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Abstract

An investigation has been carried out to determine the effects of the dissolved solids

in process cooling water (pcw) and mine water (mw) on concrete corrosion.

An experimental set up was designed to simulate the process in the cooling towers of

Sasol (Pty) Ltd at Secunda. The investigation was carried out using Ordinary Portland

Cement (OPC) and Portland Blastfurnace Cement (PBFC). The corrosion process was

monitored as a function of time by determining the concentrations of the ions left in

solution. This was done USIng Inductively Coupled Plasma Optical Emission

Spectroscopy (ICP-OES) and Ion Chromatography (lC). The observation,

identification and characterization of the secondary phases formed during the

corrosion process were analyzed using the Scanning Electron Microscopy(SEM).

Energy Dispersive X-ray Microanalysis (EDX) made it possible to identify the

various microstructures and quantify their elemental composition. This made it

possible to monitor the penetration of sulphate ions in the mortar. Powder X-ray

Diffraction (XRD) qualitative analysis was also performed on the test mortar

specimens. The organic constituents in process cooling water were determined using

Gas Chromatography coupled with a Mass Spectrometer (GC-MS). The corrosion

indices which measures the aggressiveness of water solutions towards cement and

concrete were calculated for both process cooling water and mine water.

The results of the investigation showed that mine water is more corrosive than process

cooling water. This observation has been linked to the presence of the organic

compounds in process cooling water. The results also indicated that PBFC was mores

resistant to chemical attack than ope.
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Chapter 1

The Chemistry of Cement and Concrete
,

1.1 Concrete and the Environment

Concrete is the artificial rock created when cement paste is mixed with fine aggregate (sand)

and coarse aggregate (gravel or crushed stone), water and some air. As one of the world's

widely used construction materials, concrete (like other building materials) has associated

environmental impacts, which need consideration. These include production of finely divided

particulate (dust) and gaseous air pollutants (such as carbon dioxide, sulphur dioxide, carbon

monoxide) during the heating of raw materials in a kiln to produce cement clinker. When

concrete is used properly, it contributes to improving the living standards of much of the

world's population in the areas of health, safety, recreation and mobility. The world's

infrastructure, buildings and roads bear testimony to this fact. The cement industry therefore

strives to achieve the right balance between environmental impact and the social and the

economic benefits that cement and concrete bring to society [1].

Compared to other building materials, concrete has many advantages. These include the fact

that concrete is made from the abundant and readily available constituents such as sand, stone

and water, whereas other chemically based products require complex manufacturing process.

The wastes generated during the production of the chemically based products can have a

damaging effect on the environment, especially if they are not disposed off properly. While it

is appreciated that concrete produces structures that are strong and durable, it should be noted

that its performance depends largely on the environment to which it is exposed. There is

therefore a need to educate the public about the limitations of this material. It is for this

reason that the protection of concrete against corrosion is receiving a growing interest.
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1.2 History of Portland Cement

The use of cementitious materials in building structures dates back to ancient

Egyptian, Greek and Roman times. The cement used during these times was based on

unsintered calcareous materials mixed with sand and reactive siliceous materials (in

the form of volcanic ash). The siliceous materials gave strength to the cement and

made it water-resistant. In 1791, John Smeaton [2] discovered that clay plays a very

important part in the hardening properties of hydraulic lime (produced by a mixture of

limestone and clay). He used a burned mixture of clay and limestone (as a binder) to

rebuild the Eddystone lighthouse in England. His countryman James Parker [2]· in

1796 came up with a new idea of producing hydraulic limes by calcining limestones

that contained siliceous matter.

In 1824 an English bricklayer, Joseph Aspdin [3] patented a new cementing material

he had produced by sintering fixed proportions of limestone or chalk (calcium

carbonate) with clay (aluminosilicates) in a kiln at very high temperature. This is the

basis of the manufacturing method that is still being used today. The firing process

causes the raw materials to combine thus producing a cement clinker (small rounded

lumps that are subsequently ground to yield the cement powder), which contain

reactive calcium silicates. The silicates give the cement its hydraulic character; that is,

the property of hardening when reacted with water. Unlike the original lime based

cement, Aspdin's type of cement would harden under water and be resistant to water

for a long time. He named his product Portland cement because its colour resembled

that of a stone quarried on the Isle of Portland, a Peninsula on the English coast [3].

To this day Portland cement is by far the most commonly used type of cement. One of

its first large-scale uses was in the construction of the Thames tunnel from 1825 to

1843 by Marc Isambard BruneI and his son Isambard Kingdom BruneI. [4] Because of

its strength and stability, Portland cement concrete eventually replaced the older types

of concrete. Compared to the modern day Portland cements, Aspdin's product was

poor in quality because it was produced by burning at low temperature. Glasser [5]

indicated that the burning of modern Portland cement at high temperature of

approximately 1450 DC, causes all the SiOz containing components (e.g. clays and

quartz) to react thus producing a better cement clinker than that produced by Aspdin.
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1.3 Production of Ordinary Portland Cement

To manufacture Portland cement, calcareous (typically limestone) and argillaceous

materials (usually clay or shale) are required. Iron ore, sand and bauxite are included

to increase the Fe203, Si02 and Ah03 content. When this mixture is heated to the

sintering temperature, new compounds form, the clinker phases e.g. tricalcium

silicate,· dicalcium silicate and tricalcium aluminate. There are basically five steps in

the formation of Portland cement [6].

1.3.1 Quarrying

Quarrying is a process of physically excavating raw materials. Limestone and

argillaceous limestone are usually quarried by blasting. The large rocks are loaded

into trucks and transported to the crushing plant. At the plant, conveyor belts are used

to carry the ro~ks to the crushing machines. They are then crushed to a particle size of

less than 30 mm. The main prerequisite for the quality and the uniformity of cement is

that the composition of the raw materials before entering the kiln is constant. If the

chemical composition (calcite, clay minerals) of the deposit varies greatly, the broken

raw material is prehomogenized i.e. by blending [7]. Blending is achieved by putting

two or more blending beds in layers. The blending beds contain as a rule a one-week

supply of raw materials. The material is subsequently reclaimed in the transverse

direction of the pile. Variations in the deposits are compensated largely in this manner

[7]. Alternatively, the average chemical composition can be regulated by adding raw

material from a particular part of the quarry or from a previously prepared material

depot [7].

1.3.2 Raw Milling

This is a process where the crushed rock is ground into fine powder. The feed

materials, although blended (see quarrying 1.3.1), are not fully consistent in

composition and hence regular adjustments have to be made by dosing with quartz

sand and iron ore. During the grinding process, the material to be ground is dried with

hot gas, which is drawn through the mill. Tube mills or roller mills are employed to

grind the raw material [8].

3



1.3.3 Blending

The product of the raw milling process varies in composition and hence a blending process in

which the powdery contents are properly mixed is necessary before the raw mix is sent to the

kiln.

1.3.4 Burning

A cement kiln is a high temperature reactor, which contains zones of varying temperatures

due to its design. In Europe, rotary kilns (long horizontal rotating cylinder) are the most

predominantly used as compared to the shaft kilns (continuous vertical type of 30-50 feet

high and 8-10 feet in diameter). Figure 1.1 is a schematic representation of a rotary cement

kiln as shown by Potgieter [9].

Nose c

I
6

one 1 2 3 4 5 -e:: ~ Burner-
I

Planetary
coolers

Where: 1. Preheater zone, at 550 QC

3. Intermediate zone 1200 QC

5. Burning zone, at 1250 QC - 1450 QC

2. Calcining zone, at 550 QC - 1200 QC

4.Transition zone 1250 QC

6. Outlet zone, 1150 QC

Figure 1.1: Long, dry cement kiln with different temperature zones

The raw material mixture is burnt in the cement kiln to give cement clinker. It is heated

slowly to the sintering temperature of 1450 QC, which takes 40 minutes to 5 hours, depending

on the type of the kiln used. The reactions taking place in the kiln can be divided into three

groups:

4



(a) The .most important reactions that take place below 1300 °c are the

decomposition of calcite and clay minerals to form calcium oxide, aluminium

oxide, silicon dioxide and iron oxide. These products react further to produce

clinker phases i.e. belite, calcium aluminate, and calcium alumino ferrite [9].

Some of these reactions are shown below where C = CaO, A = Ah03, S = Si02, F =

Fe203 and H = H20.

(i) CaC03 • CaO + CO2

(ii) AS4H • Ah03 + 4Si02+ H20

(iii) AS2H2 • Ah03 + Si02+ 2H20

(iv) 2(FeO·OH) • Fe203 + H20

(v) 2CaO + Si02 • C2S (belite)

(vi) 3CaO + Ah03 • C3A (aluminate)

(vii) 4CaO + Ah03 + Fe203 --~•• C4AF (ferrite)

(b) The reaction that takes place between 1300 - 1450 °c is the formation of alite

when belite reacts with lime.

(c) The final set of reactions i.e. (v) to (vii) takes place during the cooling phase. The

clinker is rapidly cooled to yield crystalline aluminate, ferrite and polymorphic

transitions ofbelite and alite.

1.3.5 Cement Milling

In this last step of Portland cement production, the crystalline material (see (c) in

section 1.3.4) is ground to fine powder. A small quantity of about 2 to 5 % gypsum

(CaS04.2H20) is added to slow the rate of hardening of cement when it is mixed with

water. The cement is then stored in silos and dispatched to customers in bags.

5



1.4 Classification of cements

1.4.1 Rapid-Hardening Portland Cement (RHPC)

Rapid-hardening Portland cement (RHPC) and ordinary Portland cement (OPC) are made

from the same material and the only difference is that the rapid hardening Portland cement is

ground more finely [10]. As its name suggests, this type of cement develops strength rapidly

i.e. its strength after 3 days is of the same order as the 7 days strength of ordinary Portland

cement with the same water: cement ratio. This is a result of finely grinding the clinker thus

providing a greater surface area for reaction with water.

When rapid hardening Portland cement is used in place of ordinary Portland cement higher

strengths are obtained without increasing the amount of cement used. RHPC is most suitable

for precast·construction where high strengths are required at an early age [11].

1.4.2 Sulphate-Resisting Portland Cement (SRPC)

It is a known fact that among the components of cement, tricalcium aluminate (C3A) is the

most reactive and actually the first to be attacked by either the sulphates or the chlorides from

water solutions [12]. It is for this reason that the sulphate-resisting Portland cement is

produced with a very low tricalcium aluminate content. This provides a considerable measure

of improvement in sulphate resistance. The performance of the SRPC is however dependent

on the permeability of the hardened concrete i.e. for maximum results the concrete should be

highly impermeable [12].

1.4.3 High Alumina Cement (HAC)

High alumina cement (HAC) is manufactured by melting together bauxite, limestone and

aluminous materials resulting in a product, which is ground to a high surface area. In OPC,

strength development results from the hydration of calcium silicates while in HAC hardening

is based on the formation of calcium aluminate hydrate. Among other properties, HAC is able

to resist sulphate attack since it does not release calcium hydroxide during the production of

calcium aluminate hydrate. Apart from immunity to sulphate attack, this type of cement has

unequalled rapid-hardening properties, since it reaches a high proportion of its ultimate

strength within 24 hours after casting [13].
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1.4.4 Supersulphate Cement (SSC)

This cement is made by crushing together ordinary Portland cement, granulated blast furnace

slag and calcium sulphate (which can be added as natural gypsum, burnt gypsum or natural

anhydrite). It is chemically different from ordinary Portland cement and hence shows

properties that are different from that of Portland cement such as its ability to resist sulphate

attack [14].

1.4.5 Magnesium Phosphate Cement or Magnesia-Ammonium Phosphate Cement

This type of cement is made from reacting magnesium oxide with phosphoric acid or

ammonium phosphate. Apart from having similar properties to ope, this cement has high

early strength and high water resistance. It is used mainly for the repairing of roads [15].

1.4.6 Polymer Cement and Polymer Impregnated Concrete

Polymer cement and Polymer impregnated concrete are made by the addition of polymers to

cement or concrete. In forming polymer cement, 10 - 15% of the polymer (usually as a latex)

is added to the cement before mixing with other materials to form concrete. The polymer

forms an intimate part of the structure of the hardened material, modifying the porosity and,

hence, the permeability and fracture toughness of concrete. The most widely used materials

are latex systems based on styrene-butadiene copolymers or on vinylidine chloride or

acrylics. The advantage of adding polymers to cement or concrete is that the resulting

concrete can attain physical properties such as tensile strength and compressive strength

which is four times as large as concrete made under the same conditions without the addition

or impregnation ofpolymer. Another advantage is that the resistance to sulphate attack can be

increased over one hundredfold [16].

1.4.7 Air-Entraining Cement

This cement is mainly produced in United States of America and is made by intergfinding an

air-entrainer into the cement. The air-entrained agent is a surfactant admixture, which

introduces air in the form of very small bubbles uniformly throughout the cement paste.

These bubbles persists in the mixed concrete, and serves to entrain many small spherical air

voids that measure from 10 to 250 Jlm in diameter.
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The air voids alleviate internal stresses in the concrete that may occur when the pore

solution freezes. The advantages shown by this type of cement are the improved

workability and durability. The additional advantages are the production of concretes

with improved resistance to freezing and thawing [17].

1.4.8 Anti-Bacterial Cement

Micro-organisms such as bacteria attack mortars and concretes. In order to prevent the

attack anti-bacterial cement that contains approximately 1% by mass of an organic

fungicide such as tributyl tin acetate is produced [18].

1.5 Cement Extenders

Ordinary Portland cement can be blended with other materials known as extenders to

improve its binding properties. The process involves mixing or intergrinding OPC and

the extender. The most commonly used extenders are as follows:

1.5.1 Portland Pozzolan Cement

Pozzolanas are materials which, though not cementitious themselves, contain

constituents which when finely ground and come into contact with slaked lime (from

OPC) in the presence of water at ordinary temperatures, react to form stable insoluble

compounds possessing cementitious properties. The pozzolanas are either natural or

artificial [19].

Natural Pozzolanas

Natural pozzolanas are of volcanic origin. The Romans discovered these in Pozzuli

area in Italy where a volcanic ash occurs [20]. These volcanic pozzolanas are rich in

silicon dioxide. The silica from the Pozzolanas is the constituent that reacts with the

slaked lime to produce cementitious materials such as calcium silicate hydrate (C-S­

H) which are known to give concrete its strength [20].
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Artificial Pozzolanas

The artificial pozzolanic materials that are comn10nly used include fly ash, granulate

blastfurnace slag, and condensed silica fume. These are used to improve the durability

of concrete. This property is obtained by the reaction of calcium hydroxide from OPC

and the constituents present in the pozzolanic materials. This produces additional

calcium silicate hydrate to that generated by OPC itself [20].

(a) Pulverised Fly Ash (PFA)

Fly ash is the fmer fractions resulting from the process of burning coal. When water is

added to a blend of fly ash and OPC, the OPC produces calcium hydroxide as one of

its hydration products. The silica in the fly ash reacts with the calcium hydroxide

producing compounds (i.e. C-S-H) with cementing properties. This type of reaction is

knowri as pozzolanic reaction.

The advantages of blending fly ash with OPC are that:

(i) It is cheaper than ordinary Portland cement.

(ii) It reduces the chloride diffusion through concrete by improving the

impermeability of the concrete.

(iii) It improves the sulphate resistance of concrete by reacting with calcium

hydroxide to produce more calcium silicate hydrates.

(iv) It prevents alkali-aggregate reaction.

(v) The concrete develops less heat on hydration and so shrinkage is reduced.

(b) Ground Gra~ulatedBlastfurnace Slag (GGBS)

Ground Granulated Blastfumace Slag is a type of cement formed during the

production of iron in a blastfumace by chilling the molten material and then grinding

it to a fine powder. Like ordinary Portland cement, the hydration products of GGBS

include calcium silicate hydrate. The difference is that the rate at which the hydration

reaction takes place is much slower compared to that of OPC. When GGBS is blended

with OPC, the OPC produces slaked lime as one of its hydration products increasing

the pH of the mixture. The hydration of GGBS is then activated due to the presence of

slaked lime [21].
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(c) Condensed Silica Fume (CSF)

The condensed silica fume (CSF) is a condensed vapour, which is a by-product of the

ferro-silicon smelting process [21]. Like other cement extenders, CSF (which is rich

in silica) reacts with lime in the presence of water to form cementing compounds (C-

S-H).

The advantage of adding CSF is that:

(i) It improves the durability of concrete in aggressive environments.

(ii) It reduces the bleeding of fresh concrete.

(iii) Like the fly ash cement, it reduces the permeability of concrete

The type of oxides and their composition in OPC and in the blending agents for OPC

are shown in Table 1.1, the units being in % by mass [22]. The PBFC used in this

research had a Blast Furnace Slag (BFS) content of 45 %.

Table 1.1: Chemical composition (mass %) of ordinary Portland cement and cement

extenders [22].

Oxide OPC GGBS CSF PFA HAC
CaO 63 - 68 32-34 0.6 4-8 37.7
Si02 19 - 24 32-37 92 25 -50 5.3
Ah0 3 4-7 11 - 18 1.5 25 - 30 38.5
Fe203 1-4 - 1.2 - 12.7
MgO 0.5 -3.3 10-17 0.6 2-4 0.1

Na20 + 0.658 K20 0.2-0.8 - - 1 - 3 -
FeO - 0.3 - 0.7 - 9 -11 3.9
MnO - 1.0 - - -
K20 - 0.7 - 1.0 0.6 - -

S (as sulphide) - 1.3 - 1.7 - - -
H2O - - 0.8 - -

S03 - - - - 0.1

Where OPC = Ordinary Portland Cement, GGBS = Ground granulated blastfurnace

slag, CSF = Condensed silica fume, PFA = Pulverised fly ash and HAC = High

alumina cement.
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1.6 Reaction of Cement with Water

1.6.1 Hydration of Portland Cement

Hydration is the chemical reaction that takes place when water is added to cement.

During the hydration process the cement sets, hardens and gains strength. It starts at

the surface of the grains of cement and works its way inwards. The hydration products

spread outward and inward to take the place of the cement as it undergoes hydration.

It should however be noted that the reactions that take place during hydration are very

complex and are still a subject of debate. Portland cement can be treated as consisting

of a mixture of:

• trica1cium silicate (C3S)

• dica1cium silicate (C2S)

• trica1cium aluminate (C3A)

• tetracalcium aluminoferrite (C4AF)

In addition to the chief compounds, other minerals, such as free CaO and MgO,

alkalis (Na20 and K20) are usually present. The gypsum added during milling, acts as

a source of sparingly soluble sulphate. The advantage of this is that it delays the

setting of cement by an hour or two when water is added. This is good in the sense

that fresh paste maintains its plasticity for some period of time during which it can be

handled. In the absence of gypsum, the other components of cement quickly stiffen

when in contact with water. All the compounds present in cement are anhydrous. In

this anhydrous clinker, both the dicalcium and tricalcium silicates occupy about 75%

by weight of the total. When water is added to cement, each of these compounds

hydrates. However, their contribution to the hardening of the Portland cement is

different [23].

The trica1cium aluminate is the first to react, in the presence of water. The rapid

setting of this compound evolves a considerable amount of heat. The presence of

gypsum in the mixture helps in retarding the rate of this reaction. Tricalcium

aluminate hydrate combines with gypsum (a retarder) to form tricalcium

sulphoaluminate, better known as ettringite (3C3A·3CaS04·32H20). This reaction plus

other reactions are shown in Table 1.2 (see page 14).
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Ettringite is soluble in the pore water of the cement and forms coatings over the unhydrated

aluminate particles, which delays their hydration. This is the mechanism of set retardation by

gypsum [24]. On the other hand when all the gypsum has reacted with tricalcium aluminate to

form ettringite, additional C3A reacts with it to form a low form of calcium sulphoaluminate

(monosulphate) 3C3A·3CaS04·12H20. [24]. The hydration of aluminoferrite contributes very

little to the strength of the cement as it hydrates very slowly.

As might be expected, the hardening reaction in a cement-water paste is principally

associated with the hydration of the two silicate compounds C3S and C2S. The rates at which

these two silicates react differ appreciably. In the end, they both give the same products i.e.

fibrous calcium silicate hydrate (mCaO·Si02·nH20). Calcium hydroxide is formed as a co­

product in both reactions. The calcium silicate hydrate is considered the most important

product in the hardened cement since it gives concrete strength after setting [24].

Tricalcium silicate (C3S) is the compound responsible for most of the early strength of

cement. It hardens quickly and attains a very high strength when it is finely ground and mixed

with water to give a paste. Likewise, dicalcium silicate (C2S) hardens hydraulically the same

as tricalcium silicate, but at a much slower rate and it contributes to the strength of cement at

a later stage. Although tricalcium aluminate reacts rapidly with water, its hydraulic properties

are not very pronounced. However, it improves the initial strength of cement when combined

with silicates.

The minor components of the cement clinker such as free calcium oxide (free lime) and free

magnesium oxide (periclase) react with water. They react with water to form calcium

hydroxide and magnesium hydroxide, which occupy more space than the original oxide.

Figure 1.2 depicts schematically, the three stages of hydration of Portland cement as shown

by Skalny and Daugherty [25]. The white part represents the water molecules and the small

black structures are the interlocking fibrils of calcium silicate hydrate (C-S-H). The black

spots are the unhydrated cement grains.
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(i) Stage 1

The interlocking fibrils (calcium silicate hydrate) C-S-H appears around the cement
grains and each set up is surrounded by water.

(ii) Stage IT

The interlocking fibrils (calcium silicate hydrate) C-S-H linking the cement grains,
causing setting to start to form around them.

(iii) Stage III

The interlocking fibrils (C-S-H) bind the cement and other components of the mixture
into a hard mass.

Figure 1.2: Stages in the hydration of Portland cement
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It is important to note that the hydration of cement does not go to cOlnpletion. Even

after several years, if you look at a microstructure you still get residual grains of

unreacted clinker minerals embedded in a matrix composed mainly of calcium silicate

hydrate gel. The main reason for this is the fact that during hydration some reaction

products form coatings around the unreacted celnent grains thus inhibiting access of
....

water to the anhydrous Inaterial.

A summary of the hydration products of cement and the heat they generate is given in

Table 1.2. It is clear from the table that a lot ofheat is evolved during hydration [19].

Table 1.2: Typical reactions and heat evolved during hydration of Portland cement

Before After complete Heat evolved

hydration hydration (Jig)

C3A + 6H C3AH6 866.4

- -
C3A + 3CS2H + 32H C6AS3H32 1452.4

2C3S + 6H CxSyHz + 3CH 502.3

2C2S + 4H CxSyHz + CH 259.5

C+H CH 1167.7

CS2H = gypsum (CaS04-2H20). In CxSyHz , x, y and z indicate that the calcium

silicate hydrate is of indefinite composition.

1.6.2 Heat of Hydration

In all chemical reactions heat is either given out by the reaction or must be provided

for the reaction to take place. The reaction between cement and water is exothermic.

The set reactions of cement are still a subject of debate because of their complex

nature. Figure 1.3 showing the overall heat evolution and presenting the rate of heat

evolution over the first few hours of reaction is generally accepted [26].
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Figure 1.3: Typical evolution of heat as Portland cement sets and begins to harden

The rate of heat evolution is surprisingly very uneven as a function of time. An initial

burst of heat evolution at time less than 50 minutes occurs within seconds of mixing.

The peak at time less than 50 minutes is attributed to the heat of wetting of cement. It

reaches a maximum within 10 minutes of mixing. The trough around 100 minutes

represents a period of reduced thermal activity. The rate of reaction remains in this

low value for an hour or two.

After one or two hours, the heat is again evolved rapidly (giving the maximum around

500 minutes) but at a much lower rate than the initial heat of wetting. The peak

obtained around 500 minutes is attributed to the rapid formation of calcium

aluminosulfate hydrate, ettringite and the hydration of calcium silicate clinker

minerals. The reaction remains at this rate for a period of eight to ten hours and

thereafter gradually decreases over a much longer period. Although the heat evolution

curve gives information about the extent and rate of hydration, they tell little about the

structure of the material. Hence, the curve is not necessarily related in any simple way

to the development of the strength as shown in Figure 1.2.
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1.7 Concrete

1.7.1 The Composition of Concrete

Concrete is the artificial rock made by mixing sand, cement, water and stones in certain

ratios. It is however generally accepted that the performance of concrete depends mainly on

the quality of cement paste. The cement paste must completely coat every aggregate and fill

completely all the spaces between the aggregate particles. In its fresh state, concrete may be

easy or difficult to work with depending on the proportions and characteristics of the

ingredients.

1.7.2 The Role of Water in the Making of Concrete

The addition of water in the preparation of fresh concrete serves to hydrate the cement and

assures the workability of the fresh concrete. Although only 20-25 % of the mass of cement

must be water for hydration to occur, additional water is needed to achieve the complete

hydration, as well as good workability. The consistency of the concrete mix (i.e. wetness and

dryness) is measured by the slump test because of its simplicity. This test may also be used to

give an indication of the workability of the concrete mix. Excess water in a mix can cause the

paste to become too thin and lose its ability to hold together the heavy particles of aggregate

in suspension. This leads to segregation that creates problems during placing and compacting

[27].

The water content of cements, mortars and concretes which is usually defined in terms of the

water to cement weight ratio (w/c) is critical to the physical properties of the product. The use

of high w/c ratios is superficially attractive but can lead to a decline in the physical properties

of the product (e.g. producing a highly porous material with low compressive strength). The

most important engineering property of Portland cement-containing concrete is its

compressive strength. The two important factors controlling the strength of cement paste are

the degree of hydration and porosity. As the hydration progresses, the amount of hydration

products increases resulting in an increase in strength of the product. Quantitatively, the

decrease or increase in porosity is viewed as a greater contributing factor on the strength of

concrete. Porosity is also a function of the degree of hydration and water to cement ratio. It

can thus be said that the strength increases with a decrease in porosity.
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1.7.3 The Role of Cement in the Making of Concrete

When water is added to cement, hydration takes place. The two major products of

hydration are calcium hydroxide Ca(OH)2, commonly known as slaked lime and

calcium silicate hydrates C-S-H. The principal hydration product, C-S-H, on

hardening gives concrete its strength (See section 1.6.1). Thus, the strength of

properly compacted concrete depends primarily on its cement to water ratio [24].

Excess water in a concrete mix, causes the paste/glue formed to be diluted thus

reducing the strength of the resulting concrete. During the process of hydration, water

is initially used up rapidly (some water also evaporates) causing the mix to stiffen and

finally to set. After setting, concrete hardens (which is still part of the process of

hydration) and will continue to gain strength provided the concrete is not allowed to

dry out.

1.7.4·The Role of Aggregates in the Making of Concrete

Both the sand and stones constitute aggregates in the concrete and have different

roles. Stones provide stability to the hardened concrete since a concrete mix

containing only cement and water would suffer from shrinkage, creep and thermal

movements. They are also used for economic reasons as they provide cheap bulkiness

to the mix. Sand is used as void filler in the mix and also to reduce friction between

the stone particles. If the sand is made up of round particles that are smooth, the mix

will have an easy flow and good workability. If, however, the particles are flat and

elongated as well as having a rough texture the mix will be harsh with poor

workability. The grading of sand is important to the design of concrete mixes. While

all sizes of sand grains play their part in the mix, the grains that are sieved through a

300, 150 and 75 micrometers sieve have a significant effect on improving workability,

finishability, flowability and surface texture of concrete [28].

1.8 Selection of Aggregates for Concrete

Aggregates in concrete constitute 80 to 85 % of the mass and thus the physical and

chemical properties of these aggregates significantly affect the performance of the

concrete [29]. It is therefore imperative that sound aggregates are used when making

concrete. Sound aggregates are those sands and stones that can be used to make

concrete that is both strong and durable [30].
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The commonly used aggregates in South Africa are derived from quartzite, sandstone,

dolerite, homstone, norites, tillites, malmesbury shales, felsite, granite and dolomite. Some of

these aggregates such as sandstone and dolerite are particularly useful in prolonging the life

of the concrete exposed to acid attack such as found in sewer pipes. This is because these

aggregates are inert i.e. resistant to shrinkage and chemical attack. The compressive strength

of these types of rocks varies from about 150 to 350 Mega Pascals (MPa), as a result the

aggregates derived from them are much stronger than the concrete in which they are used

[30].

1.8.1 Alkali-Aggregate Reaction

The reaction between alkalis such as N~O and K20 (from the cement) and certain mineral

constituents (that contains metastable forms of silica such as opal, cristobalite and volcanic

glasses) in some aggregates may result in expansion within the concrete leading to cracking.

Steel reinforcement in such concrete is less protected against corrosion. Although in South

Africa this problem was first identified in structures in the Cape Peninsula in 1970s, these

reactions were first discovered in the United States of America during the 1930s [31]. While

these reactions may have serious adverse consequences, enough is known of the phenomenon

to make it possible to minimise the risk of alkali-silica reactions in new structures [32].

It is assumed that the alkali-aggregate reactions take place in two stages:

(a) Stage 1

The pH found in concrete is normally high i.e. about 12.5-13. Therefore the aggregates

having silica in a metastable form react with the hydroxyl ions leading to the formation of a

tobermorite gel, which is composed of a weakly bonded cross-linked alkali-silica network

with the ability to hold large quantities of water. The overall rate of this process depends on

the concentration of the reactants, the higher the concentration the faster will be the reaction.

The effect of these reactions does not show immediately but after a few years [33].
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(b) Stage 2

In the second stage, the products formed during stage 1 (such as ettringite) absorb

water from the concrete and begin to swell. This swelling within the aggregates

eventually leads to the cracking of concrete [33]. It can therefore be summarised that,

for the alkali-aggregate reaction to take place, three conditions must be met:

(a) The alkali content in the concrete must be high.

(b) The aggregate used must contain reactive silica (i.e. poorly crystallised hydrous

silica) and

(c) Water must be available.

1.8.2 Preventive Measures of the Alkali-Aggregate Reactions

To reduce the seriousness of the reactions mentioned in section 1.8.1, the following

measures should be taken into account:

(a) The amount of cement should be kept to a minimum to reduce the alkali content.

(b) An alternative non-reactive aggregate should be used.

(c) Manufacture of high quality impervious concrete by using sound aggregates and

low water to cement ratio.

(d) Heat must not be used to accelerate curing as it accelerates the alkali-aggregate

reaction.

(e) Use of low alkali cements.

1.9 The History of Concrete Corrosion

Concrete structures are very durable and attesting to this claim is the fact that there

are numerous concrete structures which are over 1000 years old that are still in use

e.g. the Pantheon in Rome. This claim does not mean that concrete does not corrode

or deteriorate since many cases of concrete corrosion have been reported. Concrete

corrosion was first observed in the concrete structures that were exposed to seawater

as early as 1840 by Smeaton and Vicat [34]. The damage caused by sulphate ions (i.e.

ettringite formation) was pointed out by Candlot [35]. During those times, ettringite

was known as Candlot's salt as it was named after Candlot. Concrete corrosion today

is known to be a complex process since the damage is usually due to the simultaneous

action of several factors [35].
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1.9.1 Factors Affecting the Performance of Concrete in Aggressive Environment

(a) Concrete Permeability

The resistance of concrete to an aggressive environment depends largely upon its

permeability to corrosive agents such as sulphate ions. Thus, any factor that can

reduce the permeability of concrete will be beneficial. The three main factors that

reduce permeability of concrete are water to cement (w/c) ratio, type of cement used

and also the curing method and period. There is no difficulty in producing sections of

concrete that are comparatively impermeable. The real difficulty lies in maintaining

consistently the same quality of concrete, which is uniformly the same throughout the

structure [36].

(i) Water to Cement Ratio

In the manufacture of the watertight concrete the water content of the mix should be

kept reasonably low, but the amount should be sufficient for adequate workability.

The water to cement ratio determines the durability and the strength of concrete. If the

water to cement ratio is low during the preparation of fresh concrete then the hardened

concrete will be highly impermeable [36].

(H) The Type of Cement Used

Concrete can be impermeable if correctly designed and well made. In practice

concrete structures are often permeable because of the difficulty of maintaining

consistency throughout the while structure. There are certain types of cement such as

sulphate resistant cement and fly ash cement that are more resistant to corrosion than

ordinary Portland cement. Materials such as slag and ash that are cement extenders

can be used with these cements to reduce the permeability of concrete. The use of

these materials tends to require less cement and less water during mixing of fresh

concrete. This results in the reduction of bleeding (a form of segregation in which

some of the water used in the mixing rises to the surface of the concrete as the solid

materials settle) of fresh concrete [37].

(Hi) Curing

Curing is immersion of fresh concrete materials in water or exposing them to a humid

environment with the intention of maximising hydration. The properties of concrete

such as strength, resistance to corrosion and durability improve with time as long as

hydration of the mortar continues to take place.
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It is because of this reason that proper curing of set concrete is necessary to ensure

continued hydration of cement. Excessive loss of water from newly placed concrete

can significantly inhibit hydration, with a consequent reduction of strength. The

following methods are used to ensure proper curing of set concrete:

• Water curing: This is done by continuously spraying the surface of set concrete

with water during the early hardening period. The other method involves a

complete immersion of the set concrete in water or covering the set concrete with

a wet material.

• Self-curing: This is achieved by preventing the loss of moisture from set concrete

through evaporation by covering the surface with waterproof paper or plastic

sheets.

• Steam curing: Steam curing speeds up the hydration of set concrete by raising the

curing temperature, resulting in high concrete strength at an early stage [38].

It can therefore be concluded that curing of set concrete is essential for two main

reasons:

• To prevent the loss of moisture from the hardening concrete because drying

causes shrinkage.

• To reduce the temperature of the hardening concrete so as to mInImIse its

expansIon.

1.9.2 Factors Enhancing Corrosion

The extent of concrete corrosion can be enhanced by other physical factors, such as:

movement of water over the concrete, temperature of water and wet and dry cycles

(i.e. when the surface of concrete is allowed to dry after beIng in contact with water)

[39].

• The movement of water
Corrosion rates are diffusion dependent, and will proceed much more slowly under

stagnant conditions than in situations where water is in motion. The movement of

water also accelerates the rate of concrete corrosion by washing the corrosion

products from the surface of concrete into the solution thus exposing a fresh surface

that is uncorroded and the cycle goes on [39].
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• The temperature of the water

It is generally acknowledged that chemical reaction rates are temperature dependent i.e. the

higher the temperature, the faster the rate of a chemical reaction including corrOSIon.

Therefore warm water will have a higher corrosion rate than cold water [39].

• Wet and dry cycles

When concrete dries out after being wetted with water containing dissolved corrosive ions

(such as magnesium, sulphate and chloride), the concentration of these ions increases in the

pores of concrete. If drying continues long enough, the dissolved solids crystallise out and

exert expansive pressure on the surrounding concrete [39].

1.10 Mechanism of concrete corrosion

According to Le Chatelier and co-workers [40] cited by Bickzok [35] there are three types of

mechanisms via which concrete corrodes.

1.10.1 Corrosion of Type 1

Leaching Corrosion

This type of corrosion results from the direct dissolution of one or more of the components of

concrete into the water, or by the conversion of any of such components into more soluble

forms as a result of interactions with the dissolved solids present in the water. The rate of

corrosion is determined by the rate at which crystalline calcium hydroxide is leached from the

concrete and so this type of attack is more pronounced in porous concrete than in dense

concrete. This type of attack is caused by acidic water, pure water, oils and fats. It is

manifested by etching, roughening, honeycombing and general loss of material from the

exposed surface progressing inwards.

Almost all the materials found in concrete are to some extent soluble in water [41]. Pure

water is often called hungry water by the corrosion technologists. This is because of its ability

to leach the compounds of concrete (especially lime) rapidly due to the concentration gradient

of calcium compounds.
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With rare exceptions (e.g. silica), the materials nornlally found in celnent have a

higher solubility in acidic than in alkaline waters. Therefore more material is

dissolved in acidic water before saturation is achieved. The degree of attack by acids

depends upon their strengths and their concentrations. Strong mineral acids such as

hydrochloric acid, sulphuric acid and nitric acid dissolve most of the components of

the cement, with the formation of calcium, aluminium and iron salts, leaving behind

silica gel. A typical reaction of a leaching process by acid is shown in equation 1.1

[42]:

3CaO ·2 Si02• 3H20 (s) + 6 HCI (aq)"'---~~ 3CaCh (aq) + 2 Si02 (s) + 6 H20 (1) (1.1)
(C-S-H)

The acid resistance of cements is strictly limited. Portland cements have little or no

resistance to acid even if it is very dilute or very weak (conditions which exist in most

of the industrial effluents). Weak acids such as carbonic acid, and many organic acids

such as humic acid and lactic acid, form water-soluble salts with some calcium

compounds. Severe damage to the concrete structure is only observed after a long

period of exposure to such effluents.

1.10.2 Corrosion of Type 2

This type of corrosion takes place under the action of magnesium salts. The reaction

products are either leached (by flowing water) or remain in place in a non-binding

fonn. This results in the reduction of the strength of concrete. A typical reaction is

shown in equation 1.2.

MgS04 (aq) + Ca (OH)2 (s) (1.2)

The precipitate of magnesium hydroxide that is formed is fairly unreactive.

1.10.3 Corrosion of Type 3

Spalling Corrosion

The products of corrosion reactions involving sulphate ions, cause spalling corrosion.

These products are formed mainly inside the set cement and are sparingly soluble and

voluminous. The result is that they exert pressure upon their surroundings thus

loosening the framework of the concrete by cracking and eventually spalling.
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In the presence of sulphate, cement aluminates are preferably converted to two

calcium aluminate sulphate hydrates:

(i) The needle shaped trisulphate, 3CaO-Ah03-3CaS04-32H20(s) (ettringite) IS

formed in sulphate rich environments.

(ii) The monosulphate, 3CaO-Ah03-CaS04-12H20(s) IS formed In low

concentrations of sulphate.

The ettringite formation is accompanied by an increase in volume, and concrete is

incapable of resisting the pressure induced by this expansion and so it cracks. This

type of attack is serious in concrete made from cements that are rich in tricalcium

aluminate [42].

The reactions that result in the formation of ettringite are shown in equation 1.3 and

lA.

Ca (OHh (s) + Na2S04 (aq)

Portlandite + Sulphate

• CaS04·2H20 (s) + 2 NaOH (aq)

Gypsum

(1.3)

Ca3Ah06 (s) +3CaS04·2H20 (s)+26H20(l) -'Ca6Ah06(S04)3-32H20(S)+Ca(OHh(s)
Tricalcium Gypsum (ettringite) (104)
aluminate

Where sulphate ions are associated with ammonium ions the rate of corrosion is

increased. This is because the ammonium ions attack the calcium hydroxide in the

concrete to form ammonium hydroxide ~OH. In alkaline conditions NH3 is lost

resulting in the formation of voids in the concrete. These voids increase the

permeability of the concrete leading to more corrosion [43].

1.10.4 Attack of Fats and Oils

Organic (plant and animal) fats and oils attack concrete. These contain smaller or

larger quantities of free fatty acids, which, like other weak acids, attack concrete. In

addition, the fatty acids can react with the calcium compounds contained in the set

concrete with the formation of the calcium salts (soaps), of the fatty acids and

glycerol. This decomposition of the fat (i.e. saponification) causes a softening of the

concrete. Mineral oils, which do not contain acids or resins, do not attack concrete

[44].
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1.10.5 Corrosion of Reinforcing Steel

Reinforcement in the form of steel bars or rods is used extensively in the construction

of big concrete structures e.g. dams, cooling towers, bridges and many others. This

combination of concrete and steel provides high tensile strength (steel) and

compressive strength (concrete). Therefore it is possible to obtain a structure which is

economical and at the same time strong and durable. Sadly, as with all building

materials, reinforced concrete is subject to natural ageing and other processes which

can affect its properties. Corrosion of steel reinforcement in concrete is now emerging

as the major cause of concern with regard to the deterioration of structures such as

those mentioned above. When the steel corrodes, it leads to the cracking of the

concrete, which then allows further deterioration by aggressive agents and carbon

dioxide moving easily into the concrete and eventually the spalling of concrete.

It is generally known and accepted that the corrosion of metals is an oxidation process

[45]. Metals are produced from their ores by the reduction of their oxides. Most

metals produced are thermodynamically unstable in the presence of oxygen making

them revert to their original condition. In ferrous metals this oxidation process is

known as "rusting".

The cement paste in concrete provides an extremely alkaline (pH 12.5-13)

environment (from the hydroxides of calcium, sodium and potassium) [46] that is

capable of protecting the embedded steel against corrosion. In this highly alkaline

environment, a thin layer of gamma ferric oxide (y-Fe203) forms on the surface of the

steel making it passive. The lowest pH necessary to protect steel is thought to be

approximately 11.5 as can be seen in Figure 1.4, which represents the attack of

chloride ions on steel [47].
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Figure 1.4: Effect of chloride on steel reinforcement corrosion in concrete

The protecting layer of gamma ferric oxide can however be broken down by a reduction

in pH which may occur as a result of carbonation of concrete (caused by atmospheric

gases such as carbon dioxide and sulphur dioxide). During carbonation, carbon dioxide

from the air carbonates the calcium hydroxide to calcium carbonate and this causes the

pH to drop to about 8. This results in the destruction of the environment in which a

passivating layer is maintained and thus the steel becomes vulnerable to corrosion. The

rate of corrosion in this case is determined by the amount of oxygen that diffuses to the

surface of the steel. The penetration of aggressive chemicals (e.g. chloride) through the

concrete to the surface of the steel will also disrupt the protecting layer. The diffusion of

chloride ions into concrete only takes place when there is moisture in the concrete.
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The chloride ion causes depassivation of the steel by penetrating the passive iron

oxide layer despite the high levels of pH, leaving the steel exposed to corrosion. As

the products of rusting steel (e.g. Fe202) expand, they cause the concrete to crack. The

rate of carbonation can be calculated using equation 1.5 [48].

D = K X t 1
/
2 (1.5)

where D represents the depth of carbonation, K and t are the permeability constant

and age of concrete respectively. It can therefore be deduced that the main factors

affecting the rate of carbonation in concrete are:

(i) Permeability of Concrete

The most important factor affecting the rate of carbonation in concrete is

permeability. This can be controlled by making sure that the concrete is properly

cured. Curing ensures that pores in the cement paste contain as much hydration

products as possible. The other factor is the ratio of water to cement; an increase in

this ratio increases permeability of concrete. Incorporation of a pozzolan such as fly

ash in the cement reduces permeability by forming more of the hydration products.

(H) Atmospheric Carbon Dioxide (C02) and Sulphur Dioxide (S02) Gases

The rate of carbonation increases with increasing amount of CO2 and S02 in the

atmosphere. Their attack on concrete depends on permeability of the concrete surface.

The level of CO2in the atmosphere has been increasing over a long period of time due

to human activities. This increase is significant in terms of concrete corrosion since it

has potential of carbonating calcium hydroxide inside concrete. There is experimental

evidence that when concrete surfaces are kept moist or subjected to cyclic wetting, the

rate of carbonation decreases [49]. The effect of sulphation, which is similar to

carbonation, is negligible since the S02 concentration in the atmosphere is very low

compared to that of CO2. An example of places where the S02 concentrations are high

and are of concern is in the sewage pipes that are made of concrete and areas next to

S02 emitting factories.
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(Hi) Coatings on the Surface of Concrete

The application of some protective surface coatings reduces the rate at which the concrete

carbonates. This is achieved by reducing the permeability of the concrete, making it difficult

for CO2 to diffuse through the surface of the concrete. However, it has been reported that

some coatings (e.g. water based silicate paint alone) increase the rate of carbonation in

concrete due to their high permeability [50].

1.11 Sasol Plant at Secunda

South Africa is one of the countries in the world that are experiencing a shortage of water. It

is therefore imperative for the consumers of large volumes of water such as industry to

manage their water resources well. Large volumes of water are required by industry for

cooling of products and equipment, for process needs and for boiler feed. To minimise the

consumption of large volumes of raw clean water, some industries (such as Sasol (Pty) Ltd.)

are investing in wastewater treatment processes with the intention to reuse the wastewater.

Sasol (Secunda complex) was designed such that it would be a zero effluent discharging

plant. This design enabled Sasol to minimise both the consumption of fresh water from the

local municipal authority and the volume of water requiring ultimate disposal. The water

recovery plants in Secunda are used to treat effluents from within the factories. The recycling

of wastewater (treated water) involves using it as make-up for concrete evaporative cooling

towers, a structure that is shown in Figure 1.5 [51].

The feed to the recovery plants is made up of the following streams:

1. Stripped Gas Liquor (SGL): This is basically a condensate from the gasification

process, from which sulphur and ammonia have been removed.

2. American Petroleum Industries (API): This is water from the oily sewers within the

factory after petroleum oil has been separated out from water.

3. Reaction Water (RW or RN): This water is generated by the Fischer-Tropsch reaction in

the synthol reactors, from which certain chemicals (mainly a1cohols and ketones) have

been recovered. The remaining constituents are short chain fatty acids (up to 4%) and

water.

4. Pond Water (Dam 4): This is water coming from the two sources namely the excess

process cooling water make-up and the contaminated water coming from the plant.
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The hot (treated) water that comes out of the recovery plants enters the cooling towers

(made of reinforced concrete) through a 3 m concrete-encased steel inlet duct. The

diagram showing the various water feeds to the recovery plants and to the cooling

tower is shown in Figure 1.5. The water then flows up the tower through two vertical

risers into a system of distribution channels, which run perpendicular to the inlet duct

leading into the distribution pipes. At the bottom of the distribution pipes are sprayers

which discharge the hot water onto a polypropylene splash grid consisting of 12

layers. The water is broken down into fine droplets when it hits the splash grid. These

droplets are cooled by rising air drawn into the cooling tower through the air opening.

The water then passes through the filling pipes and drops down as rain into the pond

from where it is taken back into the plant [51]. At Sasol, the quality of the reused

water (used as cooling water make-up) drops as this water becomes saturated with

different contaminants. These contaminants include the dissolved inorganic salts (e.g.

sodium sulphate), organics (e.g. phenols), and ammonia, just to mention a few.

Besides using wastewater, there exists an option of using mine water as a cooling

medium. The mine ':Vater, which is stored in dams, is produced from Sasol's mining

operations.

Water recovery plants

Process cooling
tower

Figure 1.5: A representation of a process cooling tower and the streams that make up

process cooling water at Secunda Sasol Plant.
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1.12 Aim of the Present Study

The analysis of process cooling water and mine water shows that these waters contain

dissolved substances that are aggressive towards concrete. The corrosion indices for

process cooling water are very high, implying that the rate of corrosion of cooling

towers should be much faster than what is being observed. Due to the expected rise in

the cost of water, Sasol is planning to use mine water in the cooling towers at Secunda

as a cooling medium, to supplement the process cooling water that is currently being

used. Since this water has not been used before, its effects on the surface of the

cooling towers remains unknown. It is therefore the purpose of the present research to

provide answers or shed some light to the following questions:

Why is the rate of corrosion of Sasol's cooling towers not as high as expected from

the corrosion indicators of process cooling water?

What will be the corrosion effect of mine water on the concrete of the cooling towers?
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Chapter 2

Materials and Methods

2.1 Experimental Procedures

To guide-the investigation, mine water and process cooling water samples were analysed for

selected cations (calcium, magnesium, sodium, potassium and ammonium ion) and anions

(chloride and sulphate) and silicon. These ions were selected because the preliminary analysis

showed that they were present in very high amounts in both waters. The three ions of interest

were magnesium, ammonium and sulphate, which are known to attack concrete. A number of

analytical instruments and methods were chosen to monitor the rate of corrosion of concrete.

2.2 Analysis of Metal Ions using ICP-OES

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was chosen for the

analysis of cations.

2.2.1 Introduction

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was first developed

in the mid 1960's [52]. The instrument provides a rapid, sensitive and convenient method for

the determination of metals in water and wastewater. This technique is widely use in metal,

petroleum and chemical industries and in monitoring environmental pollution. It is also used

effectively in place of Atomic Absorption Spectrometry (AAS), X-ray fluorescence

spectrometry, or any conventional method of emission spectrometry [53].

The ICP-OES spectrometer has from the outset been marked as an analytical method of

extraordinary capability and this is clearly demonstrated by the several advantages, which it

exhibits over other spectroscopic methods of analysis. The instrument has a high detection

limit because of the high temperatures and high electric density in the circumference of the

plasma. These ensures that sample loss is minimal, thus the excitation efficiency is high

resulting in high sensitivity (parts per billion (Ppb) level in detection limit). Also because of

this, the dissociated atoms do not recombine into compounds hence matrix effect is

minimised.
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ICP-OES has a wide analysable concentration range. This is because the circumference of the

plasma is kept at high temperature so that there is no low temperature around excited atoms.

This prevents self-absorption and provides a wide linear dynamic range. High precision is

another advantage. This is caused by the fact that excited atoms and ions are concentrated at

the upper central part of the plasma and their upward flow is very stable. The final result is

the repeatability of better than 1% in coefficient of variation. The ability of the instrument to

carry out multi-element analysis simultaneously without sacrificing precision or detection

limits is another advantage. Simultaneous ICP's provide results for up to 60 elements in a

sample in less than one minute. Since argon is the only gas used in the operation, there is no

danger of explosion, making the ICP one of the safest instruments to operate [54].

2.2.2 The Working of ICP-OES

There are various components that comprise Inductively Coupled Plasma Optical Emission

Spectrometer (ICP-OES). These are shown in the schematic diagram in Figure 2.1.

Argon to Plasma

IRP Generator I

....
JII""" Torch Spectrometer

Nebuliser

-

Peristaltic Pump

~...
RP Coil

Sample
Computer

Printer

Figure 2.1: Typical components ofICP-OES
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The intensity of an analyte line in the rcp is a function of factors such as the nebuliser radio

frequency (RF) coupled into the plasma and the argon flow rates. The sample is aspirated via

a peristaltic pump to a nebuliser. The peristaltic pump has a series of rollers that push the

sample solution through flexible tubes and this process is known as peristalsis [55]. The

pump is not in contact with the sample but with the tubing. Therefore, as the sample is carried

from the sample vessel to the nebuliser, no contamination occurs. The tubing is one part of an

rcp that requires frequent replacement since daily wear by strong acid and organic solvents

occurs. Worn tubing can cause poor instrument performance due to the unsteady stream of

sample being delivered to the nebuliser. In the nebuliser, the liquid sample is converted into

an aerosol (very small droplets) which is then transported to the plasma. There are many

types of nebuliser [55], the concentric or pneumatic nebuliser, cross-flow nebuliser,

Babington nebuliser, V-groove nebuliser and the ultrasonic nebuliser. The differences lie in

the analyte transport efficiency of the nebulisers, with the ultrasonic being far more efficient

than the others [56]. Although these nebulisers give excellent analytical sensitivity, the

difficulty of tuning the radio frequency source has hindered their use for routine work [57].

The ideally dry, analyte-Iaden aerosol is then transported from the nebuliser by an inert

carrier gas, usually argon, and introduced into a high temperature plasma.

The sample is introduced into the plasma in such a form that the desolvation, vapourisation,

atomisation, ionisation and excitation are reproducible. Hence, only the small droplets in an

aerosol are suitable for injection and therefore a spray chamber is placed between the

nebuliser and the torch. The most important function of the spray chamber is to remove the

larger droplets from the aerosol to the waste container. The excess sample from the spray

chamber is carried through the drain. The gas flow carrying the sample aerosol is injected

into the plasma through a central tube of the torch. The rcp has a special type of plasma [58]

that derives its sustaining power by induction from a high frequency magnetic field. Initially,

the argon gas passes through a quartz tube and upon emerging at the tip, is surrounded by an

induction coil. An alternating current flows through this coil at a frequency of around 40

MHz and power levels of 1 kW. The plasma is by definition a conducting gaseous mixture

containing significant concentrations of cations and electrons and is sparked by a Telsa coil.

The plasma is sustained via Ohmic resistance which is the result of the interaction of the

cations and electrons with the fluctuating magnetic field supplied to the coil from the RF

generator. A flame shaped plasma forms near the top of the torch.



The temperatures in the plasma range from 6000 to 8000 K. Due to the high temperatures

produced by the plasma, a second stream of argon gas is required to cool the inside quartz

walls of the torch. The flow of this gas also centres and stabilises the plasma. An atomic or

ionic spectrum is emitted by the analyte that has two dimensions [59]. Firstly the wavelength

at which the emission is made is used to determine the elemental composition, and secondly,

the intensity of the emitted radiation is proportional to the concentration.

The spectrometer is usually composed of a monochromator to monitor the emISSIon

wavelength, a photomultiplier to boost the signal and a photodetector for detection of

radiation. These are all controlled by a computer.

2.2.3 Experimental Conditions for ICP-OES in the Current Work

A Liberty 150 AX Turbo (Varian) ICP was used to perform all the analyses. An IBM

computer did data gathering and handling. The optimum conditions for ICP-OES in the

current work are given in Table 2.1 along with the instrument specifications.

Table 2.1: ICP-OES specifications and operating conditions

Operating power 1.00 kW

RP output 40.68 MHz

Plasma argon flow 15.0 L/min

Auxiliary argon flow 1.50 L/min

Argon pressure 500 kPa

Torch mounting Axial, Low flow

Nebuliser Pneumatic (Concentric)

Nebuliser pressure 240 kPa

Photomultiplier voltage 800v

Room temperature 20-25 QC

Sample flow rate 0.001 L/min
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The Iep instrument used in this work had a rapid scan function, which allows for rapid

detection of any species that the instrument is capable of monitoring. The rapid scan mode

was used to detect the species present in process cooling water, mine water and all the other

waters making up process cooling water (i.e. API, Reaction water, water from Dam 4 and

Stripped gas liquor) obtained from Sasol Secunda plant. These samples were stored in plastic

containers and were used for all the experimental work. Before analysis, the water was

shaken so as to have the correct representation of the solution. The elements identified

through the rapid scan mode in these waters along with the respective wavelengths for each

element are shown in Table 2.2.

Table 2.2: A table showing the concentration (mg/L) of cations in various Sasol water stream

as determined using Iep Rapid scan mode.

Element
Wavelength MW PCW SGL API RN DAM 4

(nm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Ca 318 222 45 59 78 1 39

Mg 384 144 6 22 18 0 8

Na 589 350 64 243 207 2 60

K 770 13 81 50 36 <1 18

Fe 260 1 8 0 2 1 3

Mn 259 1 1 0 0 0 0

Cn 325 < 0.05 0 <0.05 0 <0.05 <0.05

Zn 206 0 1 0 1 0 0

Si 252 1 30 12 26 1 19
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2.2.4 Calibration Curves for Cation A~alysis

Riedel-de-Haen FlXANAL solutions for ICP-OES were obtained for all the analytes. The

solutions contained exact amounts (1.000 g) of the analyte concerned and had guaranteed

minimum impurity levels. The standard stock solutions of 2000 mg/L were prepared by

diluting the solution to exactly 0.5 L, using a 0.1 M HCI (AristaR ICP-OES grade) solution.

The acid solution was made using ultra-pure water (Milli-Q water) and was used to preserve

the solutions. The concentrations shown in Table 2.3 represent the working standards

prepared by dilution of the stock solutions. The elements chosen for analysis are those that

were present in high concentrations in process cooling water and mine water, and some of

these are aggressive towards concrete. The standards were discarded monthly and new ones

prepared.

Table 2.3: Standard solutions (mg/L) used to calibrate the ICP-OES

Analyte Standard 1 Standard 2 Standard 3 Standard 4 Standard 5

Calcium 5 10 15 20 50

Magnesium 2.5 5 7.5 10 20

Sodium 10 20 40 50 100

Potassium 2.5 5 7.5 10 20

Silicon 5 7.5 10 15 20

The standard solutions were run on the ICP-OES, which was programmed to reject any

calibration with a correlation coefficient of less than 0.995. The instrument was calibrated

each time before use since extended use of the instrument changed slightly the working

conditions in terms of the cleanliness of the sample introduction system, torch and the optical

window. The calibration curves were obtained using Microsoft Excel software on the

computer. The peak intensities obtained from the analysis of the standard solutions are

tabulated in Table 2.4. These have been plotted against their respective concentrations and

the calibration graphs obtained are shown in Figure 2.2 - 2.6.
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Table 2.4: The intensities obtained from the analysis of standard solutions using ICP-OES

Analyte Standard 1 Standard 2 Standard 3 Standard 4 Standard 5

Calcium 7016 13830 20800 27760 68300

Magnesium 8650 17400 26000 36330 71570

Sodium 24880 49550 98580 123000 243500

Potassium 206.7 390.3 585 790 1470

Silicon 12640 18950 25270 37960 50500

The calibration graphs obtained are shown in Figures 2.2 - 2.6.
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Figure 2.2: Calibration curve for calcium
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Figure 2.3: Calibration curve for magnesium
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2.3 Determination of Ammonium Ions

Samples of process cooling water and mine water were also analysed for the presence of

ammonium ions. According to the literature, the ammonium ions attack concrete by replacing

the calcium ions in the concrete and then later are volatilised, leaving voids on the surface of

concrete. The leaching of calcium ions from the concrete and the formation of voids

decreases the integrity of the concrete structure. The analysis of ammonium ions was

monitored using a Skalar segmented flow autoanalyser (SAH PLUS SYSTEM) housed at the

Chemical Analysis Laboratory, Umgeni water in Pietermaritzburg.

To calibrate the instrument, a 1000 mg nitrogenIL stock solution was prepared by dissolving

3.8180 g ammonium chloride AnalaR (MERCK) in Milli-Q water in a 1L volumetric flask.

An intermediate solution was prepared by diluting 10 ml of the stock solution in 1L, giving a

new stock solution of 100 mglL. The working standards shown in Table 2.5 were then

prepared in 0.1 L volumetric flasks by appropriately diluting the 100 mglL stock solution

with Milli-Q water. The ammonia in the standard solution or in the sample reacts with

sodium salicylate, sodium nitroprusside and dichloroisocyanuric acid sodium salt dihydrate in

a buffered alkaline medium at a pH of 12.8 - 13.0. The absorbance of the ammonia-salicylate

complex was then measured at 660 nm by the instrument.

Table 2.5: Ammonium concentrations from the analysis of the standard solutions used

to calibrate the Skalar segment flow analyser instrument

Standard (mg/L) 0 0.05 0.1 0.25 0.5 0.75 1

Response 2 174 344 895 1809 2756 3660

A calibration graph was then plotted using Excel and is shown in Figure 2.7.
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Figure 2.7: Calibration curve for ammonium ion

This calibration equation was then used to determine the concentrations of ammonium ion in

process cooling water and mine water. The results obtained for analysing mine water and

process cooling water are shown in Table 2.6.

Table 2.6: A table showing the concentrations (mg/L) of ammonium ions in process cooling

water and mine water.

Cation PCW MW

NH4+ (mg/L) 1062 0
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2.4 Analysis of Anions using Ion Chromatography

2.4.1 Introduction

The discovery of chromatography has been credited to Twsett [60], a Russian who, in 1903,

succeeded not only in separating leaf pigments using a solid stationery phase, but also on

interpreting the chromatographic process. Martin and Synge [61] applied the concept of

theoretical plates, from distillation technology, as a formal measurement of the efficiency of

the chromatographic process. This concept not only revolutionalised liquid chromatography

(LC) techniques but set the stage for the development of gas and paper chromatography.

Ion chromatography (lC), as a novel analytical method, was introduced in 1975 by Small,

Stevens and Baumann [61]. The technique has developed within a very short time, from a

new way of detecting a few inorganic anions to a versatile analytical technique for ionic

species of all kinds. Modem IC now involves unique combinations of a number of separation

systems with appropriate detectors. This rapid development has been due to a significant

improvement in the understanding about the ion exchange materials employed and of the

separation process occurring [61].

Modem IC, as a special type of liquid chromatography, is based on the following three

separation techniques.

Ion Exchange Chromatography

The essential principle of this technique is an ion exchange process between the mobile phase

and the exchange groups covalently bound to the stationary phase. The stationary phase is

polystyrene-based resin, which has been cross-linked with divinyl benzene. Ion exchange

chr~matography can be used for separating both inorganic and organic anions and cations.

For the analysis of anions, the exchange function usually is a quartenary ammonium group,

whereas for the analysis of cations, a sulphonate group is most often employed [62].
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Ion Exclusion Chromatography

Ion exclusion chromatography involves Donnan exclusion, stearic exclusion, and the

adsorption process. The stationery phase is totally sulphonated, high capacity exchange resin

derived from the polystyrene/divinyl benzene copolymer. Ion exclusion chromatography is

especially useful for separating weak organic acids from totally dissociated acids. The latter

is eluted as a single peak at a position corresponding to the void volume of the separator.

Additionally, this separation technique can be used for the determination of carbonate and

borate [63].

Ion Pair Chromatography

The dominant process involved in ion pair chromatography is adsorption. Using ion pair

chromatography, it is therefore possible to separate metal complexes and surfactant anions

and cations. The selectivity of the columns is determined by the mobile phase. Besides

organic and inorganic modifiers, an ion pair reagent is added to the eluent. The stationary

phase is composed of a neutral, non-polar, microporous polystyrene/divinyl benzene based

resin [64].

Ion chromatography (le) has a few advantages over colorimetric and titration-based

procedures. These include the instrument's ability to yield rapid sequential qualitative and

quantitative analysis of anions and its ability to exclude chemical interferences, which are

often encountered in the latter methods.

2.4.2 The Working of Ion Chromatography

Ion exchange is the most frequently used separation mechanism for ions in solution. The

column is packed with spherical beads of a polymethacrylate resin that have been

functionalysed with quartenary ammonium groups. The nett positive charge results in

attraction and exchange of anions. The eluents (mobile phase) used are dilute solutions of

salts, acids or bases or a combination of these, pH being a critical factor in mobile phase

preparation. In this technique, a water sample is injected into a moving stream of borate­

gluconate eluent and passed through a separator column. Anions of interest are separated on

the basis of their relative affinities for a low capacity, strongly basic exchanger [65]. The

separated ions are monitored with a detector based on their conductivity.
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The analyte species are then identified by their peak retention times as compared to those of

standards and quantified according to conductivity from calibration data.
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Figure 2.8: Typical components of an IC instrument

In comparison with conventional wet chemical techniques (such as photometry, gravimetry

turbidimetry, and colorimetry which tend to be labour intensive and time consuming) ion

chromatography offers the following advantages:

Speed

The introduction of a new generation of high performance separators for ion exchange

chromatography has resulted in the reduction of the analysis time to less than 15 minutes for

most common anions. Quantitative results can thus be obtained in a fraction of the time

needed for the traditional wet chemical techniques [66].

Sensitivity

In the past, samples had to be preconcentrated for determining low concentrations. However

this has changed with the introduction of microprocessor technology in conductivity

detection. It is now possible to identify parts per billion (ppb) concentration ranges without

preconcentrating the sample [67].
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Speed

The introduction of a new generation of high perfonnance separators for ion exchange

chromatography has resulted in the reduction of the analysis time to less than 15 minutes for

most common anions. Quantitative results can thus be obtained in a fraction of the time

needed for the traditional wet chemical techniques [66].

Sensitivity

In the past, samples had to be preconcentrated for detennining low concentrations. However

this has changed with the introduction of microprocessor technology in conductivity

detection. It is now possible to identify parts per billion (ppb) concentration ranges without

preconcentrating the sample [67].

Selectivity

The selectivity of ion chromatographic procedures for analysing inorganic and organic anions

and cations is ensured by the choice of suitable separation and detection. Selectivity is the

ability of the detector to recognize and respond to the components of interest.

Simultaneous analysis

The other major advantage of ion chromatography is the possibility of simultaneous

detennination of a number of individual components in a sample. Thus, in a very short time,

one obtains an anion or cation profile that provides infonnation about the composition of the

sample and avoids the necessity of time consuming tests.

2.4.3 Experimental Conditions used for IC in the Current Work

All the water samples obtained from Sasol-Secunda were analysed for chloride and sulphate

ions using the Waters Ion Chromatograph instrument having a Waters M430 conductivity

detector and an anion column (lC PAK A Anion Column WATO 07355). A borate/gluconate

mobile phase was used in the present work at a flow rate of 1 ml per minute. Table 2.6

describes the lC apparatus and the specifications of the equipment used. All the analyses

were carried out at the Laboratory ofUmgeni Water Laboratory Services.
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Column

Detector

Table 2.7: lC apparatus and specifications

lC PAK A Anion column (Millipore PN

WATO 07355)

Waters M430 conductivity detector

Pump

Autosampler

Air supply

System controller

Solvent reservoirs

Sample clean-up

Solvent clarification kit

Waters M510 / M501 (dual piston)

WISP M710B or M712 or Waters 717

with 0-200micro L sample loop and

auxiliary loop.

High quality compressed air for WISP

Millennium Chromatography Manager.

Polyethylene

Sep-Pak C18 extraction cartridges.

2 L Buchner flask and funnel HPVL 0.45

micrometer 47 mm diameter filters

2.4.4 Preparation of Standards and Calibration Curves for Anion Analysis

The salts (KCI and K2S04 MERCK'AnalaR) used to prepare the standard solutions were oven

dried at 105°C - 110°C for approximately two hours and were allowed to cool at room

temperature in the desiccator before weighing. The standard stock solutions for chloride and

sulphate ions were then prepared using ultrapure water. The concentrations of the stock

standard solutions were 1000 mg/L for chloride ion and 500 mg/L for sulphate ion. The

masses of the salts used to make one litre of solution were 2.1028 and 0.9070 g for KCI and

K2S04 respectively. The stock solutions were then diluted to five standards for each anion.

These were then used to calibrate the lC. The stock solutions were replaced every three

months because the anion standard stock solutions are stable for three months only when

stored in clean polyethylene or borosilicate glass containers at a temperature less than 10°C.

The conductivity for each ion is tabulated in Table 2.9 and the calibration graphs obtained for

chloride and sulphate are s~own in Figures 2.9 and 2.10.
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The graphical plots of conductivity (I-lS/cm) versus concentration (mg/L) were obtained using

Microsoft Excel software. The calibration equations obtained for chloride and sulphate ions

are given together with the calibration graphs. These were used to determine the

concentration of the ions in process cooling water and mine water.

Table 2.8: Standard solutions (mg/L) of cWoride and sulphate ions used to calibrate the Ion

chromatography

Anion Standard 1 Standard 2 Standard 3 Standard 4 Standard 5

Chloride 10 25 50 75 100

Sulphate 12.5 25 37.5 50 100

Table 2.9: The conductivity obtained from the analysis of chloride and sulphate

standard solutions.

Standard Chloride /(I-lS/cm) Sulphate /(I-lS/cm)

Standard 1 566087 477280

Standard 2 1397584 915710

Standard 3 2763542 1460001

Standard 4 4100000 1984123

Standard 5 5.660878 4001230
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Figure 2.9: Calibration curve for chloride ion

Sulphate (ion)

60

5000000

~
4000000

.S;
3000000

~
~

'0 2000000c:
0
u 1000000

0
0 20 40

y =40595x - 59084
R2 =0.9996

80 100

Concentration (mg/L)

Figure 2.10: Calibration curve for sulphate ions

The results obtained from the analysis of all the water samples from Sasol-Secunda for the

presence of chloride and sulphate are tabulated in Table 2.10.

Table 2.10: Anion concentrations of the various water streams from Sasol-Secunda plant

using Ion chromatography

Anion MW PCW SGL DAM 4 API RN water

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Chloride 277 310 37 45 66 226

Sulphate 3550 2414 <0.05 307 <0.05 <0.05
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2.5 Gas Chromatography coupled with Mass Spectrometry

2.5.1 Introduction

Gas chromatography (GC) was developed in the early 1950s [68]. Since then there

have been a number of publications and textbooks that have been published on both

the theory and practice of gas chromatography. Gas chromatography is the separation

technique that is based on the multiplicative distribution of the compounds to be

separated between the two phase systems i.e. solid or liquid (stationary phase) and gas

(mobile phase). There are two types of gas chromatography that exist, these are, Gas­

liquid chromatography (GLC) and Gas-solid chromatography (GSC). In GLC, the

stationary phase is a liquid, which acts as a solvent for the solutes to be separated. The

liquid can be distributed in the form of a thin film on the surface of a solid support,

which is then packed in a column or on the wall of an open tube or capillary column.

In GSC, the stationary phase is an active solid. These solids can either be inorganic

(silica, alumina and carbon black) or organic (styrene-divinylbenzene copolymers)

which are packed in a column. Separation depends on the differences in the

adsorption of the sample components on the stationary phase. The gas

chromatography technique (especially GLC) is used in the separation of thermally

stable and volatile organic and inorganic compounds.

The role of the gaseous mobile phase in gas chromatography is purely mechanical i.e.

they just serve to transport solutes along the column axis. The retention time of

solutes in the column is affected only by their vapour pressure, which depends on the

temperature and on the intermolecular interaction between the solutes and the

stationary phase. Coupled with a Mass Spectrometer as a detector, the separated

components can be identified. By far, gas chromatography is the most commonly used

and the most economic of all separation methods. This is because of high efficiency

and selectivity that is shown by this technique as compared to any other technique. Its

application ranges from the analysis of permanent gases, natural gases, heavy

petroleum products (up to 130 carbon atoms), lipids and many others.
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2.5.2 The Working of a Gas Chromatograph (GC)

There are various components, which comprise a Gas chromatograph (GC). These are

shown in a schematic drawing of a modem gas chromatographic system in Figure

2.11.

b e

a

d

f

g

D

Figure 2.11: The basic components of a modem GC system

The basic parts of a modem gas chromatographic system are:

(a) The carrier gas supply

(b) The injector

(c) The column

(d) The column oven

(e) The detector

(t) The GC instrument controller

(g) The recorder
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The carrier gas is usually supplied from a high-pressure cylinder equipped with a two

stage pressure regulator. The commonly used carrier gases are nitrogen, helium and

hydrogen. The choice of a carrier gas depends on the type of column and detector

used. Using the controller of the GC instrument, the gas flow is fine tuned and the

preheated gas is delivered to the column at a constant pressure. The sample is then

introduced into the carrier gas stream through a heated injector. The sample is

vaporized and swept into the column by the moving gas and the various components

in the sample mixture are separated by their ability to interact with the stationary

phase. The column is placed in an oven, which can be kept at a constant temperature

or programmed 70°C - 250°C. After separation, the component bands leave the

column and are recorded as a function of time by the detector. The retention time of

the components in the column can then be used for component identification whereas

the detector's response gives quantitative information on the composition of the

mixture.

2.5.3 Experimental Conditions for the GC in the Current Work

The main purpose of using GC-MS in this investigation was to identify the organic

compounds that are present in the process cooling water. Sample preparation involved

extracting aiL sample of process cooling water with 0.2 L of methylene chloride.

The extract was then concentrated on a rotary evaporator at 40°C and then analysed

on the GC-MS belonging to Umgeni Water Laboratory Services. The organic

compounds were identified using the Wiley 138 mass spectral library. The gas

chromatographic conditions for the current work are indicated in Table 2.11.

Table 2.11: GC conditions for the current work

Column

Oven temperature

Carrier gas

Injector temperature

DB5-MS non-polar, loaded with 5% methylphenylsiloxane as a

stationary phase. The column had the following dimensions, 30 m

x 0.25 mm x 0.25 ~m.

A temperature program was used staring at 70°C and ramping at

20 QC / min up to the final temperature of250 °c and then a 3

min. hold time.

Helium

250°C
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The list of the organic compounds that were identified in this work is gIven In

Appendix 1.

2.6 Scanning Electron Microscope (SEM)

2.6.1 Introduction

In our rapidly expanding technology, the scientist is required to observe, analyze and

correctly explain phenomena occurring on a micrometer (Jlm) or submicrometer scale.

The Scanning Electron Microscope (SEM) is one instrument that permits such

observations and analysis. The construction of the electron microscope dates back as

far as 1935, where Knoll [69] proposed the construction of a microscope in which a

small high energy electron spot produced by a tungsten filament and focused by a

series of electromagnetic lenses would be made to scan across the specimen. The low

energy secondary electrons emitted during the scan would then be detected, amplified

and recorded. The construction of the first SEM that used two electromagnetic lenses

was first described by Von Ardenne in 1938 [70]. The SEM has two main advantages

namely the ability to yield greater magnification and an increased depth of field

capacity. he applications of the SEM to science and industry, especially when

equipped with X-ray microanalysis detectors and cryo-preparation apparatus are

virtually without limit.

2.6.2 The SEM principle of Operation

The essential components of the SEM are:

(i) An electron gun assembly, which produces the primary electron beam.

(ii) The electron optical system, consisting of electromagnetic lenses and apertures

which focuses the beam on the specimen.

(iii) The vacuum system, which allows the passage of the electron beam through the

column without interference from air molecules.

(iv) The specimen stage, which allows for the specimen to be moved under the beam.

(v) The signal detection and display components, which permit the observation and

photography of an enlarged image of the specimen.
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The beam of primary electrons from the electron gun is focused by the

, electromagnetic lenses and is allowed to scan systematically across the surface of the

specimen. The interaction of the focussed beam with the surface of the specimen

produces a variety of signals from the specimen. The low energy or secondary

electrons leaving the surface of the specimen are then drawn to a positively biased

detector system. The electron signal is then converted to an electronic signal, which is

portrayed on a Cathode Ray Tube (CRT). Magnification in the SEM is not achieved

using lenses but rather through an electronic manipulation of the signal (e.g.

decreasing the size of the area scanned). The magnification in a SEM is a ratio

between the size of the area scanned on the CRT, which is fixed, and the size of the

area scanned on the specimen, which is variable. Thus high magnification can be

obtained by decreasing the size of the area scanned on the specimen.

2.6.3 Experimental Conditions for the Scanning Electron Microscope (SEM) in

the Current Work

The scanning electron microscope (SEM) was used in this work to monitor (by giving

images or pictures) any form of changes in the hydration products of cement.

Although the SEM operates with an electron signal, it gives 3-dimensional images,

which are easy to interpret. The sample preparation included washing of mortar slices

(obtained by cutting mortar cubes with a diamond saw lubricated with liquid paraffin)

with acetone in order to remove water from the slices. This was followed by drying

overnight at room temperature. Dry mortar slices were then broken into

approximately 3 x 3 mm sized pieces which were mounted on numbered brass stubs

using colloidal graphite (a special glue). This was followed by sputter coating of the

specimens with Au-Pd (40 % Au, 60 % Pd) in a Polaron ES 100 sputter coater. The

Au-Pd coater was used to make the samples more conductive and to prevent samples

from charging under the electron beam. Specimens were then viewed using a Hitachi

S570 Scanning Electron Microscope (SEM) housed at the Electron Microscope Unit

at the University of Natal in Pietermaritzburg. The instrument was operated at the

following settings:

• 15 Kv

• Sample stubs were tilted at an angle of 15 0 with respect to the beam

• Working distance of 15 mm

Different images / micrographs were obtained from this exercise.
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Another set of the same samples was carbon coated (using Edward's E 306A high

vacuum coater) and analysed on Energy Dispersive X-ray system (EDX). Samples

were carbon coated here because the Au-Pd coated samples have high X-ray

absorption ability. The EDX analysis was conducted using an Oxford EDX instrument

(Link eXL II Energy Dispersive X-ray microanalyser). EDX analysis determines the

elements on the surface of the specimen. The instrument was operated at a working

distance of 15 mm at 15 Kv and the stubs were not tilted with respect to the beam.

2.7 X-ray Diffraction (XRD)

2.7.1 Introduction

X-rays are defined as electromagnetic waves whose wavelengths range from about 0.1

to 100 x 10-10 m [71]. They were first discovered by the German physicist Roentgen

[72] in 1895 and are produced when rapidly moving electrons strike a solid target.

Only 1 % of the kinetic energy of the electrons is converted into radiation. Unlike

ordinary light, X-rays are invisible and they travel in straight lines. The ability of the

X-rays to penetrate different materials to different depths is the basis of a unique

scientific tool for application in radiography, metallography, crystallography,

medicine and many other fields. Seventeen years after the discovery of X-rays, von

Laue [72] reported that they could be diffracted by crystals. Von Laue's experiments

were focused primarily on single crystal X-ray diffraction. This technique was thus

limited by the fact that some materials could not be synthesized into a single crystal. It

was later discovered by the two different groups of scientists namely Debye and

Scherrer in Germany and Hull in the United States that a fme grained crystal line

powder could also diffract X-rays [72]. Nowadays, X-ray diffraction find its various

applications in both pure and applied research. By far the most important industrial

use of diffraction is through the powder technique.

2.7.2 The Working of a Powder Diffractometer

The wavelengths used in diffraction lie between 0.5 and 2.5 A. The instrument for X­

ray powder diffractometry consists of an X-ray source (X-ray tube and high voltage

generator), detector and computer for instrument control and data analysis. The output

from an X-ray tube is described in terms of the radiation flux i.e. the number of

photons per unit time per unit area.
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When a very high voltage is applied across the electrodes in the X-ray tube, the

current flows between the two electrodes. The electrons carrying this current strike

the metal target resulting in the emission of X-rays. The process of X-ray generation

is an inefficient process where most of the energy is converted to heat thus

necessitating the cooling of the tube with water. Though different types of anodes are

used for specific applications, copper and cobalt anode tubes are the most commonly

used tubes in XRD. The generated X-rays then pass through the beryllium window"

which has an atomic number of 4 and therefore very low absorption. The intensity of

the X-ray is then measured with a detector. Modem conventional X-ray

diffractometers commonly employ one of the three types, namely a scintillation

detector, gas proportional counter and the [Si (Li)] detector. Position Sensitive

Detectors (PDSs) are finding increasing application in X-ray powder diffraction [73].

Modem diffractometers are computer controlled and are able to automatically

calculate peak intensities and peak positions in both 2-theta and d-values. These

values are compared with the patterns of known compounds, which are published in

the Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction

Files.

2.7.3 Experimental Conditions for X-ray Diffraction in the Current Work

The mortar samples were analysed using X-ray powder diffraction to determine the

mineralogical composition of the samples as well as to detect formation of reaction

products as a result of the solutions to which they were exposed. The XRD

mineralogical studies of the mortar samples were conducted using a Phillips PW

1130/90 XRD diffractometer housed in the Department of Soil Science at the

University of Natal in Pietermaritzburg. Sample preparation included washing of

mortar slices with acetone to halt the hydration process. This was followed by drying

at room temperature (approximately 24°C) overnight. The samples were then ground

into fine powder usi~g agate mortar and pestle and was subsequently packed and

compressed into XRD aluminium sample holders. To prevent preferred orientation

during the sample compression into sample holders, a filter paper surface was used as

a compressing surface. The XRD analyses were then performed using CoKa

radiation. The instrument was set to scan from 5 to 60 degrees 2-theta. Diffractograms

were obtained and peak identification was performed.
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2.8 Preparation of Cement Cubes and Water Baths

Two types of cement, OPC and PBFC (45% BFS) were used for the preparation of

mortar cubes. Both these cements and Umgeni sand were obtained from a local

building material supplier. The sand was sieved using stainless steel Endecott sieves

with aparture size 2.00 mm prior to use. Cubes were then prepared using 400 g of

cement to 600 ml of water and 3600 g of sand. This ratio of 1:1.5:9 gives relatively

impermeable concrete. The mixture (sand, cement and water) was then stirred to give

a homogeneous paste.

A wooden mould that makes 42 (4cm x 4cm x 4cm) cubes was made and lubricated

with petroleum jelly to prevent cubes from sticking onto the surfaces. The mortar

paste was then cast into the mould. The top surface was smoothened out and the cubes

covered with plastic sheet to reduce evaporation. The cubes were left in the mould to

set for one week under high humidity, which was achieved by watering the cubes.

After one week the cubes were demoulded and placed in a bucket filled with tap water

at room temperature for 30 days to cure. The curing process makes cubes strong and

reduces permeability [74]. The cubes were then removed from the water and exposed

to PCW, MW and sulphate solutions. In addition to the mortar samples that were

prepared, concrete samples from Sasol-Secunda cooling tower were obtained. These

samples were cut into small cubes by the Geology Department of the University of

Natal in Durban using a Diamond Hippo (Diamant Board). All the faces except one of

these cubes were sealed by coating with an epoxy (Hall's Epoxy) and then the cubes

exposed to mine water.

The coating with an epoxy was done so that corrosion of the samples could take place

from one side, making it easier to follow the penetration of the sulphate ions. The

temperatures in the cooling towers at Secunda were imitated by carrying out the

corrosion experiments in waterbaths set at 35 QC. Two waterbaths 120 cm x 70 cm

made of fiber glass were obtained and modified by the Mechanical Instrument

Science workshop of the University of Natal. The two waterbaths were connected

together using tubing made from polyethylene and the water circulated between the

baths by pump. Each bath had a heating element and both were controlled by a

thermostat set at 35 QC. The waterbaths were filled with tap water and copper sulphate

was added to prevent mould formation.
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Evaporation of water from the waterbaths was minimised by the use of two fibreglass

lids (same size as the waterbaths) which had eight holes for holding the 5 L plastic

buckets. Each of the buckets was covered with a lid moulded from polyethylene

sheets. The movement of water in the cooling tower was simulated using stainless

steel stirrers passing through the moulded lids into a cylindrical wire-mesh and driven

by the electric motor. The cylindrical wire-mesh protected the cubes from the rotating

stirrer. To ensure that all the surfaces of the cubes were equally exposed to the

solution, stainless steel wire mesh coated with a white polymer were used in the

buckets to create different levels on which the cubes were placed. Included in the

bucket was a cylindrical stainless steel mesh whose function was to prevent the stirrer

from coming into contact with the cubes. The schematic diagram of the waterbaths

and a cross-section of the bucket are shown in Figure 2.12 (a) and (b) respectively.

A total of 24 cubes was placed in each of the 16 buckets at different levels, which

were then filled with 2 litres of the appropriate water solution (i.e. MW, PCW or

sulphate solution). The sulphate solution was introduced in order to determine

whether the organic compounds present in process cooling water played any major

role in inhibiting or slowing down the corrosion process. The cubes were exposed to

these solutions for a period of six months with the exception of the concrete samples

from the cooling towers. The wet and dry sessions experienced in the cooling towers

(especially during the shut downs) were also imitated, by having a set of cubes

subjected for a known period of time in and out of the solution. A second set of cubes

was kept in the solution for the duration of the experiment. The various experimental

conditions are illustrated in Figure 2.13 (a) and 2.13 (b). The pH and the volume of

each of the solutions used was not adjusted since fresh samples of water (2 L) were

used after 1 week, 2 weeks and on a monthly basis until the sixth month. On changing

the water, two cubes were removed for SEM and XRD analysis. The water was

always analysed using lCP, le and Skalar segmented flow autoanalyser before and

after the removal of the cubes.

56



Polyethylene tubing

000
0000

00
First waterbath

Plastic buckets

Flow ofwater

Second waterbath

Thennostat
He ting element

lid

Figure 2.12 (a): Experimental setup showing the top view of the waterbaths
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Figure 2.12 (b): Cross section of the plastic bucket showing the cubes at different levels
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Where: NIDRY =Indicates the samples that are kept in solution for duration of

investigation

DRY = Indicates samples that go through wet and dry cycles

Figure 2.13 (a): Contents and conditions in the first water bath
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Figure 2.13 (b): Contents and conditions in the second water bath
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Chapter 3

Results and Discussion

The results of the corrosion tests performed in this investigation are gIven and

discussed under the headings:

• Examination of the concrete samples from Secunda

• Analysis of the aqueous solutions

• The SEM and EDX studies

• X-ray Diffraction studies

• Conclusions and recommendations

3.1 Examination of the concrete samples from Secunda

It is claimed at Sasol that the current general condition of the cooling towers with

respect to concrete corrosion is relatively good. Visual inspections of the concrete

samples from Secunda attest to this claim since no signs of concrete deterioration and

crack formation were observed. It was however observed in all the samples that the

part forming the interior of the cooling tower had a thick black layer covering the

surface. This layer was associated with organic constituents in the process cooling

water.

The depth of carbonation in the selected concrete specimens was measured using a

phenolphthalein test. Phenolphthalein is an indicator which when sprayed onto a

freshly broken surface of concrete turns pink to deep red in uncarbonated high pH

(pH>9) areas but remains colourless in carbonated low pH (pH < 8.5). The results

obtained show that the cooling towers in the areas where the samples were taken were

carbonated to a depth of about 2.4 - 3.2 cm.
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3.2 Analysis of the Aqueous Solutions

3.2.1 Analysis of Process Cooling Water for Organic Compounds

The analysis of process cooling water for the Total Dissolved Solids (TDS) produced

a TDS of 6230 mg/L. About 0.5 L ofprocess cooling water from a total 25 L obtained

from Secunda was left standing in the separating funnel for two days. After two days,

it was observed in the separating funnel that process cooling water had separated into

three layers. The top layer was brown in colour and was oily in nature whereas the

layer in the middle was a clear aqueous layer. The third layer was a black sludge,

which settled at the bottom of the separating funnel. The three layers were separated

and measured using a measuring cylinder, it was found that the organic layer was

0.157 L, the aqueous layer was 0.243 L and the bottom layer was O.IL. When process

cooling water was left to evaporate to dryness at room temperature, a shiny black

polymeric material was left behind. This material was suspected to be composed of

high molecular weight hydrocarbons and all attempts made to dissolve this material in

various organic as well as inorganic solvents were unsuccessful.

A concentrated sample of process cooling water was extracted with methylene

chloride and analyzed using GC-MS to identify the organic compounds. The results of

the organic analysis obtained from the GC-MS are given in Appendix 1. The results in

Appendix 1 reveal that the most dominant organic compounds in process cooling

water were small to medium molecular weight hydrocarbons, which are mainly oily

components. These organic compounds included phenols, fatty acids, saturated and

unsaturated hydrocarbons. The organic compounds present in process cooling water

in the form of the total suspended solids are suspected to play an inhibitory role in

terms of preventing the penetration of aggressive ions through the surfaces of the

cooling towers. This is because these organic compounds were observed to have

formed a black layer, which covered the surfaces of mortar samples, used in this

investigation.
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3.2.2 Analyses of Process Cooling Water and Mine Water for the Presence of the

Dissolved Inorganic Solids

Process cooling water (pcw) and mine water (mw) obtained from Secunda including

the synthetic sulphate solution (SS) used in this investigation were analysed for Ca, Si

(as soluble silicate Si04
4-), Mg, Na, K, Nf4, Cl and S04 ions. The concentrations of

Na, Ca, Si and K ions were monitored because they provide valuable information on

the corrosion phenomena by indicating whether or not the components of concrete or

mortar are being leached by the surrounding solution. The analyses were carried out

before the start of the corrosion test experiments and repeated at the end of week 1,

week 2, month 1 and then on a. monthly basis. The aim of these analyses was to

determine the accumulated and/or released amounts of the ions by the mortar cubes.

Even though the analyses were done for all of the above mentioned ions, the main

focus was on Mg, Nf4 and S04 ions which according to literature [43] have a

deleterious effect on concrete. The results obtained from analysing process cooling

water and mine water for cations before and after the experimental times, are

tabulated in Tables 3.1-3.2. Table 3.1 represents the amounts of cations before the

start of the experiment, while Table 3.2 shows the amounts of the cations in solutions

at the end of the experimental time. The ICP results given in these tables are an

average of two readings.

Table 3.1: The results of the analysis of the cations in process cooling water and mine

water before the start of the experiment.

Element Process Standard Mine water Standard Detection

cooling water deviation (mg/L) deviation limits

(mg/L) (mg/L)

Ca 45 1.00 222 1.22 0.1

Si 30 1.20 2 1.35 0.1

Mg 6 1.25 144 1.27 0.05

Na 64 1.00 350 1.52 0.0003

K 81 1.30 13 1.31 0.0004
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The data in Table 3.2 represents the concentrations of the various ions in solutions

after being in contact with OPC and PBFC mortar test cubes. It should be emphasized

that the data in Table 3.2 is from the corrosion tests in which mortar cubes were kept

in the solution for the duration of the test period without any dry sessions. To

determine the amounts absorbed or released by the mortar cubes, the results will be

represented as accumulative figures, the values being the difference between the

values in Table 3.1 and Table 3.2 multiplied by 2 since 2 Litres of solution was used

for each experiment. These are given in Table 3.3 and in Figure 3.1 as graphs of

accumulated amount versus time. In Table 3.3 the results that are positive indicate

that the ions were taken up by the mortar test specimens while negative results

indicate that the ions were coming out of the mortar samples.
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Table 3.2: The results of cation analysis in process cooling water and mine water after

being in contact with mortar cubes.

Time in days Ion OPC PBFC
PCW (mg/L) MW (mg/L) PCW (mg/L) MW (mg/L)

7 46 228 46 223
14 48 233 47 225
30 47 241 45 228
60 Ca 46 246 48 232
90 49 259 43 233
120 42 252 45 230
150 41 243 46 226
180 43 238 44 225
7 32 5 31 4
14 33 8 32 3
30 31 11 32 5
60 Si 30 7 30 6
90 32 6 31 5
120 31 8 28 4
150 27 4 29 3
180 26 4 28 3
7 0 140 5 142
14 3 135 3 139
30 4 126 4 136
60 Mg 2 132 4 130
90 1 118 5 129
120 3 117 6 127
150 5 126 4 138
180 4 130 3 140
7 66 353 65 351
14 67 351 66 348
30 65 354 64 347
60 Na 69 356 66 350
90 65 351 63 352
120 62 352 62 351
150 63 354 63 349
180 65 351 65 352
7 81 14 80 13
14 83 19 82 14
30 82 17 79 15
60 K 85 16 78 12
90 83 14 81 11
120 78 18 83 14
150 79 15 84 12
180 82 14 82 13

Note: The values represent the actual concentration in the solution after the removal of mortar cubes

63



Table 3.3: The accumulated or released amounts ofvarious cations by ope and PBFC

mortar cubes exposed to two litres of process cooling water and mine

water.

*The values were obtamed as follows. (fable 3.1- Table 3.2) x 2. A factor of 2 was used because 2 L of water was used.

Time in days OPC PBFC
Ion PCW MW PCW MW

(mg) (mg) (mg) (mg)
7 -2 -12 -2 -2
14 -8 -34 -6 -8
30 -12 -72 -10 -20
60 Ca -14 -120 -16 -40
90 -22 -194 -12 -62
120 -16 -254 -4 -74
150 -8 -296 -6 -82
180 -4 -328 -4 -88

7 -4 -6 -2 -4
14 -10 -18 -6 -6
30 -12 -36 -10 -12
60 Si -12 -46 -10 -20
90 -16 -54 -12 -26
120 -18 -66 -8 -30
150 -12 -70 -2 -32
180 -4 -74 2 -34
7 12 8 2 4
14 18 26 8 14
30 22 62 12 30
60 Mg 30 106 16 58
90 40 158 18 88
120 46 212 18 122
150 48 248 22 134
180 52 276 28 142
7 -4 -6 -2 -2
14 -10 -8 -6 2
30 -12 -16 -6 8
60 Na -22 -28 -10 8
90 -24 -30 -8 4
120 -20 -34 -4 2
150 -18 -42 -2 4
180 -20 -44 -4 0
7 0 -2 2 0
14 -4 -14 0 -2
30 -6 -22 4 -6
60 K -14 -28 10 -4
90 -18 -30 10 0
120 -12 -40 6 -2
150 -8 -44 0 0
180 -10 -46 -2 0
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Looking at the graphs in Figure 3.1, the ions can be put into two groups. Magnesium

ion being in one group alone. Mortar cubes seem to absorb the magnesium ion as time

progresses. It is also clear from the diagrams that the absorption of Mg ions in process

cooling water is lower by a factor of approximately 5 times than in mine water. This

indicates that the presence of organic material in process cooling water plays a big

role in inhibiting the absorption. Comparing the OPC and PBFC, the graphs show that

the absorption is twice as much in OPC as in PBFC. This emphasizes the resistant

nature ofPBFC to chemical attack.

The second group comprises Ca, Si, Na and K ions, which are leached out of the

mortar into the solution. In the case of process cooling water the leaching process

seems to reach a maximum and then absorption starts. The exception is for the K ions

in case of PBFC. In mine water, the trend seems to be only one way, the leaching of

calcium ions from OPC in mine water being very pronounced. This is possibly due to

the corrosion of type 2 mentioned in chapter 1, section 1.10.2, where the Mg ion react

with Ca(OH)2 in the mortar, releasing the calcium ions into the solution. The effect of

leaching is smaller in PBFC than in OPC samples, indicating the stability of PBFC in

a chemical environment in comparison to OPC. Quantitatively, the amount of ions
f

leached is smaller in the case of process cooling water than in mine water. This is

attributed to the presence of the organic species in the process cooling water solution.

Since ammonium, chloride and sulphate ions have a deleterious effect on concrete,

these species were monitored for the duration of the experiment. The results obtained

are tabulated in Table 3.4 - 3.5. The information in Table 3.4 represents the

concentration of the ions in process cooling water and mine water before the mortar

cubes were introduced into these solutions. In Table 3.5 are given the actual

concentrations in mg/L of the ions that remained in the solution after the specified

length of time in contact with the mortar cubes.

66



Table 3.4: The results of the ammonium, chloride and sulphate ions analysis in

process cooling water and mine water before being contacted with mortar

cubes.

Element Process cooling Standard Mine water Standard Detection

water (mg/L) deviation (mg/L) deviation limits (mg/L)

804 2414 1.29 3550 1.00 0.16

Cl 310 1.37 277 1.50 0.12

NH4 1062 1.53 0 0.00 0.01

Table 3.5: The concentration of sulphate, chloride and ammonium ions that remained

in the solution after the specified length of time in contact with the mortar

cubes.

OPC PBFC
Time in days Ion PCW (mg/L) MW (mg/L) PCW (mg/L) MW (mg/L)

7 2402 3190 2379 3280
14 2381 2996 2341 3225
30 2317 3159 2318 2997
60 504 2297 2996 2306 2996
90 2278 2864 2266 2974
120 2259 2850 2235 2933
150 2210 2813 2221 2908
180 2202 2798 2197 2878
7 303 275 303 271
14 298 269 290 269
30 293 265 288 263
60 Cl 288 262 284 254
90 285 254 276 251
120 276 248 269 247
150 266 243 263 244
180 263 242 257 239
7 998 n.d 1023 n.d
14 967 n.d 1010 n.d
30 936 n.d 983 n.d
60 NH4 913 n.d 978 n.d
90 879 n.d 972 n.d
120 872 n.d 965 n.d
150 868 n.d 958 n.d
180 871 n.d 954 n.d

* n.d indicate that the ion was not detected
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To determine the absorbed or released amounts of sulphate, chloride and ammonium

ions by the mortar cubes, the results are given as accumulative figures in Table 3.6.

The values in Table 3.6 are the difference between the values in Table 3.4 and Table

3.5, presented in mg. The graphical representation of these results is shown in Figure

3.2. In Table 3.6, values that are positive indicate that the ions was taken up by the

mortar samples while negative values indicate that the ions were leached out of the

mortar samples.

Table 3.6: The accumulated or released amounts of sulphate, chloride and ammonium

ions by ope and PBFC mortar cubes exposed to two litres of process

cooling water and mine water.

Time in days OPC PBFC
Ion PCW MW PCW MW

(mg) (mg) (mg) (mg)
7 24 720 70 540
14 90 1828 216 1190
30 284 2610 408 2296
60 504 518 3718 624 3404
90 790 5090 920 4556
120 1100 6490 1278 5790
150 1508 7964 1664 7074
180 1932 9468 2098 8418
7 14 4 14 12
14 38 20 54 28
30 72 34 98 56
60 Cl 116 64 150 102
90 166 110 218 154
120 234 168 300 214
150 322 236 394 280
180 416 306 500 356
7 128 n.d 78 n.d
14 318 n.d 182 n.d
30 570 n.d 340 n.d
60 NH4 868 n.d 508 n.d
90 1234 n.d 688 n.d
120 1614 n.d 882 n.d
150 2002 n.d 1090 n.d
180 2384 n.d 1306 n.d
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The diagrams in Figure 3.2 shows that sulphate and ammonium ions are taken up

from solutions by the mortar samples. The uptake of chloride ions is predominant in

process cooling water but is less than the sulphate and ammonium ions. In mine

water, no ammonium Ions were detected and this explains the absence of the

ammonium ion plots. The absorption of the sulphate and the ammonium ions

increases with time, the sulphate being higher than ammonium ions except in the case

of OPC -in process cooling water. Concentrating on the sulphate ion, it is observed that

both the OPC and PBFC mortar cubes have approximately the same uptake of this

ion. The values of PBFC were slightly higher than those of OPC. This trend can be

interpreted to mean that the expansive products, which are due to the reaction of

sulphate ions and cement aluminates, will be the same for both OPC and PBFC

samples. This however was not observed in the SEM results in section 3.3.1, where

more ettringite and gypsum was observed in OPC samples. Therefore to explain the

uptake of sulphate by PBFC, one needs to look at the degree of interconnected

porosity. The ratio of water to cement determines the porosity of mortar cubes. The

fact that in this investigation, similar water to cement ratio was used for both PBFC

and OPC means that PBFC cubes were likely to be more porous than the OPC cubes

[75]. This explains the high uptake of sulphate and low presence of expansive

products.

Comparing the results from process cooling water with ones from mine water, it is

observed that mine water values are 4 times greater than those of process cooling

water. This indicates that the organic compounds in process cooling water prevent the

sulphate ions reaching the mortar surface.
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3.2.3 Results of samples subjected to wet and dry cycles

During shut downs, the surfaces of the cooling towers undergo a drying cycle. When

concrete dries out after being wetted with' water containing dissolved solids the

concentration of the dissolved substances in water left in the pores increases. As

drying continues, the dissolved salts crystallize out and in so doing exert expansive

pressures on the surrounding concrete. These pressures cause tensile stresses to

develop in the concrete and if these stresses exceed the local tensile strength of the

concrete, spalling results.

In simulating what happens in the cooling tower, wet and dry cycles were introduced.

The set up involved exposing the mortar cubes in the various solutions for 45 days

after which they were removed and kept in a cardboard box for another 45 days

before 'being put back into a fresh solution. The analyses of the aqueous medium after

these cycles are tabulated in Table 3.7. The original concentration of sulphate solution

(SS) was 2000 mg/L prepared from Na2S04 (Merck) while that of process cooling

water and mine water are as indicated in Table 3.6. The amounts of the various ions

taken up or released by mortar cubes are given in Table 3.8. These results have also

been represented graphically in Figures 3.3 and 3.4. The results of the wet and dry

cycles (Figure 3.3-3.4) show a linear relationship of concentration with time for all

the ions. The exception iS,the sulphate ions in the case ofPBFC (Figure 3.3 K And L)

which seems to approach the maximum. It can be seen from the diagrams that the

absorption of sulphate ions is more dominant than all the other ions. Looking at the

OPC and PBFC in process cooling water, it can be seen that the uptake of ammonium,

chloride and sulphate increases with time. The uptake of these ions by OPC is higher

than in PBFC in both mine water and process cooling water. This can be explained to

be due to the resistant nature of PBFC to chemical attack. The PBFC being more

porous than OPC, appears to have reached saturation point, a fact that is supported by

the curves in Figure 3.3 K and L. The OPC values are higher because the sulphate

ions absorbed by mortar cubes react with the components of cement to form

secondary phases such as gypsum and ettringite. The sulphate ion concentrations in

Table 3.7 for OPC and PBFC have opposite trends. The reason for the increase in

uptake of sulphate ions by OPC can be attributed to the expansive nature of the

secondary phases.
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During the dry cycles these products form crystals which exert expansive pressure on

the mortar, resulting into crack formation. This allows deeper penetration of sulphate

ions when the mortar is subjected to the next wet cycle. This explains the observed

linear increase with time of the sulphate in Figure 3.3 I and J.

Table 3.7: The results of the analysis of the aqueous medium for the various ions after

the wet and dry cycles.

Time in days Ion OPC PBFC

PCW (mg/L) MW (mg/L) SS (mg/L) PCW (mg/L MW (mg/L) SS (mg/L)

45 46 235 n.d 46 229 n.d
90 Ca 47 242 n.d 46 231 n.d
135 49 268 n.d 47 236 n.d
180 55 330 n.d 48 258 n.d
45 32 6 n.d 36 4 n.d
90 Si 39 15 n.d 37 6 n.d
135 41 19 n.d 42 7 n.d
.180· 42 24 n.d 44 9 n.d
45 5 97 n.d 5 112 n.d
90 Mg 3 108 n.d 4 115 n.d
135 2 110 n.d 4 136 n.d
180 2 117 n.d 3 141 n.d
45 44 322 n.d 60 375 n.d
90 Na 46 325 n.d 60 338 n.d
135 49 333 n.d 53 319 n.d
180 58 348 n.d 56 297 n.d
45 65 15 n.d 79 19 n.d
90 K 67 16 n.d 80 14 n.d
135 69 21 n.d 81 13 n.d
180 72 26 n.d 87 11 n.d
45 2009 2804 1620 2046 2793 1304
90 S04 1993 2710 1604 2051 2912 1321
135 1978 2650 1585 2157 2975 1378
180 1965 2621 1455 2172 3011 1428
45 212 302 n.d 287 268 n.d
90 Cl 199 285 n.d 254 244 n.d
135 178 277 n.d 242 231 n.d
180 207 214 n.d 212 223 n.d
45 887 n.d n.d 946 n.d n.d
90 NH4 863 n.d n.d 943 n.d n.d
13'5 851 n.d n.d 915 n.d n.d
180 842 n.d n.d 910 n.d n.d

* n.d indicate that the ion was not detected.
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Table 3.8: The accumulated or released amounts of various ions by OPC and PBFC

mortar cubes exposed to two litres of process cooling water, mine water

and synthetic sulphate solution.

Time in days Ion OPC PBFC

PCW MW SS PCW MW SS
(mg) (mg) (mg) (mg) (mg) (mg)

45 -2 -26 n.d -2 -14 n.d
90 Ca -6 -66 n.d -4 -32 n.d
135 -14 -158 n.d -8 -60 n.d
180 -48 -374 n.d -14 -132 n.d
45 -4 -8 n.d -12 -4 n.d
90 Si -22 -34 n.d -26 -12 n.d
135 -44 -68 n.d -50 -22 n.d
180 -68 -112 n.d -78 -36 n.d
45 2 94 n.d 2 64 nod
90 Mg 8 166 n.d 6 122 n.d
135 16 234 n.d 10 138 n.d
180 24 288 n.d 16 144 nod
45 40 56 n.d 8 -50 n.d
90 Na 76 106 n.d 16 -26 n.d
135 106 140 n.d 38 36 nod
180 118 144 n.d 54 142 n.d
45 32 -4 n.d 4 -12 n.d
90 K 60 -10 n.d 6 -14 n.d
135 84 -26 n.d 6 -14 n.d
180 102 -52 n.d -6 -10 n.d
45 810 1492 760 736 1514 1392
90 S04 1652 3172 1552 1462 2790 2750
135 2524 4972 2382 1976 3940 3994
180 3422 6830 3472 2460 5018 5138
45 196 -50 nod 46 18 n.d
90 Cl 418 -66 n.d 158 84 n.d
135 682 -66 n.d 294 176 n.d
180 888 60 n.d 490 284 n.d
45 350 n.d n.d 232 n.d n.d
90 NH4 748 n.d n.d 470 n.d n.d
135 1170 n.d n.d 764 n.d n.d
180 1610 n.d n.d 1068 n.d n.d
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This process does not take place in PBFC because during the hydration of PBFC, the

calcium hydroxide produced reacts with the components of the slag to produce

calcium hydrosilicates and calcium hydroaluminates of low basisity [76]. As a result

of the formation of these compounds, no appreciable quantity of crystalline

sulphoaluminates can be formed since the calcium hydroxide required is no longer

free to react. Therefore the uptake of sulphate ions by PBFC is mainly due to its

porous nature and not chemical reaction. Hence, the trend in Table 3.7.

Comparing the process cooling water and mine water results it is evident that the

values of sulphate ions taken up by the mortar cubes from mine water are

approximately twice those from process cooling water. This indicates that the organic

compounds present in process cooling water prevent the uptake of the ions by both the

OPC and PBFC. This is confirmed in Figure 3.4, where a synthetic solution of

sulphate ions was used. The values of the absorbed sulphate ions are approximately

more than 1.5 times in sulphate solution as compared to process cooling water. When

these wet and dry cycle results are compared with the non-dry cycle results (Figure

3.1-3.2), it is observed that the absorption of the ions especially sulphate by the OPC

as well as PBFC mortar cubes is enhanced in case of process cooling water but not in

mine water. It can be argued that one of the reasons for this is because of the amount

of sulphate ions already absorbed by the mortar cubes. In mine water, the mortar

cubes are possibly approaching a saturation point and therefore their uptake of the

ions is not as high. The other point to consider is that with process cooling water,

during the dry session the mortar samples do not dry completely because of the oily

nature of the solution. Therefore unlike the mine water where immediately after being

put into fresh solution, the wetting process of mortar cubes starts almost

instantaneously. The reason for stating this is because when the cubes exposed to

process cooling water were removed from the solution, they were observed to have a

coating of a blackish layer. This layer is primarily organic matter with other

suspended solids as indicated in the analysis of the water sample (section 3.2.1). It is

therefore believed that this layer reduces the permeability of the ibns into the mortar

cubes and at the same time slows down the process of moisture evaporation from the

cubes during the dry session.
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3.2.4 Determination of Corrosion Indices

The ionic concentrations obtained from the analyses of process cooling water and

mine water as tabulated in Tables 3.1 and 3.4 were used to calculate the corrosion

indices [43] (see Table 3.9). In addition to the ionic concentrations, the pH's of the

various solutions were measured using an Orion EA 940 pH meter at room

temperature. The corrosion indices are a measure of the corrosion potential of water

towards concrete. The corrosion indices are derived from sub-indices (represented by

Ni in Table 3.9), that are in turn derived from the analytical properties of water

(represented by Vi in Table 3.9). The calcium carbonate saturated pH is the pH of a

water sample after it has been saturated with calcium carbonate. Sub-indices were

used in different combinations to calculate leaching and spalling corrosion indices

(LCl and SCl) respectively, thereafter the overall corrosion index (OCl), was

determined using the sum of LCl and SCI. The calculated indices for process cooling

water and mine water are given in Table 3.9.
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Table 3.9: The results of the corrosion indices for process cooling water and mine

water.

Property Symbol Process cooling Degree of Mine water Degree of

of water water (pcw) aggressiveness (mw) aggressiveness

pH VI 6 Moderate 8 Moderate

CaC03

saturated pH V2 6.8 8.05

Delta pH V1-V2 -0.8 Excessive -0.05 Low

Ca.tT (mglL) V3 45 High 222 Low

NH4
T (mg/L) V4 1070 Excessive 0.2 Very low

Mg.t"l"(mg/L) VS 6 Low 144 Moderate

S0 4.t-(mglL) V6 2414 Very high 3550 Very high

Degree of Degree of
Calculation of corrosion indices [43]. pcw

aggressiveness
mw

aggressiveness

NI 200 (9.5-V1) 636 High 378 Moderate

N2 -2000 (V1-V2) 1640 - 100 -

N3 5.5 (200-V3) 853 - -121 -

N4 10x V4 10700 Very high 2 Low

N5 0.6 x VS 4 Low 86 Low

N6 0.3 x V6 724 High 1065 High

LCI (NI +N2+ N3)/ 3 1043 Very high 357 Moderate

SCI (N4 +N5+ N6)/ 3 3809 Very high 384 Moderate

OCI 3(LCI + SCI) 14556 Very high 2223 Very high
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The pH of the water is significant since it indicates the potential of the water to

dissolve the hardened cement paste. The lower the pH of the water, the greater is its

aggressiveness. The high degree of aggressiveness exhibited by the acidic water is

due to the enhanced reactivity and solubility of the cement components at low pH e.g.

CaC03 and Ca(OH)2. The pH values of the process cooling water and mine water in

this work were 6 and 8 respectively. According to Basson [43] these values can be

interpreted as indicating that both waters are expected to have a moderate effect on

concrete. The corrosion indices for process cooling water and mine water were

calculated based on the calcium carbonate saturated pH values of 6.8 and 8.05

respectively. The leaching corrosion index of process cooling water (1043) is higher

than that of mine water (357). This is due to the contribution from pH and the

concentration of calcium ions in process cooling water. The low concentration of 45

mg/l of calcium ions in process cooling water is expected to have a very high degree

of aggressiveness on concrete in terms of the leaching of the calcium ions from the

concrete.

It should however be emphasized that pH alone is not a sufficient indicator of the

aggressiveness of the water but the concentration of the dissolved species such as

sulphate, ammonium, chloride and magnesium is also of high importance. The

process cooling waters spalling corrosion index of 3809 is significantly higher than

384 obtained for mine water. This coincides with the higher sulphate and ammonium

contents in process cooling water and could result in sulphate attack.

The overall corrosion indices for both waters as calculated would indicate that process

cooling water and mine water are aggressive since they both exceed the limit of 1000

[43]. The overall corrosion index (OCI) of 14556 for process cooling water is 14

times greater than the limit of 1000 suggested by Basson [43] and this indicates that

process cooling water is highly aggressive. Mine water has an OCI of 2223, which is

2 times greater than the limit, suggesting that mine water should be less corrosive than

process cooling water.
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3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive X­
ray (EDX) Studies.

The Scanning Electron Microscope and Energy Dispersive X-ray instruments were

utilized for observation, identification and characterization of the secondary phases

formed during the exposure of mortar cubes in solutions of process cooling water,

mine water and synthetic sulphate solution. Energy Dispersive X-ray (EDX) made it

possible to identify the various microstructures by their elemental compositions.

The EDX spectra obtained from the spot analyses of the mortar samples helped in the

identification of calcium silicate hydrate (C-S-H), gypsum (CS), calcium hydroxide

(CH) and ettringite (E) shown in Figure 3.5-3.8. Both the OPC and PBFC mortar

cubes exhibited hydrated calcium silicate (C-S-H) with a fibrous structure and a CaO:

Si02 molar ratio of 0.9 -1.7.
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Figure 3.7: Energy dispersive X-ray analysis of gypsum formed during the exposure

of lTI011ar cubes to sulphate containing solutions.
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Figure 3.8: Energy dispersive X-ray analysis of ettringite formed during the exposure
of mortar cubes to sulphate containing solutions. (The silicon signal is

probably from C-S-H mixed in with ettringite)
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3.3.1 Identification of Phases on Each Plate

The SEM micrographs a-h in plates 1 to 4 and a-d in plates 5 to 8 show the evolution

of the microstructure with time, the scale is shown on the bottom right in J.lm. The

micrographs a to h (in plates 1- 4) and a to d (in plates 5-8) represents the different

times the mortar cubes were exposed to the different solutions. In plates 1 to 4, the

letters a-h represents 1 week, 2 weeks, 1,2,3,4,5 and 6 months respectively. The

micrographs of the wet and dry cycles are shown in plates 5 to 8 and the time

difference was 1.5, 3, 4.5 and 6 months respectively. All these SEM micrographs are

based on the analysis of the outer surface of each mortar cube.

(i) Plate 1

The micrograph in Plate lea) exhibits mainly the unhydrated core and the hydrated

calcium silicate (C-S-H). As hydration continued, a gradual decrease in the

unhydrated cement can be seen after 2 week, 1 month, 2 months and 3 months

respectively [Plate - 1 (b), (c), (d) and (e)]. It was difficult to associate the small ball

shaped products in Figure 1 (d) with any !mown phase. The EDX analysis of these

balls revealed that they were made up of approximately 0.9 --- 1.0 % calcium oxide to

silicon ratio, 5 % chloride, 8 % aluminium and 1% iron. The micrographs after 4, 5

and 6 months [Plate - 1 (f), (g) and (h) respectively] shows the mortar surface covered

with short needle-like crystals interspersed with larger thicker rod-like crystals.

Analysis of the larger crystals by EDX indicated that they mainly ettringite.

(H) Plate 2

The SEM picture of the OPC cubes exposed to mine water showed a strikingly

different appearance to the samples exposed to process cooling water in terms of the

quantity of the secondary phases observed. The micrographs after 1 week, 2 weeks

and 1 month in Plate - 2 (a), (b) and (c) respectively show mainly the calcium silicate

hydrate (C-S-H) and calcium hydroxide platelets. Needle-like crystals (i.e. both small

and large) were observed to cover the mortar surface from the second month up to the

sixth month in Plate - 2 (d), (e), (f), (g) and (h). The ettringite needles show a

considerable growth from the second month to the sixth month.
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The ettringite crystals observed in Plate - 2 (d) seem to be comparable to type 1

crystals reported by Mehta [77], formed under conditions of low hydroxyl ion

concentration. The literature indicates that this type of ettringite is not expansive

contrary to our observation in mortar cubes that had cracks forming on the surfaces.

Unlike the samples that were exposed to process cooling water, the samples exposed

to mine water exhibited crack formation and swelling especially in samples exposed

for 5 and 6 months.

(iii) Plate 3

The SEMs of the Portland Blastfumace Cement (PBFC) mortar samples exposed to

process cooling water are shown in Plate 3. The main features are calcium silicate

hydrate (C-S-H) crystals, needle-like ettringite and unhydrated cement particles.

Unlike the OPC samples, these samples show very small amounts of calcium

hydroxide. This observation is attributed to the pozzolanic reaction between the

calcium hydroxide (from OPC) and silica (from the Granulated Blastfumace Slag) to

produce calcium silicate hydrate. The micrographs in Plates - 3 (a), (b) and (c) exhibit

mainly the calcium silicate hydrate (C-S-H) covering the surfaces of the mortar cubes,

while ettringite crystals can be seen in Plate 3 (d). The unhydrated cement particles,

ettringite and calcium silicate hydrate can be seen in Plate 3 (e). Plate - 4 (t), (g) and

(h) show the presence of C-S-H and ettringite needles.

(iv) Plate 4

This plate shows the microstructure of the P0111and Blastfumace Cement (PBFC)

mortar samples exposed to mine water. The patterns observed are similar to those of

ope samples in plate 2. The micrograph in Plate 4(a) shows mainly the unhydrated

grains of cement and calcium hydroxide. The SEM micrographs in Plate - 4 (b), (c),

(d) and (e) exhibit mainly the growth of the hydration products such as calcium

silicate hydrate (C-S-H) and small amounts of calcium hydroxide. TIle ettringite

needle-like crystals can be seen covering the surface in Plate - 4 (t), (g) and (h). In

isolated areas [Plate 4 (h)] traces of unhydrated cement grains are also observed. In

tenns of quantity, more secondary minerals are formed in OPC cubes than in PBFC

cubes when exposed to mine water.
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Plate 1: The micrographs of ordinary Portland cement mortar cubes after the

exposure to process cooling water.



Plate 1
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Plate 2: The micrographs of ordinary Portland cement mortar cubes after the

exposure to mine water.



Plate 2
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Plate 3: The micrographs ofPortland blastfumace cement mortar cubes after the

exposure to process cooling water.



Plate 3
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Plate 4: The micrographs ofPortland blastfumace cement mortar cubes after the

exposure to mine water.



Plate 4
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To evaluate the effects of the wet and dry cycles, some mortar samples after one and

half months of exposure to the relevant solution were kept in a card box, which was

covered with plastic and left to dry for a period of two weeks at room temperature.

These tests were conducted because concrete surfaces of the cooling towers at Sasol

(Secunda) undergo these cycles especially during shutdowns.

(v) Plate 5

The SEM micrographs of OPC samples exposed to the process cooling water are

shown in Plate 5. The micrographs in Plate - 5 (a) and (b) revealed the presence of

calcium silicate hydrate crystals and calcium hydroxide, the products of the hydration

of cement. Plate - 5 (c) and (d) shows the prevalence of gypsum and ettringite needle­

like crystals interspersed with calcium silicate hydrate crystals.

(vi) Plate 6

The SEM of OPC exposed to mine water is shown in Plate 6. The micrograph in Plate

6 (a) exhibits C-S-H and the hexagonal calcium hydroxide that are the hydration

products of cement. The amount of calcium hydroxide decreases as hydration

continues [Plate - 6 (b), (c) and (d)] due to the formation of gypsum and ettringite. In

Plate 6 (c), calcium hydroxide could still be identified.

(vii) Plate 7

Plate 7 (a) shows the micrograph of OPC mortar cube that was exposed to a synthetic

sulphate solution. The micrograph Plate 7 (a), features calcium silicate hydrates (C-S­

H) and some unreacted cement particles. After 3 months of exposure [Plate 7 (b)] the

growth of the hydration product (C-S-H) can clearly be seen. This was followed by

the formation of gypsum and ettringite as shown in Plate 7 (c). At the end of six

months of exposure to synthetic sulphate solution [Plate 5 (d)], OPC mortar samples

exhibited mainly the ettringite needles.
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(viii) Plate 8

The micrographs labelled Plate 8 represent the SEM of the PBFC cubes exposed to

synthetic sulphate solution. The main features are C-S-H, calcium hydroxide, gypsum

and ettringite. Plate 8 (a) shows calcium silicate hydrate and the small round shaped

particles, which could be the hydrating cement particles or BFS slag. A large quantity

of C-S-H, the hydration product responsible for the strength in cement is seen in Plate

8 (b). As hydration continued, a progressive decrease in the unhydrated cement can be

seen in Plate 8 Cb), (c) and (d). Plate 8 (c) shows ettringite needles whereas Plate 8 (d)

features ettringite needles and C-S-H. When compared to the OPC samples, PBFC

cubes exhibited in terms of quantity less ettringite needles.
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Plate 5
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Plate 6: The micrographs of ordinary Portland cement mortar cubes after the

exposure to mine water.



Plate 6
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Plate 7: The micrographs of ordinary Portland cement mortar cubes after the

exposure to a synthetic sulphate solution and wet and dry cycles.



Plate 7
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Plate 8: The micrographs of ordinary Portland blastfumace cement mortar cubes after

the exposure to a synthetic sulphate solution and wet and dry cycles.



Plate 8
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3.3.2 Microbiological Activity

The nature of the process cooling water is likely to result in microbial corrosion in the cooling

towers. This is because paralueters such as temperature, sulphate, organic carbon and dissolved

solids, which are ideal for bacteria growth, exist in process cooling water. This investigation

however did not focus on n1icrobiological type of attack on concrete but on chemical attack. It is

important to note that during the viewing of ope mortar samples on the SEM, diatoms were

observed. These diatolus were only observed on the mortar cubes that had been exposed to

process cooling water. The diatoms belong to an algal group of worldwide distribution, with

fresh water, luarine and soil fonus [78]. These organisms occur in both marine and freshwater

environments and are known to secret solid amorphous silica in the form of shells, skeletons,

spines or plates [79]. These organisms extract silica from velY dilute solutions (0.1 ppm). The

two types of diatolus identified in the lUOliar samples exposed to process cooling water were the

Pinnularia and the Gephyrocapsa. These are shown in Figure 3.9.

Figure 3.9: SEM luicrographs of Ca) Pinnularia and Cb) Gephyrocapsa observed in the mortar

speciluens that had been exposed to process cooling water.

It is at this stage unknown whether to interpret the presence of these diatoms as indicating the

microbiological activity that is currently taking place in the cooling towers or whether their

presence is only due to the celuent. This is because the diatomaceous ealih that is also used to

make building luaterials does contain diatom shells. The role that these diatoms play in our

cooling water system requires fuliher investigation.
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3.3.3 Penetration of Sulphate Ions in the Mortar Cubes

Since the Scanning electron Inicroscope (SEM) was equipped with an Energy

Dispersive X-ray (EDX) analysis system that could be used to quantify the various

ions in the mortar samples, this advantage was used to monitor the depth of corrosion

with time. To determine this, mortar samples were sliced into 5 mm thickness pieces

and analysed for the amount of the sulphate ion (in % weight) which was represented

by the peak labelled S on the EDX spectra (see Figure 3.7). The results of the analyses

performed on the various mortar samples are tabulated in Table 3.10- 3.11.
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Table 3.10: Sulphate (weight %) EDX data for spot analyses on OPC and PBFC

mortar samples exposed to process cooling water and mine water.

Time in days Type of cement Depth (mm)

0 5 10 15 20

Amount of sulphate (weight %)

0 1.21 1.34 1.32 1.22 1.13

7 1.33 1.52 1.31 1.21 1.16

14 1.35 1.54 1.32 1.23 1.15

30 OPC IN PCW 1.37 1.55 1.33 1.25 1.16

60 1.42 1.63 1.36 1.24 1.17

90 1.48 1.72 1.41 1.27 1.16

120 1.54 1.77 1.48 1.28 1.18

150 1.56 1.79 1.48 1.26 1.17
180 1.58 1.82 1.49 1.27 1.16

0 1.21 1.34 1.32 1.22 1.13

7 1.39 1.36 1.35 1.24 1.16
14 2.28 2.83 1.38 1.26 1.18
30 3.09 4.79 2.45 1.32 1.24
60 OPCIN MW 3.48 4.82 6.62 1.43 1.28
90 3.65 4.86 6.85 1.62 1.34
120 3.69 5.41 7.01 1.64 1.36
150 3.75 5.63 7.34 1.72 1.38
180 3.77 6.07 7.73 1.81 1.42

0 1.19 1.25 1.28 1.23 1.15
7 1.32 1.45 1.34 1.28 1.16
14 1.47 1.66 1.35 1.27 1.16
30 1.48 1.69 1.35 1.25 1.17
60 PBFC IN PCW 1.52 1.93 1.44 1.26 1.21
90 1.63 2.28 1.52 1.28 1.27
120 1.68 2.78 1.62 1.32 1.29
150 1.72 3.54 1.88 1.41 1.31
180 1.74 4.23 2.01 1.45 1.34

0 1.19 1.25 1.28 1.23 1.15
7 1.62 1.97 1.47 1.36 1.19
14 1.87 2.36 1.54 1.47 1.25
30 2.81 3.24 3.89 3.32 1.28
60 PBFC IN MW 2.87 3.92 4.43 4.41 1.31
90 3.05 4.33 4.75 4.61 1.37
120 3.37 4.86 4.92 4.89 1.42
150 3.46 4.96 5.85 3.88 1.45
180 3.52 5.81 6.37 4.66 1.53
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Table 3.11: Sulphate (weight %) EDX data for spot analyses on OPC and PBFC

mortar samples exposed to process cooling water, mine water and

sulphate solution. Mortar samples were also allowed to undergo wet and

dry cycles.

Time in days Type of cement Depth (mm)

0 10 15 20

Amount of sulphate (weight %)

0 1.21 1.32 1.22 1.13

45 1.39 1.36 1.24 1.16

90 OPC IN PCW 1.54 1.44 1.27 1.17

135 1.68 1.47 1.26 1.18

180 1.72 1.51 1.29 1.22

0 1.21 1.32 1.22 1.13

45 3.06 1.56 1.32 1.17

90 OPCIN MW 3.84 2.33 2.05 1.35

135 4.42 3.42 2.36 1.47

180 5.08 4.73 3.45 2.02

0 1.19 1.28 1.23 1.15

45 1.62 1.31 1.27 1.18

90 PBFC IN PCW 1.75 1.45 1.31 1.21

135 1.82 1.69 1.42 1.33

180 3.66 2.32 1.74 1.48

0 1.19 1.28 1.23 1.15
45 3.07 1.69 1.36 1.18

90 PBFC IN MW 3.86 2.11 1.62 1.27

135 3.92 2.76 1.83 1.43
180 4.35 2.89 1.99 1.62

0 1.21 1.32 1.22 1.13
45 1.46 1.39 1.31 1.19
90 ope IN ss 1.62 1.67 1.33 1.23

135 1.74 2.42 1.46 1.34
180 1.86 2.64 1.65 1.45

0 1.19 1.28 1.23 1.15
45 1.73 1.51 1.35 1.26
90 PBFC IN SS 1.89 2.06 1.73 1.35
135 1.97 2.43 1.86 1.48
180 2.83 3.08 2.32 1.64

0 1.28 1.69 1.76 1.79
45 1.84 1.87 1.81 1.78
90 CTSIN MW 2.12 2.42 1.75 1.34
135 3.75 2.65 1.82 1.42
180 3.83 2.75 1.95 1.53

*CTS =concrete samples from the Secunda cooling towers.
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The monitoring of the sulphate ion's penetration into the mortar cubes gave an

indication of how deep into the cubes corrosion has taken place. The results of this

observation are given in Figures 3.10-3.12. All the graphs show an increase of the

sulphate ion concentration to a particular depth before dropping sharply to an

equilibrium value at a depth of about 20 mm. Looking at Figure 3.10 (the non-dry

cycle process) it is observed that in the case of process cooling water both OPC and

PBFC had the highest concentration of sulphate ions at a depth of 5 mm with no

notable change at depth of 15 to 20 mm. The amount of sulphate increases at this

depth with time. The amount in PBFC is about 3 times that in OPC at this depth. This

is a clear indication of the porous nature of PBFC cubes. In the case of mine water,

the depth with the highest concentration is 10 mm. The amount of sulphate identified

in OPC cubes is slightly higher than that in PBFC at this stage. This is because the

penetration in PBFC is widespread with the concentration dropping gradually. This

means that more ions penetrate deeper in PBFC mortars than OPC. This confirms the

results already reported in section 3.3.2 from the water analysis confirming that PBFC

is more porous than OPC. These findings also support the idea that the organic

constituents in process cooling water slow down the penetration of the sulphate ions.

This is because of the depth of penetration of sulphate ions, which is higher in mine

water than in process cooling water. The high penetration in mine water can result in

severe corrosion of mortar and concrete. The low sulphate content on the surface can

be attributed to the counter process of sulphate dissolution into the surrounding

solution. This is likely to have been assisted by the movement of water in the

container.

The data for the penetration of sulphate ions in process cooling water and mine water

into mortar specimens exposed to wet and dry cycles are shown in Figure 3.11. It can.
be concluded that the wet and dry cycles enhanced the penetration of the ions in the

case of process cooling water. The diagrams (Figure 3.11: E and G) show that the

penetration depth is not different to the one without a dry session, but the amount

absorbed at the depth of 5 mm is about 2 times more in OPC and about 0.3 higher in

PBFC.

103



It can therefore be said that the areas in the cooling tower which go through the wet

and dry cycles such as the top parts will be expected to show signs of concrete

corrosion. Looking at the OPC in mine water, the maximum sulphate percentage is

found at 5 mm as compared to 10 mm in the non-dry session, the concentration being

not very different. The PBFC in a similar solution show a maximum of percentage at

10 mm with a sharp drop to the equilibrium value at 15 mm. It therefore seems that

the wet and dry cycles did not enhance the uptake~of the sulphate ions in mine water.

The penetration trend in Figure (3.11: F and H), support the wetness theory, that the

drying process of mortars in process cooling water is slower than in mine water. This

means that after 14 days of drying, mortar cubes from process cooling water will be

holding more moisture than those from mine water because of the oily organic

compounds. The outcome of this is that when the mortar cubes are put back into fresh

solutions, the diffusion process in process cooling water starts almost immediately.

However with regards to samples in mine water the mortar has to go through the

wetting process as diffusion takes place. This process is repeated every time after the

dry sessions. This possibly explains the type of accumulation of the ions observed in

Figure (3.11: F and H) which is different to that in Figure (3.10: B and D).

The effect of mine water on the cooling tower sample is shown in Figure 3.12 (1). The

penetration effect is very similar to that of OPC samples. The spread of the ions and

the concentration is slightly lower. It can therefore be speculated that the cooling

towers were built using OPC and a very low water to cement ratio. The results from

the synthetic sulphate solution (Figure 3:12 (J and K)) clearly confirm that the

suspended solids and the organic compounds slow down the diffusion of ions into the

mortar' samples. This in turn means a lower level of corrosion. The diagrams show

that the penetration is deeper and the concentration at each depth is higher than that of

samples in process cooling water.

104



3.4 X-ray Diffraction (XRD)

Powder X-ray diffraction was employed as an additional method to SEM for the

identification and approximate relative proportions of the crystalline phases formed

during the corrosion process of mortar cubes exposed to mine water, process cooling

water and the synthetic sulphate solution. The analyses were performed using a

Phillips PWl130/90 X-ray Diffractometer housed in the Department of Soil Science

at the University of Natal in Pietermaritzburg. The instrument was set to scan from 5

to 60 degrees 2-theta. Due to the difficulties encountered when peak identification

was attempted using JCPDS powder diffraction files, a sample of OPC that had been

immersed in mine water for two weeks was analysed using a D 500 Siemens XRD

Instrument housed in the Instrumental Techniques Department at Sasol (Pty, Ltd),

Sasolburg. The identification of peaks from this sample was carried out with the help

of Diffrac. Plus XRD software. A typical diffractogram with a key (Table 3.12) is

shown in Figure 3.13. In Table 3.12, only the first 3 most intense lines for each

mineral phase are given.

Table 3.12: The mineral phases corresponding to each peak as identified by XRD

Relative JCPDS
Symbol d -spacing intensity reference number Mineral

(A) (I) (s)
e 9.73 100 37-1476 Ettringite
g 7.56 100 33-311 Gypsum
e 5.61 80 37-1476 Ettringite
p 4.9 74 4-733 Portlandite

g,q 4.28,4.26 90,35 33-311,33-1161 Gypsum, Quartz
e 3.88 50 37-1476 Ettringite
q 3.34 100 33-1161 Quartz

c,g 3.04 100,55 5-586, 33-311 Calcite, Gypsum
C3 S 3.02 100 23-124 Tricalcium silicate
C2S 2.74 30 31-297 Dicalcium silicate
p 2.63 100 4-733 Portlandite
q 2.46 2 33-1161 Quartz
c 2.28 3 5-586 Calcite

c-s-h 2.27, 1.92 100 3-548, 15-584 Calcium silicate hydrate
c 2.1 3 5-586 Calcite
m 3.26 100 19-926 Microcline
p 1.93 42 4-733 Portlandite
q 1.82 <1 33-1161 Quartz

Figure 3.13: XRD pattern ofOPC exposed to mine water
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Figure 3.13: XRD pattern ofope exposed to mine water

Key: e = ettringite, m =microcline, g =gypsum, c =calcite, q =quartz,

p =portlandite, c-s-h = calcium silicate hydrate, C2S =dicalcium silicate,

C3S = tricalcium silicate
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The XRD patterns of pure OPC and PBFC cements, Umgeni sand and the concrete

pieces from the cooling tower at Secunda are shown in Figure 3.14. These patterns

were used as standards for comparative purposes in monitoring the appearance and

disappearance of certain peaks as a result of chemical attack. The dominant

compounds in OPC and PBFC diffractograms are tricalcium silicate (C3S) and

dicalcium silicate (C2S). As was expected, quartz was the dominant mineral phase in

the Umgeni sand. The mineral phases identified by XRD in the concrete samples from

the Secunda cooling tower included quartz, gypsum, portlandite, calcium silicate and

calcite.
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The XRD patterns of ope mortar cubes cured in process cooling water from 1 week

to 6 months is shown in Figure 3.15. In all diffractograms, quartz appears to be a

dominant mineral phase. Peaks .corresponding to ettringite (e) and gypsum (g) started

developing after 2 months of exposure to process cooling water.
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Figure 3.15: XRD patterns of ordinary Portland cement in process cooling water
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Figure 3.16 shows XRD patterns of ope cubes cured in mine water from 1 week to 6

months. The diffractograms reveal the formation ofettringite after 1 week of exposure

to mine water. This is a clear indication of sulphate attack on cement hydration

products. The ettringite peak showed a slight increase in intensity between 1 month

and 6 months. This was accompanied by the development of gypsum peak between 1

month and 4 months.
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Figure 3.16: XRD patterns of ordinary Portland cement in mine water
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The XRD patterns of ope cubes cured in process cooling water and exposed to dry

cycles are shown in Figure 3.17. No significant difference was observed between

these samples and that were kept in solution. Small ettringite and gypsum peaks were

identified after 1.5 months and seemed to disappear after 4.5 months. The XRD

patterns also show the expected decrease in intensity of the portlandite peak.
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Figure 3.17: XRD patterns ofordinary Portland cement in process cooling water and

exposed to dry cycles

110



The XRD patterns of ope mortar cubes cured in mine water from 1.5 to 6 months

and exposed to dry cycles is shown in Figure 3.18. No major changes in the

diffraction patterns were observed over this period since similar phases were present

throughout the curing period. There was, however, a steady decrease in the intensity

of the peak corresponding to portlandite. Small ettringite peaks were identified

between 1.5 and 6 months.
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Figure 3.18: XR.D patterns ofordinary Portland cement in mine water and exposed to

dry cycles
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The XRD patterns of ope cubes exposed to synthetic sulphate solution is shown in

Figure 3.19. A small ettringite peak, which did not show any increase in intensity with

increasing time of exposure to synthetic sulphate solution, was identified between 1.5

months and 4.5 months. This peak was, however, not observed after 6 months.
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Figure 3.19: XRD patterns oford~aryPortland cement in synthetic sulphate solution

and exposed to dry cycles
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Figure 3.20 shows the XRD patterns of PBFC cubes cured in process cooling water.

Expansive phases (ettringite and gypsum) peaks were identified after 4 months. The

intensity of these peaks did not increase with further exposure to process cooling

water.
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Figure 3.21 shows XRD patterns of PBFC cubes immersed in mine water. Small

ettringite and gypsum peaks were identified after 2 weeks of exposure to mine water.

These peaks were however not observed after 2 months but started developing again

after 2 months. The intensity of these peaks was slightly higher than those observed

after 2 weeks.
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Figure 3.21: XRD patterns of Portland blastfumace cement in mine water

114



The XRD patterns ofPBFC mortar cubes cured in process cooling water from 1.5 to 6

months and exposed to dry cycles is shown in Figure 3.22. A small portlandite peak

was identified after 1.5 months, this peak disappeared with longer time of exposure to

process cooling water. Ettringite and gypsum peaks were identified after 6 months.



:
1.5 months

eo
"- I'

4.5 months 6 months
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Figure 3.23 shows XRD patterns ofPBFC cubes cured in mine water and exposed to

dry cycles. As was observed in the SEM analysis of these samples, no sign of the

presence of portlandite was obtained. A very small gypsum peak was observed

between 1.5 and 3 months of exposure to mine water.
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Figure 3.24 shows XRD patterns of PBFC cubes immersed in synthetic sulphate

solution. XRD data revealed the fonnation of ettringite (after 3 months) and gypsum

(between 4.5 and 6 months). No evidence was obtained for the presence ofportlandite

as this was identified by the SEM-EDX analysis.
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Lastly, it can be said, based on the results obtained that the objectives of

mineralogical (XRD) studies of mortar cubes cured in process cooling water, mine

water and synthetic sulphate solution were not achieved. This can be attributed to a

number of difficulties experienced during the interpretation of the XRD data. The

primary cause of these difficulties as far as peak identification was concerned was the

dominance of quartz peaks in all diffractograms. Since quartz accounted for""" 85 % of

the mortar and quartz is strongly diffracting, other phases present would be present in

relatively low amounts and give relatively small peaks. Obtaining a representati e

sample for XRD analysis is also problematic as we are dealing with a small amount of

analyte in a strongly diffracting matrix. This gives rise to a high sampling error and is

probably the reason why in some cases a small peak can be seen in a sample and then

on subsequent sampling it has disappeared. XRD is also a relatively poor technique in

terms of detection limits and therefore it is possible to obtain plenty evidence of

ettringite and gypsum by SEM but not be able to identify these phases by XRD.

Therefore the main conclusions of this thesis can be derived from the SEM-EDX

analysis.
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Chapter 4

Conclusions and recommendations

4.1 Introduction

To minimise the consumption of large volumes of raw clean water, Sasol (Pty) Ltd. is

investing in wastewater treatment processes with the intention to reuse the wastewater

as the process cooling medium. The recycling of wastewater at Sasol involves using

the wastewater as makeup water for the evaporative concrete cooling towers. The

quality of the treated wastewater (process cooling water) drops as it becomes

saturated with different contaminants. These include the dissolved inorganic salts (e.g.

sodium sulphate) and the organic compounds (e.g. phenols). Some of these

contaminants have deleterious effects on concrete. Besides the reuse of treated

wastewater, there exists an option at Sasol to use mine water, which is produced from

its own mining operations, as a cooling medium. This study has led to a number of

important findings and the results obtained should shed considerable light on the

problem of concrete corrosion.

4.2 Major Findings and Conclusions

Process cooling water separated into three layers (1.6:2.4:1) when left to stand in a

separating funnel. The top layer was oily and brownish in colour while the middle

layer was aqueous. The bottom layer was a heavy black sludge, which was insoluble

in both organic and inorganic solvents. The chemical analysis of the process cooling

water using GC-MS showed that the organic compounds were small to medium

molecular weight compounds. These include alcohols, esters, carboxylic acids and

saturated hydrocarbons.

The ICP-OES analysis of process cooling waters and mine water showed that the

solutions consisted of Ca, Si, Mg, Na, K and other cations such as Fe, Mn, Cu, and Zn

(Table 2.2) present in small amounts. The individual waters that make up process

cooling water namely SGL, API, RXN water and water from Dam 4 were also

individually analyzed. The reaction water contributes the lowest amount of these ions

to the process cooling water solution.
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The concentration of Ca, Si, Mg, Na and K ions ranged from 6 to 81 mg/L in process

cooling water and from 2 to 351 mg/L in mine water. The other ions identified in

process cooling water included ammonium, chloride and sulphate ions. These were

also found to exist in mine water with the exception of ammonium ions. The

concentrations of sulphate ion in process cooling water and mine water were found to

be 2414 and 3550 mg/L respectively. These results were used to calculate the overall

corrosion indices, which are a measure of the corrosiveness of water. The values

obtained for process cooling water and mine water were 14556 and 2223 respectively.

These results indicate that process cooling water should be more corrosive than mine

water.

The two types of cements used to test the corrosiveness of process cooling water and

mine· water were OPC and PBFC. The results showed that the uptake of magnesium,

sulphate and chloride ions by the mortar cubes was higher in mine water compared to

process cooling water. This result indicated that mine water was more corrosive than

process cooling water. The other ion that was found to diffuse into the mortar cubes

was the ammonium ion. The ions that were leached out of the mortar cubes into the

solution were calcium, silicon and potassium, the leaching ofcalcium being more than

the other ions. The effect was more severe in mine water than in process cooling

water. This indicated that the organic compounds and the suspended solids in process

cooling water inhibited the absorption and the leaching of ions from the cubes. This is

supported by the results of the synthetic sulphate solutions. It can therefore be

concluded that the organic compounds slowed down the corrosion process in process

cooling water as compared to mine water.

PBFC was found to be more porous than OPC and more stable in the chemical

environment when compared to OPC samples. The wet and dry cycles enhanced the

uptake of ions in the process cooling water but not in mine water. The determination

of the depth of penetration of sulphate ions into the mortar cubes performed using

EDX showed a deeper penetration in the cubes that were exposed to mine water than

those in process cooling water.
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The investigation by SEM and EDX of the morphology of the OPC and PBFC mortar

samples revealed different abundances and types of secondary phases. The phases

identified in all test specimens included calcium silicate hydrate (C-S-H), gypsum and

ettringite. Generally, an abundance of these was identified in OPC cubes especially

those exposed to mine water and sulphate solution as compared to those exposed to

process cooling water. Lower amounts of these secondary phases were observed in

PBFC cubes than in OPC cubes.

It can therefore be concluded that mine water is more corrosive than process cooling

water. This means that it is not suitable for use as a cooling medium unless it is

treated to remove the sulphate ions. The low level of corrosion due to process cooling

water can be attributed to the presence of organic compounds and the suspended

matter.. These acted as protective layers preventing the ions in the aqueous medium

penetrating through the surface of the mortar cubes. Since only EDX analyses were

carried out on the concrete samples from the cooling tower at Secunda, conclusive

deductions on the type of cement used to make the tower cannot be made.

4.3 Recommendations and Further Work

Though the cooling towers from a structural point of view at this stage are sound, it is

recommended that regular inspections of the cooling towers be held during every

shutdown to detect any further deterioration of concrete. Special attention should be

paid to the top part of the cooling tower since attack by soft water (in the form of

vapours emitted by the cooling tower) and further, the accelerated attack on concrete

due to wet and dry cycles are likely to occur. Mine water should be treated to reduce

its sulphate concentration to at least below 1000 ppm before being used as a cooling

medium. Long term studies into concrete corrosion where test specimens are exposed

to mine water and process cooling water for longer periods than 6 months are

recommended. The omission of sand will assist in getting more information from the

XRD analysis.
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Appendix 1: Organic compounds identified in pcw



ORGANIC COMPOUNDS IDENTIFIED FROM PCW EXTRACT

1. Ethyl cyclopentane

2. Bicyclo [2.2.1.] heptane

3. 1,3 - dimethyl cis-cyclohexane

4. Dimethyl trans cyclohexane

5. Methyl benzene

6. 2, 4 dimethyl heptane

7. 1,2 dimethyl cis cyclohexane

8. 2, 4 dimethyll-heptene

9. Ethyl cyclohexane

10. 1- ethyl-4- methyl trans cyclohexane

11. 1-ethyl-4-methyl cis cyclohexane

12. Bicyclo [4.2.0] octa-1, 3,5-triene

13. Styrene

14. 1,3,5,7-cyclooctatetraene

15. 4-ethyloctane

16. Pentachloro ethane

17. Octahydro-2-methyl pentalene

18. Dodecane

19. Decahydo trans naphthalene

20. 2,4 dimethyl heptane

21. Octahydo 4,7-methano-1H-indene

22. Exo-octahydro- 4,7-methano-1H-indene

23. Tricyclo [5.2.1.0(2,6)] decane

24. Tricyclo [6.2.1.0(2,6)] undecane



25. 1-dodecene

26. Hexatriacontane

27. Tridecanol

28. 2,6,1 0,14-tetramethyl hexadecane

29. 2,3,4,5,8 tetramethyl decane

30. Tetradecane

31. 2,4-Bis (l,l-dimethylethyl) phenol

32. 1-Butyl-2 propyl cyclopentane

33. 4-Ethyl tetradecane

34. 1a-methyl eicosane

35.6,10-dimethyI9-undecen-2-one

36. 4-methyl heptadecane

37. 4,5-dimethyl-l,8-naphthyredine

38. 5,14-dibutyloctadecane

39. I I-butyl docosane

40. 1-butyl-2-propyl cyclopentane

41. 1,2-benzene bicarboxylic acid, Bis (2-methyl propyl), ester

42. Hexadecanoic acid, methyl ester

43. 14-methyl pentadecanoic acos, methyl ester

44. 1-butyl-2-propyl cyclopentane

45. Hexadecanoic acid

46.0ctadecanoic acid, methyl ester

47. Octadecanoic acid

48. Tricosane

49. l-octadecene



50. Docosane

51. 1,2-Benzenedicarboxylic acid, Bis (2-ethylhexyl) ester

52. Eicosane

53. Bis (2-ethyhexyl) ester of azelaic acid
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