al., 2005). The common bean ranks second after 

groundnuts based on area under production in Zambia (Food and Agriculture 

Organisation, 2012). Many farmers including those in drought prone regions prefer 

growing beans because of the ability of the crop to grow to maturity in a short period of 

time (Legesse et al., 2006). Despite its importance in human diets, yield levels have 

remained low due to a number of abiotic and biotic stresses. Among the major abiotic 

factors are the increasing droughts and a rise in temperatures emanating from climate 

change which are major threats to crop production worldwide (McCarthy et al., 2001). 

This is also anticipated to significantly affect common bean production (Katungi et al., 

2009).  It is estimated that yield losses of up to about 40% will be experienced due to 

droughts and high temperatures (Wang et al., 2006).  

 

Many scientists have used plant breeding to develop crops for drought prone areas and 

for regions of high temperatures as a key solution towards improving bean production in 

the low altitudes. It has widely been proposed that any meaningful breeding programmes 

should evaluate the breeding value of prospective parental lines to be used for 

developing new, locally or extensively adapted common bean varieties (Lee and 

Parsons, 1968; Robertson, 1966).  

Drought tolerance has been reported to be a physiologically complex trait that must be 

expressed in terms of increased grain yield under field conditions. Its inheritance is 

considered to be a quantitative complex trait with low heritability for which no appropriate 

selection criteria have been developed (Schneider et al., 1997, Blair et al., 2010). It is 

also widely acknowledged that drought tolerance is a difficult trait because the drought 

stress can present itself at different times, with different intensities which could be 

modified by soil type (Rao, 2001). The mechanisms of drought tolerance are difficult to 

analyze because of the interaction of drought with other stress factors, such as high 

temperature, low soil fertility, and soil acidity. Drought tolerance is therefore susceptible 

to genotype × environment (G×E) interactions. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362941/#bib32
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362941/#bib30
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The traits associated with tolerance to drought in common bean have been identified  

and they include deep and balanced root systems that extract water from deep soil 

profiles, days to flowering and to physiological maturity, biomass accumulation, number 

of pods per plant, number of seeds per pod, harvest index, pod harvest index, 100-seed 

mass, yield, and yield based indices (White and Castillo, 1985; Acosta-Gallegos and 

Shibata, 1989; Schneider et al., 1997; Ramirez-Vallejo and Kelly, 1998; Frahm et al., 

2004; Rosales-Serna et al., 2004; Beebe et al., 2008). However, the underlying genetic 

basis of most of these traits remains to be understood. It has been reported that yield 

losses occur under drought stress during reproductive development in common bean 

(Halterlein et al., 1980).  

Common bean cultivars have been found to respond differently to drought stress under 

field conditions and this is due to differences in genotypes. The traits reported to be 

valuable in drought tolerance are earliness and yield components such as number of 

seeds per pod, and number of pods per plant which are key components of yield 

(Acosta-Gallegos and Shibata, 1989). Many inter-racial and inter-gene pool 

combinations have also shown favorable responses to drought tolerance in common 

bean (Schneider et al., 1997). The days to flowering and days to physiological maturity 

have been reported to have negative relationships with grain yield under drought stress 

and that there is adequate variation for these traits to distinguish genotypes for drought 

tolerance. Other reports show that number of days to physiological maturity is positively 

associated with the number of pods per plant, number seeds per pod, hundred seed 

mass, and yield (Acosta-Gallegos et al., 1995; Porfirio and James, 1998). Some reports 

have suggested that among the common bean genotypes, shorter duration to podding or 

flowering for determinate genotypes are usually early maturing and results in a higher 

number of pods per plant (Porfirio and James, 1998). 

Making significant genetic gain for adaptation to drought stress in breeding requires a 

better understanding of the nature and level of drought tolerance in the current varieties 

used in each country and sources of resistance. This study therefore focused on 

determining the nature and levels of drought tolerance of selected Zambian bean 

genotypes. The specific objective was to estimate the genetic parameters for yield and 

yield components under managed drought stress conditions in order to determine the 

breeding value of selected genotypes for use in the development of drought tolerant 

common bean genotypes. . 
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5.2 Materials and methods  

5.2.1 Germplasm 
Eight female and six male parents were used in this experiment in the generation of 

experimental crosses. The females used were all genotypes well adapted to bean 

production regions with preferred grain types by the farmers and consumers while the 

male parents were selected from landraces through a comprehensive screening 

experiment and others were materials obtained from Centro Internacional de Agricultura 

Tropical (CIAT). The eight female parents and six male parents were inter-mated using 

the North Carolina Design II scheme as described by (Comstock and Robinson, 1948) to 

generate 48 F1 crosses.  The crossed seed (F1) were sown in pots placed in the screen 

house. The F1 plants were advanced to the F2 generation. 

5.2.2 Study locations 
The test materials (F2 populations and the parental genotypes) were planted at two 

locations, Mount Makulu and Nanga. Mount Makulu is at latitude 15o13.10’, longitude 

28o14.93 and at an altitude of 1200 m above sea level (Veldkamp et al., 1984; ZARI, 

2006). This site receives rainfall of up to 1000 mm per annum. Nanga on the other hand 

lies at a latitude of 15o32.87’ and longitude of 27o32.93’. The site is situated at an altitude 

of 1190 m above sea level. Nanga also receives rainfall up to 1000 mm annually 

(Veldkamp et al., 1984; ZARI, 2006). The detailed description of the geographical and 

climatic conditions including the types of soils is presented in Table 5.1. The two sites 

are similar in general weather characteristics but differ in the soil types. The soils at 

Nanga are slightly sandier than the soils at Mount Makulu implying that water is likely to 

drain more quickly at Nanga than at Mount Makulu.  

 

The experiments were planted in March, 2013, towards the end of the rainy season in 

order to take advantage of the last rains for early seedling germination and growth. The 

dry season begins from mid April to October each year and there is no possibility of any 

kind of precipitation after the last rains. This ensured adequate control of irrigation. 
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Table 5.1: Geographical and climatic site descriptions of the experimental sites  

Environmental characteristics Mount Makulu Nanga NIRS  
Latitude (South)  15o13.10’ 15o32.87’ 
Longitude (East) 28o14.93’ 27 o10.93’ 
Altitude (meters above sea level) 1206.00 1190.00 
Relative humidity (% 69.40 54.80 
Annual rainfall (mm) 800-1000 800-1000 
Soil type Chromi-haplic lixisols Vertisols 
Soil characteristics Fine loam to clay Sandy clay 
Soil pH 5.8 5.2 
Sources: Mateological department; Mt. Makulu Research Station 

 

The two sites were also well equipped with irrigation facilities in order to conduct the 

experiments under managed drought conditions. 

5.2.3 Experimental design and crop management 
 

The 64 entries (14 parental lines, two checks and 48 F2 populations were planted in an 

alpha-lattice design in two replications.  Thirty seeds were sown in two rows of 5 m in 

length at a spacing of 75 cm by 30 cm in between rows and in between plants 

respectively. Compound D fertilizer (NPK), of the composition 10:20:10 at a 

recommended rate of 200 kg N ha-1 was applied at planting time as basal dressing. 

Supplementary irrigation was applied on the experiments optimally until the crops 

reached 50% flowering after which water was withdrawn from evaluation of the 

genotypes under drought stressed conditions while irrigation was continued for the non-

stressed experiments.  Weeding was done manually at all sites. Pests and disease 

control were done through spraying appropriate pesticides and fungicides.  

 

5.2.4 Data collection and data analysis 
Data was collected from the whole plot on seed yield, 100 seed mass, days to 50% 

flowering, and days to maturity during crop growth. Other secondary data parameters on; 

number of days to 50% flowering, number of pods per plant, and number of seeds per 

pod were recorded as follows. Data on DAF, DPM, LAR, yield and HSW was collected 

as describribed in 3.2.3 in chapter three. In addition to the data collection description 

provided under 3.2.3, PM and flower abortion as described below: 
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 Days to physiological maturity (PM) – number of days from 50% 

seedling emergence to 50% physiological maturity and plant senescence. 

 Flower abortion (FA) – was taken as the difference between the number 

of flowers counted at 50% flowering and the number of mature pods. 

 The computation for Bakers ratio was done using the formula, bakers 

ratio=       

            
, where MSGCA= mean square for GCA and MSSCA 

is the mean square for SCA 

 

For each measurement, 30 single plants were measured and recorded to determine the 

frequencies and distributions since these were segregating populations.  

 

The SAS statistical general linear models as random model for all terms were used for 

the analysis of variance (ANOVA) (SAS Institute, 2002).. The variations due to the 

offspring were broken into females, males, interaction between females and males and 

their interaction with the environment (Hallauer and Miranda, 1988). The expected mean 

squaresfrom the ANOVA provided the GCA and SCA variances for parental lines and 

crosses respectively. The variances for males and females were depicted as GCAm and 

GCAf respectively while those for the interactions between female and male crosses 

were depicted as SCAfm  

 

The ANOVA for each environment and combined ANOVA were computed using the 

PROC MIXED procedure of SAS (SAS Institute, 2002). The SAS programme for the line 

x tester analysis was used to compute the GCA and SCA effects following the procedure 

presented by (Singh and Chaudhary, 1977). The data on measured traits of segregating 

populations, parents and controls was analyzed according to the statistical model:  

 
 
 

Yijk = μ + gi + gj + sij + rk + eijk 
 
Where: 
 
Yijk = mean value of a character measured on cross i x j in kth replication 
gi = GCA effect of ith parent; gj = GCA effect of the parent j; sij = SCA effect of 
cross i x j; rk = replication effect; eijk = environmental effect peculiar to (ijk)th 
individual; μ = population mean effect;  
 
The GCA effects were calculated as follows: 
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Females: gi = xi…/tr – y…/lrt 
Males: gj = x.j./lr – x…/ltr 
 
Estimation of SCA effects: 
sij = xij./r – xi…/tr – x.j./lr – x…/ltr 
Where: l = number of females; t = number of males; r = number of replications  
 
Estimation of standard errors: 
S.E. (GCA for females) = (Me/r x t)½; S.E. (GCA for males) = (Me/r x l)½; S.E. 
(SCA effects) = (Me/r)½; S.E. (gi – gj) female = (2Me/r x t)½; S.E. (gi – gj) male = 
(2Me/r x l)½; S.E. (sij – skl) = (2Me/r)½ 

 

The outline of the expected mean squares is as presented in Table 5.2: 

Table 5.2: Estimated mean squares for the analysis 
Source df Expected Mean square 
Rep r-1  
Site s-1 MSs 
GCA

Male
 m-1 MSm 

GCA
Female

 f-1 MSf 
SCA =Male x female 
 

(m-1)(f-1) MS(m-1)(f-1) 

Site x  GCA
Male

 S(m-1) MS S(m-1) 
Site x  GCA

Female
 S(f-1) MS S(f-1) 

Site x   SCA =Male x female 
 

S(m-1)(f-1) MS S(m-1)(f-1) 

Error Smf(r-1) MSerror 
 

5.3 Results 

5.3.1 Analysis of variance and F2 genotypic mean performance under drought 
stress 
The combined ANOVA across the water stress conditions revealed different levels of 

significance for the mean squares for all the traits measured. The ANOVA of the parental 

genotypes are presented in Table 5.3. The main site effects were highly significant 

(P≤0.001) for yield and significant (P≤0.01) for DAF, FA, NPP and HSW. The main site 

effects, GCAf, GCAm, SCAf*m, Site*GCAf, site*GCAm and overall interaction 

(site*female*male) were highly significant (P≤0.01) for yield. Mean squares for GCA 

effects for males were significant for yield, number of seeds per pod, flower abortion, and 

number of pods per plant while the GCA effects for females were significant for yield, 

and number of seeds per pod (Table 5.3). The GCAf were significant for FA (P≤0.05) 

and highly significant for NSP (P≤0.01). The GCAf by site mean squares were highly 
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significant for yield, NSP and NPP (P≤0.01) and significant for FA (P≤0.05). The GCAm 

by site was highly significant for yield (P≤0.01). The SCA mean squares were significant 

for yield (P≤0.01); for NSP, DAF and flower abortion (P≤0.05). The overall interactions 

(site by female by male) were highly significant for yield, FA (P≤0.01), and NPP. 

 
Table 5.3: Mean squares for variance components for yield and related traits under 
drought stress 
Source DF Yield NSP DAF FA NPP HSW 
Rep 

       Site 1 15561228.97*** 253.28 1442.41** 1167.21** 16213.66** 27726.75** 
GCAF 7 247051.83** 2982.86** 19.32 261.86* 1686.84 7410.92 
GCAM 5 312450.36** 219.66* 21.77 193.43** 2474.58** 2403.21 
SCAF*M 35 135446.23** 428.89* 24.88* 195.87* 4691.81 6076.62 
Site*GCAF 30 242539.97** 6171.87** 32.10 283.74* 2175.52** 7582.26 
Site*GCAM 26 294822.00** 180.12 14.20 193.24 2234.50 4565.95 
Site*Female*Male 70 150609.72** 376.23 16.80 209.08** 3226.36** 7555.04 

Error  623.44 101.21 29.00 88.10 548.99 911.70 

Bakers ratio  0.81 0.88 0.62 0.70 0.47 0.62 
Broad Sense 
Heritability 

 

0.60 0.33 0.42 0.49 0.38 0.42 

Note: NSP-number of seeds per pod; DAF – days to 50% flowering; FA – flower abortion; NPP – number of pods per 
plant; HSW – hundred seed weight 
 
 
The Baker’s ratio ranged between 0.47 for NPP to 0.88 for NSP. This is an indication 

that the GCA effects were predominant over the SCA effects. NPP had the lowest 

Baker’s ratio of 0.47, HSW and DAF had 0.62, FA had 0.70, Yield had 0.81 and NSP 

had 0.88.  

5.3.2 General combining ability for grain yield across sites, under stressed 
stressed environments 
 

The GCAf effects for grain yield were significant for the across site analysis (P≤0.05)  

(Table 5.4). The GCA mean squares were predominant over the SCA mean squares for 

all traits except for yield as seen by the Bakers Ratio.The genotypes ZM 05, Chambeshi, 

Lyambai and SCCI-2 showed positive GCA effects for yield across the sites. Pan 148, 

Lyambai and SCCI-2 had positive GCA effects for stressed environments at Mount 

Makulu (Table 5.4). The GCA effects at Nanga were positive for ZM 05, Chambeshi, Pan 

148 and Lyambai (Table 5.4).  
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Table 5.4: General combining ability effects for yield across sites under drought stress of 
the male and female parents 
 
Genotype Nanga Mt. Makulu Across drought sites 
GCA effects – Female 
ZM 05 51.29* -52.07** 135.43** 
Chambeshi 108.04**                   -3.16 94.25* 
Pan 148 125.38** 49.34** -33.92* 
Kabulangeti -60.71*                  -78.82 -56.94* 
Kalungu             -107.13** -32.41** -103.64** 
Lyambai                69.38                   35.01 29.43* 
Kapisha               -37.88 -36.57** -95.95* 
SCCI-2             -148.38**                 118.68* 31.33* 
GCA effects – Male 
ZM 4143                   1.23                 -91.51 -146.56* 
ZM 4497  314.88** 345.06* 591.41* 
SER 124 357.88** 329.19* 526.03* 
Ly4-4-4-B               228.25 332.75* 487.20* 
ZM 3831  171.25* 363.19* 459.31* 
SEN 39  265.06** 277.94* 506.13* 
*Significant at P≤0.05, **Significant at at P≤0.01 

 
The GCA effects for the male parents across drought stressed environments and for 

each site are presented in Table 5.4.  All the male parents except ZM 4143 had 

significant and positive GCA effects across sites for yield (P≤0.05). The GCA effects for 

male parents were also all positive at Mount Makulu and Nanga except ZM 4143 which 

showed a negative value at the former site (Table 5.3). However, the GCA estimates for 

ZM 4143 though positive at Nanga was very low.  ZM 4497, SER 124, Ly4-4-4-B, ZM 

3831 and SEN 39 had high and positive GCA effects for yield, while ZM 4142 had very 

low GCA effects. ZM 4497 had the highest GCA effect for grain yield across all sites 

(Table 5.4). SER 124 had the highest GCA estimate at the non-stressed environment, 

while ZM 3831 and ZM 4497 had the highest GCA estimates under stress conditions at 

Mt. Makulu and Nanga respectively (Table 5.4). The male line with the highest GCA 

value for grain yield across the environments was ZM 4497. Positive GCA effects are 

desirable for grain yield. 

5.3.3 Specific combining ability and mean performance of F2 populations for 
grain yield across sites, under drought stress conditions 
Specific combining ability effects were significant for yield at all the testing sites and 

across the three sites (P≤0.05). However, SCA effects are not fixable in common bean 

hence not important and can therefore be ignored. The mean performance for grain yield 
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ranked on the basis of across sites under drought stressed conditions is presented in 

Appendix 5.1. The 10 highest yielding populations that performed well above the overall 

mean (273.58kg ha-1) across sites are 4, 35, 61, 14, 5, 48, 45, 12, 34, and 8, and their 

parents had high and positive GCA values. The F2 combinations were derived from the 

combinations of Chambeshi, Pan 148, ZM 05, Lyambai, SER 124, ZM 3831, LY 4-4-4-B, 

SCCI-2, and SEN 39 which recorded high positive GCA effects for yield. However, 

ZM4143 recorded the lowest positive GCA effect for male.   

5.3.4 Correlations among grain yield and related traits under drought stress 
The correlation coefficients were significant (P≤0.01) between yield and NPP (r=0.61), 

and significant (P≤0.05) for FA (r=0.29) (Table 5.5). The relationships were in the 

positive direction but not very strong for all the correlations between yield and measured 

traits. Days to 50% flowering was significant (P≤0.01) and negatively correlated with 

HSW (r=-0.65) and FA (r=-0.61) while it was significant (P≤0.05) and positive with NPP 

(r=0.43) and NSP (r=0.46). The correlations were also highly significant (P≤0.01) 

between NPP and FA (r=0.79).  

 

Table 5.5: Correlation coefficients between grain yield under stressed conditions and 

selected measured traits 

DAF 1     
 FA -0.61** 1         

NPP 0.43*  0.79** 1    
NSP 0.46*  0.13 0.16 1   
Yield 0.27 0.29* 0.61** 0.15 1 

 HSW -0.65** 0.54* 0.16    -0.048 0.18 1 
  DAF FA NPP NSP Yield HSW 

Note: DAF – days to 50% flowering; FA – flower abortion; NPP – number of pods per plant; NSP-
number of seeds per pod; HSW – hundred seed mass; *Significant at P≤0.05; **significant at 
P≤0.01 
 

5.3.7 Phenotypic variability of the parents and the derived lines 

Significant differences (P≤0.05) were observed among the F2 populations and between 

parents for most traits measured in both drought stress and non-stress environments at 

both locations.  The F2 population distributions were continuous for all traits, suggesting 

quantitative inheritance in all cases and both in drought stress and non-stress 
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environments (Figure 5.1). The mean performance for the F2 and the parental genotypes 

for selected crosses that gave the highest SCA values are presented in Table 5.6.  

Table 5.6: The mean values of traits measured in drought-stressed conditions at 
Nanga and Mount Makulu during the year 2011 and 2012 for some selected parental 
lines and corresponding F2 populations 

1. Lyambai X SER 124 

 
Parents F2 population 

 Trait P1 P2 Mean Range (F2) P value 
Yield (kg) 321.25 199.50 446.50 188-780 ≤0.001 
Number of days to maturity 45.75 36.00 49.50 33-64 ≤0.001 
Number of seeds per pod 4.13 1.80 4.75 1.1-7.2 ≤0.001 
Number of pods per plant  10.05 11.60 12.20 0.6-34 ≤0.001 
One hundred seed mass 46.00 31.50 42.50 25-51 ≤0.001 

2. Chambeshi X ZM 4143 

 
Parents F2 population 

 Trait P1 P2 Mean   Range (F2) P value 
Yield (kg) 300.28 294.50 688.67 201-890 ≤0.001 
Number of days to maturity 42.00 42.00 47.0 40-55 ≤0.001 
Number of seeds per pod 5.63 4.25 4.83 4.2-7 ≤0.001 
Number of pods per plant  16.10 14.50 13.27 11-16.9 ≤0.001 
One hundred seed mass 45.50 38.75 41.33 42-49 ≤0.001 

3. Pan 148 X ZM 4143 

 
Parents F2 population 

 Trait P1 P2 Mean  Range (F2) P value 
Yield (kg) 408.00 294.5 525.50 300-651 ≤0.001 
Number of days to maturity 45.75 42.00 47.75 36-52 ≤0.001 
Number of seeds per pod 4.31 4.25 5.50 3.9-5 ≤0.001 
Number of pods per plant  11.80 14.50 9.40 7.6-16 ≤0.001 
One hundred seed mass 49.00 38.75 49.0 33-54 ≤0.001 

4. Chambeshi X ZM 3831 

 
Parents F2 population 

 Trait P1 P2 Mean   Range (F2) P value 
Yield (kg) 300.28 310.75 434.25 260-470 ≤0.001 
Number of days to maturity 42.00 48.00 48 36-60 ≤0.001 
Number of seeds per pod 5.63 5.00 5.38 3.9-5.7 ≤0.001 
Number of pods per plant  16.10 16.10 23.5 14-27 ≤0.001 
One hundred seed mass 45.50 47.50 43.25 40-51 ≤0.001 

5. SCCI-2 X Ly4-4-4-B 
 Parents F2 population  

Trait P1 P2 Mean F2 Range (F2) P value 
Yield (kg) 324.75 757.67 406 301-790 ≤0.001 
Number of days to maturity 44.75 43.33 44.75 42-47 ≤0.001 
Number of seeds per pod 3.88 5.42 3.75 3.0-6.3 ≤0.001 
Number of pods per plant  19.70 12.20 17.45 12.1-27 ≤0.001 
One hundred seed mass 49.00 55.33 50.00 44-58 ≤0.001 

The drought-tolerant paternal line, LY 4-4-4-B, out-yielded both drought tolerant and 

susceptible genotypes. Hundred seed mass has been reported in other studies as being 

a response mechanism to drought stress and uses photosynthetic remobilization. 

However, hundred seed mass was not significant ruling out the possibility of the 

genotypes remobilizing the photosynthates into seed (P≤0.05).    
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The drought tolerant control genotype SER 124 was inconsistent in performance, 

sometimes being found to be better or and other times worse than other parental lines 

for many of the traits. The F2 population distributions were continuous for all traits, 

suggesting quantitative inheritance (Figure 5.1).  From the parental means and F2 

means, it was observed that there was transgressive segregation among the F2 

populations for all the traits measured.  This transgressive segregation was found both in 

positive and negative directions.   
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Lyambai X SER 124     Chambeshi X ZM 4143 

 

 

Pan 148 X ZM 4143     Chambeshi X ZM 3831 

 

 

SCCI-2 X Ly4-4-4-B 

 

 

Figure 5.1: F2 frequency distribution for yield 
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5.4 Discussion 
The parents exhibited different results with respect to levels of GCA effects which is an 

indication that there was adequate additive genetic variance which can be exploited 

during selection. The mean squares due to GCA were significant for yield and number of 

seeds per pod and similar results were exhibited for SCA mean squares. General 

combining ability effects are associated with additive gene action while SCA effects are 

associated with non-additive gene action. Significant GCA and SCA effects for traits 

such as grain yield implies that both additive and non-additive gene effects were 

important in the inheritance of yield parameters and number of seeds per pod. However, 

the additive gene effects were more important going by the Baker’s ratios. However, 

SCA effects for NPP were more important than GCA effects but not important in beans. 

The predominance of the additive gene effects suggests that the best progeny might be 

derived from crosses with genotypes having the greatest positive GCA values as 

suggested by Arunga et al. (2010). Generally, it would imply that selection for yield would 

be achieved easily and fast from segregating generations of such parents. These results 

are in agreement with those reported in common bean (Hinkossa et al., 2013; Idahosa 

and Alika, 2013; Islam et al., 2006). However, these results differ from those reported by 

Cruz et al. (2004) and Vidigal et al. (2008) who reported high significant SCA effects for 

yield under drought stress. This difference could be attributed to the differences in the 

germplasm used and the environments used. 

 

Chambeshi, Pan 148, ZM 05, Lyambai, SER 124, ZM 3831, LY 4-4-4-B, SCCI-2,  and 

SEN 39 showed that they were good general combiners for most traits as they showed 

maximum GCA effects. Moreover, they had the highest per se performance and showed 

the maximum cross mean performances. This result is in good agreement with related 

previous studies on yield and NPP in common beans although on different types of bean 

collections (Foolad and Bassiri, 1983; Rainey and Griffith, 2005b). NPP is one of the 

principal yield components in common bean (Dursun, 2007; Selehi et al., 2010; 

Cokkizgin et al., 2013). Hence, these parents could be considered as good parents for 

future hybridization programmes with a major aim of improving yield under drought 

stress. Lyambai X SER 124 generated negative SCA effects despite the parents 

recording high GCA effects. This may indicate that the two parents are closely 

related.Such crosses would imply that their combination may not be of value for drought 

tolerance.  
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The significant and positive GCA effects and high Baker’s ratio for NSP across the 

environments imply that the additive gene action was important in its inheritance. Apart 

from Kabulangeti and Kalungu whose F2 combinations showed negative SCA values, the 

results generally indicate that additive gene action was preponderant for NSP.  Lyambai 

had good combinations with all the male parents for NSP based on positive SCA effects 

recorded. The NSP could therefore be used as an indirect trait when breeding for 

drought tolerance and this finding agrees with those reported in other studies on 

common bean (Foolad and Bassari, 1983; Rainey and Griffiths, 2005a). This trait has 

been reported as one of the key traits determining yield in common bean (Cokkizgin et 

al., 2013; Durson, 2007; Selehi et al., 2010).  

Both gene effects (additive and non-additive) were involved in the determination of yield 

and number of seeds per pod. However, it is critical to consider the GCA effects when 

developing common bean varieties suitable for drought prone environments since SCA 

effects are not useful in beans where a pure line is the variety rather than hybrid.  The 

selection and crossing criteria should be to get one parent with high significant GCA 

effect and carefully choosing the other parent to ensure the results are not negative as 

exhibited by Ly4-4-4-B which had the highest GCA effects performance as a pure line 

but produced the worst F2 populations. This implies unpredictable progress in breeding 

and this genotype needs to be avoided in hybridization. However, targeting both parents 

with high positive GCA for yield could produce high yielding bean genotypes with desired 

traits as recommended by Arunga et al. (2010). Genotypes should be selected based on 

positive GCA effects for yield to obtain a reliable result (Narro et al., 2003).   

 
Highly significant and positive correlation coefficients between grain yield and the 

measured traits were found in this research. The high and positive correlation coefficient 

of 0.61 for number of pods per plant with yield indicates the usefulness of the trait to 

yield although the analysis of variance did not show significant results for numbe of 

seeds per pod. The number of pods per plant would be an ideal secondary trait to be 

considered in the selection of drought tolerant genotypes in common beans although it is 

tedious to implement. Selection based pn yield would therefore be recommended. The 

significant environmental effects of yield suggest that more sites need to be used for 

selecting for high grain yield.  
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Many plant breeders have used variance components and heritability estimates in the 

selection of promising genotypes and prediction of desirable traits (Morakinyo, 1986). 

The broad sense heritability estimates for yield in this study are an indication that it is 

controlled by additive genes. The 60% heritability estimate (Table 5.3) for grain yield 

would be adequate to make progress in breeding for drought tolerance in common bean.  

However, the magnitudes of heritability estimates are products of the population being 

tested, environments within which the testing is done and traits being measured 

(Falconer and Mackey, 1986). It should, therefore, be understood that heritability values 

reported for a given trait, are specific to the population in question (Hallauer and 

Miranda, 1981).The heritability estimates for the other traits such as NSP, DAF, FA, NPP 

and HSW were low as expected for drought tolerance because inheritance for drought 

tolerance is considered as polygenic (Table 5.3). However, the low Baker’s ratio value 

and the importance of broad sense heritability relative to narrow sense heritability 

emphasized the preponderant role of non-additive gene action in controlling the drought 

tolerance in common bean for NPP. 

Flower abortion showed unique response to drought tolerance. The mean square for 

GCAm was significant while that for GCAf was not. This result shows that non-additive 

gene action may be controlling the inheritance for flower abortion. This result may imply 

that the parental lines used for this study did not contain resistance genes for flower 

abortion. This result is in agreement with research results reported by Khattack et al. 

(2006) who failed to secure tolerant genotypes for flower abortion. This may therefore 

imply that large numbers of genotypes need to be screened as the genes for flower 

abortion may be rare. 

 

The leaf area retention was reduced due to drought probably as mechanism to conserve 

moisture. These results suggest that severe drought during the active growth stages in 

common bean might have deleterious effects on yield through reduced leaf area. This is 

important since the plants may not have sufficient time to invest in an increase in leaf 

mass after an extended period of drought. Instead they might directly enter the 

reproductive period without sufficient biomass reserves for optimum yield. This could be 

disastrous for bean genotypes with determinate growth habit which may not be able to 

initiate a second flush of pod setting when the vegetative growth period has passed. 
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This study amplified understanding of the mechanisms and genetics of drought 

tolerance. The principal achievement was to analyze three different categories of 

drought tolerance mechanisms namely drought escape, drought avoidance and drought 

tolerance. From the results, and using data on flowering and days to maturity, it could be 

assumed that some genotypes flowered early and matured early in an effort to escape 

drought. The harvest index, which reflects the differences in the photosynthate 

partitioning process, could not be used however as the genotypes lost leaves to a great 

extent making it practically difficult to quantify. The number of days to flowering and days 

to physiological maturity would be the most useful traits to select genotypes that would 

use an escape mechanism. The remobilisation of photosynthates from vegetative plant 

structures to the pod wall and from pod wall to the final grain yield is an important 

mechanism in drought adaptation for common bean more especially for inderterminate 

genotypes which retained higher leaf area under drought stress. It is interesting to see 

where leaf area retention provides functional relationship with yield. In this regard, the 

traits related with photosynthate accumulation and partitioning such as leaf area 

retention were important and need to be investigated further.  

The response to drought stress by the yield components particularly number of seeds 

per pod and number of pods per plant had positive relationship with grain yield under 

drought stressed environments. Some genotypes were able to produce pods along with 

fresh flush of leaves after three weeks of imposing drought stress.  

The transgressive segregation observed with the measured traits such as yield, number 

of pods per plant and number of seeds per pod (Figure 14), was important for these 

populations and is of interest in applying selections for drought improvement in common 

bean. Higher yield, higher number of pods per plant and higher number of seeds for pod 

could therefore used directly to select genotypes adapbtale to drought stressed 

enviromments. The better performance of the F2 population showing transgressive 

segregation provides a great opportunity for selecting high yielding genotypes that would 

be tolerant to drought stress.  
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5.5 Conclusions 
This study focused on the genetics of inheritance to drought tolerance for selected traits 

in common bean. Significant GCA and SCA mean squares showed the importance of 

both additive and non-additive gene effects for yield. The Baker’s ratio results showed 

that additive gene effects were more important than non-additive gene effects for all 

traits suggesting that selection would be effective during breeding. The high heritability 

of 60% for yield further confirms the importance of additive gene effects for drought 

tolerance in common beans.  

 

Ly 4-4-4-B and ZM 4497 were found to be tolerant genotypes to drought stress based on 

high and positive GCA effects and selection could be made to release them as  varieties.   

 

The parents in F2 combination for the crosses 4, 35, 61, 14, 5, 48 and 45 were found to 

have high GCA effects and they performed above the check varieties from CIAT under 

drought stress. These parents could therefore be used in developing drought tolerant 

genotypes. This will require further exploration by selecting from the F2 populations in 

subsequent generations. The moderately high heritability for yield would guarantee quick 

progress. NSP can also be used as an indirect trait for improving yield.  

 

Transggressive segregation was also found among the F2 populations for drought 

tolerance indicating the possibility of making appropriate choices from segregating 

populations for the generation of adaptable genotypes for yield and other traits under 

drought stressed conditions.  
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Appendix 5.1: Mean performance for yield and related traits for 14 parental lines, two 
checks and 48 F2 populations under drought stress 

S.No. 
Entry Category Fem Male D50F NF50F NPPl NSP HSW 

Yield (across 
sites) (Kg) 

1 32 Male parent Ly4-4-4-B Ly4-4-4-B 43.33 43.00 12.20 5.42 55.33 757.67 
2 4 Cross Chambeshi ZM 4143 (H) 47.00 28.60 13.27 4.83 41.33 688.67 
3 35 Cross Pan 148 ZM 4143 (H) 47.75 34.60 9.40 5.50 49.00 525.50 
4 50 Female parent ZM 05 ZM 05 44.75 31.85 6.50 5.00 49.75 469.75 
5 61 Cross Lyambai SER 124 49.50 37.70 12.20 4.75 42.50 446.50 
6 14 Cross Chambeshi ZM 3831 (D) 48.00 35.65 23.50 5.38 43.25 434.25 
7 27 Female parent Pan 148 Pan 148 45.75 30.25 11.80 4.31 49.00 408.00 
8 5 Cross SCCI-2 Ly4-4-4-B (D) 44.75 30.55 17.45 3.75 50.00 406.00 
9 3 Male parent ZM 4497 (H) ZM 4497 (H) 46.00 29.95 16.45 4.75 44.00 404.25 

10 48 Cross ZM 05 SER 124 44.75 35.75 11.85 5.00 49.25 395.00 
11 45 Cross Lyambai ZM 3831 (D) 47.75 35.35 11.45 4.31 36.00 363.75 
12 56 Check SXB 413 SXB 413 49.00 37.20 5.30 5.25 45.50 363.50 
13 12 Cross Pan 148 ZM 3831 (D) 44.33 37.53 14.47 5.08 43.33 350.67 
14 34 Cross ZM 05 SEN 39 30.00 28.70 14.60 6.25 32.00 341.50 
15 8 Cross SCCI-2 SER 124 44.75 36.60 21.40 5.06 45.50 331.75 
16 31 Female parent SCCI-2 SCCI-2 44.75 43.35 19.70 3.88 49.00 324.75 
17 44 Cross Lyambai ZM 4497 (H) 46.75 29.55 8.05 4.94 38.25 323.00 
18 58 Female parent Lyambai Lyambai 45.75 33.05 10.05 4.13 46.00 321.25 
19 41 Cross Chambeshi Ly4-4-4-B (D) 48.00 36.10 10.00 4.94 47.50 319.75 
20 33 Cross ZM 05 Ly4-4-4-B (D) 42.00 35.35 15.60 4.31 40.25 319.25 
21 11 Cross Pan 148 SEN 39 47.75 48.45 13.15 4.69 48.25 315.25 
22 49 Male parent ZM 3831 (D) ZM 3831 (D) 48.00 32.35 16.10 5.00 47.50 310.75 
23 22 Cross SCCI-2 ZM 4143 (H) 43.67 28.40 25.20 4.58 47.67 309.00 
24 19 Cross Kabulangeti SER 124 36.25 28.15 14.70 9.38 32.75 308.50 
25 24 Cross ZM 05 ZM 4497 (H) 44.75 33.30 11.20 4.88 50.50 307.50 
26 40 Female parent Chambeshi Chambeshi 42.00 36.00 16.10 5.63 45.50 300.28 
27 2 Cross Kapisha ZM 4497 (H) 48.25 27.95 11.20 4.88 40.50 299.00 
28 39 Cross Pan 148 SER 124 43.67 32.53 12.67 4.25 37.00 295.00 
29 18 Male parent ZM 4143 (H) ZM 4143 (H) 45.25 30.60 14.50 4.25 38.75 294.50 
30 42 Cross Kabulangeti ZM 4497 (H) 45.50 40.25 7.95 4.94 40.25 281.50 
31 1 Cross ZM 05 ZM 4143 (H) 45.00 29.60 10.80 4.92 48.67 279.33 
32 17 Female parent Kalungu Kalungu 46.50 32.25 18.00 4.50 47.50 270.00 
33 55 Male parent SEN 39  SEN 39  42.00 26.65 9.75 7.69 55.50 263.25 
34 29 Cross Pan 148 ZM 4497 (H) 35.75 27.95 105.45 70.63 36.75 260.75 
35 23 Cross Lyambai SEN 39 48.25 36.80 10.15 4.44 48.50 239.75 
36 6 Cross ZM 05 ZM 3831 (D) 44.75 44.70 15.75 6.10 48.00 237.25 
37 25 Cross Chambeshi ZM 4497 (H) 47.75 37.60 56.60 5.06 40.75 236.50 
38 54 Cross Pan 148 Ly4-4-4-B (D) 42.75 42.85 9.65 4.50 31.75 233.25 
39 20 Cross Chambeshi SER 124 44.75 37.25 8.65 5.00 46.50 231.50 
40 46 Cross Kalungu ZM 4497 (H) 48.00 30.90 6.40 3.81 38.25 219.00 
41 47 Cross Kapisha Ly4-4-4-B (D) 40.33 34.33 11.60 4.17 51.33 215.33 
42 36 Cross Kapisha SER 124 35.00 28.30 13.33 13.69 24.75 214.00 
43 62 Cross Kalungu SEN 39 45.00 27.85 5.10 4.69 38.00 212.00 
44 63 Cross SCCI-2 ZM 4497 (H) 44.75 35.20 17.05 4.56 45.75 208.50 
45 16 Cross Chambeshi SEN 39 48.25 33.20 17.25 5.13 42.25 204.75 
46 9 Male parent SER 124 SER 124 36.00 31.70 11.60 18.50 31.50 199.50 
47 15 Cross Lyambai Ly4-4-4-B (D) 42.00 23.95 8.70 4.44 37.00 195.25 
48 30 Cross Kabulangeti Ly4-4-4-B (D) 48.00 39.33 13.80 5.17 38.33 191.67 
49 37 Cross Kabulangeti ZM 4143 (H) 44.75 44.40 5.80 4.63 42.50 189.00 
50 21 Cross Kalungu ZM 4143 (H) 46.67 39.47 14.73 5.42 44.00 186.00 
51 26 Cross Kapisha ZM 3831 (D) 40.67 27.33 7.93 5.25 42.33 175.00 
52 13 Cross SCCI-2 ZM 3831 (D) 46.75 31.80 11.25 4.19 38.25 165.75 
53 43 Cross Lyambai ZM 4143 (H) 47.75 33.65 9.50 4.50 33.50 164.50 
54 57 Female parent Kapisha Kapisha 47.50 31.55 23.95 4.56 36.25 161.25 
55 52 Cross Kabulangeti ZM 3831 (D) 49.50 27.55 8.75 5.56 30.75 154.25 
56 53 Cross Kapisha SEN 39 48.67 18.47 9.60 6.50 31.67 146.67 
57 38 Cross SCCI-2 SEN 39 48.75 27.20 10.80 4.25 44.25 141.00 
58 10 Cross Kalungu SER 124 49.75 36.35 7.80 3.75 37.25 131.00 
59 19 Cross Kabulangeti SEN 39 40.00 36.24 7.05 3.31 32.50 128.75 
60 7 Male parent ZM 4482-2  ZM 4482-2  49.00 28.80 7.87 3.50 22.33 114.67 
61 64 Cross Kapisha ZM 4143 (H) 48.25 28.65 6.10 3.88 35.00 100.25 
62 51 Cross Kalungu ZM 3831 (D) 45.50 34.00 8.60 3.81 39.50 97.50 
63 28 Female parent Kabulangeti Kabulangeti 44.75 30.10 12.75 4.25 39.25 94.50 
64 60 Cross Kalungu Ly4-4-4-B (D) 47.50 18.35 6.30 4.38 20.25 83.25 

 Mean    44.97 33.18 15.41 6.29 41.28 273.58 
 CV    11.97 14.43 16.34 10.31 16.01 15.70 
 LSD    14.87 45.30 139.62 16.56 29.16 52.59 
 MSE    44.75 225.97 31823.92 1.09 144.90 31823.92 

Note: NSP-number of seeds per pod; D50F – days to 50% flowering; FA – flower abortion; NPPl – number of pods per plant; HSW – hundred seed mass 
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CHAPTER SIX 

General overview and conclusion 
Drought and high temperature stress are the most serious threats to common bean 

production in the low altitude areas and are likely to impact negatively on the 

productivity, farm incomes and household food security in general. In Zambia the 

frequently occurring droughts and high temperatures during the growing seasons 

coincide with flowering stage of common bean in the low altitude areas and causes 

damage to bean crops annually leading to loss in yields. These yield losess have been 

partially blamed on lack of cultivars that can withstand the two stresses. 

In this study, genetic factors for drought and heat tolerance in common bean were 

evaluated in order to contribute to the genetic improvement for improved adaptation of 

common bean to the low altitude regions. Farmers’ preferences were also explored for 

preferred common bean traits.  

 

Key criteria used by farmers to adopt varieties were bush type growth habit, red 

speckled bean color, large bean size and shape, taste, early maturity and high number 

of pods per plant for crop related characteristics. Taking the research findings of the 

participatory rural appraisal and survey, into account the results further showed that the 

farmers chose the variety Lyambai, an elite and released variety in Zambia which had 

most of the preferred characteristics. This implies that new varieties with the background 

of Lyambai were more likely to be adopted. The other factors included some social 

economic factors; source of income, education level, and the use of common bean in 

crop rotations, and demographic characteristics; gender which was inherent in the 

population.   

 

The 120 genotypes screened under drought stress showed variation between them. Ly4-

4-4-B was identified as the most drought tolerant genotype followed by LY1-2-B, ZM 

3831, KAL–ZA, SCCI 13, ZM 4512-5 and LYA–ZA. The selected genotypes comprised 

three landraces, two genotypes from mutagenesis and two market class cultivars, one of 

which was still under official variety testing for release. These genotypes were also found 

to be stable in both drought stressed and non-drought stressed environments.  This 

study also established that seed mass was not useful in explaining the performance of 
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genotypes in both stressed and non-stressed conditions. The genotypes reduced their 

number of days to flowering probably exhibiting an escape mechanism.  

In the results of an evaluation of the 120 genotypes and the F2 populations under high 

temperature field conditions and explain the genetic inheritance for heat stress tolerance 

in the Zambian germplasm. The results showed that ZM 4143, ZM 4497, SCCI 4, KE 1, 

ZM 07, SZ4BB, ZM 4512-3, LY-2-3-B, ZM 4520, KE3, ZM 4489 and Ly -2 -8-B  had the 

highest yield under high temperatures in Lusitu. ZM 4497 and ZM 4143 were found to be 

the highest yielding male parents under high temperatures. The GCA mean squares for 

yield, number of seeds per pod and number of pods per plant indicated the presence of 

additive gene action for heat stress tolerance. The SCA effects for yield were also 

significant even though these are not important results in bean since its self-pollinating.  

The results of the genetic study for drought tolerance (Chapter 5) genotypes ZM 4143 

and ZM 3831 recorded positive GCA effects for yield and high yielding under drought 

stressed conditions and therefore identified as drought tolerant genotypes. The F2 

populations; 4 (Chambeshi X ZM 4143), 35(Pan 148 X ZM 4143), 61 (Lyambai X SER 

124), 14 (Chambeshi X ZM 3831), 5 (SCCI 2 X Ly 4 -4-4-B), 48 (ZM 05 X SER 124) and 

45 (Lyambai and ZM 3831) recorded high yields under drought conditions which could 

imply that further selections may give rise to high yielding segregants.  The heritability 

estimate for yield of 60% was found for drought stress and this was adequate for making 

quick progress during selection based on yield.  

Based on the combination of the results obtained in this study, it can be concluded that 

ZM 4143 could possess both high temperature tolerance genes and drought tolerance 

genes worth exploring further for use in breeding for both drought and heat tolerance. 

Lyambai, a red speckled bean which was highly preferred by the farmers, as revealed by 

the participatory research and survey, would be the most suitable parent for drought and 

heat tolerant genotypes with the selected drought and heat tolerant genotypes that may 

not possess desirable characteristics through backcrossing. In both cases the positive 

GCA effects for drought and heat stresses exhibited in the selected genotypes implies 

quick progress in breeding for the two stresses.  

Though not tested, it is generally agreed that improved remobilization of photosynthates 

to grain under drought condition for this category of genotypes is an important 

mechanism to enhance yield formation, it may also suggest that pyramiding of various 
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tolerance mechanisms might be needed for breeders to improve drought adaptation in 

common bean. This could be achieved through pyramiding traits for early maturity, 

improved photosynthetic ability by maximising possible leaf area, and efficiency in the 

photosynthates accumulation along with better remobilization to grain under drought 

stress.  

The hybridization generated showed transgressive segregation for traits such as yield, 

number of pods per plant and number of seeds per pod. These traits would therefore be 

useful in selecting for drought tolerance. 
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7.0 Implications and recommendations for breeding 
Based on the results of this study the following recommendations are made for breeding 

drought and heat tolerant genotypes for low altitudes: 

i. The study on farmers’ preference revealed that the breeding objectives should 

take into account the farmers preferences in the target environments, a concept 

well supported by  Ceccarelli et al. (2003). In this study, high yielding red 

speckled large type of bean with desirable traits such as early maturity, and dwarf 

type would be the preferred bean types to breed. Ideally the process of variety 

evaluation should be set to be conducted in the target and similar environments 

where the varieties will be grown as alluded to by (Odendo et al., 2002). 

ii. The screening of landraces provided an opportunity for selecting genotypes with 

drought and heat tolerant genes. This implies that when considering to breed for 

drought and heat tolerance, the landraces are a useful genetic resource hence 

the importance to conserve it. The performance of landraces studied varied but in 

some cases, they were as good as the improved varieties. One problem of the 

landraces was the poor resistance to some biotic stresses. This would therefore 

imply that one develops a variety that could be drought tolerant but highly 

susceptible to diseases. This would imply a very long process to get the 

genotypes. 

iii. Most of the drought and heat tolerant genotypes had dark colours such as black, 

brown and goldish and are less desirable by the consumers. Breeding should 

therefore target to introgress the genes from these genotypes into popular and 

adaptable genotypes. However, seed size did not genetically affect selection 

gains suggesting that selection for drought and heat tolerance will not affect seed 

acceptance. 

 

iv. The high susceptibility levels of all the improved varieties imply that breeders did 

not consider evaluating the genotypes under drought and heat stress conditions. 

It is necessary for breeders to screen all potential bean lines for drought and heat 

tolerance at the same time screening for a trait of interest.  
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v. The parental genotypes used in the development of F2 genotypes had high and 

positive GCAs implying they would facilitate quick transfer of desirable genes for 

drought and heat tolerance. 

 
vi. The F2 populations derived forms a base for further selections while performing 

necessary back crosses to retain the background of the most preferred 

genotypes of common bean. 

 


