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Abstract 

Two decades after the World Health Organisation (WHO) declaration of tuberculosis (TB) as 

a global emergency, the disease remains a public health crisis of epic proportions. The 

emergence of drug resistant strains of Mycobacterium tuberculosis, the etiologic agent of TB, 

and the convergent human immunodeficiency virus (HIV) epidemic places a devastating 

burden on an already weakened public health care system in South Africa. Rapid and 

accurate detection of drug resistance to first and second line drugs to guide effective 

treatment of TB is central to control of the disease and in preventing further dissemination of 

drug resistant strains. Knowledge of the underlying resistance mechanisms driving drug 

resistance in M.tuberculosis is pivotal in the design of rapid molecular based assays and will 

impact of the development of novel drugs and regimens for the disease. 

The manuscript in chapter 2 of this thesis, entitled Dynamics of antimicrobial resistance in 

Multi-Drug and Extensively Drug resistant strains of Mycobacterium tuberculosis in 

KwaZulu-Natal, South Africa, demonstrated the diversity of the resistance mechanisms 

amongst the multidrug resistant (MDR) TB strains currently circulating in the KwaZulu-

Natal province of South Africa by the analysis of the rpoB, katG, inhA, pncA and embB genes 

associated with resistance to key drugs used in the treatment of TB. Multiple drug resistance 

mechanisms in the MDR-TB isolates suggests that the strains emerged separately and 

acquired resistance mutations independently. The findings of this study also confirms the 

clonality of the XDR-TB epidemic demonstrated by the predominance of the 

F15/LAM4/KZN strain family and reveals that MDR-TB strains are evolving and spreading 

via transmission. 

 

The manuscript in chapter 3 of this thesis, entitled Streptomycin resistance in the 

F15/LAM4/KZN strain of Mycobacterium tuberculosis is mediated by lineage-specific 
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alteration of the gidB gene, demonstrated that streptomycin (STR) resistance in the 

F15/LAM 4/KZN MDR and XDR-TB strains was mediated by a rare, 130bp deletion within 

the gidB gene of M.tuberculosis leading to a complete disruption of the gene. Classical 

mutations in the rpsL gene mediated STR resistance in the remaining strain families. 

Widespread STR resistance has resulted in the exclusion of the drug from current treatment 

regimens. The findings of this study support the decision of policymakers and cautions the 

application of the drug in the absence of drug susceptibility testing. 

The manuscript in chapter 4 of this thesis, entitled Moxifloxacin resistance in the 

F15/LAM4/KZN extensively drug-resistant strain of Mycobacterium tuberculosis, 

demonstrated that the F15/LAM4/KZN XDR strain harboured the A90V gyrA mutation 

associated with high level ciprofloxacin (CPX) and ofloxacin (OFX) resistance and correlated 

with increased minimum inhibitory concentrations (MIC) for moxifloxacin (MXF). The 

results of this study cautions the utilization of MXF as part of empiric treatment protocols in 

the absence of moxifloxacin MIC data of the circulating XDR strains in an area. It also raises 

concerns regarding the regarding the use of moxifloxacin in KwaZulu-Natal. Furthermore, 

the current breakpoint defining resistance to MXF is of concern and requires revision. 

The manuscript in chapter 5 of this thesis, entitled Evaluation of Capreomycin in the 

treatment of the F15/LAM4/KZN extensively drug-resistant strain of Mycobacterium 

tuberculosis demonstrated that the A1401G rrs mutation was the main mechanism mediating 

resistance to the aminoglycosides, kanamycin (KAN) and amikacin (AMIK); and to 

capreomycin (CAP). CAP was reintroduced into TB treatment protocols without prior drug 

susceptibility testing. This results of this study demonstrates high level resistance to CAP and 

urges careful consideration in the application of CAP the KwaZulu-Natal province. 

Furthermore, concerns regarding the high breakpoint value that defines CAP resistance as 
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compared to wild-type MICs for the drug results in misdiagnosis of resistance that results 

inadequate patient treatment and amplifies resistance. 

The manuscript in chapter 6 of this thesis, entitled KZN Multidrug and Extensively drug 

resistant strains of Mycobacterium tuberculosis remain susceptible to Linezolid and 

para-Amino salicylic Acid, demonstrated that the mechanisms most commonly associated 

with resistance to the linezolid (LIN) and para-amino salicylic acid (PAS) were absent in the 

MDR and XDR-TB strains in this study. Mutations detected in the drug targets were lineage 

specific markers rather than resistance mechanisms. This study also highlights the poor 

understanding of resistance to these drugs and the need for further study to allow for 

resistance detection to be incorporated into diagnostic assays, thus prolonging the utility of 

these drugs.  

 The manuscript in chapter 7 of this thesis, entitled Efflux mediated drug resistance in 

clinical isolates of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa, 

demonstrated the role of efflux pumps in mediating low level resistance. The results of this 

study supports the hypothesis that efflux activity leads to decreased intracellular antibiotic 

concentrations, thereby allowing the survival of a sub-population of bacteria under the sub-

inhibitory level of the antibiotic, from which resistant mutants emerge, leading to clinically 

significant levels of resistance. The results of this study strongly supports the application of 

efflux pump inhibitors as adjunctive to the current treatment protocols. 

The results emanating from this thesis has contributed to the body of knowledge of drug 

resistance in M.tuberculosis, especially in the KwaZulu-Natal province of South Africa. 

Furthermore, the results can be used to guide treatment protocols and contributes to the future 

development of molecular based assays aimed at detecting resistance.
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Chapter One 

INTRODUCTION 

 

1.1 Background  

Tuberculosis has plagued mankind since antiquity. The discovery of Mycobacterium 

tuberculosis, the etiologic agent of TB, by German bacteriologist, Robert Koch was the 

cornerstone in history of the disease, which subsequently led to the development of modern 

chemotherapy.(1–3) However, soon after the discovery of STR, the first described antibiotic 

effective against M.tuberculosis, reports of resistance emerged. This was mainly due to the 

use of the drug as monotherapy. The realization that M.tuberculosis rapidly develops 

resistance when treated with only one drug, paved the path for modern combination 

regimens.(4) 

M.tuberculosis has evolved over decades, and despite advances in the development of anti-

TB drugs, the organism is now capable of causing severe untreatable forms of the disease. 

Multi-drug resistant (MDR-TB) strains of M.tuberculosis are resistant to isoniazid (INH) and 

rifampicin (RIF), the most effective drugs in the current multidrug regimen. MDR-TB strains 

that display additional resistance to the fluoroquinolones or the injectable second line drugs 

are classified as extensively drug resistant (XDR-TB).(5) More recently, resistance beyond 

XDR-TB has been described as to totally drug resistant (TDR-TB). These isolates display 

resistance to all available first and second line drugs available.(6) 

Major advances in molecular based techniques and the whole genome sequence of 

M.tuberculosis has provided a wealth of information on the mechanisms mediating resistance 

to the key anti-TB drugs, leading to the development of rapid diagnostic assays with the 
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ability to detect M.tuberculosis infection and resistance to rifampicin (RIF) concurrently. 

(7,8) However, detection of resistance to second line drugs still depends heavily on 

mycobacterial culture methods in liquid or solid media. These techniques are most accurate in 

determining resistance to INH and RIF. Susceptibility testing for second line drugs is more 

complicated and less reliable. Furthermore, results from these methods are only available 

weeks to months later.(9) During this period, inadequate treatment allows for the 

development of further resistance and a population of individuals transmitting drug resistant 

strains of TB.(5) 

Modern molecular diagnostics are not dependent on culture techniques that require the slow 

growth of M.tuberculosis. Instead, these methods depend on the association of genetic 

mutations in resistance conferring genes of the pathogen. The accuracy of these tests depend 

on the relationship of the mutation and phenotypic drug resistance in the isolate bearing the 

mutation.(9) This relationship is well established for RIF and INH, but remains vague in the 

case of subsequent drugs.(7,8) The mutations have also been reported to vary geographically 

and the diversity of mechanisms mediating resistance and drug targets has posed a further 

challenge. (10) 

Prolonged treatment for drug resistant TB supports the adaptation and survival mechanisms 

in M.tuberculosis. Increased bacterial fitness resulting in accelerated transmission and the 

induction of efflux mechanisms has been described. Efflux pumps play a role in the extrusion 

of toxic substances and metabolites from the bacterial cell. However, prolonged antibiotic 

exposure has allowed M.tuberculosis to adapt efflux mechanisms to extrude vital drugs and 

escape the effects of the most potent drugs available for eradication of the disease.(11) 

1.2 Epidemiology of Tuberculosis 
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According to the 2014 global TB report by the WHO, it has been estimated that 9.0 million 

(range, 8.6 million- 9.4 million) incident cases of TB were reported globally in 2013 and 

approximately 1.5 million deaths resulted from the disease. Of these, 0.4 million deaths 

occurred in HIV positive people and 210 000 deaths were attributed to MDR-TB. 3.5% of the 

incident cases and 20.5% of previously treated cases were estimated to be MDR-TB. (12) 

WHO identified 22 high burden countries since 2000, accountable for 82% of all TB cases 

worldwide. The 6 countries recording the highest burden of disease include, India (2.0 

million- 2.3 million), China (0.9 million- 1.1 million), Nigeria (340 000- 880 000), Pakistan 

(370 000- 650 000), Indonesia (410 000- 520 000) and South Africa (410 000- 520 000). (12) 

South Africa, together with Indonesia, ranks 5th amongst the 22 high TB burden countries: 

1.8% of the incident cases and 6.7% of previously treated cases are MDR-TB. The estimated 

epidemiological burden of TB in SA, includes a prevalence of 715 cases per 100 000 

population and incidence of 860 per 100 000 population. (12) 

1.3 Diagnosis of Tuberculosis & Drug Susceptibility Testing 

Early diagnosis and drug susceptibility testing is central to the management of TB. Diagnosis 

of TB is still reliant on sputum smear microscopy and culture based technology.(13) 

Differential staining of mycobacteria is based on the acid fast staining of the organism, 

resulting from the mycolic acid structure of the bacterial cell wall. Sputum smear microscopy 

using the Ziehl-Neelsen (ZN) staining technique is applied to the detection of M.tuberculosis. 

The specimen is stained with phenol fuschin, followed by decolourisation with acid alcohol. 

Methylene blue or malachite green is applied as a counterstain. Auramine-rhodamine staining 

is an alternate to the ZN stain. This technique employs potassium permanganate as a 

counterstain following decolourisation with acid alcohol. The fluorescence of the bacteria is 

visible under UV illumination. (14) 
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Cultivation of M.tuberculosis is a sensitive and specific method for the diagnosis of TB. The 

basic types of culture media include; Lowenstein-Jensen (LJ), an egg-based medium; 

Middlebrook 7H10/11, agar-based media and liquid media such as Middlebrook 7H9. (15) 

Conventional culture based methods requires 3-6 weeks for growth and isolation. (16) 

Culture of M.tuberculosis in liquid media is the current reference method for the diagnosis of 

M.tuberculosis. This method requires adequate digestion and decontamination of samples 

prior to cultivation in media. Liquid media is associated with higher recovery of tubercle 

bacilli  and shorter time to detection.(5) Colorimetric systems such as the BACTEC (Johnson 

Laboratories) and BACTEC-MGIT (Johnson Laboratories) are culture based assays that have 

improved the time to detection of M.tuberculosis.(16)  

The recent Xpert MDR/RIF (Cepheid) assay is a polymerase chain reaction (PCR) based 

assay that utilizes molecular beacon technology. The test has a significantly higher sensitivity 

that sputum smear microscopy. The test is a fully automated, rapid diagnostic assay that 

simultaneously diagnoses TB and detects RIF resistance. This test allows for the rapid 

initiation of treatment for drug resistant TB pending confirmation of drug susceptibility 

testing. (17) 

Drug susceptibility testing on solid media remains the gold standard for phenotypic 

determination of drug resistance. This is mainly due to its standardisation on solid media and 

reproducibility. This technique involves incorporating the drug into the media, thereafter 

inoculating the sputum specimen directly onto the medium or indirectly by inoculating the 

media with culture isolated from the sputum specimen. The 1% proportion method is the 

most common technique used to determine susceptibility. Microplate assays have been tested 

but their reproducibility remains unreliable, especially in the case of second line drugs.(18–

21) 



5 
 

1.4 Molecular Typing of M.tuberculosis 

1.4.1 Typing Methods 

M.tuberculosis was initially believed to be a highly homogenous organism and variations in 

disease presentation were mediated by the host immune response. Modern molecular 

techniques have increased our capacity to distinguish between strains of M.tuberculosis. 

Restriction fragment length polymorphism (RFLP) typing is the most common technique 

adopted to differentiate between M.tuberculosis strains. The IS6110 specific insertion 

sequence displays characteristic binding patterns that can be used to compare isolates. (22) 

PCR based typing methods such as mycobacterial interspersed repetitive units-variable 

number of tandem repeats (MIRU-VNTR), spacer oligonucleotide typing (spoliogotyping), 

strain specific PCR amplification have also been applied to distinguish between strain types. 

More recently, whole genome sequencing technology allows for a greater degree of 

discrimination of M.tuberculosis isolates.(23) 

1.4.2 Circulating Strains 

To date, seven major strain families have been described globally and are further divided into 

subfamilies. These include the East African-Indian (EAI), Haarlem (H), Central and Middle 

Eastern Asia (CAS), European Family X, Default Family T, W-Beijing and Latino-American 

and Mediterranean (LAM). In South Africa, strain families have been reported to vary 

geographically. The TB epidemic in the Western Cape province of South Africa is 

characterised by 4 strain types, the Beijing, F11, F28 and DRF 150. The Beijing strain family 

is the most prevalent strain family, endemic to China and neighbouring countries of 

Mongolia, South Korea and Thailand. This strain type is identified by spoligotype signature 

that lacks spacers 1 to 34 and the IS6110 RFLP signature is the inverted IS6110copy within 

the DR region. The F11 strain family is characterised by the lack of spoliogotype spacers 9 to 
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11, 21 to 24 and 33 to 36 and the presence of 11 to 19 IS6110 RFLP bands that serves as 

unique markers for identification of this family. The F28 family found in South Africa is 

identical to S strain family endemic to Sicily and Sardina. The DRF 150 genotype was 

identified in an outbreak of an emerging resistant non-Beijing strain. This genotype is 

characterised by 5 IS 6110 insertions and high level resistance to INH, RIF and STR. In 

KwaZulu-Natal, the F15/LAM4/KZN, Beijing, F28 and F11 families have been described. 

The F15/LAM4/KZN and Beijing are the predominant strains driving the drug resistant 

epidemic in the province. (24) The F15/LAM4/KZN strain has evolved from 1995 from a 

single phenotype to XDR-TB. (25) This strain family was also attributed as the strain 

responsible for the 2006 outbreak of XDR-TB in the province.(26) The F15 family belong to 

the major Latino-American and Mediterranean family and correspond to the LAM4 sub-

family. The spoligotype pattern lacks spacers 21-24, 33-36 and 40 and has a unique RFLP 

pattern. Spoligotyping of XDR-TB strains from 7 provinces in South Africa revealed high 

genotypic diversity, which included 7 internationally recognised strain families (Beijing, 

LAM, EAI, the T, H, S and X3 families). The Beijing strain family represented majority of 

the isolates. 

1.5 Treatment of Tuberculosis 

1.5.1 Historical overview of tuberculosis treatmentThe era of antibiotic treatment of TB 

began in 1946, with the discovery of STR, the first antibiotic effective against 

M.tuberculosis. However, its ability to consistently cure TB was questioned when patients 

were relapsing after 3 months of STR monotherapy. This was confirmed by the discovery 

that M.tuberculosis rapidly develops resistance when treated with only one drug. (27–30)The 

next decade saw the development of multiple drugs with alternate mechanisms of action 

against M.tuberculosis, including INH, PAS, KAN and cycloserine. This gave rise to 

combination therapy of 18 months duration. The introduction of RIF in 1963, was a major 
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breakthrough in treatment, as it reduced treatment duration to 9 months. Empiric observation 

and the subsequent development of drugs with activity against M.tuberculosis over the next 4 

decades gave rise to the current 4 drug regimen. The use of combination therapy reduced the 

occurrence of resistance and became a standard of care for TB therapy.(4,31) A further 

rationale for combination therapy is based on the premise that 3 population subtypes 

characterize cavitary TB disease; bacilli in the log phase of growth and slow replicating 

bacteria in hypoxic and acidic conditions. Multidrug regimens combining INH, RIF and PZA 

actively inhibits each of the population subtypes.(31,32) 

1.5.2 Current Treatment  

Drug Susceptible Treatment 

Current treatment guidelines recommend a two-phase treatment plan for 6 months for drug 

susceptible (DS) TB. The first phase of 2 months includes a combination of INH, RIF, 

ethambutol (EMB) and pyrazinamide (PZA), known as the intensive phase. The second phase 

of 4 months is treatment with INH and RIF, known as the continuation phase. This regimen is 

currently applied to the treatment of pulmonary TB and most forms of extra pulmonary TB. 

Guidelines further differentiate between new cases (treatment naïve) and previously treated 

cases (previously treated for at least 1 month). Patients previously treated with anti-TB drugs 

are managed with caution due to the risk of inducing drug resistance.(33,34) Figure 1.1 

depicts the clinical management algorithm for TB treatment.(34) 

Drug Resistant Treatment 

Multidrug Resistant TB 

Tuberculosis programmes adopt a combination of standardised and individual based 

treatment regimens for the management of drug resistant TB. The application of standardised 

regimens for MDR-TB cases is confirmed using drug susceptibility testing for the patient or 
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generalised data representing a particular patient population. Individualised regimens utilize 

patient specific data, including prior anti-TB drug use and drug susceptibility testing to tailor 

a drug regimen. In the absence of, or limited drug susceptibility testing data, empirical 

regimens are applied.(5) Table 1.1 summarises the stepwise selection of drugs applied to the 

management of drug resistant TB.(34) 

The recommended regimen for MDR-TB should comprise of at least 4 active second line 

drugs (Table 1.2 shows WHO grouping of anti-TB drugs), a fluoroquinolone (moxifloxacin 

(MXF), gatifloxacin or levofloxacin); an injectable aminoglycoside (CAP, AMIK, KAN); a 

first line drug to which the isolate is susceptible and one group 4 drug (cycloserine, PAS, 

terizidone, protionamide, or ethionamide). Drugs from group 5 are used if 4 active drugs are 

not available from the former groups. The intensive phase of treatment, using the injectable 

aminoglycosides is a minimum of 8 months, followed by a continuation phase of treatment of 

12-18 months. WHO recommends that treatment should be guided in accordance to culture 

conversion and should generally continue for 18 months after the first negative sputum 

smear. (5) 

Extensively Drug Resistant TB 

XDR-TB is associated with poor treatment outcomes and significantly higher mortality when 

compared to MDR-TB, especially in people co-infected with HIV. Clinical data on the 

management of XDR-TB remains limited. (5) Whilst no defined regimen has been shown to 

be successful in the treatment of XDR-TB, reports suggest the use of at least 6 drugs in the 

intensive phase of treatment and 4 drugs in the continuation phase of treatment. (5) 

The selection of these drugs, based on WHO recommendations includes the use of PZA or a 

first line drug that is effective against the infecting strain; a group 2 injectable 

aminoglycoside antibiotic, if the strain is susceptible to these drugs; a group 3 new generation 
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fluoroquinolone such as MXF or gatifloxacin. All the drugs belonging to group 4 may be 

used, only if these have not been used extensively in a previous treatment regime. Two or 

more drugs from group 5 may be used, bedaquiline and delamanid are recommended. Drugs 

that are approved for compassionate therapy may also be applied to the management of XDR-

TB. High dose INH is only recommended for treatment in strains with low-level INH 

resistance or no documented genetic alteration in the katG gene.(5) 
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Figure 1.1: Treatment regimens and monitoring in new, previously treated, and MDR tuberculosis cases- Reproduced with permission from 

Lancet Respiratory Diseases. H=isoniazid. R=rifampicin. Z=pyrazinamide. E=ethambutol. S=streptomycin. SS/C=sputum smear/culture. 

SS+=sputum smear positive.
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Table 1.1: WHO-recommended stepwise approach to design a regimen for multidrug-

resistant tuberculosis. Reproduced with permission from Lancet Respiratory Medicine.(34) 

 

 

 

*An anti-tuberculosis drug is thought likely to be effective when the drug has not been used in 

a regimen that failed to cure the patient; drug-susceptibility testing done on the patient's M. 

tuberculosis strain shows that it is susceptible to the drug (drug-susceptibility testing for 

isoniazid, rifampicin, and group 2 and 3 drugs is deemed reliable; drug-susceptibility testing 

for all other drugs is judged not reliable enough for individual patient management); no 

known resistance to drugs with high cross-resistance; no known close contacts with 

resistance to the drug; and drug resistance surveys show that resistance is rare to the drug in 

patients with similar tuberculosis history. This final criterion is relevant in the absence of 

drug-susceptibility testing or for drugs in which individual drug-susceptibility testing is not 

reliable. Information from all five criteria is not always possible to be ascertained. Therefore, 

clinical judgment is often necessary on whether to count a drug as likely to be effective. 
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Table 1.2: Classification of drugs used to treat drug susceptible and drug resistant 

tuberculosis. According to the grouping of the World Health Organisation(5) 

Group Drugs 

Group 1: First Line-Oral 

Antibiotics 

Isoniazid 

Rifampicin 

Ethambutol 

Pyrazinamide 

Group 2: Second Line – 

Injectable Aminoglycosides 

Kanamycin 

Amikacin 

Capreomycin 

Streptomycin 

Group 3: Second Line – Oral 

and  Injectable 

Fluoroquinolones 

Levofloxacin 

Moxifloxacin 

Gatifloxacin 

Group 4:Oral 

Ethionamide 

Prothionamide 

Cycloserine 

Terizidone 

Para-amino salicylic acid 

Group 5: Third Line  

Unclear efficacy/ undefined 

roles 

Bedaquiline 

Delamanid 

Clofazamine 

Amoxicillin/Clavulanate 

Clarithromycin 

Linezolid 

Thioacetazone 

Imipenem/cliastatin 

Meropenem 

High dose of isoniazid 

 

1.5.3 Future Treatment  



13 
 

New treatment regimens for the treatment of TB include repurposing of older TB drugs in 

new combinations as well as the introduction of new drugs.. Repurposed drugs include the 

use of LIN, meropenem/clavulanic acid and co-trimoxazole. Meropenenem/clavulanic acid 

has shown promising activity against M.tuberculosis, in combination with LIN. Co-

trimoxazole has also been indicated for treating MDR-TB.(4,34) 

High-dose rifapentine is currently under investigation to replace RIF and potentially reduce 

the current treatment duration. Rifapentine demonstrates similar activity to RIF but has a 

longer half-life that allows for better exposure. Furthermore, studies have revealed that the 

optimal dosage for RIF has never been established, thus leading to trials applying higher 

dosages of RIF. However, a major shortfall of rifamycin antibiotics is its interaction with 

antiretroviral therapy in HIV co-infected patients.(4,34) 

Bedaquiline, a new antibiotic, is a diarylquinoline antibiotic with proven efficacy against 

drug susceptible and resistant strains of M.tuberculosis. After completion of phase IIb clinical 

trials the drug received conditional approval for the treatment of MDR TB. The drug is 

currently applied on the basis of compassionate therapy. This drug has been associated with 

toxicities and has not yet been applied to a phase III trial, due to the cardiotoxicity associated 

with the drug. The use of this drug is limited to patients with documented resistance to 

several other drugs.  Reports of resistance to the drug have already emerged despite its recent 

introduction. (4,34) 

Delamanid, a nitro-dihydro-imidazooxazole is also a new drug introduced to TB treatment. 

The drug is currently under evaluation in phase III clinical trials for the treatment of MDR 

TB. This drug has demonstrated efficacy against drug susceptible and resistant strains of 

M.tuberculosis, with its early bactericidal activity comparable to RIF.(4,34) 
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1.6 Mechanisms of Drug resistance in Mycobacterium tuberculosis 

1.6.1 Genetic Resistance Mechanisms 

Antibiotic resistance in M.tuberculosis occurs by the acquisition of mutations in genes that 

code for drug targets or those involved in drug activation, allowing for the selection of 

resistant strains mediated by sub-optimal therapy. Unlike other bacteria, resistance is not 

acquired via horizontal gene transfer by mobile genetic elements. Whilst no single mutation 

defines the MDR phenotype, an accumulation of mutations leads to the resistance of multiple 

drugs. It is also postulated that the presence of classical resistance mutations maybe the 

gateway to resistance to other drugs.(7,35) 

There are 2 mechanisms resulting in drug resistant TB. (I) Primary resistance occurs by 

infection with an already drug resistant strain of M. tuberculosis. (II) Acquired (secondary) 

resistance occurs through inadequate treatment or poor treatment compliance that allows for 

the selection of drug resistant mutants within a patient’s body ie: after infection.(5,7,35) 

1.6.1.1 First Line Anti-TB Drugs 

Isoniazid 

INH was first introduced as an anti-TB drug in 1952 and, together with RIF forms the basis 

of the short-course regimen currently applied to the treatment of TB. INH is effective against 

metabolically active, replicating bacilli. INH is a pro-drug which is activated by the 

catalase/peroxidase enzyme, encoded by the katG gene. Once activated, INH inhibits mycolic 

acid synthesis via the NADH-dependent enoyl-acyl carrier protein (ACP)-reductase, encoded 

by the inhA gene. (7,8) The molecular basis of INH resistance is mediated by mutations in the 

katG, inhA gene or within the promoter region of the inhA gene. The most common resistance 

mechanism has been identified as the katG S315T mutation which leads to an inefficient 

INH-NAD product inhibiting the antimicrobial action of INH. This mechanism is associated 
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with high-level INH resistance in MDR isolates. (36–39) Mutations of the inhA promoter 

region, the most common at position, -15, results in an overexpression of inhA. This 

mechanism is associated with low-level resistance in INH mono-resistant isolates and has 

been implicated in cross resistance to a structural analogue, ethionamide. Mutations in the 

active region of the inhA gene result in a decreased affinity of the INH-NAD product.  Such 

mutations are less frequent. (40,41) A recent study reported that mutations occurring in the 

inhA regulatory region and coding region, resulted in high-level INH resistance and cross 

resistance to ethionamide. (42) Mutations in the dfrA gene have been recently implicated in 

resistance to INH. The 4R isomer of the INH-NADH product inhibits dihydrofolate 

reductase, encoded by dfrA. However, studies have failed to demonstrate a correlation 

between mutations in the dfrA and INH resistance.(43) Mutations in the promoter region of 

the ahpC gene were proposed as proxy markers for INH resistance. The ahpC gene in 

M.tuberculosis codes for an alkyl hydroperoxidase reductase enzyme responsible for 

resistance to reactive oxygen and nitrogen derivatives. Further analysis of such mutations 

revealed that this is compensatory mechanism for the reduction or loss of activity of the 

catalase-peroxidase system and does not confer INH resistance.(44) Studies have also 

reported mutations in the kasA, oxyR-ahpC and furA-katG in INH resistant isolates of 

M.tuberculosis. However, their exact role in mediating INH resistance is yet to be 

demonstrated. (45,46) More recently, a silent mutation in the mabA gene, resulting in the 

upregulation of inhA resulted in INH resistance.(47) 

Rifampicin 

RIF, a rifamycin derivative, was first introduced as an anti-TB drug in1972. RIF is one of the 

most effective anti-TB drugs, effective against actively metabolizing and slow-metabolizing 

bacilli, making the drug a key component of the current first line treatment regimen applied 

to the treatment of TB.(7,8,32,48) In M. tuberculosis, RIF binds to the β sub-unit of the RNA 
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polymerase, resulting in the inhibition of elongation of messenger RNA. Resistance to RIF is 

mediated by mutations clustered in codons 507-533 of the gene coding for the RNA 

polymerase β sub-unit, rpoB. This region is known as the RIF resistance-determining region 

(RRDR), the target of modern molecular based assays. Codons 526 and 531 bear the most 

common mutations associated with RIF resistance.(7,8,49–52) Mutations outside the RRDR 

have been reported in RIF resistant isolates. (53) Studies have also demonstrated a lack of 

alteration in the rpoB gene in a fraction of RIF resistant isolates, suggesting an alternate 

mechanisms of RIF resistance.(53) RIF mono-resistance is rare as RIF resistance occurs in 

conjunction with resistance to other drug, most commonly INH, making RIF targets a 

surrogate marker of the MDR phenotype. (54)Recent, whole genome sequence analysis 

demonstrated mutations in the rpoA and rpoC genes which encode the α and β’ subunits of 

the RNA polymerase as compensatory mechanisms in isolating bearing mutations in the rpoB 

gene. These mutations are associated with increased fitness and transmissibility of resistant 

strains.(11) 

Pyrazinamide 

PZA, a nicotinamide analogue, was first introduced as an anti-TB drug in 1952. PZA 

significantly reduced the duration of TB treatment to six months. A vital characteristic of 

PZA is its ability to inhibit semi-dormant bacilli located in acidic environments such as that 

of TB lesions. (32)PZA not only constitutes a part of the standard first line regimen to treat 

TB but is also key component of all current regimens undergoing evaluation in phase II and 

III clinical drug trials for the treatment of drug susceptible and resistant TB. (55)PZA is a 

pro-drug which is activated by the pyrazinamidase/nicotinamidase (PZase) enzyme, encoded 

by the pncA gene. (56,57)Once activated, pyrazinoic acid disrupts the bacterial membrane 

energetics thereby inhibiting membrane transport. PZA enters the bacterial cell by passive 

diffusion and is then converted into pyrazinoic acid. The pyrazinoic acid is the pumped out of 
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the bacterial cell by a weak efflux mechanism. In an acidic environment, the pyrazinoic acid 

is protonated allowing for reabsorption into the cell, resulting in cellular damage. (58) 

Pyrazinoic acid and its n-propyl ester have also been implicated in inhibition of fatty acid 

synthase I in M.tuberculosis. (59,60) It has been recently proposed that pyrazinoic acid is 

involved in inhibiting trans-translation in M.tuberculosis. Isolates lacking alteration in the 

pncA gene were reported to have mutations in the rpsA (ribosomal protein I) gene. 

Overexpression of rpsA has also been implicated in increased resistance to PZA.(61) 

However, there was no clear demonstration that mutations in rpsA was linked to PZA 

resistance.(62–64) Mutations in the pncA gene and its promoter region remains the most 

common mechanism mediating PZA resistance.(57)  The mutations identified within this 

gene are diverse, with 600 unique mutations in 400 positions reported to date.(55) A small 

proportion of resistant isolates lack mutations in the pncA gene, suggesting an alternate 

mechanism of resistance exists.(65) 

Ethambutol 

EMB was first introduced as an anti-TB drug in 1966 and remains a part of the current first 

line regimen applied to the treatment of TB. EMB is active against actively multiplying 

bacilli, disrupting the biosynthesis of the arabinogalactan in the cell wall. The embCAB 

operon encodes the mycobacterial arabinosyl transferase enzyme. Resistance to EMB is 

mediated via mutations in the embB gene.(66,67) Alteration on codon 306 is the most 

prevalent mechanism reported.(68,69) It was further reported that this mutation predisposes 

the isolate to develop resistance to other drugs and is not necessarily involved in EMB 

resistance.(70) Allelic exchange experiments have demonstrated that only certain amino acid 

substitutions led to EMB resistance.(71) Studies have shown that mutations in the 

decaprenylphosphoryl-B-D-arabinose (DPA) biosynthetic and utilization pathway genes 

(Rv3806c and Rv379), that occur simultaneously with mutations in embB and embC result in 
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a variable MIC range for EMB. This depends on the type of mutation that is present. 

Furthermore, this implies that the embB306 mutation results in varying degrees of EMB 

resistance but does not cause high-level EMB resistance on its own. (72)Resistance in 

approximately 30% of EMB resistant isolates lack alteration in the embB gene, suggesting an 

alternate mechanism of resistance.(7,8) 

Streptomycin 

STR, an aminocyclotol antibiotic was the first drug to be applied to the treatment of TB in 

1942. Due to the initial application of the drug as TB monotherapy, resistance rapidly 

emerged. (73)STR is active against slow growing bacilli and acts by irreversibly binding to 

the ribosomal protein S12 and 16S rRNA, which are the components of the 30S subunit of 

the bacterial ribosome. Through this interaction, STR blocks translation thereby inhibiting 

protein synthesis. (74,75)The main mechanism of resistance to STR is believed to be 

mediated via mutations in the rpsL and rrs genes, encoding the ribosomal protein S12 and the 

16S rRNA, respectively, accounting for approximately 60-70% of STR resistance.(76) 

Recently, reports of mutations in the gidB gene, encoding a 7- methylguanosine 

methyltransferase specific for methylation of the G527 in loop of the 16S rRNA, has been 

implicated in low-level STR resistance.(77–80) Whole genome analysis has also 

demonstrated a 130bp deletion within the gidB gene mediating STR resistance.(81) 

1.6.1.2 Second Line Anti-TB Drugs 

Fluoroquinolones 

Fluoroquinolones are potent bactericidal antibiotics currently applied as second line treatment 

for drug resistant tuberculosis. CIP and OFX, are older generation antibiotics, derivative of 

nalidixic acid.(82) New generation fluoroquinolones, MFX and gatifloxacin are currently 

under evaluation in clinical trials to be applied in first line regimens in an attempt to shorten 
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the duration of treatment. (4,34,83,84) This class of antibiotics target the DNA gyrase 

enzyme, thereby preventing transcription during cell replication. DNA gyrases are encoded 

for by the gyrA and gyrB genes. Resistance to the fluoroquinolones has been linked to 

mutations occurring in a conserved region known as the ‘quinolone resistance-determining 

region’ (QRDR) in the gyrA and gyrB genes.(7,85–87) Fluoroquinolone resistant strains of 

M.tuberculosis most frequently display mutations on codons 90, 91 and 94 of the gyrA gene. 

Mutations on codons 74, 88 and 91 have also been associated with fluoroquinolone 

resistance.(88–90) It has been reported that clinically significant resistance to ciprofloxacin 

and ofloxacin (MIC of 2µg/ml) is conferred by a single gyrase mutation, while double 

mutations in the gyrA or concomitant gyrA and gyrB mutations result in high-MICs. (90)A 

mutation detected on codon 95 of the gyrA is natural polymorphism that has no role in 

mediating fluoroquinolone resistance. (91) The complexity of fluoroquinolone resistance in 

M.tuberculosis has been demonstrated by the hyper susceptibility induced by the presence of 

mutations on codon 80 of the gyrA gene, especially when occurring with other resistance 

conferring mutations.(92) Efflux mechanisms have also been reported to mediate 

fluoroquinolone resistance.(93)  Mutations in the gyrB gene are rare.(7) 

Kanamycin, Amikacin, Capreomycin 

The aminoglycosides KAN and AMIK and the cyclic polypeptide, CAP are second line 

injectable agents currently applied to the treatment of drug resistant tuberculosis. Although 

these belong to different classes of antibiotics, they all exert their effect via the same target. 

(7,8)All three drugs are protein synthesis inhibitors, which act by binding to the bacterial 

ribosome resulting in a modification of the 16S rRNA structure. High level resistance to all 

three drugs has been associated with mutations in the 1400bp region of the rrs gene and 

additional resistance to CAP has been associated with polymorphisms of the tlyA gene. This 

gene codes for rRNA methyltransferase required for 2’-O-methylation of ribose in rRNA. 
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(77,94)The A to G polymorphism at position 1401 of the rrs gene is the most common 

molecular mechanism of resistance to all three drugs associated with approximately 70-80% 

of CAP and AMIK resistance and 60% of KAN resistance, globally.(9) A recent study 

reported increased fitness in clinical isolates bearing the rrs A1401G mutation. This was 

demonstrated by the difference in MIC between the laboratory engineered strains and clinical 

isolates with the same mutation. This increased fitness is thought to occur due to the presence 

of compensatory mutations that restore bacterial fitness.(95) Cross-resistance between KAN, 

AMIK and CAP has also been reported. Each of the drugs acts by inhibiting translation and 

therefore cross resistance between them is likely to occur. Full cross-resistance between KAN 

and AMIK was initially assumed, however, other studies have demonstrated discordant 

resistance patterns between these two agents.(96) It has also been reported that CAP 

resistance varies according to the level of resistance to KAN, and high-level resistance to 

KAN was associated with cross-resistance to CAP.(97) More recently, mutations reported in 

the promoter region of the eis gene resulted in low level resistance to kanamycin. The eis 

gene encodes an aminoglycoside acetyltransferase. Polymorphisms at positions -10 and -35 

of this gene resulted in an over expression of its protein product and low level kanamycin 

resistance. A study reported that 80% of the clinical isolates with low level resistance to KAN 

had genetic alterations in the promoter region of this gene.(98,99) 

Ethionamide 

Ethionamide (ETH), a derivative of isonicotinic acid is a structural analogue of isoniazid. 

ETH is a pro-drug which is activated by the mono-oxygenase enzyme, encoded by the ethA 

gene. Once activated, ETH inhibits mycolic acid synthesis during cell wall biosynthesis by 

inhibiting the enoyl-ACP reductase enzyme. Regulatory control of the ethA gene occurs via 

the transcriptional repressor, EthR.(100) Resistance to ETH is mediated by mutations in the 

etaA/ethA, ethR and inhA genes. Mutations in the inhA gene mediates co- resistance to both 
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INH and ETH.(101,102) A study has recently demonstrated the role of the mshA gene, 

encoding an enzyme essential to mycothiol biosynthesis as a target for ETH resistance using 

spontaneous INH- and ETH resistant mutants.(103) 

Para-Amino Salicyclic Acid 

PAS, an analogue of para-amino benzoic acid, was one of the first antibiotics used in the 

treatment of TB together with INH and STR. (28)PAS now forms a part of second line 

treatment regimens applied to the treatment of drug resistant TB. The mechanism of PAS 

resistance was only very recently elucidated. It is suggested that that PAS competes with p-

amino benzoic acid for the enzyme dihydropteroate synthase, inhibiting folate synthesis. The 

main mechanism mediating PAS resistance has been identified as mutations occurring in the 

thyA gene, accounting for 40% of PAS resistance. (104,105) A recent study demonstrated that 

mutations in the folC, encoding dihydrofolate synthase conferred resistance in clinical 

isolates resistant to the drug. (106) The T202A mutation initially associated with PAS 

resistance was found to be a phylogenetic marker associated with the Latin American (LAM) 

strain families rather that resistance to PAS. Mechanisms to fully elucidate PAS resistance 

are lacking.(107) 

Linezolid 

LIN, an oxazolidinone, is the first antibiotic in its class to be approved for the treatment of 

TB.(108) Recent studies have found that treatment outcomes with regimens containing LIN 

for complicated cases of MDR-TB are equal to or better than those reported for 

uncomplicated MDR-TB and better than those reported among patients treated for XDR-

TB.(109) LIN acts by binding to the V domain of the 50S ribosomal subunit, thereby 

inhibiting an early step in protein synthesis. (110) Resistance is mediated by mutations in the 

23 S rRNA (rrl) gene. A study reported 1.9% of LIN resistant isolates in a cohort of 210 
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MDR isolates.(110)  Analysis of in vitro selected mutants with mutations in the 23 S rRNA 

gene were associated with MICs of 16-32 mg/L while no mutations were detected in isolates 

with an MIC of 4-8 mg/L or in the LIN susceptible strains.(111) More recently, advances in 

sequencing technology identified mutations in the rplC gene, encoding the 50S ribosomal L3 

protein, in in vitro selected mutants and clinical isolates.(112) 

1.6.2 Efflux Mediated Resistance 

Efflux mechanisms are now recognised as a significant factor in antibiotic drug resistance of 

M.tuberculosis. These efflux systems are involved in expelling antibiotics from the bacterial 

cell, thereby allowing for the acquisition of resistance mutations in the bacterial genome. 

M.tuberculosis presents with one of the largest number of putative efflux pumps with 148 

genes coding for membrane transport proteins within its 4.4KB genome. The contribution of 

these efflux systems in acquiring multidrug resistance in M.tuberculosis has been 

demonstrated by numerous studies. (113,114) 

1.6.2.1 Mechanisms of Efflux Mediated Resistance 

The overexpression of efflux pumps is believed to mediate the build-up of resistance 

mutations, which confers high-level drug resistance allowing for M.tuberculosis to survive 

and persist at clinically relevant drug concentrations. The ability of the efflux pumps to 

extrude a diversity of compounds allows them to expel multiple drugs leading to the MDR 

phenotype.  (113,114) 

Efflux pumps have been classified into five superfamilies; the ATP-binding cassette (ABC), 

major facilitator super-family (MFS), resistance nodulation division (RND), small multidrug 

resistance (SMR) and multidrug and toxic-compound extrusion (MATE). The ABC 

superfamily is a primary transporter which utilizes ATP to pump to extrude drugs. The 
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remaining superfamilies are secondary transporters that utilize the trans-membrane proton 

motive force as a source of energy. (113,114) 

The ABC superfamily comprises of efflux systems responsible for the uptake and efflux of 

various compounds including; drugs, sugars, amino acids carboxylates and peptides. These 

transporters have been associated with resistance to INH, RIF, STR, EMB and the 

fluoroquinolone antibiotics. A significant ABC efflux mechanism encoded by the genes 

Rv2686c-Rv2687c-Rv2688c has been associated with an eight fold MIC increase for CIP 

when the genes are expressed as an operon in M.tuberculosis.(113–115) 

The MFS superfamily has been associated with resistance to almost all anti-tuberculosis 

drugs including INH, RIF, STR, EMB, the fluoroquinolones, aminoglycosides and 

ethionamide. The expression of MFS superfamily transporters operates under the regulatory 

control of inducer and repressor mechanisms that modulate gene expression. Significant MFS 

efflux mechanisms include the P55 pump, a multidrug efflux pump in M.tuberculosis 

encoded by Rv1410c. (113,114,116–118) 

Efflux pumps of the RND family are predominant in Gram-negative bacteria. A significant 

RND efflux mechanism in M.tuberculosis, encoded by the Mmpl7 gene, results in high level 

resistance to isoniazid.This phenomenon was reversed in the presence of efflux pump 

inhibitor (EPI) compounds.(113,114,119) 

Transporters belonging to the MATE superfamily have not been reported in M.tuberculosis 

and no significant SMR efflux mechanisms have been demonstrated in 

M.tuberculosis.(113,114,120) 

1.6.2.2 Efflux Pump Inhibitors 

Efflux pump inhibitors (EPIs) are compounds capable of restoring the activity of antibiotics 

independent of the level of resistance. The inhibitor-antibiotic combination decreases the 
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concentration of antibiotics expelled by efflux pumps, thus decreasing the MIC of the 

antibiotic. The use of EPIs has been considered as an adjuvant in TB treatment and has the 

potential to reduce the duration of TB treatment. (11,114) 

Thioridazine 

Thioridazine (THIO), a phenothiazine compound used as an antipsychotic drug has been 

explored in patients infected with M.tuberculosis, with encouraging outcomes. The 

application of THIO as an adjuvant in TB treatment demonstrated cure in 10/12 patients with 

XDR TB and is currently applied to the treatment of drug resistant TB on the basis of 

compassionate use. (121) 

The phenothiazines are calcium channel blockers that prevent calcium binding to calcium 

dependent enzymes. It has been demonstrated that THIO enhances the killing on newly 

phagocytosed bacteria and MDR and XDR TB. THIO acts by inhibiting the transport of 

calcium and potassium from the phagolyosome to the cytoplasm, resulting in an increased 

concentration of H+ to activate hydrolases that lead to the degradation of phagocytosed 

bacteria.(122,123) 

The utility of THIO in the management of newly diagnosed TB is reinforced by observations 

that this agent enhances the in vitro activity of RIF against resistant strains of M.tuberculosis. 

RIF resistance decreases significantly in the presence of EPIs. These observations suggest 

that the use of THIO may permit a reduction in the current dosage of anti-tuberculosis drugs 

and may potentially restore the activity of the current standard treatment regimen. Another 

prospective benefit of THIO is that genetic mutations that result in drug resistance are not 

expected as calmodulin, the calcium transport protein to which THIO binds and inactivates, is 

an imperative cell wall component of mycobacteria.(121–126) 

Verapamil 
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Verapamil (VERA) is a calcium channel blocker currently applied to various disorders that 

include angina, hypertension and cardiac disorders. It has been demonstrated that VERA has 

the greatest ability to inhibit efflux of ethidium bromide as compared to THIO. VERA is also 

known to interfere with the proton motive force which is the energy source of most efflux 

pumps. VERA has demonstrated a significant reduction in the MICs for INH of up to 4 folds 

in M.tuberculosis isolates with the resulting MIC in the presence of verapamil similar to the 

corresponding wild type and INH susceptible isolates.(125,126) 

Reserpine 

Reserpine (RES), like verapamil is a calcium channel blocker. RES is a natural plant 

metabolite that was utilized as a hypertensive drug. RES demonstrated activity against the 

pyrazinoic acid pump, increasing the susceptibilities of M.tuberculosis isolates to PZA. It has 

also demonstrated activity in decreasing MICs of LIN and EMB. Due to the carcinogenicity 

associated with the compound, it is no longer utilised in treatment protocols.(126) 

1.6.3 Alternate Mechanisms of Resistance 

DNA Repair Systems 

The role of DNA repair systems in antibiotic resistance is of growing interest. DNA repair 

systems are believed to influence the type and frequency of mutations that are involved in 

drug resistance. Mutations within the genes that code for repair systems, result in inefficient 

repair systems that allow for the development of further mutations. This provides the 

pathogen with a selective advantage over its host.(127,128) This was demonstrated in the 

Beijing strain family, where mutations in the antimutator (mut) genes were associated with 

increased ability to acquire resistance. The role of these systems requires further elucidation. 

(11,129,130) 

Increased Mutation Rates 
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An increase in mutation rates has been in observed in M.tuberculosis when exposed to sub-

inhibitory levels of antibiotics. This effect is most predominant in antibiotics that target 

DNA.(131) The fluoroquinolone antibiotics serve as a prime example. They act by binding to 

DNA gyrases. It has been demonstrated that M.tuberculosis has the ability to induce breaks in 

its double-stranded DNA resulting in transcriptional changes in genes that encode vital DNA 

repair mechanisms such as the SOS repair system. (11,132,133) 

The Role of Compensatory Mutations 

It has been postulated that resistance mutations bear a fitness cost to the bacterium. However, 

recent studies have demonstrated the presence of secondary mutations that act as 

compensatory mechanisms for the impaired fitness of the pathogen.(11) Sherman et al. 

demonstrated this phenomenon in INH resistant isolates of M.tuberculosis with an inactivated 

katG gene. The absence of katG catalase-peroxidase activity resulted in mutations in the 

regulatory region of the ahpC (alkyl hydroperoxidase reductase) gene, leading to 

overexpression of this gene. Mutations of the ahpC gene are believed to be compensatory for 

the loss of katG activity.(134) More recently, whole genome analysis showed that mutations 

occurring in RNA polymerases rpoA and rpoC were compensatory for the loss of fitness 

mediated by mutation in the rpoB gene in RIF resistant isolates.(135,136) A recent report also 

demonstrated varying levels of CAP resistance amongst A1401G laboratory mutants and 

clinical isolates bearing the same mutation, implying a possible role of compensatory 

mutations that restore fitness in isolates bearing resistance mutations. (95) 

1.7 Problem Statement 

Antibiotic therapy remains the key tool in the control of TB and understanding the 

mechanisms of drug resistance in M.tuberculosis is a significant component of the disease 

control strategy. Mutations in genomic drug targets have been identified as the principal 
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mechanism mediating antibiotic resistance. However, recent reports demonstrate the interplay 

of additional mechanisms. The role of the efflux pumps is believed to play a significant role 

in mycobacterial drug resistance. However, this mechanism has never been fully elucidated in 

our setting. This study, through amplification and sequencing of genes associated with 

resistance to first, second and third line drugs and by investigating the role of putative efflux 

pumps provides additional novel data on antibiotic resistance mechanisms in M.tuberculosis. 

1.8 Aims 

The aim of the study was 2-fold: 

1. To characterize genetic mutations associated with resistance to anti-TB drugs and 

correlate these to the MIC of anti-TB drugs in clinical isolates of M.tuberculosis. 

2. To investigate the role of efflux transporters mediating drug resistance in clinical 

isolates of M.tuberculosis. 

1.9 Objectives and Thesis Layout 

Layout of this thesis with specific objectives of the study:  

 To determine the MICs of the key first line drugs; INH, RIF and EMB and to amplify 

and sequence the genes associated with resistance to each of the drugs: inhA, katG, 

rpoB and embB (Manuscript I, Chapter 2). 

 To sequence the pncA gene for mutations associated with resistance to PZA 

(Manuscript I, Chapter 2). 

 To determine the MICs for STR and sequence the rrs 500 region, rpsL and gidB genes 

(Manuscript II, Chapter 3). 

 To determine the MICs of the fluoroquinolones: CIP, OFLOX and MOXI and 

sequence the gyrA and gyrB genes (Manuscript III, Chapter 4). 
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 To determine the MICs of the second line injectable drugs; KAN, AMIK and CAP 

and to sequence the rrs, thyA and eis genes (Manuscript IV, Chapter 5)  

 To sequence the rrl and thyA genes associated with resistance to LIN and PAS 

(Manuscript V, Chapter 6) 

 Determine the MICs in presence of EPIs (Manuscript VI, Chapter 7). 

 Summary of Findings (Chapter 8) 
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Abstract 

Background: In South Africa, drug resistant tuberculosis is a major public health crisis in the 

face of the colossal HIV pandemic.  

Methods: In an attempt to understand the dynamics of drug resistance in our setting, we 

analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs 

used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the 

KwaZulu-Natal province. 

 Results: Classical mutations were detected in the katG, inhA and embB genes associated with 

resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug 

resistant (MDR) and extensively drug resistant (XDR) isolates for the rpoB and pncA gene 

associated with resistance to rifampicin and pyrazinamide.  

Conclusions: Multiple drug resistance mechanisms in the MDR-TB isolates suggests that the 

strains emerged separately and acquired resistance mutations independently. The similarity of 

mutations detected in the XDR-TB strains confirms reports of the clonality of the XDR 

epidemic. The successful dissemination of the drug resistant strains in the province 

underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide 

treatment. 
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Background 

Tuberculosis (TB) remains one of the greatest public health concerns of our time, exacerbated 

by co-infection with human immunodeficiency virus (HIV) and drug resistance. In its latest 

global TB report in 2014, the world health organization (WHO) estimated that 3.5% of new 

cases and 20.5% previously treated patients have multi-drug resistant (MDR) TB; i.e. 

resistance to isoniazid (INH) and rifampicin (RIF). Of these cases, 9% have extensively drug 

resistant (XDR) TB. XDR-TB strains display resistance to INH, RIF and additional resistance 

to a fluoroquinolone antibiotic and one of the three injectable second line agents: amikacin 

(AMIK), kanamycin (KAN) and capreomycin (CAP). [1] 

Despite the implementation of therapeutic regimes combining INH, RIF, Ethambutol (EMB) 

and pyrazinamide (PZA)[2], the escalation of MDR-TB strains has compromised the utility 

of this drug combination. The morbidity and mortality rates associated with drug resistant TB 

is several times higher than drug susceptible forms.[1] Treatment of drug resistant TB is 

further complicated by the decreased efficacy and higher toxicity associated with the second 

line drugs as well as the inability to provide early diagnostic data to guide treatment. [3] 

Conventional drug susceptibility testing relies on mycobacterial culture methods, providing 

results after weeks or months. Molecular based diagnostics, such as the GeneXpert MTB/RIF 

(Cepheid) assay that do not rely on culture, are central to the future management of drug 

resistant tuberculosis. Their accuracy, however, is dependent on the association between a 

specific gene mutations and phenotypic drug susceptibility results. Drug susceptibility testing 

to second-line anti-TB drugs are more complicated that first line drugs. This is mainly due to 
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the technical difficulty associated with drug susceptibility testing for second line agents and 

the geographic diversity of the associated resistance conferring mutations. [4] 

To date, the genes associated with resistance to the first line drugs in Mycobacterium 

tuberculosis have been identified based on the mode of action of each of the drugs and their 

demonstrated association with drug resistance. These include ropB (RIF), katG and inhA 

(INH), pncA (PZA) and embB (EMB). [5, 6] 

In the study described in this report, we analysed mutations in the ropB, katG, inhA, pncA and 

embB genes and their association to resistance to the key first line antimicrobials in clinical 

isolates from the KwaZulu-Natal (KZN) province of South Africa. 

Methods 

M. tuberculosis Clinical Isolates 

M. tuberculosis clinical isolates were selected from the storage collection of the Infection 

Control laboratory, University of KwaZulu-Natal. The isolates were from sputum specimens 

obtained from patients presenting to the Church of Scotland Hospital in the Tugella Ferry 

region of KZN, South Africa from 2005 to 2009. At initial isolation, the drug susceptibility 

profiles of the isolates were established in our laboratory using the 1% proportion method. [7] 

Sixty isolates were selected for the study: 10 drug susceptible (DS), 20 multi-drug resistant 

(MDR-TB) and 30 extensively drug resistant (XDR-TB). The H37Rv laboratory strain was 

included as a control. Ethical approval for the study was obtained from Biomedical Research 

Ethics Committee of the University of KwaZulu-Natal (BREC 247/09). 

Determination of the Minimum Inhibitory Concentration (MIC) 

MIC was established using a multipoint inoculation technique on Middlebrook 7H10 agar 

medium supplemented with oleic acid-albumin-dextrose-catalase (OADC). Test plates 
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contained INH, RIF and EMB at concentrations of 0.125; 0.25; 0.5; 1; 2; 4; 8; 16; 32; 64 and 

128 mg/L. The plates were seeded with M.tuberculosis at an optical density (600nm) reading 

of 1. Test plates were incubated at 37ºC for 21 days in the presence of 5% CO2.  The MIC of 

an isolate was recorded as the lowest antibiotic concentration that inhibited growth of the 

organism. Resistance to INH, RIF and EMB was defined as concentrations of 0.2, 1.0 and 5.0 

mg/L respectively, in accordance to WHO guidelines. [8] Isolates were tested in triplicate to 

ensure test accuracy and reproducibility. Due to the technical difficulty associated with 

conducting susceptibility testing with PZA, MICs were determined for the drug. 

Genomic DNA Extraction & Amplification 

Genomic DNA was extracted from cultures grown on Middlebrook 7H11 media using the 

CTAB-NaCl (Cetyl-trimethyl-ammonium Bromide-Sodium Chloride) method, as described 

previously.[9] The integrity and concentration of the DNA was determined using a NanoDrop 

2000c spectrophotometer (Thermo Scientific). PCR amplification assays were carried out for 

the inhA, katG, rpoB, pncA and embB genes. Primers for each of the genes were selected 

from published literature or designed using Primer3 design software.[10] The Expand Hi 

Fidelity PCR kit (Roche) was used in accordance to the guidelines set out by the 

manufacturer. Table 2.1 contains specific annealing temperatures and primer sequences used 

for amplification. 

DNA Sequencing & Analysis 

Prior to sequencing, the quality of PCR amplicons were determined on a 1% agarose gel. 

Amplicons were purified using the Invitrogen PureLink PCR purification kit (Applied 

Biosystems) and sequenced using ABI Prism Big Dye Terminator cycle sequencing kit V3.1 

(Applied Biosystems) together with the forward primers selected for PCR amplification. 
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Nucleotide sequences were aligned to the H37Rv reference strain using Genious V5.5.7 

(Biomatters) sequence analysis software.[11] 

Genotyping 

The genotypes of the isolates were established using the IS6110 restriction fragment length 

polymorphism (RFLP) method, as described previously. [12] 

Results 

RFLP Analysis 

RFLP analysis revealed that most of the DS isolates belonged to the Beijing family of strains. 

Three DS isolates had a unique profile and 1 isolate was a variant of the F11 strain family. 

The F28 strain family was the predominant genotype of the MDR-TB isolates, whereas the 

remaining isolates belonged to the F15/LAM4/KZN (KZN) strain family. One MDR-TB 

isolate recorded a unique profile and 1 was a variant of the F28 strain family. All of the 

XDR-TB isolates analysed in the study belonged to the KZN strain family. Genotypes, 

mutations and associated phenotypes are shown in tables 2.2 and 2.3. 

rpoB mutations and RIF resistance 

Of the sixty M.tuberculosis isolates initially selected, 2 MDR and 3 XDR-TB isolates failed 

multiple attempts at amplification of the rpoB gene and were excluded from further analysis. 

Majority (73%) of the RIF resistant isolates had at least 1 mutation in the rpoB gene, while 5 

RIF resistant (3 MDR-TB, 2 XDR-TB) isolates had no alteration within the rpoB gene.  The 

rpoB mutations were of various types:  (1) A→G substitution on codon 435 (A1304G, 

D435G); detected in 3 XDR-TB isolates with an MIC range of 64-128 mg/L, belonging to the 

KZN family of strains.  (2) T→ C substitution on codon 452 (T1355C, L452P); detected in 1 

MDR-TB isolate of the KZN family strain family with an MIC of 8 mg/L. (3) C→T 
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substitution on codon 450 (C1349T, S450L); detected in 7 MDR-TB isolates which belonged 

to the KZN and F28 strain families and 1 XDR-TB isolate of the KZN strain family with an 

MIC range of 32-128 mg/L. Double mutants included (4) the D435Y together with an C→ A 

substitution on codon 454 (C1360A, P454T); detected in 1 MDR-TB isolate of the KZN 

strain family with an MIC of 128 mg/L. (5)  A → T substitution on codon 445 (A1334T, 

H445L) and a G → C substitution on codon 491 (G1473C, I491M); detected in 1 MDR-TB 

isolate, a variant of the F28 strain family with an MIC of 128 mg/L.  (6) The S450L and 

L452P detected in 2 MDR-TB isolates of the KZN and F28 strain families with an MIC of 64 

mg/L; (7) the D435G and L452P detected in 22 XDR-TB isolates belonging to the KZN 

strain family with an MIC range of 32-128 mg/L. (8) The S450L and a T → C substitution on 

codon 564 (T1690C, Y564H), detected in 2 MDR-TB isolates of the KZN strain family with 

an MIC of 128 mg/L. No mutations were detected in any of the DS isolates screened. The 

rpoB mutations, with the corresponding MIC and genotypes of the isolates are shown in table 

2.2. 

inhA; katG mutations and INH resistance 

No mutations were detected in the inhA gene or its promoter region amongst the isolates 

screened in the study. The katG mutations were of 3 types, (1) G→T substitution on codon 

473 (G1388T; no amino acid alteration); detected in 5 DS isolates, all belonging to the 

Beijing family of strains. (2) G→C substitution on codon 315 (G944C, S315T); detected in 

all of the MDR and XDR-TB isolates studied. The MIC range of the isolates was 4-16 mg/L. 

The mutation was detected across all genotypes detected in the study. (3) One MDR-TB 

isolate, unique in its genotype had double mutations within the katG gene. In addition to the 

S315T mutation, an A→C substitution on codon 468 (A1343C, N468A) was detected, 

associated with MIC of 16 mg/L.  
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The remaining DS isolates had no alteration in the katG gene.  

pncA mutations and PZA resistance 

Of the sixty M.tuberculosis isolates initially selected, 1 MDR and 2 XDR-TB isolates failed 

multiple attempts at amplification of the pncA gene and were excluded from further analysis. 

pncA gene mutations were of 3 types, (1) T→G substitution on codon 34 (T100G, Y34D); 

detected in 6/15 MDR-TB  isolates, of which 5 belonged to the F28 family and 1 to the KZN 

family of strains. (2) T→G substitution on codon 139 (T416G, L139G); detected in 2/15 

MDR-TB isolates, belonging to the KZN family of strains. (3) Insertion of a cytosine at 

position 457, present in 1 MDR-TB and all the XDR-TB isolates screened, all belonging to 

the KZN strain family, resulting in a frameshift. The remaining MDR-TB isolates and DS 

isolates had no alteration in the pncA gene. 

embB mutations and EMB resistance 

The embB mutations were of 2 types, (1) A→G substitution on codon 306 (A916G, M306V); 

detected in 14 MDR-TB and 30 XDR isolates, associated with an MIC range of 2-16 mg/L. 

The mutation was detected across all genotypes of the study. (2) C→A substitution on codon 

506 (C1489A, Q506K); detected in 2 MDR-TB isolates, belonging to the F28 family of 

strains and associated with an MIC of 16 mg/L. The DS isolates had no alteration in the embB 

gene.  

Mutations of the inhA, katG, embB and pncA gene, MIC and associated genotypes are shown 

in table 2.3. 

Discussion 

In this study, we report on the dynamics of drug resistance amongst clinical isolates from 

KwaZulu-Natal, South Africa. South Africa ranks amongst the top ten high burden countries 
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of drug resistant tuberculosis worldwide. The overall incidence rate in the KwaZulu-Natal 

province alone currently exceeds the incidence rates for all types of TB in some low 

incidence countries, like the USA.[13] In an attempt to understand the molecular basis of 

drug resistance in our setting, we sequenced the ropB, inhA, katG, pncA and embB genes 

associated with resistance to key drugs used in the treatment of tuberculosis. 

Analysis of the inhA, katG and embB genes demonstrated classical mechanisms that have 

been associated with resistance to INH and EMB.[5, 6] No mutations were detected in the 

inhA gene or its promoter region in the isolates screened. This is in keeping with previous 

reports.[14] Common inhA mutations that have been reported occur in the inhA promoter 

region at position -15, its correlation, however, is strongest with INH mono-resistant isolates 

or isolates with low-level INH resistance.[5, 6] However, a recent study demonstrated that 

double mutations in the inhA gene, in the promoter and coding regions, resulted in high-level 

INH resistance.[15] A large number of RIF resistant isolates bear mutations in the inhA and 

its promoter region making these mutations high predictors of RIF resistance, despite being 

absent in a subset of INH resistant isolates. 

The main mechanism mediating INH resistance in the isolates studied is the katG S315T 

mutation that was detected in all the MDR and XDR-TB isolates. Numerous reports have 

found this mutation to be the most common mutation associated with INH resistance. One 

MDR-TB isolate with unique genotype had double mutations in the inhA gene:the S315T 

mutation occurred in conjunction with the N468A mutation. The double mutant did not 

record a higher MIC as compared to the other isolates bearing the S315T mutation only. The 

N468A appears to be novel, but may represent a natural polymorphism or phylogenetic 

marker of the unique genotype of the isolate. The G1388T mutation detected in the 5 DS 

isolates is natural polymorphism associated with the Beijing genotype that has no bearing on 

resistance. 
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Approximately 96% of RIF resistance is attributed to mutations contained in an 81bp hot-spot 

region known as the RIF resistance determining region (RRDR) which encompasses codons 

507-533 of the rpoB gene.[5, 6] Mechanisms of resistance for the MDR and XDR-TB isolates 

varied in the case of RIF resistance, despite the MICs falling within a similar range. Various 

mutation types were described amongst the MDR-TB isolates. The S450L (corresponding to 

codon 531 in E.coli) mutation was the most common, accounting for resistance in 7 MDR-TB 

isolates, in keeping with various reports. Four MDR-TB Isolates had the S450L mutation 

together with L452P (corresponding to codon 533 in E.coli) or the T564H mutation. One 

MDR-TB isolate had the L452P mutation only. One isolate had the H445L (corresponding to 

codon 526 in E.coli) and the I491M mutation. To the best of our knowledge, the I491M and 

T564H mutations are novel and appear to be involved in mediating RIF resistance.  

The main mutation mediating RIF resistance in the XDR-TB isolates was the D435G 

mutation together with the L452P mutation. This was detected in all the XDR-TB isolates 

and 1 MDR-TB isolate. Three isolates had the D435G mutation only and one isolate had the 

S450L mutation. Although the mutations and genotypes of the isolates were diverse, all 

mutations correlated with high level RIF resistance. Interestingly, the MDR and XDR-TB 

isolates both had mutations on the codon 435 but each resulted in different amino acid 

substitutions.  Similar findings were described for KZN MDR and XDR-TB isolates in a 

study by Ioger et al. [14]analysing the whole genome sequences of drug resistant isolates 

KZN strain family. The main mechanism mediating resistance in the KZN MDR-TB isolate 

was attributed to the D435Y mutation and the D435G and L452P mutations in the KZN 

XDR-TB isolates. The study only analysed the KZN strain family.[14] Our study shows a 

greater diversity in the MDR-TB RIF resistance mechanisms and the isolates represented 

various strain families. In our study, the mutation on codon 435 was responsible for 
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resistance in most of the MDR-TB isolates. In contrast, Ioger et al. [14] reported that this 

mutation was only responsible for 9% of RIF resistance. [14] 

Resistance to PZA, as in the case of RIF was represented by diverse mutations in the MDR-

TB and XDR isolates. The MDR-TB isolates had a mutation either on codon 34 (nucleotide 

100) or codon 139 nucleotide 416), while XDR-TB isolates had an insertion of a cytosine at 

position 457, leading to a frameshift in the amino acid translation. The insertion was also 

detected in one MDR-TB isolate, possibly with a higher level of resistance to PZA. Due to 

technical difficulty associated with PZA susceptibility testing, no MICs were done for the 

drug. Instead, we sought to identify mutations in the MDR and XDR-TB groups and compare 

them with published literature. Mutations at position 100 have been described in isolates in 

Japan and Peru while mutations at position 416 have been reported South Africa, Thailand, 

China, USA, Portugal, Spain and Singapore. [16–24] The insertion at position 457 has been 

described in isolates from Brazil. [25] 

Mutations within the pncA gene are highly diverse, with 600 unique mutations at 400 

different positions reported to date.[24] In keeping with this diversity, the study by Ioger et 

al. showed different mechanisms of PZA resistance in the MDR and XDR-TB isolates from 

the KZN strain family as compared to the mechanisms described in this report.[14] This 

highlights the difficulty associated with detection of PZA resistance. The diversity of the 

mutations detected in the isolates vary greatly, making it impossible to apply to molecular 

diagnostic assay. PZA susceptibility testing poses a further challenge. The PZase enzyme 

required for the conversion of PZA to its active form is only functional at an acid pH, making 

it difficult to test the drug using conventional media. With a prevalence of approximately 

60.5% in patients with confirmed MDR-TB, PZA resistance testing is of utmost importance 

as PZA forms an integral role in current multidrug regimens and is also a key component of 

new treatment regimens undergoing evaluation in phase II or III clinical trials. [24] 
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A few isolates resistant to RIF and PZA did not display any mutations in the related genes. 

This phenomena has been previously described.[5, 6] This suggests that alternate resistance 

mechanisms may exist that remain to be identified. The differences in resistance mechanisms 

in the MDR and XDR-TB isolates suggest that the strains emerged separately and acquired 

resistance mutations independently. This is against the premise that the XDR phenotype had 

evolved directly from the MDR phenotype.  

Conclusion 

The multiple MDR-TB strains circulating in the KZN province suggests that the MDR-TB 

strains are evolving and spreading by transmission, demonstrated by the diversity of 

resistance mechanisms in the isolates. In contrast, the XDR-TB strains have disseminated by 

clonal expansion, demonstrated by the high level of similarity in the mutations detected. The 

successful dissemination of these resistant strains demonstrates that the resistance mutations 

come with a lower/no fitness cost than previously assumed; compensatory mechanisms might 

play a role in maintaining the fitness of this pathogen. The results of the current study 

underscores the need for novel assays to rapidly detect resistance to all drugs in order to 

effectively guide individualised treatment. 
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Tables 

Table 2.1: Primer sequences and annealing temperatures used for PCR and sequencing. 

Gene Primer Nucleotide Sequence 
(5’→3’) 

Annea
ling 

Temp  
(◦C) 

Amplicon 
Size Associated 

Drug 
Resistance 

Ref 

rpoB 
rpoB F TGTTGGACATCTACCGCA

AG 54◦C 
 

916bp Rifampicin * 
rpoB R CGAGACGTCCATGTAGTC

CA 
 

inhA 
inhA F CTACATCGACACCGATAT

GAC 55◦C 
 

700bp Isoniazid [26] 

inhA R GACCGTCATCCAGTTGTA
G 

 

katG 
katG F GGTCGACATTCGCGAGAC

GTT 57◦C 
 

987bp Isoniazid [27] 
katG R TTGTTCCTGCGACGCATC

GTG 
 

pncA 
pncA F GCTGGTCATGTTCGCGAT

CG 59◦C 
 

561bp Pyrazinami
de [28] 

pncA R GCTTTGCGGCGAGCGCTC
CA 

 

embB 
embB F AAGCTGGCGCACCTTCAC 

55◦C 
 

833bp Ethambutol * 
embB R  ATAGCGCGGTGATCAAA

AA 
 

*Designed using Primer 3 Software  
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Table 2.2: Mutations in the rpoB gene with the associated MICs, phenotypes and genotypes. 

rpoB 

Mutation 

Associated 

MIC 

(mg/L) 

Number 

Of 

Isolates 

Associated  

Genotype 

D435G 64- 128 3  XDR KZN 

S450L  32-128 7 MDR 

1 XDR 

F28 / KZN 

  L452P 8 1 MDR KZN 

D435Y & P454T 128 1 MDR KZN 

H445L & I491M 128 1 MDR F28V 

S450L & L452P 64 2 MDR F28/ Unique 

D435G & L452P 32-128 22 XDR KZN 

S450L & T564H 128 2 MDR F28/KZN 

No Mutations 2-128 10 DS 

3 MDR 

2 XDR 

Various 

 

 

 

 

 

 

 



65 
 

Table 2.3: Mutations of the inhA, katG, embB and pncA gene, associated MICs, phenotypes 

and genotypes. 

Drug Gene Mutation Associated  

MIC 

(mg/L) 

Number 

of  

Isolates 

Associated  

Genotype 

INH 

inhA None 0.125-16 All study isolates Various 

katG 

G1388T <0.125 5 DS Beijing 

S315T 4-16  
16 MDR 

30 XDR 
Various 

S315T + 

N468T 
16 1 MDR Unique 

PZA pncA 

Y34D * 6 MDR F28/ KZN 

L139G * 2 MDR KZN 

Ins C * 
1 MDR 

30 XDR 
KZN 

EMB embB 
M306V 2-16 

14 MDR 

30 XDR 
Various 

Q506K 16 2 MDR F28 

*MICs for PZA not done 
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Chapter Three 

Manuscript II: 

Streptomycin resistance in the F15/LAM4/KZN strain of Mycobacterium tuberculosis is 

mediated by lineage-specific alteration of the gidB gene.  

Currently under review by the Journal of Medical Microbiology (Manuscript number: 

JMM-D-15-00568) 

 

Abstract 

Widespread streptomycin resistance in Mycobacterium tuberculosis, resulting from the 

historical application of the drug as tuberculosis monotherapy has impelled policymakers to 

exclude the drug from treatment regimens. Streptomycin resistance is believed to be mediated 

via mutations in the rpsL, rrs and gidB genes. This study aimed to investigate the 

mechanisms of streptomycin resistance in clinical isolates from KwaZulu-Natal, South Africa 

and to determine if the drug has any further clinical relevance in tailored treatment and 

retreatment regimens. A mutational analysis was conducted on the rpsL, rrs and gidB genes 

by PCR amplification and sequencing. MIC’s for streptomycin were determined using a 

multipoint inoculation technique on Middlebrook 7H10 medium and linked to the mutation 

profiles and IS6110 RFLP genotype pattern of clinical isolates. The circulating MDR and 

XDR F15/LAM4/KZN strains had a rare 130bp deletion in the gidB locus resulting in 

streptomycin resistance. The K43R rpsL mutation was linked to the F28 family in the MDR-

TB isolates. The gidB L16R mutation linked to KZN family was detected in all KZN strains 

whilst the E92D mutation associated with the Beijing lineage was detected in the F28 strains. 

None of the mutations could be linked to the phenotypic level of streptomycin resistance that 

the isolates displayed. A 130bp deletion in the gidB gene in all MDR-TB and XDR-TB 
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strains of the F15/LAM4/KZN family, is the most significant mechanism mediating 

streptomycin resistance in the province.  

Introduction 

The discovery of streptomycin (STR), an aminoglycoside antibiotic, was a turning point in 

the treatment of tuberculosis (TB) in the 1940’s. STR was the first chemical compound 

effective in the treatment of TB. Historically, the drug was applied as TB monotherapy and 

early studies indicated a decline treatment response after three months of treatment, resulting 

from the rapid development of drug resistance when a single drug is used for the treatment of 

TB. In the 1950’s, several new anti-TB drugs were developed and applied as combination 

therapy. (Zumla et al., 2013) STR remained an integral part of treatment regimens, playing an 

important role in combination and re-treatment therapy for the disease. However, the high 

rates of STR resistance, increased toxicity associated with the drug and decreased efficacy in 

comparison to succeeding drugs, lead to a gradual decrease in the application of the drug in 

TB treatment.(Jagielski et al., 2014; Zumla et al., 2013)  

In South Africa, the first line treatment for TB includes a combination of isoniazid, 

rifampicin, pyrazinamide, and ethambutol during the intensive phase of treatment, followed 

by isoniazid and rifampicin in the continuation phase. STR has been  excluded , from all 

treatment protocols since 2014, mainly due to the emergence and spread of drug resistant 

strains of Mycobacterium tuberculosis.(National Department of Health, 2014) 

The mechanism of action of STR in M. tuberculosis, involves irreversible binding to the 

ribosomal protein S12 and 16S rRNA, which are the components of the 30S subunit of the 

bacterial ribosome. Through this interaction, STR blocks translation thereby inhibiting 

protein synthesis. The main mechanism of resistance to STR is believed to be mediated via 

mutations in the rpsL and rrs genes, encoding the ribosomal protein S12 and the 16S rRNA, 

respectively. Amino acid substitutions in the S12 protein affect the affinity of STR binding 
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by altering the higher-order structure of 16S rRNA. Mutations occurring within the16 S 

rRNA gene itself, results in a decreased affinity for STR. Mutations in the rpsL gene have 

been associated with a high-level of STR resistance, whereas mutations described in the rrs 

gene have been shown to confer lower levels of resistance (Jagielski et al., 2014; Okamoto et 

al., 2007; Verma et al., 2014)  

More recently, reports of mutations in the gidB gene, encoding a 7- methylguanosine 

methyltransferase specific for methylation of the G527 in loop of the 16S rRNA, has been 

implicated in low-level STR resistance (Da Silva and Palomino, 2011; Jagielski et al., 2014; 

Okamoto et al., 2007; Spies et al., 2011, 2008; Verma et al., 2014; Wong et al., 2011). The 

G527 site lies within the 530 loop, a hotspot region for STR resistance. The S12 protein 

binding site lies in close proximity to the 530 loop and assists in proofreading during 

translation. Lack of methylation by gidB, in the presence of mutations mediates STR 

resistance. (Jagielski et al., 2014; Okamoto et al., 2007; Verma et al., 2014). Reports on the 

deletion of the gidB gene in Salmonella species has been implicated with decreased bacterial 

fitness and has been associated high-level resistance to aminoglycoside antibiotics. (Mikheil 

et al., 2012) 

 The rapid determination of drug resistance patterns in clinical isolates of M.tuberculosis is an 

essential prerequisite for optimal treatment and decreased transmission of the disease. 

Currently, screening for mutations in well-defined genes associated with drug resistance is 

the most promising tool.(Da Silva and Palomino, 2011) In the case of STR, the association 

between mutations in the rpsL and rrs genes and drug-resistant phenotypes has been well 

characterized, whilst reports of mutations in the gidB gene have been inconsistent (Da Silva 

and Palomino, 2011; Okamoto et al., 2007; Palomino and Martin, 2014). Furthermore, STR 

resistance mutations have been reported to vary depending on the population and 
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geographical area studied. (Dobner et al., 1997; Jagielski et al., 2014; Katsukawa et al., 1997; 

Ramaswamy et al., 2004; Shi et al., 2007; Tudo et al., 2010) 

The aim of this study was to investigate the role of mutations in the rpsL, rrs, and gidB genes 

in clinical isolates of M. tuberculosis from KwaZulu-Natal, South Africa. 

Materials and Methods 

Clinical isolates 

Clinical isolates for the study were obtained from the culture collection of the Infection 

Control Laboratory, University of KwaZulu-Natal, South Africa. Stored isolates were 

cultured onto Middlebrook 7H11 medium supplemented with oleic acid-albumin-dextrose-

catalase (OADC). A total of 60 isolates were included in the study: 10 drug susceptible (DS), 

20 multi-drug resistant (MDR-TB) and 30 extensively drug resistant (XDR-TB). The H37Rv 

laboratory reference strain was included as an experimental control. The primary isolation, 

species identification, genotyping and drug susceptibility testing were established in previous 

studies conducted in our laboratory, using standard mycobacterial protocols.  The study was 

approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal 

(BREC 247/09).  

Minimum Inhibitory Concentration Determination 

STR MIC’s were established using a multipoint inoculation method on Middlebrook 7H10 

agar medium supplemented with OADC. Plates containing STR at concentrations of 0.125; 

0.25; 0.5; 1; 2; 4; 8; 16; 32; 64 and 128 mg/L were inoculated with bacterial cultures grown 

to an optical density (600nm) reading of 1 . Plates were then incubated in a CO2 enriched 

atmosphere at 37ºC for 21 days.  The MIC of an isolate was recorded as the lowest antibiotic 

concentration that resulted in a complete inhibition of growth. Resistance to STR was defined 

at a break point concentration of 2 mg/L, according to guidelines set out by WHO (World 
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Health Organisation, Geneva, 2009). All isolates were tested in triplicate to ensure test 

accuracy and reproducibility.  

DNA Extraction  

Genomic DNA was extracted from M.tuberculosis cultures using the CTAB-NaCl (Cetyl-

trimethyl-ammonium Bromide-Sodium Chloride) method (Van Soolingen et al., 1991). A 

NanoDrop spectrophotometer was used to estimate the quantity and purity of the isolated 

DNA. 

PCR Amplification & Sequencing Analysis 

PCR amplification assays were conducted for rpsL, rrs and gidB genes and sequenced to 

determine genetic alteration. The oligionucleotide primers for each gene (Table 1) was 

selected from published literature and applied to the Expand High Fidelity PCR kit (Roche) 

in accordance to the kit guidelines with annealing temperatures of 56◦C for the rrs gene and 

55◦C for rpsL and gidB genes. The quality and integrity of the PCR amplicons was analysed 

using agarose gel electrophoresis and purified using the Invitrogen PureLink PCR 

purification kit (Applied Biosystems). Direct single stranded sequencing of the amplicons 

was performed using ABI Prism Big Dye Terminator cycle sequencing kit V3.1 (Applied 

Biosystems) with the forward primers used for PCR amplification. Sequence data was 

analysed using Geneious V5.5.7 sequence analysis software and final nucleotide sequences 

were aligned with corresponding reference sequence of the H37Rv reference strain.  

Results 

Of the sixty M.tuberculosis isolates selected, 4 MDR-TB isolates failed to grow sufficiently 

on sub- culture medium and 2 MDR-TB isolates failed numerous attempts at PCR 

amplification. Therefore, we report MIC and sequencing data for 10 SUS, 14 MDR-TB and 

30 XDR-TB M.tuberculosis isolates. 34/54 (81.0%) of the M.tuberculosis isolates included in 

the final analysis were classified as STR resistant. This included all the MDR-TB and XDR-
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TB isolates and 1 DS isolate. All 54 M.tuberculosis isolates were screened for mutations in 

the rrs, rpsL and gidB genes.  

Mutations of the rpsL gene were of 2 types. An A → G substitution on codon 43 (A128G, 

Lys→Arg) and a silent mutation (A→G) on codon 121. The A → G substitution on codon 

43, commonly referred to as the K43R mutation was found in 7/54 (7 MDR-TB) isolates. The 

silent mutation on codon 121 was observed in 30/54 (30 XDR-TB) isolates. Both mutation 

types were associated with an MIC range of 4 to 128 mg/L. No mutations in the rpsL gene 

were observed in any of the drug susceptible isolates tested. 

The gidB mutations were of 5 types: T → G substitution on codon 16 (T47G, Lys→Arg). The 

T → G substitution on codon 16, commonly referred to as the L16R mutation was found in 

35/54 (1 DS, 4 MDR and 30 XDR) isolates. An A → C substitution on codon 92 (GAA-

GAC, Glu→Asp) was found in 13/54 (3 DS and 10 MDR-TB) isolates commonly referred to 

as the E92D mutation. Both these mutations were associated with an MIC range of 0.5 to 128 

mg/L. All 54 isolates displayed an alteration on codon 100 (TCT-TTT, Ser→Phe), 

irrespective of the MIC or resistance profile. This mutation is reffered to as the S100F 

mutation. One DS isolate had a silent mutation on codon 135 (GTG-GTT), associated with an 

MIC of 0.5 mg/L. A 130bp deletion within the gene encompassing codons 50-93 was also 

observed in 34/54 (4 MDR-TB and 30 XDR-TB) isolates tested, associated with an MIC 

range of 4 to 128 mg/L. The 130bp deletion of the gidB gene is shown in figure one. All the 

isolates in this study displayed alteration in the gidB gene. Seven of the STR resistance 

isolates of the MDR phenotype had mutations in the gidB gene only. 

None of the isolates tested displayed any mutations in the rrs gene region linked to STR 

resistance. The relationship between the MIC’s of STR and mutations in the rrs, rpsL and 

gidB genes are shown in Table 3.2. 
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IS6110 genotyping revealed that a majority of drug resistant isolates belonged 

F15/LAM4/KZN (KZN) lineage, whereas the remaining isolates belonged to F28/F11 and 

Beijing strain families. Four isolates used in the study displayed a unique RFLP profile. The 

rpsL K43R mutation was found exclusively in the F28 strain family and the A363G mutation 

was identified in only the KZN XDR-TB strains. The 130bp deletion and L16R mutation in 

the gidB gene were associated with the KZN family. One strain, a variant of the F11 family 

displayed the L16R mutation in the gidB gene. The E92D gidB mutation was identified in all 

strains of Beijing and F28 families, as well as variants of the F28 family. RFLP profiles, 

lineage specific mutations and associated phenotypes are shown in Table 3.3. 

Discussion 

We report on STR resistance in clinical isolates of M.tuberculosis from the KwaZulu-Natal 

province of South Africa in relation to the mutation profiles of the rrs, rpsL, and gidB genes. 

In M. tuberculosis, resistance to STR is associated with alterations within the rrs, rpsL, and 

gidB genes which encode constituents of the 30S ribosomal subunit. Mutations occurring in 

the rpsL and rrs genes have been well characterized, accounting for 70% of STR resistance 

(Da Silva and Palomino, 2011; Spies et al., 2011). Reports on gidB gene mutations remain 

inconsistent, associated with low-level STR resistance and are most predominant in isolates 

with mutations in the rrs or rpsL genes (Jagielski et al., 2014; Okamoto et al., 2007; Verma et 

al., 2014). Furthermore, the relationship between the mutations and the level of STR remains 

unclear (Jagielski et al., 2014; Shi et al., 2007; Verma et al., 2014). 

Numerous studies report that the amino acid substitution on codon 43 (AAG-AGG, 

Lys→Arg) of the rpsL gene is the most common mechanism conferring resistance in STR 

resistant clinical isolates of M.tuberculosis (Da Silva and Palomino, 2011; Dobner et al., 

1997; Fakuda et al., 1999; Honore and Cole, 1994; Jagielski et al., 2014; Verma et al., 2014). 

In our study, this mutation was found in 7 MDR-TB isolates, representing only 18.9% of the 
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rpsL mutations in the STR resistant isolates from this study. This mutation has been 

associated with varying detection rates across geographical areas, ranging between 13.2% 

and 80.4%.   This mutation has been correlated with isolates of the Beijing genotype and with 

isolates of an MDR-TB phenotype (Jagielski et al., 2014; Spies et al., 2011). In our study, this 

mutation was associated with the F28 family, a predominant strain responsible for MDR-TB 

in our setting and in the Western Cape region of South Africa. The A363G silent mutation 

was present in 30 isolates, representing 81.1% of the rpsL mutations in this study. This 

mutation was found exclusively in the XDR-TB isolates, with no additional mutations in 

hotspot regions of the gene. Verma et al. described this mutation in 30/75 STR resistant 

isolates with or without additional alteration on codon 43 or 88 of the rpsL gene (Verma et 

al., 2014). We postulate that this mutation maybe a natural polymorphism, with no link to 

resistance. Furthermore, MDR-TB isolates that did not display the mutation at position 363 of 

the rpsL gene but had a gidB deletion recorded similar MICs to that of the XDR-TB isolates 

with alteration in both the rpsL and gidB genes.  

The gidB gene, a highly conserved gene present in all species sequence to date, is associated 

with low level STR resistance in M.tuberculosis (Verma et al., 2014). In our study, the most 

significant finding was a 130bp deletion within the gidB gene. This mutation does not occur 

with any of the classical rpsL mutations. We believe that this mutation which results in the 

loss of function of the gidB gene, mediates STR resistance in KZN family of strains. Whole 

genome analysis conducted on the KZN family strains by Ioerger et al. described this 

deletion which includes amino acids 50-93, encompassing the SAM binding site and results 

in a frameshift of the C terminal remainder, completely disrupting the function of the gidB 

gene (Ioerger et al., 2009). In our study, this deletion was exclusive to the MDR and XDR-

TB strains of the KZN family. Ioerger et al. detected this mutation in on DS isolate, but 

attributed this finding to mischaracterization of the strain (Ioerger et al., 2009). Whole 
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genome sequencing analysis of strains from Panama, described to be closely related to the 

KZN family of strains, did not display this 130bp deletion. However it was reported that a 

unique 16 bp deletion in the gidB gene was present in both STR resistant and susceptible 

isolates (Lanzas et al., 2013). 

 The L16R and E92D mutations have been described as phylogenetic markers rather than 

resistance mediating mutations. The L16R mutation is specific for the Latin American-

Mediterranean (LAM) family (Spies et al., 2011). Our results are in keeping with these 

reports, as this mutation was present in all 34 KZN isolates. One isolate, a variant of the F11 

family of strains, had this alteration. It is possible that the strain maybe closely related to the 

KZN family as it is classified within the Latin America Mediterranean (LAM 3) lineage. The 

E92D mutation, reported to be specific for the Beijing family was detected in only 3/5 

Beijing isolates in our study. It may be possible that the 2 isolates were misclassified. 

Interestingly, this mutation was detected in all isolates of the F28 family and variants of the 

family. To the best of our knowledge, this mutation has not been reported in the F28 family 

and therefore may not be a representative marker of the Beijing family as previously 

reported. 

The S100T alteration was present in all the isolates tested. It has been described by Verma et 

al. in all 75 isolates analysed in the study, with no link to resistance and is thus a naturally 

occurring polymorphism. Furthermore, protein modelling and MSA mutation mapping of 

codon 100, revealed that substitution was a spontaneous alteration, also identified in the 

H37Rv laboratory strain (Verma et al., 2014).  The G405T silent mutation found in one DS 

isolate did not have any link to resistance.  Analysis of the binding sites on codon 16 revealed 

that this alteration results in a change in binding cavity morphology (Verma et al., 2014). 

This implies that the KZN family of strains with the L16R alteration will naturally display 

STR resistance without the presence of additional mutations. 
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Whilst many reports associate the mutations found in the rpsL gene with high-level STR 

resistance  and mutations in rrs gene with low to intermediate resistance level (Cooksey et 

al., 1996; Meier et al., 1996; Tudo et al., 2010), we observed that the mutations on the 

different loci did not discriminate between the levels of STR resistance in the current study. 

The MICs of isolates bearing mutations in the various genes did not differ from each other. 

Jagielski et al. compared the MIC50, MIC90 and median MIC values for STR resistant and 

susceptible isolates to establish a relationship between the mutations and levels of STR 

resistance but found no difference in the MICs amongst isolates (Jagielski et al., 2014). Shi et 

al. analysed 215 clinical isolates using denaturing HPLC analysis to establish if the various 

mutations types could be linked resistance levels but found no close correlation in MICs and 

mutation types (Shi et al., 2007).  

In this study, 4 isolates (8.8%) with MICs in the STR resistant range, did not have any 

mutations that are associated with STR resistance. Three MDR-TB isolates and 1 DS isolate 

had no mutations in the rpsL or gidB genes, while the 3 MDR-TB isolates had only the E92D 

gidB phylogenetic marker. This is in close comparison to other studies that analysed all 3 

genes, ranging from 6.9-22% (Jagielski et al., 2014).  Furthermore, none of the isolates had 

any alteration in the rrs gene related to STR resistance, in keeping with the whole genome 

analysis of KZN strains (Ioerger et al., 2009). Wong et al. reports similar findings. Detection 

of the rrs A1401G mutation was associated with kanamycin resistance and had no bearing on 

STR resistance (Wong et al., 2011). Verma et al. suggests that alteration in the rrs gene at 

position 516 is a compensatory mechanism to overcome the loss of gidB function (Verma et 

al., 2014). 
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Alternate mechanisms such as the role of efflux pumps are believed to mediate resistance in 

the absence of mutations. A report by Spies et al. demonstrated a reduction in the STR MIC 

in the presence of efflux pump inhibitors in STR resistant isolates with mutations in the 

various loci. However, the changes were most significant in isolates that displayed gidB 

mutations. Thus, gidB mutations act in synergy with efflux pumps to confer low level STR 

resistance. Further confirmation is required as well as the identification of novel mechanisms 

that mediate STR resistance (Spies et al., 2008). 

In conclusion, we provide evidence that the main mechanism mediating STR resistance in the 

predominant KZN strain is a rare 130bp deletion within the gidB gene while the classical 

K43R mutation of the rpsL gene is linked to resistance in the F28 MDR-TB strain. The low 

detection rate of the rpsL and rrs mutation in this subset of isolates questions the utility of 

these mutations as accurate predictors of STR resistance. Whilst previous findings suggest 

the role of gidB gene mutations as phylogenetic markers, results of this study show that the 

E92D mutation was not exclusive to the Beijing lineage. Furthermore, none of the resistance 

conferring mutations detected in this study could predict the level of STR resistance. Our 

results suggest that STR should not be applied to empiric TB treatment regimens and should 

not be applied to tailored regimens in the absence of drug susceptibility testing. 
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Tables 

Table 3.1: Oligonucleotide Primers used for PCR & Sequencing 

Gene Primer Nucleotide Sequence 

(5’→3’) 

Amplicon 

Size (bp) 

Reference 

rpsL rpsL F GGCCGACAAACAGAACGT 502 (Sreevatsan et 

al., 1996) rpsL R GTTCACCAACTGGGTGGAC 

Rrs rrs F TGCTTAACACATGCAAGTCG 920 (Jugheli et al., 

2009) rrs R TCTCTAGACGCGTCCTGTGC 

gidB gidB F GTCCCTCCACTCGCCATC 675  (Spies et al., 

2008) gidB R GCGGAGTGCGTAATGTCTC 
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Table 3.2: Relationship between the STR MIC, RFLP analysis and mutations in the rpsL, rrs 

and gidB genes in 54 clinical isolates of Mycobacterium tuberculosis 

 

Phenotype 

RFLP 

Classification 

Mutations Number of 

Strains 

STR 

MIC 

mg/L 

Rrs rpsL gidB 

DS 2 Beijing 

2 Unique 

None None S100F only 4 0.5 

DS Beijing None None S100F only 1 4 

DS F11V None None L16R + S100F  1 0.5 

DS Unique None None S100F + G405T 1 0.5 

DS Beijing None None E92D + S100F 3 0.5 

MDR F28 

F28V 

None None E92D + S100F 2 4 

MDR F28 None None E92D + S100F 1 8 

MDR KZN None None L16R + S100F + 

130 bp Deletion 

1 32 

MDR KZN None None L16R + S100F + 

130 bp Deletion 

3 128 

MDR F28 None K43R E92D + S100F 6 4 

MDR F28 None K43R E92D + S100F 1 128 

XDR KZN None A363G L16R + S100F + 

130 bp Deletion 

10 4 

XDR KZN None A363G L16R + S100F + 

130 bp Deletion 

6 32 
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Figure 3.1 

Figure Legend 

Figure one depicts the 130bp deletion of the gidB gene which includes codons 50-93, 

encompassing the SAM binding site and results in a frameshift of the C terminal remainder, 

completely disrupting the function of the gidB gene. The first 3 chromatograms respresent the 

F15/LAM4/KZN XDR strains, the fourth represents an MDR strain of the same strain family 

and the last chromatogram represents a DS isolate, all in comparison to the H37Rv laboratory 

strain sequence. 

 

  



84 
 



85 
 

Chapter Four 

Manuscript III: 

Moxifloxacin resistance in the F15/LAM4/KZN extensively drug-resistant strain of 

Mycobacterium tuberculosis. 

Published in the Journal of Infection and Drug Resistance: 

Dookie N, Sturm AW, Moodley P. Moxifloxacin resistance in the F15 / LAM4 / KZN 

extensively drug-resistant strain of Mycobacterium. Infect Drug Resist 2014; 7: 223–8. 

Abstract 

Objectives: Moxifloxacin (MXF) has been advocated for the treatment of extensively drug-

resistant (XDR) tuberculosis despite resistance to older-generation fluoroquinolones. We 

investigated the relationship between the minimum inhibitory concentration (MIC) of MXF 

and mutations in the gyrA and gyrB genes in Mycobacterium tuberculosis (MTB) isolates 

from KwaZulu-Natal (KZN) Province of South Africa. 

Materials and methods: MICs of 56 MTB isolates were compared to the mutations in the 

quinolone resistance-determining region known to confer fluoroquinolone resistance. Isolates 

were genotyped by IS6110 restriction fragment length polymorphism analysis. 

Results: The circulating F15/LAM4/KZN XDR strain circulating in KZN Province harbored 

the A90V mutation and displayed high-level resistance with MICs of 8 mg/L for 

ciprofloxacin and ofloxacin and ≥1 mg/L for MXF. 

Conclusion: The inclusion of MXF in XDR-TB treatment regimens requires careful 

consideration in our setting, where clinical outcome data in MXF-containing regimens are 

unavailable. 
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Keywords: fluoroquinolones, susceptibility testing, strain typing, drug-resistance 

Introduction 

The human immunodeficiency virus (HIV) pandemic has fuelled the tuberculosis (TB) 

epidemic by creating a population of immunosuppressed individuals that are highly 

susceptible to Mycobacterium tuberculosis (MTB) infection. The last decade has seen an 

unprecedented increase in antimycobacterial drug resistance. Of the estimated 1.3 million 

deaths resulting from TB globally in 2012, 13.1% of these deaths were due to drug 

resistance. Appropriate treatment of patients with drug-resistant strains of MTB is of vital 

importance in limiting the transmission of the disease and reducing mortality rates.1 

Fluoroquinolones are potent antibiotics that have been used in clinical practice since the early 

1980s.2 They display broad-spectrum antimicrobial activity, and have been used extensively 

in the treatment of bacterial infections of the respiratory, gastrointestinal, and urinary tracts, 

as well as in sexually transmitted diseases and chronic osteomyelitis.3 The fluoroquinolones 

have been advocated for the treatment of patients with multidrug-resistant (MDR) MTB, 

defined as resistance to at least isoniazid and rifampicin. Patients with extensively drug-

resistant (XDR) MTB harbor MDR TB strains with additional resistance to fluoroquinolones 

and one of the second-line antimycobacterial injectable (kanamycin, amikacin, and 

capreomycin) agents. However, moxifloxacin (MXF), a new-generation fluoroquinolone, has 

been recommended by the World Health Organization (WHO) for the treatment of XDR. 

Studies that have explored the efficacy of MXF against XDR strains of MTB have concluded 

that the drug may be used in XDR cases provided that the infecting isolate has a minimum 

inhibitory concentration (MIC) of <2 mg/L for MXF.1,4 

MXF differs in structure when compared to ofloxacin (OFX) and ciprofloxacin (CPX). The 

structural difference, which includes a methoxy group in the C-8 position of MXF, results in 
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increased bactericidal activity of the drug, lower MICs, and a lower propensity for the 

development of resistance to the drug.5 Although cross-resistance has been reported, it has 

been argued that the increased bactericidal activity of MXF and the lower MIC allow for this 

drug to be effective against XDR isolates where CPX and OFX are ineffective.3,4 

The fluoroquinolones inactivate the deoxyribonucleic acid (DNA) gyrase enzyme, thereby 

preventing transcription during cell replication. DNA gyrases are encoded by the gyrA and 

gyrB genes. Fluoroquinolone-resistant strains of MTB most frequently display mutations on 

codons 90, 91, and 94 of the gyrA gene.6–9 Additionally, double mutations in the gyrA or 

concomitant gyrA and gyrB mutations have been reported.6,8 The level of fluoroquinolone 

resistance is dependent on the mutation in the resistance-conferring gene and the 

fluoroquinolone tested.10 Studies have demonstrated that MIC levels of resistant isolates are 

higher for older-generation fluoroquinolones than for MXF.6–9 

The use of MXF in XDR treatment regimens was introduced without prior testing for 

susceptibility against the circulating XDR isolates in KwaZulu-Natal (KZN) Province. The 

aim of this study was to correlate the minimum inhibitory concentration (MIC) levels of the 

fluoroquinolones with mutations in the gyrA and gyrB genes in a subset of clinical isolates 

from the KZN Province of South Africa. 

Materials and methods 

Clinical isolates 

The isolates used in this study were retrieved from the culture collection in the Department of 

Infection Prevention and Control, Nelson R Mandela School of Medicine, School of 

Laboratory Medicine and Medical Science, College of Health Science, University of 

KwaZulu-Natal. We included the following phenotypes: ten fully drug-susceptible (DS), 20 

MDR, and 30 XDR. The isolates were collected between 2005 and 2008 from patients in 
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Umzinyathi District, KZN, South Africa. H37Rv was included as the reference strain. Ethical 

approval for the study (BREC 247/09) was granted by the Biomedical Research Ethics 

Committee at the University of KwaZulu-Natal. 

MIC determination 

MIC determination of the drugs was performed by means of the agar dilution method using 

Middlebrook 7H10 (BD, Franklin Lakes, NJ, USA) media supplemented with oleic acid–

albumin–dextrose–catalase (BD). The drug concentrations used ranged from 0.03 to 8 mg/L 

for CPX, OFX (Sigma-Aldrich, St Louis, MO, USA), and MXF (Bayer, Leverkusen, 

Germany). Following inoculation, plates were incubated in a CO2 (5%)-enriched atmosphere 

at 37°C for 21 days. MIC values were recorded as the lowest concentration of the drug that 

resulted in complete inhibition of growth. The cutoff value for resistance ≥2 mg/L for CPX 

and OFX according to WHO recommendations and ≥0.5 mg/L for MXF, as described by 

Angeby et al.11,12 All MIC experiments were carried out in triplicate. 

DNA extraction and PCR 

DNA was extracted using cetyl-trimethyl-ammonium bromide-sodium chloride, as 

previously described.13 The quinolone resistance-determining region (QRDR) and flanking 

regions of the gyrA and gyrB genes were amplified using primer pairs designed for this study: 

gyrA forward (CGATTGCAAACGAGGAATAG), gyrA reverse 

(GGCCAGTTTTGTAGGCATCA), and gyrB forward (ATCAACCTGACCGACGAGAG), 

gyrB reverse (GCCGAGTCACCTTCTACGAC).14 Polymerase chain reaction (PCR) was 

performed using the Expand high-fidelity PCR system (dNTPack; Hoffman-La Roche, Basel, 

Switzerland). 

Cycling conditions were as follows: initial denaturation at 94°C for 2 minutes; 40 cycles of 

denaturation at 94°C for 45 seconds, annealing at 53°C (gyrA) or 56°C (gyrB) for 45 seconds 
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and extension at 72°C for 45 seconds; and a final extension of 7 minutes at 72°C. The quality 

of PCR amplicons was checked on a 1% agarose gel. 

Sequencing PCR products were purified using the Invitrogen PureLink® PCR purification kit 

(Thermo Fisher Scientific, Waltham, MA, USA). The sequencing reactions were performed 

using an ABI Prism BigDye® Terminator cycle-sequencing kit 3.1 (Thermo Fisher 

Scientific) with the same forward primers as used for PCR amplification. Geneious version 

5.5.7 sequence-analysis software was used to identify mutations in the final nucleotide 

sequences in comparison to the MTB H37Rv reference strain.15 

Genotyping 

Genotyping was performed by IS6110 restriction fragment length polymorphism (RFLP) 

analysis using the Southern blot hybridization method, as previously described.16 

Results 

Isolates 

Of the 60 isolates selected, four MDR isolates did not grow sufficiently on retrieval 

subculture and were excluded from further analysis. MIC and sequencing data were therefore 

obtained for ten DS, 16 MDR, and 30 XDR isolates. 

MIC results 

The DS and MDR isolates displayed MICs for CPX, OFX, and MXF in the susceptible 

range. All 30 XDR isolates tested displayed MICs for CPX, OFX, and MXF that were in the 

resistant range (Table 4.1). 

Sequencing of the gyrA and gyrB genes 
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Three mutations were observed in the nucleotide sequence of the gyrA gene: E21Q 

(GAA→CAA), S95T (ACG→ACC), and A90V (GCG→GTG). E21Q and S95T were 

present in all 56 isolates, regardless of MIC values (Table 1). The A90V mutation was 

present only in the 30 XDR isolates, correlating with an MIC value of 8 mg/L for CPX and 

OFX. In the case of MXF, 23 of the 30 XDR isolates had an MIC value of 2 mg/L, while 

seven had an MIC value of 1 mg/L. Ten MDR isolates with an MIC for MXF at the proposed 

breakpoint for resistance, ie, 0.5 mg/L, did not display the A90V mutation. No mutations 

were detected in the gyrB genes of the isolates tested. 

IS6110 restriction fragment length polymorphism analysis 

IS6110 RFLP analysis revealed that 35 of the 56 isolates belonged to the F15/LAM4/KZN 

family of strains. This included all 30 XDR isolates and five MDR isolates. Seventeen of the 

remaining isolates belonged to recognized strain families (F28, F11, and Beijing) while four 

showed a unique RFLP profile. 

Discussion 

We report on the correlation between MICs of MXF and mutations in the gyrA gene in a 

selection of clinical isolates in KZN, South Africa. Fluoroquinolone resistance in MTB is 

most frequently attributed to mutations occurring in the QRDR of the gyrA gene. The QRDR 

of the gyrA gene consists of a short region, coding for amino acids 74–113. In our study, we 

sequenced the QRDR of both the gyrA and gyrB genes, as well as flanking regions. We found 

the C269T mutation within the QRDR of the gyrA gene, which corresponds with the amino 

acid change A90V, correlated with the high MICs seen in the XDR MTB isolates that we 

studied. The A90V mutation in gyrA has been described as one of the most frequent 

mutations associated with fluoroquinolone resistance.17 In our study, based on WHO-
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recommended breakpoints, the A90V mutation in XDR isolates was linked to resistance in all 

three fluoroquinolones tested.11 

We did not find mutations in gyrB in any of the isolates tested. This supports previous 

observations that mutations within the gyrB gene are rare in MTB.8,17 Maruri et al conducted 

a systematic review to evaluate gyrase mutations associated with fluoroquinolone resistance 

in MTB. The study reported on 534 fluoroquinolone-resistant MTB isolates, of which 17 

(3%) harbored mutations within the QRDR of the gyrB gene. In addition, four different 

numbering systems were used to report on mutations in the gyrB gene, resulting in major 

discrepancies. The authors proposed a uniform numbering system in an attempt to improve 

the molecular detection in the gyrases.18 The significance of mutations within the QRDR of 

the gyrB gene cannot be ignored, and is thought to play an important role in resistance.9 

WHO guidelines propose 0.5 mg/L as the breakpoint MIC for susceptibility testing of MXF 

in the BACTEC™ 460 system (BD) and 0.25 mg/L in the BACTEC MGIT 960 (BD) 

system.11 Breakpoints for other test systems are not proposed. Angeby et al demonstrated 

comparable MIC results for MXF on Middlebook 7H10 agar and the BACTEC 460 system.12 

With Middlebrook 7H10 plates used for MIC determination, all our XDR isolates had MICs 

of >0.5 mg/L. As per the WHO definition, these are classified as MXF-resistant, and this 

implies that MXF should not be recommended for treatment of cases harboring such isolates. 

However, there are reports of MXF efficacy in isolates with MXF MICs <2 mg/L.3,4,6,10,19 

Poissy et al used the murine model to demonstrate that MXF is effective against OFX-

resistant strains. They reported that MXF was most effective on MTB strains with MICs ≥0.5 

mg/L. Reduced mortality was observed in mice infected with strains, with MICs ≥2 mg/L 

compared to untreated controls.4 Fillion et al demonstrated similar findings using the murine 

model to determine the effect of a multidrug regimen containing MXF. The sterilizing 
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activity of the multidrug regimen decreased in strains with increased MICs to MXF. The 

impact of the sterilizing activity of the most effective second-line treatment regimen (ie, 

ethionamide, pyrazinamide, amikacin, and MXF) is dependent on the MIC of MXF, and thus 

the MIC of MXF has to be determined for all strains resistant to OFX. Mice infected with 

strains with MXF MICs of 0.5 mg/L and 4 mg/L recorded relapse rates of 50% and 86%, 

respectively, compared to the wild type.10 

Sirgel et al proposed that MXF and OFX are possibly not equally affected by mutations 

associated with fluoroquinolone resistance.6 They concluded that the use of MXF for the 

treatment of infection with OFX-resistant strains is justified when combined with other 

drugs. They further suggested that the low recommended breakpoint of 0.5 mg/L determining 

MXF resistance may therefore give a false impression of clinical inactivity. Poissy et al and 

Sirgel et al support WHO recommendations on the use of MXF for the treatment of XDR 

provided that the infecting isolate has an MXF MIC of <2 mg/L.4,6 

Feasey et al reported on a case where high-dose MXF (600 mg/day) in combination with 

PZA, CAP, LIN, PAS, and amoxicillin clavulanic acid for 22 months successfully treated a 

case with an infecting isolate that was resistant to isoniazid, rifampicin, ethambutol, 

prothionamide, OFX, streptomycin, and MXF (MIC of 2 mg/L). While high-dose MXF 

treatment increases the peak plasma (MXF), resulting in levels that remain constantly above 

the MIC, it is difficult to assess the exact role of MXF in the successful management of this 

patient, since other drugs with known efficacy were also included in the treatment regimen.19 

Jacobson et al conducted a meta-analysis to assess treatment outcomes in patients with XDR. 

The report summarized 13 studies conducted mainly amongst HIV-uninfected people, who 

received a new-generation fluoroquinolone together with other anti-TB drugs. They 
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concluded that the addition of MXF to XDR regimens may improve outcomes, but further 

evaluation in clinical trials is warranted.3 

In KZN, the regimen used for XDR treatment is a combination of drugs with proven and 

putative efficacy. The National Department of Health in South Africa recommends the use of 

MXF as part of XDR treatment in the presence of OFX resistance. Fluoroquinolones are 

added despite in vitro reports of resistance in the hope that there may be some residual 

activity. It is debatable whether the perceived benefit of using MXF under these 

circumstances outweighs the risks caused by side effects of this drug or the increased 

exertion of antibiotic pressure in the era of ever-increasing drug resistance.20 Mendel and 

Springsklee21 warned that the use of newer-generation fluoroquinolones in patients that 

display low-level resistance will be disastrous from a public health perspective. The use of 

MXF in such cases will result in the ready emergence of highly resistant strains unless drug 

concentrations are sustained above mutant-prevention concentrations at all infection sites. 

The latter is extremely difficult to achieve, and thus the use of MXF in patients with 

resistance to older-generation fluoroquinolones will only further drive resistance among 

XDR strains of MTB. 

Although all isolates used in this study were from different patients, the XDR isolates 

displayed a high degree of similarity and belonged to a single genotype, ie, F15/LAM4/KZN. 

To date, all reports from KZN have attributed XDR to this strain. Ramtahal showed that the 

spread of XDR in KZN was clonal with the F15/LAM4/KZN strain.22 Clonal spread of this 

strain has been ongoing since at least 2005.23 During this period, further acquisition of 

resistance may have occurred. We therefore performed susceptibility testing and sequencing 

on 30 XDR isolates belonging to the only XDR strain family currently in KZN. Seven of the 

isolates had MICs of 1 mg/L, and 23 had MICs of 2 mg/L. Basic microbiological principles 

regarding in vitro determination of MICs allows for one twofold MIC variation between 
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tests. This implies that our XDR isolates may in their most susceptible form have MICs 

between 0.5 and 1 mg/L and in their most resistant form from 2 to 4 mg/L.24 Gandhi et al 

found that a large variety of strains were associated with DS, and this decreased as the degree 

of resistance increased. The low diversity of strains driving the MDR and XDR epidemics 

supports the theory of clonal expansion of drug-resistant phenotypes in KZN. This picture is 

different in other parts of South Africa. In the Eastern and Western Cape Provinces, the 

Beijing strain is accountable for the majority of XDR. Strains responsible for MDR and XDR 

in other provinces include the S, T1, and other families. The reasons for geographic 

differences remain uncertain.25 

Conclusion 

Regardless of the strain family implicated in infection with XDR, the breakpoint for 

resistance to MXF remains the subject of debate. Our results support concerns regarding the 

use of MXF in KZN. While there may be a role for MXF as part of individualized XDR 

treatment regimens, this cannot be advocated as part of empiric treatment protocols in the 

absence of MXF MIC data of the circulating XDR strains in an area. In addition, validation 

from larger population-based studies using MXF in combination with various other antidrug 

regimes must be conducted. Early bactericidal assays with MXF will also give useful data to 

inform our practice. 
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Table 4.1 RFLP strain families of Mycobacterium tuberculosis isolates stratified by MIC and 

resistance conferring mutations in the gyrA gene 

Strain family Isolates, n 

(phenotype) 

Mutations 

associated with 

resistance 

MIC (mg/L)a 

CPX OFX MXF 

F15/LAM4/KZN 23 (XDR) 

7 (XDR) 

4 (MDR) 

1 (MDR) 

A90V 

A90V 

None 

None 

8 

8 

1 

1 

8 

8 

1 

1 

2 

1 

0.5 

0.25 

F28 5 (MDR) 

3 (MDR) 

1 (MDR) 

1 (MDR) 

None 

None 

None 

None 

1 

1 

0.5 

0.5 

1 

1 

0.5 

0.5 

0.5 

0.25 

0.5 

0.25 

LAM3/F11 1 (DS) None 0.5 0.5 0.125 

Beijing family 6 (DS) None 0.5 0.5 0.125 

Unique 3 (DS) 

1 (MDR) 

None 

None 

0.5 

0.5 

0.5 

0.5 

0.125 

0.25 

Note: aResistance defined as 2 mg/L for CPX and OFX and 0.5 mg/L for MXF. 

Abbreviations: RFLP, restriction fragment length polymorphism; MIC, minimum inhibitory 

concentration; CPX, ciprofloxacin; OFX, ofloxacin; MXF, moxifloxacin; XDR, extensively 

multidrug-resistant; MDR, multidrug-resistant; DS, drug-susceptible. 
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Chapter Five 

Manuscript IV: 

Evaluation of Capreomycin in the treatment of the F15/LAM4/KZN extensively drug-

resistant strain of Mycobacterium tuberculosis. 

Currently under review by the Journal of Chemotherapy (Manuscript number: JOC 

745) 

Abstract: 

 Capreomycin has been advocated for the treatment of extensively drug resistant tuberculosis 

without drug susceptibility testing.  We investigated the relationship between the minimum 

inhibitory concentration of CAP and mutations in the rrs, tlyA and eis genes in 

Mycobacterium tuberculosis isolates from KwaZulu-Natal, South Africa. MIC data of 56 

isolates were compared to mutations in the rrs, tlyA and eis genes. Mutational analysis 

identified the A1401G mutation in the rrs gene in 30 XDR-TB isolates with an MIC of ≥ 16 

mg/L for CAP and ≥ 128 mg/L for kanamycin and amikacin. Genotypic analysis revealed 

that the XDR-TB strains were clonal belonging to the F15/LAM4/KZN strain family. The 

MICs of CAP reveal that the use of the drug in XDR-TB treatment protocols requires careful 

re-consideration in the KZN setting. A review of the current breakpoint value for CAP will 

be invaluable in improving the quality of drug susceptibility testing against MTB. 

Introduction 

In 2013, 9.0 million new cases of tuberculosis (TB) and 1.5 million TB-related deaths were 

reported worldwide. While the global incidence of TB has decreased, multidrug-resistant 

(MDR-TB) and extensively drug resistant (XDR-TB) remain a major public health concern 

in several countries. MDR-TB, as defined by World Health Organisation (WHO), are 

Mycobacterium tuberculosis (MTB) strains that are resistant to isoniazid (INH) and 
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rifampicin (RIF). XDR-TB strains are characterized by resistance to INH and RIF (ie MDR-

TB) with additional resistance to a fluoroquinolone and one of the three injectable agents: 

amikacin (AMIK), kanamycin (KAN) and capreomycin (CAP).1  

The treatment of XDR-TB is a major challenge given the paucity of effective drugs available. 

Antimicrobial regimens that are currently used to treat XDR-TB, often do not take cross 

resistance among drug classes into consideration. In addition, inclusion of anti-TB drugs into 

the XDR-TB treatment protocols are often advocated without appropriate drug susceptibility 

testing (DST) of locally prevalent XDR-TB strains.  

In 2006, a report by Gandhi et al.2 underscored the drug resistance TB problem in which the 

largest ever outbreak of XDR-TB was described in Tugela Ferry, KwaZulu-Natal, South 

Africa. The isolates from TB cases described in this outbreak were resistant to INH, RIF, 

KAN, and ofloxacin (OFX). 2 This prompted the Department of Health in South Africa to 

look at alternatives for the treatment of patients with XDR-TB. It was recommended that two 

drugs that were previously used to treat TB, be reintroduced for the management of XDR-TB 

cases.3 

 The drugs recommended were CAP (a polypeptide with a similar mode of action to 

aminoglycosides) and para-amino salicylic acid (PAS). The Medicines Control Council 

(MCC) registration for the latter was still in effect. However, MCC registration for CAP had 

expired, and a new approval was sought and granted. It was presumed that strains of XDR-

TB would be susceptible to CAP and PAS, and susceptibility testing for these drugs against 

XDR-TB strains was therefore not performed at the outset. 3 

The treatment of MDR-TB in South Africa includes an aminoglycoside i.e. KAN or AMIK. 

With the emergence of XDR-TB strains in KZN, CAP became an integral part of treatment 

regimens amid extensive aminoglycoside resistance. 4 The aminoglycosides (KAN and 



102 
 

AMIK) and cyclic polypeptides (CAP) are protein synthesis inhibitors that act by binding to 

the bacterial ribosome resulting in a modification of the 16S rRNA structure.5 Resistance to 

all three of these antibiotics have b4een linked to mutations in the rrs gene coding for 16S 

rRNA and the tlyA gene which encodes an rRNA 2’ –O-methyltransferase responsible for 

methylation of nucleotide C1409 in helix 44 of the 16S rRNA. In addition, cross resistance 

amongst these agents has been reported.6-9  Recent reports have demonstrated that mutations 

in the eis promoter, a putative enhanced intracellular survival protein in M.Smegmatis, is 

linked to KAN resistance. 5, 9, 10 

Rapid molecular diagnostic assays used to identify drug resistance in clinical isolates rely on 

the identification of mutations in known resistance conferring genes. Whilst this phenomenon 

is well established for first line agents, molecular based testing for resistance to second line 

agents has not been well characterized. A greater understanding of these mechanisms is 

imperative to appropriately guide treatment in patients with MDR-TB and XDR-TB. 5, 6, 8 

The aim of this study was to correlate the Minimum Inhibitory Concentration (MIC) levels of 

the aminoglycosides and CAP with mutations in the genes known to confer drug resistance in 

a subset of clinical isolates from the KZN province of South Africa. 

Materials and Methods 

Clinical Isolates 

A total of 60 isolates were included in this study: 10 drug susceptible (DS), 20 MDR and 30 

XDR. The isolates were collected during 2005-2008 from in and out patients at the Church of 

Scotland Hospital, Tugela Ferry, KZN, South Africa. H37Rv was included as the reference 

strain. Ethical approval for the study (BREC 247/09) was granted by the Biomedical 

Research Ethics Committee at the University of KwaZulu-Natal.  
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MIC Determination 

We established the MIC on Middlebrook 7H10 agar (BD, Difco Laboratories, USA) medium 

supplemented with oleic acid-albumin-dextrose-catalase (OADC) (BD, Difco Laboratories, 

USA) using the agar dilution method. Bacterial cultures were prepared by adjusting the 

bacterial suspension to give a turbidity equivalent to that of a 1.0 McFarland standard and 

then diluted to obtain a final bacterial density of 1 x 10-3 colony forming units per ml. 0.1ml 

was used to inoculate each quadrant of the Middlebrook 7H10 agar plates with dilutions 

ranging from 0.06 – 16 mg/L for CAP and 0.5 – 128 mg/L for KAN and AMIK. All drugs 

were obtained from Sigma-Aldrich (Capital Lab Supplies, South Africa). Plates were 

incubated in a CO2 enriched atmosphere at 37ºC for 21 days.  The MIC was defined as the 

lowest antibiotic concentration that resulted in a complete inhibition of growth. Resistance 

was determined at a critical concentration of 5 mg/L for KAN, 4 mg/L for AMIK and 

10mg/L for CAP. 11  All experiments were carried out in triplicate to ensure accuracy and 

reproducibility.  

Gene Amplification and Sequencing 

Genomic DNA was isolated using the CTAB-NaCl (Cetyl-trimethyl-ammonium Bromide-

Sodium Chloride) as described previously. 12 

PCR amplification of all 56 isolates for the rrs gene was performed using the Expand High 

Fidelity PCR system, dNTPack (Roche Diagnostics, Mannheim, Germany) and primers KM-

SA, KM-RA, P1 and P2 and cycling protocol as described previously. 6 The tlyA gene was 

amplified using newly designed primers: tlyAF (AAGGCATCGCACGTCGTCTTTCC) and 

tlyAR (TGTCGCCCAATACTTTTTCTACGC). The eis gene was amplified using primers 

AZ80 and AZ87.7 The cycling protocol utilised was an initial denaturation at 94ºC for 2 mins 

followed by 40 cycles of denaturation at 94ºC, annealing at 60ºC (tlyA) and 58 ºC (eis); 



104 
 

extension at 72ºC for 45secs each and a final extension of 10 min at 72ºC. The quality of 

PCR products were checked on a 1% agarose gel purified using the Invitrogen PureLink PCR 

purification kit (Applied Biosystems, South Africa), matching 831bp and 920bp for the 2 

regions of the rrs gene. The tlyA gene yielded a 981bp product and the eis gene 567 bp 

product.  

Direct single stranded sequencing of the rrs and tlyA amplicons was performed using ABI 

Prism Big Dye Terminator cycle sequencing kit V3.1 (Applied Biosystems, South Africa) 

with the forward primers used for PCR amplification. Geneious V5.5.7 13 sequence analysis 

software was used to detect mutations in the final nucleotide sequences in comparison to the 

H37Rv reference strain.  

RFLP Analysis 

Isolates were genotyped using the IS6110 restriction fragment length polymorphism (RFLP) 

method as described previously. 14 The Bionumerics version 3.5 software (Applied Maths, 

Kortijk, Belgium), was used for the analysis of IS6110 RFLP patterns. 

Results 

Of the sixty isolates selected for analysis, 4 MDR-TB isolates failed to grow sufficiently on 

sub- culture and had to be excluded. Therefore, we report MIC and sequencing data for 10 

SUS, 16 MDR-TB and 30 XDR-TB isolates. 

MIC Results 

The 30 XDR-TB isolates were found to be resistant to KAN, AMIK and CAP with MIC’s of 

> 128mg/L for KAN and AMIK and ≥ 16 mg/ L for CAP. The isolates classified as SUS and 

MDR-TB displayed MICs for KAN, AMIK and CAP in the susceptible range. The MIC 

profiles for KAN, AMIK and CAP are shown in Table 5.1. 
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Sequencing of the of the rrs and tlyA genes 

Sequencing of the 56 isolates revealed 2 mutations: The rrs A1401G and the tlyA A33G.  The 

rrs A1401G mutation was found in all 30 XDR-TB isolates, correlating with MIC values 

>128 µg/ml for KAN and AMIK and ≥16µg/ml for capreomycin. The SUS and MDR-TB 

isolates did not display any mutations in this gene. The tlyA A33G mutation was present in 

all 56 isolates, regardless of MIC values. No mutations were detected in the eis genes in the 

isolates tested. Sequencing results are shown in Table 5.2. 

RFLP Genotyping Results 

RFLP analysis revealed that the majority of the isolates belonged to the F15/LAM4/KZN 

lineage, whereas the remaining isolates belonged to recognised strain families (F28/F11 and 

Beijing). Four isolates used in the study displayed a unique RFLP profile. The A33G tlyA 

mutation was found in all isolates whilst the A1401G rrs mutation was found only in the 

F15/LAM4/KZN lineage. RFLP profiles, mutations and associated phenotypes are shown in 

Table 5.2. 

Discussion 

In this study, we report on the association between MICs of CAP and the aminoglycoside 

antibiotics and mutations in the rrs, tlyA and eis genes in clinical isolates of MTB from our 

setting. Resistance to the injectable antibiotics are commonly associated with the A1401G 

mutation in the rrs gene. 5-9 In our study, sequencing revealed the A1401G mutation in the rrs 

gene correlated with high level resistance in the F15/LAM4/KZN XDR-TB strains. The five 

F15/LAM4/KZN MDR-TB strains susceptible to CAP did not carry the rrs A1401G 

mutation.  It has been reported that the A1401G rrs mutation alone detected approximately 

70-80% of CAP and AMIK resistance and 60% of KAN resistance, globally. 9 Our findings 



106 
 

show that the A1401G mutation in XDR-TB isolates confers high level resistance to KAN 

and AMIK and a decreased susceptibility to CAP, corroborating previous reports. 5, 6, 8, 9 

Mutations in the tlyA gene have been implicated in CAP resistance. Sequencing of the tlyA 

gene revealed the A33G mutation in all the isolates tested. Sowajassatakul et al.15 recently 

reported that the tlyA A33G substitution does not result in any amino acid changes, 

suggesting that this mutation is merely a natural polymorphism with no link to the resistant 

phenotype. 15 The results of this study corroborates this finding. Although mutations 

conferring resistance in the tlyA gene have been reported in only 1-3% of CAP resistant 

strains, there are no reports of these mutations in CAP sensitive strains therefore, the 

significance of tlyA mutations should not be ignored as they have potential to serve as high 

predictor of CAP resistance.9 

 Mutations in the promoter region of the eis gene, coding for an aminoglycoside 

acetyltransferase, are associated with low-level KAN resistance.9 In our study, no mutations 

were detected in any of the isolates studied. Common mutations associated with resistance 

occur at positions -10, -14 and -37. eis promoter mutations are reported to  occur exclusively 

in KAN resistant isolates with no additional mutation in rrs gene, therefore, they have a 

greater predictive potential for detecting KAN resistance than using the A1401G rrs mutation 

alone. 9, 10 

The emergence of MDR-TB and XDR-TB has created a higher demand for antimicrobial 

DST. Current DST against M.tuberculosis is based on the testing of an antimicrobial against 

a set concentration known as the breakpoint concentration; defined as the lowest 

concentration of drug that will inhibit 95% (90% for pyrazinamide) of wild-type strains that 

have never been exposed to the drug, while not inhibiting clinical strains that display 

resistance to the drug. Angeby et al.16 considers this definition to be flawed as it categorises 
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5% of the wild-type strains to be resistant. In addition, combination therapy is mandatory for 

the treatment of M.tuberculosis and therefore clinical outcome data for individual drugs are 

not readily available. They propose the use of wild-type MIC distributions for indicating 

susceptibility breakpoints for M.tuberculosis. The highest MIC value within the wild-type 

MIC range is defined as the epidemiologic cut-off value (ECOFF), is considered a more 

accurate tool for indicating susceptibility breakpoints for M.tuberculosis. 16 The tentative 

ECOFF value for CAP is 4 mg/L whilst current WHO guidelines on DST recommend a 

breakpoint concentration of 10 mg/L for CAP on Middlebrook agar. 11,16 By applying the 

ECOFF value of 4mg/L for CAP, all  SUS and MDR-TB isolates used in our study with 

MICs of 4mg/L display low-level resistance to CAP. Reeves et al.17 reported on the 

disparities associated with the rrs A1401G mutation. They conducted MIC’s in clinical 

isolates and genetically engineered mutants that had clean genetic backgrounds and no prior 

exposure to the drug. The MIC’s for the clinical isolates ranged from 8 mg/L to 40 mg/L. All 

the genetically engineered mutants had an MIC of 40 mg/L. They suggest a re-evaluation of 

the current breakpoint value for CAP and that the differences in resistance levels are due to 

compensatory or second site mutations.17 

CAP resistance was reported in the F15/LAM4/KZN strain prior to the use of the antibiotic in 

South Africa.18 This phenomenon was also reported by Sirgel et al. 8 in the Eastern Cape 

region of South Africa and Jugheli et al. 6 in isolates from Georgia. This suggests that CAP 

resistance occurs as a result of cross resistance to KAN and AMIK and that the drug 

therefore has no clinical relevance in treatment regimens for XDR-TB. 6,8 

Sirgel et al. 8 suggests that CAP MIC’s in the range of 10-15 mg/L warrants the clinical use 

of CAP in treatment of patients infected with strains resistant to low level CAP based on the 

fact that it is below achievable serum levels. 11 In our subset of isolates, all XDR-TB isolates 

displayed MIC’s of ≥16 mg/L. This MIC could in fact be much higher as basic 
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microbiological principles for in vitro MIC determination allows for one twofold variation of 

the real end point. Thus, our XDR-TB isolates could in their most resistant form have MIC’s 

of 32-64 mg/L which exceed the peak serum concentrations levels of 20-47 mg/L for CAP. 

Therefore, the concentration of the drug will be inadequate for patient’s harbouring strains 

resistant to CAP. Furthermore, we believe that the use of CAP in the treatment of patients 

with low-level CAP resistance will only drive further resistance in these isolates.   

Although all isolates used in this study were from different patients, the XDR-TB isolates 

belonged to the F15/LAM4/KZN genotype. Thus far, all reports of XDR-TB in the KZN 

province of South Africa have been attributed to this genotype. 19 The strains analysed in this 

study are highly resistant, presenting clinicians with few therapeutic options. The 

aminoglycosides, CAP and the fluoroquinolones remain the most effective agents in the 

treatment of drug-resistant strains of MTB.  The present study has, consequently, important 

implications for the treatment of XDR-TB in South Africa. The re-introduction of CAP in 

drug regimens for treatment in patients with resistance to KAN or AMIK in the absence of 

drug susceptibility testing possibly amplified this drug resistance. We suggest that the current 

breakpoint concentration set out for CAP needs to be revised in order to prevent patients 

from receiving inadequate treatment that could lead to the development of further resistance, 

continued transmission of drug resistant strains as well as death of the patient. However, this 

can only be determined if CAP is assessed in combination with suitable companion drugs, 

which may not be available.  Therefore, the clinical use of CAP needs careful re-

consideration for treatment of XDR-TB cases in KZN province. 
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Tables 

Table 5.1: MIC profiles for KAN, AMIK and CAP in 56 isolates from patients from 

KwaZulu-Natal, South Africa 

No of Isolates MIC  (mg/L) 

KAN AMIK CAP 

30 (XDR-TB) >128 >128 >16 

1 (MDR-TB) 4 2 8 

5 (1 SUS, 4 MDR-

TB) 

4 2 4 

11(5 SUS, 6 

MDR-TB) 

2 2 4 

9 (4 SUS, 5 MDR-

TB) 

2 1 4 
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Table 5.2: RFLP analysis of M. tuberculosis isolates with mutations and their associated 

phenotypes 

 

Strain Family Mutations No of Isolates 

(Phenotype) rrs tlyA eis 

F15/LAM4/KZN A1401G 

None 

A33G 

A33G 

None 

None 

30 (XDR-TB) 

5 (MDR) 

F28 None A33G None 10 (MDR) 

LAM3/ F11 None A33G None 1 (SUS) 

Beijing Family None A33G None 6 (SUS) 

Unique None 

None 

A33G 

A33G 

None 3 (SUS) 

1(MDR-TB) 
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Chapter Six 

Manuscript V: 

KZN Multidrug and Extensively drug resistant strains of Mycobacterium tuberculosis 

remain susceptible to Linezolid and para-Amino salicylic Acid. 

Submitted to the South African Medical Journal 

Abstract 

Background: Strategic application of Linezolid (LIN) and para-Amino salicylic acid (PAS) 

may play an important role in the management of drug resistant tuberculosis in our setting.  

Objectives: The aim of this study was to screen clinical isolates of M.tuberculosis for 

resistance LIN and PAS. 

Methods: In an attempt to detect resistance to LIN and PAS, we screened the rrl and thyA 

genes of drug susceptible, multi drug-resistant (MDR) and extensively drug-resistant (XDR) 

clinical isolates of Mycobacterium tuberculosis. 

Results: No resistance mutations were detected in the thyA and rrl genes in the isolates 

screened. The presence of the Thr202Ala mutation in thyA and the G2399A mutation in the 

rrl gene was associated with strains of Latin American Lineage and played no role in 

mediating resistance to the drugs.  

Conclusions: Failure to associate LIN or PAS resistance to the most common mechanisms 

described underscores the need for more effective screening of novel targets and detection of 

resistance mechanisms that can be added to rapid diagnostic assays to effectively diagnose 

and detect drug resistance concurrently. 
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Background 

Drug resistant tuberculosis (TB) is major public health concern, associated with significant 

morbidity and mortality. The recent emergence of totally drug resistant (TDR) TB, defined as 

strains resistant to all the current first and second line drugs in TB treatment regimens, has 

the potential to completely disrupt TB control programs.(1)  Treatment of multidrug resistant 

(MDR) TB; i.e. strains resistant to isoniazid and rifampicin, relies on the use of second line 

anti-TB drugs such as the fluoroquinolones and injectable aminoglycosides which are less 

effective and have higher toxicities. Additional acquisition of resistance to the second line 

anti-TB drugs defines extensively drug resistant (XDR) TB, associated with poor treatment 

outcomes.(2,3). Given the paucity of new drugs available for the treatment of XDR-TB, it is 

imperative that Mycobacterium tuberculosis isolates from patients must be tested for 

susceptibility to anti-TB drugs to ensure appropriate treatment choices are made and to 

prevent further resistance.(4) Two such drugs, para-amino salicylic acid (PAS) and Linezolid 

(LIN) are treatment options for XD-TB in our setting. Resistance to each of these drugs, 

although rare, are believed to be mediated through mutations in the thyA (5,6) and rrl (7) 

genes, respectively.  Recent studies have demonstrated improved treatment outcomes in 

patients with complicated MDR and XDR when treated with LIN.(8) The aim of this study 

was to screen clinical isolates of M.tuberculosis for mutations in the rrl and thyA genes 

associated with resistance LIN and PAS respectively.  

Materials and Methods: 

Clinical Isolates 

The M. tuberculosis H37Rv laboratory strain and 60 stored clinical isolates, collected from 

2005-2009 at the Church of Scotland Hospital in the Tugela Ferry region of KwaZulu-Natal 

were selected from the culture collection from the Infection Control laboratory, University of 
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KwaZulu-Natal. The samples represented varying antibiotic resistance patterns, comprising 

10 drug susceptible (DS), 17 multi-drug resistant (MDR-TB) and 30 extensively drug 

resistant (XDR-TB) isolates. Genotyping and drug susceptibility profiles were determined 

previously in our laboratory, using standard mycobacteriology protocols. Ethics approval for 

the study was obtained from the Biomedical Research Ethics Committee at the University of 

KwaZulu-Natal (BREC 247/09). DNA was isolated from the cultures using the CTAB-NaCl 

(Cetyl-trimethyl-ammonium Bromide-Sodium Chloride) method, as previously described. (9)  

PCR Amplification and Sequencing 

PCR assays for the rrl gene was conducted as previously described.(7) Primers for thyA gene; 

FWD GCCTCCGTTGTACTCCTGTG and REV TGTCGCCCAATACTTTTTCTACGC; 

were designed for the current study and amplified using the Expand High Fidelity PCR kit 

(Roche) according to the kit guidelines, with annealing temperature of 60◦C. Each PCR 

yielded amplicons of 835bp and 850bp, respectively. PCR amplicons were verified on a 1% 

agarose gel and purified using the Invitrogen PureLink PCR purification kit (Applied 

Biosystems). Direct single stranded sequencing of the amplicons were conducted using ABI 

Prism Big Dye Terminator cycle sequencing kit V3.1 (Applied Biosystems) with the forward 

primers used for PCR amplification. The reactions were cycled in accordance with the 

manufacturer’s guidelines.  Sequence chromatograms were analysed for the presence of 

mutations by comparison of the corresponding reference sequence of the H37Rv reference 

strain using Geneious V5.5.7 sequence analysis software program.  

Results and Discussion 

Three XDR-TB isolates failed multiple attempts at amplification of the rrl gene and were 

excluded from the analysis. 
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 The mutations detected in the study were of 2 types: (1) A → G substitution at position 604 

of the thyA gene (Thr202Ala) and (2) G → A substitution at position 2399 of the rrl gene. 

Both these mutations were detected in 5 MDR-TB isolates and all the XDR-TB isolates 

screened. All isolates with the mutations belonged to the F15/LAM4/KZN strain. Table 6.1 

shows the frequency of the mutations detected and the associated genotypes. The former, 

Thr202Ala, initially implicated in PAS resistance, is now believed to be a phylogenetic 

marker for the Latin American Lineage (LAM) strain.(10) The results of this study support 

the latter findings. The G2399A mutation of the rrl gene has been reported in isolates from 

Brazil and South Africa in 2004 (Listed on the Broad Institute TB mutation database). More 

recently, a study conducted in our laboratory  reported this mutation in drug susceptible (DS) 

and resistant isolates demonstrating that this mutation does not mediate LIN resistance.(11) 

The isolates analysed in the study all belonged to the F15/LAM4/KZN strain. We postulate 

that this mutation maybe a marker for this strain type rather than a resistance mutation.  

Moodley et al. also demonstrated that the KZN XDR-TB isolates are still eligible for 

treatment by the drugs. Time kill data demonstrated that PAS was effective against 50% of 

the drug resistant isolates while LIN was effective against 80% of the drug resistant 

isolates.(11) However, the use of these drugs should be applied in the presence of drug 

susceptibility tests. Alternate mechanisms of drug resistance such as efflux pumps and 

mutations in other target genes have been proposed in the resistance of LIN. Richter et al. 

demonstrated a reduction in the MIC of LIN in the presence of efflux pump inhibitor, 

reserpine.(7) Mutations in the rplC gene, encoding the 50S ribosomal protein L3 in in-vitro 

selected mutants and clinical isolates have also been implicated in LIN resistance. These 

mechanisms require further validation.(1)  

In the case of PAS, no resistance mutations were detected in the thyA gene amongst isolates 

of the KZN strain family. (11) This is in contrast to the report where the Thr202Ala mutation 
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was reported as a specific marker of the LAM lineage. The role of folC gene mutations has 

been implicated in PAS resistance and requires further validation. (12)Resistance 

mechanisms to PAS remains uncertain, with about  40% of resistance attributed to thyA 

mutations.(1,13) LIN is currently included in newer drug resistant TB treatment regimens 

under evaluation in clinical trials. With proven clinical efficacy against MDR and XDR-TB, 

the utility of these drugs need to be preserved in order to effectively treat drug resistant 

tuberculosis.(8)  

Conclusion 

The absence of proven resistance mechanisms of LIN and PAS underscores the need for 

more effective screening of novel targets and detection of resistance mechanisms that can be 

added to rapid diagnostic assays to effectively diagnose and detect drug resistance 

concurrently. 
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Table 6.1: Mutations in the thyA and rrl genes and their associated genotypes in clinical 

isolates of M. tuberculosis.  

Strain 

Classification 

thyA Rrl Associated 

Genotype of 

Isolate with 

Mutation. 

No 

Mutation 

Thr202Ala 

(A604G) 

No 

Mutation 
G2399A 

DS 10/10 0 10/10 0 - 

MDR 12/17 5/17 12/17 5/17 F15/LAM4/KZN 

XDR 0 30/30 0 27/27 F15/LAM4/KZN 
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Chapter Seven 

Manuscript VI: 

Efflux mediated drug resistance in clinical isolates of Mycobacterium tuberculosis in 

KwaZulu-Natal, South Africa. 

Short Communication 

Abstract 

The global dissemination of drug resistant phenotypes of Mycobacterium.tuberculosis has 

turned the most effective anti-tuberculosis drugs currently available for the treatment of 

tuberculosis, ineffective in a subset of patients. Efflux mediated resistance in M.tuberculosis 

has emerged as a significant factor in drug resistance. Efflux pumps mediate the extrusion of 

antibiotics from the bacterial cell, allowing for the establishment of resistance conferring 

mutations, resulting in selection of resistant mutants. In this study, we assessed the role of 

efflux pumps in drug resistance of M.tuberculosis. We analysed a panel of clinical isolates 

that displayed low-level resistance to isoniazid, rifampicin, ciprofloxacin, moxifloxacin and 

kanamycin. In the presence of the efflux pump inhibitors reserpine, verapamil and 

thioridazine, a reduction in the MICs was observed. We provide evidence that efflux pumps 

mediate low-level drug resistance in clinical isolates from our setting. The results of this 

study support further studies to assess the effect of efflux pump inhibitor compounds as 

adjunctive treatment for drug resistant tuberculosis. 

Text 

Antimicrobial resistance in M.tuberculosis has been attributed to several mechanisms 

including mutations in genes coding for drug targets, decreased cell wall permeability and 

increased efflux pump activity. The role of efflux pump activity has recently been recognized 
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as a significant factor in the natural resistance in mycobacteria.1,2 In contrast to the high-level 

resistance resulting from genetic mutations leading to altered drug targets, increased efflux 

activity has been associated with low-level resistance.3 The decreased intracellular antibiotic 

concentration as a result of efflux, promotes the survival of a sub-population of bacteria 

exposed to sub-inhibitory levels of the antibiotic. This sub-population acquires resistance 

conferring mutations, leading to clinically significant levels of resistance.4–6Studies have 

reported the association of efflux pumps in low-level resistance to isoniazid (INH), 

rifampicin (RIF), aminoglycosides, fluoroquinolones, streptomycin, linezolid, tetracycline 

and chloramphenicol.7–15 Efflux pump inhibitor (EPI) compounds, like  reserpine (RES), 

verapamil (VERA) and thioridazine (THIO) have the ability to restore the activities of 

antibiotics.13,16–20 They also have the ability to reduce the minimum inhibitory concentration 

(MIC) of anti- tuberculosis (TB) drugs, potentially reducing the dosage requirements for 

treatment. This could assist in decreasing the toxicity associated with second line anti- TB 

drugs.21 The value of EPIs as adjunct therapy in TB treatment has been tested in patients and 

has shown potential to reduce the current treatment duration and has been effective in the 

treatment of multidrug resistant (MDR) and extensively drug resistant (XDR) TB.16 The aim 

of this study was to assess the potential of RES, VERA and THIO in reducing the MICs of 

the key anti-TB drugs in M.tuberculosis isolates from KwaZulu-Natal, South Africa. M. 

tuberculosis H37Rv and stored clinical isolates were selected from the culture collection of 

the Infection Control laboratory, University of KwaZulu-Natal. The isolates selected for the 

study were MDR-TB isolates that displayed an increased MIC when compared to the DS 

isolates, but lacked the mutations in drug targets that were responsible for drug resistance in 

the XDR-TB isolates. These isolates subjected to MIC determination in the presence of RES 

(80mg/L)22, VERA (50mg/L)22 and THIO (16mg/L)17 together with each of the antibiotics. 

The selected range of drug concentrations was based on the MIC of the isolates in the 
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absence of EPIs and reflects one concentration above and four below the MIC of each of the 

drugs. The MICs were determined in Middlebrook 7H10 agar medium supplemented with 

oleic acid-albumin-dextrose-catalase (OADC) using the agar dilution technique in quadrant 

petri dishes. Bacterial cultures were prepared by adjusting the bacterial suspension to give a 

turbidity equivalent to that of a 1.0 McFarland standard and then diluted to obtain a final 

bacterial density of 1 x 103 colony forming units per ml. One hundred microliters was 

inoculated on each quadrant of the Middlebrook 7H10 agar plates with drug concentrations 

ranging from 0.25 to 8 mg/L for INH, RIF and kanamycin (KAN) and from 0.06 to 2 mg/L 

for ciprofloxacin (CPX) and moxifloxacin (MXF). EPIs were added at their respective 

concentrations to detect a change in MIC. Plates were incubated in a CO2 enriched 

atmosphere at 37ºC for 21 days.  The MIC was defined as the lowest antibiotic concentration 

that resulted in a complete inhibition of growth. In the case of RIF, one of the isolates tested 

failed to grow and the second isolate tested recorded an MIC higher than its initial RIF MIC, 

thereby displaying growth at all concentrations. Therefore, we could not assess the change in 

MIC in this isolate. The INH MIC was reduced 3 to 4 fold in the presence of RES, 2 fold in 

the presence of VERA and 3 fold in the presence of THIO. In the case of the H37Rv 

laboratory strain, growth was only observed in the drug free medium control, indicating that 

the MIC for INH was < 0.25mg/L. All 3 EPIs reduced the MIC of KAN by 1 fold for the 2 

clinical isolates tested. The MIC of the H37Rv lab strain was decreased by 1 fold in the 

presence of RES and VERA and 3 fold or more in the presence of THIO. RES failed to alter 

the MIC for MXF, whilst VERA reduced the MIC by 1 fold. The MIC for THIO were 

reduced 3 fold or more. In the case of H37Rv, growth was only observed in the drug free 

medium control, indicating that the MIC for MXF was < 0.06mg/L. In the case of CPX, one 

isolate failed to grow when sub cultured onto the MIC media. The MIC of the remaining 

clinical isolate, was decreased 3 folds in the presence of VERA and RES and 1 fold for 
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THIO. The MIC of H37Rv was decreased more than 3 folds in the presence of RES and 1 

fold with VERA and THIO. The change in MIC for each of the drugs tested is shown in table 

7.1. The results of this study demonstrate that efflux pumps, in addition to genetic mutations 

play a role in drug resistance in the clinical isolates from our setting. Studies have 

demonstrated that efflux pump activity results from exposure to decreased concentrations of 

a drug allowing for M.tuberculosis bacilli to survive. This subsequently leads to the selection 

of mutants resulting in high-level resistance.23–25 The isolates analysed in the current study 

displayed low-level resistance in the absence of mutations. Based on WHO guidelines, we 

also demonstrated the ability of EPIs to reverse the resistance induced by efflux activity.26 

RES restored INH susceptibility, all 3 EPIs restored KAN and CPX, and VERA and THIO 

restored MXF susceptibility. Given the current paucity of effective drugs available for 

treatment of drug resistant TB, the possible role of these agents as adjunct therapy is 

encouraging. THIO has shown effective activity against MDR and XDR TB strains in vitro 

and in mice.27 THIO in combination with MXF and LIN was recently evaluated in XDR TB 

patients on the basis of compassionate use. The combination was associated with cure, free of 

relapse. The addition of THIO was also associated with earlier bacteriological sputum 

conversion. 16 Recent reports have provided compelling evidence that the addition of 

verapamil as an adjunct to treatment with bedaquiline, a newly introduced anti-TB drug will 

aid in reducing the MIC of bedaquiline. As a result the amount of the drug to be administered 

per dose could be decreased decreasing the chance of cardiac morbidity associated with the 

drug. 21,28 The application of EPIs to current regimens has been reported to shorten the 

duration of treatment. This has important implications for patient adherence and will 

significantly impact on treatment outcomes. 17,29,30 Of significance, EPIs can be applied to TB 

treatment, independently of the level of resistance of the organism.17 In conclusion, we 
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provide proof of concept that efflux pumps mediate low-level resistance in our setting and 

support further exploration of efflux pump inhibitors for treatment of TB. 
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Table 7.1: MICs in the presence of efflux pump inhibitors. 

Isoniazid MICs (mg/L) 

Isolate INH RES VERA THIO 

MODS 39 2 < 0.25 0.5 0.25 

MODS 11 4 < 0.25 1 0.5 

H37Rv < 0.25 < 0.25 < 0.25 < 0.25 

Rifampicin MICs (mg/L) 

Isolate RIF RES VERA THIO 

TF44949 > 8 > 8 > 8 > 8 

MODS11 NG NG NG NG 

H37Rv < 0.25 < 0.25 < 0.25 < 0.25 

Kanamycin MICs (mg/L) 

Isolate KAN RES VERA THIO 

TF 44949 4 2 2 2 

MODS 11 4 2 2 2 

H37Rv 2 2 2 < 0.25 

Ciprofloxacin MICs (mg/L) 

Isolate CPX RES VERA THIO 

TF 64747 1 0.125 0.125 0.25 

TF 3228 2 NG NG NG 

H37Rv 0.5 < 0.06 0.25 0.25 

Moxifloxacin MICs (mg/L) 

Isolate MXF RES VERA THIO 

MODS 11 0.5 0.5 0.25 < 0.06 
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TF 3181 0.5 0.5 0.25 < 0.06 

H37Rv < 0.06 < 0.06 < 0.06 < 0.06 
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Chapter Eight 

Summary 

Drug resistant TB is one of the key public health challenges of modern times. The 

devastating emergence of drug resistant forms of the disease is attributed to the ability of 

M.tuberculosis to adapt and evolve under antimicrobial pressure. To tackle the management 

of patients with drug resistant TB, we must understand the dynamics of antimicrobial 

resistance and the complexity of the mechanisms mediating resistance in M.tuberculosis.  

Analysis of the various genes linked to drug resistance in M.tuberculosis, has revealed that 

the strains circulating in our setting display a combination of previously observed mutations. 

Each of these mutations results in resistance to a different drug. This supports previous 

reports that there is no single pleiotropic mutation resulting in the MDR phenotype, but rather 

an accumulation of mutations in the genome of M.tuberculosis. However, a complex 

association between resistance mutations are believed to exist. Classical mutations associated 

with resistance to one drug is thought to be the initial step that leads to resistance to other 

drugs. (1)  

The MDR and XDR-TB strains analysed in this study displayed classical mutations in the 

katG, embB, gyrA and rrs genes, responsible for resistance to INH, EMB, fluoroquinolones 

and aminoglycosides respectively. The diversity of the mutations in the rpoB and pncA 

genes, responsible for resistance to RIF and PZA, demonstrates that MDR phenotype  is due 

to de novo resistance.(2) The high level of similarity amongst the XDR-TB strains, with the 

predominance of the F15/LAM4/KZN strain supports previous reports regarding the clonality 

of the XDR epidemic in KZN. The F15/LAM4/KZN strain is a highly virulent strain, 

endemic to our setting. The strain has successfully disseminated amongst immune 

compromised patients with HIV co-infection.(3,4)  
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The results of this study demonstrates that the rare 130bp deletion of the gidB gene is lineage 

specific, observed in only the F15/LAM4/KZN strain family. Whilst the deletion has been 

previously described, we demonstrate this deletion exclusively in MDR and XDR-TB strains 

of the KZN lineage from our setting.(2) In contrast to reports that attribute low-level STR 

resistance induced by mutations in the gidB gene, our results demonstrate that alteration 

within this gene mediates high-level STR in this subset of clinical isolates.(5–7) Furthermore, 

classical mutations in the rpsL and rrs genes previously described, were only found in 18.9% 

of the STR resistant isolates in this study.(5,7–11) Our results also demonstrates the inability 

of the mutations to discriminate between various levels of STR resistance. The low detection 

rate of the rpsL and rrs mutations in this subset of isolates questions the utility of these 

mutations as accurate predictors of STR resistance. 

Whilst the WHO does not define resistance beyond XDR-TB, reports of isolates resistant to 

all first and second line drugs has been termed TDR-TB.(12–14) The XDR TB isolates 

analysed in this study are characteristic of TDR-TB. The presence of the A90V gyrA 

mutation correlates with high-level resistance to CPX and OFX, and an increased MXF MIC 

in the XDR TB clinical isolates analysed. Although the breakpoint concentration for MXF 

remains debatable, we raise concerns regarding the application of the drug to XDR-TB 

treatment protocols. MXF is added to treatment protocols despite reports of in vitro 

resistance, with the hope that there may be some residual activity. This is disastrous from a 

public health perspective, in the era of ever-increasing drug resistance.   

We also demonstrate the presence of the A1401G rrs mutation and its correlation with high 

level resistance to KAN and AMIK and a decreased susceptibility to CAP in the isolates 

analysed. We support the WHO revised breakpoint concentration of 4mg/L for CAP, this will 

prevent patients from receiving inadequate treatment that could lead to the development of 

further resistance as well as continued transmission.(12)  
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Screening of drug drugs of LIN and PAS revealed no genetic alteration that indicates drug 

resistance. Therefore, the strategic application of LIN and PAS is central to the treatment of 

drug resistant tuberculosis in our setting, as the strains may still be accessible for treatment 

with these drugs.  

The XDR-TB isolates analyzed here displayed resistance to the fluoroquinolones and 

aminoglycosides, the most effective second line anti-TB drugs available for the treatment of 

drug resistant TB. Therefore, appropriate application of these agents is central to the effective 

management of MDR-TB and prevention of XDR-TB. It is imperative that MDR-TB patients 

are first tested to ensure that they are eligible for treatment to ensure appropriate treatment 

choices are made and to prevent the further amplification of drug resistance.(15) 

We also demonstrate that efflux mediated resistance results in low-level resistance in the 

absence of mutations. Efflux mediated resistance in M.tuberculosis has emerged as a 

significant factor mediating drug resistance. Efflux pumps allow the extrusion of antibiotics 

from the bacterial cell, resulting in selection of resistant mutants. We also demonstrated the 

ability of EPIs to reverse the resistance induced by efflux activity, providing proof of concept 

that efflux pumps mediate low-level resistance in our setting and support further exploration 

of efflux pump inhibitors for treatment of TB. 

Antibiotic exposure induces a complex response in M.tuberculosis, including changes in 

metabolic state and activity that contributes to resistance. Recent reports have implicated a 

number of mechanisms in resistance, demonstrating the complexity of resistance in the 

organism. Alteration in DNA repair systems, resulting in a reduced ability to repair DNA, 

results in increased mutation rates. Such mutator phenotypes have a selective advantage 

under antibiotic pressure. Compensatory evolution has allowed the organism to adapt by 

eliminating the fitness cost associated with mutations. Recent studies have demonstrated that 
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laboratory generated mutants were less fit than clinical strains, demonstrating the role of 

compensatory mechanisms.(16) 

 In South Africa, the public health service faces major barriers in the control of TB. The 

active transmission of drug resistant phenotypes, HIV co-infection, complex treatment 

regimens associated with higher toxicity and the duration of treatment have impacted on the 

poor control of TB. (17)Although drug resistance accounts for approximately 3% of all TB 

cases, it consumes more than a third of the national budget for TB, which is unsustainable 

and further threatens to destabilize control.(18)  

Early diagnosis and treatment with antimicrobials known to be effective against the infecting 

strain, coupled with infection prevention measures remain the primary strategy in TB control. 

The Xpert MTB/RIF assay has assisted somewhat in this strategy. However, susceptibility is 

only obtained for one drug. Expansion of this test platform to include other drugs would 

assist in making an early diagnosis as well as allowing for patient individualized selection of 

antimicrobial agents. Whole genome sequencing technology has increased our capacity to 

understand the disease and may be the only hope in detecting resistance to multiple drugs. 

(19) There has been no greater need for new rapid diagnostic tests, antimicrobial tests and 

anti-TB drugs or regimens than the present. Recent focus has shifted to investigating adjunct 

treatment options, known as host directed therapy with the aim to enhance host immune 

responses against M.tuberculosis infection, reduce excessive inflammation, prevent and 

repair tissue damage and enhance the effectiveness of current treatment regimens.(17)  

Whilst new developments offer a ray of hope, they are years away from integration into TB 

programmes. Thus strengthening the public health systems and strategic use of current anti-

TB drugs remain critical in TB control efforts. 
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Appendix 1 

DNA Extraction Solutions 

1.1 10x TE Buffer 

Trizma base (Sigma-Aldrich, USA) 1.21g 

EDTA (Sigma-Aldrich, USA) 0.37g 

Weigh out the required amounts of reagent powders and dissolve the trizma base in 80ml 

of distilled water, pH to 8 using concentrated HCl (Merck). Add the EDTA and dissolve. 

Check the final pH and adjust to a final volume of 100ml. Autoclave at 121°C for 15 

minutes. 

 

1.2 Lysozyme (10mg/ml) (Sigma-Aldrich, USA) 

Add 1ml of distilled water to 10mg of lysozyme powder. Store at 4°C until 

 

1.3 Proteinase K (10mg/ml) (Roche Diagnostics) 

Add 10ml of distilled water to 100mg of proteinase K powder. Store at 4°C until. 

 

1.4 10% Sodium Dodecyl Sulfate (SDS) (Sigma-Aldrich, USA) 

Weigh 10g of SDS powder and dissolve in 100ml of distilled water. 

 

1.5  5M Sodium Chloride (NaCl) (Sigma-Aldrich, USA) 

Weigh 14.6 g of NaCl powder and dissolve in 50ml of distilled water, autoclave at 121°C 

for 15 minutes. 
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1.6 CTAB-NaCl Solution 
 

NaCl (Sigma-Aldrich, USA) 4.1g 

CTAB (Sigma-Aldrich, USA) 10g 

 

 

Weigh out the required amounts of reagent powders and dissolve in 100ml of distilled 

water, the solution is heated to 65°C until powders are completely dissolved. 

1.7 Chloroform: Isoamyl alcohol (24:1) 

Add 1ml of isoamyl alcohol (Sigma-Aldrich, USA) to 24ml of chloroform (Sigma-Aldrich, 

USA. 

 

1.8 70% ethanol 

Add 35ml of absolute ethanol (Merck, SA) to 15ml of distilled water.  Store at -20°C. 

 

1.9  1% agarose gel (140ml) 
 

Agarose powder (Lonza, USA) 1.4g 
 

1x TBE buffer 140ml 
 

Ethidium bromide 140µl 
 

 

The agarose powder was weighed and added to a flask containing 1x TBE buffer. The 

mixture was boiled using a microwave until the powder dissolved. It was allowed to cool 

and ethidium bromide was added. 
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1.10 10xTBE Buffer 
 

Trizma base (Sigma-Aldrich, USA) 108g 

Boric acid (Sigma-Aldrich, USA) 55g 

EDTA (Sigma-Aldrich, USA) 9.3g 

 

Weigh out the required amounts of the reagents and dissolve in 1000ml of distilled water. 
 
1.11 Sample loading dye 

 

1% Double dye 
 

Bromphenol Blue (Sigma-Aldrich, USA)   1g 

Xylene cyanole (Sigma-Aldrich, USA) 1g 

 

Weigh out the required amounts of reagent powders and dissolve in 100ml of distilled 

water. 

50 ml of Loading Dye from 1% Double Dye (DD) stock: 

10x TBE 5 ml 

Glycerol (Merck, SA) 25 ml 

1% Double dye 5 ml 

 

Measure the required volumes of reagents and dissolve in 15ml of distilled water. 
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Appendix 2 

Media and Reagents 

 

2.1 Middlebrook 7H9 broth (Difco) 

4.7g Middlebrook 7H9 powder 

100ml OADC (BD) 

10ml 50% (w/v) glycerol 

2.5ml 20% Tween 80 

4.7g of Middlebrook 7H9 powder was dissolved in approximately 800ml of autoclaved 

distilled water together with 10ml of 50% (w/v) glycerol, 2.5ml of 20% Tween 80 and was 

autoclaved at 121oC for 15 minutes. The solution was placed in preheated water bath set to 

50oC to cool with gentle swirling for approximately 30 minutes and 100ml of OADC was 

added. 

 

2.2 Middlebrook 7H11 solid agar (Difco) 

21g Middlebrook 7H11 powder  

100ml OADC (BD) 

10ml 50% (w/v) glycerol 

Twenty-one grams of Middlebrook 7H11 powder was dissolved in 900ml of triple distilled 

water and autoclaved at 121oC for 15 minutes. The solution was placed in preheated 

water bath set to 50oC to cool with gentle swirling for approximately 30 minutes. 

100ml of OADC and 10ml of 50% (w/v) of glycerol were added and decanted into sterile 
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petri dishes. 

2.3 Phosphate buffered saline (PBS) (Oxoid) 

10 PBS tablets  

1000ml distilled water 

Ten PBS tablets were dissolved in 1000ml autoclaved distilled water. The PBS was 

autoclaved at 121oC for 15 minutes, thereafter decanted into 20ml aliquots and refrigerated at 

4oC until use. 

2.4 20%Tween 80 (Fisher) 

20ml Tween 80  

80ml distilled water 

20ml of Tween 80 (Fisher) was added to 80ml of autoclaved distilled water. The solution was 

placed in a pre-heated waterbath set to 56oC and then sterilized by filtration through a 

0.22μm membrane. 
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Appendix 3: IS6110 RFLP patterns 

 

Figure A 3.1 is a scanned hyperfilm showing the IS6110 RFLP patterns obtained in the 

study 

     M    2     3     4      5 6     7     8        9    10   11   12   13    14    15 

 

 

Figure 1: IS6110 RFLP patterns for (2005-2006) and (2008-2009) 

Lane 1: Jack‘s standard molecular weight marker (0.7-15kbps) 
(2005-2006):  Lane 2-3: unique cluster Lane 12: unique patterns 
Lane 4-8: F15/LAM4/KZN family patterns Lane 13: Beijing family pattern 
Lane 9-11: F28 family patterns 
(2008-2009): Lanes 14-15: unique patterns 
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Figure A  3 . 2  Dendogram generated for the IS6110 RFLP patterns. The 

predominant families and unique patterns are labelled accordingly. 
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Figure A 3.2.1: IS6110 RFLP patterns (2005-2006) 

       M    2     3     4      5   6     7     8        9    10   11   12   13  14  15   16    17   18  M 

 

 

IS6110 RFLP patterns (2005-2006) 

Lane 1 & 19: Jack‘s standard molecular weight marker (0.7-15 kbps) 

Lane 2 & 10: Beijing family patterns 

Lane 3: F28 family pattern 

Lane 5: unique pattern 

Lane 6-9, 11-18: F15/LAM4/KZN family patterns 
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Figure A 3.2.2: IS6110 RFLP patterns (2005-2006) 

      M    2     3     4      5   6     7     8        9    10   11   12   13  14  15   16    17   18     19   20 

 

 

IS6110 RFLP patterns (2008-2009) 

 

Lane 1 & 19: Jack‘s standard molecular weight marker (0.7-15 kbps) 

Lane 2-4, 6, 8, 10-11, 13-18, 20: F15/LAM4/KZN family patterns 

Lane 5, 7, 12: F28 family patterns 

Lane 9: unique pattern 
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Figure A 3.2.3: IS6110 RFLP patterns (2005-2006) 

     M    2     3     4      5   6     7     8        9    10   11   12   13  14  15   16    17    18     19   20 

 

 

IS6110 RFLP patterns (2005-2006) 

 

Lane 1 & 19: Jack‘s standard molecular weight marker (0.7-15 kbps) 

Lane 2, 6, 8, 11: F28 family patterns 

Lane 3, 5, 7, 9, 12, 18: F15/LAM4/KZN family patterns 
 

Lane 4, 10, 13, 14, 16, 17, 20: unique patterns 

Lane 15: Beijing family patterns. 
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Figure A 2.3.4: IS6110 RFLP patterns (2005-2006) 

          M    2     3     4      5      6     7     8   9    10   11   12   13  14  15   16    17   M   18 

 

 

IS6110 RFLP patterns (2005-2006) 

 

Lane 1& 17: Jack‘s standard molecular weight marker (0.7-15 kbps) 

Lane 2-3, 5-6, 8-13, 15: F15/LAM4/KZN family patterns 

Lane 4 & 16, 18: F28 family patterns 



153 
 

Figure 3e: IS6110 RFLP patterns for (2005-2006) and (2008-2009) 

      M    2     3     4      5   6     7     8  9    10   11   12   13  14  15   16    17   18  19   20 

 

 
IS6110 RFLP patterns for (2005-2006) and (2008-2009) 

Lane 1 & 19: Jack‘s standard molecular weight marker (0.7-15 kbps) 
(2005-2006): lane 2-3 F15/LAM4/KZN family patterns 

Lane 4: F28 family patterns, 

Lane 5-7: unique patterns 
(2008-2009): 

Lane 8-18, 19: unique pattern
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Appendix 4: Data tables of MIC, PCR and Sequence Results  

Table A 4.1: MIC, RFLP and sequencing data for INH, EMB and PZA 

MIC’s for PZA was not done 

∆C = insertion of cytosine 

- = no mutation 

Red spaces = failed reactions 
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 SUSCEPTIBLE RFLP MIC 
mg/L 

inhA 
Promoter 

inhA katG embB pncA 

  INH EMB   944 1343 1388 916 1489 100 416 457 
TF1538 U ≤0.125 2 - - - - - - - - - - 
TF1413 B 16 2 - - - - G-T - - - - - 
TF1582 B ≤0.125 2 - - - - G-T - - - - - 
TF832 F11V ≤0.125 2 - - - - - - - - - - 

TF1519 B ≤0.125 2 - - - - - - - - - - 
TF1001 U ≤0.125 2 - - - - - - - - - - 
TF933 U ≤0.125 2 - - - - - - - - - - 

P090811 B ≤0.125 2 - - - - G-T - - - - - 
P090802 B ≤0.125 2 - - - - G-T - - - - - 
P090804 B ≤0.125 2 - - - - G-T - - - - - 
H37Rv    - - - - - - - - - - 

 
MDR RFLP INH EMB   944 1343 1388 916 1489 100 416 457 

MODS11 KZN 8 8 - - G-C - - A-G - - - ∆C 
MODS688 KZN 8 8 - - G-C - - A-G - - T-G - 
TF44949 F28 16 8 - - G-C - - A-G - - - - 
TF3251 KZN 16 16 - - G-C - - A-G - - - - 
TF78838 F28 16 8 - - G-C - - A-G - T-G - - 
TF2063 F28 16 16 - - G-C - - A-G - T-G - - 
TF3203 F28 16 16 - - G-C - - A-G - T-G - - 
TF1951 F28V 16 16 - - G-A - - A-G - - - - 
TF64747 KZN 16 8 - - G-C - - A-G - - T-G - 

MODS644 F28 16 8 - - G-C - - A-G -    
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TF2889 F28 16 8 - - G-C - - - C-A - - - 
TF2040 F28 16 16 - - G-C - - - C-A T-G - - 

MODS682 F28 16 16 - - G-C - - - - - - - 
MDR RFLP MIC 

mg/L 
inhA 

Promoter 
inhA katG embB pncA 

  INH EMB   944 1343 1388 916 1489 100 416 457 
TF36480 KZN 16 8 - - G-C - - A-G - T-G - - 
TF2034 U 16 16 - - G-C A-C - A-G - - - - 
TF2153 F28 16 16 - - G-C - - A-G - T-G - - 

 
XDR      944 1343 1388 916 1489 100 416 457 

TF1762 KZN 8 16 - - G-C - - A-G - - - ∆C 
MODS141 KZN 8 16 - - G-C - - A-G - - - ∆C 
MODS39 KZN 4 2 - - G-C - - A-G -    
MODS387 KZN 16 8 - - G-C - - A-G - - - ∆C 
MODS338 KZN 16 16 - - G-C - - A-G - - - ∆C 
MODS667 KZN 16 16 - - G-C - - A-G - - - ∆C 
MODS642 KZN 16 16 - - G-C - - A-G - - - ∆C 
MODS513 KZN 8 16 - - G-C - - A-G - - - ∆C 
MODS143 KZN 16 16 - - G-C - - A-G - - - ∆C 

TF1824 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF1925 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF66937 KZN 16 8 - - G-C - - A-G - - - ∆C 
TF3334 KZN 16 8 - - G-C - - A-G - - - ∆C 
TF80198 KZN 16 8 - - G-C - - A-G - - - ∆C 
TF80164 KZN 16 16 - - G-C - - A-G -    
TF1497 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF75549 KZN 16 16 - - G-C - - A-G - - - ∆C 
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TF31066 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF739 KZN 16 16 - - G-C - - A-G - - - ∆C 

MODS370 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF3181 KZN 16 16 - - G-C - - A-G - - - ∆C 

XDR RFLP MIC 
mg/L 

 

inhA 
Promoter 

inhA katG embB pncA 

  INH EMB   944 1343 1388 916 1489 100 416 457 
TF37806 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF2981 KZN 16 16 - - G-C - - A-G - - - ∆C 

MODS334 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF2038 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF3228 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF25027 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF51648 KZN 16 16 - - G-C - - A-G - - - ∆C 
TF49127 KZN 16 16 - - G-C - - A-G - - - ∆C 

MODS 195 KZN 16 8 - - G-C - - A-G - - - ∆C 
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Table A 4.2: MIC and sequencing data for RIF 

 SUSCEPTIBLE RFLP MIC 
mg/L 

rpoB 

   1303 1304 1334 1349 1355 1360 1473 
TF1538 U 1 - - - - - - - 
TF1413 B 1 - - - - - - - 
TF1582 B 1 - - - - - - - 
TF832 F11V 1 - - - - - - - 

TF1519 B 1 - - - - - - - 
TF1001 U 1 - - - - - - - 
TF933 U 1 - - - - - - - 

P090811 B 1 - - - - - - - 
P090802 B 1 - - - - - - - 
P090804 B 1 - - - - - - - 
H37Rv   - - - - - - - 

 
MDR RFLP  1303 1304 1334 1349 1355 1360 1473 

MODS11 KZN 8 - - -  T-C - - 
MODS688 KZN 128 - - - C-T - - - 
TF44949 F28 32 - - - C-T - - - 
TF3251 KZN 128 G-T - -  - C-A - 
TF78838 F28 128 - - - C-T - - - 
TF2063 F28 128 - - - C-T - - - 
TF3203 F28 128 - - - C-T - - - 
TF1951 F28V 128 - - A-T  - - G-C 
TF64747 KZN 128 - - - C-T - - - 

MODS644 F28 2        
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MDR RFLP MIC 
mg/L 

rpoB 

   1303 1304 1334 1349 1355 1360 1473 
TF2889 F28 64 - - - C-T T-C - - 
TF2040 F28 128 - - - C-T - - - 

MODS682 F28 128 - - - - - - - 
TF36480 KZN 128        
TF2034 U 64 - - - C-T T-C - - 
TF2153 F28 128 - - - - - - - 

 
XDR RFLP  1303 1304 1334 1349 1355 1360 1473 

TF1762 KZN 16 - A-G - - T-C - - 
MODS141 KZN 128 - A-G - - T-C - - 
MODS39 KZN 32 - A-G - - T-C - - 
MODS387 KZN 128 - A-G - - T-C - - 
MODS338 KZN 128 - A-G - - T-C - - 
MODS667 KZN 128 - A-G - - T-C - - 
MODS642 KZN -        
MODS513 KZN 128 - A-G - - T-C - - 
MODS143 KZN 128 - A-G - - T-C - - 

TF1824 KZN 128 - A-G - - T-C - - 
TF1925 KZN 128 - A-G - - T-C - - 
TF66937 KZN 128 - A-G - - T-C - - 
TF3334 KZN -        
TF80198 KZN 128 - A-G - - T-C - - 
TF80164 KZN 128 - A-G - - T-C - - 
TF1497 KZN 128 - A-G - - T-C - - 
TF75549 KZN 128 - A-G - - T-C - - 
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XDR RFLP MIC 
mg/L 

rpoB 

   1303 1304 1334 1349 1355 1360 1473 
TF31066 KZN 128 - A-G - - T-C - - 

TF739 KZN 128 - A-G - - T-C - - 
MODS370 KZN 128 - A-G - - T-C - - 

TF3181 KZN 128 - A-G - - T-C - - 
TF37806 KZN 128 - A-G - - T-C - - 
TF2981 KZN 128 - A-G - - T-C - - 

MODS334 KZN 128 - - - - - - - 
TF2038 KZN 128  A-G - - - - - 
TF3228 KZN 128 - - - - - - - 
TF25027 KZN 128 - A-G - - - - - 
TF51648 KZN 128 - A-G - - - - - 
TF49127 KZN 64 - A-G - - - - - 

MODS 195 KZN 32 - - - C-T - - - 
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Table A 4.3: MIC and sequencing data for STREP 

SUSCEPTIBLE RFLP MIC 
mg/L 

gidB rpsL 

   Del 47 274 299 405 128 363 
TF1538 U 0.5 - - - C-T - - - 
TF1413 B 4 - - - C-T - - - 
TF1582 B 0.5 - - - C-T - - - 
TF832 F11V 0.5 - T-G - C-T - - - 

TF1519 B 0.5 - - - C-T - - - 
TF1001 U 0.5 - - - C-T G-T - - 
TF933 U 0.5 - - - C-T - - - 

P090811 B 0.5 - - A-C C-T - - - 
P090802 B 0.5 - - A-C C-T - - - 
P090804 B 0.5 - - A-C C-T - - - 
H37Rv  0.5 - - - - - - - 

 
MDR RFLP  Del 47 274 299 405 128 363 

MODS11 KZN 128 Present T-G Del C-T - - - 
MODS688 KZN 128 Present T-G Del C-T - - - 
TF44949 F28 128 - - A-C C-T - A-G - 
TF3251 KZN 128 Present T-G Del C-T - - - 
TF78838 F28 4 - - A-C C-T - A-G - 
TF2063 F28 4 - - A-C C-T - A-G - 
TF3203 F28 4 - - A-C C-T - A-G - 
TF1951 F28V 4 - - A-C C-T - - - 
TF64747 KZN 32 Present T-G Del C-T - - - 

MODS644 F28 4 - - A-C C-T - - - 
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TF2889 F28 -        
MDR RFLP MIC 

mg/L 
GidB rpsL 

   Del 47 274 299 405 128 363 
TF2040 F28 4 - - A-C C-T - A-G - 

MODS682 F28 8 - - A-C C-T - - - 
TF36480 KZN 4 - - A-C C-T - A-G - 
TF2034 U -        
TF2153 F28 4 - - A-C C-T - A-G - 

 
XDR   Del 47 274 299 405 128 363 

TF1762 KZN 12328 Present T-G Del C-T - - A-G 
MODS141 KZN 1284 Present T-G Del C-T - - A-G 
MODS39 KZN 4128 Present T-G Del C-T - - A-G 
MODS387 KZN 44 Present T-G Del C-T - - A-G 
MODS338 KZN 432 Present T-G Del C-T - - A-G 
MODS667 KZN 4 Present T-G Del C-T - - A-G 
MODS642 KZN 128 Present T-G Del C-T - - A-G 
MODS513 KZN 128 Present T-G Del C-T - - A-G 
MODS143 KZN 4 Present T-G Del C-T - - A-G 

TF1824 KZN 128 Present T-G Del C-T - - A-G 
TF1925 KZN 4 Present T-G Del C-T - - A-G 
TF66937 KZN 32 Present T-G Del C-T - - A-G 
TF3334 KZN 128 Present T-G Del C-T - - A-G 
TF80198 KZN 32 Present T-G Del C-T - - A-G 
TF80164 KZN 128 Present T-G Del C-T - - A-G 
TF1497 KZN 32 Present T-G Del C-T - - A-G 
TF75549 KZN 128 Present T-G Del C-T - - A-G 
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TF31066 KZN 128 Present T-G Del C-T - - A-G 
TF739 KZN 4 Present T-G Del C-T - - A-G 
XDR RFLP MIC 

mg/L 
gidB rpsL 

   Del 47 274 299 405 128 363 
MODS370 KZN 32 Present T-G Del C-T - - A-G 

TF3181 KZN 128 Present T-G Del C-T - - A-G 
TF37806 KZN 128 Present T-G Del C-T - - A-G 
TF2981 KZN 128 Present T-G Del C-T - - A-G 

MODS334 KZN 4 Present T-G Del C-T - - A-G 
TF2038 KZN 128 Present T-G Del C-T - - A-G 
TF3228 KZN 128 Present T-G Del C-T - - A-G 
TF25027 KZN 128 Present T-G Del C-T - - A-G 
TF51648 KZN 4 Present T-G Del C-T - - A-G 
TF49127 KZN 128 Present T-G Del C-T - - A-G 

MODS 195 KZN 4 Present T-G Del C-T - - A-G 
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Table A 4.4: MIC and sequencing data for KANA, AMIK and CAP 

SUSCEPTIBLE RFLP MIC 
mg/L 

Rrs tlyA eis 
promoter 

eis 

  KANA AMI CAP 500 1400 33   
TF1538 U 2 1 4 - - A-G - - 
TF1413 B 2 2 4 - - A-G - - 
TF1582 B 2 2 4 - - A-G - - 
TF832 F11V 2 2 4 - - A-G - - 

TF1519 B 2 2 4 - - A-G - - 
TF1001 U 2 2 4 - - A-G - - 
TF933 U 4 2 4 - - A-G - - 

P090811 B 2 1 4 - - A-G - - 
P090802 B 2 1 4 - - A-G - - 
P090804 B 2 1 4 - - A-G - - 
H37Rv  2 1 4 - - - - - 

 
MDR RFLP KANA AMI CAP 500 1400 33   

MODS11 KZN 4 2 4 - - A-G - - 
MODS688 KZN 4 2 4 - - A-G - - 
TF44949 F28 2 1 4 - - A-G - - 
TF3251 KZN 4 2 8 - - A-G - - 
TF78838 F28 2 2 4 - - A-G - - 
TF2063 F28 4 2 4 - - A-G - - 
TF3203 F28 2 1 4 - - A-G - - 
TF1951 F28V 2 1 4 - - A-G - - 
TF64747 KZN 2 2 4 - - A-G - - 

MODS644 F28 2 2 4 - - A-G - - 
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TF2889 F28 2 2 4 - - A-G - - 
MDR RFLP MIC 

mg/L 
Rrs tlyA eis 

promoter 
eis 

  KANA AMI CAP 500 1400 33   
TF2040 F28 2 2 4 - - A-G - - 

MODS682 F28 2 1 4 - - A-G - - 
TF36480 KZN 2 1 4 - - A-G - - 
TF2034 U 4 2 4 - - A-G - - 
TF2153 F28 2 2 4 - - A-G - - 

XDR  KANA AMI CAP 500 1400 33   
TF1762 KZN >128 >128 >16 - A-G A-G - - 

MODS141 KZN >128 >128 >16 - A-G A-G - - 
MODS39 KZN >128 >128 >16 - A-G A-G - - 
MODS387 KZN >128 >128 >16 - A-G A-G - - 
MODS338 KZN >128 >128 >16 - A-G A-G - - 
MODS667 KZN >128 >128 >16 - A-G A-G - - 
MODS642 KZN >128 >128 >16 - A-G A-G - - 
MODS513 KZN >128 >128 >16 - A-G A-G - - 
MODS143 KZN >128 >128 >16 - A-G A-G - - 

TF1824 KZN >128 >128 >16 - A-G A-G - - 
TF1925 KZN >128 >128 >16 - A-G A-G - - 
TF66937 KZN >128 >128 >16 - A-G A-G - - 
TF3334 KZN >128 >128 16 - A-G A-G - - 
TF80198 KZN >128 >128 16 - A-G A-G - - 
TF80164 KZN >128 >128 16 - A-G A-G - - 
TF1497 KZN >128 >128 >16 - A-G A-G - - 
TF75549 KZN >128 >128 >16 - A-G A-G - - 
TF31066 KZN >128 >128 >16 - A-G A-G - - 
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TF739 KZN >128 >128 16 - A-G A-G - - 
 

XDR 
 

RFLP 
 

MIC 
mg/L 

 
Rrs 

 
tlyA 

 
eis 

promoter 

 
eis 

  KANA AMI CAP 500 1400 33   
MODS370 KZN >128 >128 >16 - A-G A-G - - 

TF3181 KZN >128 >128 >16 - A-G A-G - - 
TF37806 KZN >128 >128 >16 - A-G A-G - - 
TF2981 KZN >128 >128 >16 - A-G A-G - - 

MODS334 KZN >128 >128 >16 - A-G A-G - - 
TF2038 KZN >128 >128 >16 - A-G A-G - - 
TF3228 KZN >128 >128 >16 - A-G A-G - - 
TF25027 KZN >128 >128 >16 - A-G A-G - - 
TF51648 KZN >128 >128 >16 - A-G A-G - - 
TF49127 KZN >128 >128 >16 - A-G A-G - - 
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Table A 4.5: MIC and sequencing data for the fluoroquinolones, PAS and linezolid 

SUSCEPTIBLE RFLP MIC 
mg/L 

gyrA gyrB PAS thyA 
 

LIN rrl 

  CIP OFX MFX 61 269 284  604 2399 
TF1538 U 0.5 0.5 0.125 G-C - G-C - - - 
TF1413 B 0.5 0.5 0.125 G-C - G-C - - - 
TF1582 B 0.5 0.5 0.125 G-C - G-C - - - 
TF832 F11V 0.5 0.5 0.125 G-C - G-C - - - 

TF1519 B 0.5 0.5 0.125 G-C - G-C - - - 
TF1001 U 0.5 0.5 0.125 G-C - G-C - - - 
TF933 U 0.5 0.5 0.125 G-C - G-C - - - 

P090811 B 0.5 0.5 0.125 G-C - G-C - - - 
P090802 B 0.5 0.5 0.125 G-C - G-C - - - 
P090804 B 0.5 0.5 0.125 G-C - G-C - - - 
H37Rv  0.5 0.5 0.125 G-C - G-C - - - 
MDR RFLP CIP OFX MFX 61 269 284  PAS thyA 

 
LIN rrl 

MODS11 KZN 1 1 0.5 G-C - G-C - A-G G-A 
MODS688 KZN 1 1 0.5 G-C - G-C - A-G G-A 
TF44949 F28 1 1 0.5 G-C - G-C - - - 
TF3251 KZN 1 1 0.5 G-C - G-C - A-G G-A 
TF78838 F28 1 1 0.5 G-C - G-C - - - 
TF2063 F28 1 1 0.5 G-C - G-C - - - 
TF3203 F28 0.5 0.5 0.5 G-C - G-C - - - 
TF1951 F28V 0.5 0.5 0.125 G-C - G-C - - - 
TF64747 KZN 1 1 0.5 G-C - G-C - A-G G-A 

MODS644 F28 1 1 0.5 G-C - G-C - - - 
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TF2889 F28 1 1 0.5 G-C - G-C - - - 
MDR RFLP MIC 

mg/L 
gyrA gyrB PAS thyA 

 
LIN rrl 

  CIP OFX MFX 61 269 284  - - 
TF2040 F28 1 1 0.25 G-C - G-C - - - 

MODS682 F28 1 1 0.25 G-C - G-C - - - 
TF36480 KZN 1 1 0.25 G-C - G-C - A-G G-A 
TF2034 U 1 1 0.25 G-C - G-C - - - 
TF2153 F28 1 1 0.25 G-C - G-C - - - 

XDR  CIP OFX MFX 61 269 284  PAS thyA 
 

LIN rrl 

TF1762 KZN 8 8 1 G-C C-T G-C - A-G G-A 
MODS141 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS39 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS387 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS338 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS667 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS642 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS513 KZN 8 8 2 G-C C-T G-C - A-G G-A 
MODS143 KZN 8 8 2 G-C C-T G-C - A-G G-A 

TF1824 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF1925 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF66937 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF3334 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF80198 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF80164 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF1497 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF75549 KZN 8 8 2 G-C C-T G-C - A-G G-A 
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TF31066 KZN 8 8 1 G-C C-T G-C - A-G G-A 
TF739 KZN 8 8 2 G-C C-T G-C - A-G G-A 
XDR RFLP MIC 

mg/L 
gyrA gyrB PAS thyA 

 
LIN rrl 

  CIP OFX MFX 61 269 284  A-G G-A 
MODS370 KZN 8 8 1 G-C C-T G-C - A-G G-A 

TF3181 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF37806 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF2981 KZN 8 8 2 G-C C-T G-C - A-G G-A 

MODS334 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF2038 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF3228 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF25027 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF51648 KZN 8 8 2 G-C C-T G-C - A-G G-A 
TF49127 KZN 8 8 2 G-C C-T G-C - A-G G-A 

MODS 195 KZN 8 8 2 G-C C-T G-C - A-G G-A 
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Appendix 5: gidB sequence analysis 
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