MOLECULAR CHARACTERISATION OF METACASPASE 5 AND THE PRODUCTION OF OLIGOPEPTIDASE B-SPECIFIC SINGLE CHAIN VARIABLE FRAGMENT ANTIBODIES FOR POTENTIAL ANIMAL AFRICAN TRYPANOSOMOSIS CHEMOTHERAPIES AND DIAGNOSTICS

by

Lauren Elizabeth-Ann Eyssen

M.Sc

Submitted in the fulfilment of the academic requirements for the PhD degree in Biochemistry
School of Life Sciences
University of KwaZulu-Natal
Pietermaritzburg

2018
PREFACE

The experimental work described in this dissertation was carried out in the School of Life Science, University of KwaZulu-Natal, Pietermaritzburg, from July 2014 to March 2017, under the supervision of Professor THT Coetzer. The studies represent original work by the author and have not otherwise been submitted in any other form to another University. Where use has been made of the work of others, it has been duly acknowledged in the text.

Lauren Eyssen
January 2018

As the candidate’s Supervisor I agree to the submission of this dissertation.

Prof. Theresa H. T. Coetzer
DECLARATION – PLAGIARISM

I, Lauren Elizabeth-Ann Eyssen, declare that

1. The research reported in this dissertation, except where otherwise indicated, is my original research.

2. This dissertation has not been submitted for any degree or examination at any other university.

3. This dissertation does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:

 a. Their words have been re-written, but the general information attributed to them has been referenced
 b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the Reference section.

Lauren Eyssen
January 2018
DEDICATION

This thesis is dedicated to my grampa,

Edward Henry Middleborough (1939 - 2016).
AKNOWLEDGEMENTS

I would like to express my heartfelt thanks and appreciation to the following persons:

Firstly, to Prof Coetzer for the opportunity to complete this degree under your guidance, and your belief in my scientific ability.

To the lecturers in our department, Prof Goldring, Dr Hewer, and Prof Niesler for your time, your advice and encouragement.

To Charmaine Ahrens, Tanya Karalic, Natalie Jones for their tireless administration work which makes our lives as post graduate students much easier. To Pat Joubert for all the ordering of our desperately needed lab reagents and all the other small, but very necessary things you do. To Celeste Clarke, for your constant fixing and organising of all the necessary things. Along with Megan Brunkhorst, thank you all for your time and friendship.

To my fellow post graduates both past and current: each of you have, in some way or other, shaped me into the researcher that I am today with your advice, encouragement and even your presence. Thank you.

To the National Research Foundation (NRF) for their financial assistance.

Finally, to my families here, there and everywhere, a huge thank you for your never ending love and support during my many years at UKZN.
ABSTRACT

African trypanosomosis (AT) is a major obstacle in the establishment of agriculture and economic sustainability in Africa. Animal AT is responsible for large numbers of livestock succumbing to the tsetse transmitted kinetoplastid parasites, *Trypanosoma congoense* and *T. vivax*, and as a result, losses in further downstream sectors are experienced. Due to the ability of the trypanosomal parasites to undergo antigenic variation, vaccine candidates are highly unlikely. Peptidases have been identified as virulence factors and are the focus of the development of novel chemotherapies and diagnostics. The metacaspases (MCAs) are a prime example of a chemotherapeutic target and oligopeptidase B (OPB), that of a diagnostic target. Towards the validation of a chemotherapeutic target, recombinant expression was used to obtain an active peptidase which could be enzymatically characterised. Various inhibitors were investigated and their effect on the parasite, analysed. Current diagnostics are based on antibody detection, but an antigen detection format would be preferable as it could differentiate between active and cured infections as anti-trypanosomal antibodies can persist for years. Given the rural, resource-poor locations in the areas of AT incidence, an ideal rapid diagnostic test (RDT) would be robust, affordable, sensitive and specific and requiring minimal training, such as a dipstick test. The MCAs are cysteine peptidases which are found in all kingdoms other than the metazoa, and share a secondary structure fold and catalytic dyad with the metazoan caspases. Since the caspases play a role in apoptosis, it is thought that the MCAs may function in a similar manner. The single copy MCAs of *Trypanosoma* spp. and *Leishmania* spp. differ from the multicopy MCAs in that they possess a Pro-, Gln-, Tyr-rich C-terminal domain which is thought to mediate protein-protein interactions. The activity of the single copy MCAs from *T. cruzi* and *L. major* has been implicated in the cell cycle of the kinetoplastid parasite.

The aim of the project was to express, purify and enzymatically characterise the recombinant and native MCA5 from *T. congoense* and *T. vivax*. Using the 3D structures, solved by X-ray diffraction, of MCA2 from *T. b. brucei*, molecular docking studies were used to validate the inhibition potential of a published library of inhibitors, designed based on the, then, hypothetical structure of *TbbMCA2*. Since the elucidation of the 3D structure of *TbbMCA2* by X-ray diffraction, the inhibitory power of the library of inhibitors against *TbbMCA2* and the MCA5s was investigated. The serine peptidase, OPB, has been shown to be released into the host bloodstream by dead and dying
parasites. The use of phage displayed scFv (single chain fragment variable) antibodies for the detection of OPB in serum from infected cattle is reported, towards the development of a RDT.

Recombinantly expressed TcoMCA5 was shown to autoprocess and over autoprocess when purified using nickel affinity chromatography. Mutagenesis of the catalytic dyad residues reduced the over autoprocessing and the mutated form was enzymatically active at a pH between 6 and 9. This active mutant and purified TcoMCA5 showed a preference for Arg over Lys at the P₁ substrate position and were able to hydrolyse gelatin.

Possible novel inhibitors of TbbMCA2 and the MCA5s of T. congolense and T. vivax were identified using a library of ligands (Berg library) based on the P₁ specificity of TbbMCA2 and molecular docking. Commercial fluorogenic peptide substrates and inhibitors reported in literature for the characterisation of various MCAs, revealed interactions with the MCAs which should be taken into consideration when modifying the Berg ligands to achieve higher affinity for the MCAs.

The application of scFv antibodies, derived from the Nkuku® phagemid library, for the diagnosis of current AAT infections by the detection of OPB, released in the bloodstream of the infected mammalian host, was investigated. After the successful isolation and production of OPB-specific scFv, MCA-specific scFv antibodies can be pursued using the Nkuku® phagemid library. The resulting OPB-specific scFv identified a conserved peptide between T. congolense and T. vivax and was able to detect native OPB in a western blot format. It was predicted that the scFv interacted with OPB in such a way that it would restrict the hinge motion between the C-terminal catalytic and N-terminal regulatory domains of the enzyme and limit access to the active site pocket.

The ability of scFv and rabbit-anti-OPB polyclonal antibody in an antigen detection ELISA with sera from T. congolense infected cattle indicated that detection of OPB fluctuated with parasitaemia.
TABLE OF CONTENTS

PREFACE .. ii
DECLARATION – PLAGIARISM ... iii
DEDICATION ... iv
AKNOWLEDGEMENTS ... v
ABSTRACT .. vi

TABLE OF CONTENTS .. viii
LIST OF FIGURES ... xiii
LIST OF TABLES ... xvi
ABBREVIATIONS ... xvii

CHAPTER 1: LITERATURE REVIEW .. 1
 1.1 African trypanosomosis ... 1
 1.2 Trypanosome classification .. 3
 1.3 Parasite structure and genomic organisation ... 4
 1.4 VSG and antigenic variation .. 4
 1.5 Life cycle of the trypanosomal parasite ... 6
 1.6 Immune response .. 7
 1.7 Control, diagnosis and chemotherapy for trypanosomosis 9
 1.7.1 Control .. 9
 1.7.2 Diagnosis .. 11
 1.7.3 Chemotherapies .. 15
 1.8 Peptidase virulence factors .. 16
 1.8.1 Metacaspases .. 17
 1.8.1.1 Structure of metacaspases .. 17
 1.8.1.2 Functions of metacaspases .. 18
 1.8.2 Oligopeptidase B ... 19
 1.8.2.1 Functions of oligopeptidase B .. 20
 1.9 Structure-based drug design .. 21
 1.10 Antibody production using phage display ... 21
 1.10.1 Antibody formats produced by phage display .. 24
 1.10.2 Applications of phage display ... 25
 1.11 Objectives of current study .. 26
CHAPTER 2: CLONING AND EXPRESSION OF THE METACASPASES FROM TRYPANOSOMA BRUCEI BRUCEI, MCA2, AND TRYPANOSOMA VIVAX, MCA5 .. 28

2.1 Introduction .. 28

2.2 Materials and methods ... 31
 2.2.1 Materials .. 31
 2.2.2 Cloning of TbbMCA2 and TviMCA5 into the pGEM-T® cloning plasmid 32
 2.2.3 Subcloning of the TbbMCA2 and TviMCA5 gene constructs into the bacterial pET-28a and pET-32a expression plasmids .. 35
 2.2.4 Recombinant expression of TbbMCA2 and TviMCA5 .. 36
 2.2.5 Solubilisation, refolding and purification of recombinant TbbMCA2 and TviMCA5 .. 37
 2.2.6 Antibody production and ELISA optimisation ... 38
 2.2.6.1 Preparation of immunogen, the immunisation of chickens and IgY isolation .. 38
 2.2.6.2 ELISA evaluation of antibody production .. 39
 2.2.7 Immunoaffinity purification of soluble, recombinant TbbMCA2, TcoMCA5 and TviMCA5 .. 39
 2.2.7.1 Antibody coupling to UltraLink® hydrazide resin .. 39
 2.2.7.2 Immunoaffinity purification .. 40

2.3 Results .. 41
 2.3.1 Cloning of the TbbMCA2 and TviMCA5 genes into the pTZ57R/T and pGEM®-T cloning plasmids .. 41
 2.3.2 Subcloning of the TbbMCA2 and TviMCA5 genes into the bacterial pET-28a and pET-32a expression plasmids ... 43
 2.3.3 Recombinant expression, solubilisation, refolding and purification of TbbMCA2 and TviMCA5 ... 45
 2.3.3.1 Expression of recombinant TbbMCA2 and TviMCA5 45
 2.3.4 Solubilisation, refolding and purification of recombinantly expressed TbbMCA2 and TviMCA5 ... 50
 2.3.5 Evaluation of anti-TviMCA5 IgY antibody production by ELISA 52
 2.3.6 Immunoaffinity purification of soluble TbbMCA2, TcoMCA5 and TviMCA5 52

2.4 Discussion .. 53

CHAPTER 3: ENZYMATIC CHARACTERISATION OF NATIVE AND MUTATED RECOMBINANT METACASPASE 5 FROM T. CONGOLENSE AND T. VIVAX .. 58
3.1 Introduction ... 58
3.2 Materials and methods .. 60
 3.2.1 Materials .. 60
 3.2.2 Mutagenesis of the active site residues of TcoMCA5 and TviMCA5 61
 3.2.3 Expression, nickel- and immuno-affinity purification of the TcoMCA5 and TviMCA5 WT and mutants .. 63
 3.2.4 Trypanosoma congolense propagation, purification and cell culture 63
 3.2.5 Isolation of native TcoMCA5 .. 64
 3.2.5.1 Immunoaffinity purification of native TcoMCA5 65
 3.2.6 Enzymatic characterisation of recombinant and native TcoMCA5 65
 3.2.6.1 Peptide substrate specificity ... 66
 3.2.6.2 pH profile ... 67
 3.2.6.3 Analysis of recombinant and native TcoMCA5 activity by zymography ... 67
 3.2.6.4 Inhibitor screening ... 67
 3.2.6.5 Reversible inhibition of TcoMCA5 .. 68
 3.2.6.6 Effect of divalent cations ... 69
3.3 Results .. 69
 3.3.1 Mutagenesis of the active site residues of TcoMCA5 and TviMCA5 69
 3.3.2 Expression of recombinant WT and active site mutants 69
 3.3.3 Affinity purification of recombinant WT and MCA5 mutants from the soluble and insoluble expression fractions .. 70
 3.3.4 Isolation of native TcoMCA5 .. 73
 3.3.5 Enzymatic characterisation ... 75
 3.3.5.1 Substrate specificity .. 76
 3.3.5.2 pH profile .. 77
 3.3.5.3 Gelatin digestion .. 79
 3.3.5.4 Inhibitors .. 80
 3.3.5.5 Effect of divalent cations ... 81
3.4 Discussion .. 82

CHAPTER 4: DOCKING STUDIES OF MCA2 INHIBITORS WITH MCA2 FROM T. B. BRUCEI AND MCA5 FROM T. CONGOLENSE AND T. VIVAX 89
4.1 Introduction .. 89
4.2 Materials and Methods ... 91
 4.2.1 Materials .. 91
4.2.2 Homology modelling ... 92
4.2.3 Identification of residues involved in catalysis ... 92
4.2.4 Protein and ligand preparation ... 93
4.2.5 Binding site identification .. 94
4.2.6 CDocker .. 94
4.2.7 Common feature pharmacophore .. 95

4.3 Results .. 95
4.3.1 TbbMCA2 from the Protein Data Bank .. 95
4.3.2 Homology modelling .. 96
4.3.3 Protein preparation ... 97
4.3.4 Active site identification .. 99
4.3.5 CDocker analysis .. 102
4.3.5.1 TbbMCA2 .. 102
4.3.5.2 TcoMCA5 and TvMCA5 .. 106
4.3.6 Ligand interactions ... 109
4.3.7 Common feature pharmacophore .. 111

4.4 Discussion ... 111

CHAPTER 5: PHAGE DISPLAY AND ANTIGEN DETECTION ELISA OF
OLIGOPEPTIDASE B FROM T. CONGOLENSE AND T. VIVAX 120

5.1 Introduction .. 120

5.2 Materials and methods .. 122
5.2.1 Materials .. 122
5.2.2 Preparation of TG1 E. coli stock for log-phase culture 124
5.2.3 Expression and titration of M13KO7 helper phages 125
5.2.4 Expression and titration of the Nkuku® phagemid library 125
5.2.5 Panning of the Nkuku® library against oligopeptidase B from T. congolense and T. vivax .. 126
5.2.6 Determination of enrichment of panned phages 127
5.2.7 Selection of phage displayed scFv clones ... 128
5.2.8 Selection clones expressing soluble scFv .. 128
5.2.9 Characterisation of OPB-specific scFv producing clones 129
5.2.10 3D modelling of TcoOPB and scFv and their interactions 130
5.2.11 Expression and purification of the scFv antibodies 130
5.2.12 Affinity purification of expressed scFv ... 131
5.2.13 Antigen detection of recombinant and native oligopeptidase B by scFv ... 131

5.3 Results ... 132

5.3.1 Enrichment of scFv specific for oligopeptidase B from T. congolense and T. vivax ... 132

5.3.2 Selection and characterisation of individual positive scFv clones 134

5.3.3 scFv sequencing, 3D modelling, and interaction with TcoOPB 134

5.3.3.1 scFv sequencing .. 134

5.3.3.2 Homology modelling .. 134

5.3.3.3 scFv and TcoOPB interactions predictions ... 137

5.3.3.4 Docking of scFv onto TcoOPB .. 139

5.3.4 Expression of scFv clones .. 139

5.3.5 Affinity purification of scFv .. 141

5.3.6 Antigen detection ... 142

5.4 Discussion ... 147

CHAPTER 6: GENERAL DISCUSSION ... 153

REFERENCES .. 166

CONTENTS OF APPENDICES .. 198
LIST OF FIGURES

Figure 1.1: Distribution of HAT and AAT.. 2
Figure 1.2: The cellular structure of *T. b. brucei*.. 4
Figure 1.3: Life cycle of *T. b. brucei* in the mammalian host and insect vector... 6
Figure 1.4: Lytic antibody response to the immunogenic VSGs......................... 8
Figure 1.5: Human and animal RDTs for the diagnosis of African trypanosomosis.. 13
Figure 2.1: Molecular phylogenetic analysis of the kinetoplastid MCAs and the single MCA from *S. cerevisiae* .. 30
Figure 2.2: Chemistry of the coupling of antibody glycoproteins to UltraLink® hydrazide resin.. 40
Figure 2.3: Analysis of the isolation of *T. b. brucei* (927) and *T. vivax* (Y486) BSF genomic DNA and PCR amplification of the *TbbMCA2* and *TviMCA5* genes.. 42
Figure 2.4: Screening for recombinant *TbbMCA2* and *TviMCA5* clones ligated into the pTZ57R/T and pGEM®-T cloning plasmids, respectively, by the PCR amplification of the isolated plasmid DNA.............. 43
Figure 2.5: Products of gel extraction of the *TbbMCA2* and *TviMCA5* inserts after restriction digestion of positive recombinant *TbbMCA2*-pTZ57R/T clone 6 and *TviMCA5*-pGEMT clones 4 and 16.............. 44
Figure 2.6: Screening for recombinant *TbbMCA2* and *TviMCA5* clones ligated into the pET-28a and pET-32a expression plasmids, from the isolated plasmid DNA by PCR amplification.. 45
Figure 2.7: Schematic representation of the size and domain composition of the recombinantly expressed *TbbMCA2*, *TcoMCA5* in pET-28a and *TvMCA5* in pET-32a.. 46
Figure 2.8: Analysis of recombinantly expressed *TbbMCA2* in pET-28a........... 49
Figure 2.9: Analysis of recombinantly expressed *TvMCA5* in pET-32a........... 49
Figure 2.10: Nickel purified recombinant *TbbMCA2* from expression supernatant and sarkosyl solubilised inclusion bodies......................... 51
Figure 2.11: Solubilised, refolded and nickel purified recombinant *TvMCA5*.... 51
Figure 2.12: Immunoaffinity purification of soluble recombinant *TbbMCA2*, *TcoMCA5* and *TvMCA5*.. 53
Figure 3.1: Schematic of initiator and executioner caspase activation. 59
Figure 3.2: Overview of the site-directed mutagenesis process.......................... 62
Figure 3.3: Western blots of the expression of WT MCA5 and catalytic mutants. ... 71
Figure 3.4: Immunoaffinity purification of the soluble WT and mutant MCA5s after recombinant expression. ... 72
Figure 3.5: Nickel affinity purification of solubilised recombinant TbbMCA2, TcoMCA5 and TvMCA5 WT, along with TcoMCA5 and TvMCA5 catalytic mutants. ... 74
Figure 3.6: Detection of native MCA5 in T. b. brucei and T. vivax bloodstream trypomastigote lysates. ... 75
Figure 3.7: Immunoaffinity purification of native TcoMCA5. 75
Figure 3.8: Enzymatic activity of the purified recombinant WT, mutants and native TcoMCA5. ... 76
Figure 3.9: The pH profile of recombinant TcoMCA5⁵¹⁴⁷AC²⁰²G and native TcoMCA5. ... 78
Figure 3.10: Gelatin containing SDS-PAGE to visualise the peptidolytic activity of native TcoMCA5 and recombinant TcoMCA5⁵¹⁴⁷AC²⁰²G 80
Figure 3.11: Sensitivity of recombinant TcoMCA5⁵¹⁴⁷AC²⁰²G to a variety of peptidase inhibitors. ... 81
Figure 3.12: Effect of divalent cations on the enzymatic activity of recombinant TcoMCA5⁵¹⁴⁷AC²⁰²G. ... 82
Figure 4.1: Structural features of the 3D structures of TbbMCA2 for docking. 96
Figure 4.2: Homology modelling of TcoMCA5 and TvMCA5. 98
Figure 4.3: Z-score plot as an indication of model quality. 98
Figure 4.4: Ramachandran plots of TbbMCA2 4AF8 and modelled TcoMCA5 and TvMCA5. ... 99
Figure 4.5: Interactions of the N-terminal domain with the main body of TbbMCA2 4AF8. ... 99
Figure 4.6: Identification of the active site residues of TbbMCA2, TcoMCA5 and TvMCA5. ... 100
Figure 4.7: Active site surface of TbbMCA2 4AF8 after deletion of residues 1 to 35 of the N-terminal domain.. 101
Figure 4.8: Structural differences between the different water preparations of TbbMCA2 4AF8. ... 102
Figure 4.9: The commercial inhibitor, substrate and Berg ligand which had the highest binding affinity, at the active site, for TbbMCA2 4AF8, prepared with ‘all water.’ .. 106
Figure 4.10: The inhibitor, substrate and Berg ligand which had the highest binding affinity at the active site for TcoMCA5 and TvMCA5, prepared with ‘all water’................................. 109
Figure 4.11: Interactions of inhibitors, substrates and ligands of the commercial and Berg libraries with TbbMCA2 4AF8, TcoMCA5 and TvMCA5. ... 110

Figure 4.12: Overlay of docked commercial inhibitors and substrates along with Berg ligands into the active site of TbbMCA2 4AF8, TcoMCA5 and TvMCA5, prepared with 'all water'. 112

Figure 4.13: Generation of a common feature pharmacophore for TbbMCA2 4AF8, TcoMCA5 and TvMCA5. ... 113

Figure 5.1: Selection of antigen specific scFv antibodies using panning. 123

Figure 5.2: Enrichment ELISA of the isolated phages from each round of panning with oligopeptidase B from T. congolense and T. vivax... 132

Figure 5.3: Results of various methods to select the best clones from TcoOPB and TviOPB pans 3 and 4 in TG1 E. coli cells for the expression of scFv antibodies. ... 133

Figure 5.4: Multiple sequence alignment of scFv clones panned against TcoOPB and TviOPB. ... 135

Figure 5.5: Homology modelling of TcoOPB.. 135

Figure 5.6: Homology modelling of scFv clone E5, from TcoOPB pan 3, using different scFv templates. ... 136

Figure 5.7: Predicted immunogenic and structural epitopes together with the possible scFv interactions with TcoOPB... 138

Figure 5.8: Docked scFv onto epitope 4 of TcoOPB. ... 140

Figure 5.9: Expression of anti-TcoOPB and anti-TviOPB scFv antibodies. 141

Figure 5.10: Affinity purified scFv using TcoOPB-aminolink and TviOPB-aminolink resins. ... 142

Figure 5.11: Detection of native and recombinant TcoOPB. 143

Figure 5.12: Checkerboard ELISA of crude and purified scFv against recombinant TcoOPB... 144

Figure 5.13: Comparison of the choice of capture and detection antibody in the indirect antigen detection ELISA. ... 145

Figure 5.14: Indirect antigen capture ELISA of TcoOPB in sera of infected cattle. ... 146
LIST OF TABLES

Table 1.1: Taxonomy of the trypanosomatidae ... 3
Table 2.1: Primer sequences to be used throughout the TbbMCA2 and TviMCA5 cloning process ... 34
Table 3.1: Substrate specificity of recombinant TcoMCA5$^{H147A}C202G$ and purified native TcoMCA5. .. 77
Table 4.1: Identification of residues in TbbMCA2, TcoMCA5 and TviMCA5 which are involved in catalysis. ... 93
Table 4.2: Binding site spheres, in which the catalytically important residues are found, to be used for docking studies ... 101
Table 4.3: The -CDocker interaction energies for the inhibitors and substrates of the commercial library which were successfully docked into the active site, of the four water preparations, of TbbMCA2 4AF8. .. 104
Table 4.4: The -CDocker interaction energies for the ligands of the Berg library which were successfully docked into the active site, of the four water preparations, of TbbMCA2 4AF8. ... 105
Table 4.5: The -CDocker interaction energies for the inhibitors and substrates from the commercial library, and ligands from the Berg library, which were successfully docked into the active site, of the 'all water' preparation, of TcoMCA5 and TviMCA5. 108
ABBREVIATIONS

2xYT 2 x yeast extract, tryptone
2D two dimensional
3D three dimensional
AAT animal African trypanosomosis
ABTS 2,2-azino-di-[3-ethylbenzthiazoline sulfonate]
AEBSF 4-(2-aminoethyl)benzenesulfonyl fluoride
AMC 7-amino-4-methylcoumarin
Amp ampicillin
AMT acetate-MES-Tris
ASSURED affordability, sensitivity, specificity, user friendly, rapid and robust,
equipment free, deliverable
AT African trypanosomosis
BARP brucei alanine rich protein
BCA bicinchoninic acid
Boc t-butyloxycarbonyl
bp base pair
BP 3% (w/v) BSA-PBS
BSA bovine serum albumin
CATL cathepsin-L
CATT card agglutination test
CDR complementary determining regions
CSF cerebrospinal fluid
DALYS disability-adjusted life years
dH₂O distilled H₂O
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
DTT dithiothreitol
E-64 L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane
ECL enhanced chemiluminescence
EDTA ethylenediaminetetra-acetic acid
ELISA enzyme-linked immunosorbent assay
EMEM Eagle's minimal essential medium
ES expression sites
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESAG</td>
<td>expression site-associated gene</td>
</tr>
<tr>
<td>Fab</td>
<td>antigen binding fragment</td>
</tr>
<tr>
<td>FBS</td>
<td>foetal bovine serum</td>
</tr>
<tr>
<td>FMK</td>
<td>fluoromethylketone</td>
</tr>
<tr>
<td>g</td>
<td>relative centrifugal force</td>
</tr>
<tr>
<td>GMQE</td>
<td>global model quality estimation</td>
</tr>
<tr>
<td>GPI</td>
<td>glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>GRESAG</td>
<td>related to expression site associated gene</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HAT</td>
<td>human African trypanosomosis</td>
</tr>
<tr>
<td>HRPO</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>HSP</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>[I]</td>
<td>inhibitor concentration</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>gamma interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>ISG</td>
<td>invariant surface glycoprotein</td>
</tr>
<tr>
<td>ITS</td>
<td>internal transcribed spacer</td>
</tr>
<tr>
<td>Kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>k_{cat}</td>
<td>turnover number</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>K_i</td>
<td>inhibition constant</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>MCA</td>
<td>metacaspase</td>
</tr>
<tr>
<td>MeOSuc</td>
<td>3-methoxysuccinyl</td>
</tr>
<tr>
<td>MES</td>
<td>2-ethanesulfonic acid</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MP</td>
<td>2% skim milk powder-PBS</td>
</tr>
<tr>
<td>ND</td>
<td>not determined</td>
</tr>
<tr>
<td>NECT</td>
<td>eflornithine-nifurtimox combination therapy</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>OPB</td>
<td>oligopeptidase B</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>VSG</td>
<td>variant surface glycoprotein</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactoside</td>
</tr>
<tr>
<td>Z</td>
<td>benzyloxy carbonyl</td>
</tr>
</tbody>
</table>
CHAPTER 1
LITERATURE REVIEW

1.1 African trypanosomosis

The trypanosomal parasites which cause human and animal African trypanosomosis (HAT and AAT respectively), otherwise known as sleeping sickness in humans and nagana in cattle, are transmitted by the bite of an infected tsetse fly (*Glossina* spp.). In 2004, HAT cost the African continent 1.6 million disability-adjusted life years (DALYs) (Févre *et al.*, 2008). Together with serological screening, reservoir control and appropriate treatment, the disability-adjusted life-years (DALYs) has been lowered to 202 438 (GBD *et al.*, 2017). African trypanosomosis affects human health and has economic consequences due to its impact on agriculture resulting from the reduction in animal numbers and productivity (Hotez *et al.*, 2009; Jackson *et al.*, 2015). Since both HAT and AAT occur in rural areas, affect poor smallholders, and pose no immediate threat to wealthy nations, the disease is often considered neglected (Diall *et al.*, 2017).

Trypanosoma brucei gambiense is responsible for HAT in eastern and southern African, while *T. b. rhodesiense* causes HAT in western and central Africa (Welburn *et al.*, 2001a). The *T. b. gambiense* parasite causes chronic infections which can persist for years, whilst *T. b. rhodesiense* infections result in death within 6 to 8 months if untreated (Checchi *et al.*, 2008). It is estimated that 55 million people in an area of 1.08 million km2 are at risk of *T. b. gambiense* infections, whilst 6 million in 100 000 km2 are at risk of *T. b. rhodesiense* infections (Franco *et al.*, 2017). The areas in which HAT infections are likely have halved in less than a decade, with fewer than 4 000 reported cases in 2014 (Franco *et al.*, 2017) (Fig. 1.1, panel A). However, due to the remote locations and poor coverage by surveillance systems of these areas, the number of reported cases may be higher.

Both *T. b. gambiense* and *T. b. rhodesiense* parasites are harboured in wild and domestic animals, which act as reservoirs (Anderson *et al.*, 2011). Domestic cattle are the major reservoir of *T. b. rhodesiense* in Uganda (Welburn *et al.*, 2001b) and the introduction of infected cattle from districts with established human *T. b. rhodesiense* infections, caused outbreaks in previously unaffected districts (Picozzi *et al.*, 2005).
A third subspecies of *T. brucei*, which is non-pathogenic in humans, is *T. b. brucei* and causes AAT. This parasite is distributed across sub-Saharan Africa and is restricted to non-human vertebrates. In addition to *T. b. brucei*, several other trypanosomal species cause infections in animals and are transmitted by insect vectors other than the tsetse fly. *Trypanosoma b. brucei*, *T. congolense* and *T. vivax*, cause Nagana in Africa, *T. evansi* cause Surra in northern Africa and Asia, infect a wide range of domestic animals as well as wild animals which act as reservoirs, whilst *T. simiae* and *T. suis* infect pigs (Uilenberg and Boyt, 1998; Lucius *et al.*, 2017). In addition, since the development of the trypanosome is restricted to the tsetse proboscis in *T. vivax*, the direct mechanical transmission by other haematophagous flies, such as tabanids and *Stomoxys*, occurs frequently (Rotureau and Van Den Abbeele, 2013). Consequently, *T. vivax* infections has spread beyond the borders of the sub-Saharan tsetse belt into northern Africa and south America (Jones and Dávila, 2001; Osório *et al.*, 2008; Gonzatti *et al.*, 2014). The threat of AAT has restricted the development of agriculture due to the ineffective use of available land in tsetse-infested areas (Matthews, 2005; Jackson *et al.*, 2015; Diall *et al.*, 2017).

![Figure 1.1: Distribution of HAT and AAT.](image)

Figure 1.1: Distribution of HAT and AAT. (A) Number of *T. b. gambiense* (red) and *T. b. rhodesiense* (blue) HAT cases reported between 2010 and 2014. Areas where no cases were reported are indicated in green (Franco *et al.*, 2017). (B) Distribution of important animal infective trypanosomal species in Africa. The real geographical distribution of *T. congolense* and *T. vivax* in South Africa and Namibia is limited (Giordani *et al.*, 2016).

Multiple species and sub-species of animal infective trypanosomes circulate in cattle within HAT areas (Fyfe *et al.*, 2017) (Fig. 1.1, panel B). The animal infective *T. congolense*, is considered to be the most pathogenic trypanosome species in cattle (Giordani *et al.*, 2016), followed by *T. vivax* (Osório *et al.*, 2008), both of which are able to infect multiple animal species. Whilst *T. congolense* and *T. vivax* impact on both animal health and productivity across much of Uganda (Okello *et al.*, 2015); *T. b. brucei* and *T. b. rhodesiense* cause only mild illness in indigenous breeds with infection often going undetected (Fyfe *et al.*, 2017). It is estimated that 20% production...
losses are experienced due to mortality and the reduction of calving rate, draft power and the production of meat and milk due to AAT infections (Swallow, 2000).

1.2 Trypanosome classification

Trypanosomes are protozoan parasites and belong to the order Kinetoplastida and genus Trypanosoma. The genus comprise the Stecoraria and Salivaria groups (Haag et al., 1998). Trypanosomes belonging to the Stecoraria group, migrate to the hind gut of the vector and are transmitted through faeces to the mammalian host, whilst those in the Salivaria group, migrate from the gut to the mouth parts of the vector and are transmitted through the vector’s saliva (Lucius et al., 2017). The salivarian parasite, *T. equiperdum*, is an exception as it is transmitted during copulation (Brun et al., 1998).

Nine trypanosomal clades have been identified based on the heat shock protein (HSP) 60 molecular marker (Fraga et al., 2016); namely, *T. cruzi*, *T. rangeli*, *T. lewisi*, *T. theileri*, *T. grayi*, *T. carassi*, Trypanozoon *T. congolense* and *T. vivax* as outlined in Table 1.1. The *Trypanozoon* clade includes *T. b. gambiense*, *T. b. rhodesiense*, *T. b. brucei*, *T. evansi* and *T. equiperdum*.

<table>
<thead>
<tr>
<th>Table 1.1: Taxonomy of the trypanosomatidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stecoria</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Trypanozoon</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Salivaria</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dutonella</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Adapted from Baral (2010), Fraga et al. (2016)^a and Simpson et al. (2006)^b.

^aOnly a few species belonging to the Schizotrypanum and Megatrypanum subgenus are given.
1.3 Parasite structure and genomic organisation

The elongated shape of the trypanosomal trypomastigotes and epimastigotes is defined by a polarised microtubule cytoskeleton, which remains intact throughout the cell cycle (Matthews, 2005). The trypanosomal parasites possess a number of single copy organelles which are precisely positioned within the cytoskeleton; namely, the nucleus, flagellar pocket, basal body, kinetoplast, mitochondrion, nucleus, Golgi apparatus and the flagellum (Matthews, 2005), which is attached to the body of trypomastigotes and epimastigotes (Fig. 1.2).

Figure 1.2: The cellular structure of *T. b. brucei*. The cellular structures found within the *T. b. brucei* trypomastigote are shown and numbered as follows: 1, nucleus; 2, kinetoplast; 3, flagellar pocket; 4, basal body and probasal body; 5, axoneme and paraflagellar rod; 6, Golgi apparatus; 7, lysosome; 8, endosomes; 9, mitochondrion; 10, microtubule cytoskeleton and 11, glycosomes (Matthews, 2005).

The single kinetoplast comprises the mitochondrial genome and consists of approximately 50 copies of maxicircles and 10,000 copies of minicircles (Klingbeil and Englund, 2004). Mitochondrial proteins are encoded by the maxicircles, whilst short guide RNAs are encoded by the minicircles (Klingbeil and Englund, 2004). The maxicircle transcripts are post-transcriptionally edited by the incorporation or deletion of uridines using the minicircles as templates (Klingbeil and Englund, 2004). The replication of the kinetoplast is coordinated with that of the nucleus (Matthews, 2005). The nuclear genome of *T. brucei* contains 11 megabase chromosomes and more than 100 minichromosomes which are approximately 50 kb in size (Wickstead *et al.*, 2004; Cross *et al.*, 2014). The minichromosomes function to provide a large repertoire of telomeric variable surface glycoproteins, VSGs (Pays, 2006; Hovel-Miner *et al.*, 2016). The genes are arranged in polycistronic arrays, which are not organised into operons, but are rather differentially expressed through the life cycle (Matthews, 2005).

1.4 VSG and antigenic variation

A dense ∼15 nm-thick coat of VSGs is present on the surface of the parasite and protects against complement-mediated lysis and hides invariant proteins from
recognition by the host's immune system (Engstler et al., 2004; Field and Carrington, 2009; Schwede et al., 2011). Bloodstream trypomastigote parasites possess about \(10^7\) copies of the VSG, which constitutes approximately 5% of the total cellular protein (Turner, 1985).

The VSG molecule is composed of a large, alpha-helical N-terminal domain which interacts with the host immune system (Blum et al., 1993), and a small C-terminal domain which links the VSG dimer to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor (Jones et al., 2008). The VSG repertoire of *T. b. brucei* bloodstream trypomastigotes, comprising more than 1,000 VSGs (Berriman et al., 2005), is significantly larger than the 12 VSGs found in procyclic trypomastigotes (Lenardo et al., 1984).

As VSGs are highly immunogenic, an immune response is generated by the host to eliminate the parasite. However, the periodic switching of the expressed VSGs, with distinct antigen variants, allows for immune evasion, resulting in an undulating parasitaemia profile, characteristic of trypanosome infections (MacGregor et al., 2012). The process of antigenic variation is the result of either transcriptional switching between VSG expression sites (ESs), or homologous recombination between the active VSG gene and another VSG gene from the repertoire (Pays et al., 2006). The genome of *T. b. brucei* encodes as many as 1,700 VSGs, most of which are pseudogenes which require assembly into functional mosaics (Marcello and Barry, 2007). This implies that the VSG repertoire is essentially infinite (Taylor and Rudenko, 2006).

A single VSG is expressed at any one given time as only a single VSG allele and can be transcribed from the VSG repertoire (Pays et al., 2006). The transcription of VSG occurs at one of several VSG ESs (Pays et al., 2006). Each VSG ES has polycistronic transcription units which contain expression-site-associated genes (ESAGs) together with the VSG gene (Pays et al., 2001). The *T. b. brucei* genome codes for a set of 15 to 20 similar, but not identical ESs (Pays et al., 2006).

The *serum resistance associated* (SRA) gene encodes a truncated VSG where the region encoding the surface-exposed epitopes is missing (Vanhamme et al., 2001). The R-ES is the ES which contains the SRA gene (De Greef et al., 1989) and is not active when the parasite is present in the serum of non-human vertebrates (Vanhamme et al., 2000). Only when *T. b. rhodesiense* is exposed to human serum, is the R-ES selected and the transcription of SRA triggered (Pays et al., 2006).
infective trypanosome parasites do not possess the SRA gene and are unable to infect humans as they are lysed in human serum.

1.5 Life cycle of the trypanosomal parasite

The complex life cycle of the trypanosome requires various adaptations to survive in the mammalian bloodstream and in the different compartments within the tsetse fly (Matthews, 2005). Stage-specific changes to basic cell biological processes are required for differentiation (Matthews, 2005). The life cycle of *T. b. brucei* is detailed in Fig. 1.3.

![Figure 1.3: Life cycle of *T. b. brucei* in the mammalian host and insect vector.](image)

The circular arrows indicate that the form is proliferative. CNS, central nervous system (Langousis and Hill, 2014).

The mammalian host is infected through the bite of a tsetse fly which harbours growth-arrested *T. b. brucei* metacyclic trypomastigotes. Thereafter, the metacyclic trypomastigotes differentiate into proliferative slender forms which are able to establish and maintain infection in the host circulation as bloodstream trypomastigotes (Matthews, 2005) through evasion of the host antibody responses using antigenic variation (Pays *et al.*, 2004). Once in the bloodstream, the long slender forms differentiate into short stumpy forms, which are cell-cycle arrested and pre-adapted for survival in the tsetse fly, facilitated by a quorum sensing-like mechanism (MacGregor *et al.*, 2011). This transition between slender and stumpy forms, together with the process of antigenic variation, prolongs the infection and increases the potential for further parasite transmission (MacGregor *et al.*, 2012). In the second stage of *T. brucei*...
infection, parasites penetrate the blood brain barrier and enter the central nervous system (Langousis and Hill, 2014).

A blood meal, from an infected mammalian host, allows for the parasites to establish in the tsetse midgut, through the differentiation of short stumpy forms into proliferative procyclic trypomastigotes. The differentiation of bloodstream trypomastigotes to procyclic trypomastigotes is characterised by morphological changes, switching from glycolysis to oxidative phosphorylation, and the replacement of the VSGs with procyclins (Maudlin and Welburn, 1994), which are also GPI anchored (Roditi and Liniger, 2002). Procyclic trypomastigotes migrate from the midgut to the salivary gland, and en route, undergo extensive restructuring and asymmetric division to generate both long and short epimastigotes which are covered in brucei alanine-rich protein (BARP) (Urwyler et al., 2007). The short epimastigotes attach to the epithelial cells in the salivary gland and are able to replicate via asymmetric division to generate metacyclic trypomastigotes (Matthews, 2005). The metacyclic trypomastigotes regain a coat of VSGs and are released into the salivary gland lumen where they can be transferred to the mammalian host; thereby, completing the life cycle (Rotureau et al., 2012).

Similar, but non-identical in vivo life cycles are shared between T. congolense and the T. brucei subspecies. The bloodstream trypomastigotes of T. brucei occur as proliferative long slender forms as well as a non-proliferative short stumpy forms, whereas those from T. congolense have the corresponding proliferative forms but the stumpy forms are less obvious (Vickerman, 1985). The epimastigotes of T. congolense are directed to the tsetse fly’s proboscis and mouth parts, but not to the salivary glands as for T. brucei epimastigotes, where they differentiate into non-proliferative, infective metacyclic trypomastigotes (Roditi and Lehane, 2008). In the case of T. vivax, the procyclic trypomastigote form is skipped as the parasite does not enter the insect gut (Rotureau and Van Den Abbeele, 2013). Instead, the bloodstream trypomastigotes differentiate directly into epimastigotes within the tsetse proboscis (Rotureau and Van Den Abbeele, 2013).

1.6 Immune response

African trypanosomes are extracellular parasites, and as such, encounter both the innate and the adaptive immune responses of the host. The VSG molecules provide a defence barrier against both innate and specific immune effectors (Vickerman and
Luckins, 1969). Polyclonal B-cell activation is a characteristic of both bovine and murine trypanosomosis, whereby increased numbers of B-cells and plasma immunoglobulin levels is evident (Luckins and Mehlitz, 1976).

Proliferation of B-cells, producing a lytic antibody response, is caused by the immunogenic VSGs as illustrated in Fig. 1.4 (Pays et al., 2001). During the early stage of infection, trypanosome-specific antibodies can mediate clearance of parasites and are able to neutralise parasite products (Dempsey and Mansfield, 1983). However, a significant proportion of these antibodies are either polyspecific or auto-reactive (Kobayakawa et al., 1979). The suppression of B cell memory results in the total absence of IgG responses and a strongly reduced IgM response in the later stages of infection (Hudson and Terry, 1979; Radwanska et al., 2008).

The VSG-antibody complexes facilitate opsonisation and lysis via the complement system of the parasites expressing the VSG against which the response was triggered. Thus, by the process of antigenic variation, trypanosomes avoid detection by host antibodies (Horn and McCulloch, 2010). Through the reduction of parasite numbers, prolonged infection is ensured.

Figure 1.4: Lytic antibody response to the immunogenic VSGs. The hypothetical interaction between the IgM (turquoise) and the N-terminus of the immunogenic VSG (dark blue) molecules (Mugnier et al., 2016).

The initial immune response to trypanosome infection is the initiation of an acute inflammatory response via the innate system, which affects B- and T-cell responses to parasite antigens, whereby cytokines and chemokines are secreted to prompt clearance of the infecting parasite (Mansfield and Paulnock, 2005). Natural killer cells may also participate in the initiation of the inflammatory response through the synthesis of cytokines and chemokines such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α (Vincendeau and Bouteille, 2006). However, the parasite can interfere with
the cytokine network, using the cytokines as growth factors, and modifying the effector functions of the immune system (Hide et al., 1989).

The first response of the host immune system consists of classically activated macrophages secreting pro-inflammatory molecules such as TNF, IL-1, IL-6 and nitric oxide (NO) (Duxbury et al., 1972; Mosser and Roberts, 1982; Pan et al., 2006). The classically activated macrophages phagocytose antibody-opsonised parasites (Shi et al., 2004) as well as secrete trypanotoxic molecules such as TNF and NO (Mabbott et al., 1994; Sternberg and Mabbott, 1996; Kaushik et al., 2000) which are involved in the control of the first peak of parasitaemia.

Despite the benefit of the initial inflammatory response, sustained inflammation can cause further damage to the mammalian host. Thus, a reduction in inflammation is required by the down regulation of the classically activated macrophages and their pro-inflammatory cytokines. The production of type II cytokines such as IL-4, IL-10 and IL-13 are able to modulate the macrophages to become alternatively activated macrophages, which are anti-inflammatory (Baral, 2010).

1.7 Control, diagnosis and chemotherapy for trypanosomosis

Despite an increase in health facilities throughout endemic countries that offer diagnosis and treatment for HAT, access to these facilities is limited due to the remote locations of the areas of incidence, which are often also in war zones (Franco et al., 2017). In order to maintain and further reduce the numbers of HAT and AAT cases, innovative and cost-effective strategies are required. This includes the development of new tools for diagnosis, vector and reservoir control as well as effective trypanocides (Franco et al., 2017).

1.7.1 Control

The control of AT can be accomplished by reduction of parasite transmission through the control of the insect vector, as well as case detection and treatment (Büscher et al., 2017). Due to the existence of a wildlife reservoir, the elimination of HAT is unlikely, if the insect vector is not removed. However, the removal of tsetse populations has been achieved in less than 2% of the 10 million km² estimated to be infested (Bouyer et al., 2013), and AAT integrated management has rarely been sustained (Vreysen et al., 2013; Shaw et al., 2015).
A number of trypanosomosis and tsetse control methods have been developed and implemented with varied levels of success in a number of endemic regions (Muhanguzi et al., 2015). Methods for the control of the insect vector include both stationary and mobile baits in the form of fly traps (Vale and Torr, 2004) and insecticide-treated cattle (Allsopp and Hursey, 2004), aerial spraying (Kgori et al., 2006), sterile insect technique (Vreysen et al., 2000) and the administration of trypanocides to cattle (Holmes et al., 2004).

The 86% reduction in T. b. gambiense infections, between 2000 and 2014, can be attributed to consistent active and passive surveillance, screening approximately 2 million people per year (Franco et al., 2017). Vector control has been initiated in some T. b. gambiense endemic regions and is believed to have contributed to the reduction of reported cases in countries such as Guinea (Courtin et al., 2015) and Chad (Franco et al., 2017). Infections with T. b. rhodesiense represent an average of 2.7% of the total number of reported HAT cases between 2000 and 2014 (Franco et al., 2017). The wildlife reservoir, which is difficult to manage, is the cause of the scattered but constant T. b. rhodesiense cases reported (Simarro et al., 2010). Due to the faster disease progression and poor effectiveness of active screening of T. b. rhodesiense infections, the rate of under-detection is, in all likelihood, higher than that of T. b. gambiense infections (Franco et al., 2017).

The most widely used AAT control method is trypanocides (Grant, 2001; Holmes et al., 2004; Torr et al., 2007), as livestock keepers in the tsetse infested areas of Africa, consider this to be a rapid and inexpensive means of control compared to that of tsetse control methods (Torr et al., 2007). This method requires multiple trypanocide administrations as the currently used trypanocides afford only a short period of protection (Bourn et al., 2005). However, there is a high risk of the development of drug resistance through the extensive use of trypanocides (Geerts et al., 2001; Holmes et al., 2004).

In an attempt to control T. b. rhodesiense infections in livestock, mass administration of isometamidium chloride followed up by routine application of insecticides to protect cattle from tsetse flies (Welburn et al., 2006a; Kajunguri et al., 2014), has been implemented across large endemic focus areas in Uganda (Fyfe et al., 2017). This intervention allowed for the protection of the human population from HAT infections as well as the improvement of the health and productivity of livestock (Okello et al., 2015).
1.7.2 Diagnosis

Ideal diagnostics in resource-limited settings should meet the WHO quality-ASSURED criteria (Peeling et al., 2006). This includes affordability, sensitivity, specificity, user friendly with minimal training, rapid and robust, equipment free and deliverable to end users.

Diagnosis of trypanosomal infections require serological screening, followed by microscopic confirmation, and finally in the case of HAT, disease staging (Chappuis et al., 2005). Diagnosis of T. b. gambiense infections can be performed in 882 fixed health facilities, of which, 639 can perform serological testing, 326 are equipped to perform parasitological diagnosis and only 262 can perform disease staging (Franco et al., 2017). Diagnosis of T. b. gambiense infections in the six endemic countries, i.e. Kenya, Malawi, Uganda, United Republic of Tanzania, Zambia and Zimbabwe, are offered by 111 health facilities, all of which are able to perform clinical diagnosis (Franco et al., 2017). Parasitological diagnosis is only offered by 49 and disease staging by 34 of the 111 facilities (Franco et al., 2017).

As the direct result of the highly immunogenic VSG molecules, high concentrations of VSG-specific IgG and IgM antibodies are produced (Crowe et al., 1984). Serological screening using the card agglutination test, CATT, detecting host antibodies against the LiTat 1.3 variant VSG of T. b. gambiense (Magnus et al., 1978) is the first step in diagnosis (Chappuis et al., 2005) and characterised by a 69-100% sensitivity and 84-99% specificity (Mitashi et al., 2012). The immune trypanolysis test is based on complement-mediated lysis of trypanosomes (Chappuis et al., 2005). Despite being the gold standard in HAT and AAT diagnostics (Van Meirvenne et al., 1995) with a 97.2-100% sensitivity and 100% specificity, the test is expensive and associated with a high infection risk to personnel (OIE, 2013).

Microscopic examination of lymph node aspirates, blood or cerebrospinal fluid (CSF) from sero-positive patients provides direct evidence for trypanosome infection (Chappuis et al., 2005). Parasite detection can be labour intensive and failure to detect parasites does not rule out infection. With the aid of centrifugation techniques to concentrate parasites in the buffy coat fraction, prior to microscopic analysis, sensitivity can be improved (Woo, 1970). In the absence of a centrifuge, wet and thin blood films are the methods of choice for the confirmation of AT infection. However, parasitological tools are often not sensitive enough to detect parasites which may be present in bodily
fluids in low numbers (Field et al., 2009), and is estimated to fail to detect between 20 and 30% of trypanosome infections (Robays et al., 2004).

Following parasite visualisation, HAT disease staging is performed by the examination of CSF samples. The presence of parasites in CSF is indicative of second stage infection (Chappuis et al., 2005). However, the number of circulating parasites in the CSF may be very low, which may cause false negatives. Thus, sensitive diagnostic tools are required for the detection of low levels of parasites at various points during the infection period.

Population screening using rapid diagnostic tests (RDTs) are able to detect antibodies in human finger-prick blood samples (Posthuma-Trumpie et al., 2009). These tests meet the ASSURED criteria as they are cost effective, simple to use and stable for distribution into remote areas of disease incidence. The SD BIOLINE HAT (Standard Diagnostics, Fig. 1.5, panel A) and the Sero-K-SeT (Coris Bioconcept) have been developed for the diagnosis of *T. b. gambiense* infections based on the detection of anti-trypanosome antibodies against the native *T. b. gambiense* LiTat 1.3 and LiTat 1.5 antigens (Büscher et al., 2013). However, no RDT for *T. b. rhodesiense* has been developed (Büscher et al., 2017). Comparison of the diagnostic capabilities of the BIOLINE and Sero-K together with the CATT and trypanolysis methods, using sera from endemic regions: Angola, Democratic Republic of the Congo, and Central African Republic, have been reported by a number of research groups for *T. b. gambiense* infections (Büscher et al., 2013; Büscher et al., 2014; Jamonneau et al., 2015; Bisser et al., 2016; Lumbala et al., 2017). The general consensus is that these RDTs are as sensitive and specific as the CATT and trypanolysis methods, and can, thus, be used for active screening in remote areas more easily than the CATT which requires a cold chain and electricity.

As with the immune trypanolysis test, the use of native antigens in BIOLINE and Sero-K RDTs poses a risk to personnel due to the culture of human infective trypanosomes. As such, the application of recombinant antigens in an RDT format is being investigated. A study using dual-antigen lateral flow test prototypes with sera from the Democratic Republic of the Congo and WHO HAT Specimen Biobank (as a virtual field trial) showed promising results (Sullivan et al., 2014). Several prototypes have been developed using recombinant as well as native antigens. The prototype developed by Sullivan et al. (2014) was characterised by a sensitivity of 97% and specificity of 83% when using recombinant soluble VSG117/MiTat 1.4 and invariant surface glycoprotein
A sensitivity 82% and specificity 95% was obtained with the prototype reported by Sternberg et al. (2014) using recombinant LiTat 1.3 and -1.5, and an 88% sensitivity and 94% specificity for that developed by BBI Solutions (Cardiff, Wales), using recombinant ISG65 and native MiTat 1.4 (Sternberg et al., 2014). These prototypes have comparable sensitivity and specificity to that of the BIOLINE (89-99% and 88-98%) and CATT (69-95% and 95-98%) as measured in endemic areas (Büscher et al., 2013; Büscher et al., 2014; Bisser et al., 2016; Lumbala et al., 2017). The application of LiTat 1.3 and -1.5, recombinantly expressed in L. tarentolae, in a diagnostic ELISA demonstrated that these antigens had a comparable sensitivity and specificity to that of the native LiTat 1.3 and -1.5 (Rooney et al., 2015). These results highlight the applicability of recombinantly expressed antigens in the generation of accurate HAT RDTs.

Serological diagnostic tools, such as the CATT, are limited to detection only and are not suitable for follow-up evaluations due to the persistence of anti-trypanosome antibodies after cure (Lejon et al., 2010). To distinguish between active and cured AT, a serological diagnostic test would have to be able to detect the antigens produced by the parasite rather than the IgM antibodies produced against the parasite (Tiberti et al., 2013). Trypanosomal antigens, which are circulating during active infections, are, thus, potential targets for diagnostics and even chemotherapy. Pathogeno-proteomics is considered a promising method for the identification of new diagnostic markers and new therapeutic targets (Hölzmuller et al., 2008). Using this method, diagnostic
antigens in T. b. gambiense (Sullivan et al., 2013) and T. vivax have been identified for use in diagnostics (Fleming et al., 2016).

The GM6 antigen has been identified as a suitable diagnostic antigen for AAT diagnosis. The tandem repeat antigen is conserved amongst the salivarian trypanosomal parasites and the recombinantly produced antigen was applied in an indirect ELISA for T. vivax diagnosis (Pillay et al., 2013) and an RDT format for T. evansi diagnosis (Nguyen et al., 2015). However, this T. evansi RDT has not been commercialised. The use of the TcoCATB (Mendoza-Palomares et al., 2008) and TviGM6 (Pillay et al., 2013) antigens in a dual-antigen RDT prototype, was characterised by a sensitivity of 96% and a 92% specificity for the detection of both T. congolense and T. vivax infections (Fig 1.5, panel B) (Boulangé et al., 2017).

Two related members of the T. vivax ISG family were shown to have good diagnostic applicability and the RDT prototype was characterised with a 92% sensitivity and 89.9% specificity using sera from experimental infections (Fleming et al., 2016). Taken together with the success of the ISG65 in the HAT RDT prototypes (Sternberg et al., 2014; Sullivan et al., 2014), these ISGs have great diagnostic potential for animal infections.

Diagnostic methods, which do not meet the ASSURED criteria, include PCR and various modifications thereof. Despite being highly sensitive (70-100%) and specific (91.4-100%), DNA-based methods are not commonly used for active case finding in rural HAT endemic regions, due to the expense and requirement for sophisticated equipment and trained personnel (Mitashi et al., 2012). Instead, DNA-based methods are useful for population screening, with amplification of the 177 bp satellite DNA (Wickstead et al., 2004) and SRA gene (Welburn et al., 2001b) for HAT, 18S ribosomal sub-unit (Geysen et al., 2003) and the internal transcribed spacer (ITS1) of ribosomal DNA (Desquesnes et al., 2001) for AAT. The ITS1 PCR method is able to successfully distinguish between T. brucei spp., T. congolense, T. simiae, T. godfreyi and T. vivax infections in cattle and camels (Njiru et al., 2005). The finding that the ITS PCR method is suitable for large-scale epidemiological studies (Thumbi et al., 2008), and was used for the evaluation of trypanosome prevalence in cattle (Ahmed et al., 2013) and in tsetse flies (Isaac et al., 2016) in endemic areas. This data can serve as an indicator of where parasite control needs to be implemented. This was the case where the screening of goats and cattle in Zambia indicated that prevention and control strategies had reduced the number of infections (Musinguzi et al., 2016).
1.7.3 Chemotherapies

The available chemotherapies used for the treatment of HAT are highly toxic, require trained healthcare providers and drug resistance has been reported (Garcia-Salcedo et al., 2014). The ideal trypanocide should be affordable, safe, effective and require simple administration (Kuzoe, 1993). In addition, the identity of the infecting parasite and disease stage needs to be considered prior to treatment. The currently used disease confirmation and staging are complex and painful to the patient, which results in under-reporting of cases (Odiit et al., 2005; Acup et al., 2017).

First and second stage *T. b. gambiense* infections are treated with pentamidine and eflornithine, respectively (Kennedy, 2013). More recently, the use of nifurtimox-eflornithine combination therapy (NECT) was recommended due to increased efficacy, decreased dosing and a reduction in emergence of drug resistance, despite the higher cost (Priotto et al., 2009; Lutje et al., 2010). Suramin and the organo-arsenical, melarsoprol, are administered for first and second stage *T. b. rhodesiense* infections, respectively (Kennedy, 2013). Each trypanocide causes adverse side effects, the worst of which is caused by melarsoprol, with 5 to 10% of treated patients succumbing to reactive encephalopathy (Burri, 2010).

Target-based and phenotypic screening have been employed to identify both attractive molecular targets and cell permeable inhibitors which are toxic to the parasite but not to the mammalian host (Matthews, 2015). The identification and development of the orally effective drugs fexinidazole and benzoxaborole SCYX-7158 have been the direct result of phenotypic screening (Maser et al., 2012). Fexinidazole has almost completed phase 2/3 clinical trials (Tarral et al., 2014), whilst SCYX-7158 has just entered phase 2/3 trials (Jacobs et al., 2011).

Due to the decrease in the number of reported HAT cases (Franco et al., 2017), the human impact of AT is largely indirect, through the effects on livestock (Matthews, 2015). However, research into the biochemistry and drug susceptibility of the causative agents of AAT is limited, and their importance is often overlooked.

The currently used chemotherapies for AAT are diminazene aceturate (Berenil®), isometamidium chloride (Samorin®) and homidium chloride (Novidium®) (Geerts et al., 2001). The indiscriminate use of trypanocides have resulted in reduced effectiveness and the emergence of drug resistance (Van den Bossche et al., 2000; Geerts et al., 2001; Delespaux et al., 2002). Since the introduction of isometamidium chloride in 1961 (Berg et al., 1961), no new AAT treatment has been introduced (Giordani et al.,
As such, it is not surprising that drug resistance is on the increase (Van den Bossche and Delespaux, 2011) and has been reported in 21 African countries (Delespaux and de Koning, 2007; Chitanga et al., 2011). A strategy to prevent the development of drug resistance is the use of isometamidium chloride or homidium chloride, together with diminazene aceturate as a sanative pair (Geerts et al., 2001; Holmes et al., 2004; Chitanga et al., 2011).

It has been suggested that to prevent reinfection, trypanocides together with veterinary insecticides are required (Kajunguri et al., 2014; Muhanguzi et al., 2014), which is an economical option for HAT control as well as the control of tick-borne diseases and AAT (Muhanguzi et al., 2014).

1.8 Peptidase virulence factors

Due to the ability of trypanosomes to undergo antigenic variation and elimination of host B-cell memory (Radwanska et al., 2008), the development of a vaccine is highly unlikely (La Greca and Magez, 2011). Thus, prevention, through vector control, accurate diagnosis and timely treatment are the only options for the control of AT. In the absence of a vaccine, an anti-disease strategy was proposed for the neutralisation of the pathogenic effects of the trypanosomal parasite (Antoine-Moussiaux et al., 2009).

Pathogeno-proteomics entails an analysis of the interactions between the parasite, mammalian host and insect vector, towards characterisation of the mechanisms by which the disease progresses (Hölzmuller et al., 2008). This analysis identifies molecular targets which are essential for pathogenesis, and are termed virulence factors (Antoine-Moussiaux et al., 2009). Parasite peptidases are thought to play direct roles in disease pathogenesis as they are involved in host invasion, migration, metabolism and immune evasion (McKerrow et al., 2006). The cathepsin-L-like peptidases (Steverding et al., 2012), metacaspases (Helms et al., 2006), oligopeptidases (Morty et al., 2001) and the aurora kinases (Tu et al., 2006) are some of the trypanosome virulence factors identified to date.

In addition to being potential diagnostic antigens, the virulence factors are attractive targets for the development of novel chemotherapies (Drag and Salvesen, 2010). Recently, the kinetoplastid proteasome was genetically and chemically validated as a promising target for the development of novel chemotherapies for the treatment of trypanosomosis, Chagas disease and leishmaniasis (Khare et al., 2016).
1.8.1 Metacaspases

Caspases (cysteine-dependent aspartate specific proteases) are found only in the metazoan kingdom, whilst the other kingdoms possess the structurally related metacaspases, MCAs (Uren et al., 2000). Due to their structural similarity to the caspases, specifically the catalytic dyad and classic caspase-haemoglobinase fold (Aravind and Koonin, 2002) the MCAs have been assigned to clan CD, and the C14B subfamily of cysteine peptidases (Rawlings et al., 2016). The MCAs differ from caspases in their preference for basic Arg and Lys residues over acidic Asp residues at the P₁ substrate position, together with a low shared sequence homology and their inability to form dimers (McLuskey et al., 2012).

A highly selective S₁ pocket ensures the strict substrate specificity of clan CD peptidases. This feature permits their involvement in specific processing events, with little chance of random peptidolytic degradation. An example of this specificity is evident in the signalling pathways involving caspases during their participation in apoptosis and inflammation (Pop and Salvesen, 2009).

1.8.1.1 Structure of metacaspases

The MCAs are divided into type I, to which the ancestral form found in unicellular organisms belongs, and type II, which have evolved for larger, more complex organisms (Lam and Zhang, 2012). More recently, type III metacaspases, found only in algae which have undergone secondary endosymbiosis, have been discovered (Choi and Berges, 2013). Type I MCAs are typically found in plants, yeasts and protozoa whilst type II MCAs are found only in plants. The most studied MCAs are from Arabidopsis thaliana, which possess both type I MCAs 1 to 3 and type II MCAs 4 to 9.

Similar to the caspases, the MCAs possess a large catalytic domain (p20), within which the catalytic dyad is found, and a smaller N-terminal domain (p10) (Fig. 1.6). The type II MCA is an exception, where the p10 domain is found at the C-terminus. Unlike caspases, type I MCAs possess a short linker region and type II MCAs a long linker region between the p20 and p10 domains. An N-terminal domain, which is present in initiator caspases, is found in type I MCAs, which in plants contains a zinc finger motif (Vercammen et al., 2004; Tsiatsiani et al., 2011). Conversely, type II MCAs lack the N-terminal domain and are similar to execution caspases, by way of their dependency on autoprocessing for activation (Vercammen et al., 2004; Tsiatsiani et al., 2011).
The MCAs are a functionally diverse family of peptidases, and may harbour a capacity for multifunctionality within organisms which possess only a single MCA copy. The single copy MCA from Leishmania spp. and the trypanosomal MCA5s possess a Pro-, Gln- and Tyr-rich C-terminal extension, unlike the short C-terminal extension of the multicopy genes, TbbMCA 1 to 4 (Mottram et al., 2003) and the 16 copies of TcrMCA3 (Kosec et al., 2006). The C-terminal domain of LmjMCA interacts with proteins involved in stress regulation (Casanova et al., 2015). This demonstrates that the Pro-rich C-terminal domain of the MCAs could be responsible for protein-protein interactions as suggested by Kay et al. (2000).

Figure 1.6: Domain organisation of the caspases and metacaspases. The catalytic domain (p20), in which the catalytic dyad is found, is highlighted in green, whereas the smaller, p10 domain, is highlighted in pink. The domains are not drawn to scale and the additional domains are not shown in this instance.

1.8.1.2 Functions of metacaspases

The study by Madeo (2002) identified the Saccharomyces cerevisiae MCA (YCA1) as a positive regulator of programmed cell death (PCD). YCA1 has been implicated in both cell cycle regulation (Lee et al., 2008) and the clearance of insoluble protein aggregates (Lee et al., 2010). It has been demonstrated that the single copy LmjMCA has a role in PCD induced by oxidative stress (Zalila et al., 2011) and is also required for cell cycle progression (Ambit et al., 2008). In addition, an antagonistic relationship exists between two of the A. thaliana MCAs in the hypersensitive response cell death pathway, whereby AtMCA1 promotes cell death and AtMCA2 functions as a negative regulator. Together, this highlights the potential of the action of MCAs in key regulatory processes (Coll et al., 2010).

An RNAi study revealed that the pseudopeptidase, TbbMCA4, functioned in both cell cycle progression and parasite virulence during mammalian infection (Proto et al., 2011). It was demonstrated that TbbMCA4 was processed by TbbMCA3, both of which
are palmitoylated (Emmer et al., 2009), and may comprise a MCA peptidolytic cascade. (Proto et al., 2011).

Irrespective of the elucidation of the role of MCA, the lack of a mammalian homologue and the MCAs’ involvement in the parasite cell cycle and in cell death pathways, make the MCAs attractive targets for the development of novel chemotherapies for trypanosomosis, Chagas disease and leishmaniasis (Ambit et al., 2008; McKerrow et al., 2008; Alvarez et al., 2011). In addition, the presence of MCAs in the plant and fungi kingdoms, make them attractive targets for the development of pesticides and fungicides (Lam and Zhang, 2012).

1.8.2. Oligopeptidase B

The serine peptidase, oligopeptidase B (OPB), is present in the cytosol of trypanosomes and bacteria (Burleigh et al., 1997; Morty et al., 2005a; Rea and Fülöp, 2006), and has been identified as an important virulence factor in AAT caused by T. b. brucei, T. congolesene and T. evansi (Troeberg et al., 1996; Morty et al., 1999; Morty et al., 2001; Morty et al., 2005a). The trypanocidal drugs suramin (Morty et al., 1998), pentamidine (Ashall, 1990; Morty et al., 1998) and diminazene (Morty et al., 1998), were shown to inhibit TbbOPB. In addition, irreversible inhibitors of TbbOPB exhibited anti-trypanosomal activity in vitro and in vivo (Morty et al., 2000), and OPB can therefore be regarded as a potential target for the development of novel trypanocides (Coetzer et al., 2008; Canning et al., 2013). However, despite a 60% protein sequence similarity between the OPB from T. b. brucei and L. major, a gene deletion study suggested that OPB is not an essential virulence factor in L. major (Munday et al., 2011). This was further confirmed in a study by Moss et al. (2015) where it was demonstrated that the activity of TbbOPB was not required for infection.

The OPB peptidase is dimeric, and is comprised of a C-terminal catalytic domain with an α/β hydrolase fold, and a N-terminal regulatory domain with a seven-bladed β-propeller (Fig. 1.7) (Canning et al., 2013). The peptidolytic activity of monomeric OPB is limited to peptide substrates which are smaller than 30 amino acid residues, and has a P₁ site specificity for Arg and Lys (Kanatani et al., 1991).

Peptide hormones, which are rich in basic residues, are favoured substrates of OPB, with cleavage of atrial natriuretic factor (Ndung’u et al., 1992; Troeberg et al., 1996; Morty et al., 2005a), adrenocorticotropic hormone (de Andrade et al., 1998; Tsuji et al., 2004), angiotensins I and II (Nishikata, 1984; Kanatani et al., 1991; Bagarozzi et al.,
1998), bradykinin potentiator B (Nishikata, 1984), vasoactive intestinal peptide and substance P (Bagarozzi et al., 1998), neurotensin (Kanatani et al., 1991; Troeberg et al., 1996), reduced (Arg8)/(Lys8)vasopressin (Troeberg et al., 1996), serum thymic factor (Nishikata, 1984), somatostatin-28, glucagons and dynorphin A (Tsuji et al., 2004) being reported in literature. It has been demonstrated that synthetic substrates, up to 17 residues in length, based on the structure of bradykinin, were hydrolysed by recombinant TbbOPB and TcrOPB (Hemerly et al., 2003).

Figure: 1.7: Monomeric 3D structure of TbbOPB. The C-terminal catalytic domain of TbbOPB (PDB: 4BP9) is highlighted in purple, whilst the N-terminal regulatory domain is highlighted in turquoise (Canning et al., 2013).

1.8.2.1 Functions of oligopeptidase B

Invasion of non-phagocytic mammalian cells is mediated by T. cruzi metacyclics and trypomastigotes through the action of OPB whereby the free intracellular calcium concentration in host cells is increased (Burleigh and Andrews, 1995). It is thought that OPB acts as a processing enzyme which generates active calcium from a cytosolic precursor molecule (Caler et al., 1998).

It was shown that TbbOPB (Morty et al., 2005b), TcoOPB (Pinto Dias, 2006) and TevOPB (Morty et al., 2005a) is released from the respective lysed, dead and dying parasites into the bloodstream (Morty et al., 2005a; Munday et al., 2011), and is, thus, an attractive diagnostic antigen. The OPB from T. b. brucei is not inhibited by plasma serpins nor α-2 macroglobulin, and is able to hydrolyse regulatory peptides in the host serum (Troeberg et al., 1996; Morty et al., 2001; Morty et al., 2005a). The action of OPB has been implicated in the disruption of the hormone levels of the infected host (Morty et al., 1999; Morty et al., 2001; Morty et al., 2005a) through the cleavage of peptide hormones, such as atrial natriuretic factor in the blood of T. b. brucei infected rats (Tetaert et al., 1993). The disruption of host hormone signalling pathways, through
the action of OPB, is thought to contribute to disease progression (Morty et al., 2005a; Munday et al., 2011).

1.9 Structure-based drug design

The elucidation of the roles that virulence factors play in trypanosomal pathogenesis, together with biochemical characterisation, including structural details, form the basis for the development of specific inhibitors using computational-assisted drug design (Frearson et al., 2007). The availability of large libraries of inhibitor compounds which can be accessed, allows for the testing of novel trypanocides (McKerrow et al., 2008).

Approaches for the discovery of novel chemotherapies include target-based, phenotypic screening and compound repurposing (Field et al., 2017). The most promising methodologies to identify suitable ligands for target proteins are structure-based drug design (SBDD) and virtual ligand screening (VLS) (Bleicher et al., 2003; Foloppe et al., 2006; Klebe, 2006). The use of SBDD provides insight into the interactions between the protein ‘receptor’ and the ligand, inhibitor or substrate, which highlights chemical modifications required to improve the binding affinity of the ligand to the protein ‘receptor’.

A peptidomimetic library based on the substrate P₁ specificity site of TbbMCA2 was synthesised and showed promising results in vitro against the recombinant enzyme as well as T. b. brucei, T. cruzi, L. infantum and Plasmodium falciparum (Berg et al., 2012). When tested in vitro, it was suggested that the inhibitors may be acting on multiple targets. Analysis and molecular docking, in an SBDD methodology, is required for the validation of ligand binding to the TbbMCA2 molecular target for the development of possible new ligands targeting the MCAs.

1.10 Antibody production using phage display

Target-specific antibodies, generated using phage display, have applications in proteomics, drug delivery studies and the analysis of intracellular antigens (Hoogenboom, 2005). Phage display is independent from the immune system, whereby in vitro selection from combinatorial libraries of immunoglobulin V₄ and V₅ genes, is used to generate antibodies, which are displayed on phage particles (Smith, 1985; Pini and Bracci, 2000; Schirrmann et al., 2011). The advantage of in vitro technologies over animal immunisation is the unlimited and defined source of antigen binders where the DNA is known (Schirrmann et al., 2011).
The process of phage display is based on the linkage of foreign antibody gene fragments to the minor phage coat protein (pIII) of the M13 bacteriophage (Smith, 1985). As a result, the genes encoding the antibody (genotype) is directly linked to the displayed antibody on the phage particle (phenotype). This feature allows the coding sequence of the antibody to be exactly known and exactly reproduced. The antibody::pIII fusion protein are assembled in *E. coli* and secreted into the periplasmic space and are often soluble, stable and folded in their native form (Marston, 1986).

The process of phage display is illustrated in Fig. 1.8 which starts with the construction of a phagemid library whereby the immunoglobulin VH and VL genes are amplified and ligated into a phagemid plasmid (Step A). After the propagation of *E. coli* transfected with the phagemid cells (Step B), the scFv::pIII fusion proteins are displayed on the bacterial cell surface (Step C). The phagemids are then rescued by the M13KO7 helper phage which provides the essential proteins (dark grey outline) for the packaging of the recombinant phage DNA within the phage and the display of the fusion proteins on the bacterial cell surface (Webster, 1996) (Step D). As a result, a mosaic population where *E. coli* containing either phagemid or the helper phage exists whereby the WT pIII (dark gray) competes with the scFv::pIII fusion proteins for incorporation into the phage particle (Step E). In Step F, the mosaic population is panned against the immobilised antigen to isolate antigen specific scFv (light blue), whilst non-specific scFvs are discarded (pale yellow). The bound phagemids are eluted from the *E. coli* host, and under antibiotic selection, only the phagemids are transfected back into *E. coli* (Step G). It is at this step, that the WT phagemid is lost. The resulting phagemid population is rescued once again (Step H) and used to pan against the immobilised antigen once again. This process is repeated numerous times to select for scFv with a high affinity for the immobilised antigen.
Figure 1. 8: Schematic representation of the genotype:phenotype linkage of scFv and the process of phage display. The resultant myc-tagged scFv antibody fragment::pIII fusion is displayed by the bacterial host (light pink). The genes coding for the immunoglobulin V\(_H\) and V\(_L\) genes are coloured in light green and turquoise, respectively, and are joined by a linker region (GGGGS)\(_3\) which prevents dissociation. A myc sequence, coloured in bright pink, is included to facilitate affinity purification. The pIII phage coat protein is coloured in light grey and the WT pIII in dark grey. The essential packaging proteins, supplied by the helper phage, is shown as the grey outline of the *E. coli*. The process by which the scFv antibodies are selected from the phagemid library is detailed in steps A to H. The stepwise explanation of the process is given in the text. Adapted from McCafferty *et al.* (1990).
1.10.1 Antibody formats produced by phage display

The most common antibody fragments produced by phage display (Fig. 1.9) are the single chain variable fragment (scFv) and the antigen binding fragment (Fab) of all mammalian species as well as the variable heavy domain (V_{H}) of camel antibodies (Holt et al., 2003; Hoet et al., 2005; Hust and Dübel, 2005). The monovalent scFv (V_{L} and V_{H}), Fab (V_{L}, C_{L}, V_{H}, C_{H}) and nanobody (V_{nH}) fragments retain their respective specific antigen binding affinity compared to that of the V_{H} and C_{H}, since the antigen binding surface is not altered (Bird et al., 1988; Huston et al., 1988).

![Figure 1.9: Commonly produced antibody fragments using phage display. (Hammarström and Marcotte, 2015).](image)

The evolution of high affinity single V-like domains (V_{nH}) is an integral part of the camelid immune system (Fig. 1.9, panel B) (De Genst et al., 2005). The V_{nH} domain possesses extended surface loops which are able to penetrate the narrow cavities on various pathogens’ surfaces (Nuttall et al., 2004; Streltsov et al., 2004). In order to escape immunodetection, many pathogens have evolved narrow cavities in their surface antigens in order to make them inaccessible by host antibodies (Janeway Jnr and Medzhitov, 2002). A prime example is evident in the close packing of the VSG dimers on the parasite surface. A V_{nH} antibody fragment was able to penetrate further between the VSGs on the surface of T. b. brucei compared to the Fab antibody fragment (Fig. 1.10) and the anti-VSG IgM antibody (Fig. 1.4) (Stijlemans et al., 2004).

The development of combinatorial libraries for human or mouse V genes is complex due to the requirement for multiple primer sets. In birds, the genes for the heavy (H)
and light (L) chains are subjected to VDJ and VJ rearrangement, respectively. As a result of the incorporation of pseudo V region genes, variability arises by resultant gene conversion (Reynaud et al., 1985; Reynaud et al., 1987; Thompson and Neiman, 1987; Reynaud et al., 1989). This results in the V regions of the chicken immunoglobulins, having identical amino acid residues at both termini. This simplifies the development of a combinatorial library of the naïve chicken antibody repertoire as only one set of primers is required: one for the H and another for the L chain. This characteristic of the genes coding for chicken antibodies was first exploited by Davies et al. (1995) using chicken bursal lymphocyte RNA to produce a naïve scFv library, from which scFv antibodies were produced against three proteins. Since chickens are able to produce antibodies against a wide range of antigens (Conroy et al., 2012; Shih et al., 2012), together with their phylogenetic distance from mammalian species, a combinatorial library using chicken antibody coding genes for the development of diagnostic antibodies would be advantageous (Conroy et al., 2014). In 2004, one such phage display library, using chicken immunoglobulin genes, was developed and named the Nkuku® library (van Wyngaardt et al., 2004). The Nkuku® phagemid library will be used in the present study.

Figure 1.10: Comparison of the penetration of V\textsubscript{H}H and Fab antibody fragments in between VSG dimers on trypanosome surfaces. The VSG dimer is coloured green and blue, the V\textsubscript{H}, and V\textsubscript{L}, C\textsubscript{H} and C\textsubscript{L} of the Fab fragment are coloured red and black, respectively. The structure of V\textsubscript{H}H is coloured in light blue and the complementary determining loops in yellow. (Stijlemans et al., 2004).

1.10.2 Applications of phage display

A study of protein-protein interactions (Hertveldt et al., 2009), identification of immunogenic proteins from pathogens (Stijlemans et al., 2004) and of agonists and antagonists to probe receptor site function (Koolpe et al., 2005) can all be achieved using phage display technology.
In addition, phage display is a cost effective and efficient method to map the epitopes of various antigens which are involved in antibody interaction, thus, providing vital information for the development of diagnostics, immunotherapies and vaccines (Böttger and Böttger, 2009; Wang and Yu, 2009). The Nkuku® phage display library was used to map the epitopes of the SAT2 foot-and-mouth disease virus in an attempt to neutralise the virus (Opperman et al., 2012).

Antibodies are used directly in diagnostics for pathogen antigen detection (Dussart et al., 2008) and for competition with serum antibodies for binding to the pathogen antigen (Dong et al., 2007). Single chain variable fragment antibodies can be used in many standard immunodiagnostic tests (Thompson and Neiman, 1987; Nissim et al., 1994; van Wyngaardt and Du Plessis, 1998).

The Nkuku® phage display library has been used to generate antibody fragments for the use in ELISA immunodiagnostic tests against bluetongue virus (Fehrsen et al., 2005; Rakabe et al., 2011), African horse sickness virus (van Wyngaardt et al., 2004; van Wyngaardt et al., 2013), a 16 kDa antigen of Mycobacterium tuberculosis (Sixholo et al., 2011), and the 65 kDa HSP of Mycobacterium bovis (Wemmer et al., 2010). In addition, the HSP65 antibody fragments were engineered to form bivalent constructs, “gallibodies”, which were conjugated to gold particles and used in a sandwich RDT (Wemmer et al., 2010).

1.11 Objectives of current study

Objective 1: Determination of the applicability of the MCA5s from T. congolense and T. vivax as a chemotherapeutic target.

1. To recombinantly express and purify MCA2 and -5 in order to raise antibodies for further research.
2. To identify the amino acid residues required for autoprocessing of MCA5.
3. To isolate native MCA5 enzyme.
4. To enzymatically characterise both the recombinant and native MCA5.
5. To perform molecular docking studies of Berg ligands and commercial inhibitors and substrates into the active site of TbbMCA2, for which the library was designed, as well as TcoMCA5 and TviMCA5.
Objective 2: Application of OPB-specific scFv antibody fragments in an antigen detection ELISA format.

1. To pan the *Nkuku*® phagemid library against OPB as a model antigen to select for OPB-specific scFvs.
2. To determine the most likely site at which the selected scFv interacts with OPB.
3. To demonstrate that the isolated scFv detects both recombinant and native OPB in different cellular compartments as well as OPB released into the parasite culture medium.
4. To detect OPB in the sera of experimentally infected cattle using OPB-specific scFv and polyclonal anti-OPB antibodies in an antigen detection sandwich detection ELISA.
CHAPTER 2
CLONING AND EXPRESSION OF THE METACASPASES FROM
TRYPANOSOMA BRUCEI BRUCEI, MCA2, AND
TRYPANOSOMA VIVAX, MCA5

2.1 Introduction

African trypanosomosis affects both humans (HAT) and animals (AAT) in rural central Africa. The human infective parasites use wild and domestic animals as a reservoir (Njokou et al., 2006; Cordon-Obras et al., 2009; Anderson et al., 2011). Thus, the control of AAT is critical for the elimination of HAT, as control of the insect vector is an ineffective strategy (Rotureau and Van Den Abbeele, 2013). The indiscriminate use of trypanocides and the lack of new chemotherapies, resulted in the emergence of drug resistance, and there is consequently a need for new drugs (Field et al., 2017).

Molecular targets for the development of novel chemotherapies are those which are essential for the parasite’s survival in the host (Hölzmuller et al., 2008). These targets, also known as virulence factors, are used in an anti-disease strategy rather than an anti-parasite strategy (Antoine-Moussiaux et al., 2009) as the development of a vaccine is unlikely due to antigenic variation (La Greca and Magez, 2011). The anti-disease strategy focusses on targeting of factors which are essential to the growth and survival of the parasite (Stuart et al., 2008).

Homologues of the metazoan caspases are the metacaspases (MCA) which are found in all kingdoms except that of the metazoan (Uren et al., 2000). Apoptosis is a controversial process in unicellular organisms; however, evidence in its favour is mounting (Deponte, 2008; Kaczanowski et al., 2011). Morphological and biochemical features, which are similar to those seen during apoptosis, have been described in T. brucei (Welburn et al., 2006b), T. cruzi (Ameisen et al., 1995), Leishmania spp. (Gannavaram and Debranbant, 2012), Giardia lamblia and Plasmodium falciparum (Bruchhaus et al., 2007). Due to the roles played by caspases in apoptosis and non-apoptotic events, it is thought that the MCAs may function in a manner similar to that of the caspases. As such, the MCAs are considered to be virulence factors as well as attractive drug targets due to their absence in their mammalian hosts.

Despite the conserved caspase-haemoglobinase fold (Aravind and Koonin, 2002), the caspases and MCA are distinctly different in their substrate specificity, activation
mechanisms, calcium dependency and control of peptidolytic activity. In order to determine the role and processes they are involved in, the MCAs need to be identified, functionally characterised and their roles in parasite homeostasis determined.

A number of kinetoplastid MCAs have been studied to date, including the multicopy MCAs, MCA1 (Szallies et al., 2002), MCA2 (Helms et al., 2006; Moss et al., 2007; McLuskey et al., 2012; Machado et al., 2013), MCA3 (Helms et al., 2006), MCA4 (Szallies et al., 2002; Proto et al., 2011) and MCA5 (Helms et al., 2006) from T. b. brucei, the MCA3 and -5 from T. cruzi (Kosec et al., 2006; Laverrière et al., 2012), and the single copy MCAs from L. major (Gonzáles et al., 2007; Zalila et al., 2011; Castanys-Muñoz et al., 2012; Casanova et al., 2015), L. donovani (Lee et al., 2007; Raina and Kaur, 2012) and L. mexicana (Castanys-Muñoz et al., 2012). Most studies focused on the native MCA function in vitro when cell death has been induced in the parasites. Very few studies focus on the characterisation of the recombinant and native enzymes themselves.

Analysis of the phylogenetic relatedness of the multi- and single copy MCA peptidases in Trypanosoma spp. T. cruzi, Leishmania spp. and the single MCA from Saccharomyces cerevisiae (YCA1), shows a clear division between the multi- and single copy groups, shown in yellow and blue, respectively, in Fig. 2.1. Within the multicopy group, a high sequence identity exists between the MCA2 and -3 of T. b. brucei, T. b. gambiense and T. evansi. The MCA2 and -3 of the animal infective T. congolense and T. vivax species, are not as related to their human infective counterparts. The MCA1, -4 and -5 of T. b. brucei, T. b. gambiense and T. evansi share a 100% sequence identity, and therefore, reference will only be made to those from T. b. brucei.

Pseudopeptidases have substitutions for the catalytic residues and have been shown to be inactive (Reynolds and Fischer, 2015). The MCA1s (Fig. 2.1, shown in red) have both the catalytic His and Cys substituted with Tyr and Ser, respectively, whilst the MCA4s (Fig. 2.1, shown in purple) all possess the catalytic His, but have a Ser substitution for the catalytic Cys. The substitution of catalytic residues are common with some pseudopeptidases being shown to play key regulatory roles (Pils and Schultz, 2004; Reynolds and Fischer, 2015). It has been reported that TbbMCA3 processes TbbMCA4, releasing TbbMCA4 which plays a role in cell cycle and parasite virulence (Proto et al., 2011).

The focus of the current study is the MCA5 from the animal infective T. congolense and T. vivax (Uilenberg and Boyt, 1998). These MCAs differ from the multicopy gene
products, as they possess a long Pro-, Gln-, Tyr-rich C-terminal domain. This extended domain is present in each of the single copy MCAs in both *Trypanosoma* spp. and *Leishmania* spp. (Appendix A3) and is thought to play an important role in protein-protein interactions (Kay et al., 2000). One such example is the apoptotic-like response in *T. cruzi* parasites, in which the *TcrMCA5* lacking the C-terminal domain, was overexpressed (Laverrière et al., 2012).

Figure 2.1: Molecular phylogenetic analysis of the kinetoplastid MCAs and the single MCA from *S. cerevisiae*. The bootstrap consensus tree from 500 replicates (Felsenstein, 1985) utilising the maximum likelihood method, was used to deduce the evolutionary history of 26 MCA protein sequences (Jones et al., 1992) with MEGA7 (Kumar et al., 2016). The protein sequences were obtained from TriTrypDB (Aslett et al., 2010): *TbbMCA* from *T. b. brucei* (927), *TbgMCA* from *T. b. gambiens* (DAL972), *TvMCA* from *T. vivax* (Y486), *TevMCA* from *T. evansi* (STIB 805), *TcoMCA* from *T. congolense* (IL3000), *TcrMCA* from *T. cruzi* (Sylvio X10/1), *LmjMCA* from *L. major* (Friedlin), *LmxMCA* from *L. mexicana* (MHOM/GT/2001/U1103), *LdnMCA* from *L. donovani* (BPK282A1) and were compared to the YCA1 from *S. cerevisiae* (UniProt Q08601). The single copy MCAs are grouped in yellow and the multicopy MCAs in blue. The multicopy MCAs with mutations of the catalytic Cys (purple) and both catalytic His and Cys (red) were blocked in their respective colours. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.
In the work described in this chapter, the MCA2 gene from *T. b. brucei* and MCA5 gene from *T. congolense* were cloned, to include a N-terminal 6xHis tag, and were expressed in the soluble and insoluble fractions using *Escherichia coli*. After solubilisation, on column refolding and purification using nickel affinity chromatography, purified recombinant *Tvi*MCA5 was used to produce antibodies in chickens. The chicken antibodies produced against both *Tco*MCA5 and *Tvi*MCA5 were separately coupled to hydrazide resin to purify the respective MCAs present in the soluble expression fractions.

2.2 Materials and methods

2.2.1 Materials

Molecular biology: The oligonucleotide primers were synthesised at the department of Molecular and Cellular Biology at the University of Cape Town, South Africa. BamHI, EcoRI, Ndel, Xhol [for nomenclature see Roberts et al. (2003)], T4 DNA ligase, 10 mM dNTPs, High-fidelity PCR enzyme mix, GeneJet™ Plasmid Miniprep Kit, TransformAid™ Bacterial Transformation Kit, pTZ57R/T cloning plasmid, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (IPTG), isopropyl-β-D-thiogalactopyranoside (X-gal) and dithiothreitol (DTT) were obtained from Fermentas (Vilnius, Lithuania). The pGEM-T® cloning plasmid and T4 DNA ligase were purchased from Promega (Madison, WI, USA) and the pET-28a and pET-32a expression plasmids from Novagen (Darmstadt, Germany). FIREpol® Taq polymerase, 10xPCR reaction buffer and 25 mM MgCl₂ were from Solis Biodyne (Tartu, Estonia). The ZymoResearch Clean and Concentrator™ kit and Zymoclean™ Gel DNA Recovery Kit were purchased from Zymo Research (Orange, CA, USA). Seakem®LE agarose was purchased from Lonza (Rockland, ME, USA), ampicillin sodium salt from USB Corporation (Cleveland, OH, USA) and kanamycin from Gibco, (Paisley, UK). Bacteriological agar, tryptone and yeast extract were purchased from Merck Biolab (Darmstadt, Germany). Crystal violet and ethidium bromide were purchased from Sigma (St. Louis, MO, USA). Buffer salts and other common chemicals were purchased from Merck (Germany) and Sigma (St. Louis, MO, USA) and were of the highest purity available. The O’GeneRuler™ 1 kb DNA Ladder from Fermentas (Vilnius, Lithuania) was used in all agarose gels unless otherwise stated.

E. coli cells: *Escherichia coli* cells, JM 109 and BL21 (DE3) strains, were purchased from New England Biolabs (Ipswitch, MA, USA). The JM 109 strain allowed for
blue/white screening for transformants in the presence of IPTG and X-gal. The
BL21 (DE3) strain is deficient in both Lon and OmpT peptidase expression (Graslund
et al., 2008).

Purification and quantification of recombinant proteins: His-select® nickel affinity
resin, 4-chloro-1-naphthol, phosphorylase B (97.4 kDa), bovine serum albumin (BSA,
68 kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), soybean trypsin inhibitor
(SBTI, 21.5 kDa), lysozyme (14 kDa) and the semi dry blotter were purchased from
Sigma (St. Louis, MO, USA). Equal volumes of 5 mg/ml solutions of phosphorylase B,
bovine serum albumin, ovalbumin, carbonic anhydrase, soybean trypsin inhibitor and
lysozyme, made in reducing treatment buffer, were combined to produce the molecular
weight marker used in all the SDS-PAGE gels. The BCA™ Protein Assay Kit was
purchased from Pierce (Rockford, IL, USA), BioTrace™ nitrocellulose from PALL Corp
(Ann Arbor, USA), 4-chloro-1-naphthol and UltraLink® hydrazide resin from
ThermoScientific (Waltham, MA USA) and non-fat powdered milk from Amresco
(Solon, OH, USA).

Chicken IgY preparation and ELISA: Freund’s complete and incomplete adjuvants
and bovine serum albumin (BSA, catalogue no.: A7906) were purchased from Sigma
(St. Louis, MO. USA). Polyethylene glycol (PEG) M, 6 000 was purchased from Merck
(Darmstadt, Germany), Nunc-Immuno™ Maxisorp 96-well plates from Nunc Intermed
(Roskilde, Denmark), 2, 2’-azinobis [3-ethyl-3, dihydrobenzothiazole-6-sulfonate]
(ABTS) from Roche (Mannheim, Germany). The BIOTEK® ELx50™ Microplate washer
was purchased from BioTek Instruments Inc. (USA) and the FLUORStar Optima
Spectrophotometer from BMG Labtech (Offenburg, Germany).

Antibodies: The chicken anti-6xHis antibody was purchased from Merck (Germany)
and the rabbit anti-chicken IgY HRPO conjugate from Sigma (St. Louis, MO. USA).
Approval was obtained for antibody production using chickens, with protocols approved
by the University of KwaZulu-Natal animal research ethics committee (Reference
053/15/Animal).

2.2.2 Cloning of TbbMCA2 and TviMCA5 into the pGEM-T® cloning plasmid

The genomic DNA of purified bloodstream trypomastigotes of *T. b. brucei* (strain 927)
and *T. vivax* (strain Y486) parasites was isolated utilising the method developed by
Medina-Acosta and Cross (1993). Briefly, parasites were washed with PBS [100 mM
Na₂HPO₄, 2 mM KH₂PO₄, 2.7 mM KCl and 137 mM NaCl, pH 7.2, 1 ml], centrifuged (2 000 g, 10 min, RT), resuspended in TELT buffer [50 mM Tris-HCl buffer, pH 8.0, 62.5 mM Na₂EDTA, pH 9.0, 2.5 M LiCl, 4% (v/v) Triton X-100, 150 μl] and incubated at RT for 5 min. A phenol-chloroform [1:1 (v/v)] extraction with end-over-end mixing, at RT for 5 min was subsequently performed. To the resulting top phase, 100% (v/v) ethanol (300 μl) was added and mixed using an end-over-end rotator at RT for 5 min to facilitate the precipitation of genomic DNA. Following centrifugation (10 000 g, 10 min, RT), the pellet was washed with 100% (v/v) ethanol (1 ml) and any residual ethanol allowed to evaporate at 37 °C for 30 min. The pellet was resuspended in TE buffer [100 mM Tris-HCl buffer, pH 7.5, 10 mM Na₂EDTA, 20 μg/ml RNAse, 30 μl] and incubated at 37 °C for 45 min. A sample of the isolated DNA (2 μl) was electrophoresed on a 1% (w/v) agarose gel, containing ethidium bromide (0.5 µg/ml), in 1xTris-Acetate-EDTA (TAE) buffer (40 mM Tris-HCl buffer, 100 mM acetic acid, 1 mM Na₂EDTA, pH 8.0).

Using Primer 3 (Rozen and Skaletsky, 2000), primers were designed to amplify the 1044 bp and 1 569 bp genes which encodes the MCA2 protein from *T. b. brucei* (strain 927) [GenBank® accession: AAX80349.1] and the MCA5 protein from *T. vivax* (strain Y486) [GenBank® accession: CCC50891.1], respectively. To facilitate subcloning into expression plasmids, restriction sites were included in the designed primers. In Table 2.1, the primers used for PCR amplification of the *Tb*MCA2 and the *Tv*MCA5 genes as well as those required for colony PCR of the recombinant cloning and expression plasmids, are listed. In addition, the cloning and expression plasmids, into which the genes were ligated, are specified (Appendix A4).

The isolated DNA was used as the PCR template. Briefly, the final concentrations of the PCR master mix were: 0.25 μM of each gene primer, 1 x High-fidelity PCR enzyme mix buffer, 2.5 mM MgCl₂, 1 U High-fidelity PCR enzyme mix and 0.25 mM dNTPs in a total reaction volume of 50 μl. The PCR amplification of the *Tb*MCA2 and *Tv*MCA5 genes was performed with incubation at 95 °C for 2 min as the initial DNA denaturation step, followed by 30 cycles of 95 °C for 10 s, 55 °C for 15 s and 72 °C for 1 min. A final elongation step was carried out at 72 °C for 7 min. A sample of the amplified gene products (2 μl) was electrophoresed on a 1% (w/v) agarose gel, containing ethidium bromide (0.5 μg/ml), in 1xTAE buffer. The remaining reaction mixture was purified using the Zymo Research Clean and Concentrator™ kit, as per the manufacturer’s instructions. A sample of the amplified *Tb*MCA2 and *Tv*MCA5 genes were sequenced.
at the Central DNA Facilities, Stellenbosch University, South Africa, using the specific gene primers.

Table 2.1: Primer sequences to be used throughout the *Tbb*MCA2 and *Tv*MCA5 cloning process.

<table>
<thead>
<tr>
<th>Primer</th>
<th>5’ - 3’</th>
<th>Cloning plasmid</th>
<th>Expression plasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>TbbMCA2 forward (NdeI)</td>
<td>GCC ATA TGT GCT CCT TAA TTA</td>
<td>pTZ57R/T</td>
<td>pET-28a</td>
</tr>
<tr>
<td>TbbMCA2 reverse (XhoI)</td>
<td>CTC GAG CTA TTG GAT AGA TCT GTC AAC AG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TvMCA5 forward (BamHI)</td>
<td>AAG GAT CCA TGA ATA TTC TTA CC GA TCT CTT TTT G</td>
<td>pGemT®</td>
<td>pET-32a</td>
</tr>
<tr>
<td>TvMCA5 reverse (EcoRI)</td>
<td>AAG AAT TCT GTG ATA CAT CAC TTG TGA CCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>TAA TAC GAC TCA CTA TAG GG</td>
<td>pGemT®</td>
<td>pET-28a and pET-32a</td>
</tr>
<tr>
<td>T7 terminator</td>
<td>CTA GTT ATT GCT CAG CGG TG</td>
<td>pTZ57R/T pGemT®</td>
<td></td>
</tr>
<tr>
<td>SP6 promoter</td>
<td>ATT TAG GTG ACA CTA TAG</td>
<td>pGemT®</td>
<td>-</td>
</tr>
</tbody>
</table>

Underlined sequences correspond to the restriction sites. Sequences in bold correspond to the start and the stop codon in the forward and reverse primer, respectively.

Ligation of the *Tbb*MCA2 and *Tv*MCA5 inserts into the pTZ57R/T and the pGEM®-T cloning plasmids, respectively, was performed using a 3:1 ratio of plasmid to purified PCR product and incubation with 1 U of T4 DNA ligase at 37 °C for 1 h, followed by a further incubation step at RT for 16 h. The ligation mixture was transformed into competent *E. coli* JM 109 cells using the TransformAid™ Bacterial Transformation Kit, as per the manufacturer’s instructions. The resulting *E. coli* JM 109 cells (50 ml) from the transformation reaction were plated onto pre-warmed 2xYT plates [1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl, 1% (w/v) bacteriological agar, containing 50 μg/ml ampicillin, 20 μg/ml X-gal, 10 μg/ml IPTG] and incubated at 37 °C for 16 h. The incorporation of X-gal and IPTG onto the 2xYT plates facilitated blue/white screening in order to identify which clones contained the plasmid with the ligated gene insert. The white colonies, which contained the recombinant pTZ57R/T and pGEM®-T plasmid, were selected and grown in 2xYT medium (containing 50 μg/ml ampicillin, 5 ml) at 37 °C for 16 h with agitation. The plasmid DNA of the recombinant colonies was isolated using the GeneJet™ Plasmid Miniprep Kit, as per the manufacturer’s instructions. The isolated plasmid DNA was used as the template for colony PCR using the previously described PCR amplification reaction conditions, with the exception that FIREpol® Taq polymerase was used instead of the High-fidelity taq polymerase. The
colony PCR products (5 µl) along with samples of the plasmid DNA (5 µl) were electrophoresed on a 1% (w/v) agarose gel, containing ethidium bromide (0.5 µg/ml), in 1xTAE buffer.

The plasmid DNA of the positive clones of recombinant TbbMCA2-pTZ57R/T and TviMCA5-pGEMT was sequenced at the Central Analytical Facilities, Stellenbosch University, South Africa using both the gene and plasmid specific primers.

2.2.3 Subcloning of the TbbMCA2 and TviMCA5 gene constructs into the bacterial pET-28a and pET-32a expression plasmids

The recombinant TbbMCA2-pTZ57R/T and TviMCA5-pGEMT plasmids were subjected to a restriction digestion (50 µl) with NdeI and Xhol, BamHI and EcoRI, respectively, in 2xTango buffer at 37 °C for 4 h with subsequent heat deactivation at 80 °C for 15 min. The reaction mixture (50 µl) was electrophoresed on a 1% (w/v) agarose gel in 1xTAE buffer, containing crystal violet (10 µg/ml). Bands were visualised using crystal violet instead of ethidium bromide to avoid DNA damage by ultraviolet light which is required to excise ethidium bromide stained bands (Rand, 1996). The gel was viewed on a light box, the 1 044 bp and 1 569 bp TbbMCA2 and TviMCA5 products were excised and subsequently purified using the Zymoclean™ Gel DNA Recovery Kit as per the manufacturer’s instructions.

The restriction digestion of the pET-28a plasmid, with NdeI and Xhol, and the pET-32a plasmid, with BamHI and EcoRI, was done in 2xTango buffer at 37 °C for 4 h with subsequent heat deactivation at 80 °C for 15 min. A 3:1 ratio of plasmid to gene insert was incubated with 1 U of T4 DNA ligase at 37 °C for 1 h followed by a further incubation step at RT for 16 h.

The ligation mixture was transformed into E. coli BL21 (DE3) cells by CaCl₂ transformation (Cohen et al., 1972; Sambrook et al., 2001). Briefly, 2xYT medium (10 ml) was inoculated with a single E. coli BL21 (DE3) colony and grown at 37 °C for 16 h with agitation. The overnight culture was diluted 1:100 with fresh 2xYT medium and grown at 37 °C with agitation until an OD₆₀₀ of 0.4 was obtained. The cultures were transferred into ice cold, sterile centrifuge tubes and incubated on ice for 10 min. The cells were pelleted (4 500 g, 10 min, 4 °C) and resuspended in ice cold, sterile CaCl₂ solution [60 mM CaCl₂, 10 mM HEPES, pH 7.0, 40 ml]. The cell solution was pelleted again (4 500 g, 10 min, 4 °C) and resuspended in ice cold, sterile CaCl₂ solution (2 ml).
Competent *E. coli* cells (20 μl) were incubated with the ligation mixture (1 μl) on ice for 30 min. Thereafter, cells were heat shocked at 42 °C for 90 s and placed on ice immediately for 2 min. The cells were added to pre-warmed super optimal cataboliser with catabolite repression (SOC) medium [2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose, 80 μl] and incubated at 37 °C for 1 h with gentle agitation. The resulting cell mixture (100 μl) was plated onto pre-warmed 2xYT plates containing 34 μg/ml kanamycin for pET-28a and 50 μg/ml ampicillin for pET-32a recombinant clones, and incubated at 37 °C for 16 h.

Recombinant *TbbMCA2*-pET28a and *TviMCA5*-pET32a colonies were grown in 2xYT medium (5 ml), containing 34 μg/ml kanamycin for pET-28a and 50 μg/ml ampicillin for pET-32a, and grown at 37 °C for 16 h with agitation. The plasmid DNA was isolated using the GeneJet™ Plasmid Miniprep Kit, as per the manufacturer’s instructions and used as the template for the colony PCR. Using the previously described PCR amplification reaction conditions, with the exception that FIREpol® Taq polymerase was used instead of the High-fidelity Taq polymerase, a colony PCR was performed. The colony PCR products (5 μl) along with samples of the plasmid DNA (5 μl) were electrophoresed on a 1% (w/v) agarose gel, containing ethidium bromide (0.5 μg/ml), in 1xTAE buffer.

2.2.4 Recombinant expression of *TbbMCA2* and *TviMCA5*

Single colonies of positively identified recombinant *TbbMCA2*-pET28a and *TviMCA5*-pET32a BL21 (DE3) clones were used to inoculate terrific broth (TB) medium [1.2% (w/v) tryptone, 2.4% (w/v) yeast extract, 0.4% (v/v) glycerol, 0.17 M KH₂PO₄, 0.72 M K₂HPO₄; 100 ml] which contained either 34 μg/ml kanamycin for pET-28a or 50 μg/ml ampicillin for pET-32a. After incubation at 37 °C for 16 h in baffled flasks, the cells were pelleted by centrifugation (5 000 g, 10 min, 4 °C) and resuspended in 1% (v/v) Triton-X-100-PBS (5 ml). A final concentration of 1 mg/ml lysozyme was added and incubated at 37 °C for 30 min. The cell suspension was frozen at -70 °C for 1 h and subsequently thawed at RT. The cell suspensions were sonicated four times for 30 s each and the cellular debris along with the insoluble inclusion bodies were pelleted from the soluble protein lysate by centrifugation (5 000 g, 10 min, 4 °C). The insoluble pellet was resuspended in 1% (v/v) Triton-X-100-PBS (5 ml), was stored at -20 °C.
Samples of the supernatant and the pellet, containing the soluble and insoluble fractions, respectively, were electrophoresed on four 12.5% reducing SDS-PAGE gels (Laemmli, 1970) with one stained with Coomassie Blue R-250 and the others transferred onto nitrocellulose using the semi dry blotter from Sigma with the transfer of proteins confirmed by staining with Ponceau S [0.1% (w/v) Ponceau S, 15% (v/v) acetic acid]. The unoccupied sites on the nitrocellulose membrane were blocked with 5% (w/v) non-fat milk powder in TBS (20 mM Tris-HCl buffer, 200 mM NaCl, pH 7.4) at RT for 1 h. The nitrocellulose was washed three times over 15 min with TBS. Thereafter, chicken anti-6xHis IgY [1:5 000 in 0.5% (w/v) BSA-PBS], chicken anti-TcoMCA5 IgY and chicken anti-TviMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS] was added and incubated at 4 °C for 16 h. The nitrocellulose was washed and incubated with rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] at RT for 1 h. The nitrocellulose was washed before the addition of 4-chloro-1-naphthol·H₂O₂ substrate [0.06% (w/v) 4-chloro-1-naphthol, 0.1% (v/v) methanol and 0.0015% (v/v) H₂O₂ in PBS] and allowed to develop in the dark.

2.2.5 Solubilisation, refolding and purification of recombinant TbbMCA2 and TviMCA5

Based on the success of the solubilisation and purification of recombinant TcoMCA5 (Eyssen, 2013) using the method which was adapted Schlager et al. (2012), this method was employed for recombinant TbbMCA2 and TviMCA5. Sarkosyl solubilisation was performed on the inclusion bodies which were pelleted after expression in TB. The insoluble expression pellet was resuspended in lysis buffer [8 mM Na₂HPO₄, 286 mM NaCl, 1.4 mM KH₂PO₄, 2.6 mM KCl, 1% (w/v) SDS, pH 7.4, 1 mM DTT, 10 ml for a 250 ml culture], sonicated twice over 4 min on ice, and incubated on ice for 30 min. The solubilised proteins were separated from the insoluble debris by centrifugation (13 000 g, 20 min, 4 °C).

The refolding and purification of solubilised recombinant TbbMCA2 and TviMCA5 was performed by immobilised metal affinity chromatography. This purification method will be referred to as nickel affinity purification throughout this manuscript. Briefly, His-select® nickel affinity resin (1 ml) was placed in a 10 ml chromatography column, washed with dH₂O (2 ml) and equilibrated with wash buffer [8 mM Na₂HPO₄, 286 mM NaCl, 1.4 mM KH₂PO₄, 2.6 mM KCl, 0.1 % (w/v) sarkosyl, pH 7.4, 5 ml]. The solubilised protein lysate (5 ml) was incubated with the resin at 4 °C for 3 h with agitation using an end-over-end rotator. The unbound proteins were collected, and the resin was washed
with PCW buffer (50 ml) until an absorbance value at 280 nm of 0.02 was reached. The bound proteins were eluted in 1 ml fractions with elution buffer [8 mM Na$_2$HPO$_4$, 286 mM NaCl, 1.4 mM KH$_2$PO$_4$, 2.6 mM KCl, 0.1% (w/v) sarkosyl, 50 mM imidazole, pH 7.4, 10 ml]. The column was regenerated using dH$_2$O (2 ml) followed by 6 M guanidine hydrochloride (5 ml), dH$_2$O (3 ml) and wash buffer (3 ml) before storage in 30% (v/v) ethanol at 4 °C. Samples of the unbound and the eluted fractions were electrophoresed on a 12.5% reducing SDS-PAGE gel (Laemmli, 1970) and stained with Coomassie Blue R-250. The western blot of TviMCA5 was performed as per Section 2.2.4 using chicken anti-TviMCA5 IgY.

The protein concentration was determined using the BCA™ protein assay kit.

2.2.6 Antibody production and ELISA optimisation

2.2.6.1 Preparation of immunogen, the immunisation of chickens and IgY isolation

Ethical clearance for animal procedures was obtained from the University of KwaZulu-Natal animal research ethics committee (Approval number: 053/15/Animal). Chickens were used to raise antibodies against recombinant TviMCA5. Nickel affinity purified, full length, recombinant TviMCA5 (50 μg/ml, 1.5 ml) was added to an equal volume of Freund’s complete adjuvant and triturated to form a stable water-in-oil emulsion prior to immunisation. Two chickens were immunised intramuscularly on either side of the breast bone. Booster injections, using Freund’s incomplete adjuvant, were given at weeks 2, 4 and 6. Eggs collected prior to immunisation served as the pre-immune control.

Chicken immunoglobulin (IgY) was isolated from the yolks of the eggs collected at each week as described by Goldring and Coetzer (2003). Briefly, the egg yolk was separated from the egg white and rinsed with water. The yolk sac was punctured, the yolk collected, and the volume was determined. The yolk was mixed with two yolk volumes of IgY buffer [100 mM NaH$_2$PO$_4$, pH 7.6, 0.02% (w/v) NaN$_3$], 3.5% (w/v) PEG 6 000 was added and dissolved with stirring. The resulting solution was centrifuged (4 420 g, 30 min, RT), and the supernatant was filtered through absorbent cotton wool. The final PEG concentration was increased to 12% (w/v) by the addition of 8.5% (w/v) PEG 6 000 and was once again dissolved by stirring. The resulting solution was centrifuged (12 000 g, 10 min, RT), and the resulting pellet was dissolved in IgY buffer equal to the yolk volume. Finally, 12% (w/v) PEG 6 000 was added and dissolved with
stirring. The resulting solution was centrifuged (12 000 g, 10 min, RT), and the resulting pellet was dissolved in final IgY buffer [100 mM NaH₂PO₄, pH 7.6, 0.1% (w/v) NaN₃], equal to a sixth of the yolk volume, and stored at 4 °C. The concentration of isolated IgY was determined spectrophotometrically at 280 nm using an extinction coefficient of $E_{280\text{ nm}}^\text{1 mg/ml} = 1.25$ (Goldring et al., 2005).

2.2.6.2 ELISA evaluation of antibody production

The progress of anti-TvMCA5 IgY antibody production during the immunisation period was monitored by using an enzyme-linked immunoadsorbent assay (ELISA). The wells of 96-well Nunc-Immuno™ Maxisorp ELISA plates were coated with recombinant TvMCA5 (1 µg/ml, 100 µl/well) in PBS for 16 h at 4 °C. The coating solution was discarded, and the plates were blocked with blocking buffer [0.5% (w/v) BSA-PBS, 200 µl/well] to prevent non-specific binding of antibodies, and incubated at 37 °C for 1 h. The wells were washed three times with 0.1% (v/v) Tween-20-PBS (PBS-T) using a BIOTEK® ELx50™ microplate washer and incubated with anti-TvMCA5 IgY primary antibody diluted in blocking buffer (100 µl/well) at 37 °C for 2 h. The wells were washed and rabbit anti-chicken IgY HRPO conjugate, diluted in blocking buffer (1:5 000, 100 µl/well), was added and incubated at 37 °C for 1 h. The wells were washed and the ABTS substrate solution [0.05% (w/v) ABTS, 0.0015% (v/v) H₂O₂ in 0.15 M citrate-phosphate buffer, pH 5.0, 100 µl/well] was added. The plate was incubated in the dark for 15 min prior to reading the absorbance at 405 nm using the FLUORStar Optima Spectrophotometer for a further three 15 min intervals until absorbance values above 1.0 were reached.

2.2.7 Immunoaffinity purification of soluble, recombinant TbbMCA2, TcoMCA5 and TvMCA5

2.2.7.1 Antibody coupling to UltraLink® hydrazide resin

Using the UltraLink® hydrazide resin, it is possible to form a hydrazone bond with an oxidised glycoprotein. Using this resin, chicken anti-MCA5 IgYs were immobilised to the UltraLink® hydrazide resin by the oxidation of the carbohydrates on the Fc region and the formation of a hydrazone bond (Fig. 2.2). As a direct consequence of immobilisation at the Fc region, the antibodies are in the correct orientation to bind the specified antigen.
Due to the cleavage of the N-terminal 6xHis tag upon overexpression of soluble recombinant MCAs, nickel affinity purification could not be employed. Thus, immunoaffinity purification was performed by the coupling of chicken anti-TcoMCA5 IgY as well as anti-TviMCA5 IgY antibodies to UltraLink® hydrazide resin. This purification method will be referred to as immunoaffinity purification throughout this manuscript. Briefly, the chicken IgY antibodies (10 mg/ml, 1 ml), which had the highest signal in the ELISA (Appendix A5), was oxidised with 25 mM sodium meta periodate for 30 min at RT and desalted, using the Zebra desalting spin column as per the manufacturer’s instructions. The oxidised IgY antibody mixture was agitated with the hydrazide resin (1 ml), which had been previously equilibrated with coupling buffer (100 mM NaH₂PO₄, pH 7.0, 5 ml), using an end-over-end rotator for 2 h at RT followed by a further 16 h at 4 °C. The unbound fraction was collected, and the resin was washed with coupling buffer (10 ml) followed by 1 M NaCl (10 ml) and coupling buffer containing 0.05% (w/v) NaN₃ (10 ml). Coupling efficiency was determined using the BCA™ protein assay kit.

Figure 2.2: Chemistry of the coupling of antibody glycoproteins to UltraLink® hydrazide resin. (ThermoFisher Scientific technical manual #53149).

2.2.7.2 Immunoaffinity purification

The soluble fractions of recombinantly expressed TbbMCA2 and TcoMCA5 were purified using the anti-TcoMCA5 IgY-hydrazide resin and TviMCA5 with the anti-TviMCA5 IgY-hydrazide resin. The resin was incubated with the soluble
expression fraction (8 ml) with agitation using an end-over-end rotator for 3 h at 4 °C. The unbound fraction was collected, and the resin washed with coupling buffer (50 ml) until an absorbance value at 280 nm of 0.02 was obtained. The bound recombinant MCA was eluted with elution buffer (100 mM glycine-HCl, pH 2.8). Fractions (900 µl) were collected into microfuge tubes containing neutralisation buffer (1 M Tris-HCl buffer, pH 8.5, 100 µl) and each was immediately mixed by inversion. The resins were washed with coupling buffer (20 ml) and stored at 4 °C. Samples of the unbound and the eluted fractions were electrophoresed on a 12.5% reducing SDS-PAGE gel (Laemmli, 1970), transferred onto nitrocellulose and probed with chicken anti-TcoMCA5 IgY and anti-TviMCA5 IgY antibodies as described in Section 2.2.4.

2.3 Results

2.3.1 Cloning of the TbbMCA2 and TviMCA5 genes into the pTZ57R/T and pGEM®-T cloning plasmids

The single MCA2 gene from T. b. brucei (TbbMCA2, GenBank® accession: AAX80349.1), and the single putative full length MCA5 gene from T. vivax (TviMCA5, GenBank® accession: CCC5089.1), were identified. Genomic DNA was successfully isolated from T. b. brucei (strain 927) and T. vivax (strain Y486) bloodstream trypomastigotes (Fig. 2.3, panel A). The isolated genomic DNA of T. b. brucei and T. vivax were used as the templates for PCR amplification of the 1 044 bp TbbMCA2 and 1 569 bp TviMCA5 genes using the specific primers designed for this purpose (Table 2.1). The high-fidelity PCR enzyme mix, comprising a combination of Taq DNA polymerase and a thermostable DNA polymerase with a proofreading ability (ThermoFisher Scientific technical manual K0191), was used for the amplification. These characteristics ensured that the exact sequence would be amplified from the genomic DNA as any transcription errors would result in inaccurate protein translation and, thus, incorrect protein folding in downstream experiments.

The high-fidelity PCR amplification resulted in a single product at the expected sizes of 1 044 bp and 1 569 bp for TbbMCA2 and TviMCA5, respectively (Fig. 2.3, panels B and C). Sequencing of the TviMCA5 PCR product indicated a perfect match to the DNA sequence found at the GenBank® (TvY486.0907120). However, TbbMCA2 sequencing results indicated that there were four mismatches when compared to the sequence found at GenBank® (Tb927.6.940). Three of the four mismatches were degenerate. However, the final mutation resulted in the change of Gln71 to an Arg residue.
relation to the gatekeeper residue (Tyr31) and the catalytic dyad (His158 and Cys213), this mutation is sufficiently distant in the predicted folded protein and should not interfere with any downstream results (Appendix A6).

The PCR products were subsequently purified using the ZymoResearch Clean and Concentrator™ kit. The purified 1 044 bp \(T_{bb}MCA2 \) and 1 569 bp \(T_{vi}MCA5 \) PCR products were successfully ligated into the pTZ57R/T and pGEM®-T cloning plasmids, respectively, and upon transformation, non-recombinant blue and recombinant white colonies were obtained after blue/white screening. Plasmid DNA isolation of the recombinant white colonies was performed and used as the template for colony PCR to determine which clones contained the \(T_{bb}MCA2 \) and the \(T_{vi}MCA5 \) genes.

Fifteen recombinant \(T_{bb}MCA2\)-pTZ57R/T colonies were identified by the PCR amplification of the 1 044 bp product using the \(T_{bb}MCA2 \) forward and reverse gene primers (Fig. 2.4, panel A). Using the \(T_{vi}MCA5 \) forward and reverse gene primers, the PCR amplification of the 1 569 bp product resulted in the identification of six recombinant \(T_{vi}MCA5\)-pGEMT colonies (Fig. 2.4, panel B).

![Figure 2.3: Analysis of the isolation of \(T. b. brucei \) (927) and \(T. vivax \) (Y486) BSF genomic DNA and PCR amplification of the \(T_{bb}MCA2 \) and \(T_{vi}MCA5 \) genes.](image)

Samples from (A) DNA extraction and high-fidelity PCR amplification of (B) \(T_{bb}MCA2 \) and (C) \(T_{vi}MCA5 \) were electrophoresed on a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide.
Figure 2.4: Screening for recombinant *TbbMCA2* and *TviMCA5* clones ligated into the pTZ57R/T and pGEM®-T cloning plasmids, respectively, by the PCR amplification of the isolated plasmid DNA. Following the transformation of *TbbMCA2*-pTZ57R/T and *TviMCA5*-pGEMT ligation mixture into competent *E. coli* JM 109 cells, and the subsequent selection of white colonies, the isolated plasmid DNA of (A) *TbbMCA2*-pTZ57R/T and (B) *TviMCA5*-pGEMT was subjected to PCR using their respective gene forward and reverse primers. Samples were electrophoresed on a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide.

2.3.2 Subcloning of the *TbbMCA2* and *TviMCA5* genes into the bacterial pET-28a and pET-32a expression plasmids

A small scale restriction digestion was performed on the plasmid DNA of the PCR positive recombinant clones. Each of the digestion reactions resulted in the appropriate sized gene insert and plasmid for both *TbbMCA2*-pTZ57R/T and *TviMCA5*-pGEMT. Sequencing of a selection of clones resulted in the same result as obtained when the PCR amplified product was sequenced. The clones selected for sub-cloning were and will now be referred to as B6 from *TbbMCA2*-pTZ57R/T, V4 and V16 from *TviMCA5*-pGEMT, which corresponds to the extracted plasmid DNA.

The isolated plasmid DNA from clones, B6, V4 and V16, were subjected to a large scale restriction digestion to obtain the insert for the subsequent ligation into the expression plasmids. As shown in Fig. 2.5, panel A, after the restriction digestion of B6 and the pET-28a expression plasmid with Ndel and Xhol, two bands were produced at 1 044 bp and 2 886 bp which corresponds to the *TbbMCA2* insert and the pTZ57R/T
cloning plasmid, respectively. The pET-28a expression plasmid was effectively linearised at 5,369 bp. The restriction digestion of V4 and V16 along with the pET-32a expression plasmid, using BamHI and EcoRI, resulted in two bands at 1,569 bp and 3,000 bp corresponding to the TviMCA5 insert and pGEM®-T cloning plasmid (Fig. 2.5, panel C). The band at 5,900 bp indicated that the pET-32a expression plasmid had been linearised. The restriction mixtures of the B6, V4 and V16 clones were electrophoresed on a 1% (w/v) agarose gel containing 10 µg/ml crystal violet, and the 1,044 bp TbbMCA2 and the 1,569 bp TviMCA5 inserts were excised and purified (Fig. 2.5, panel B and D, respectively). The purity, size and approximate concentrations of the isolated TbbMCA2 and TviMCA5 inserts along with the linearised pET-28a and pET-32a expression plasmids were determined from Fig. 2.5 panels B and D using the SYNGENE GeneSys image acquisition software.

Figure 2.5: Products of gel extraction of the TbbMCA2 and TviMCA5 inserts after restriction digestion of positive recombinant TbbMCA2-pTZ57R/T clone 6 and TviMCA5-pGEMT clones 4 and 16. Restriction digestion was performed on the (A) TbbMCA2-pTZ57R/T and pET28a plasmid DNA with NdeI and XhoI, (C) TviMCA5-pGEMT and pET32a plasmid DNA with BamHI and EcoRI for 4 h at 37 °C. The (B) TbbMCA2 and (D) TviMCA5 inserts were visualised using 10 µg/ml crystal violet, excised from the 1% (w/v) agarose gel and purified using the E.Z.N.A® gel extraction kit. Samples were electrophoresed on a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide.

Ligation mixtures of the TbbMCA2 and TviMCA5 inserts along with the pET-28a and pET-32a expression plasmids, respectively, were prepared and transformed into *E. coli* BL21 (DE3) cells by CaCl₂ transformation. Recombinant colonies were obtained for the
B6pET28a ligation, resulting in 4 colony forming units, as well as for the V4pET32a and V16pET32a ligation, with each yielding 2 and 6 colony forming units, respectively.

The plasmid DNA of the resulting recombinant B6pET28a, V4pET32a and V16pET32a clones was isolated and used as the template for colony PCR to amplify the TbbMCA2 and TviMCA5 genes using the respective forward and reverse gene primers (Fig. 2.6). In panel A, a band at approximately 1 044 bp was observed for each of the B6-pET28a clones and in panel B, a band at approximately 1 569 bp was observed for V4pET28a clones 1 and 2 and for V16pET32a clones 2, 3, 5 and 6.

Figure 2.6: Screening for recombinant TbbMCA2 and TviMCA5 clones ligated into the pET-28a and pET-32a expression plasmids, from the isolated plasmid DNA by PCR amplification. Colonies were selected following transformation of the (A) TbbMCA2-pET28a and (B) TviMCA5-pET32a ligation mixtures into E. coli BL21 (DE3) cells. The isolated plasmid DNA from each clone was subjected to PCR amplification using the respective forward and reverse gene primers. Samples were electrophoresed on a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide. M: O’GeneRuler™.

2.3.3 Recombinant expression, solubilisation, refolding and purification of TbbMCA2 and TviMCA5

The single full length TbbMCA2 gene (UniProtKB ID: Q585F4) codes for a protein of 347 amino acids in length with an expected molecular size of 37.8 kDa and a pI of 5.81 as predicted by the Compute pI/Mw tool on the ExPASy server (Gasteiger et al., 2005). The single putative full length TviMCA5 gene (UniProtKB ID: G0U3N4) codes for a protein of 522 amino acids in length with an expected molecular size of 58.4 kDa and a pI of 8.76 as predicted by the Compute pI/Mw tool on the ExPASy server (Gasteiger et al., 2005).

2.3.3.1 Expression of recombinant TbbMCA2 and TviMCA5

The primary structure of a protein plays a pivotal role in its overall solubility (Smialowski et al., 2006). When overexpressed in E. coli, proteins containing stretches of 20 or
more hydrophobic residues and comprising of more than 16% aromatic residues (Bertone et al., 2001) were found to be more likely to be insoluble (Christendat et al., 2000). The protein sequences of TbbMCA2 and TviMCA5 were analysed using the PROSO II sequence-based solubility prediction calculator. It was found that TbbMCA2 had a 38.3% chance of being insoluble when overexpressed in E. coli, and TviMCA5, a 48% chance (Smialowski et al., 2006). The MCA-3 and -5 from T. cruzi (Kosec et al., 2006) as well as TcoMCA5 (Eyssen, 2013) have PROSO II predictors between 47 and 61% and were reported to be insoluble when overexpressed in E. coli. The MCA5s of T. congolense, T. cruzi and T. vivax share a high sequence identity, between 56 and 67%. Given this, it is probable the TviMCA5 will be insoluble when overexpressed. The MCA2 differs from the MCAs by its lack of the Pro-, Gln- and Tyr-rich C-terminal extension. But given the fact that the single copy TcrMCA3 was insoluble, there is a chance that TbbMCA2 may also be insoluble when overexpressed.

The MCAs have three domains; namely, the N-terminal domain, the catalytic domain and C-terminal domain. An additional domain was created by the incorporated sequence from the bacterial expression plasmids, comprising of the N-terminal 6xHis tag and sequence of the multiple cloning site up to the restriction site used. These are illustrated for recombinant TbbMCA2, TcoMCA5 and TviMCA5 in Fig. 2.7 where the estimated sizes of the domains are indicated.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Vector+ 6xHis</th>
<th>N-terminal domain</th>
<th>Catalytic domain</th>
<th>C-terminal domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>TbbMCA2 42.6 kDa</td>
<td>4.8 kDa</td>
<td>6.8 kDa</td>
<td>27.3 kDa</td>
<td>3.7 kDa</td>
</tr>
<tr>
<td>TcoMCA5 65.3 kDa</td>
<td>6.2 kDa</td>
<td>6.8 kDa</td>
<td>28.8 kDa</td>
<td>23.5 kDa</td>
</tr>
<tr>
<td>TviMCA5 77.1 kDa</td>
<td>18.6 kDa</td>
<td>7.1 kDa</td>
<td>28.5 kDa</td>
<td>22.9 kDa</td>
</tr>
</tbody>
</table>

Figure 2.7: Schematic representation of the size and domain composition of the recombinantly expressed TbbMCA2, TcoMCA5 in pET-28a and TviMCA5 in pET-32a. The sizes and regions were annotated using NCBI Conserved Domains Database (Marchler-Bauer et al., 2017).
A 50 to 51% sequence identity is shared between TbbMCA2 and the MCA5s of *T. congolense* and *T. vivax*. As such, chicken anti- *Tco*MCA5 IgY was expected to detect the recombinantly expressed TbbMCA2. Autoprocessing of MCAs generally functions to remove the N- and C-terminal domains from the catalytic domain and is suggested to be required for optimal activity (Gonzáles *et al.*, 2007). Autoprocessing was evident when both recombinant TbbMCA2 and *Tco*MCA5 were overexpressed in *E. coli* (Fig 2.8 and 2.9). Since the sites of autoprocessing are not conserved within the kinetoplastid MCAs (Appendix A3), the allocation of domains to autoprocessed protein fragments of TviMCA5 were predicted using literature (Vercammen *et al.*, 2004; Gonzáles *et al.*, 2007; Lee *et al.*, 2007; Watanabe and Lam, 2011) as is shown in Fig. 2.9. The sizes of the anti-MCA IgY detected proteins correlate strongly to the estimated molecular weights in Fig 2.7.

Using the chicken anti-*Tco*MCA5 IgY, multiple proteins in both the soluble and insoluble fractions of TbbMCA2 were detected (Fig. 2.8, panel B). The proteins at 82, 72.3, and 68.5 kDa are of a higher molecular weight than the predicted 43 kDa 6xHis N-terminal tagged TbbMCA2. Due to the large size discrepancy between the predicted and actual, no domain allocations could be made with confidence. The 36 and 30 kDa proteins are similar to that of recombinant *Tco*MCA5, which were referred to as lower molecular weight products after autoprocessing (Eysse, 2013). Given the sizes of the proteins and the estimations made in Fig. 2.7, the 30 kDa may be the catalytic domain and the 36 kDa the catalytic domain before the removal of the N-terminal domain. The 21.5 kDa protein band may be a result of the partial cleavage of the catalytic domain, once released from the full length protein. Despite numerous attempts, a blot using the anti-6xHis antibody was unsuccessful. Moss *et al.* (2007) showed that mutation of Lys55, interrupted the cleavage of the N-terminal 6xHis tag which facilitated purification of recombinant TbbMCA2 using the soluble expression fraction. However, the presence of TbbMCA2 in the inclusion bodies was not demonstrated in their study. Seen as each of the clones produced similar protein bands in the soluble and insoluble expression fraction, the B6pET28 clone 7 was selected for large scale expression.

The predicted size of TviMCA5 is 58.4 kDa. However, when factoring in the N-terminal Trx and 6xHis tags incorporated by the expressed vector, recombinant TviMCA5 has a predicted size of 77.1 kDa (Fig. 2.7). The anti-6xHis antibody detected a single protein at 77 kDa in the insoluble fraction (Fig. 2.9, panel B). This protein was also detected using the chicken anti-*Tco*MCA5 IgY along with other lower molecular weight proteins at 66, 38, 29, and 21.5 kDa in the soluble and insoluble fractions (Fig. 2.9,
This result is in line with what was seen for recombinant TcoMCA5 (Eyssen, 2013). The 77 kDa protein may be as the result of the cleavage of the N-terminal 6xHis tag, followed by the complete removal of the additional sequence from the expression plasmid, to produce the 66 kDa protein. Removal of the C-terminal domain (21.5 kDa band) from the 77 kDa full length protein would produce the 38 kDa protein. Subsequent cleavage of the N-terminal domain of the 38 kDa protein would result in the 29 kDa protein. Seen as each of the clones produced similar protein bands in the soluble and insoluble expression fraction, the V4pET32 clone 2 was selected for large scale expression.
Figure 2.8: Analysis of recombinantly expressed TbbMCA2 in pET-28a. Samples of the soluble (SN) and insoluble (P) fractions of the expression of recombinant TbbMCA2, from the B6pET28a clones 2, 3, 5 and 7 were electrophoresed on two 12.5% reducing SDS-PAGE gels with one (A) stained with Coomassie Blue R-250 and the other transferred onto nitrocellulose, blocked with 5% (w/v) milk-TBS and incubated with (B) chicken anti-TcoMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol·H₂O₂ were used as the detection system.

Figure 2.9: Analysis of recombinantly expressed TviMCA5 in pET-32a. Samples of the soluble (SN) and insoluble (P) fractions of the expression of recombinant TviMCA5, from the V4pET32a clones 1 and 2, V16pET32a clones 2 and 3, were electrophoresed on three 12.5% reducing SDS-PAGE gels with one (A) stained with Coomassie Blue R-250 and the other two transferred onto nitrocellulose, blocked with 5% (w/v) milk-TBS and incubated with (B) chicken anti-His IgY [1:5 000 in 0.5% (w/v) BSA-PBS] and (C) chicken anti-TviMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol·H₂O₂ were used as the detection system.
2.3.4 Solubilisation, refolding and purification of recombinantly expressed TbbMCA2 and TvMCA5

The structure of proteins which have been expressed within inclusion bodies can vary from being completely misfolded to mostly native protein (Bowden et al., 1991; Ventura and Villaverde, 2006). The presence of the N-terminal 6xHis tag in the insoluble fraction and absence in the soluble fraction, suggest that the expressed recombinant TbbMCA2 and TvMCA5 may be in a partially native state and has retained some degree of activity. This cleavage which is observed in Fig. 2.8 and 2.9 can only be as a result of autoprocessing as peptidase deficient DE3 E. coli cells were used, and the addition of bacterial inhibitor cocktail resulted in the same cleavage pattern (results not shown). Solubilisation of the inclusion bodies from the insoluble fraction followed by on column refolding and purification were performed using the sarkosyl method together with nickel affinity purification.

Due to the failure of the anti-6xHis antibody to detect TbbMCA2 in either the soluble or insoluble fraction, both fractions were subjected to nickel affinity purification. No proteins from the soluble fraction were bound to the resin (Fig. 2.10, panel A) when compared to those in panel B which had been solubilised and refolded. Prominent protein bands at 70.2, 32.6 and 29.2 kDa and a faint band at 51.9 kDa were eluted. This confirms that the recombinant TbbMCA2 autopeptidolytically cleaves the N-terminal 6xHis tag in the soluble expression fraction.

When solubilised recombinant TvMCA5 was purified using nickel affinity resin (Fig. 2.11), numerous proteins, at various sizes, were eluted, which differs from the five proteins from recombinant expression detected by chicken anti-TvMCA5 IgY (Fig. 2.9, panel C). The approximate molecular weights of the prominent protein bands were 70, 68, 38, 31, 25 and 23 kDa (Fig. 2.11, panel A) of which only 25 and 23 kDa proteins were not detected using the chicken anti-TvMCA5 IgY (panel B). Previous studies have shown that some MCAs require calcium for autoprocessing (Bozhkov, 2005; He et al., 2008; Ojha et al., 2010; Meslin et al., 2011; Proto et al., 2011; Laverrière et al., 2012; Wen et al., 2013). A possible explanation for the multiple protein bands might that be the nickel ions are functioning in the same capacity as calcium, which assists in autoprocessing. This hypothesis will be referred to as nickel-induced over autoprocessing and will be discussed further in Chapter 3.
Figure 2.10: Nickel purified recombinant *TbbMCA2* from expression supernatant and sarkosyl solubilised inclusion bodies. Samples of the *TbbMCA2* nickel purified fractions from the (A) soluble expression fraction and (B) solubilised and refolded inclusion bodies using the sarkosyl method were electrophoresed a 12.5% reducing SDS-PAGE gel and stained with Coomassie Blue R-250.

Figure 2.11: Solubilised, refolded and nickel purified recombinant *TviMCA5*. Samples of the eluted fractions from the purification of solubilised and refolded recombinant *TviMCA5* from inclusion bodies were electrophoresed on two 12.5% reducing SDS-PAGE gels with one (A) stained with Coomassie Blue R-250 and the other transferred onto nitrocellulose, blocked with 5% (w/v) milk-TBS and incubated with (B) chicken anti-*TviMCA5* IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol-H₂O₂ were used as the detection system.
2.3.5 Evaluation of anti-TviMCA5 IgY antibody production by ELISA

The chicken anti-TviMCA5 IgY antibodies isolated during the immunisation period were used for an initial ELISA to determine when the production of chicken anti-TviMCA5 IgY antibodies peaked (Appendix A5). The antibodies from chicken 1 at week 9 were used to couple to the UltraLink® hydrazide resin as well as for the determination of the optimal concentration for use in downstream applications.

2.3.6 Immunoaffinity purification of soluble TbbMCA2, TcoMCA5 and TviMCA5

Since the recombinant MCAs are able to autoprocess thereby cleaving off their N-terminal 6xHis tag in the soluble fraction, an alternative purification strategy was employed. Chicken anti-MCA5 IgY coupled for the hydrazide resin were used in an immunoaffinity purification strategy. The soluble expression fraction of recombinant TbbMCA2 and TcoMCA5 was purified using the anti-TcoMCA5 IgY immunoaffinity resin, and recombinant TviMCA5 using anti-TviMCA5 IgY immunoaffinity resin.

Purification of soluble recombinant TbbMCA2 using the immunoaffinity resin, resulted in the elution of 75.3 and 69.4 kDa proteins in fraction 1, 69.4 kDa in fraction 2, and 56.6 kDa proteins in fractions 6 to 10 (Fig. 2.12, panel A). Since there is a large molecular weight discrepancy between the predicted and actual molecular weight of TbbMCA2, as seen in Fig. 2.7 and 2.8, the assignment of most likely domains corresponding to each domain cannot be made with any degree of certainty.

In panel B of Fig. 2.12 it is shown that the purification of soluble TcoMCA5 resulted in a 66.8 kDa protein eluted in fractions 1 to 7 together with a 59.1 kDa protein band in fractions 1 and 2. The 66.8 kDa protein may be the full length protein after the cleavage of the N-terminal 6xHis tag. The 59.1 kDa protein may be as a result of the cleavage of the entire N-terminal domain from the full length protein. Cleavage of the C-terminal domain from the full length protein may be the result of the 37.5 kDa protein which was eluted in fractions 3 and 4.

Immunoaffinity purification of soluble TviMCA5 resulted in the elution of a 78.3 kDa protein band in fractions 1 to 6 which may be as a result of the cleavage of the N-terminal 6xHis tag (Fig. 2.12, panel C). In fractions 3 and 4, two proteins were eluted at 66.4 and 43.9 kDa. The 66.4 kDa protein may be as a result of the cleavage of the
additional sequence from the expression plasmid (Fig. 2.7). The cleavage of the N-terminal domain from the 66.4 kDa protein may result in the 43.9 kDa protein comprised of the catalytic domain and the C-terminal domain.

![Eluted fractions](image)

Figure 2.12: Immunoaffinity purification of soluble recombinant TbbMCA2, TcoMCA5 and TvMCA5. Samples of the eluted fractions from the immunoaffinity purification using chicken anti-MCA5 IgY coupled to hydrazide resins of the soluble recombinantly expressed (A) TbbMCA2, (B) TcoMCA5 and (C) TvMCA5 were electrophoresed on 12.5% reducing SDS-PAGE gels. After transfer onto nitrocellulose and blocked with 5% (w/v) non-fat milk-TBS, the blots were incubated with (A and B) chicken anti-TcoMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS] and (C) chicken anti-TvMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol-H₂O₂ were used as the detection system.

2.4 Discussion

All active caspases, when overexpressed in heterologous expression systems, are able to undergo autoprocessing via cis activation (Roy et al., 2014). For the in vitro study of caspase autoprocessing, it has been shown that inducible bacterial expression systems are ideal. This is due to the fact that autoprocessing does not occur during the early stage of induction, but as the medium acidifies, rapid autoprocessing is observed (Roy et al., 2001).
Autoprocessing is required for the activation of caspases and type II MCAs, whereas type I MCAs do not depend on autoprocessing (Fuentes-Prior and Salvesen, 2004; McLuskey et al., 2012). Autoprocessing has been demonstrated in the MCAs of *Leishmania* spp. (Gonzáles et al., 2007; Ambit et al., 2008; Zalila et al., 2011; Castanys-Muñoz et al., 2012), *Plasmodium falciparum* (Meslin et al., 2011), *Toxoplasma gondii* (Li et al., 2016), *A. thaliana* type II (Vercammen et al., 2004; Bozhkov, 2005; Watanabe and Lam, 2011; Wrzaczek et al., 2015), *Lycopersicon esculentum* (Wen et al., 2013) *Triticum aestivum* (Piszczek et al., 2012), *T. cruzi* (Laverrière et al., 2012), TbbMCA2 (Moss et al., 2007; McLuskey et al., 2012) and TbbMCA4 (Proto et al., 2011).

The MCA2 from *T. b. brucei* (UniProtKB ID: Q585F4) and the MCA5 from *T. vivax* (UniProtKB ID: G0U3N4), were recombinantly expressed in *E. coli*. When taking in account the addition of the bacterial expression plasmid sequence, the expected molecular weights of TbbMCA2 increased from 37.5 to 42.6 kDa and TvMCA5 from 58.4 to 77.1 kDa. Upon overexpression, autoprocessing was observed and detected with both chicken anti-*TcoMCA5* IgY and chicken anti-*TvMCA5* IgY. Protein bands corresponding to the estimated sizes of the full length *TvMCA5* protein, after cleavage of the N-terminal 6xHis tag, the cleavage of the C-terminal domain (21.5 kDa) from the full length protein would produce the 38 kDa protein. Subsequent cleavage of the N-terminal domain of the 38 kDa protein would result in the 29 kDa protein. The expression of TbbMCA2 resulted in proteins which were of a higher molecular weight than what was expected. Thus, it was not possible to confidently assign protein domains to the cleaved products. This anomalous migration has not been reported by Moss et al. (2007), but has been observed in the MCA from *Nicotiana tabacum* (Acosta-Maspons et al., 2014) and *A. thaliana* (Vercammen et al., 2004; Watanabe and Lam, 2005).

Upon the addition of calcium, recombinant TbbMCA2 produced 30 and 6 kDa bands as a result of cleavage at Lys55 and Lys268 to release the catalytic domain from the full length protein (Moss et al., 2007). The Lys55 residue is only conserved in the TbbMCA2 and TbbMCA4, but cleavage at Lys64 was reported for TbbMCA4 (Proto et al., 2011). The Lys268 residue is conserved in TbbMCA2 and TbgMCA2, TbgMCA3 and TevMCA3 (Appendix A3).

Moss et al. (2007) were the first to recombinantly express and enzymatically characterise TbbMCA2. They reported that when overexpressed in *E. coli*, TbbMCA2,
with both K55G and K268G mutations, was detected in the soluble expression fraction. In our hands, recombinant *TbbMCA2*, without the mutation of the K55 and K268 residues, was expressed within insoluble inclusion bodies. From the results of the PROSO II sequence-based solubility prediction calculator, *TbbMCA2* had a 38.3% chance of being insoluble when overexpressed in *E. coli* (Smialowski *et al.*, 2006). Given the predictor values for the single copy MCAs demonstrated to be insoluble, which varied between 31 and 61%, *TbbMCA2* could be expressed either as a soluble or insoluble protein. It was demonstrated that the full length protein was expressed in the insoluble fraction but was also expressed in the soluble fraction after the removal of the N-terminal 6xHis tag.

Western blot analysis of the expression of *TbbMCA2* detected five bands at 82, 68.5, 36, 30, 21.5 kDa and *TvMCA5* at 77, 66, 38, 29, 21.5 kDa, using chicken anti-MCA5 IgY. This cleavage pattern resulting from autoprocessing, was thought to be due to the separation of the various domains to release the catalytic domain. This is in line with what has been reported in the literature for *LmjMCA*, *PfMCA*, *TbbMCA4* and *LesMCA1*, where autoprocessing occurs at both the N- and C-termini to produce lower molecular weight products containing the enzymatically active catalytic domain (Gonzáles *et al.*, 2007; Meslin *et al.*, 2007; Proto *et al.*, 2011; Wen *et al.*, 2013).

Affinity tags aid in the purification of recombinant peptidases and rarely affect their enzymatic activity (Uhlén *et al.*, 1992). The most commonly used affinity tag is the 6xHis which has a few advantages over other tags (Graslund *et al.*, 2008). A 6xHis tagged protein allows for the simple purification using immobilised metal affinity chromatography (Block *et al.*, 2009) and does not interfere with protein crystallography (Graslund *et al.*, 2008). The protein’s structural and solubility characteristics are rarely affected by the presence of 6xHis tags when compared to that of larger affinity tags such as glutathione S-transferase and maltose-binding protein (Waugh, 2005; Nallamsetty and Waugh, 2007).

Since difficulty was encountered with the detection of the 6xHis tag of *TbbMCA2* in the expression fractions, both the soluble and insoluble fractions were subjected to nickel affinity purification. As expected, only the solubilised fraction bound to the nickel resin as demonstrated by the presence of proteins in the eluted fractions. Purification of recombinant *TbbMCA2* resulted in three protein bands, at 70.2, 32.6 and 29.2 kDa. However, no over autoprocessing was evident for *TbbMCA2* when compared to that seen for *TvMCA5*. 55
The nickel affinity purification of solubilised TviMCA5, resulted in multiple protein bands, predominantly at 70, 68, 38, 31, 25 and 23 kDa. These correlate with the full length protein and subsequent cleavage to release the catalytic domain from the N-terminal domain and the Pro-, Glu-, Tyr-rich C-terminal domain. The presence of numerous, less prominent protein bands, may point to secondary cleavage sites at which processing could occur after initial autoprocessing. This process was termed nickel-induced over autoprocessing and will be discussed in more detail in Chapter 3. Secondary cleavage has been demonstrated in LmjMCA where autoprocessing occurs at Arg268 followed by cleavage at Arg63, Arg79 and Arg135 (Zalila et al., 2011). Similarly, cleavage at Lys225 in AtMCA4 (Watanabe and Lam, 2005), AtMCA9 (Vercammen et al., 2004; Watanabe and Lam, 2005) and MCA from Picea abies (Bozhkov, 2005; Watanabe and Lam, 2005) activates the peptidase, prior to cleavage at Arg190 (AtMCA4), Arg183 (AtMCA9) and Arg188 (PaMCA).

Attempts to purify the separated domains resulting from autoprocessing were unsuccessful. This has been reported previously by Vercammen et al. (2004) and is thought that they had either formed complexes (Vercammen et al., 2004; Klemenčič et al., 2015). It was suggested by Moss et al. (2007) that the cleaved domains were still part of the mature protein structure and was confirmed by McLuskey et al. (2012) where they were shown to still be covalently linked to the main protein body. Analysis by a non-reducing SDS-PAGE by Moss et al. (2007) indicated that the fragments were not linked by disulphide bonds.

Antibodies were raised in chickens against the purified full length recombinant TviMCA5. The antibodies were able to detect the autoprocessing products after expression and the eluted proteins after nickel affinity purification. Since the MCAs are virulence factors, and attractive drug targets, they may also be diagnostic antigens. The MCA4 was shown to be part of the T. b. gambiense secretome (Geiger et al., 2010) and was secreted into the culture medium of T. b. brucei parasites (Proto et al., 2011), similar to that of oligopeptidase B (Troebel et al., 1996; Morty et al., 2001), a well-known virulence factor (Coetzee et al., 2008; Bastos et al., 2013). The chicken antibodies raised against another well-known trypanosomal virulence factor, congopain, which is the cathepsin-L-like peptidase from T. congolense (TcoCATL), was shown to successfully discriminate between serum from experimentally infected and non-infected cattle in an antibody detection ELISA using an inhibition format (Eyssen, 2013). Thus, the chicken antibodies raised against TcoMCA5 and TviMCA5 may be used in the development of such an ELISA.
In the work described in the next chapter, the characterisation of the residues which may function in autoprocessing and peptidolytic activity of the MCA5s will be investigated by mutagenesis. Together with the kinetic analysis of both native and recombinant MCA5, insight can be gained into how the MCA5s function.
CHAPTER 3
ENZYMATIC CHARACTERISATION OF NATIVE AND MUTATED RECOMBINANT METACASPASE 5 FROM T. CONGOLENSE AND T. VIVAX

3.1 Introduction

African trypanosomosis affects both humans and livestock in rural, central Africa. There have been no new additions to the currently used chemotherapies in the last 60 years (Giordani et al., 2016). As a result, drug resistance has emerged for chemotherapies used for animal treatment (Geerts et al., 2001; Van den Bossche and Delespaux, 2011; Giordani et al., 2016). Together with the toxicity of the currently used chemotherapies for the treatment of human infective T. b. gambiense and T. b. rhodesiense, novel chemotherapies are needed (Brun et al., 2010). Progress has been made towards human chemotherapies, with two compounds in clinical trials (Maser et al., 2012), but none regarding animal chemotherapies (Giordani et al., 2016).

In an attempt to reduce drug resistance, the use of nifurtimox-eflornithine combination therapy (NECT) over eflornithine has been recommended for human infections and the use of a sanative pair for animal infections, consisting of isometamidium chloride or homidium chloride, together with diminazene aceturate (Geerts et al., 2001; Holmes et al., 2004; Chitanga et al., 2011).

Due to the improbability of the development of a vaccine (La Greca and Magez, 2011), focus has shifted towards the molecular targets which are essential for pathogenesis (Antoine-Moussiaux et al., 2009). These molecules are known as virulence factors and are attractive targets for the development of chemotherapies (Drag and Salvesen, 2010). Numerous peptidases have been identified as virulence factors as they play an essential role in the parasite and the host-parasite interactions (McKerrow et al., 2006).

Due to the dual life cycle alternating between the mammalian host and insect vector, the molecular target should be as unrelated as possible to those of their mammalian hosts, to minimise any adverse side effects of the chemotherapies. Thus, in the pursuit of novel chemotherapies, the function and structure of the targeted virulence factors need to be elucidated to allow for the design of potent compounds.

The MCAs are the homologue of the metazoan caspases, which are involved in apoptosis and also have non-apoptotic roles such as cytokine maturation, inflammation
and differentiation (Lamkanfi et al., 2007). Due to their presence in all kingdoms except for the metazoan kingdom, and their potential involvement in similar roles to those of the caspases, the MCAs have been identified as virulence factors. Thus, their implication in cell death, cellular processes and absence in the mammalian hosts, make the MCAs attractive targets for the development of novel chemotherapies.

The single copy MCAs are different from the multicopy MCAs as they possess a Pro-, Gln-, Tyr-rich C-terminal domain which may be involved in protein-protein interactions (Kay et al., 2000). The single copy MCA5 from T. b. brucei, together with the multicopy MCA2 and -3 have been shown to be essential to bloodstream trypomastigotes (Helms et al., 2006). However, to date, there have been no reports of the molecular characterisation of any MCA5 from the animal infective T. b. brucei, T. congolense or T. vivax.

The activation of initiator caspases involves the dimerisation of inactive caspase monomers, through their N-terminal prodomains, followed by interdomain cleavage, also known as autopeptidolytic cleavage and autoprocessing (Fig. 3.1). Dimeric executioner caspases are activated by cleavage mediated by the initiator caspases, which results in intramolecular rearrangements to form an active dimer (Tait and Green, 2010).

Figure 3.1: Schematic of initiator and executioner caspase activation. Dimerisation and intramolecular autoprocessing results in an active initiator caspase. Once active, the initiator caspase activates the inactive executioner dimer by peptidolytic cleavage. The fas associated death domain, FADD, is an adapter protein which is recruited to the death-inducing signalling complex (DISC) during signalling via death receptors (Gupta et al., 2004). Adapted from Tait and Green (2010).

Much research has been done on plant MCAs but very little on kinetoplastid MCAs, and even fewer reported the characterisation of both recombinant and native enzymes. The residues at which the MCA is autoprocessed and the mechanism by which it
occurs are crucial for the understanding of MCA activation. Metacaspases share the conserved catalytic dyad with the caspases, but due to conserved residues within close proximity to the dyad, the question is which residues are required for the subsequent peptidolysis after activation by autoprocessing. In addition, calcium has been shown to play an important role in the autoprocessing ability and/or peptidolytic activity of the MCAs.

In the present study, the catalytic dyad residues, as well as an adjacent Cys to the catalytic Cys residue, were mutated to determine their role, if any, in autoprocessing and peptidolytic activity of the recombinant MCA5s from *T. congolense* and *T. vivax*. Using immunoaffinity purification, native *Tco*MCA5 was isolated and together with recombinant *Tco*MCA5, the substrate specificity, pH profile, inhibitor sensitivity and effect of various divalent cations was determined.

3.2 Materials and methods

3.2.1 Materials

Molecular biology: As per Section 2.2.1. The Q5® Site-Directed Mutagenesis Kit was purchased from New England Biolabs (Ipswich, MA).

E. coli cells: NEB 5-alpha competent cells supplied with the Q5® Site-Directed Mutagenesis Kit.

Purification and quantification of recombinant and native proteins: As per Section 2.2.1. Digitonin was purchased from Merck (Darmstadt, Germany), the ECL western blotting substrate from Pierce (Rockford, IL, USA), and the peptidase inhibitor cocktail from Amresco (Solon, OH, USA).

Antibodies: Chicken anti-*Tco*MCA5 IgY and chicken anti-*Tv*MCA5 IgY were produced in Section 2.2.6. The chicken anti-6xHis IgY antibody was purchased Merck (Germany) and the rabbit anti-chicken IgG HRP O conjugate from Sigma (St. Louis, MO. USA).

Parasite purification and culture: Eagle’s minimal essential medium (EMEM), GIn and Pro were purchased from Sigma (St. Louis, MO, USA), foetal bovine serum (FBS) was from Gibco (Paisley, UK), DE-52 from Whatman International Ltd (UK), filters (0.2 μm) from PALL Corp (Ann Arbor, USA) and sterile disposable cell culture plasticware from Corning (NY, USA).
Peptide substrates and inhibitors: The peptide substrates benzyloxycarbonyl (Z)-Gly-Gly-Arg-7-amino-4-methylcoumarin (AMC), Z-Gly-Pro-Arg-AMC, H-Val-Gly-Arg-AMC, Z-Pro-Arg-AMC, Z-Arg-AMC, Z-Arg-Arg-AMC, t-butyloxycarbonyl (Boc)-Val-Leu-Lys-AMC, H-Ala-Phe-Lys-AMC, the inhibitors benzamidine, antipain, bestatin, N-tosyl-L-lysyl chloromethylketone (TLCK), L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (E-64), soyabean trypsin inhibitor (SBTI), ethylenediaminetetraacetic acid (EDTA), 4-(2-Aminoethyl)benzenesulfonyl fluoride (AEBSF), leupeptin, 1,10-phenanthroline, calpain I, iodoacetate; and porcine gelatin were purchased from Sigma (Munich, Germany). The Z-Phe-Ala-fluoromethylketone (FMK) and Z-Val-Ala-Asp-FMK inhibitors were purchased from BD Biosciences (San Jose, CA) and the black FluoroNunc™ 96-well plates from Nunc Intermed (Roskilde, Denmark).

3.2.2 Mutagenesis of the active site residues of TcoMCA5 and TviMCA5

It was thought that the mutation of the catalytic dyad residues might impede the ability of MCAs to autoprocess. Other researchers who have generated catalytic dyad mutants of recombinant MCAs in Trypanosoma spp. and Leishmania spp., have generally used a His→Ala and a Cys→Gly mutation (Szallies et al., 2002; Gonzáles et al., 2007; Lee et al., 2007; McLuskey et al., 2012). Primers which would facilitate the generation of the point mutants of the catalytic dyad residues (His147 and Cys202) as well as the Cys adjacent to the catalytic Cys (Cys201) were designed using the Agilent QuikChange primer design software programme (http://www.genomics.agilent.com/primerDesign Program.jsp) to achieve a Tm ≥78 °C, and compared to those designed by the above-mentioned authors. The mutagenic primers were first annealed to the gene in the pET expression plasmid, and then using the Pfu DNA polymerase, the primers were extended to copy the entire the plasmid. The plasmid DNA, which is isolated from dam+ E. coli cells, is methylated and can be digested with DpnI. Thus, only the synthetic plasmid, which contains the desired mutation, can be taken up into the competent E. coli cells following transformation (Fig. 3.2).
The plasmid DNA of previously cloned TcoMCA5 (M7pET28a) together with TviMCA5 (V4pET32a) was used at the template for the PCR amplification with the primers outlined in Appendix B1. Briefly, the final concentrations of the PCR master mix were: 0.5 µM of each mutagenic primer, 1x Q5 high-fidelity master mix in a total reaction volume of 20 µl. The amplification was performed with incubation at 98 °C for 30 s as the initial DNA denaturation step, followed by 25 cycles of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 4 min. A final elongation step at 72 °C for 2 min was subsequently carried out. A sample of the amplified plasmid which contained the gene with the introduced point mutation (2 µl) was electrophoresed on a 1% (w/v) agarose gel, containing ethidium bromide (0.5 µg/ml), in 1xTAE buffer. Thereafter, the plasmid with the point mutation (1 µl) was treated with Kinase, Ligase & DpnI enzyme mixture (KLD) for 5 min at RT. The de-methylated plasmid was transformed into competent NEB 5-alpha E. coli cells as described in Section 2.2.3. The plasmid DNA of five resulting colonies, from each mutant, was isolated using the GeneJet™ Plasmid Miniprep Kit, as per the manufacturer’s instructions and sequenced at the Central Analytical Facilities, Stellenbosch University, South Africa, using the forward gene primer detailed in Table 2.1.

Figure 3.2: Overview of the site-directed mutagenesis process. (A) Annealing of mutagenic primers (purple and blue) encoding for site mutant to the parental plasmid template (orange and green), (B) followed by the amplification a new template plasmid from the parental expression plasmid (purple and blue). (C) DpnI digests the parental hemimethylated template, without the introduced mutation, (D) after which the plasmid with the mutation is transformed into competent E. coli. The image was obtained from the Agilent QuikChange Site-Directed Mutagenesis Kit manual.
3.2.3 Expression, nickel- and immuno-affinity purification of the TcoMCA5 and TviMCA5 WT and mutants

Clones which were positive for the desired point mutation were expressed as outlined in Section 2.2.4 and analysed by 12.5% reducing SDS-PAGE (Laemmli, 1970) with Coomassie Blue R-250 staining and by western blot probed with chicken anti-TcoMCA5 IgY and chicken anti-TviMCA5 IgY (10 µg/ml).

The soluble protein lysate was subjected to immunoaffinity purification as per Section 2.2.7.2. To facilitate the concentration of eluted proteins, instead of collecting 10 sequential eluted fractions, elution buffer required for two fractions was added to the resin and agitated, prior to elution. Elution buffer, 0.1 M glycine, pH 2.8 (1.8 ml), was added to the resin followed by agitation using an end-over-end rotator for 5 min at RT. Thereafter, two 900 µl fractions were collected in microfuge tubes each containing 1 M Tris-HCl buffer, pH 8.5 (100 µl). One final fraction was collected by the addition of elution buffer (900 µl) which was allowed to flow through the resin and collected in a microfuge tube containing 1 M Tris-HCl buffer, pH 8.5 (100 µl).

The proteins from the insoluble inclusion bodies were solubilised and purified as per Section 2.2.5. Samples of each purification were electrophoresed on 12.5% reducing SDS-PAGE gels (Laemmli, 1970) and stained with Coomassie Blue R-250, with some requiring counter-staining with silver (Blum et al., 1987).

3.2.4 Trypanosoma congoense propagation, purification and cell culture

Before the commencement of any animal procedures, ethical clearance was obtained from the University of KwaZulu-Natal animal research ethics committee (053/15/Animal). Six week old mice were kept in cages, along with enrichment material and access to food and water ad libitum, at the animal house at UKZN, Pietermaritzburg campus.

Female Balb/c mice were injected intraperitoneally with approximately 5 000 T. congoense IL3 000 bloodstream trypomastigotes with daily monitoring of parasitaemia by microscopic inspection of tail vein blood. Once parasitaemia reached 70% of the field of view, mice were sacrificed by cervical dislocation and the blood collected, by cardiac puncture, into heparin containing tubes. An equal volume of 20% (v/v) glycerol-phosphate saline glucose (PSG: 57 mM Na₂HPO₄, 3 mM NaH₂PO₄,
42 mM NaCl, 50 mM glucose, 1 mM hypoxanthine, pH 7.8) was added to the blood before storage at -80 °C or parasite purification by ion exchange chromatography.

Sterile DE-52 resin (20 ml) was washed with PBS (40 ml) followed by PSG (40 ml), in a sterile syringe containing a piece of filter paper at the bottom. Parasites were added to the resin and allowed to settle for 30 min at RT. Parasites were eluted in five fractions of 10 ml each using PSG. The parasites were pelleted by centrifugation (3 500 rpm, 15 min, 4 °C), resuspended to approximately 1x10⁶ parasites/ml in 20% (v/v) glycerol-PSG and stored at -80 °C for 7 days before being transferred to liquid nitrogen for long-term storage.

The in vitro culture of *T. congolense* bloodstream trypomastigotes as developed by Hirumi and Hirumi (1991) and reported by Eyford et al. (2011) was followed. Briefly, 1x10⁵ *T. congolense* bloodstream trypomastigotes per ml were seeded into Eagle’s minimum essential medium [EMEM base powder, 2 mM glutamine, 10 mM proline, 20% (v/v) heat inactivated foetal bovine serum, 10 ml] and cultured at 37 °C and 5% (v/v) CO₂, with the medium being changed every two days.

3.2.5 Isolation of native TcoMCA5

Parasite fractionation in the presence of digitonin was performed as per Zalila et al. (2011) with some modifications. Briefly, 2x10⁶ parasites, from cell culture, were washed twice in PBS before washing in wash buffer (20 mM Tris-HCl buffer, pH 7.9, 20 mM glucose, 150 mM NaCl). The supernatant (SN) was retained, and the pelleted parasites resuspended in 100 µM digitonin/SoTe (600 mM sorbitol, 20 mM Tris-HCl buffer, pH 7.5, 2 mM EDTA, containing 1x peptidase inhibitor cocktail, 750 µl). After incubation for 5 min on ice, the total protein content from the parasite were present in the resulting SN. The total protein content was used for native immunoaffinity purification as per Section 3.2.5.1.

To the total protein content (500 µl), 0.3 M sucrose (150 µl) was added to maintain the cellular structures during centrifugation (13 000 g, 5 min, 4 °C). The pellet was resuspended in 500 µM digitonin/SoTE (500 µl) to obtain the proteins from the mitochondrion which were present in the supernatant after centrifugation (13 000 g, 5 min, 4 °C). The resulting pellet contained both the nuclear and insoluble proteins.

The proteins secreted into the culture medium were precipitated using 1 volume of 0.5 µg/ml trichloroacetic acid gently mixed with 4 volumes of medium, followed by centrifugation (18 000 g, 5 min, 4 °C). After washing the pellet twice with ice cold
acetone, and allowed to dry, the pellet was resuspended in reducing treatment buffer and boiled for 2 min. These samples were prepared for use in Section 5.2.13.

3.2.5.1 Immunoaffinity purification of native TcoMCA5

Essentially, the same protocol as described in Section 2.2.7.2 was used with some adjustments. The total parasite protein sample was added in place of the recombinant lysate and incubated with agitation, using an end-over-end rotator, for 16 h at 4 °C. After collection of the unbound proteins, the resin was washed with wash buffer (50 ml) until the absorbance readings reached a baseline A₂₈₀ reading of 0.2. To facilitate the concentration of eluted proteins, instead of collecting 10 sequential eluted fractions, elution buffer required for two fractions was added to the resin and agitated, prior to elution. Elution buffer, 0.1 M glycine, pH 2.8 (1.8 ml), was added to the resin followed by agitation using an end-over-end rotator for 5 min at RT. Thereafter, two fractions (900 µl) were collected in microfuge tubes each containing 1 M Tris-HCl buffer, pH 8.5 (100 µl). A final fraction was collected by the addition of elution buffer (900 µl) which was allowed to flow through the resin and collected in a microfuge tube containing 1 M Tris-HCl, pH 8.5 (100 µl).

3.2.6 Enzymatic characterisation of recombinant and native TcoMCA5

Initial activity of the purified enzyme in each eluted fraction was measured by combining 10 µl of each fraction with MCA assay buffer (50 mM Tris-HCl buffer, pH 7.2, 150 mM NaCl, 10 mM CaCl₂, 5 mM DTT, 90 µl) containing 10 mM Z-Gly-Gly-Arg-AMC, in a black FluoroNunc™ 96-well plate, in duplicate. After incubation at 37 °C for 10 min, the fluorescence (Ex_{360nm} and Em_{460nm}) was measured using a FLUORStar Optima Spectrophotometer from BMG Labtech (Offenburg, Germany).

The protein concentrations of the fractions, which contained active enzyme, were determined using the BCA™ protein assay kit. The optimal enzyme concentration for the hydrolysis of the fluorogenic peptide substrate was determined by varying the concentration of the enzyme (0-5 µg/ml recombinant, 0-10 µg/ml native, in 10 µl) and incubation with MCA assay buffer containing 10 mM Z-Gly-Gly-Arg-AMC (90 µl), in triplicate, and fluorescence measured as described above.
3.2.6.1 Peptide substrate specificity

Fluorogenic peptide substrates used to determine the substrate specificity of recombinant MCA from various organisms varied from commercially available, Z-Gly-Gly-Arg AMC, Z-Gly-Arg-Arg-AMC, Z-Val-Arg-Pro-Arg-AMC, Z-Arg-Arg-AMC, Z-Arg-AMC, Boc-Val-Leu-Lys-AMC, H-Val-Leu-Arg-AMC, H-Ala-Phe-Lys-AMC, to libraries of specially designed pentapeptide fluorescence resonance energy transfer substrates derived from Abz-KARSSA-Q-EDDnp (Machado et al., 2013). However, the most commonly used fluorogenic peptide substrate used for kinetoplastid MCA characterisation is Z-Gly-Gly-Arg-AMC and was, hence, the substrate of choice for the present study.

By varying the concentration of different fluorogenic peptide substrates, it is possible to determine the enzyme’s maximum velocity (V_{max}) and its affinity for each substrate (K_m). This is achieved by measuring initial reaction velocity (v_0) for each of the substrate concentrations [S]. Using the Briggs and Haldane revised Michaelis-Menten equation (1925) [A], a direct plot of v_0 versus [S] allows for the determination of V_{max} and K_m.

$$v_0 = \frac{v_{max}[S]}{[S]+K_m} \quad [A]$$

The active concentration of enzyme [E_0] can be determined using a well-documented active site titrant. However, to date, there has been no report of an active site titrant specific for the kinetoplastid MCAs. Other workers assume that [E_t] is equal to [E_0] when determining the turnover number (k_{cat}) from V_{max} using equation [B] (Salvesen and Nagase, 1989):

$$k_{cat} = \frac{V_{max}}{[E_0]} \quad [B]$$

Briefly, recombinant TcoMCA5H147AC202G (0.5 µg/ml) and native TcoMCA5 (7.5 µg/ml) were incubated with MCA assay buffer at 37 °C for 10 min. During that period, a dilution series of each fluorogenic peptide substrate made in MCA assay buffer, was added to the wells of a black FluoroNunc™ 96-well plate, in triplicate, for recombinant and in duplicate for the native enzyme. The fluorescence (Ex$_{360\text{nm}}$ and Em$_{460\text{nm}}$) was measured every 30 s for 60 min, using a FLUORStar Optima Spectrophotometer from BMG Labtech (Offenburg, Germany). The AMC calibration curve (Appendix B2), was used to determine the velocity, and together with the substrate concentrations, the V_{max} and K_m was determined using the Hyper32© software (1991-2003, J. S. Easterby, University of Liverpool, UK).
3.2.6.2 pH profile

The pH optimum of the recombinant $TcoMCA5^{H147AC202G}$ (0.5 µg/ml) and native $TcoMCA5$ (7.5 µg/ml) was determined using the AMT constant ionic strength buffer (100 mM sodium acetate, 10 mM MES, 200 mM Tris-HCl, 5 mM EDTA, 5 mM DTT) at pH range of 4 to 9 (Ellis and Morrison, 1982). Enzyme (10 µl) was added to the wells of a black FluoroNunc™ 96-well plate, in triplicate for recombinant and in duplicate for native, followed by the addition of the AMT buffers, containing 10 mM Z-Gly-Gly-Arg-AMC (90 µl). After incubation at 37 °C for 10 min, the fluorescence was measured every 30 s for 15 min for recombinant $TcoMCA5^{H147AC202G}$ and every 30 s for 60 min for native $TcoMCA5$.

3.2.6.3 Analysis of recombinant and native $TcoMCA5$ activity by zymography

The peptidolytic activity of recombinant (0.5 µg/ml) and native (7.5 µg/ml) $TcoMCA5$ was analysed on a 1% (w/v) porcine gelatin-containing SDS-PAGE gel (Heussen and Dowdle, 1980). The catalytic domain of congopain ($TcoCATL$, 0.5 µg/ml) was used as the positive control. An equal volume of non-reducing treatment buffer [125 mM Tris-HCl buffer, pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol] was added to samples without boiling. After electrophoresis, gels were washed twice over 1 h with 2.5% (v/v) Triton X-100 (50 ml) at RT, to remove the excess SDS. The gels were subsequently incubated at 37 °C for 16 h at 50 rpm, in AMT buffer, pH 7, 8 and 9. The gels were stained with amido black staining solution [0.1% (w/v) amido black, 30% (v/v) methanol, 10% (v/v) acetic acid] at RT for 1 h and destained with destain solution [30% (v/v) methanol, 10% (v/v) acetic acid].

3.2.6.4 Inhibitor screening

Taking into account that only a few inhibitors have been shown to effectively inhibit the MCAs from different organisms, recombinant $TcoMCA5^{H147AC202G}$ was incubated with a panel of serine (TLCK, antipain, leupeptin, AEBSF, SBTI, benzamidine), cysteine (antipain, leupeptin, E-64, iodoacetic acid, calpain I), aminopeptidase (bestatin), aspartic (pepstatin), metallo (1-10 phenanthroline, EDTA), and caspase specific (Z-Phe-Ala-FMK, Z-Val-Ala-Asp-FMK) reversible and irreversible inhibitors at 1, 10 and 100 µM.
Recombinant TcoMCA5^{H147AC202G} (0.5 µg/ml) was incubated at 37 °C for 10 min with MCA assay buffer containing 10 mM Z-Gly-Gly-Arg-AMC. During that period, 1, 10 and 100 µM of the panel of reversible and irreversible inhibitors, prepared in MCA assay buffer, were added, in triplicate, to the wells of a black FluoroNunc™ 96-well plate. Thereafter, the enzyme prepared in MCA assay buffer, was added to the wells and the fluorescence measured as before (every 30 s for 60 min). The AMC standard curve (Appendix B2) and the change in velocity were used to determine the resultant inhibition of the enzyme, which was reported as the percentage inhibition compared to that of the uninhibited enzyme.

3.2.6.5 Reversible inhibition of TcoMCA5

Only the reversible inhibitors, antipain and leupeptin, were able to partially inhibit the activity of recombinant TcoMCA5^{H147AC202G}. In order to determine the inhibition kinetic constant, \(K_i \), the recombinant enzyme was incubated with inhibitors over a range of concentrations \([I]\), which was in 20-fold molar excess over the enzyme concentration (0-100 µM). The change in steady state velocity without inhibitor \((v_0) \) and with the addition of inhibitor \((v_i) \) together with equation [C] (Salvesen and Nagase, 1989), a plot of \(v_0 / v_i - 1 \) against \([I] \), would result in the determination of \(K_i (\text{app}) \) from the gradient.

\[
\frac{v_0}{v_i} = 1 + \frac{[I]}{K_i (\text{app})}
\]

Substitution of \(K_i (\text{app}) \) into equation [D] (Salvesen and Nagase, 1989), allows for the determination of \(K_i \).

\[
K_i = \frac{K_i (\text{app})}{1} + \frac{[S]}{K_m}
\]

To determine the extent of reversible inhibition by antipain and leupeptin on the peptidolytic activity of TcoMCA5, recombinant TcoMCA5^{H147AC202G} (0.5 µg/ml) was pre-incubated at 37 °C for 10 min with MCA assay buffer containing 10 mM Z-Gly-Gly-Arg-AMC. During that period, a series of concentrations of antipain and leupeptin, made in MCA assay buffer, was added to the wells of a black FluoroNunc™ 96-well plate, in triplicate. Thereafter, the enzyme prepared in MCA assay buffer, was added to the wells and the fluorescence measured as before (every 30 s for 60 min). The AMC standard curve (Appendix B2) and the change in velocity were used to determine the resultant inhibition of the enzyme, which was reported as the percentage inhibition compared to that of the uninhibited enzyme.
3.2.6.6 Effect of divalent cations

The influence of metal ions on the activity of an enzyme can provide insight into its catalytic mechanism, as metals can serve as structural regulators, electron donors, electron acceptors or as Lewis acids (Riordan, 1977). Some MCAs have an absolute requirement for calcium for activation while others do not.

To determine the effect of divalent cations on the activity of TcoMCA5, recombinant TcoMCA5H147AC202G (0.5 µg/ml) was pre-incubated at 37 °C for 10 min with MCA assay buffer without calcium, containing 10 mM Z-Gly-Gly-Arg-AMC. During that period, 1, 10 and 100 µM of a variety of divalent cations, prepared in MCA assay buffer, was added to the wells of a black FluoroNunc™ 96-well plate, in triplicate. Thereafter, the enzyme prepared in MCA assay buffer, was added to the wells and the fluorescence measured as before (every 30 s for 60 min). The AMC standard curve (Appendix B2) and the change in velocity were used to determine the resultant inhibition of the enzyme, which was reported as the percentage inhibition compared to that of the uninhibited enzyme.

3.3 Results

3.3.1 Mutagenesis of the active site residues of TcoMCA5 and TvMCA5

The generation of the catalytic dyad residue mutations, H147A and C202G, along with the Cys adjacent to the catalytic Cys, C201G, was performed in order to determine if the active site residues played a role in autoprocessing as described in Chapter 2. In addition, the double mutant of the catalytic dyad residues, H147AC202G, was generated. The engineering of TcoMCA5 and TvMCA5 mutants was achieved using the Q5® Site-Directed Mutagenesis Kit. The high-fidelity PCR amplification of the desired mutations are given in Appendix B3. The sequences of the generated mutants are provided in Appendix B4.

3.3.2 Expression of recombinant WT and active site mutants

A western blot of the expression of recombinant WT, using chicken anti-6xHis IgY antibodies, detected a His-tagged protein at 68 kDa for both TbbMCA2 and TcoMCA5, and at approximately 90 kDa for TvMCA5 (Fig. 3.3, panel A) in the insoluble expression fraction. Prominent protein bands at 68 and 60 kDa for TcoMCA5 and
TviMCA5, as well numerous lower molecular weight protein bands, were detected using their respective chicken IgY antibodies. From literature, autoprocessing results in the cleavage of the N- and C-terminal domains to release the catalytic domain from the full length protein. Thus, the 68 and 60 kDa bands, in the insoluble expression fraction, are suggested to be the full length protein with and without the N-terminal 6xHis tag, respectively, corresponding to the proteins detected by the anti-6xHis IgY antibody. The 38 kDa protein is thought to be as a result of the removal of the C-terminal domain from the 60 kDa protein. After the removal of the C-terminal domain, 23 kDa protein, from the 38 kDa protein, the 31 kDa catalytic domain is produced.

A comparison of the soluble and insoluble expression fractions of the recombinant WT and mutants (panels B and C), revealed that apart from TcoMCA5C201G having the same full length, 70 kDa protein band in the insoluble expression fraction, similar to that of the WT, and lacking the protein bands at 31 and 38 kDa in the soluble fraction, the mutants all had a similar protein profile to that of the WT.

No protein bands were detected after probing a western blot of the expression of BL21 (DE3) E. coli cells, with and without the pET-28a and pET-32a plasmids, using the chicken anti-6xHis IgY, chicken anti-TcoMCA5 IgY and chicken anti-TviMCA5 IgY antibodies (result not shown).

3.3.3 Affinity purification of recombinant WT and MCA5 mutants from the soluble and insoluble expression fractions

Following expression, and the detection of autoprocessed MCA in both the soluble and insoluble expression fractions, the purification strategy implemented as described in Chapter 2 was repeated. The soluble MCA was purified using immunoaffinity purification (Fig. 3.4), and the insoluble MCA was solubilised, refolded and purified using nickel affinity chromatography (Fig 3.5).

The purification of soluble MCA resulted in two prominent lower molecular weight protein bands at approximately 41 and 35 kDa, which is thought to correspond to the release of the catalytic domain from the full length protein by the cleavage of the N- and C-terminal domain, was present for all clones. Due to the very faint Coomassie stained bands present after purification of TcoMCA5C202G, TviMCASC201G and TviMCASC202G, the SDS-PAGE gels were counter-stained with silver. The full length protein was only evident for TcoMCA5C202G at approximately 68 kDa, and faintly for TviMCASC201G and TviMCASC202G after silver staining.
Figure 3.3: Western blots of the expression of WT MCA5 and catalytic mutants. Samples from the soluble (SN) and insoluble (P) fractions of the expression of TbbMCA2, TcoMCA5, TvMCA5 WT along with the H147A, C201G, C202G and H147AC202G mutants of TcoMCA5 and TvMCA5 were electrophoresed on reducing 12.5% SDS-PAGE gels. After transfer onto nitrocellulose, blocking with 5% (w/v) milk-TBS, incubation with (A1) chicken anti-6xHis IgY [1:5 000 in 0.5% (w/v) BSA-PBS], (A2 and B) chicken anti-TcoMCA5 IgY and (A3 and C) chicken anti-TvMCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS] was carried out. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol-H$_2$O$_2$ were used as the detection system.
Figure 3.4: Immunoaffinity purification of the soluble WT and mutant MCA5s after recombinant expression. Samples of the three eluted fractions from the purification of soluble TbbMCA2, TcoMCA5 and TvMCA5 WT along with the TcoMCA5 and TvMCA5 mutants, were electrophoresed on 12.5% reducing SDS-PAGE gels and stained with Coomassie Blue R-250. The TvMCA5C201G and TvMCA5C202G gels were subsequently counter-stained with silver.

Similar to the observations described in Chapter 2, solubilisation, refolding and purification using nickel affinity chromatography, nickel-induced over autoprocessing was observed. That is, more protein bands were eluted than were detected in the western blot of expression samples (Fig. 3.3) and by the immunoaffinity purification (Fig. 3.4). In most clones, the 70, 68, 35, 25 and 20 kDa proteins were detected (Fig. 3.5), proteins which were visible in the western blot of expression samples. However, in the second eluted fraction, an increase in the number of eluted proteins was evident, as was shown in Chapter 2. In the case of TcoMCA5C201G and TcoMCA5H147AC202G and TvMCA5H147AC202G clones, very little over autoprocessing was evident in the second eluted fraction, with prominent protein bands at 68, 35 and 28 kDa, corresponding to the full length and release of the catalytic domain. In fractions 4 to 10, almost pure full length protein was eluted. The elution pattern of TcoMCA5H147A and TvMCA5 WT (panel C) differed from the other clones, with the elution of 30, 25, 21 and 14 kDa proteins in fractions 3 to 10.
3.3.4 Isolation of native TcoMCA5

A search of the NCBI database indicates that the MCA5 from both *T. congolense* and *T. vivax* are putative peptidases. Detection of native *Tbb*MCA5 and *Tvi*MCA5 in bloodstream trypomastigote lysate was achieved using both chicken anti-*Tco*MCA5 IgY and chicken anti-*Tvi*MCA5 IgY. The existence of *Tco*MCA5 (Eyssen, 2013) and *Tbb*MCA5 (Helms *et al.*, 2006) were demonstrated previously. However, the characterisation of *Tbb*MCA5 was not conducted. Native *Tvi*MCA5 was detected at approximately 50 kDa by chicken anti-*Tco*MCA5 IgY and at 68 and 30 kDa by chicken anti-*Tvi*MCA5 IgY, but more intensely by the latter (Fig. 3.6, panels A and B, respectively). However, native *Tbb*MCA5, at approximately 70 kDa, was only detected by chicken anti-*Tco*MCA5 IgY. As we do not currently have access to viable *T. vivax* parasites, and since *Tbb*MCA5 is not a priority enzyme in this study, only the isolation of native *Tco*MCA5 and its enzymatic characterisation was pursued.

Following the application of the total parasite protein to the chicken anti-*Tco*MCA5 IgY immunoaffinity resin, 70 and 46 kDa proteins bound to the resin and were eluted by decreasing the pH (Fig. 3.7). There was a small amount of the 46 kDa protein in the eluted fractions when compared to the amount of protein loaded onto the resin. The sizes of these proteins correspond well with the western blot of *T. congolense* bloodstream trypomastigote lysate using chicken anti-*Tco*MCA5 IgY (Eyssen, 2013). However, not all of the full length protein bound the resin as some was detected in the unbound fraction.
Figure 3.5: Nickel affinity purification of solubilised recombinant \textit{Tbb}MCA2, \textit{Tco}MCA5 and \textit{Tvi}MCA5 WT, along with \textit{Tco}MCA5 and \textit{Tvi}MCA5 catalytic mutants. Samples of the eluted fractions from the nickel affinity purification of recombinant MCA WT and catalytic dyad mutants were electrophoresed on 12.5% reducing SDS-PAGE gels and stained with Coomassie blue R-250. The eluted fractions of the \textit{Tco}MCA5\textsubscript{C202G} and the \textit{Tvi}MCA5 mutants were counted stained with silver.
Figure 3.6: Detection of native MCA5 in *T. b. brucei* and *T. vivax* bloodstream trypomastigote lysates. Parasite lysates (1x10⁹ parasites/ml) were electrophoresed on a 12.5% reducing SDS-PAGE gel and transferred onto nitrocellulose. After blocking with 5% (w/v) milk-TBS, the nitrocellulose was incubated with (A) chicken anti-*Tco*MCA5 IgY and (B) chicken anti-*Tvi*MCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol·H₂O₂ were used as the detection system.

Figure 3.7: Immunoaffinity purification of native *Tco*MCA5. Samples of the total protein content loaded onto the resin, unbound fraction, wash fractions as well as the eluted fractions were electrophoresed on a 12.5% reducing SDS-PAGE gel and transferred onto nitrocellulose. After blocking with 5% (w/v) milk-TBS, the nitrocellulose was incubated with chicken anti-*Tco*MCA5 IgY [10 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and ECL were used as the detection system.

3.3.5 Enzymatic characterisation

Both the WT and mutants were enzymatically characterised based on their P₁ site specificity, pH profile as well as which inhibitors they were sensitive to.

Hydrolysis of the Z-Gly-Gly-Arg-AMC substrate was only detected in the second fraction of the double mutant *Tco*MCA5_{H147AC202G} purified using nickel affinity chromatography. In addition, hydrolysis was detected with the immunoaffinity purified, native *Tco*MCA5. To prove that these two enzymes were indeed the only active MCAs, the second eluted fraction from each of the ‘inactive’ clones, were tested alongside those of the ‘active’ MCAs. It was found that 0.5 µg/ml *Tco*MCA5_{H147AC202G} (pink) and 7.5 µg/ml native *Tco*MCA5 (green) were active with a discernible increase in velocity.
(Fig. 3.8, panels A and B, respectively), whilst the eluted fractions from the ‘inactive’ clones showed no activity. Despite the higher enzyme concentration, native TcoMCA5 had a much slower velocity, 3.51 µM/s, compared to recombinant TcoMCA5H147AC202G, at 145 µM/s.

The fact that the clone in which both the catalytic residues were mutated, was shown to be the most active, supports the suggestion of the existence of a secondary catalytic Cys (Vercammen et al., 2004; Proto et al., 2011; Piszczek et al., 2012). The Cys residue in question, Cys81 in TcoMCA5, is in close proximity to the catalytic Cys202 and adjacent Cys201 (Appendix B5), and is conserved in the MCAs found in Trypanosoma spp. and Leishmania spp. (Appendix A3). Further support for this suggestion is that neither the catalytic His nor Cys were shown to be essential for the ‘trypsin-like’ activity of native LdnMCA (Lee et al., 2007).

![Figure 3.8: Enzymatic activity of the purified recombinant WT, mutants and native TcoMCA5.](image)

Figure 3.8: Enzymatic activity of the purified recombinant WT, mutants and native TcoMCA5. From the purifications using nickel affinity chromatography of: recombinant WT and all mutants of both TcoMCA5 and TviMCA5, together with the immunoaffinity purified native TcoMCA5, the second eluted fraction (0.5 µg/ml and 7.5 µg/ml for recombinant and native, in triplicate and duplicate, respectively) was incubated with MCA assay buffer, containing 10 µM Z-Gly-Gly-Arg-AMC and the resultant fluorescence measured (Ex360nm and Em460nm). The equation of the (A: pink) recombinant TcoMCA5H147AC202G trendline is given by $y = 145.88x$ with a correlation coefficient of 0.9997 and for (B: green) native TcoMCA5, $y = 3.5158x$ with a correlation coefficient of 0.9868.

3.3.5.1 Substrate specificity

The preference of recombinant TcoMCA5H147AC202G and native TcoMCA5 for different amino acid residues at the P\textsubscript{1}, P\textsubscript{2} and P\textsubscript{3} sites was investigated. Due to the low activities obtained for Lys in the P\textsubscript{1} site, only the activities with Arg in the P\textsubscript{1} site are reported in Table 3.1. Despite the higher affinity for both Z-Pro-Arg-AMC and Z-Arg-Arg-AMC, by recombinant TcoMCA5H147AC202G, Z-Gly-Gly-Arg-AMC was characterised by a higher turnover number. However, recombinant TcoMCA5H147AC202G cleaved Z-Arg-Arg-AMC two times more efficiently than Z-Gly-Gly-Arg-AMC. The most commonly reported
fluorogenic peptide substrate used for kinetoplastid MCAs is Z-Gly-Gly-Arg-AMC, which was selected for the remaining enzymatic characterisations.

Since a high concentration of native TcoMCA5 was required to observe any activity, it was only tested against Z-Gly-Gly-Arg-AMC, and in duplicate. As seen in the velocities reported in Fig. 3.8, native TcoMCA5 hydrolysed the fluorogenic peptide substrate very slowly (3.917 µM/s), with a low turnover of 0.52 s⁻¹, as well as having a 14 times lower substrate affinity compared to that of the recombinant TcoMCA5H147AC202G. The catalytic efficiency constant, k_{cat}/K_m, is useful in comparing the relative rates of an enzyme acting on different substrates, but is not to be used to compare two different enzymes acting on the same substrate (Eisenthal et al., 2007). Thus, the low value for native TcoMCA5, compared to recombinant TcoMCA5H147AC202G, does not necessarily mean that Z-Gly-Gly-Arg-AMC is a poor choice of substrate. The Lineweaver-Burke plots are provided in Appendix B6.

Table 3.1: Substrate specificity of recombinant TcoMCA5H147AC202G and purified native TcoMCA5. Recombinant TcoMCA5H147AC202G (0.5 µg/ml) and native TcoMCA5 (7.5 µg/ml) were incubated in MCA assay buffer (50 mM Tris-HCl buffer, pH 7.2, 150 mM NaCl, 10 mM CaCl₂, 5 mM DTT) before the addition of 0 to 30 µM of various fluorogenic peptide substrates in triplicate and duplicate, respectively. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex₃60nm and Em₄60nm. The kinetic parameters, K_m and V_{max} were determined using the Hyper32® software.

<table>
<thead>
<tr>
<th>Substrate (µM)</th>
<th>TcoMCA5H147AC202G</th>
<th>Native TcoMCA5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_m (µM)</td>
<td>k_{cat} (1/s)</td>
</tr>
<tr>
<td>Z-Gly-Gly-Arg-AMC</td>
<td>120</td>
<td>871</td>
</tr>
<tr>
<td>H-Val-Gly-Arg-AMC</td>
<td>72.9</td>
<td>420</td>
</tr>
<tr>
<td>Z-Gly-Pro-Arg-AMC</td>
<td>171</td>
<td>808</td>
</tr>
<tr>
<td>Z-Pro-Arg-AMC</td>
<td>24.0</td>
<td>211</td>
</tr>
<tr>
<td>Z-Arg-AMC</td>
<td>13.2</td>
<td>175</td>
</tr>
<tr>
<td>Z-Arg-AMC</td>
<td>134</td>
<td>408</td>
</tr>
</tbody>
</table>

ND: not determined due to limited quantity of native TcoMCA5 enzyme available.

The Boc-Val-Leu-Lys-AMC and H-Ala-Phe-Lys-AMC substrates had K_m and V_{max} values of less than 0.02 µM, and were omitted from the table.

3.3.5.2 pH profile

Using the Z-Gly-Gly-Arg-AMC substrate, along with the constant ionic strength AMT buffers, the pH profile of recombinant TcoMCA5H147AC202 was determined, using triplicate samples, in the absence and presence of calcium. Based on the results of the recombinant enzyme and limited amount of native enzyme, the pH profile of native TcoMCA5 was determined at six pH values instead of eleven, using duplicate samples, without the addition of calcium.
Recombinant *TbbMCA2* has a pH optimum of 7.7 (Machado *et al.*, 2013; Gilio *et al.*, 2017) due to the two ionising groups of the catalytic dyad with $pK_{a1} = 6.7$ (His) and $pK_{a2} = 8.7$ (Cys) (Machado *et al.*, 2013). The addition (panel A) and omission of calcium (panel B) slightly affected the activity of recombinant *TcoMCA5*_{5H147AC202G}, but was shown to be most active between pH 7 and 9. Moderate activity was found between pH 6 and 7, with very little activity below pH 5.5 (Fig. 3.9). The omission of calcium (panel B) resulted in slightly increased velocities when compared to those obtained with the addition of calcium (panel A). As such, due to the limited amount of native *TcoMCA5*, the pH profile was determined without the addition of calcium. The pH profile for native *TcoMCA5* (panel C) was very similar to that of recombinant *TcoMCA5*_{5H147AC202G}, with a broad pH optimum between 6.5 and 9, at a lower velocity, even after an extended period of measurements. This was expected following the low velocities observed in the range of 50 to 70 µM/s in Fig. 3.8, panel B.

![Figure 3.9: The pH profile of recombinant *TcoMCA5*_{5H147AC202G} and native *TcoMCA5*. Recombinant *TcoMCA5*_{5H147AC202G} (A and B; 0.5 µg/ml, in triplicate) and native *TcoMCA5* (C; 7.5 µg/ml, in duplicate) were incubated in constant ionic strength AMT buffers (100 mM sodium acetate, 10 mM MES, 200 mM Tris-HCl, 5 mM EDTA, 5 mM DTT) varying in pH from 4 to 9 and containing Z-Gly-Gly-Arg-AMC (10 µM). In (A), the AMT buffer was supplemented with 10 mM CaCl₂ whereas (B and C) was without. The resultant fluorescence from the hydrolysis of the AMC fluorophore by recombinant and native *TcoMCA5* over 15 and 60 min, respectively, was measured at E_x360nm and E_m460nm.

The estimated pI of the full length *TbbMCA2* is 5.8 compared to 8.4 for *TcoMCA5*. A probable cause for the broad pH profile, and the deviation from the bell-shaped curve of *TbbMCA2* may be due to the difference in amino acid composition of the N-terminal
domain and the longer C-terminal domain of MCA5 (Fig. 2.7 and Appendix A3) which remains attached to the main protein body after autoprocessing (McLuskey et al., 2012). The pI-values of these domains differ between TbbMCA2 (N-terminal domain, 6; C-terminal domain, 5), TcoMCA5 (N-terminal domain, 9.8; C-terminal domain, 8) and TviMCA5 (N-terminal domain, 10.2; C-terminal domain, 9).

3.3.5.3 Gelatin digestion

In order to determine which of the proteins, purified using nickel- and immuno-affinity chromatography for recombinant TcoMCA5H147AC202 and immuno-affinity chromatography for native TcoMCA5, were active, zymography was employed. Activity is visualised by the digestion of the gelatin substrate, shown as clear areas in the amido black stained gelatin-containing non-reducing SDS-PAGE gel. As seen in Fig. 3.9, both recombinant TcoMCA5H147AC202G and native TcoMCA5 were active between pH 7 to 9, the three zymograms were therefore incubated at pH 7, 8, and 9. The recombinant catalytic domain (CD) of congopain, TcoCATL, which served as the positive control, showed activity at approximately 22 kDa. Activity of the MCA5 was observed at approximately 97, 63, 42 and 38 kDa with no discernible difference in activity observed between the three buffers (Fig. 3.10).

Due to the addition of gelatin to the SDS-PAGE gels, the molecular weights are only approximations. Referring to Appendix B7, the two active protein bands of native TcoMCA5 correspond well to the 68 and 46 kDa protein bands detected after its immunoaffinity purification as detected using chicken anti-TcoMCA5 IgY (Fig. 3.7). Recombinant TcoMCA5H147AC202G was active as two protein bands which corresponds well to the 32 and 28 kDa protein bands seen in Fig. 3.5. Samples from the nickel- and immuno-affinity purifications of both recombinant WT and clones of the other mutants, were also electrophoresed on gelatin containing SDS-PAGE gels, with gelatin digestion only evident for the recombinant TcoCATL CD control (results not shown).
Figure 3.10: Gelatin containing SDS-PAGE to visualise the peptidolytic activity of native TcoMCA5 and recombinant TcoMCA5^{H147AC202G}. A sample from each of the eluted fractions of purified native TcoMCA5, second eluted fraction of nickel purified recombinant TcoMCA5^{H147AC202G}, together with recombinant TcoCATL CD (0.5 µg/ml), was electrophoresed on a non-reducing 12.5% SDS-PAGE containing 1% (w/v) porcine gelatin. After washing twice with 2.5% (w/v) Triton X-100 and incubation with AMT buffers pH 7, 8 and 9, the gels were stained with Amido Black.

3.3.5.4 Inhibitors

A panel of both reversible and irreversible inhibitors where incubated with recombinant TcoMCA5^{H147AC202G} to determine which would have an effect on enzyme activity. As evident from Fig. 3.11, only the serine and cysteine specific inhibitors, leupeptin and antipain were able to reduce the enzyme activity of recombinant TcoMCA5^{H147AC202G} by more than 20% at 10 µM. An increase in inhibitor concentration to 100 µM, did not increase the extent of inhibition. Both the general caspase inhibitor, Z-Val-Ala-Asp-FMK, and negative control for caspase inhibitors, Z-Phe-Ala-FMK, showed no inhibition. Even the classical cysteine specific inhibitor, E-64 was unable to reduce activity (Appendix B8). The velocities and standard deviations of each inhibitor are given in Appendix B9.

The inhibition constant, K_i, for antipain was 119.1 µM and 72.99 µM for leupeptin (Appendix B10), indicating that leupeptin was a better inhibitor than antipain.
Figure 3.11: Sensitivity of recombinant \(TcoMCA5^{H147AC202G} \) to a variety of peptidase inhibitors. Recombinant \(TcoMCA5^{H147AC202G} \) (0.5 µg/ml) was incubated in MCA assay buffer containing 10 µM Z-Gly-Gly-Arg-AMC, before the addition of 1, 10 and 100 µM of various peptidase inhibitors, in triplicate, diluted in assay buffer without substrate. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex 360nm and Em 460nm. No inhibition was measured for calpain I, bestatin, AEBSF, 1,10 phenanthroline, Z-Phe-Ala-FMK, Z-Val-Ala-Asp-FMK and iodoacetic acid. Percentage inhibition was determined using 0 mM inhibitor as 0% inhibition.

3.3.5.5 Effect of divalent cations

Some MCAs depend on calcium activation for peptidolytic activity (Bozhkov, 2005; Moss et al., 2007; He et al., 2008; Ojha et al., 2010; Meslin et al., 2011; Proto et al., 2011; Laverrière et al., 2012; Wen et al., 2013) whilst others do not (Vercammen et al., 2004; Gonzáles et al., 2007; Klemenčič et al., 2015).

In the absence of calcium, recombinant \(TcoMCA5^{H147AC202G} \) was active, however, the addition of 1 and 5 mM calcium, decreased its activity by 10%, but at 10 and 25 mM 100% activity was observed (Fig. 3.12, panel A). Increasing the calcium concentration beyond 25 mM resulted in a steep drop in activity, where at 100 mM, half its activity had been lost. The decrease in velocity is given in Appendix B1. As such, the pH profile of native \(TcoMCA5 \) was tested without the addition of calcium in the MCA assay buffer.

In an attempt to understand why extensive autoprocessing is evident in the second eluted fraction after nickel affinity purification of the solubilised recombinant MCA5s, the effect of other divalent cations was investigated. Nearly complete inhibition of Z-Gly-Gly-Arg-AMC hydrolysis, was observed for 1 mM Cd\(^{2+}\) and Zn\(^{2+}\), 58% for Cu\(^{2+}\), 54% for Fe\(^{2+}\) and 32% for Ni\(^{2+}\) when added to recombinant \(TcoMCA5^{H147AC202G} \) (Fig. 3.12, panel B). When increased to 10 mM, all cations, with the exception of Mg\(^{2+}\), Mn\(^{2+}\) and Ca\(^{2+}\), decreased the activity of \(TcoMCA5^{H147AC202G} \) by more than 90%. The
decrease in velocity is given in Appendix B1. This trend might be due to the size of the ions where Cd>Zn>Cu>Ni>Fe>Mn>Ca and the resultant percentage inhibition Cd=Zn=Cu>Fe>Ni>Mg=Mn=Ca are almost directly related.

Figure 3.12: Effect of divalent cations on the enzymatic activity of recombinant TcoMCA5H147AC202G. Recombinant TcoMCA5H147AC202G (0.5 µg/ml) was incubated in MCA assay buffer containing 10 µM Z-Gly-Gly-Arg-AMC, before the addition of (A) 0 to 100 mM Ca2+ or (B) 1 and 10 mM of various divalent cations, in triplicate, diluted in assay buffer without substrate. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex360nm and Em460nm. Percentage activity is determined using 0 mM Ca2+ as 100% active and percentage inhibition using 0 mM inhibitor as 0% inhibition.

3.4 Discussion

Due to the structural similarities to the caspases and their absence in the metazoan kingdom, it was hypothesised that the MCAs may function in a similar manner, and have hence been described as virulence factors (Mottram et al., 2003). The MCAs' involvement in both apoptotic (Proto et al., 2011; Zalila et al., 2011; Laverrière et al., 2012) and non-apoptotic (Helms et al., 2006; Ambit et al., 2008; Lee et al., 2010) events have been demonstrated. Thus, targeting the MCA for the development of novel chemotherapies, may cause a disruption in the signalling pathways of the parasite, and be ideal for parasite control. As such, it is imperative to characterise the MCAs' activation mechanisms and kinetic characteristics.

Autoprocessing of MCAs generally functions to remove the N- and C-terminal domains from the catalytic domain. However, it has been suggested that the cleavage of the N-terminal domain is independent of the peptidase’s autoprocessing ability (Gonzáles et al., 2007). The MCAs do not necessarily require autoprocessing, nor dimerisation for activation of their peptidolytic activity (Moss et al., 2007), and are not all activated by calcium (Vercammen et al., 2004; Gonzáles et al., 2007). It has been demonstrated that recombinant TbbMCA2 undergoes autoprocessing, but this is not necessary for activity, whereas autoprocessing is key for activation of caspases (Moss et al., 2007).
No TbbMCA2 autoprocessing has been demonstrated in vitro, but it cannot be ruled out as its occurrence may be restricted to specific points of the cell cycle or under specific in vivo induction conditions (Moss et al., 2007; Ambit et al., 2008). It is a possibility that in vivo, autoprocessing plays a role in MCA targeting and/or protein interactions and thus, function in an indirect regulatory manner.

The catalytic domain of LmjMCA, when expressed in yeast, was shown to be more active than the full length protein (Ambit et al., 2008). This is in line with the suggestion that processing is required for optimal enzymatic activity (Gonzáles et al., 2007). A similar result was obtained for PmMCA1 when expressed in E. coli (Meslin et al., 2007). Mutagenesis of the sites of autoprocessing in TbbMCA2 resulted in an active enzyme but not as active as when autoprocessing, to release the catalytic domain, had occurred (Gilio et al., 2017). This, however, was not the case for TcrMCA3 and -5 where autoprocessing was not observed but the enzymes were still active (Kosec et al., 2006). Mutagenesis studies have been conducted to determine if the catalytic residues play a role in autoprocessing. The individual mutations of the catalytic His of the single yeast metacaspase, YCA1, and the residues of the catalytic dyad of LmjMCA, did not impair their ability to undergo autoprocessing (Gonzáles et al., 2007; Wong et al., 2012). In addition the Cys adjacent to the catalytic Cys, Cys201, of LmjMCA was shown not to be essential for peptidolysis but did have an influence on the catalytic Cys which was not discussed further (Gonzáles et al., 2007). The two Cys residues, Cys201 and Cys202, of TcoMCA5 and TvMCA5 do not interact directly with each other. Instead Cys201 and Cys202 form π-sulfur interactions with His200 and Tyr141, respectively, and is illustrated in Appendix B13. To date, there has been no record of a recombinant MCA clone in which both the catalytic His and Cys were mutated.

Considering the conserved sequences between the MCAs of Leishmania spp., together with the preference of Arg at the P1 site of substrates, the domain assignment of the multiple bands seen in the expression samples of the recombinant WT and mutants of TcoMCA5 and TvMCA5 were based on that assigned for LmjMCA autoprocessing. Firstly, C-terminal cleavage at Arg298, followed by N-terminal cleavage at Arg63, Arg79 and Arg135, is required for the release of the active catalytic domain (Zalila et al., 2011). Upon the overexpression of TcoMCA5 and TvMCA5 in E. coli, several bands were detected, which included the full length protein, with and without the N-terminal 6xHis tag at 68 and 60 kDa, respectively. Through autoprocessing, the removal of the 23 kDa C-terminal domain from the 60 kDa protein...
would produce the 38 kDa protein comprising the catalytic domain and the N-terminal domain. Removal of the N-terminal domain would result in the 31 kDa catalytic domain which is close to the expected size of TcoMCA5 and TvMCA5. To confirm the domains assigned to these proteins, and determine the sites of autoprocessing, N-terminal sequencing needs to be performed in future studies.

No significant differences in the autoprocessing patterns were observed upon expression of the WT and the catalytic residue mutants. Significant differences were only observed in the elution profiles of the purifications of the soluble and insoluble expression fractions. In the case of the immunoaffinity purification of the soluble expression fraction, only TcoMCA5C202G possessed the full length protein. The nickel affinity purification of both the WT and mutant MCAs, from the solubilised expression fraction, resulted in nickel-induced over autoprocessing, as reported in Chapter 2, for the WT and each mutant with the exception of TcoMCA5H147AC202G. The nickel affinity purification of the TcoMCA5 in which both the catalytic dyad residues had been mutated, resulted in no nickel-induced over processing, but rather, only the full length 68 and 35, 28 kDa proteins were eluted. The 35 kDa protein corresponds to the cleavage of the N-terminal 6xHis tag as well as the C-terminal domain. Removal of the N-terminal domain from this protein would result in the 28 kDa protein.

Following the isolation of total protein content from T. congolense bloodstream trypomastigotes, native TcoMCA5 was immunoaffinity purified as a full length 68 kDa and a 45 kDa protein. The removal of the C-terminal domain from the full length protein is thought to produce the 45 kDa protein.

When analysed on a zymogram, both the 68 and 45 kDa protein bands of native TcoMCA5, and the 35 and 28 kDa protein bands of TcoMCA5H147AC202G showed gelatin digestion. None of the other purified MCA WT and mutant clones showed any gelatin digestion, which correlates with the result of only the recombinant TcoMCA5H147AC202G and native TcoMCA5 showing any activity towards the Z-Gly-Gly-Arg-AMC substrate. The native TcoMCA5 had a low reaction velocity and affinity for the fluorogenic peptide substrate, which may have been caused by the small amount of active catalytic domain as well as the active full length protein which was visualised in the zymogram. To date, this is the first report of MCA, or caspase, digestion of gelatin.

The existence of a secondary catalytic Cys has been suggested due to its close proximity to the catalytic Cys, and its conservation in all kinetoplastid species (Szallies et al., 2002; Belenghi et al., 2007). It is though that the secondary catalytic Cys may
be required for autoprocessing or for its peptidolytic activity (Szallies et al., 2002). The function of this secondary catalytic Cys has been shown to rescue AtMCA9 activity despite S-nitrosylation of the catalytic Cys when endogenous levels of nitric oxide are high (Belenghi et al., 2007). The fact that the only active recombinant MCA was the double catalytic mutant, provides more evidence towards the existence of a secondary catalytic Cys which supports that report that the ‘trypsin-like’ activity of LdnMCA is not completely dependent on the catalytic dyad residues (Lee et al., 2007). In the type II MCA from Triticum aestivum, TaeMCAII, it was shown, through mutagenesis studies of the catalytic Cys140 and secondary catalytic Cys23, that autoprocessing was dependent on catalytic Cys140 and that the secondary catalytic Cys23 was essential for catalytic activity (Piszczek et al., 2012). However, this does not rule out the role played by the Cys adjacent to the catalytic Cys in peptidolysis.

To date, there is no suitable inhibitor of MCA that could be used for active site titration. However, Machado et al. (2013) for TbbMCA2, Laverrière et al. (2012) for TcMCA3 and TcMCA5, as well as Vercammen et al. (2006) for AtMCA9, reported k_{cat} values but failed to mention the active site titrant. Klemenčič et al. (2015) used the irreversible inhibitor Z-Phe-Arg-FMK as an active site titrant for the recombinant orthocaspase 1 from Microcystis aeruginosa PCC 7806, whilst Watanabe and Lam (2011) showed that biotin-Phe-Pro-Arg-CMK was able to abolish the ability of recombinant AtMCA4 to cleave Z-Gly-Arg-Arg-AMC. However, they did not use this to determine the k_{cat}. Thus, until it is shown that either Z-Phe-Arg-FMK or biotin-Phe-Pro-Arg-CMK are able to effectively inhibit TcoMCA5, we will assume that [E]$_i$ is equal to [E]$_0$.

In line with literature on AtMCA4 (Vercammen et al., 2004), AtMCA9 (Watanabe and Lam, 2005) and TbbMCA2 (Machado et al., 2013), it was demonstrated that recombinant TcoMCA5H147AC202G had a preference for Arg over Lys at the P$_1$ site. The tripeptide fluorogenic substrates had greater reaction velocities than their dipeptide counterparts. The Z-Arg-AMC had the second highest substrate affinity, but hydrolysis occurred at a low velocity. At the P$_2$ site, Pro was favoured over Gly, and at the P$_3$ site, Gly was preferred over Val. These findings are in line with what was reported for recombinant TbbMCA2 where Val, Ala, Glu, Leu and Pro are preferred at the P$_3$ site and Gly, Leu, Phe, Pro, Arg and Lys at the P$_2$ site (Machado et al., 2013).

Despite the lower affinity of recombinant TcoMCA5H147AC202G for Z-Gly-Gly-Arg-AMC, (119.6 µM) compared to 25.7 µM reported for recombinant TbbMCA2, hydrolysis occurred at a lower velocity of 435.6 µM/s for TcoMCA5H147AC202G compared to 3372.5 µM/s of TbbMCA2, (McLuskey et al., 2012). Purified native TcoMCA5
possessed a higher substrate affinity of 8.384 μM for and slower hydrolysis (3.917 μM/s) of Z-Gly-Gly-Arg-AMC compared to recombinant TcoMCA5H147AC202G. This may be due to the incomplete autoprocessing to release the active catalytic domain of native TcoMCA5 as seen in the zymogram when compared to that of recombinant TcoMCA5H147AC202G.

The pH optimum of MCA may give insight to its localisation, and hint at which functions it might be involved in. The different processed forms of LmjMCA are targeted to different subcellular compartments (Zalila et al., 2011; Castanys-Muñoz et al., 2012). The optimal peptidolytic activity for MCAs has been reported to be between pH 7 and 9 (Vercammen et al., 2004; Moss et al., 2007; Machado et al., 2013; Wen et al., 2013), with the exception of AtMCA9, which has a pH optimum of 5.5. In contrast to the bell-shaped curve demonstrated by most MCAs, native the LdnMCA1 was active over a broad pH range (Lee et al., 2007). This is similar to the pH profile of recombinant TcoMCA5H147AC202G and native TcoMCA5 showing activity from pH 6 to 9. This board pH range may be due to the difference in pI values of the N- and C-terminal domains between the single- and multicopy MCAs which stay attached to the main protein body after autoprocessing (McLuskey et al., 2012). The C-terminal domains of the single copy MCAs are longer than those of the multicopy MCAs and have a higher pI. In addition, the N-terminal domains of the single copy MCAs have a higher pI than those of the multicopy MCAs. It is, thus, hypothesised that the increased pI of both the N- and C-terminal domains may contribute to the observed activity across a broad range of pH values.

The most successful inhibitors of recombinant TbbMCA2 (Moss et al., 2007), TbbMCA4S219C (Proto et al., 2011) and native LdnMCA (Lee et al., 2007) were found to be leupeptin, antipain, TLCK with 70 to 90% inhibition, AEBSF and chymostatin with 30 to 45% inhibition. Only antipain, 119.1 μM, and leupeptin, 72.99 μM, had measurable inhibition kinetic constants for recombinant TcoMCA5H147AC202G, equating to a 20% inhibition by antipain and 21% by leupeptin. Each of the other inhibitors, specific for different peptidase classes and at different concentrations, which were tested, had no effect on the activity of recombinant TcoMCA5H147AC202G. Due to the limited supply of native TcoMCA5, inhibitor efficacy was not determined.

Studies have shown that a number of MCAs have an absolute calcium requirement for activity (Bozhkov, 2005; Moss et al., 2007; He et al., 2008; Ojha et al., 2010; Meslin et al., 2011; Proto et al., 2011; Laverrière et al., 2012; Wen et al., 2013). The few MCA exceptions which do not require calcium for activity are LmjMCA (Gonzáles et al.,
2007), AtMCA9 (Vercammen et al., 2004) and the orthocaspase, MaeOC1 (Klemenčič et al., 2015). Calcium has been shown to induce an allosteric conformational change which functions to stabilise substrate binding (McLuskey et al., 2012). As such, the calcium dependency of some MCAs is suggested to function as a mechanism for the control of peptidolysis (Moss et al., 2007). Autoprocessing of recombinant AtMCA4 produces four protein bands which lack the N-terminal affinity tag (Watanabe and Lam, 2011). After the addition of calcium to the expression sample, an increase in the number of AtMCA4 protein bands is observed with cleavage at both the N- and C-termini (Watanabe and Lam, 2011).

The calcium-induced processing of AtMCA4 is similar to what was seen in the second eluted fraction in the present study’s nickel-affinity purification, hence the term, nickel-induced over autoprocessing. Various authors have used nickel-, and in some cases cobalt-, affinity chromatography to purify plant, yeast, leishmanial and trypanosomal recombinant MCAs (Vercammen et al., 2004; Kosec et al., 2006; Gonzáles et al., 2007; Lee et al., 2007; Moss et al., 2007; Proto et al., 2011; Laverrière et al., 2012; McLuskey et al., 2012; Piszczek et al., 2012; Wong et al., 2012; Wen et al., 2013). However, the SDS-PAGE gels showing the elution profiles were not reported in these studies.

It was demonstrated that calcium was not required for the activity of recombinant TcoMCA5H147AC202G. In fact, activity decreased between 6 and 7% upon the addition of calcium up to 10 mM, while between 10 and 25 mM no reduction in activity was observed. Above 25 mM, a steep decrease in activity was observed with increasing calcium concentration, while at 100 mM, activity was reduced by 50%.

In an attempt to understand why nickel-induced over autoprocessing occurred during nickel-affinity purification, the effect of different divalent cations was investigated. The addition of 1 mM Cd²⁺ and Zn²⁺ as well as 10 mM Cu²⁺, Fe²⁺ and Ni²⁺ resulted in the almost complete inhibition (>95%) of recombinant TcoMCA5H147AC202G. The addition of other divalent cations, Cu²⁺, Mg²⁺, Mn²⁺ and Zn²⁺ failed to affect the activity of recombinant TbbMCA2 (Moss et al., 2007). Addition of these cations to YCA1 and the MCA from Lycopersicon esculentum, LesMCA1 (Wen et al., 2013), showed no effect when visualised on a reducing SDS-PAGE gel (Wong et al., 2012). In the case of recombinant AtMCA2, the addition of Mg²⁺ and Mn²⁺ increased the activity slightly as determined by fluorescence (Watanabe and Lam, 2011).
The His-select® nickel affinity resin contains approximately 20 to 40 μmol divalent nickel ions per 1 ml of resin. At 1 mM Ni²⁺, a 30% reduction in activity was measured. Thus, the low concentration of nickel ions in the resin would be insufficient to significantly reduce the activity of the recombinant TcoMCA5^{H147AC202G}. Bearing in mind that the recombinant TcoMCA5^{H147AC202G} did not require calcium to be active, it is hypothesised that the binding of the 6xHis tagged recombinant enzyme to the nickel resin immobilises it and allows for the interaction of the MCA with itself, as reported for LmjMCA by Casanova et al. (2015), and other MCA molecules in its immediate surroundings. This is in line with what was suggested by Watanabe and Lam (2011), that recombinant MCA may exhibit minor catalytic activity which could initiate a cascade reaction of peptidolytic processes. Thus, when two proenzyme molecules are in close proximity, one slightly active proenzyme could cleave the second molecule (Watanabe and Lam, 2011). This suggests that TcoMCA5 requires autoprocessing to release the active catalytic domain.

This may allow for the recombinant TcoMCA5 to over autoprocess at secondary cleavage sites or even non-specifically. Thus, upon elution, there is no intact active catalytic domain (35 and 28 kDa bands), left to hydrolyse the fluorogenic peptide substrate. This over autoprocessing was not evident in the immunoaffinity purification of the recombinant WT (Section 2.3.6) and, as such, must be attributed to the nickel ions in the resin.

With this information about substrate and pH preferences, the modelling of these proteins including their catalytic residues, secondary catalytic Cys residues and the identification of other residues which may play a role in peptidolysis was performed. In addition, docking of an inhibitor library, which was designed for TbbMCA2 by Berg et al. (2012), was performed for both TbbMCA5 and TvMCA5 in an attempt to identify suitable pharmacophores for the development of effective anti-MCA inhibitors as described in Chapter 4.
CHAPTER 4
DOCKING STUDIES OF MCA2 INHIBITORS WITH MCA2 FROM T. B. BRUCEI AND MCA5 FROM T. CONGOLENSE AND T. VIVAX

4.1 Introduction

Trypanosomal parasites’ ability to evade the adaptive immune response of the host, by the process of antigenic variation, impedes the development of vaccines against both human and animal Africa trypanosomosis, HAT and AAT (Morrison et al., 2009). Thus, prevention through vector control and screening for infections, followed by the appropriate treatment are the only options for the control of AT.

The currently used trypanocides have been in use for over 60 years (Barrett et al., 2011), with the exception of the nifurtimox-eflornithine combination therapy for HAT (Priotto et al., 2009). None of the currently used chemotherapies are effective against both T. b. gambiense and T. b. rhodesiense, as well as both the initial and final disease stages. Side effects of HAT chemotherapies vary in severity, with the arsenical based melarsoprol causing reactive encephalopathy in 5 to 10% of all treated patients. It is uncertain how the HAT chemotherapies, pentamidine, suramin and melarsoprol actually kill trypanosomes (Barrett et al., 2007). It has been shown previously that the HAT chemotherapies suramin (Morty et al., 1998) and pentamidine (Ashall, 1990; Morty et al., 1998) as well as the AAT chemotherapy, diminazene aceturate (Morty et al., 1998) were able to inhibit the activity of TbbOPB. However, it is probable that these drugs have several modes of action through the interaction with multiple targets within the parasite (Gilbert, 2013). Due to the indiscriminate use of AAT chemotherapies and the length of time that the same drugs have been in use, drug resistance has been reported (Giordani et al., 2016). Thus, it is imperative to develop novel chemotherapies to treat and control AT (Field et al., 2017).

Drug discovery is predominately based on the identification of individual targets in the infectious organism which can be affected by small molecule ligands, which in turn can be modified to achieve better affinity for the target, resulting in a more potent inhibitor with drug-like characteristics (Brun et al., 2011; Lounnas et al., 2013). The most important feature of a target for drug discovery is that it must be essential to the parasite, i.e. be a virulence factor. Other important features to consider is the
availability of structural information of the target, the target’s ability to be inhibited by drug-like molecules and be selective for the parasite only (Frearson et al., 2007; Wyatt et al., 2011; Gilbert, 2013).

Various methodologies are being pursued in the discovery of novel chemotherapies (Matthews, 2015; Field et al., 2017). The target-based methodology relies on the identification of a target, and along with its structural information (Sliwoski et al., 2013), structure-based drug design (SBDD) can be used for the identification of binding ligands, and the subsequent optimisation of ligand structure to increase binding affinity (Skinner-Adams et al., 2016). The SBDD methodology is one of the most promising methodologies to identify suitable ligands for target proteins (Bleicher et al., 2003; Foloppe et al., 2006; Klebe, 2006) and involves ligand docking, pharmacophore design, and ligand design methods (Sliwoski et al., 2013). Together with the three dimensional (3D) structure of the target, the interaction energies can be calculated for target specific ligands by molecular docking techniques (Kalyaanamoorthy and Chen, 2011). A positive outcome of SBDD methodologies is the identification of the important residues involved in binding, which can inform modification of existing ligands to achieve a greater binding affinity for the target (Jain et al., 2011; Blaney, 2012).

Knowledge of the target structure and the sites of interaction with specific ligands may assist in the deduction of the roles played by the target (Urwyler, 2011). Cellular peptidases (McKerrow et al., 2008) and multiple enzymes, involved in various biochemical pathways, have been validated as targets for the development of novel chemotherapies (Field et al., 2017), with some progress being made in the identification of chemical inhibitors. The MCAs have been identified as virulence factors and are attractive targets for drug discovery due to their absence in the animal kingdom and their potential involvement in parasite cellular processes. *Trypanosoma b. brucei* possesses five MCA genes, of which TbbMCA2 is well characterised. The single copy MCA5 differs from MCA2 by the presence of a Pro-Glu-Tyr-rich C-terminal domain, which is thought to be involved in protein-protein interactions (Kay et al., 2000). The MCA sequences of the human and animal infective *Trypanosoma* spp., *T. cruzi* and *Leishmania* spp. show a high level of conservation (Fig. 2.1 and Appendix A3).

A library of ligand inhibitors was designed based on the P₁ site specificity of TbbMCA2 for basic Arg and Lys residues prior to the 3D structure being solved (Berg et al., 2012). The ligands were tested against the purified recombinant TbbMCA2 as well as in a phenotypic assay using *in vitro* cultured *T. b. brucei, T. cruzi, L. infantum* and...
P. falciparum parasites, which achieved micromolar IC\(_{50}\) values, between 2.1 and 50 µM. However, ligand optimisation was not pursued further. The 3D structure of *TbbMCA2* has since been solved (McLuskey *et al.*, 2012), but the binding site and affinity of the Berg ligands for the *TbbMCA2* target has not been established.

In the present study, the validation of ligand binding, from the previously designed Berg library, into the active site of the 3D structure of *TbbMCA2* (solved by X-ray diffraction (McLuskey *et al.*, 2012)) was performed using molecular docking software. This software evaluates the ligand conformation, when docked in the active site by specific scoring functions, and modifies the torsional, translational and rotational degrees of freedom of the ligands, until a minimum energy is achieved (Kapetanovic, 2008; Yuriev *et al.*, 2009; Huang and Zou, 2010). In addition, the affinity of the Berg ligands for the MCA5s from animal infective *T. congolense* and *T. vivax*, is investigated.

4.2 Materials and Methods

4.2.1 Materials

Commercial library: The structures of the inhibitors and fluorogenic peptide substrates used in literature for the characterisation of various MCAs were obtained from the PubChem compound database (Kim *et al.*, 2016) and can be found in Appendix C1.

Berg library: The library was obtained from The Binding Database, (http://www.bindingdb.org/jsp/dbsearch/PrimarySearch_pubmed.jsp?pubmed_submit =Search&pubmed=20167486) (Gilson *et al.*, 2016) and can be found in Appendix C2. The IC\(_{50}\) values reported in the analyses are of the ligands tested against the recombinant *TbbMCA2* as published by Berg *et al.* (2012).

TbbMCA2 3D structures: The 3D structures, solved using X-ray diffraction, of *TbbMCA2* with the C213G mutant with, 4AF8 (1.4 Å), and without a Sm\(^{3+}\) ion, 4AFP (2.1 Å), and the C213A mutant with, 4AFV (1.5 Å), and without a calcium soak, 4AFR (1.6 Å), were obtained from the RCSB Protein Data Bank (www.rcsb.org)(Berman *et al.*, 2000) as submitted by McLuskey *et al.* (2012).

Discovery Studio docking software: The Centre for High Performance Computing (Cape Town, South Africa) is acknowledged for the provision of the computational resources necessary to conduct this work.
4.2.2 Homology modelling

The most reliable computational method for predicting protein structure from its sequence is homology modelling (Bordoli et al., 2008). This involves the identification of templates using a BLAST search, followed by the alignment and superimposing of the template to the query sequence using both structure and sequence alignment methods. The end result is a 3D model of the query protein.

The SwissModel software (Biasini et al., 2014) was used to create 3D models for TcoMCA5 and TvMCA5. Together with multiple sequence alignment, the scoring functions, Qmean and GMQE (Global Model Quality Estimation), indicators of the reliability of the modelled protein, were reported (Benkert et al., 2009; Benkert et al., 2011).

The Ramachandran plots for TcoMCA5 and TvMCA5 were generated by Discovery Studio (Dassault Systèmes BIOVIA), and compared to those of TbbMCA2 reported in the Protein Data Bank by McLuskey et al. (2012). The quality of the generated models was verified using the ProSA-web protein structure analysis software whereby an overall quality score for a query structure is reported (https://prosa.services.came.sbg.ac.at/prosa.php) (Sippl, 1993; Wiederstein and Sippl, 2007).

4.2.3 Identification of residues involved in catalysis

The residues which are involved in catalysis and calcium binding, in addition to the gatekeeper and latch residues, which function in the removal of the N-terminal domain from across the active site, were highlighted in Appendix A3 and listed in Table 4.1. The 3D structures, solved by X-ray diffraction, of TbbMCA2, 4AF8 and 4AFP had a catalytic Cys mutation at residue 213 to Gly, and in 4AFV and 4AFR to an Ala. This residue in each of the four TbbMCA2 models was changed back to Cys to best simulate the environment in the active site.
Table 4.1: Identification of residues in *TbbMCA2*, *TcoMCA5* and *TvMCA5* which are involved in catalysis.

<table>
<thead>
<tr>
<th></th>
<th>TbbMCA2</th>
<th>TcoMCA5 and TvMCA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatekeeper</td>
<td>Tyr31</td>
<td>Tyr19</td>
</tr>
<tr>
<td>Latch/Si binding</td>
<td>Ser156</td>
<td>Ser145</td>
</tr>
<tr>
<td>S1 binding</td>
<td>Asp95, Asp211</td>
<td>Asp84, Asp200</td>
</tr>
<tr>
<td>Calcium binding</td>
<td>Asp173, Asp189, Asp190, Asp220</td>
<td>Asp162, Asp178, Asp179, Asp209</td>
</tr>
<tr>
<td>Secondary catalytic Cys</td>
<td>Cys92</td>
<td>Cys81</td>
</tr>
<tr>
<td>Catalytic dyad</td>
<td>His158, Cys213</td>
<td>His147, Cys202</td>
</tr>
<tr>
<td>Adjacent Cys</td>
<td>Cys212</td>
<td>Cys201</td>
</tr>
</tbody>
</table>

4.2.4 Protein and ligand preparation

The *TbbMCA2* models, 4AF8, 4AFP, 4AFV, 4AFR, and the homology modelled *TcoMCA5* and *TvMCA5*, were prepared using the ‘Prepare Protein’ protocol from Discovery Studio (Dassault Systèmes BIOVIA). The protocol allowed for the optimisation of side chain conformation, the retention or removal of water molecules, the modeling of any missing loops and side chain atoms, and the protonation of the structure by the prediction of the site pKₐs at the optimum pH of *TbbMCA2*, 7.7, as determined by Machado *et al.* (2013). To assist in differentiation between the different protein models, the structures were coloured differently, 4AF8 (pink), 4AFP (white), 4AFV (orange), 4AFR (blue), *TcoMCA5* (purple) and *TvMCA5* (turquoise).

The structural water molecules are usually located in deep pockets of the protein ‘receptor’ structure and mediate the formation of hydrogen bonds between the ligand and receptor binding site (Bissantz *et al.*, 2010). Strongly bound water molecules are often conserved across multiple crystallographic structures (Ferreira *et al.*, 2015) as is evident for *TbbMCA2*, where three conserved water molecules line the bottom of the active site in all four 3D structures (McLuskey *et al.*, 2012). As such, each of the proteins were prepared in four ways. Firstly, with all the water molecules present; secondly, with all water molecules removed; thirdly, only the conserved water molecules present; and finally, from the prepared structure with all water molecules present, all but the conserved water molecules were removed. These preparations will be referred to as ‘all water’, ‘no water’, ‘conserved water, prepared’, and ‘conserved water without preparation’ for simplicity.

The ligand inhibitors comprising the Berg library, as well as the substrates and inhibitors comprising the commercial library, were prepared using the ‘Prepare Ligands’ protocol from Discovery Studio (Dassault Systèmes BIOVIA). The protocol
allows for the generation of multiple tautomers and stereoisomers for each ligand molecule, the correction of valencies and formal charges associated with each functional group. Finally, the generated 3D conformation of each inhibitor, substrate and ligand was prepared for use in docking studies.

4.2.5 Binding site identification

The binding sites were defined using the receptor cavity protocol using Discovery Studio (Dassault Systèmes BIOVIA). This method is based on an ‘eraser’ algorithm which functions to remove all points which are not in contact with the protein ‘receptor’ (Venkatachalam et al., 2003). The binding site which was identified within the active site cavity, comprising the catalytic dyad, secondary and adjacent Cys residues as well as the S1 binding residues, was selected for docking.

Upon the addition of calcium, a conformational change occurs in TbbMCA2 which functions to remove the N-terminal domain from across the active site (McLuskey et al., 2012). This involves the S1 binding residue closest to the catalytic His residue, which functions as a latch, and the gatekeeper Tyr residue in the N-terminal domain (McLuskey et al., 2012). Taking this into consideration, some of the N-terminal domain was removed, residues 1 to 35 for TbbMCA2 and residues 1 to 25 for MCA5, the valence corrected, subjected to the ‘Prepare Protein’ protocol with each of the four different water preparations, followed by the re-evaluation of the binding sites. This final structure was used for all subsequent docking studies.

4.2.6 CDocker

Protein ‘receptors’ and ligands are flexible and may occupy multiple conformations in solution. In addition, upon ligand binding, the protein ‘receptor’ may undergo a conformational change. Most docking algorithms function by the docking of flexible ligands into the rigid binding site of the protein ‘receptor’. Another method, which is more realistic but requires more CPU time, is flexible docking whereby various protein ‘receptor’ conformations are used for docking with flexible ligand molecules. The CDocker algorithm was used in this study, which, through the use of random initial ligand placement and CHARMM forcefield, docks ligand molecules into the defined binding site of the protein ‘receptors’. Using the default settings in the CDocker protocol from Discovery Studio (Dassault Systèmes BIOVIA), the ligands from both the Berg and the commercial libraries where docked into the binding site of the 3D structures of...
TbbMCA2 4AF8, 4AFP, 4AFV and 4AFR as well as the homology modelled structure of both TcoMCA5 and TviMCA5.

4.2.7 Common feature pharmacophore

A pharmacophore is defined as the group of steric and electronic features which is required for the activation or inhibition of a receptor. A group of structurally diverse ligands are able to bind to a common site on a receptor should they share a common pharmacophore. Novel ligands targeting specific sites can be designed using these pharmacophore models. A common feature pharmacophore was generated using the same named protocol from Discovery Studio (Dassault Systèmes BIOVIA). This was achieved using the ligands which had the best CDocker interaction energies with corresponding low IC₅₀ values and docked in a similar spatial position.

4.3 Results

4.3.1 TbbMCA2 from the Protein Data Bank

To date the only 3D structures of MCAs, solved by X-ray diffraction, are YCA1 from Saccharomyces cerevisiae, 4F6P and 4F6O (Wong et al., 2012), and TbbMCA2, 4AF8, 4AFP, 4AFV and 4AFR (McLuskey et al., 2012).

The TbbMCA2 peptidase is dependent on calcium for activation, and in 4AF8, samarium was used to define the calcium binding site (McLuskey et al., 2012). The Sm³⁺ ion coordinates four Asp residues and two water molecules (Fig. 4.1, panel A). Three structural water molecules were observed to be conserved between the four 3D structures, solved by X-ray diffraction, of TbbMCA2 and were found to line the bottom of the active site pocket (Fig. 4.1, panel B). These molecules interact with the catalytic His158, the S₁ binding residue Asp211, the secondary catalytic Cys92 as well as with Gly157 and Gly159. The oxyanion hole of the caspases is formed by the backbone nitrogen atoms of the catalytic Cys and the conserved Gly238, which is adjacent the catalytic His (Walker et al., 1994; Fuentes-Prieto and Salvesen, 2004). The catalytic His of the MCAs is adjacent to a Gly residue which is conserved in all the kinetoplastid MCAs (Appendix A3). As such, Gly159 may form part of the oxyanion hole of TbbMCA2.

Residues 269 to 275 form a disordered region which corresponds to the ‘280-loop’. Due to the disorder, this loop was not solved in the crystal structure (Fig. 4.1, panel C and D). Upon soaking TbbMCA2 4AFV crystals in calcium, a shift in position of the
‘280-loop’ was observed (Fig. 4.1, panels D and E). As a result, a 5.6 Å, 110° shift occurs at the Cα position of Gly280 caused by the change in direction at the Cα position of Ala279 (Fig. 4.1, panel F) as reported by McLuskey et al. (2012).

Figure 4.1: Structural features of the 3D structures of TbbMCA2 for docking. (A) Water molecules and conserved Asp residues interacting with Sm3+ ion (teal) in TbbMCA2 4AFP. (B) Interactions of the three conserved water molecules with the residues in the active site of TbbMCA2. Overlay of the 3D structures, solved by X-ray diffraction, of TbbMCA2 4AF8 (pink), 4AFP (white), 4AFV (orange) and 4AFR (blue) (McLuskey et al., 2012) (C) with and (D) without all the water molecules. The C-terminal of the ‘280-loop’ is highlighted in (D) and the magnified view shown in E, F and G. Magnification of the ‘280-loop’ (E) ribbon structure, (F) atomic structure and (G) comparison change in direction of 4AFV and 4AFR due to calcium soaking. Structures were obtained from the Protein Data Bank (Berman et al., 2000), visualised and analysed using Discovery Studio (Dassault Systèmes BIOVIA).

4.3.2 Homology modelling

The SwissModel alignment of TcoMCA5 and TviMCA5 resulted in a 48 to 49% sequence identity to the four 3D structures, solved by X-ray diffraction, of TbbMCA2. The results from the CDocker analysis of the four TbbMCA2 models, together with the four water preparations, with both the commercial and Berg libraries, indicated that 4AF8 demonstrated the best ligand fitting (Section 4.3.5.1). As a result, both TcoMCA5
and TviMCA5 were modelled using TbbMCA2 4AF8 and superimposed onto the template (Fig. 4.2, panel A). The generated alignment from SwissModel is accompanied by Qmean scores which are represented in blue indicating a high-quality prediction, and in orange/red indicating a low-quality prediction (Fig. 4.2, panels B and C). The alignments are enlarged in Appendix C3.

The final 3D structures of TcoMCA5 and TviMCA5 were validated using the protein structure analysis software, ProSA-web (Fig. 4.3) (Wiederstein and Sippl, 2007). The Z-score indicates the overall quality of the protein model and shows that the scores for the 3D structure, solved by X-ray diffraction, of TbbMCA2 (-7.93) and homology modelled TcoMCA5 (-9.12) and TviMCA5 (-9.12) are within the range of scores (-8 to -12) found for native proteins of a similar size as determined by X-ray diffraction.

The Ramachandran plots for both TcoMCA5 and TviMCA5 are very similar to that of TbbMCA2 4AF8, whose structure was solved at a resolution of 1.4 Å using X-ray diffraction (Fig. 4.4). Considering all the data from Fig. 4.2 to 4.4, the homology models generated for TcoMCA5 and TviMCA5 were suitable for docking studies with the Berg and commercial libraries.

4.3.3 Protein preparation

The N-terminal domain of TbbMCA2 is a well-ordered loop, consisting of 70 residues, which encircles the main body, forming 32 hydrogen bonds and eight salt bridges, and crosses over the active site cavity (McLuskey et al., 2012) (Fig. 4.5, panel A). The domain crosses over the active site cavity at Tyr31 (Fig. 4.5, panel B). A calcium-induced conformational change occurs in TbbMCA2 whereby it is suggested that the N-terminal domain is removed from the entrance of the active site using Tyr31 as the gatekeeper, together with Ser156 as the latch (McLuskey et al., 2012). As such, residues 1 to 35 for TbbMCA2 and 1 to 25 for both TcoMCA5 and TviMCA5 were deleted to mimic the conformational change and allow access into the active site (Fig. 4.5, panel C). To validate the removal of the prodomain, binding site identification was carried out with and without the N-terminal domain. No binding site was identified at the active site while the N-terminal domain was present, but upon its removal, a binding site was identified in the same location of the active site.
Figure 4.2: Homology modelling of TcoMCA5 and TviMCA5. Using TbbMCA2 4AF8 (pink) as the template, the 3D structures of TcoMCA5 (purple) and TviMCA5 (turquoise) were (A) modelled using SwissModel and superimposed. The alignment of the (B) TcoMCA5 and (C) TviMCA5 sequences to the TbbMCA2 4AF8 template is shown with the Qmean scores indicated in blue (high quality prediction) and orange/red (low quality prediction). (See Appendix C3 for enlarged versions of panels B and C).

Figure 4.3: Z-score plot as an indication of model quality. The PDB files of the resulting (A) TbbMCA2 4AF8 and homology modelled (B) TcoMCA5 and (C) TviMCA5 structures, were individually uploaded into the ProSA software for evaluation (Wiederstein and Sippl, 2007).

Figure 4.4: Ramachandran plots of TbbMCA2 4AF8 and modelled TcoMCA5 and TviMCA5. The plots for (A) TbbMCA2 4AF8 was obtained from the PDB (Berman et al., 2000) (McLuskey et al., 2012) and those for homology modelled (B) TcoMCA5 and (C) TviMCA5 were generated using the Discovery Studio software (Dassault Systèmes BIOVIA).
Figure 4.5: Interactions of the N-terminal domain with the main body of *Tbb*MCA2 4AF8. (A) The N-terminal domain (yellow) encircles the main body of *Tbb*MCA2 4AF8 (pink), (B) and blocks access to the active site using Tyr31. (C) After removal of residues 1 to 35, the active site is accessible to ligands, substrates and inhibitors.

4.3.4 Active site identification

After the deletion of the N-terminal domain residues of *Tbb*MCA2 (1 to 35) and MCA5 (1 to 25), the binding sites were identified by the cavity method using the Discovery Studio protocol (Dassault Systèmes BIOVIA).

The binding site used for docking studies needs to be located at the active site cavity which contains the catalytic dyad, S_1 binding, adjacent and secondary catalytic Cys residues (Fig. 4.6, panel A) as well as the three conserved water molecules (Fig. 4.6, panel B). The spatial positions of these residues are similar and align well between *Tbb*MCA2, *Tco*MCA5 and *Tv*MCA5.

The binding sites, which corresponded to the location of the active site in each of the four *Tbb*MCA2 models, the homology modelled *Tco*MCA5 and *Tv*MCA5, and in each of the four water preparations, were selected and detailed in Table 4.2. The surface of the active site of *Tbb*MCA2 4AF8 in the four water preparations is depicted in Fig. 4.7.
Figure 4.6: Identification of the active site residues of TbbMCA2, TcoMCA5 and TviMCA5. (A) The residues involved in calcium binding, in substrate binding and catalysis are highlighted for TbbMCA2 4AF8 (pink), TcoMCA5 (purple) and TviMCA5 (turquoise). (B) Enlarged conserved water molecules lining the bottom of the active site.

The ‘all water’ and ‘conserved water without preparation’ preparations of TbbMCA2 4AF8 yielded the same structure (Fig. 4.8, panel A) with identical binding site positions (Table 4.2), hence the appearance of a single structure. A noticeable difference was observed between the ‘conserved water without preparation’ and ‘no water’ (panel B) as well as with ‘conserved water with preparation’ (panel C) where the location of the loop C-terminal to Cys213 varies. Hence, two different coloured structures are observed in panels B and C. The coordinates of the binding sites of the ‘no water’ and ‘conserved water prepared’ preparations are different from the ‘all water’ and ‘conserved water without preparation’. Similar structural features were obtained for both TcoMCA5 and TviMCA5.
Table 4.2: Binding site spheres, in which the catalytically important residues are found, to be used for docking studies.

<table>
<thead>
<tr>
<th>Protein (PDB ID)</th>
<th>'All water'</th>
<th>'No water'</th>
<th>'Conserved water, prepared'</th>
<th>'Conserved water without preparation'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radius (Å)</td>
<td>Coordinates (Å)</td>
<td>Radius (Å)</td>
<td>Coordinates (Å)</td>
</tr>
<tr>
<td>TbbMCA2 (4AF8)</td>
<td>8</td>
<td>55.57 43.89 -5.72</td>
<td>6</td>
<td>60.1 43.67 -10.71</td>
</tr>
<tr>
<td>TbbMCA2 (4AFP)</td>
<td>6</td>
<td>59.55 42.19 -7.04</td>
<td>6</td>
<td>60.13 43.19 -10.39</td>
</tr>
<tr>
<td>TbbMCA2 (4AFV)</td>
<td>8</td>
<td>64.02 47.21 -12.14</td>
<td>10</td>
<td>57.78 43.41 -15.65</td>
</tr>
<tr>
<td>TbbMCA2 (4AFR)</td>
<td>6</td>
<td>60.64 44.01 -8.48</td>
<td>10</td>
<td>57.52 43.33 -17.14</td>
</tr>
<tr>
<td>TcoMCA5</td>
<td>8.6</td>
<td>58.74 43.88 -5.62</td>
<td>6</td>
<td>60.05 43.61 -10.34</td>
</tr>
<tr>
<td>TvMCA5</td>
<td>9</td>
<td>57.59 43.32 5.64</td>
<td>6</td>
<td>60.04 43.60 -10.84</td>
</tr>
</tbody>
</table>

Figure 4.7: Active site surface of TbbMCA2 4AF8 after deletion of residues 1 to 35 of the N-terminal domain. The surface of the active site cavity was determined in the various water preparations, (A) ‘all water’, (B) ‘no water’, (C) ‘conserved water, prepared’ and (D) ‘conserved water without preparation’. The atomic structures of the catalytic dyad (His158, Cys213), adjacent Cys (Cys212), secondary catalytic Cys (Cys92) and S1 binding residues (Asp95, Ser156 and Asp211) are represented in a stick configuration.
4.3.5 CDocker analysis

The substrates and inhibitors of the commercial library were shown in literature to be cleaved by MCAs and inhibit the MCAs, respectively. Together with the ligands in the Berg library, which were designed based on the P₁ specificity of TbbMCA2, the substrates and inhibitors of the commercial library were docked into the active site of TbbMCA2 4AF8, 4AFP, 4AFV, 4AFR, TcoMCA5 and TviMCA5, in each of the four water preparations.

The CDocker analysis predicts the interaction energy associated with each ligand conformation and which ligands are docked in the specified binding site (Kapetanovic, 2008). Ligands with a high -CDocker interaction energy (kcal/mol) possess a higher binding affinity for the protein ‘receptor’ than those with lower energies. Multiple poses for each ligand are generated, with only the pose with the highest -CDocker interaction energy being reported. The IC₅₀ values reported in the analyses are of the ligands tested against recombinant TbbMCA2 as published by Berg et al. (2012). The correlation of -CDocker interaction energies of the ligands, substrates and inhibitors docked into the active site of TbbMCA2, TcoMCA5 and TviMCA5 together with the IC₅₀ of the Berg ligands are given in Appendix C4.

4.3.5.1 TbbMCA2

The -CDocker interaction energies for each ligand/inhibitor/substrate, which were successfully docked into the active site of TbbMCA2, from the commercial and Berg libraries are reported in Table 4.3 and 4.4, respectively. Since the substrates and inhibitors of the commercial library have been shown experimentally in literature to be
cleaved by MCAs, or inhibit the MCAs, these results were used to select the best water preparation for the analysis of the docking results using the Berg library.

The 3D structure, solved by X-ray diffraction at a resolution of 1.4 Å, of *Tbb*MCA2 4AF8 had the best resolution compared to the other three *Tbb*MCA2 structures, 1.6 and 2.1 Å. Overall, more of the ligands from the commercial and Berg libraries were docked into the active site of 4AF8, with higher -CDocker interaction energies, than compared to those docked in the other *Tbb*MCA2 structures.

Out of the four water preparations of *Tbb*MCA2 4AF8, only the ‘all water’ and ‘conserved water without preparation’ preparations, docked all the ligands with higher -CDocker interaction energies than the other two water preparations. This may be a direct effect of the difference in structure as shown in Fig. 4.8. As such, only the results for the ‘all water’ preparation will be analysed.

Antipain had the highest -CDocker interaction energy, 73 kcal/mol, of the four inhibitors, followed by chymostatin, 65 kcal/mol, and leupeptin, 53 kcal/mol. Low -CDocker interaction energies of 38 and 28 kcal/mol were obtained for TLCK and AEBSF, respectively.

The fluorogenic peptide substrates which had the highest affinity for *Tbb*MCA2 4AF8 were Boc-Val-Pro-Arg-AMC, 3-Methoxysuccinyl (MeOSuc)-Ala-Phe-Lys-AMC and Z-Gly-Gly-Arg-AMC with -CDocker interaction energies of 78, 71 and 69 kcal/mol, respectively. The remaining substrates had -CDocker interaction energies between 68 and 61 kcal/mol. The substrates used as active site inhibitors, Phe-Arg-FMK (Klemenčič et al., 2015) and Phe-Pro-Arg-chloromethylketone (CMK) (Watanabe and Lam, 2011) had the lowest -CDocker interaction energies of 59 and 54 kcal/mol, clearly different from the fluorogenic peptide substrates.

The Berg ligands with low IC$_{50}$ values generally had higher -CDocker interaction energies than those with IC$_{50}$ values above 100 µM. This was more evident for the ‘conserved water without preparation’ when compared to the ‘all water’ preparation model.
Table 4.3: The -CDocker interaction energies for the inhibitors and substrates of the commercial library which were successfully docked into the active site, of the four water preparations, of TbbMCA2 4AF8.

| Ligand | ‘All water’ Interact. energy | ‘No water’ Ligand | ‘No water’ Interact. energy | ‘Conserved water, prepared’ Ligand | ‘Conserved water without preparation’ ligand | Interact. energy
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boc-Val-Pro-Arg-AMC</td>
<td>77.9998</td>
<td>TLCK</td>
<td>46.1507</td>
<td>TLCK</td>
<td>Antipain</td>
<td>73.4214</td>
</tr>
<tr>
<td>Antipain</td>
<td>73.8336</td>
<td>AEBSF</td>
<td>37.7071</td>
<td>AEBSF</td>
<td>MeOSuc-Ala-Phe-Lys-AMC</td>
<td>65.2483</td>
</tr>
<tr>
<td>MeOSuc-Ala-Phe-Lys-AMC</td>
<td>71.4556</td>
<td>Phe-Pro-Arg-CMK</td>
<td>31.8880</td>
<td></td>
<td>Z-Gly-Gly-Arg-AMC</td>
<td>64.1411</td>
</tr>
<tr>
<td>Z-Gly-Gly-Arg-AMC</td>
<td>69.4528</td>
<td></td>
<td></td>
<td></td>
<td>Val-Leu-Arg-AMC</td>
<td>63.8513</td>
</tr>
<tr>
<td>Val-Leu-Lys-AMC</td>
<td>68.0078</td>
<td></td>
<td></td>
<td></td>
<td>Chymostatin</td>
<td>63.1609</td>
</tr>
<tr>
<td>Val-Leu-Arg-AMC</td>
<td>66.7398</td>
<td></td>
<td></td>
<td></td>
<td>Boc-Val-Pro-Arg-AMC</td>
<td>62.8661</td>
</tr>
<tr>
<td>Chymostatin</td>
<td>65.4091</td>
<td></td>
<td></td>
<td></td>
<td>Val-Leu-Lys-AMC</td>
<td>61.9325</td>
</tr>
<tr>
<td>Phe-Arg-FMK</td>
<td>59.5988</td>
<td></td>
<td></td>
<td></td>
<td>Phe-Arg-FMK</td>
<td>54.6182</td>
</tr>
<tr>
<td>Phe-Pro-Arg-CMK</td>
<td>54.1384</td>
<td></td>
<td></td>
<td></td>
<td>Phe-Pro-Arg-CMK</td>
<td>51.2296</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>53.6793</td>
<td></td>
<td></td>
<td></td>
<td>Leupeptin</td>
<td>50.5274</td>
</tr>
<tr>
<td>TLCK</td>
<td>38.8368</td>
<td></td>
<td></td>
<td></td>
<td>TLCK</td>
<td>39.1133</td>
</tr>
<tr>
<td>AEBSF</td>
<td>28.0329</td>
<td></td>
<td></td>
<td></td>
<td>AEBSF</td>
<td>29.0082</td>
</tr>
</tbody>
</table>

The interaction energy is reported as kcal/mol. Substrates and inhibitors were individually colour-coded for ease of interpretation of data.
Table 4.4: The -CDocker interaction energies for the ligands of the Berg library which were successfully docked into the active site, of the four water preparations, of *TbbMCA2* 4AF8.

<table>
<thead>
<tr>
<th>Ligand name</th>
<th>IC50 (µM)b</th>
<th>Interact. energya</th>
<th>Ligand</th>
<th>IC50 (µM)b</th>
<th>Interact. energya</th>
<th>Ligand name</th>
<th>IC50 (µM)b</th>
<th>Interact. energya</th>
<th>Ligand name</th>
<th>IC50 (µM)b</th>
<th>Interact. energya</th>
</tr>
</thead>
<tbody>
<tr>
<td>777</td>
<td>1.4</td>
<td>57.3327</td>
<td>297</td>
<td>1.6</td>
<td>49.4469</td>
<td>773</td>
<td>2.2</td>
<td>44.5092</td>
<td>777</td>
<td>1.4</td>
<td>55.1019</td>
</tr>
<tr>
<td>778</td>
<td>1.1</td>
<td>56.6135</td>
<td>772</td>
<td>2.2</td>
<td>46.6269</td>
<td>297</td>
<td>1.6</td>
<td>41.9132</td>
<td>778</td>
<td>1.1</td>
<td>54.6875</td>
</tr>
<tr>
<td>775</td>
<td>3.9</td>
<td>49.0060</td>
<td>773</td>
<td>2.2</td>
<td>46.6269</td>
<td>779</td>
<td>1.9</td>
<td>40.8882</td>
<td>774</td>
<td>38.4</td>
<td>45.0717</td>
</tr>
<tr>
<td>772</td>
<td>62.0</td>
<td>48.7148</td>
<td>781</td>
<td>>100</td>
<td>46.1817</td>
<td>772</td>
<td>62.0</td>
<td>39.6582</td>
<td>775</td>
<td>3.9</td>
<td>44.8550</td>
</tr>
<tr>
<td>776</td>
<td>4.0</td>
<td>48.6662</td>
<td>774</td>
<td>38.4</td>
<td>43.7821</td>
<td>771</td>
<td>0.6</td>
<td>35.9593</td>
<td>776</td>
<td>4.0</td>
<td>44.6914</td>
</tr>
<tr>
<td>771</td>
<td>0.6</td>
<td>48.5409</td>
<td>776</td>
<td>4.0</td>
<td>42.7313</td>
<td>775</td>
<td>1.9</td>
<td>40.8882</td>
<td>772</td>
<td>62.0</td>
<td>44.6729</td>
</tr>
<tr>
<td>770</td>
<td>>100</td>
<td>48.5346</td>
<td>779</td>
<td>2</td>
<td>42.2552</td>
<td>781</td>
<td>>100</td>
<td>34.9746</td>
<td>771</td>
<td>0.6</td>
<td>44.4879</td>
</tr>
<tr>
<td>774</td>
<td>38.4</td>
<td>48.2427</td>
<td>767</td>
<td>>100</td>
<td>41.7179</td>
<td>782</td>
<td>>100</td>
<td>33.2580</td>
<td>297</td>
<td>1.6</td>
<td>43.8606</td>
</tr>
<tr>
<td>769</td>
<td>>100</td>
<td>46.8011</td>
<td>771</td>
<td>0.6</td>
<td>41.6451</td>
<td>780</td>
<td>>100</td>
<td>32.6337</td>
<td>770</td>
<td>>100</td>
<td>43.7727</td>
</tr>
<tr>
<td>297</td>
<td>1.6</td>
<td>46.5066</td>
<td>782</td>
<td>>100</td>
<td>41.3783</td>
<td>767</td>
<td>>100</td>
<td>31.2158</td>
<td>773</td>
<td>2.2</td>
<td>42.3363</td>
</tr>
<tr>
<td>773</td>
<td>2.2</td>
<td>42.8317</td>
<td>768</td>
<td>>100</td>
<td>40.9039</td>
<td>766</td>
<td>>100</td>
<td>30.4471</td>
<td>781</td>
<td>>100</td>
<td>40.2067</td>
</tr>
<tr>
<td>767</td>
<td>100</td>
<td>39.9584</td>
<td>765</td>
<td>>100</td>
<td>40.7637</td>
<td>779</td>
<td>1.9</td>
<td>40.1646</td>
<td>779</td>
<td>1.9</td>
<td>40.1646</td>
</tr>
<tr>
<td>779</td>
<td>1.9</td>
<td>38.9667</td>
<td>766</td>
<td>>100</td>
<td>38.8653</td>
<td>769</td>
<td>>100</td>
<td>38.3082</td>
<td>768</td>
<td>>100</td>
<td>33.9735</td>
</tr>
<tr>
<td>781</td>
<td>>100</td>
<td>38.3100</td>
<td>775</td>
<td>3.9</td>
<td>35.0394</td>
<td>765</td>
<td>>100</td>
<td>33.4806</td>
<td>765</td>
<td>>100</td>
<td>33.4806</td>
</tr>
<tr>
<td>768</td>
<td>>100</td>
<td>37.5578</td>
<td>780</td>
<td>>100</td>
<td>34.7704</td>
<td>767</td>
<td>>100</td>
<td>33.0304</td>
<td>780</td>
<td>>100</td>
<td>32.5654</td>
</tr>
<tr>
<td>766</td>
<td>>100</td>
<td>37.3704</td>
<td>780</td>
<td>>100</td>
<td>34.7704</td>
<td>766</td>
<td>>100</td>
<td>32.5549</td>
<td>766</td>
<td>>100</td>
<td>28.7093</td>
</tr>
<tr>
<td>782</td>
<td>>100</td>
<td>32.5698</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The interaction energy is reported as kcal/mol.

\(^b\)The IC50 values were obtained from Berg et al. (2012).

Ligands were individually colour-coded for ease of interpretation of data.
The commercial inhibitor, antipain, had the highest -CDocker interaction energy and has been shown to inhibit recombinant *Tbb*MCA2 (*Moss et al.*, 2007) and recombinant *Tco*MCA5 in the results reported in the Chapter 3. The spatial position of the inhibitor, substrate and ligand with the highest -CDocker interaction energies in the active site of *Tbb*MCA2 4AF8, with the ‘all water’ preparation, is shown in Fig. 4.9. The 2D views and residue interactions are reported in Appendix C5. Despite the Z-Gly-Gly-Arg-AMC substrate having the third highest -CDocker interaction energy, it is the most commonly used substrate for the characterisation of MCAs in the published literature, and was used in the work described in Chapter 3 for the characterisation of recombinant *Tco*MCA5. The docked position of Z-Gly-Gly-Arg-AMC and the Berg ligand 777, which has a low IC$_{50}$ value (1.4 μM) is shown in Fig. 4.9.

Figure 4.9: The commercial inhibitor, substrate and Berg ligand which had the highest binding affinity, at the active site, for *Tbb*MCA2 4AF8, prepared with ‘all water.’ The 3D interactions of the (A) commercial inhibitor, antipain, (B) commercial substrate, Z-Gly-Aly-Arg-AMC and (C) Berg ligand, 777, docked in the active site of *Tbb*MCA2 4AF8.

4.3.5.2 *Tco*MCA5 and *Tv*MCA5

The docking of the commercial and Berg libraries into the active sites of *Tco*MCA5 and *Tv*MCA5, which had been modelled on *Tbb*MCA2 4AF8, using all four water
preparations, showed a similar result to what was seen for *TbbMCA2 4AF8*. Thus, only the results from the ‘all water’ preparation of *TcoMCA5* and *TvMCA5* is reported here. The -CDocker interaction energies for both the docked commercial and Berg ligands were slightly lower than those of *TbbMCA2 4AF8*, but overall, were very similar. (Table 4.5). Antipain was the best docked inhibitor, followed by chymostatin, with a 15 kcal/mol difference between antipain and leupeptin. Lower -CDocker interaction energy, between 40 to 23 kcal/mol was observed between *TcoMCA5* and *TvMCA5* with TLCK and AEBSF.

Similar to *TbbMCA2 4AF8*, the best docked substrate onto *TcoMCA5* was MeOSuc-Ala-Phe-Lys-AMC and Boc-Val-Pro-Arg-AMC for *TvMCA5*. The Z-Gly-Gly-Arg-AMC substrate had the third best -CDocker interaction energy for *TcoMCA5* and the fifth best for *TvMCA5*, with a 6 and 9 kcal/mol difference from that of the best docked substrate. The substrates reported in literature as active site inhibitors, Phe-Arg-FMK (Klemenčič et al., 2015) and Phe-Pro-Arg-CMK (Watanabe and Lam, 2011) docked onto *TcoMCA5* and *TvMCA5* and had almost the exact same -CDocker interaction energies to those docked onto *TbbMCA2 4AF8* (Table 4.3).

Based on the results for *TbbMCA2 4AF8*, the position of antipain, Z-Gly-Gly-Arg-AMC and Berg ligand 777, which docked with either the highest or second highest -CDocker interaction energies in the active site of *TcoMCA5* and *TvMCA5*, with the ‘all water’ preparation, is shown in Fig. 4.10. The 2D views and residue interactions are reported in Appendix C6.

Overall, similar -CDocker interaction energies were obtained for the ligands of the Berg library when docked into the active sites of *TbbMCA2 4AF8*, *TcoMCA5* and *TvMCA5* with the ‘all water’ preparation. The ligands which had the highest -CDocker interaction energies were 777 and 778. The ligands with high IC$_{50}$ values (>100 µM), 770 and 769, had higher -CDocker interaction energies than 779 which had a low IC$_{50}$ value (1.9 µM) in the above three protein ‘receptor’ models.
Table 4.5: The -CDocker interaction energies for the inhibitors and substrates from the commercial library, and ligands from the Berg library, which were successfully docked into the active site, of the ‘all water’ preparation, of TcoMCA5 and TvMCA5.

<table>
<thead>
<tr>
<th>Ligand name</th>
<th>Interact. energy</th>
<th>Ligand name</th>
<th>Interact. energy</th>
<th>Ligand name</th>
<th>IC₅₀ (µM)</th>
<th>Interact. energy</th>
<th>Ligand name</th>
<th>IC₅₀ (µM)</th>
<th>Interact. energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial library</td>
<td></td>
<td></td>
<td></td>
<td>Berg library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcoMCA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipain</td>
<td>69.3579</td>
<td>Boc-Val-Arg-Pro-Arg-AMC</td>
<td>69.0750</td>
<td>777</td>
<td>1.4</td>
<td>56.7501</td>
<td>777</td>
<td>1.4</td>
<td>58.0676</td>
</tr>
<tr>
<td>MeOSuc-Ala-Phe-Lys-AMC</td>
<td>69.1403</td>
<td>Antipain</td>
<td>69.0354</td>
<td>778</td>
<td>1.1</td>
<td>56.5844</td>
<td>778</td>
<td>1.1</td>
<td>54.8880</td>
</tr>
<tr>
<td>Chymostatin</td>
<td>68.7365</td>
<td>MeOSuc-Ala-Phe-Lys-AMC</td>
<td>68.1931</td>
<td>772</td>
<td>62.0</td>
<td>50.7902</td>
<td>775</td>
<td>3.9</td>
<td>50.0416</td>
</tr>
<tr>
<td>Val-Leu-Arg-AMC</td>
<td>65.779</td>
<td>Val-Leu-Arg-AMC</td>
<td>66.5845</td>
<td>770</td>
<td>>100</td>
<td>50.7726</td>
<td>776</td>
<td>4.0</td>
<td>49.9786</td>
</tr>
<tr>
<td>Z-Gly-Gly-Arg-AMC</td>
<td>63.9770</td>
<td>Chymostatin</td>
<td>66.3283</td>
<td>774</td>
<td>38.4</td>
<td>49.4546</td>
<td>770</td>
<td>>100</td>
<td>48.1789</td>
</tr>
<tr>
<td>Boc-Val-Arg-Pro-Arg-AMC</td>
<td>61.7294</td>
<td>Val-Leu-Lys-AMC</td>
<td>62.1262</td>
<td>775</td>
<td>3.9</td>
<td>49.1105</td>
<td>772</td>
<td>62.0</td>
<td>47.8103</td>
</tr>
<tr>
<td>Phe-Arg-FMK</td>
<td>59.6302</td>
<td>Z-Gly-Gly-Arg-AMC</td>
<td>60.4820</td>
<td>771</td>
<td>0.6</td>
<td>48.7838</td>
<td>774</td>
<td>38.4</td>
<td>47.6948</td>
</tr>
<tr>
<td>Val-Leu-Lys-AMC</td>
<td>59.2276</td>
<td>Phe-Arg-FMK</td>
<td>57.5471</td>
<td>776</td>
<td>4.0</td>
<td>47.5925</td>
<td>771</td>
<td>0.6</td>
<td>46.8969</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>54.5873</td>
<td>Phe-Pro-Arg-CMK</td>
<td>54.9999</td>
<td>769</td>
<td>>100</td>
<td>46.1706</td>
<td>773</td>
<td>2.2</td>
<td>45.5624</td>
</tr>
<tr>
<td>Phe-Pro-Arg-CMK</td>
<td>54.2661</td>
<td>Leupeptin</td>
<td>54.2910</td>
<td>797</td>
<td>1.6</td>
<td>46.0371</td>
<td>769</td>
<td>>100</td>
<td>43.6866</td>
</tr>
<tr>
<td>TLCK</td>
<td>40.0068</td>
<td>TLCK</td>
<td>37.2190</td>
<td>773</td>
<td>2.2</td>
<td>45.9522</td>
<td>297</td>
<td>1.6</td>
<td>43.2771</td>
</tr>
<tr>
<td>AEBSF</td>
<td>25.8711</td>
<td>AEBSF</td>
<td>23.9091</td>
<td>768</td>
<td>>100</td>
<td>43.6187</td>
<td>766</td>
<td>>100</td>
<td>39.1067</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>781</td>
<td>>100</td>
<td>41.7428</td>
<td>782</td>
<td>>100</td>
<td>38.2214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>767</td>
<td>>100</td>
<td>40.1867</td>
<td>779</td>
<td>1.9</td>
<td>38.0768</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>766</td>
<td>>100</td>
<td>39.6047</td>
<td>780</td>
<td>>100</td>
<td>37.5859</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>772</td>
<td>1.9</td>
<td>39.3659</td>
<td>765</td>
<td>>100</td>
<td>37.5521</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>765</td>
<td>>100</td>
<td>38.0949</td>
<td>768</td>
<td>>100</td>
<td>37.1429</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>780</td>
<td>>100</td>
<td>35.7624</td>
<td>767</td>
<td>>100</td>
<td>36.6743</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>782</td>
<td>>100</td>
<td>34.9732</td>
<td>781</td>
<td>>100</td>
<td>36.2713</td>
</tr>
</tbody>
</table>

a The interaction energy is reported as kcal/mol.

b The IC₅₀ values were obtained from Berg et al. (2012).

Substrates, inhibitors and ligands were individually colour-coded for ease of interpretation of data.
Figure 4.10: The inhibitor, substrate and Berg ligand which had the highest binding affinity at the active site for TcoMCA5 and TviMCA5, prepared with 'all water'. The 3D and 2D interactions of the commercial inhibitor, antipain, commercial substrate, Z-Gly-Gly-Arg-AMC and Berg ligand, 777 docked in the active site of TcoMCA5 and TviMCA5.

4.3.6 Ligand interactions

Overall, more interactions between the ligands and the MCA ‘receptor’ were formed between the inhibitors and substrates of the commercial library than what was formed with the ligands from the Berg library (Fig. 4.11). Prominent residues, with which the library ligands formed hydrogen bonds (panel A) with TbbMCA2 4AF8 (equivalent residues in TcoMCA5 and TviMCA5 in brackets) were Ser90 (Ser79), Asp95 (Asp84), Gly279 (Val268), Ala280 (Pro269), Gly281 (Gly270) and Lys314 (Lys304).

Charge interactions (panel B) of the residues of TbbMCA2 4AF8 (equivalent residues in TcoMCA5 and TviMCA5 in brackets) were most prominently formed with Asp95 (Asp84) with the commercial ligands. Fewer interactions were formed with Asp84 of TcoMCA5 and TviMCA5, but an increase in Lys303 and Tyr305 interactions was evident (Lys314 and Phe316 in TbbMCA2).
A noticeable difference in the number of hydrophobic interactions between the MCA ‘receptors’ and the ligands were observed, with more interactions being formed with those of the commercial library than with those of the Berg library (panel C). Residues of the TcoMCA5 and TviMCA5 (equivalent residues in TbbMCA2 in brackets) involved were Leu89 (Leu78), secondary catalytic Cys81 (Cys92), catalytic Cys202 (Cys213), Val268, Pro269 (TcoMCA5 only) and Tyr305 (Phe316).

Pi-alkyl and Pi-sulfur interactions were more prominent in TcoMCA5 and TviMCA5 than in TbbMCA2 4AF8 (equivalent residues in TbbMCA2 in brackets), with interactions occurring at the secondary catalytic Cys81 (Cys92), and the catalytic Cys202 (Cys213) (panel D).

The interactions formed, type and frequency, between ligand and ‘receptor’ highlight key features to take into account when considering the design of novel inhibitors or adjustment of the current ligands to improve binding affinity when combined with a common feature pharmacophore.

Figure 4.11: Interactions of inhibitors, substrates and ligands of the commercial and Berg libraries with TbbMCA2 4AF8, TcoMCA5 and TviMCA5. The interaction frequency between residues and ligands in terms of (A) hydrogen bond formation, (B) charged interactions, (C) hydrophobic interactions and (D) Pi-alkyl and Pi-sulfur.
4.3.7 Common feature pharmacophore

To facilitate the selection of inhibitors/substrates/ligands to use in the generation of a common feature pharmacophore, the -CDocker interaction energies as well as the adopted conformations of the ligands in the active site were considered. Since the inhibitors and substrates from the commercial library have been successfully used in literature for the characterisation of various MCAs, the best aligned substrates, with as high -CDocker interaction energies as possible, were used. The commercial inhibitors were not used for the generation of the pharmacophore as they adopted very different conformations in the active site, and as such, did not align reasonably well, when compared to the commercial substrates and Berg ligands (Fig. 4.12).

The commercial substrates, MeOSuc-Ala-Phe-Lys-AMC, Boc-Val-Pro-Arg-AMC, Z-Gly-Gly-Arg-AMC and Val-Leu-Arg-AMC, were docked in similar conformations compared to the remaining substrates which did not adopt similar conformations in the active site. These four substrates were used to generate a common feature pharmacophore for TbbMCA2 4AF8, TcoMCA5 and TviMCA5 (Fig. 4.13).

The pharmacophore for TbbMCA2 4AF8 is characterised by one positive ionisation and three hydrophobic features, together with one hydrogen bond donor and two hydrogen bond acceptors. For TcoMCA5, the pharmacophore consists of one ionisation and three hydrophobic features, together with three hydrogen bond acceptors. Four hydrogen bond acceptors as well as one positive ionisation and three hydrophobic features, constitute the pharmacophore of TviMCA5.

4.4 Discussion

An important component of modern medicinal chemistry is the use of the 3D structure of protein targets in structure-based drug design (SBDD) methods (Salum et al., 2008). Lounnas et al. (2013) proposed that the combination of homology modelling, molecular docking and virtual screening could be used to accelerate drug discovery. Njogu et al. (2016) contended that predictions using molecular docking can be improved using the experimental data from phenotypic whole-cell assays toward drug discovery for malaria, tuberculosis, trypanosomosis, and leishmaniasis.
Figure 4.12: Overlay of docked commercial inhibitors and substrates along with Berg ligands into the active site of TbbMCA2 4AF8, TcoMCA5 and TviMCA5, prepared with ‘all water’.
Figure 4.13: Generation of a common feature pharmacophore for TbbMCA2 4AF8, TcoMCA5 and TvMCA5. The features of the generated pharmacophore using the docked commercial substrates are coloured as follows: hydrogen bond acceptor (green), hydrogen bond donor (pink), positive ionisation (red) and hydrophobic (turquoise).

Molecular docking can provide insight into the conformation adopted by small-molecule ligands within the binding site of a protein ‘receptor’ (Meng et al., 2011). Using the structural alignment of a set of docked small-molecule ligands, a pharmacophore can be created (Lounnas et al., 2013). The application of molecular docking studies have enabled investigations into ligand–‘receptor’ interactions as well as the elucidation of the mechanism of action (Njogu et al., 2016). Together with this information, SBDD can direct the choice or design of ligands possessing the required features to control the activity of the target ‘receptor’ (Mandal et al., 2009; Blaney, 2012).

More recently, phenotypic screening against T. b. brucei, T. cruzi and L. donovani allowed for the assembly of three anti-kinetoplastid chemical boxes targeting T. b. brucei, T. cruzi and Leishmania donovani. (Peña et al., 2015). Inhibitors of
cruzipain, a cathepsin-L like peptidase of T. cruzi, were identified within the T. b. brucei HAT and T. cruzi Chagas boxes (Salas-Sarduy et al., 2017). Common scaffolds of the inhibitors were identified along with predicted conformations within the active site and the interactions of the inhibitor with the cruzipain ‘receptor’ (Salas-Sarduy et al., 2017).

Trypanosomatid cysteine peptidases, such as cruzipain and rhodesian, the cathepsin-L-like peptidase from T. b. rhodesiense (Mendez-Lucio et al., 2012), have been validated as drug targets. Through the utilisation of structure-based screening, a number of promising compounds have been identified (Ferreira and Andricopulo, 2017). In addition, glyceraldehyde-3-phosphate dehydrogenase (Bressi et al., 2001), trypanothione reductase (Maccari et al., 2011) and tubulin (Goodarzi et al., 2010) have been identified as drug targets using both structure- and ligand-based drug design methodologies.

The MCA cysteine peptidases are virulence factors and have been implicated in cell death (Lee et al., 2007; Zalila et al., 2011) and cell cycle regulation (Ambit et al., 2008; Laverrière et al., 2012) in the kinetoplastid parasites. The 3D structure, solved by X-ray diffraction, of TbbMCA2 (McLuskey et al., 2012) was elucidated two months after the creation of the Berg library of ligands which was designed based on peptidomimetics (2012). Using molecular docking studies, the effectiveness of the Berg ligands against both TbbMCA2 and the MCA5 of T. congolense and T. vivax, was investigated in the present study. In addition to the Berg library, a commercial library was assembled based on the peptide substrates and inhibitors used to characterise MCAs as reported in literature.

Homology models are reasonable docking templates, provided that that they are built from a template with which it shares a high sequence similarity (Schmidt et al., 2014). Homology modelling of α-glucosidase, and the subsequent docking of stilbene urea derivatives into the active site resulted in the identification of interactions required for high binding affinity (Lee et al., 2014). Due to the limited numbers of solved MCA structures and the 50% sequence identity between TbbMCA2 and the MCA5s of T. congolense and T. vivax, the homology models for TcoMCA5 and TviMCA5 were generated using TbbMCA2 4AF8 as the template.

The MCA5 homology models lacked the Pro-, Gln-, Tyr-rich C-terminal domain, but due to the fact that only the catalytic domain is active, the model would suffice for docking studies. It was determined that autoprocessing of recombinant TbbMCA2 at Lys55 and Lys268 to release the catalytic domain, was not an absolute requirement for activity as mutants of these residues were still catalytically active (Gilio et al., 2017).
Another factor to be taken into consideration is the conformational change which results in the destabilisation of the first 15 residues of the N-terminal domain upon calcium activation as well as in the presence of a substrate (McLuskey et al., 2012). It has also been suggested that calcium has a structural effect on TbbMCA2 in the vicinity of the S₂ binding pocket (Machado et al., 2013). It was shown in Chapter 3 that neither the recombinant TcoMCA5, with both the catalytic dyad residues mutated, nor the native TcoMCA5 required calcium for peptidolytic activity. Despite the differences between the structures of TbbMCA2 and the MCA5s, the high Qmean scores of the homology models, indicating a high-quality prediction, together with Z-scores similar to those found for native proteins of a similar size, the homology modelled TcoMCA5 and TviMCA5 structures were suitable for docking studies.

Deeply buried structural water molecules, or those within the active site, are highly ordered and detected in 3D structures which have been solved by X-ray diffraction (Ross et al., 2012). Structural data from X-ray crystallography, at a resolution better than 2.0 Å, are able to reliably discern water molecules which are present (Sousa et al., 2013). The four 3D structures of TbbMCA2 were determined at a resolution of between 1.4 and 2.1 Å, and as such, the water molecules identified within the structure are reliable.

Ligand binding to the protein ‘receptor’ requires rearrangement of the water molecules which surround both the ligand and the ‘receptor’ (Lounnas et al., 2013). In many cases, ligand binding is mediated by structural water molecules (Ross et al., 2012). These water molecules adopt a highly ordered structure within the protein and mediate the binding of ligands to the ‘receptor’ through the formation of hydrogen bonds (Bissantz et al., 2010; Ross et al., 2012). In the case of LmjOPB, two well-ordered water molecules were identified, one of which was found to coordinate with Glu621 which is responsible for the P₁ substrate specificity, and the other with Asp662 which coordinates the catalytic His697 (McLuskey et al., 2010).

Strongly bound water molecules are often conserved across multiple crystallographic structures (Ferreira et al., 2015), which is observed for the three water molecules lining the bottom of the active site in all four TbbMCA2 structures (McLuskey et al., 2012). In the active site pocket, these conserved water molecules interact with the secondary catalytic Cys92, catalytic His158, S₁ binding residues Asp211, Gly157 and Gly159. The catalytic His237 is followed by Gly238 (caspase-1 numbering) and, together with the catalytic Cys, the backbone nitrogens are involved in the formation of the oxyanion hole (Walker et al., 1994; Fuentes-Prior and Salvesen, 2004). This residue (Gly159 in
TbbMCA2) is conserved in each of the MCAs with the exception of TcrMCA3. In addition, there is a conserved Gly (Gly158 in TbbMCA2) preceding the catalytic His and may be involved in the formation of the oxyanion site. The Cys92, His158 and Asp211 were demonstrated to interact with the ligands in both the Berg and commercial libraries. This supports the notion that these conserved water molecules mediate ligand binding.

It has been demonstrated that docking performance is improved by the inclusion of water molecules in both predicted structures and those solved by X-ray diffraction (Yang and Chen, 2004; de Graaf et al., 2005). Such, molecular docking studies were performed with four different water preparations. The ‘all water’ and ‘conserved water without preparation’ preparations resulted in more docked compounds with greater CDocker interaction energies than those docked in the ‘no water’ and conserved water with preparation’. The CDocker values obtained from the molecular docking of the Berg ligands into the active site of TbbMCA2, TcoMCA5 and TviMCA5, despite some outliers, followed the trend of the IC50 values obtained in the phenotypic screening (Berg et al., 2012).

Reversible cruzipain inhibitors which possessed a nitrile warhead were characterised by IC50 values of 1 nM against the recombinant enzyme and between 5 and 10 μM in epimastigote and intracellular amastigote in vitro assays (Ndao et al., 2014). It was expected that the Berg ligands which possessed a nitrile warhead would have a high affinity for TbbMCA2 indicated by high CDocker interaction energies. This however, was not the case as shown by the IC50 values as well as by the low CDocker interaction energies. This may be due to the MCAs’ resistance to the E-64 inhibitor (Appendix B8). This deviance from the cysteine peptidase characteristic follows the result where the inhibitor of serine peptidases (ISP), and not the inhibitor of cysteine peptidases (ICP), was shown to bind and inhibit the peptidolytic activity of the single MCA from L. amazonensis (Peña et al., 2017). In addition, LdnMCA activity was reported to be ‘trypsin-like’ (Lee et al., 2007), which is a trait of serine peptidases rather than that of cysteine peptidases.

The substrates and inhibitors of the commercial library were successfully docked into the active site of TbbMCA2, TcoMCA5 and TviMCA5, but the serine inhibitors had higher interaction energies than those of the cysteine inhibitors. The docking results suggest that whilst antipain has been shown as the most effective inhibitor of recombinant TbbMCA2 (Moss et al., 2007), chymostatin was predicted to be more effective than leupeptin and TLCK which is contradictory to what is reported in literature
(Moss et al., 2007). In the case of the MCA5s, the only effective inhibitors, were antipain and leupeptin, which only reduced the peptidolytic activity of recombinant TcoMCA5H147AC202G activity by 20% (Chapter 3). Docking studies suggest that inhibition should have been observed with chymostatin as well as TLCK. Despite the differences, the ligands of the commercial library bound in a similar spatial position within the active site of TbbMCA2, TcoMCA5 and TviMCA5 which correlates to the spatially conserved active site residues (Appendix B5).

The poses are ranked according to their CDocker interaction energies where ligands with a lower associated energy possessed a higher affinity for the protein receptor. However, the calculation of docking scores and prediction of binding poses is not 100% accurate (Lounnas et al., 2013). This study did not take into account the flexibility of the protein receptor upon ligand binding which affects the accuracy of the docking scores. This can be corrected using molecular dynamics, whereby protein receptor flexibility is taken into consideration during docking, which is beyond the scope of this research.

Docking of libraries containing diverse compounds are characterised by reduced reliability of scoring functions and inaccurate docking poses, thus making analysis difficult (Kitchen et al., 2004). Docking scores obtained using large sets of ligands, with the same scaffold, on a series of protein kinases indicated that the correct binding mode within the top set of docked poses was obtained compared to docking 100 poses generated from a single ligand (Chema et al., 2004). The Berg library and the commercial library contained compounds which were structurally similar. As such, the CDocker scores and poses should be reasonably accurate.

Without prior knowledge or a strong hypothesis of bound conformations of ligands and spatial alignment, docking scores are unreliable (Spitzer and Jain, 2012). If the preferred binding mode of a series of chemically related compounds can be inferred, docking can provide correct ligand conformation and accurate structural alignment that is required to build predictive quantitative structure–activity relationship models (Kulkarni et al., 2007). Given the P₁ specificity for Arg and the favourable alignment of the docked commercial substrates and inhibitors, which have been used in previously reported MCA characterisation, the docked poses of both the Berg and commercial library can be considered to be reasonably accurate.

Due to the conservation of the caspase-hemoglobinase fold between the MCAs, the information from one structure can be transferred to others as is the case with protein kinases (Lounnas et al., 2013). Together with the structural similarity of the active site
of TbbMCA2 with that of TcoMCA5 and TviMCA5 suggests that the docking results can be compared across these three proteins.

Interactions between the ligands and the protein ‘receptor’ were determined using the results of the docking studies. This can be optimised when used in combination with molecular dynamic studies, whereby different conformational changes of the protein ‘receptor’ when binding to a ligand are modelled, as was reported for the identification of the interactions between the clathrin ‘receptor’ and its natural product inhibitor, bolinaquinone (Abdel-Hamid and McCluskey, 2014). A comparison of the number of interactions between the residues of the active site and the various substrates, inhibitors and ligands indicated that the commercial library substrates and inhibitors formed more interactions with the MCA ‘receptor’ than those of the Berg library ligands. For further optimisation of the Berg ligands and improvement of the IC\textsubscript{50} values, the results of the commercial ligands need be taken into consideration. Both the Berg and commercial ligands displayed Pi-sulfur interactions with the secondary catalytic Cys and catalytic Cys in both TbbMCA2 (Cys92 and Cys213) and the MCA5s (Cys81 and Cys202) which gives credibility to the possibility of a secondary catalytic Cys. This could explain why when both the catalytic dyad residues of TcoMCA5 were mutated, activity was still evident (Chapter 3). The Cys adjacent to the catalytic Cys (TbbMCA2: Cys212, MCA5: Cys201) did not seem to interact with any residues of the various ligands.

The generation of a pharmacophore summarises the steric and electronic features required for optimal interaction of a ligand with a protein ‘receptor’ (Sliwoski et al., 2013). Using the spatial positions of the commercial and Berg ligands which had the highest CDocker interaction energies, pharmacophore models were produced, with hydrogen bond acceptors and hydrophobic interactions being the main features of the interactions with the MCAs followed by ionisation and hydrogen bond donors. These features can be utilised for virtual screening of compound libraries for the identification of novel ligands with high binding affinities for the MCA ‘receptor’ (Sliwoski et al., 2013). The use of molecular docking allowed for the selection of compounds which possessed higher binding affinities for cyclooxygenase-2 (COX-2) than the classical inhibitor, celecoxib (Puratchikody et al., 2016). In addition, pharmacophore models can be used to guide the design of new ligands for the optimisation of the IC\textsubscript{50} values (Yang, 2010; Sliwoski et al., 2013).

Various kinetoplastid MCAs have been shown to play a role in the cell cycle (Helms et al., 2006; Ambit et al., 2008; Proto et al., 2011; Laverrière et al., 2012). As such,
inhibitors against these peptidases are valuable contributions towards a drug which targets the MCAs. The successful molecular docking of the Berg ligands in the active site of the 3D structure of \textit{TbbMCA2} and homology modelled \textit{TcoMCA5} and \textit{TviMCA5} suggest that the phenotypic assay results (Berg et al., 2012) were a reflection of the inhibition of MCAs. Together with that of the Berg library, the molecular docking of the commercial library provided insight into the interactions between the ligands and the protein ‘receptor’. Combined with this information and the pharmacophore model, ligand optimisation and virtual screening can be implemented to identify a ligand with a high binding affinity for the MCAs. Since the inhibitors, substrates and ligands bound to both the single- (MCA5) and multicopy (MCA2) MCAs, and in different species, \textit{T. b. brucei}, \textit{T. congolense} and \textit{T. vivax}, it is possible that these ligands are pan specific.

In the next chapter, work is presented on the application of phage display technology for the production of recombinant antibodies against OPB as a model antigen. This paves the way for applying this technology for the production of MCA specific antibodies for use in diagnostics as well as for parasite imaging in cellular research.
CHAPTER 5
PHAGE DISPLAY AND ANTIGEN DETECTION ELISA OF OLIGOPEPTIDASE B FROM T. CONGOLENSE AND T. VIVAX

5.1 Introduction

Due to the location of animal African trypanosomosis (AAT) infections in resource-poor, rural settings together with the waves of parasitaemia caused by antigenic variation, the development of an accurate, cost effective and easy to use diagnostic assay is imperative to the control of the spread of infections through the identification and treatment of infected individuals (Aksoy et al., 2017; Diall et al., 2017). One such diagnostic method is the immunochromatographic dipstick test, also known as a rapid diagnostic test (RDT), which has been successfully used for the detection of T. congoense and T. vivax (Boulangé et al., 2017), T. cruzi (Luqueti et al., 2003; Cardinal et al., 2006) and Leishmania infantum (Reithinger et al., 2002) infections.

An attractive antigen to be incorporated into an RDT is one which is released by the parasites into the host circulatory system and is stable. As anti-trypanosomal antibodies persist long after successful treatment (Paquet et al., 1992; Yadav et al., 2012), an antigen detection format would be able to differentiate between current and past infections. As such, parasite proteins which are present within the bloodstream of the infected host are attractive diagnostic antigens (Eyford et al., 2013). An antigen detection ELISA was developed using species-specific monoclonal antibodies against the antigens released from the lysis of in vitro cultured T. congoense parasites (Nantulya et al., 1987). This test was shown to be more than four times more sensitive than microhematocrit centrifugation technique in monitoring experimental T. congoense infections in goats and cattle (Masake and Nantulya, 1991).

One such potential diagnostic antigen is the serine peptidase, oligopeptidase B (OPB) that was used as a model antigen in the present study. It has been demonstrated that TbbOPB (Morty et al., 2005b), TcoOPB (Pinto Dias, 2006) and TevOPB (Morty et al., 2005a) are released from lysed, dead or dying parasites into the bloodstream, where they remain active (Morty et al., 2005a; Munday et al., 2011). The action of OPB has been implicated in the disruption of the hormone levels of the infected host (Morty et al., 1999; Morty et al., 2001; Morty et al., 2005a) through the cleavage of peptide hormones in the blood of T. b. brucei infected rats (Tetaert et al., 1993) and the reduced levels of regulatory peptides such as atrial natriuretic factor. This renders OPB a
desirable target for antigen detection. Anti-OPB antibodies were identified in sera from humans infected with *T. cruzi* and *L. infantum*, and *T. cruzi* experimentally infected rabbits using an antibody detection ELISA in an indirect format (Fernandes *et al.*, 2005). However, a previous study to detect anti-OPB antibodies in sera from *T. congoense* infected and non-infected cattle, in an antibody detection ELISA, was unsuccessful (Eyssen, 2013).

Thus, in order to develop an antigen detection ELISA assay, antigen specific antibodies are required. The established method of the production of polyclonal antibodies is by animal immunisation (Schirrmann *et al.*, 2011). Antibodies against the full length *TcoOPB* and *TvOPB* and peptides of *TcoOPB* have been produced in chickens and rabbits previously (Huson, 2006; Kangethe, 2011). However, *TvOPB* was poorly immunogenic in chickens, resulting in low chicken anti-*TvOPB* IgY titres (Eyssen, 2013). As such, the production of alternative antibodies was investigated. Monoclonal antibodies created by hybridoma technology (Köhler and Milstein, 1975), at a high cost, have limited application in the generation of human therapeutic antibodies and antibodies against toxic or highly conserved antigens (Winter and Milstein, 1991). *In vitro* technologies have an advantage over animal immunisation in that it is completely independent of the immune system and it comprises an unlimited source of binders, of which the DNA sequence is known (Schirrmann *et al.*, 2011). As a result, there would be no deviations between different batches as experienced with animal serum (Schirrmann *et al.*, 2011). One such *in vitro* technology is that of phage display which expresses antibodies, derived from combinatorial libraries of immunoglobulin *V*_H and *V*_L genes, on phage particles (Pini and Bracci, 2000).

Using a camelid library comprised of the variable heavy domain of camelid antibodies, *V*_HH, panning against the variable surface glycoprotein (VSG) of *T. b. brucei* resulted in a *V*_HH antibody which showed superior penetration within the spaces between VSG dimers, which is not accessible to the IgG and IgM antibodies produced during infection (Stijlemans *et al.*, 2004). This demonstrates that the small antibody fragments are able to penetrate between the narrow cavities of immune-evasive antigens as demonstrated in the improved the pharmacokinetics of tissue penetration during antibody-based cancer therapy (Chowdhury *et al.*, 1998; Deckert, 2009).

The naïve, semi-synthetic and synthetic libraries, also known as ‘single pot’ libraries, are able to identify antibody fragments, which in theory, bind to every possible antigen (Hust and Dübel, 2004). These single pot libraries serve as the molecular repertoire for
the process of phage display (Sblattero and Bradbury, 2000). The naïve Nkuku® library is not confined to any specific target and, as a result, facilitates the generation of monovalent scFv antibodies against an almost unlimited range of antigens (van Wyngaardt et al., 2004). The scFv antibody (VL and VH) expressed using phage display, is able to retain the specific antigen binding affinity to that of the parent IgG.

The Nkuku® library was constructed from the rearranged immunoglobulin V genes from B cells (IgM) of non-immunised donor chickens (van Wyngaardt et al., 2004). These genes were then ligated into the pHEN1 phagemid plasmid and inserted into bacteriophages to produce a phagemid (Fig. 1.8, Step A). Those phagemids which possess complementary determining regions (CDRs) to that of the immobilised target antigen are retained (Step F), used to infect E. coli cells and are rescued by helper phages (Step D). The resulting phagemids are isolated and panned against the immobilised antigen to select for scFvs with a high binding affinity for the antigen. The resulting scFv antibodies are myc-tagged, and may be produced as a minor phage coat protein (pIII) fusion proteins, scFv::pIII, if expressed in amber suppressor E. coli cells (Appendix D1). The panning process is illustrated in Fig. 5.1 and numbered as detailed in Fig. 1.8, with each step detailed in the methods section.

The production of phage displayed scFv antibodies against the OPB antigen from both T. congolense and T. vivax, and their application in an antigen detection ELISA towards the development of an AT diagnostic test is reported here. In addition, homology modelling of the scFv and its docking onto the OPB antigen is reported.

5.2 Materials and methods

5.2.1 Materials

Phage display library: The Nkuku® phage display library, M13KO7 helper phages and the amber suppressor TG1 (F' [traD36 proAB' lacF lacZΔM15]supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5, (rK·mK·)) E. coli cells, were obtained from Wouter van Wyngaardt and Jeanni Fehrsen (Immunology section, Onderstepoort Veterinary Institute).
Figure 5.1: Selection of antigen specific scFv antibodies using panning. The image was adapted from Kuhn et al. (2016). The Nkuku® phagemid transfected E. coli cells, which display the scFv::pIII fusion protein are panned against the immobilised OPB antigen. The binders which are not OPB-specific, or bind weakly, are removed with stringent washing. The bound antibody phages are eluted, reinfected into the E. coli host, and coinfectected with the M13KO7 helper phage. After amplification of the selected phagemid population, it is panned against the OPB antigen once more to facilitate the selection of highly specific antigen binders. This process was performed four times in total in this study. After the fourth round of panning, colonies of the reinfected E. coli cells containing the antibody phage specific to the OPB antigen, are expressed in 96-well culture plates. These clones are analysed by ELISA using antibodies against the phage coat protein (pIII) and the myc affinity tag for the identification of the scFv::pIII fusion proteins and soluble scFv proteins, respectively. The letters A-H correspond to those in Fig. 1.8 and each step is detailed in the methods section.

Biopanning: Nunc-Maxisorp 4 ml immunotubes (Catalogue number: 444474) were obtained from Nunc Intermed (Roskilde, Denmark), ELITE skim milk powder, for panning, from Clover (SA), bovine serum albumin (Catalogue number: A7906) from Sigma (St. Louis, MO. USA.), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (IPTG) from Fermentas (Vilnius, Lithuania), AluI and the 100 bp DNA ladder from New England Biolabs (Ipswich, MA, USA), ampicillin sodium salt from USB Corporation (Cleveland, OH, USA), kanamycin from Gibco, (Paisley, UK), and non-fat powdered milk for western blots and ELISAs, from Amresco (Solon, OH, USA). Bacteriological agar, tryptone and yeast extract were purchased from Merck Biolab (Darmstadt,
Buffer salts and other common chemicals were purchased from Merck (Germany) and Sigma (St. Louis, MO, USA) and were of the highest purity available.

Purification and quantification of phage displayed scFv: As per Section 2.2.1 and 3.2.1. The TcoOPB-Aminolink®, TviOPB-Aminolink® (Huson, 2006) and chicken anti-myc IgY hydrazide (Krause, 2016) resins were previously prepared.

Antibodies: Mouse anti-M13 IgG was purchased from Pierce (Rockford, IL, USA), goat anti-mouse IgG HRPO conjugate from Jackson ImmunoResearch (PA, USA) and rabbit anti-chicken IgY HRPO conjugate from Sigma (St. Louis, MO, USA). The affinity purified chicken anti-myc IgY, raised against the EQKLISEEDL peptide, was produced previously by Rob Krause (2016). Both the rabbit anti-TcoOPB IgG and the affinity purified chicken anti-peptide 4 IgY were produced previously by Laura Huson (2006). The peptide 4 corresponds to the 282 to 299 amino acid residues of the TcoOPB protein, VRKREKNVRYEVEMHGT.

3D structures of scFv antibodies: The 3D structures, solved by X-ray diffraction, of scFv complexed to human gankyrin (PDB: 4NIK, 2.5 Å) (Robin et al., 2014), cross reactive antibody which binds to respiratory syncyial virus and human metapneumovirus (5U68, 3.08 Å) (Wen et al., 2017), the scFv against prostate specific antigen (4P49, 1.4 Å) (Conroy et al., 2014), the scFv against cardiac troponin I (4P48, 1.35 Å) (Conroy et al., 2014), the scFv against the major allergen from Blatella germanica (4OUO, 1.8 Å) (Mueller et al., 2014) and TbbOPB (4BP9, 2.8 Å) (Canning et al., 2013) were obtained from the RCSB Protein Data Bank (www.rcsb.org)(Berman et al., 2000).

Discovery Studio docking software: The Centre for High Performance Computing (Cape Town, South Africa) is acknowledged for the provision of the computational resources necessary to conduct the prediction of the scFv interaction with the target TcoOPB antigen.

Sera: Sera from infected and non-infected cattle were obtained from ClinVet International (PTY) LTD, Bloemfontein, South Africa.

5.2.2 Preparation of TG1 E. coli stock for log-phase culture

Escherichia coli TG1 cells were streaked onto TYE plates [1% (w/v) tryptone, 0.5% yeast extract, 0.8% (w/v) NaCl, 1.5% (w/v) agar] without antibiotic, and grown at 37 °C.
for 16 h. A single colony was inoculated into 2xYT (5 ml), without antibiotic, and grown at 37 °C for 16 h at 220 rpm. A 1:100 dilution of the overnight culture was performed in fresh 2xYT, without antibiotic, and incubated at 37 °C until the OD$_{600}$ reached 0.5. This log-phase culture was stored at 4 °C for a maximum of 7 days.

5.2.3 Expression and titration of M13KO7 helper phages

For the titre determination of the M13KO7 helper phages, a serial dilution of M13KO7 in PBS (100 µl) were incubated with log-phase TG1 *E. coli* cells (100 µl) at RT for 5 min. To each dilution, pre-warmed 2xYT [containing 0.7% (w/v) agar], without antibiotic, at 42 °C, was added and immediately plated onto 2xYT plates, without antibiotic and incubated at 37 °C for 16 h.

A single kanamycin resistant (Kan') M13KO7 plaque was incubated with log-phase TG1 *E. coli* cells (40 µl) in 2xYT (4 ml), without antibiotic, at 37 °C for 1 h at 100 rpm. Fresh 2xYT (800 ml), without antibiotic, was added and incubated for an additional hour. Thereafter, kanamycin (50 µg/ml) was added and incubated at 37 °C for 16 h at 200 rpm. The cells were pelleted (10 800g, 5 min, 4 °C) and to the phage containing supernatant, 1/4 volume of 20% (w/v) PEG 6000 in 2.5 M NaCl added. The mixture was incubated on ice for 30 min before the phages were pelleted (10 800g, 15 min, 4 °C). After resuspension in PBS (6 ml) and filtering through a 0.22 µM filter, the titre of the M13KO7 helper phages was determined as above. The M13KO7 helper phages were stored at a concentration of 1x1012 pfu/ml in 15% (v/v) glycerol at -80 °C.

5.2.4 Expression and titration of the *Nkuku*® phagemid library

The *Nkuku*® phagemid library (Fig. 1.8, Step A) was provided in *E. coli* cells (step B). Following Step C, the ampicillin resistant (Amp') *Nkuku*® library glycerol stock was added to 2xYT [containing 100 µg/ml ampicillin, 2% (w/v) glucose, 100 ml], until an initial OD$_{600}$ of 0.05 was obtained. Incubation at 37 °C at 240 rpm was carried out until an OD$_{600}$ of 0.5 was obtained.

Following Steps D and E, to the *Nkuku*® culture (100 ml), 8x108 pfu/ml M13KO7 helper phages were added and incubated at 37 °C for 30 min without agitation, followed by a further 30 min at 100 rpm. The cells were pelleted (3 300g, 10 min, 4 °C), resuspended in 2xYT (containing 100 µg/ml ampicillin, 25 µg/ml kanamycin, 2 L), and incubated at 30 °C for 16 h at 240 rpm.
The cells were pelleted (3300g, 10 min, 4 °C), and to the phagemid containing supernatant, 1/4 volume of 20% (w/v) PEG 6000 in 2.5 M NaCl added (250 ml). After 1 h on ice, the phagemids were pelleted (3300 g, 15 min, 4 °C), resuspended in PBS (20 ml), and pelleted once again (11000 g, 2 min, 4 °C). The phagemids were filtered through a 0.22 µM filter and used for the first round of panning.

5.2.5 Panning of the *Nkuku*® library against oligopeptidase B from *T. congolense* and *T. vivax*

Panning was performed as previously described by van Wyngaardt *et al.* (2004) as shown in Fig. 1.8 and Fig. 5.1, Step F. Briefly, immunotubes were coated with 100, 50, 10 and 1 µg/ml antigen (3.5 ml) diluted in PBS, for pans 1, 2, 3 and 4, respectively, for 16 h at 4 °C. The immunotubes were washed three times with PBS and blocked with either 2% skim milk powder-PBS (MP) or 3% (w/v) BSA-PBS (BP), two of the most commonly used blocking agents used in panning, at RT for 1 h. The immunotubes were then washed twice with 0.1% (v/v) Tween-20-PBS (PBS-T) followed by PBS. During the blocking of the immunotube, *Nkuku*® phagemid was diluted to 10^{12} pfu/ml in MP or BP [containing 0.1% (v/v) Tween-20, 3.5 ml] and incubated at 37 °C for 30 min. This blocking step assists in the reduction of binding to unrelated peptides (Thomas *et al.*, 2010; Vodnik *et al.*, 2011).

The MP and BP treated *Nkuku*® phagemid was added to the blocked immunotube after washing and incubated at RT for 30 min with gentle agitation followed by 1.5 h without agitation. The immunotube was washed twenty times with PBS-T and a further twenty times with PBS. Following Fig. 5.1, step G, freshly prepared 100 mM triethylamine (1 ml) was added to the immunotube and mixed with agitation using an end-over-end rotator at RT for 10 min. The eluted phage was neutralised by the addition of 1 M Tris-HCl buffer, pH 7.4 (0.5 ml). As per step H in Fig. 5.1, log-phase TG1 *E. coli* cells (5 ml) were transfected with the neutralised phages (1 ml) in a water bath at 37 °C for 30 min. The cells were pelleted (3300g, 10 min, 4 °C), resuspended in 2xYT (1 ml), without antibiotic, plated onto three TYE plates [containing 100 µg/ml ampicillin, 2% (w/v) glucose] and incubated at 30 °C for 16 h. To determine whether or not the TG1 *E. coli* cells had been transfected previously, log-phase TG1 *E. coli* cells were also plated onto TYE plates [containing 100 µg/ml ampicillin, 2% (w/v) glucose].

Instead of using *Nkuku*® phagemid, all subsequent panning rounds will be screened using the resulting phagemids from the previous round of selection against OPB as per
step C in Fig. 5.1. The resulting colonies were resuspended in 2xYT (8 ml), without antibiotic, using a “hockey stick” and stored in 15% glycerol at -80 °C. This is the glycerol stock from the first round of panning. For amplification of the phages, the glycerol stock from the first panning round was added to 2xYT [containing 100 µg/ml ampicillin, 2% (w/v) glucose, 50 ml] to achieve an initial OD₆₀₀ of 0.05. This was then incubated at 37 °C at 220 rpm until an OD₆₀₀ of 0.5 was obtained. To this culture, 8x10⁸ pfu/ml M13KO7 helper phages were added and incubated at 37 °C for 30 min without agitation as per step D and E in Fig. 5.1. The cells were pelleted (3 300 g, 10 min, 4 °C), resuspended in 2xYT [containing 100 µg/ml ampicillin, 25 µg/ml kanamycin, 25 ml], and incubated at 30°C for 16 h at 220 rpm.

The cells were pelleted (3 300g, 10 min, 4 °C) and to the phage containing supernatant, 1/4 volume of 20% (w/v) PEG 6000 in 2.5 M NaCl was added (5 ml). After 1.5 h at 4 °C, the phages were pelleted (3 300 g, 15 min, 4 °C), resuspended in PBS (1 ml), and pelleted once again (11 000 g, 2 min, 4 °C). The phages were filtered through a 0.22 µM filter and used for the next round of panning as per step F in Fig. 5.1. This process was repeated for a total of 4 rounds with each immunotube being coated with decreasing concentrations of antigen, which functions to enrich for specific antigen binders.

5.2.6 Determination of enrichment of panned phages

Purified recombinant OPB (Eyssen, 2013), diluted in PBS (1 µg/ml, 100 µl/well), was used to coat the wells of 96-well Nunc-Immuno™ Maxisorp ELISA plates for 16 h at 4 °C. The coating solution was discarded, and the plates were blocked with blocking buffer (MP and BP, 200 µl/well) and incubated at 37 °C for 1 h. Phages from pans one to four, including the Nkuku[®] phagemid [1:10 in MP or BP, each containing 0.1% (v/v) Tween-20, 100 µl/well] were added and incubated at 37 °C for 2 h. The wells were washed three times with PBS-T using a BIOTEK® ELx50™ Microplate washer after which the mouse anti-M13 IgG [1:8 000 in MP or BP, each containing 0.1% (v/v) Tween-20, 100 µl/well], was added and incubated at 37 °C for 1 h. The wells were washed as before, followed by the addition of the goat anti-mouse IgG HRPO conjugate [1: 1 000 in MP or BP, each containing 0.1% (v/v) Tween-20, 100 µl/well], and incubated at 37 °C for 1 h. The wells were washed as before and the ABTS-H₂O₂ chromogen substrate solution [0.05% (w/v) ABTS, 0.0015% (v/v) H₂O₂ in 0.15 M citrate-phosphate buffer, pH 5.0, 100 µl/well] added. The plate was incubated in the
dark prior to measuring the absorbance at 405 nm using a FLUORStar Optima spectrophotometer every 15 min for 1 h.

5.2.7 Selection of phage displayed scFv clones

The glycerol stocks from the selected enriched pans were serially diluted on TYE plates [containing 100 µg/ml ampicillin, 2% (w/v) glucose] at 30 °C for 16 h, in order to obtain individual colonies (30 to 300). Forty eight individual colonies for each antigen were selected and inoculated into a 96-well plate containing 2xYT (100 µl/well), without antibiotic. After incubation at 37 °C for 16 h at 220 rpm, a final concentration of 20% (v/v) glycerol was added to each well and stored at -80 °C. This served as the master plate.

In a new 96-well plate, an aliquot from each well of the master plate (5 µl) was used to inoculate 2xYT [containing 100 µg/ml ampicillin, 2% (w/v) glucose, 150 µl/well], and incubated at 37 °C for 2.5 h at 220 rpm. To each well, 2x10⁵ pfu/ml M13KO7 was added and incubated for a further 30 min without agitation. The cells were pelleted (600g, 10 min, 4 °C), resuspended in 2xYT (containing 100 µg/ml ampicillin, 25 µg/ml kanamycin, 150 µl/well) and incubated at 30 °C for 16 h at 220 rpm. The cells were pelleted and the phage containing supernatant (50 µl) was added to a blocked ELISA plate.

The ELISA was performed as described in Section 5.2.6, with only MP being used as the blocking and the dilution agent. Instead of using the isolated phagemids, the phage containing expression supernatants (50 µl/well) were used and diluted in 2xMP [containing, 0.1% (v/v) Tween-20, 50 µl/well].

5.2.8 Selection clones expressing soluble scFv

In a 96-well plate, an aliquot from each well of the master plate (5 µl) was used to inoculate 2xYT [containing 100 µg/ml Amp, 2% (w/v) glucose, 150 µl/well] and incubated at 30 °C for 16 h at 220 rpm. To the overnight culture (5 µl), 2xYT [containing 100 µg/ml ampicillin, 0.1% (v/v) glucose, 100 µl/well] was added and incubated at 37 °C for 2.5 h at 220 rpm. After the addition of 2xYT (containing 100 µg/ml ampicillin, 3 mM IPTG, 50 µl/well), the plate was incubated at 30 °C for 16 h at 220 rpm. The cells were pelleted (600g, 10 min, 4 °C) and the phage containing supernatant (50 µl) was added to a blocked ELISA plate.
The ELISA was performed as described in Section 5.2.6, with only MP being used as the blocking and dilution agent, and the dilution of phage containing supernatants (50 µl/well) in 2xMP [containing, 0.1% (v/v) Tween-20, 50 µl/well]. The bound phages were detected using affinity purified chicken anti-myc IgY (0.5 µg/ml, 100 µl/well) followed by rabbit anti-chicken IgY HRPO conjugate (1:5 000, 100 µl/well).

5.2.9 Characterisation of OPB-specific scFv producing clones

Clones which were identified as OPB-specific in both the phage displayed scFv (Section 5.2.7) and expressed, soluble scFv (Section 5.2.8) ELISAs, were selected and grown in 2xYT [containing 100 µg/ml Amp, 2% (w/v) glucose, 5 ml] at 37 °C for 16 h with agitation. The plasmid DNA of the recombinant colonies was isolated using the GeneJet™ Plasmid Miniprep Kit according to the manufacturer’s instructions. The isolated plasmid DNA was used for PCR amplification, DNA fingerprinting to determine the scFv insert diversity between the selected clones, and for sequencing.

The final concentrations of the PCR master mix were: 0.25 µM of the OP52 forward (5’ CCC TCA TAG TTA GCG TAA CG 3’) and M13 reverse (5’ CAG GAA ACA GCT ATG AC 3’) primers, 1xFIREpol® Taq polymerase reaction buffer, 2.5 mM MgCl2, 1 U FIREpol® Taq polymerase and 0.25 mM dNTPs in a total reaction volume of 20 µl. The PCR amplification of the recombinant scFv gene, was performed with incubation at 95 °C for 2 min as the initial DNA denaturation step, followed by 40 cycles of 95 °C for 10 s, 45 °C for 15 s and 72°C for 1 min. A final elongation step was carried out at 72 °C for 7 min. The colony PCR products (10 µl) and samples of the plasmid DNA (5 µl) were electrophoresed on a 1.5% (w/v) agarose gel, containing ethidium bromide (0.5 µg/ml), in 1xTAE buffer.

The high frequency endonuclease, AluI, was used to determine the diversity of the scFv between the individual clones. Due to its notable ability to differentiate between highly related antibody sequences, AluI was used instead BstOI (Hawlisch et al., 2000). Restriction digestion with 1 U of AluI was performed on plasmid DNA (5 µl) in 10xcutsmart buffer at 37 °C for 15 min. Samples of the digestion (5 µl) were electrophoresed on a 3% (w/v) agarose gel, containing ethidium bromide (0.5 µg/ml), in 1xTAE buffer.

The plasmid DNA of the various PCR clones were sequenced at the Central Analytical Facility, Stellenbosch University, South Africa, using the OP52 and M13 forward and reverse primers, respectively.
5.2.10 3D modelling of TcoOPB and scFv and their interactions

In a similar way as outlined in Section 4.2.2, suitable templates to model scFv and TcoOPB were obtained using SwissModel (Biasini et al., 2014).

One of the computational prediction tools, EpiPred (Krawczyk et al., 2014), was accessed from the structural antibody prediction server (SAbPred) (Dunbar et al., 2016) developed by the Oxford Protein Informatics Group (http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php). The generated epitope predictions can be used to improve the performance of antibody-antigen docking. Using the V\textsubscript{H} and V\textsubscript{L} sequences of the OPB-specific scFv, together with the homology modelled TcoOPB antigen, EpiPred was used for the prediction of the structural epitopes of TcoOPB specific to the scFv.

Antibody-antigen docking was used to predict the interaction of the OPB-specific scFv onto TcoOPB using the ZDock protocol from Discovery Studio (Dassault Systèmes BIOVIA).

5.2.11 Expression and purification of the scFv antibodies

Single colonies of the selected scFv clones were used to inoculate 2xYT (5 ml), without antibiotic, and incubated at 37 °C for 16 h at 220rpm. The overnight culture (1 ml) was diluted 1:100 in 2xYT [containing 100 µg/ml Amp, 2% (w/v) glucose], without antibiotic, and incubated at 37 °C at 220rpm until an OD\textsubscript{600} of 0.9 was obtained. The cells were pelleted (3 000g, 10 min, 4 °C) and resuspended in terrific broth (containing 100 µg/ml ampicillin, 1 mM IPTG, 100 ml), and incubated at 30 °C for 16 h at 220 rpm. The cells were pelleted (4 000g, 10 min, 4 °C) and the supernatant retained. The cells were resuspended in 1/4 volume of ice cold sucrose buffer [50 mM Tris-HCl buffer, pH 7.4, 1 mM EDTA, 20% (w/v) sucrose] and incubated on ice for 10 min with gentle agitation. After pelleting the cells (4 000g, 10 min, 4 °C), the periplasmic fraction was retained, and the cells were resuspended in 1/10 volume ice cold 5 mM MgCl\textsubscript{2}. Following incubation on ice for 10 min with gentle agitation, the cells were pelleted (8 000g, 10 min, 4 °C) and the resulting osmotic shock fraction was retained. Samples of the periplasm (P) and osmotic shock (OS) fluid were analysed by a 12.5% reducing SDS-PAGE gel (Laemmli, 1970), transferred onto nitrocellulose, as per Section 2.2.4. The blot was probed with affinity purified chicken anti-myc IgY (0.5 µg/ml) followed by rabbit anti-chicken IgY HRPO conjugate (1:5 000).
5.2.12 Affinity purification of expressed scFv

Purification of scFv using the TcoOPB- and TviOPB-affinity matrices as well as the chicken anti-myc affinity matrix was performed as outlined in Section 2.2.7.2 using the scFv containing osmotic shock fraction (8 ml). Samples of each fraction were analysed by 12.5% reducing SDS-PAGE gels (Laemmli, 1970), stained with Coomassie Blue R-250 and transferred onto nitrocellulose, as detailed in Section 2.2.4. The blot was probed with affinity purified chicken anti-myc IgY (0.5 µg/ml) followed by rabbit anti-chicken IgY HRPO conjugate (1:5 000).

5.2.13 Antigen detection of recombinant and native oligopeptidase B by scFv

The ability of the purified scFv to detect both the recombinant and the native TcoOPB present in the digitonin fractionated T. congolense parasites (Section 3.2.5) was determined using a dot blot. The primary antibodies used were rabbit anti-TcoOPB IgG (10µg/ml), affinity purified chicken anti-peptide 4 IgY (5 µg/ml), both made previously by Laura Huson (2006), chicken anti-TcoOPB IgY (10 µg/ml) (Eyssen, 2013) and purified scFv (1:25). The use of scFv required a bridging antibody of affinity purified chicken anti-myc IgY (0.5 µg/ml) before the addition of the secondary detection antibodies, rabbit anti-chicken IgY HRPO conjugate (1:5 000) and goat anti-rabbit IgG HRPO conjugate (1:2500). Detection was achieved using the ECL western blotting substrate.

An antigen detection ELISA was performed using the scFv as a capture antibody and either the chicken or rabbit anti-TcoOPB antibodies as the detection antibody. Purified scFv (1:100) was used to coat the wells of 96-well Nunc-Immuno™ Maxisorp ELISA plates (100 µl/well) for 16 h at 4 °C. The coating solution was discarded, and the plates were blocked with blocking buffer [0.5% (w/v) BSA-PBS, 0.1% (v/v) Tween-20, 200 µl/well] and incubated at 37 °C for 1 h. Sera from T. congolense infected and non-infected cattle diluted in blocking buffer (1:100, 100 µl/well) were added and incubated at 37 °C for 1 h. The wells were washed and either the rabbit anti-TcoOPB IgG or the chicken anti-TcoOPB IgY antibody, diluted in blocking buffer (1 µg/ml, 100 µl/well), was added and incubated at 37 °C for 1 h. The wells were washed as before, and either the goat anti-rabbit IgG HRPO or the rabbit anti-chicken IgY HRPO conjugate, diluted in blocking buffer (1:15 000, 100 µl/well), was added and incubated at 37 °C for 1 h. The wells were washed and the ABTS-H₂O₂ chromogen substrate solution [0.05% (w/v) ABTS, 0.0015% (v/v) H₂O₂ in 0.15 M citrate-phosphate buffer,
pH 5.0, 100 μl/well] was added. The plate was incubated in the dark for 15 min prior to reading the absorbance at 405 nm using the FLUORStar Optima Spectrophotometer in 15 min intervals until absorbance values of above 1.0 were reached.

5.3 Results

5.3.1 Enrichment of scFv specific for oligopeptidase B from *T. congolense* and *T. vivax*

Using the *Nkuku* library, scFv antibodies with complementary epitopes to OPB were selected for. Little to no enrichment was observed when using milk powder (MP) to block the immunotubes compared to that of BSA (BP) (Fig. 5.2). With the decrease in antigen coating concentration which was used as bait, together with stringent washing of non-specific binders during the four panning rounds, enrichment was observed. The *Nkuku* phagemid as well as the BSA coating control displayed low absorbance values. Enrichment occurred at pan 3 and more so at pan 4 for TcoOPB. The only pan where enrichment was evident for TviOPB was at pan 4.

Figure 5.2: Enrichment ELISA of the isolated phages from each round of panning with oligopeptidase B from *T. congolense* and *T. vivax*. ELISA plates were coated with TcoOPB, TviOPB or BSA (1 μg/ml in PBS, pH 7.2), blocked with 3% (w/v) BSA-PBS and incubated with isolated phages (1:10) from each round of panning using immunotubes blocked with either 3% (w/v) BSA-PBS (BP) or 2% (w/v) skim milk powder-PBS (MP). Mouse anti-M13 IgG (1:8 000), followed by goat anti-mouse IgG HRPO (1:1 000) and ABTS-H$_2$O$_2$ were used as the detection system. The absorbance readings at 405 nm represent the average of duplicate experiments at 60 min development.
Figure 5.3: Results of various methods to select the best clones from TcoOBP and TvOBP pans 3 and 4 in TG1 E. coli cells for the expression of scFv antibodies. Using the absorbance values from the phage binding ELISA (green) together with those of the soluble scFv ELISA (pink), the plasmid DNA of the selected clones were subjected to PCR amplification of the scFv sequence and the resulting product sizes are indicated in bp (orange). The plasmid DNA of the positive clones were sequenced (yellow), and those which were positive using all four selection methods, are highlighted in blue.
5.3.2 Selection and characterisation of individual positive scFv clones

For pans three and four of *TcoOPB* and pan four of *TviOPB*, in TG1 *E. coli* cells, 48 single clones were randomly selected and tested in phage binding (Appendix D2) and soluble scFv ELISA formats (Appendix D3). In order to determine which of the clones were best for use in expression, the plasmid DNA of positive clones were subjected to colony PCR, to amplify the scFv gene, and DNA fingerprinting using AluI digestion (Appendix D4). The clones which had a high absorbance value in each of the ELISA formats and possessed a 1 000 bp amplified product were sequenced (Fig. 5.3).

Absorbance cut-off values for the two ELISA formats had to be assigned for the evaluation of the best clones (Appendix D5). Those clones which possessed values above the cut-off values and had a 1 000 bp amplified PCR product, were sequenced. An ideal scFv would be positive in both the phage binding and soluble ELISA formats (Rakabe, 2008). As such, clones E4 and E5 from *TcoOPB* pan three, and C2 from *TviOPB* pan four, all in TG1 *E. coli* cells, were selected for scFv expression (Fig. 5.3). These three clones will be referred to at E4, E5 and C2, respectively.

5.3.3 scFv sequencing, 3D modelling, and interaction with *TcoOPB*

5.3.3.1 scFv sequencing

Following the selection of positive clones, the sequences of the isolated plasmid DNA from both *TcoOPB* pans three and four, together with *TviOPB* at pan four, were determined and aligned with the immunoglobulin heavy (*GenBank®* BAE80128.1) and lambda (*GenBank®* BAB47352.1) chain sequences of *Gallus gallus* and referred to as the germline. Each of the sequenced clones possessed the exact same sequences in each of the complementary determining regions (CDRs) in both the *V_H* and *V_L* chains (Fig. 5.4). This may indicate a highly conserved region in OPB between the *T. congolense* and *T. vivax* species.

5.3.3.2 Homology modelling

A 81.3% sequence identity is shared between *TcoOPB* and *TbbOPB*, the latter whose 3D structure has been determined by X-ray diffraction (Canning *et al.*, 2013). A homology model of *TcoOPB* was generated with a -Qmean of -0.83 using *TbbOPB* as
the template. Slight variations were evident at some loops, but overall, the homology modelled TcoOPB overlaid well with that of TbbOPB (Fig. 5.5). An enlarged image of the template and query sequence alignment is given in Appendix D6.

Figure 5.4: Multiple sequence alignment of scFv clones panned against TcoOPB and TviOPB. The sequences of clones E5 and E4 selected from TcoOPB pan three (TCO3) and clone C2 selected from TviOPB pan four (TV04) were aligned against the germline (GenBank® BAE80128.1 and BAB47352.1) using the BioEdit software (Hall, 1999). The V\text{H} CDR1, -2 and -3 regions are highlighted in green, blue and red, and the V\text{L} CDR1, -2 and -3 regions in purple, pink and light orange, respectively.

Figure 5.5: Homology modelling of TcoOPB. Using the 3D structure from the Protein Data Bank (Berman et al., 2000) of TbbOPB, 4BP9 (Canning et al., 2013), as the template (yellow), the 3D structure of TcoOPB (purple) was (A) modelled using SwissModel (Biasini et al., 2014) and superimposed. (B) The alignment of the OPB sequences is shown with the Qmean scores indicated in blue (high quality prediction) and red/orange (low quality prediction). (See Appendix D6 for an enlarged version of panel B).
To date, the 3D structures for only three chicken scFvs have been solved by X-ray diffraction, 4P48 (Conroy et al., 2014), 4P49 (Conroy et al., 2014) and 4OUO (Mueller et al., 2014), in addition to scFvs from other phage libraries, 4NIK (Robin et al., 2014) and 5U68 (Wen et al., 2017). Results from the SwissModel software indicated that of the five scFvs, 4NIK, 5U68 and 4P49 shared the highest identity with the E5 scFv, 56.8, 58.3 and 54.3%, respectively. The E5 scFv was modelled using all three templates and are shown in Fig. 5.6. The lowest Qmean values were obtained with the 4NIK model (panel A) indicating a better model, followed by 5U68 (panel B) and 4P49 (panel C). Overall, the 4NIK and 5U68 models overlaid better on E5 scFv compared to that of 4P49, which only modelled the V\textsubscript{H} region of the E5 scFv. As such, the E5 scFv model, built using the 4NIK template, was selected for the docking interaction studies with the homology modelled TcoOPB.

Figure 5.6: Homology modelling of scFv clone E5, from TcoOPB pan 3, using different scFv templates. The E5 anti-TcoOPB scFv antibody (white with coloured CDR regions) was modelled using and superimposed onto (A) 4NIK, scFv complexed to human gankyrin (Robin et al., 2014), (B) 5U68, cross reactive antibody which binds to respiratory syncytial virus and human metapneumovirus (Wen et al., 2017), and (C) 4P49, scFv against prostate specific antigen using the chicken anti-prostate specific antigen (Conroy et al., 2014), all of which were coloured beige. The structures were obtained from the Protein Data Bank (Berman et al., 2000). The E5 scFv V\textsubscript{H} CDR1, -2 and -3 are highlighted in green, blue, red, and those of the V\textsubscript{L} in purple, pink and light orange, respectively. The linker region is highlighted in yellow. The alignment of the scFv sequences is shown together with the Qmean scores indicated in blue (high quality prediction) and red/orange (low quality prediction).
The validation of the generated homology modelled structures of both TcoOPB and E5 scFv, using the ProSA software and Ramachandran plots, are reported in Appendix D7.

5.3.3.3 scFv and TcoOPB interactions predictions

Using Predict7, an epitope prediction program (Cármenes et al., 1989), seven immunogenic epitopes were identified in TcoOPB and anti-peptide antibodies produced in chickens (Huson, 2006). They corresponded to amino acids 20-37 (light green), 60-76 (red), 124-142 (purple), 282-299 (orange), 418-436 (pink), 658-671 (blue) and 686-698 (dark green) and were numbered 1 to 7, respectively (Fig. 5.7, panel A).

The EpiPred epitope predictions can be used to improve the performance of antibody-antigen docking. The hinge region is comprised of two polypeptide strands, residues 87-95 and 433-440 (Canning et al., 2013), the first of which was not identified as an epitope by Predict 7 and the latter forming part of epitope 5. The first prediction (Fig. 5.7, panel B1) showed three contacts within epitope 3, 11 in epitope 5 as well as five contacts in one of the polypeptide chains, 87-95. The second EpiPred prediction (Fig. 5.7, panel B2) showed four contacts within epitope 4 (282-299).

The ZDock protocol yields coloured prediction clusters at the most probably positions where the scFv molecule will interact with the antigen. The higher ranked poses are shown in red and change to blue as interaction probability decreases. There were more clusters evident around epitopes 4 and 5 (Fig. 5.7, panels C2 and C3) than for the remaining five epitopes. Since epitope 3 was predicted by EpiPred, these results will be included for completeness (panel C1). The results reported by Huson (2006) were used to select the most probable binding epitope on TcoOPB. The affinity purified anti-peptide antibodies raised against epitopes 3, 4 and 5 were all able to detect recombinant TcoOPB and TvOPB. Epitope 5 was poorly immunogenic as low titres of antibodies were produced throughout the immunisation period. The anti-peptide antibodies against both epitopes 3 and 4 were highly immunogenic and high antibody titres were produced. Taken together with the results from the EpiPred (panel B) and ZDock predictions (panel C), scFv interaction at epitope 4 is the most probable scenario.
Figure 5.7: Predicted immunogenic and structural epitopes together with the possible scFv interactions with TcoOPB. (A) The predicted immunogenic epitopes as predicted by Predict 7 (Cármenes et al., 1989) and reported previously by Huson (2006). Epitopes are coloured in light green (epitope 1), red (2), purple (3), orange (4), pink (5), blue (6) and dark green (7). (B1 and 2) The two structural epitope predictions (highlighted in yellow) after entering the E5 scFv V\text{H} and V\text{L} protein sequences together with the 3D structure of TcoOPB into the EpiPred predictor (Krawczyk et al., 2014). The amino acid residues of epitopes 3, 4 and 5 are represented in a stick configuration. The ZDock cluster results of the antigen-antibody of E5 scFv and TcoOPB around (C1, purple) epitope 3, (C2, orange) epitope 4 and (C3, pink) epitope 5.
5.3.3.4 Docking of scFv onto TcoOPB

The modelled structures of TcoOPB (Fig. 5.8, panel A), E5 scFv (panel B) were used in the ZDock antibody-antigen interaction protocol using the Discovery Studio software (Dassault Systèmes BIOVIA). The resulting position in which the E5 scFv has been docked onto TcoOPB is shown in panel C. As shown in panel D, eight of the 12 V_H CDR3 residues interacted with those of epitope 4. In addition, four residues from each V_H CDR1 and CDR2 and V_L CDR2 interacted with residues from both the catalytic and propeller domain.

5.3.4 Expression of scFv clones

The scFv clones E4, E5 and C2 were all expressed in TG1 E. coli cells, which should result in an myc-tagged scFv::pIII fusion protein which is approximately 74 kDa in size (Appendix D1).

A protein band at approximately 35 kDa was identified in the osmotic shock (OS) fraction, more intensely than in the periplasmic (P) fraction, using the affinity purified chicken anti-myc IgY antibody (Fig. 5.9). This protein was present in both the periplasm and osmotic shock fractions for clones E5 and C2, yet only in the osmotic shock fraction for clone E4. This protein may correspond to the myc-tagged scFv without the pIII coat protein, which has an expected size of 31 kDa (Appendix D1). Detection of the 74 kDa pIII fusion protein using the anti-M13 (phage coat protein) antibody was unsuccessful (not shown).

There were no myc-tagged proteins evident in the TG1 E. coli cell control. A faint protein band at approximately 21.5 kDa in the osmotic shock fraction was visible for C2 which is smaller than the expected size of myc-tagged scFv without the pIII coat protein.
Figure 5.8: Docked scFv onto epitope 4 of TcoOPB. (A) Structural features of TcoOPB include the catalytic domain (light purple), the propeller domain (light blue), the hinge region of two polypeptide chains (dark blue and dark purple), epitope 4 (orange) and the catalytic triad Ser563, Asp648 and His683 within the catalytic domain. (B) The structural features of E5 scFv include the V\textsubscript{H} CDR1, -2 and -3 (green, blue, red), the V\textsubscript{L} CDR1, -2 and -3 (purple, pink, light orange) and the linker region (bright yellow). (C) Solvent accessible surface of docked E5 scFv onto TcoOPB using ZDock protocol in the Discovery Studio software (Dassault Systèmes BIOVIA). (D) Residues of the E5 scFv CDRs which interact with TcoOPB are highlighted in bold.
Figure 5.9: Expression of anti-TcoOPB and anti-TviOPB scFv antibodies. Samples of the periplasm (P) and osmotic shock (OS) fractions from the expression of scFv antibodies from TcoOPB pan 3 clones E4 and E5 and TviOPB pan 4 clone C2, all in TG1 E. coli cells, were electrophoresed on a 12.5% reducing SDS-PAGE. After transfer onto nitrocellulose, and blocking with 5% (w/v) milk-TBS, the blot was incubated with affinity purified anti-myc IgY [0.5 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol·H₂O₂ were used as the detection system.

5.3.5 Affinity purification of scFv

Anti-TcoOPB scFv (E5 scFv) and anti-TviOPB scFv (C2 scFv), were purified using the Aminolink® resin, to which purified TcoOPB and TviOPB had been previously coupled. Application of the osmotic shock fraction onto the resin resulted in the purification of a protein, approximately 70 kDa in size, as can be seen by the Coomassie stained gel (Fig. 5.10, panel A). This protein band was also detected by the affinity purified chicken anti-myc IgY antibody (panel B) and corresponds favourably to the predicted molecular weight of the myc-tagged scFv::pIII fusion. Detection of the scFv::pIII fusion protein using the anti-M13 antibody was unsuccessful (not shown).

The fact that the anti-TcoOPB E5 scFv and anti-TviOPB C2 scFv, from the osmotic shock fraction, were able to bind to their respective OPB antigens coupled Aminolink® resins, is direct evidence that the expressed scFvs are specific for TcoOPB and TviOPB. The eluted fractions from the purification of E5 scFv were pooled and used in subsequent experiments.
Figure 5.10: Affinity purified scFv using TcoOPB-aminolink and TviOPB-aminolink resins. Samples of the eluted fractions from the purification of E5 anti-TcoOPB and C2 anti-TviOPB scFv from the osmotic shock fraction, using their respective aminolink resins, were electrophoresed on two 12.5% reducing SDS-PAGE gels with one (A) stained with Coomassie Blue R-250 and the other transferred onto nitrocellulose, blocked with 5% (w/v) milk-TBS and incubated with (B) affinity purified chicken anti-myc IgY [0.5 µg/ml in 0.5% (w/v) BSA-PBS]. Rabbit anti-chicken IgY HRPO conjugate [1:5 000 in 0.5% (w/v) BSA-PBS] and 4-chloro-1-naphthol-H₂O₂ were used as the detection system.

5.3.6 Antigen detection

Since it had been demonstrated that the E5 scFv was able to bind to recombinant TcoOPB during purification, the ability of the E5 scFv to detect native TcoOPB in the subcellular fractions of T. congolense parasites (Section 3.2.5) was tested and compared to the detection by antibodies raised in rabbits and chickens against the recombinant TcoOPB and raised in chickens against peptide 4 (Fig. 5.11).

Recombinant TcoOPB was detected by each of the four anti-TcoOPB antibodies. Native TcoOPB is located in the cytosol (Burleigh et al., 1997; Morty et al., 2005a; Rea and Fülöp, 2006), and as such, was detected in both the total parasite proteins and cytosolic fraction, but not in the mitochondrial fraction by each of the four anti-TcoOPB antibodies.

Detection of the native TcoOPB which was secreted into the culture medium was achieved by three out of the four anti-TcoOPB antibodies, each with varying degrees of success. Both the rabbit and chicken anti-TcoOPB antibodies detected native TcoOPB with a good intensity. However, E5 scFv detection of native TcoOPB was very faint, requiring a fair amount of contrast to see the spots. No detection was achieved using the affinity purified chicken anti-peptide 4 IgY antibody.
Figure 5.11: Detection of native and recombinant TcoOPB. Samples of each T. congolense subcellular fraction, together with the precipitated culture medium and recombinant TcoOPB, were dotted onto nitrocellulose. After blocking with 5% (w/v) non-fat milk-TBS, the nitrocellulose strips were probed with rabbit anti-TcoOPB IgG (10 µg/ml), chicken anti-TcoOPB IgY (10 µg/ml), affinity purified chicken anti-peptide 4 IgY (5 µg/ml) and purified scFv (1:25), which were all diluted in 0.5% (w/v) BSA-PBS. Before the addition of the detection antibody, the nitrocellulose strip which had been incubated with the purified E5 scFv, was incubated with affinity purified chicken anti-myc IgY [0.5 µg/ml in 0.5% (w/v) BSA-PBS]. The rabbit anti-chicken IgG HRPO conjugate and the goat anti-rabbit IgG HRPO conjugate, together with the ECL western blotting substrate, were used as the detection system. The panel detected using purified E5 scFv was subject to extensive contrast to better visualise the ECL signal.

As it has been demonstrated that E5 scFv was able to detect native TcoOPB, ELISA optimisations were carried out to minimise the amount of scFv used and to increase the detection of TcoOPB. Comparison of the ability of the crude E5 scFv, periplasmic and osmotic shock fractions together with the purified scFv, to detect recombinant TcoOPB, indicated that the purified E5 scFv was superior (Fig. 5.12, panel A). A 1:100 dilution of the purified E5 scFv yielded in absorbance values of over 1 at TcoOPB concentrations as low as 5 µg/ml. At 1 µg/ml, an absorbance of 0.4 was attained. Absorbance values between 0.210 and 0.356 were obtained when using the periplasmic fraction, even at 10 µg/ml of coated recombinant TcoOPB. However, a 1:10 dilution of the osmotic shock fraction produced absorbance values of 0.663 and 0.535 at 10 and 5 µg/ml coated recombinant TcoOPB, respectively (Fig. 5.12, panel A). Optimisation of the dilution of the osmotic shock fraction was characterised by absorbance values between 0.222 and 0.263 for the controls in the absence of coated TcoOPB, with a 1:2.5 dilution of the osmotic shock fluid having the highest absorbance values at each of the coated recombinant TcoOPB concentrations (Fig. 5.12, panel B).
Regrettably, the higher the coated concentration of recombinant \(TcoOPB \), the higher the absorbance values of the 'no linking antibody control' (affinity purified chicken anti-myc IgY) and the 'no detection antibody control' (rabbit anti-chicken IgY HRPO conjugate). Despite this, the absorbance values of the osmotic shock fractions were still higher than those of the controls. Several attempts to lower the absorbance values of the controls, through the use of various blocking buffers, and even the use of rabbit anti-myc IgG, were unsuccessful.

\[\text{Figure 5.12: Checkerboard ELISA of crude and purified scFv against recombinant } TcoOPB. \] ELISA plates were coated with \(TcoOPB \) (10, 5 and 1 \(\mu \)g/ml in PBS, pH 7.2), blocked with 0.5% (w/v) BSA-PBS and incubated with (A) crude scFv, from the periplasm and osmotic shock fractions, and purified scFv (1:10 and 1:100 dilutions) and (B) crude scFv from the osmotic shock fraction (1:10, 1:7.5, 1:5 and 1:2.5 dilutions). The bridging antibody used was affinity purified chicken anti-myc IgY (0.5 \(\mu \)g/ml). The rabbit anti-chicken IgY HRPO conjugate (1:5 000) and ABTS-H\(\text{H}_2\text{O}_2 \) were used as the detection system. The absorbance readings at 405 nm represent the average of (A) duplicate and (B) triplicate experiments after 45 min development.

The purified E5 scFv was used to detect native \(TcoOPB \) in the sera of experimentally \(T. \text{congolense} \) infected cattle using an indirect antigen detection ELISA format. If the rabbit anti-\(TcoOPB \) antibody was used as the capture antibody, a linking antibody would be required between the scFv and the HRPO conjugate antibody, in the form of the affinity purified chicken anti-myc IgY antibody (Fig. 5.13). This would require a
rabbit anti-chicken HRPO conjugate which may cross-react with the capture antibody. As such, the scFv was used as the capture antibody.

![Diagram showing the indirect antigen detection ELISA process](image)

Figure 5.13: Comparison of the choice of capture and detection antibody in the indirect antigen detection ELISA.

Sera from three individual cows, from three separate studies, were selected, based on the reactivity of the sera as tested in previous studies against other possible diagnostic antigens in an antibody detection ELISA format (Eyssen, 2013). A series of serum samples taken from each of these cows, at different times during the infection process, were selected. The values in brackets denote the days prior to and after infection, the T- values denote the days after treatment (Fig. 5.14). Parasitaemia, which was only measured for certain samples by the technicians at ClinVet (Bloemfontein), is denoted by black dots. Where parasitaemia was not measured, no value was assigned. Each of the three cows was infected with a different T. congoense isolate and treatment was administered after different time periods post infection.

Since OPB is released from dead and dying parasites (Morty et al., 2001), serum samples taken prior to infection should be characterised by low absorbance values in the antigen detection ELISA. During infection, OPB levels should fluctuate together with the characteristic waves of parasitaemia. After successful treatment with trypanocides, dead parasites would release OPB, and result in increased absorbance values in the antigen detection ELISA.

Serum prior to infection had higher absorbance values than that of the recombinant TcoOPB and the no serum control, which could suggest that there are factors in the serum samples which may be reacting with the capture and detection antibodies.
Figure 5.14: Indirect antigen capture ELISA of *Tco*OPB in sera of infected cattle. ELISA plates were coated with the purified scFv (1:100 in PBS, pH 7.2) as the capture antibody, blocked with 0.5% (w/v) BSA-PBS, incubated with sera from infected and non-infected cattle (1:100 dilution), and detected with rabbit anti-*Tco*OPB IgG (1 µg/ml). Goat anti-rabbit IgG HRPO conjugate (1:2,500) and ABTS-H$_2$O$_2$ were used as the detection system. The absorbance readings at 405 nm represent the average of triplicate experiments after 30 min development. Parasitaemia is denoted by black dots.
For cow 200, an increase in parasitaemia and absorbance values was evident until day 7 post infection. A steady decrease in absorbance values was observed after treatment, which could indicate that treatment was not effective at killing the parasites, since more OPB would be present in the serum, released by dead parasites, resulting in increased absorbance values. Unfortunately, the parasitaemia was not quantified, but was observed, showing a sustained infection until day 90, 72 days after treatment, before the animal had to be euthanised. This could indicate that due to the ineffective treatment the parasites were not killed, evidenced by the positive confirmation of parasitaemia.

For cow 81, parasitaemia was observed and quantified until day 35, thereafter, it was not evaluated. The ELISA absorbance values increased until day 14, and decreased slightly at day 35. The sharp increase in absorbance values was evident from day 28 to day 48, after 14 days of treatment, which may indicate effective parasite killing where OPB was released into the serum. The next three tested samples had similar absorbance values to that seen at day 35, which could indicate that the treatment was no longer effective.

Similar absorbance values were evident for the sample taken prior to infection and 7 days after, despite an increase in parasitaemia in cow 167. From day 14 to 47, absorbance values fluctuated, together with those of parasitaemia values. After day 49, 14 days post treatment, the absorbance values fluctuate again, peaking at day 112, 77 days post treatment. The overall fluctuation of absorbance values may be linked to that of the fluctuating parasitaemia values, indicating that treatment was not successful as parasites were still evident in the serum and varying levels of OPB was detected throughout the post treatment period.

5.4 Discussion

The serine peptidase of trypanosomal parasites, oligopeptidase B (OPB), was detected in the serum of T. b. rhodesiense infected individuals (Eyford et al., 2013). Furthermore, analysis of the secretome of T. b. gambiense (Geiger et al., 2010), T. congoense (Eyford et al., 2011), T. cruzi (Bayer-Santos et al., 2012) and L. donovani (Silverman et al., 2008) indicated that OPB from these species are released by the dying parasites. It may therefore be inferred that OPB is an attractive diagnostic antigen. Another antigen shown to be secreted into the host bloodstream is TbbMCA4 (Proto et al., 2011) confirming the detection of TbgMCA4, with which it shares a 100% sequence similarity, in the T. b. gambiense secretome (Geiger et al., 2010). The MCAs produced as described in Chapters 2 and 3 showed extensive
autoprocessing with only the double catalytic dyad mutants (TcoMCA5H147AC202G) showing minimal processing. However, an insufficient amount of protein could be purified to use to pan the Nkuku® phagemid libraries to isolate anti-MCA scFv antibodies. Here the use of phage display to produce recombinant antibodies against OPB as a model antigen for diagnostic application is reported.

Antibodies produced with phage display have been used in a number of applications such as immunoblotting (Renart et al., 1979; Rakabe, 2008), ELISA (Engvall and Perlmann, 1971), immunofluorescence (Coons et al., 1941), flow cytometry (Bonner et al., 1972), affinity chromatography (Porter and Press, 1962) and microarrays (Silzel et al., 1998; Stoevesandt et al., 2009). Phage display has been able to successfully identify antibody fragments using the immunoglobulin genes from camels in a V_H format (Ghahroudi et al., 1997), from cattle in a Fab format (O'Brien et al., 1999), and from chickens (Davies et al., 1995), rabbits (Ridder et al., 1995) and sheep in an scFv format (Li et al., 2000). Since antibodies are generated from the immunoglobulin genes of specific animal hosts, the resulting recombinant antibodies are suitable for veterinary applications. The Nkuku® phage display library is based on the immunoglobulin genes from B-cells isolated from the bursa of Fabricus of naïve white leghorn hens (van Wyngaardt et al., 2004). The PCR-amplified genes are incorporated into the pHEN1 phagemid plasmid, the Nkuku® library phagemid, which results in the expression of a myc-tagged scFv::pIII fusion protein. When using in the E. coli TG1 suppressor strain, the scFv is expressed as the 74 kDa fusion protein.

Panning of the Nkuku® library was performed to select TcoOPB- and TviOPB-specific scFv antibodies. The panning process was repeated four times, using the Nkuku® library phagemid as the starting material. It was demonstrated by the binding of the anti-M13 (phage coat protein) antibody that enrichment occurred at pans three and four for TcoOPB and pan four for TviOPB. The numerous individual clones selected from each of these pans, were analysed using an ELISA for their ability to produce M13 positive phage binding- and soluble myc positive scFv antibodies. None of the absorbance signals were above 1 and the signals between the phage binding- and soluble ELISA were comparable, unlike the doubling of absorbance values in the soluble scFv ELISA from those of the phage binding ELISA as reported by Rakabe (2008).

Selection of clones for scFv expression is commonly based on the results of the sequencing of the plasmid DNA which becomes costly due to the high number of clones that can be tested. In this study, we employed a selection protocol whereby only the clones which were positive for phage binding and soluble scFv, had complete
coding sequences using colony PCR and those with similar sequences using DNA fingerprinting. This allows for a minimum number of plasmids to be sequenced.

Clones E4 and E5 from TcoOPB pan three, and C2 from TvOPB pan four, were positively identified as positive as complete scFvs and were found to encode for the same protein sequence which may indicate a highly conserved epitope in OPB. The identification of the conserved epitope was achieved using molecular docking of the homology modelled E5 scFv onto TcoOPB. This approach has revealed the binding sites of phage displayed scFv on the HSP60 of the *Strongyloides venezuelensis* human infective parasite (Levenhagen et al., 2015). The V_H CDR3 of E5 scFv interacted with TcoOPB at a previously identified epitope, VRKREKNVRYEVEMHGT (Huson, 2006). The V_H CDR3 is the main source of antibody variation as it plays a key role in antibody binding (Marks et al., 1991; Nissim et al., 1994; Sheets et al., 1998; van Wyngaardt et al., 2004). As such, the interaction of this region with the target antigen verifies the application of the TcoOPB-specific scFv in diagnostics. In addition to the CDRs, the framework regions between the CDRs interacted with residues from both the catalytic and propeller domains of TcoOPB.

The 3D structure of TbbOPB has been solved, using X-ray diffraction, in both a closed and open conformation, between which a domain rotation of 27.8° is evident (Canning et al., 2013). The process of domain opening disrupts the catalytic triad and results in the inactivation of OPB (Canning et al., 2013). Reactivation requires complete domain closure to restore the catalytic triad, which can only be achieved with peptide substrates which are shorter than 30 residues (Canning et al., 2013). The E5 scFv may not dock in the active site, but may hinder the OPB from adopting the open conformation which would allow substrate access. Due to the difficulties in purifying high concentrations of scFv, immuno-inhibition studies of both recombinant and native TcoOPB with E5 scFv could not be carried out for validation of the proposed docking model.

The pelB leader sequence within the pHEN1 plasmid directs the scFv to the periplasm (Kipriyanov et al., 1997). Cold osmotic shock (Neu and Heppel, 1965) was used to obtain the periplasmic and osmotic shock fractions, in which 35 kDa myc-tagged scFv was detected using the anti-myc antibody as has been reported by Philibert et al. (2007). Since TG1 *E. coli* cells were used, a 70 kDa fusion protein was expected. Due to the peptidolytic degradation of the myc-tagged scFv::pIII fusion protein in the periplasm, only 20 to 30% of the fusion proteins are intact (McCafferty, 1996; Baek et al., 2002; Shi et al., 2007). When the scFv from the osmotic shock fraction was
concentrated by affinity purification using immobilised OPB, sufficient amounts of intact myc-tagged scFv::pIII fusion protein was available for the anti-myc antibody to detect the full length 70 kDa fusion protein.

Various methods are implemented for the purification of scFv, most of which depend on the affinity tag incorporated onto the scFv by the phagemid plasmid. Both nickel- (Das et al., 2005; Finlay et al., 2005; Saerens et al., 2008; da Silva Ribeiro et al., 2013) and cobalt- (Dong et al., 2013) affinity chromatography has been successfully utilised for purification of 6xHis tagged scFv but the pHEN1 phagemid plasmid only encodes for a myc tag.

The myc-affinity resin has been used to purify scFvs panned from the Nkuku® library (van Wyngaardt et al., 2004). However, due to the high cost and difficulties in importing the rabbit anti-myc antibody, two myc affinity resins were made inhouse using both chicken and rabbit anti-myc antibodies coupled to Hydrazide® resin. The myc-antibodies were successful in detecting the scFv in a western blot and ELISA format, but not for the immunoaffinity purification of the expressed scFvs. Purified TcoOPB and TviOPB immobilised on AminoLink® was used to purify the OPB-specific scFvs. The successful purification of the 70 kDa myc-tagged scFv::pIII fusion, indicated that the OPB-specific scFv was indeed able to detect OPB.

Nanobodies (VH) from a camelid library, raised against the paraflagellar rod protein in T. evansi, detecting the protein in T. b. brucei, T. congolense and T. vivax (Obishakin et al., 2014), and the T. congolense aldolase specific scFv, have both been shown have application in research imaging and diagnostics (Odongo et al., 2016). Despite the ability of scFv to detect recombinant TcoOPB, the polyclonal anti-TcoOPB antibodies produced in rabbits and chickens were superior in the detection of native TcoOPB secreted into the culture medium. This may indicate that the scFv has a lower limit of detection of OPB compared to that of the polyclonal antibodies.

Both the purified and crude E5 scFv were able to detect OPB in a checkerboard ELISA but high background was observed. Cross reactivity was suspected using the polyclonal chicken anti-myc antibody to detect myc-tagged scFv, which is derived from chicken immunoglobulin genes. Rabbits were used to generate anti-myc antibodies but these antibodies did not react as well as those from chickens (results not shown). Blocking with various buffers along with the most commonly used 2% Milk-PBS and 3% BSA-PBS as suggested in the Nkuku® library instructions did not reduce the background (results not shown).
The application of scFv antibodies has been successful in the diagnosis of bluetongue virus using an inhibition ELISA (Fehrsen et al., 2005) and human strongyloidiasis using a sandwich ELISA were the immune complexes were detected (Levenhagen et al., 2015). An evaluation of the use of TcoOPB in an antibody detection ELISA showed that OPB was not suitable in this format (Eyssen, 2013). As such, neither the inhibition ELISA nor the detection of OPB-immune complexes was pursued.

Using a sandwich ELISA, scFv have been used for the detection of African horse sickness virus, AHVS (van Wyngaardt et al., 2013), infectious bursal disease virus, IBDV (Sapats et al., 2003), Mycobacterium bovis (Wemmer et al., 2010), Neospora caninum (Dong et al., 2013) and T. congolense (Odongo et al., 2016). These ELISAs either made use of a homologous or heterologous scFv pair or a combination of a polyclonal antibody and scFv as the capture and detection antibodies. Modification of the scFv in the pair has been reported by Wemmer et al. (2010) were the detection scFv was conjugated to gold particles, and by Odongo et al. (2016) where the capture scFv was 6xHis tagged and the detection scFv was biotinylated.

The binding of scFv to the antigen is confirmed using either anti-myc or anti-M13 antibodies. The anti-M13 antibody did not detect the expressed nor the purified E5 scFv in a western blot, and the absorbance values from the phage binding ELISA were similar to those of the soluble scFv ELISA. As such, the anti-myc antibody was used in the detection of the bound scFv when used as a capture antibody.

Using scFv as the capture antibody and polyclonal rabbit anti-TcoOPB as the detection antibody, the absorbance values of the serum samples taken at different times during infection, fluctuated together with the parasitaemia values. Since OPB is released into the bloodstream upon parasite lysis, at peak parasitaemia, low levels of OPB is expected and vice versa. Similar to OPB, TcoAldolase is secreted by the parasite (Grébaut et al., 2009) into the bloodstream of the mammalian host by a mechanism which is still unknown. TcoAldolase-specific scFv antibodies used in a homologous sandwich ELISA detected aldolase even after the reduction of parasite numbers (Odongo et al., 2016). It was demonstrated that TcoAldolase-specific scFv was able to distinguish between cured and active infections (Odongo et al., 2016). It is, thus, possible that TcoOPB-specific scFv can be used as a diagnostic marker after further adjustments have been made to improve the ELISA performance.

This study showed that using phage display, OPB-specific scFv antibodies were produced that were capable of detecting both recombinant and native TcoOPB. These antibodies have potential application in parasite imaging in cellular research and for
diagnostic development. The validation of the immuno-inhibition of OPB requires further investigation along with the generation of TcoMCA5-specific scFvs.
Human African trypanosomiasis (AT) is a neglected tropical disease caused by *Trypanosoma* spp. which can infect both humans, causing human AT (HAT), and animals, causing animal AT (AAT). These haemoprotozoa are transmitted by tsetse flies in sub-Saharan Africa. Human infections occur in 24 countries across the west and central regions of Africa (Simarro et al., 2012). Despite the major impact on livestock farming (Bouyer et al., 2014) and agricultural development in Africa (Alsan, 2015), in contrast to HAT, AAT is not considered as a neglected tropical disease (Roger et al., 2017). In addition, human infective parasites can exist in both wild animals and domestic livestock (Anderson et al., 2011). As most trypanosome infections occur in predominantly rural areas where animal diseases have a direct impact on people’s livelihoods (source of food and income), AAT indirectly impacts human health and should be considered as a neglected tropical disease (Roger et al., 2017).

The disability-adjusted life-years (DALYS) caused by HAT has decreased by 74.8% since 2005 (GBD et al., 2017) with fewer than 4 000 human infections reported in 2014 (Franco et al., 2017). The reduction in reported cases is a direct result of active case finding, easier access to healthcare facilities, accurate diagnosis, and timeous treatment (Büscher et al., 2017). Despite their ability to screen and identify potential *T. b. gambiense* infections, the CATT and RDTs are not 100% specific (Jamonneau et al., 2015) and are less specific when disease prevalence is low. The prevalence of *T. b. gambiense* infections is well below 0.1% in most HAT endemic areas, and as a direct result, for a single true positive serological test, 99 false positive tests are reported (Büscher et al., 2017).

The current HAT chemotherapies, which have been in use since the 1960s (Field et al., 2017), have adverse side effects and require lengthy administration at health clinics (Garcia-Salcedo et al., 2014). No new AAT chemotherapies have been introduced since 1961 (Giordani et al., 2016) and drug resistance has been reported in 17 African countries (Van den Bossche and Delespauw, 2011). Due to the immune-evasion mechanisms of African trypanosomes, the development of an effective vaccine is unlikely and as a result, new chemotherapies are required (Field et al., 2017). The identification of the infecting trypanosomal species as well as disease staging is crucial for the treatment of HAT infections. As such, positive serodiagnosis is followed by parasitological diagnosis to confirm infection (Wamboga et al., 2017). This is complicated by the waves of parasitaemia and the resistance of *T. b. gambiense* and
\textit{T. b. rhodesiense} to the trypanosome lytic factor found in human serum (Vanhollebeke and Pays, 2010). Currently, HAT diagnosis is made using the card agglutination test (CATT), but is being replaced with the simpler BIOLINE HAT RDT in Uganda (Wamboga et al., 2017). This test is better-suited to the lack of cold chain and laboratory facilities in endemic regions. The CATT and RDT meet the ASSURED criteria as they are affordable, sensitive, specific, user friendly, rapid and robust, equipment free and are deliverable to the end user (Peeling et al., 2006). As a result, smaller health care facilities in rural areas are able to offer the BIOLINE RDT test which reduces the distance that the patients need to travel for diagnosis (Wamboga et al., 2017). This allows for more people to be screened and cases to be detected and treated quickly.

Parasitological methods are used for field diagnosis of AAT as well as other tropical diseases (OIE, 2013). Serological diagnosis of AAT includes the indirect fluorescent antibody test and ELISA, both of which do not meet the ASSURED criteria, and are used for disease surveillance (OIE, 2013). Recently, an RDT prototype for the detection of \textit{T. conglobense}, \textit{T. vivax} as well as \textit{T. conglobense} and \textit{T. vivax} mixed infections was reported using the recombinant cathepsin-B like peptidase and the tandem repeat protein associated with the flagellum (GM6) antigen (Boulangé et al., 2017). The prototype was characterised by a 92% sensitivity and 95% specificity for \textit{T. conglobense} and a 98.2% sensitivity and 95% specificity for \textit{T. vivax} infections.

Two relatively new compounds, fexinidazole and benzoxaborole SCYX-7158, which were identified using phenotypic screening, are in various stages of clinical trials as potential oral HAT chemotherapies (Jacobs et al., 2011; Tarral et al., 2014). Given that infected animals act as reservoirs for human infective trypanosomes (Anderson et al., 2011), together with reports of drug resistance in the absence of new AAT drugs (Van den Bossche and Delespaux, 2011), emphasises the urgent need for new effective AAT chemotherapies.

The development of a vaccine is improbable due to the evasion of the immune system by the parasite as well as elimination of B-cell memory following trypanosome infection (La Greca and Magez, 2011). An anti-disease approach entails targeting factors which are essential to the parasite’s survival within either the mammalian host or insect vector, to reduce disease symptoms, rather than killing the parasite per se (Antoine-Moussiaux et al., 2009). The Kinetoplastid Target Database (http://rapid.lifesci.dundee.ac.uk/KTD/) lists potential proteins and peptidases which have been identified as targets for the development of novel chemotherapies against \textit{T. brucei} spp., \textit{T. cruzi} and \textit{Leishmania} spp., the causative agents of African trypanosomiasis, Chagas
disease and Leishmaniasis, respectively. The peptidases studied here, i.e. the MCAs and OPB, are listed in this database as possible drug targets.

The MCAs share the catalytic dyad residues and caspase-haemoglobinase fold (Aravind and Koonin, 2002) with the caspases but differ in numerous aspects, the most important being the MCAs' preference for Arg or Lys at P₁ over Asp. In the early years of MCA research, it was thought that the MCAs functioned in a similar manner to that of the caspases in cell death (Madeo et al., 2002). It has since been reported that the MCAs are sufficiently structurally and functionally diverse to be classed separately from the caspases (McLuskey and Mottram, 2015). Metacaspases have been implicated in cell death processes, but in an indirect manner. To date, the MCAs and caspases share two natural protein substrates: tudor staphylococcal nuclease and glyceraldehyde 3-phosphate dehydrogenase. Both Picea abies MCA (Sundström et al., 2009), PmMCA2 (Vandana et al., 2018) and caspase-3 (Sundström et al., 2009) could hydrolyse tudor staphylococcal nuclease, whilst YCA1 (Silva et al., 2011) and caspase-1 (Shao et al., 2007) could hydrolyse glyceraldehyde 3-phosphate dehydrogenase. This indicates that although caspases and MCAs show distinct differences in their P₁ residue requirements, similarities exist in their targeted molecular pathways (Sundström et al., 2009; Bozhkov et al., 2010). Since the MCAs are found in all kingdoms except the metazoa (Uren et al., 2000), and are potentially involved in cell death processes, these peptidases are attractive drug targets.

The hydrolysis of host peptide hormones by OPB, implicates this peptidase in the neurological disturbances of the final stage of AT infection (Morty et al., 1999; Morty et al., 2001). The peptidase is released by dead and dying parasites into the host bloodstream where it remains active (Morty et al., 2005a; Morty et al., 2005b; Munday et al., 2011). Despite being listed in the Kinetoplastid Target Database, it has been shown that OPB is not required for parasite infectivity (Moss et al., 2015) and as such, is not a target for the development of novel chemotherapies. The detection of the released OPB antigen in the mammalian host bloodstream is however, a viable option for the differentiation between cured and active infections. Hence OPB, is an attractive diagnostic antigen and its incorporation into a RDT would be ideal.

The best studied MCAs are those from A. thaliana and S. cerevisiae. The only multicopy MCAs to be enzymatically characterised are those from T. b. brucei (Moss et al., 2007; Proto et al., 2011; Machado et al., 2013) and T. cruzi (Kosec et al., 2006), and the single copy MCAs from L. major (Gonzáles et al., 2007), L. donovani (Lee et al., 2007) and T. cruzi (Kosec et al., 2006). The single copy TbbMCA5 was shown to be expressed in both animal and insect infective forms (Helms et al., 2006). The
Kinetoplastid single copy MCAs are syntenic orthologues suggesting that they are the possible progenitor of the multicopy MCAs (Ambit et al., 2008). Hence the characterisation of the single copy MCAs from the animal infective *T. congolense* and *T. vivax* could contribute to the understanding of the role played by the MCAs in cellular processes.

In the present study, recombinant *TbbMCA2*, as well as the MCA5s from *T. congolense* and *T. vivax*, expressed in *E. coli*, were shown to undergo autoprocessing, similar to the caspases (Roy et al., 2014). In addition, immunoaffinity purified native *TcoMCA* showed slight autoprocessing in the current study and this has only been reported previously for native *LmjMCA* (Gonzáles et al., 2007). Autoprocessing has been observed following recombinant expression of the type I MCAs from *A. thaliana* (Watanabe and Lam, 2005), *LmjMCA* (Gonzáles et al., 2007), as well as *TbbMCA2* (Moss et al., 2007). It is thought that MCA autoprocessing allows for the cleavage of the N- and C-terminal domains, releasing the catalytic domain. Mutation of the residues in *TbbMCA2* at which autoprocessing occurred, resulted in an unprocessed enzyme which could hydrolyse small peptide substrates but not large substrates, such as azocasein (Gilio et al., 2017). Comparison of the enzymatic activity of the recombinant full length and the catalytic domain of *LmjMCA* revealed that the catalytic domain was 3.5 times more active than the full length enzyme (Gonzáles et al., 2007). This could explain the lower rate of Z-Gly-Gly-Arg-AMC hydrolysis by native *TcoMCA* than by *TcoMCA*$_{H147AC202G}$ reported in the current study.

Similar to that of *TbbMCA2* and *TviMCA5*, recombinant expression within insoluble inclusion bodies has been reported for both *TctMCA*3 and -5 (Kosec et al., 2006) as well as *TcoMCA*5 (Eyssen, 2013). Nickel affinity chromatography has been used for the purification of MCAs from *Trypanosoma* spp. (Kosec et al., 2006; Moss et al., 2007; Proto et al., 2011), *Leishmania* spp. (Gonzáles et al., 2007; Lee et al., 2007; Peña et al., 2017), *A. thaliana* (Vercammen et al., 2004; Watanabe and Lam, 2011), *S. cerevisiae* (Wong et al., 2012) and *Triticum aestivum* (Piszczek et al., 2012) but the elution patterns obtained in these studies were not reported. In the present study, nickel purification of the sarkosyl solubilised MCAs in the present study resulted in more MCA fragments being eluted than what was loaded onto the resin. This phenomenon was not observed in the immunoaffinity purification of soluble recombinant MCA. This led to the hypothesis that MCA5, which had already undergone autoprocessing during expression, over autoprocessed in the presence of nickel ions. This process was termed nickel-induced over autoprocessing in the present study. The elution profile of the nickel purified MCA5 is similar to that of purified *AtMCA*4, which had already
undergone autoprocessing during expression, after the addition of calcium, resulting in the detection of more MCA fragments (Watanabe and Lam, 2011). It was shown that neither the recombinant nor the native TcoMCA5 required calcium for their peptidolytic activity. Most type I and -II MCAs are calcium regulated, requiring micromolar and millimolar concentrations of calcium, respectively (Madeo, 2002; Adams, 2003; Wong et al., 2012). Recombinant A. thaliana MCA-4, -5 and -8 (He et al., 2008) and Picea abies MCA (Bozhkov, 2005) have an absolute calcium requirement for enzymatic activity. It has been demonstrated that recombinant AtMCA9 (Vercammen et al., 2004), LmjMCA (Gonzáles et al., 2007) and TcoMCA5 (Chapter 3), all of which autoprocess, do not require calcium for enzymatic activity. Thus, it can be concluded, that different MCAs have different affinities for different divalent cations.

It has been suggested that recombinant MCA may exhibit minor catalytic activity which could initiate a cascade of peptidolytic processes. Thus, when two proenzyme molecules are in close proximity, one slightly active proenzyme could cleave the second molecule (Watanabe and Lam, 2011). When 6xHis tagged recombinant TcoMCA5 and TviMCA5 bind to the nickel resin, each can interact with itself and those MCA molecules in its immediate surroundings, resulting in processing at secondary cleavage sites as well as Arg and Lys residues. This would result in cleavage within the catalytic domain rendering the peptidase enzymatically inactive.

Mutagenesis of both the catalytic dyad residues of the MCA5s in the present study, resulted in little nickel-induced over autoprocessing, with only the MCA5H147AC202G mutant of T. congolense found to be enzymatically active. The activity of the double mutant may be explained by the presence of a secondary catalytic Cys, as reported for AtMCA9 by Belenghi et al. (2007) and the type II MCA from Triticum aestivum by Piszczek et al. (2012), where the catalytic Cys and secondary catalytic Cys are in close proximity. This hypothesis is strengthened by the conservation of this residue in all kinetoplastid MCAs as reported by Szallies et al. (2002) and shown in Appendix A3. In the current study it was demonstrated that the secondary catalytic Cys was hydrogen bonded to one of the conserved water molecules in the active site pocket and formed more Pi-alkyl interactions with the fluorogenic peptide substrates compared to that of the catalytic Cys as determined by docking studies. It has been reported that mutations of the catalytic dyad residues of recombinant LdnMCA were still peptidolytically active, albeit 2-fold less than the wild type peptidase, and were not essential to its ‘trypsin-like’ activity (Lee et al., 2007). It is, thus, hypothesised that the catalytic His and Cys residues are required for autoprocessing, as evidenced by the limited over
autoprocessing in the double mutant shown in the present study, and that the secondary catalytic Cys is responsible for the peptidolytic activity.

The peptidolytic activity of $TcoMCA^{H147A,C202G}$ was confirmed by the digestion of gelatin in the present study. It was also shown that the immunoaffinity purified native $TcoMCA5$ was active. This is the first report of the digestion of gelatin by either a caspase or a MCA. The two lower molecular weight forms of $TcoMCA5^{H147A,C202G}$, which were thought to contain the catalytic domain, digested gelatin, but the full length protein did not. The full length native enzyme was more active than the single lower molecular weight form which confirms the reports that autoprocessing is not an absolute requirement for peptidolytic activity (Moss et al., 2007).

Reported in this study, $TcoMCA^{H147A,C202G}$ has a P_1 specificity for Arg and Lys, with a preference for Arg over Lys. Similar to $AtMCA4$ (Vercammen et al., 2004) and $AtMCA8$ (He et al., 2008), $PaMCA$ (Bozhkov et al., 2005), $TbbMCA2$ (Machado et al., 2013) and $LdrMCA$ (Lee et al., 2007) which are optimally active between pH 7 and 8.5, $TcoMCA5^{H147A,C202G}$ was active over a broad pH range between 6 and 9. Inhibition of the enzymatic activity of $TbbMCA2$ (Moss et al., 2007), $TbbMCA4^{S219C}$ (Proto et al., 2011), $LdrMCA$ (Lee et al., 2007) by antipain and leupeptin was reported and corresponds to the inhibition of $TcoMCA^{H147A,C202G}$ albeit less effectively, 20% compared to between 90 and 100% inhibition reported for each of the above mentioned MCAs. Inhibition by TLCK (70 to 100%) has been reported for the above mentioned MCAs but did not affect the activity of $TcoMCA^{H147A,C202G}$. The irreversible inhibitor Z-Phe-Arg-FMK was used as an active site titrant for the recombinant orthocaspase 1 from $Microcystis aeruginosa$ PCC 7806 (Klemenčič et al., 2015), and biotin-Phe-Pro-Arg-CMK inhibited the enzymatic activity of recombinant $AtMCA4$ (Watanabe and Lam, 2011). Docking studies performed in the present work, showed that these reversible inhibitors had a lower affinity for $TbbMCA2$, $TcoMCA5$ and $TvMCA5$ than antipain and leupeptin. Experimental validation of the inhibition of $TcoMCA^{H147A,C202G}$ is required to confirm this.

The single MCA in $S. cerevisiae$, YCA1 (Madeo, 2002), and the type I MCAs from $A. thaliana$ (Vercammen et al., 2004), possess a Gln and Asn-rich N-terminal domain. This domain was found to be responsible for the targeting of the MCA to insoluble protein aggregates as well as the stabilisation of the zymogen (Erhardt et al., 2010; Lee et al., 2010). The YCA1 and single copy kinetoplastid MCAs are phylogenetically more related compared to the multicopy MCAs. The single copy MCAs possess the Pro-, Gln-, Tyr-rich C-terminal extension, which is implicated in protein-protein interactions (Kay et al., 2000). This was demonstrated whereby the overexpression of $TcrMCA5$ without the C-terminal domain resulted in a drop in parasite cell number and
the presence of non-motile rounded cells resembling apoptotic cells (Laverrière et al., 2012). It is, thus, thought that the C-terminal domain of TcrMCA5 may have pro-apoptotic role, whereby it negatively regulates apoptotic-like cell death. Thus, one can hypothesise that the single copy MCA5s from T. congolense and T. vivax may function in a similar manner.

Using RNA interference (RNAi), overexpression and gene knock-out studies, reported to date, it has shown that the kinetoplastid MCAs are involved in cell cycle and in the regulation of cell death processes. The RNAi of TbbMCA2, -3 and -5 resulted in the growth arrested parasites with multiple nuclei and kinetoplasts, almost four times more than the non-induced control, indicating an essential role in the cell cycle (Helms et al., 2006). The loss of MCA2 and -3 can be compensated by MCA5 and vise versa as parasites were able to adapt to the successive gene knock-out of MCA2, -3 and -5 (Helms et al., 2006). However, the rapid loss of all three MCA genes by RNAi was lethal to the parasite (Helms et al., 2006).

When overexpressed in yeast, TbbMCA4 was shown to inhibit growth, disrupt mitochondrial function and ultimately resulted in cell death (Szallies et al., 2002). In T. b. brucei, MCA4 was found only in the bloodstream trypomastigotes, with RNAi resulting in rapid growth arrest, a decrease in the number of motile cells and the inability to execute cytokinesis (Proto et al., 2011). The deletion of TbbMCA4 prolonged mouse survival by 11 days when compared to that of the WT indicating that TbbMCA4 plays a role in parasite virulence (Proto et al., 2011).

Overexpression of TcrMCA3 in epimastigotes, but not where the catalytic Cys residue had been mutated, resulted in a reduction of parasite growth rate as well as cell division arrest at the G1/S phase (Laverrière et al., 2012. As such, cell division arrest was directly linked to the levels of active enzyme (Laverrière et al., 2012). Likewise, overexpression of TcrMCA3, but not where the catalytic Cys residue had been mutated, was shown to protect epimastigotes from death naturally occurring during the stationary phase and to promote cell differentiation to the metacyclic trypomastigote (Laverrière et al., 2012). Thus, strict regulation of TcrMCA3 is critical for the progression of the T. cruzi cell cycle. In addition to the pro-apoptotic role of the C-terminal domain of TcrMCA5, the transfection of T. cruzi epimastigotes with TcrMCA5 resulted in a decrease in the number of motile parasites when exposed to fresh human serum (Kosec et al., 2006).

The induction of H₂O₂ cell death in amastigotes resulted in a 2.7-fold increase in LdnMCA activity as well as an increase in cells displaying DNA damage as measured
by TUNEL (Lee et al., 2007). As such, it was hypothesised that the LdnMCAs may act as effector molecules in cell death pathways (Lee et al., 2007). A gene knock-out study on LdnMCA1 showed arrested cell division at the S and G2/M phases, incomplete cytokinesis, and reduced cell growth (Raina and Kaur, 2012). Consequently, a role in the regulation of cell cycle and involvement in cell death was suggested for LdnMCA1.

The overexpression of LmjMCA results in deficiencies in kinetoplast segregation, nuclear division and cytokinesis which could be independent of cell death (Ambit et al., 2008). Higher levels of LmjMCA autoprocessing was observed in actively dividing log phase promastigotes than in stationary promastigotes (Ambit et al., 2008). During cell stress, cytoplasmic LmjMCA is translocated to the mitochondria due to a functional mitochondrial localisation sequence in the N-terminal domain (Zalila et al., 2011). In the mitochondrial matrix the full length LmjMCA is extensively processed into fragments containing the catalytic domain (Zalila et al., 2011). The activity of the catalytic domain enhanced the parasite’s sensitivity to H₂O₂ by impairing the mitochondrion (Zalila et al., 2011). This suggests that the catalytic activity of LmjMCA is required for cell death (Gonzáles et al., 2007; Zalila et al., 2011; Casanova et al., 2015).

Using phage display, panning of the recombinant MCA from L. amazonensis against a peptide library identified a peptide which shares a high sequence identity to the inhibitor of serine peptidase from L. major (Peña et al., 2017). The displayed 7-mer peptide expressed on the N-terminus of the minor phage coat protein (pIII) was shown to inhibit the peptidolytic activity of recombinant LamMCA (Peña et al., 2017). The inhibition of LamMCA by the inhibitor of serine peptidase rather than by the inhibitor of cysteine peptidase supports the finding in the present study that TcoMCA5H147AC202G activity is inhibited by serine rather than by cysteine inhibitors. Inhibition of LamMCA with the inhibitor of serine peptidase, shown to bind to MCA, decreased trypsin-like activity and cell death, suggesting that LamMCA is required for heat shock-induced cell death (Peña et al., 2017).

Due to their phylogenetic relatedness and the presence of a Pro-, Gln-, Tyr-rich C-terminal domain, it can be hypothesised that the single copy MCA5s from T. congoense and T. vivax may function in a similar manner to that of the leishmanial MCAs. RNA interference of a cell cycle enzyme, TbbAurora kinase 1 (AUK1), demonstrated that the enzyme is essential for parasite virulence and was to be considered as a drug target (Jetton et al., 2009). Through the inhibition of TbbAUK1 activity with a small-molecule inhibitor, VX-680, the functions of AUK1 were elucidated.
and was found to be essential for cell cycle progression (Li et al., 2009). Thus, due to their involvement in the cell cycle, MCAs are desirable drug targets.

A peptidomimetic library, designed based on the P₁ specificity of TbbMCA2 for Arg and Lys residues, displayed micromolar IC₅₀ values, between 2.1 and 50 µM, when tested in a phenotypic assay against T. b. brucei, T. cruzi, L. infantum and Plasmodium falciparum (Berg et al., 2012). The IC₅₀ values associated with the inhibition of recombinant TbbMCA2 varied between 0.6 and 62 µM (Berg et al., 2012). The 3D structure of TbbMCA2 was solved by X-ray diffraction, two months after the publication of the Berg library (McLuskey et al., 2012). In the present study, the validation of the docking of the designed Berg ligands into the active site of the structure of TbbMCA2, solved by X-ray diffraction, will be performed using molecular docking. This will indicate as to whether or not the reported in vitro antiparasitic activity (Berg et al., 2012) is due to the inhibition of TbbMCA2 by the Berg ligands. In addition to the Berg ligands, a commercial library was created consisting of all the peptide substrates and inhibitors reported in the characterisation of other MCAs, and docked into the active site of TbbMCA2 as well as the homology modelled TcoMCA5 and TviMCA5. It was demonstrated that the Berg ligands had high affinity for TbbMCA2 as well as the MCA5s, and that the TbbMCA2 IC₅₀ values correlated well to the docking score, indicating that the ligands were specific for the enzyme.

The docking results of the current study highlighted the interactions which were essential for ligand binding. The Berg ligands formed fewer interactions with the residues in the active site than those of the commercial library, and thus, only the commercial ligands were used for the generation of a pharmacophore. This will allow for the screening for new compounds or the optimisation of the Berg ligands to produce a compound with a higher affinity for the MCA substrate in future studies. A similar methodology was employed for the identification of novel inhibitors against the cathepsin-L like peptidase of T. cruzi, cruzipain, which is an important virulence factor and drug target (Salas-Sarduy et al., 2017). The GlaxoSmithKline HAT and Chagas chemical boxes were assembled based on the results of phenotypic screening against T. b. brucei and T. cruzi (Peña et al., 2015). Two scaffolds were identified after screening these chemical boxes and used to search the ChEMBL, a database containing information for a large number of drug-like bioactive compounds, to identify new possible ligands. The identified ligands were docked into the active site of cruzipain to determine the interactions between ligand and ‘receptor’ and the modes of binding (Salas-Sarduy et al., 2017).
Structural water molecules mediate ligand binding, in many cases, through the formation of hydrogen bonds (Ross et al., 2012). Three conserved water molecules, lining the bottom of the active site of TbbMCA2, were shown in the present study to interact with the secondary catalytic Cys92, catalytic His158 and S1 binding residue Asp211. The Cys92, His158 and Asp211 residues were demonstrated to interact with the ligands in both the Berg and commercial libraries. This supports the notion that these conserved water molecules mediate ligand binding. It has been demonstrated that docking performance is improved by the inclusion of water molecules in both predicted and X-ray diffraction solved structures (Yang and Chen, 2004; de Graaf et al., 2005). This was the case in the current study as more ligands were docked into the active site of the MCAs with higher interaction energies when all the water molecules were included than when they were absent.

Parasite antigens released or secreted into the bloodstream of the mammalian host are ideal for the diagnosis of current infections as anti-trypanosomal antibodies persist after cure (Lejon et al., 2010). The TbbMCA4 is a pseudopeptidase as it possess a Ser in place of the catalytic Cys (Fig. 2.1), and is, thus, catalytically inactive (Proto et al., 2011). This peptidase plays a role in the cell cycle and is also a virulence factor which is secreted into the bloodstream of the mammalian host (Proto et al., 2011). The presence of both OPB and MCA4 in the secretome of T. b. gambiense (Geiger et al., 2010) makes OPB and TbbMCA4 attractive targets for AT diagnosis through antigen detection. An ELISA detecting circulating T. congolense antigens in goats and cattle, using monoclonal antibodies, was shown to be more sensitive than the microhemocrit centrifugation technique (Nantulya and Lindqvist, 1989; Masake and Nantulya, 1991). Attempts to develop an antigen detection test for AT have shown some success in the diagnosis of experimental infections (Liu et al., 1988; Nantulya and Lindqvist, 1989; Kashiwazaki et al., 1994) but fail when testing samples from natural AT infections (Büscher, 2014). This may be due to low levels of circulating antigens or the concealment of these antigens by immune complexes (Büscher, 2014).

Nanobodies, which are derived from the heavy chain-only antibodies of camels and llamas, are comprised of the VH domain, which possesses extended surface loops which are able to penetrate the narrow cavities on various pathogens’ surfaces (Nuttall et al., 2004; Streltsov et al., 2004). This was evident by the improved penetration of the nanobody between the variable surface glycoproteins on the surface of T. b. brucei compared to the Fab antibody fragment and the anti-VSG IgM antibody (Stijlemans et al., 2004). Nanobodies are characterised by nanomolar affinity for their targets (Skottrup et al., 2011) and the ability to detect both free and bound antigens due to
unique epitope recognition which is different from conventional antibodies (De Genst et al., 2006). Antigen binding antibody fragments can therefore be used to potentially improve antigen detection methods.

The single chain variable fragment (scFv) antibodies, which consist of the V_H and V_L domains, have been successfully used in the development of ELISA immunodiagnostic tests against bluetongue virus (Fehrsen et al., 2005; Rakabe et al., 2011), African horse sickness virus (van Wyngaardt et al., 2004; van Wyngaardt et al., 2013), a 16 kDa antigen of Mycobacterium tuberculosis (Sixholo et al., 2011), and the 65 kDa HSP of Mycobacterium bovis (Wemmer et al., 2010). The detection of anti-OPB antibodies from sera from cattle experimentally infected with T. congolense, using chicken anti-OPB IgY antibodies in an inhibition ELISA format was unable to differentiate between infected and non-infected samples (Eyssen, 2013). As such, a smaller antibody fragment specific for OPB was thought have better chances of detecting OPB, which may be part of immune complexes, in an antigen detection ELISA.

Since the MCAs were demonstrated to over autoprocess when purified using nickel chromatography, OPB was used as the model antigen to optimise the phage display protocol in the present study. The Nkuku® phage display library, which was designed using chicken immunoglobulin genes (van Wyngaardt et al., 2004), was used to this end. Panning of the library against both TcoOPB and TviOPB, resulted in the isolation of an OPB-specific scFv antibody. Sequencing of the phagemid plasmid indicated that both the anti-TcoOPB and anti-TviOPB scFv had the same DNA sequence suggesting that the OPB-specific scFv bound to a conserved OPB epitope. Due to the genotype:phenotype linkage, the genetic makeup of the scFv antibody is known and allows for the standardisation and accurate comparison of immunoassays (Schirrmann et al., 2011).

The OPB-specific scFv antibody, purified using a TcoOPB affinity resin, was capable of detecting both recombinant and native TcoOPB in a western blot format in the current study. The OPB-specific scFv in combination with a polyclonal anti-TcoOPB antibody in a sandwich ELISA was utilised for the detection of TcoOPB in cattle experimentally infected with T. congolense. Despite high background values, which may be as a result of antibody cross reactivity, the absorbance values fluctuated together with the waves of parasitaemia. This indicates that upon parasite killing, low parasitaemia should result, causing higher levels of OPB due to parasite lysis. Prior to optimisation of the antigen detection ELISA in the future, the concentration of OPB in sera at each time point during infection needs to be measured to determine the limit of detection of OPB by scFv. This would confirm if OPB is a bona fida diagnostic
candidate and its application in an antigen detection ELISA using OPB-specific scFv. It has been reported that through the use of a nanobody library from an alpaca vaccinated with the soluble proteome of T. congolense, panning against the soluble proteome from four different T. congolense strains, an aldolase specific Nb474 was isolated (Odongo et al., 2016). Incorporation of 6xHis tagged and biotin labelled Nb474 in an antigen detection ELISA showed a 87% sensitivity and 94% specificity and could successfully differentiate between active and cured experimental infections (Odongo et al., 2016).

The 3D structure of LmjOPB, solved by X-ray diffraction, for both open and closed structures identified a hinge motion which links the α/β hydrolase catalytic domain from the β-propeller domain (Canning et al., 2013). Domain opening removes Glu172, found in the propeller domain, from the active site, freeing Arg650 which is critical for substrate binding (Canning et al., 2013). The molecular docking of the scFv antibody onto TcoOPB reported in the current study, predicted that the scFv bound to a previously identified epitope, residues 282 to 299 (VRKREKNVRYEVEHMGT) as well as residues in both the catalytic and propeller domains. If this is indeed the case, scFv binding would prevent the opening of TcoOPB to allow access of the substrate into the catalytic site. Antibody fragments have been reported to inhibit peptidase activity, with inhibition of cancer-associated membrane type serine peptidase (MT-SP) by an scFv (Sun et al., 2003). Panning of a naïve, synthetic, human antibody library against the cancer-associated MT-SP as well as washing with ecotin, a bacterial homologue of the inhibitor of serine peptidase (McGrath et al., 1995), was employed to select for more potent peptidase inhibitors. Several scFv peptide antibodies were isolated of which the most potent had an inhibition kinetic constant of 50 pM against human MT-SP. The immunoinhibitory effect of OPB-specific scFv on the activity of TcoOPB requires further investigation.

Since the phage display technology has been shown to produce antigen specific antibodies, it can be applied to the production of MCA-specific antibodies for use either in diagnostics (TbbMCA4), or cellular imaging in the laboratory for the detection of MCA5 and the elucidation of their role in cellular processes using RNAi, overexpression and gene knock-out studies.

In conclusion, the MCA5s from T. congolense and T. vivax were found to autoprocess and over autoprocess when exposed to nickel ions in the affinity chromatography resin. Mutagene

...
antibodies and was enzymatically active. Here, we report the first digestion of gelatin by a MCA. The Berg ligands were demonstrated to be inhibitors of *Tbb*MCA2, *Tco*MCA5 and *Tvi*MCA5 with suggested improvements in binding affinity provided by molecular docking of commercial substrates and inhibitors. Using OPB as a model antigen for the optimisation of the phage display technology, an OPB-specific scFv was isolated which could detect both recombinant and native OPB and has application towards the development of an antigen detection ELISA.

Kajunguru, D., Hargrove, J. W., Ouiifki, R., Mugisha, J. Y. T., Coleman, P. G., Welburn, S. C. (2014). Modelling the use of insecticide-treated cattle to control tsetse and Trypanosoma...

La Greca, F., Magez, S. (2011). Vaccination against trypanosomiasis, can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? Human Vaccines. 7, 1225-1233.

Marcello, L., Barry, J. D. (2007). Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. *Genome Research.* 17, 1344-1352.

Pan, W., Ogunremi, O., Wei, G., Shi, M., Tabel, H. (2006). CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes:

CONTENTS OF APPENDICES

APPENDICES A .. 200
Molecular weight marker calibrations.. 200
Protein quantitation... 200
Relatedness and conservation of the catalytic residues of the kinetoplastid MCAs .. 202
Cloning and expression plasmids used for TbbMCA2 and TviMCA5 ... 205
Chicken anti-TvMCA5 IgY production ... 207
Mutation in the TbbMCA2 amplified gene ... 207

APPENDICES B .. 209
Primers designed for mutagenesis .. 209
AMC standard curve.. 209
Analysis of the generated megaprimmer after mutagenesis .. 210
Alignment of sequenced WT and mutant TcoMCA5 and TvMCA5... 211
Lineweaver-Burke plots .. 213
Molecular weight comparison between non-reducing zymograms and reducing SDS-PAGE gels 214
Clan CD peptidases resistance to classical E-64 inhibitor.. 214
Resultant velocity after inhibitor screening.. 215
Determination of inhibition kinetic constant.. 215
Effect of calcium ... 216
Effect of various divalent cations ... 216
Interactions of the catalytic and adjacent Cys residues ... 217

APPENDICES C .. 218
Commercial library.. 218
Berg library... 219
Enlarged sequence alignment of the TbbMCA2 4AF8 template used for the homology modelling of TcoMCA5 and TvMCA5 ... 220
Correlation of the -CDocker interaction energies and the IC_{50} values of the Berg ligands ... 221
2D interactions of ligands docked in the active site of TbbMCA2 4AF8 ... 222
2D interactions of ligands docked in the active site of TcoMCA5 and TvMCA5 ... 223

APPENDICES D .. 226
pHEN1 phagemid plasmid used for scFv production ... 226
Phage binding and soluble scFv ELISAs .. 226
Colony PCR and fingerprinting ...229
Decision matrix for the selection of scFv clones for expression229
Homology modelling and structure validation of modelled TcoOPB and clone E5 from TcoOPB pan 3..230
APPENDICES A

Molecular weight marker calibrations

Standard curves were constructed for the molecular weight markers separated on a 1% (w/v) agarose gel (Appendix A1, panel A) and on a 12.5% reducing SDS-PAGE gel (panel B). These curves were constructed by the relation of the relative mobility of each of the marker proteins or DNA fragments to the log of its respective relative molecular mass (M_r) or number of base pairs (bp) respectively.

Appendix A1: Standard curves of the molecular weight markers used in agarose and SDS-PAGE electrophoresis. (A) The commercial O’GeneRuler™ 1 kb DNA ladder was used for 1% (w/v) agarose electrophoresis. The equation of the trendline is given by $y = -0.449x + 2.102$, with a correlation coefficient of 0.981. (B) The molecular weight marker used for reducing 12.5% SDS-PAGE electrophoresis consisted of phosphorylase B (97.4 kDa), bovine serum albumin (BSA, 68 kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), soyabean trypsin inhibitor (SBTI, 21.5 kDa) and lysozyme (14 kDa). The equation of the trendline is given by $y = -1.050x + 2.198$, with a correlation coefficient of 0.977.

Protein quantitation

A water soluble, purple coloured complex is formed when cuprous ions are chelated by bicinchoninic acid (BCA). This complex is stable over a broad range of protein concentrations with a linear absorbance at 562 nm (Smith et al., 1985). When compared to bovine serum albumin standards, the protein concentration in samples can be determined through the direct correlation between the protein concentration and the production of cuprous ions (Walker, 1996). Protein quantitation using the bicinchoninate reagent is superior over other methods due to its high tolerance towards resistance to detergents and denaturing reagents (Bradford, 1976), high sensitivity and low protein-to-protein variation and its stability in alkaline conditions which allows for a simplified one-step reaction (Walker, 1996). A BSA standard curve using the BCA™ protein assay kit is shown in Appendix A2.
Appendix A2: Standard curve obtained using the BCA™ protein assay kit. Bovine serum albumin standards ranging from 25 to 2000 μg/ml were added to the BCA reagent and the resulting absorbance values measured at 595 nm after incubation at 37°C for 30 min. The equation of the trendline is given by \(y = 0.0005x + 0.016 \) with a correlation coefficient of 0.997.
Relatedness and conservation of the catalytic residues of the kinetoplastid MCAs

The MCAs -1, -4 and -5 of *T. b. brucei*, *T. b. gambiense* and *T. evansi* share a 100% identity (Fig. 2.1). As such, only the analyses of the MCAs -1, -4 and -5 of *T. b. brucei* will be reported. The *LmjMCA* and *LdnMCA2* share a 99% identity and as such, only *LmjMCA* will be reported.

<table>
<thead>
<tr>
<th>N-terminal domain</th>
<th>Catalytic domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>LmjMCA</td>
<td>GRRLLHVRPIIIPYRAPVPTGKVRKALFIGINYYTGRNAILGYNVQSMGLTLQQISF</td>
</tr>
<tr>
<td>LdnMCA</td>
<td>GRRLLHVRPIIIPYRAPVPTGKVRKALFIGINYYTGRNAILGYNVQSMGLTLQQISF</td>
</tr>
<tr>
<td>LmxMCA</td>
<td>GRRLLHVRPIIIPYRAPVPTGKVRKALFIGINYYTGRNAILGYNVQSMGLTLQQISF</td>
</tr>
<tr>
<td>TbbMCA</td>
<td>AMGEAHQCPVPRPYPTEVRKAFLGINYYTGSASLGYNVQHMRLQTRQIEF</td>
</tr>
<tr>
<td>TcoMCA</td>
<td>AMGEAHQCPVPRPYPTEVRKAFLGINYYTGSASLGYNVQHMRLQTRQIEF</td>
</tr>
<tr>
<td>TcrMCA</td>
<td>AFREALRCPVPIFRATPTTGGVRFKALFIGINYYTRKNLKSNVNYVRQLGMLTQRIQF</td>
</tr>
<tr>
<td>TvMCA</td>
<td>ELORAEHCPSIPYRVTPTTGGVRFKALLFIGINYYTGSQASLGYNVCRMLSAHNLISF</td>
</tr>
<tr>
<td>TbB3</td>
<td>AVANAGDAHEQQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tbg3</td>
<td>AVANAGDAHEQQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tev3</td>
<td>AVANAGDAHEQQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tbg2</td>
<td>AFRDAELGLHQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tev2</td>
<td>AFRDAELGLHQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tbb2</td>
<td>AFRDAELGLHQPWAT-PLGQTVRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tcr3</td>
<td>AFQAOETEGKPFWETTHVSGTFRALFIGNYTSAALSGYNVDQKMLTQLQKGL</td>
</tr>
<tr>
<td>Tbb4</td>
<td>TLETEAKGQFQPKWIS-CQPKGAVRGLFVGNYGTNTAQGSYNDV1MIMIQALQKRRNF</td>
</tr>
<tr>
<td>Tbb1</td>
<td>AMNEA-ESEVAEVMKLP-SKQQSFRALFIGIDKTPAELRQYADAVM6AGTMELKI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-terminal domain</th>
<th></th>
<th>Catalytic domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>LmjMCA</td>
<td>------------</td>
<td>MTDLFDIWGAVSLIPMLANGLVLVDPRKRVDINA</td>
</tr>
<tr>
<td>LdnMCA</td>
<td>------------</td>
<td>MDDLLLIIIGAVASLIPMLANGLVLVDPRKRVDINA</td>
</tr>
<tr>
<td>LmxMCA</td>
<td>------------</td>
<td>MDDLLLIIIGAVASLIPMLANGLVLVDPRKRVDINA</td>
</tr>
<tr>
<td>TbbMCA</td>
<td>------------</td>
<td>MDDALLLFGQVATAVLPIVNSIGVRPRKRDVKK</td>
</tr>
<tr>
<td>TcoMCA</td>
<td>------------</td>
<td>MDDAVGLMLQGLASSALPLVESIGVRPRKRDVKK</td>
</tr>
<tr>
<td>TcrMCA</td>
<td>------------</td>
<td>MDDLLGVSGLIQNALPFVAG-VGRVKPRKVKLEE</td>
</tr>
<tr>
<td>TvMCA</td>
<td>------------</td>
<td>MNILTDLFGLQQVPSIIPFLVNSIGTVQPRKRDVKK</td>
</tr>
<tr>
<td>TbbMCA3</td>
<td>------------</td>
<td>MAVDPRCLLSCLSTISAKGNDFVIKGMELWQATAQFLVQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tbg3</td>
<td>------------</td>
<td>MAVDPRCLLSCLSTISAKGNDFVIKGMELWQATAQFLVQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tev3</td>
<td>------------</td>
<td>MAVDPRCLLSCLSTISAKGNDFVIKGMELWQATAQFLVQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>TbbMCA2</td>
<td>------------</td>
<td>MCTLIQTLDCAQADVLQGLWNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tev2</td>
<td>------------</td>
<td>MCTLIQTLDCAQADVLQGLWNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>TbbMCA2</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tbg2</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tev2</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>TbbMCA3</td>
<td>------------</td>
<td>MGFDFGCLLKLCS-THLVKGGASINSFMEIGINLKVMAAPVQYLGQPPRVDDVA</td>
</tr>
<tr>
<td>Tbg3</td>
<td>------------</td>
<td>MGFDFGCLLKLCS-THLVKGGASINSFMEIGINLKVMAAPVQYLGQPPRVDDVA</td>
</tr>
<tr>
<td>Tev3</td>
<td>------------</td>
<td>MGFDFGCLLKLCS-THLVKGGASINSFMEIGINLKVMAAPVQYLGQPPRVDDVA</td>
</tr>
<tr>
<td>TbbMCA1</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tbg2</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>Tev2</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>TbbMCA1</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
<tr>
<td>TbbMCA1</td>
<td>------------</td>
<td>LITQLCDAGQVLADYVGLGWLNAVSSQPLEVLQALGLQPPPVPVDDVA</td>
</tr>
</tbody>
</table>

Appendix A3: Multiple sequence alignment of the kinetoplastid MCAs. The protein sequences were obtained from the TriTrypDB (Aslett et al., 2010). TbbMCA from T. b. brucei (927), TbgMCA from T. b. gambiense (DAL972), TviMCA from T. vivax (Y486), TevMCA from T. evansi (STIB 805), TcoMCA from T. congoense (IL3000), TcrMCA from T. cruzi (Sylvio X10/1), LmjMCA from L. major (Friedlin), LmxMCA from L. mexicana (MHOM/GT/2001/U1103), LdnMCA from L. donovani (BPK282A1) and aligned using ClustalW (Larkin et al., 2007). Alignment characters are annotated as follows: conserved residues (*), strongly similar properties (:) and weakly similar properties (.). The amino acid residues involved in the S1 binding pocket are highlighted in pink, those in the catalytic dyad in yellow, adjacent Cys to the catalytic Cys in turquoise, the secondary catalytic Cys in blue and the calcium binding sites in green. The gatekeeper residue is highlighted in grey and the sites of autoprocessing, reported in literature, in red. The residue predicted to be involved in the formation of the oxyanion hole is highlighted in teal.

Cloning and expression plasmids used for TbbMCA2 and TviMCA5

The plasmid maps of the cloning (panels A and B) and expression (panels C and D) plasmids used in the present study is given in Appendix A4.
Appendix A4: Sequence maps of the multiple cloning sites of the plasmids used for the cloning of *TbbMCA2* and *TvMCA5*. T/A cloning plasmids (A) pTZ57/1/t and (B) pGem*-T along with the (C) pET-28a and (D) pET-32a expression plasmids which both code for a N-terminal 6xHis tagged recombinant protein.
Chicken anti-\textit{Tvi}MCA5 IgY production

Chickens were immunised with \textit{Tvi}MCA5 triturated with Freund’s complete adjuvant (FCA) at week 0 and thereafter with Freund’s incomplete adjuvant (FIA) at weeks 2, 4 and 6. The pre-immune IgY is denoted by week 0 which had a low absorbance value. Antibody production fluctuated throughout the immunisation period (Appendix A5). In chicken 1, antibody production was above that of the pre-immune at weeks 4 to 6, 8 to 11, and for chicken 2, weeks 1 to 4, 8 and 13.

Appendix A5: ELISA of anti-\textit{Tvi}MCA5 IgY antibodies isolated from the egg yolks of immunised chickens. ELISA plates were coated with \textit{Tvi}MCA5 (1 μg/ml in PBS, pH 7.2), blocked with 0.5% (w/v) BSA-PBS, and incubated with anti-\textit{Tvi}MCA5 IgY from chickens 1 and 2, weeks 1 to 14 (100 μg/ml). Rabbit anti-chicken IgY HRPO conjugate (1:5 000) and ABTS-\textit{H}_2\textit{O}_2 were used as the detection system. The absorbance readings at 405 nm represent the average of duplicate experiments at 60 min development.

Mutation in the \textit{Tbb}MCA2 amplified gene

Using the 3D structure of \textit{Tbb}MCA2 (PDB ID: 4AF8), solved by X-ray diffraction, the catalytic dyad residues, His158 and Cys213, which had been mutated to a Gly, were identified along with the gatekeeper reside Tyr31 which operates as a switch to allow access into the catalytic pocket (McLuskey \textit{et al.}, 2012). After sequencing the high-fidelity \textit{taq} amplified \textit{Tbb}MCA2 gene from the DNA of \textit{T. b. brucei} (927), that the Gln71 residue was found to be amplified as Arg71. This mutation was modelled on the protein structure to determine where in relation it was to the active site and if it could affect substrate binding (Appendix A6).
Appendix A6: The 3D structure of TbbMCA2 4AF8 showing the mutation which was introduced after PCR in relation to the catalytic dyad. The 3D structure of TbbMCA2C213G (4AF8), from diffraction data collected at 1.4 Å (McLuskey et al., 2012), was modelled using Discovery Studio software (Dassault Systèmes BIOVIA), and the mutated Gln71 residue along with the catalytic dyad, His158 and Gly213, and gate keeper (Tyr31) residues were shown in a stick configuration.
APPENDICES B

Primers designed for mutagenesis

The primers for the generation of the catalytic dyad mutants, H147A and C202G, along with the adjacent Cys, C201G, were designed using the Agilent QuikChange primer design software and detailed in Appendix B1.

Appendix B1: Primer sequences to be used in the mutagenesis studies of TcoMCA5 and TviMCA5.

<table>
<thead>
<tr>
<th>Primer</th>
<th>5’ - 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcoMCA5H147A</td>
<td>TTC ACT ACT CTG GGG CCG GTG CGG AGA CGA C</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TcoMCA5H147A</td>
<td>GTC GTC TCC GCA CCG GCC CCA GAG TAG TGA A</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
<tr>
<td>TcoMCA5C201G</td>
<td>ATG ACG GCC GTC TTT GAT GGC TGC CAC TCT GCC</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TcoMCA5C201G</td>
<td>GGC AGA GTG GCA GCC ATC AAA GAC GGC GTG CAT</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
<tr>
<td>TcoMCA5C202G</td>
<td>GGC GTT ATG ACA GCT GTT TTT GAT GGC TGT CAT</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TcoMCA5C202G</td>
<td>GTC CGT ATG ACA GCT GTT TTT GAT GCC TCT GCT</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
<tr>
<td>TviMCA5H147A</td>
<td>CGT GTT TTT TCA TTA TTT GGC CCG CAC CTA</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TviMCA5H147A</td>
<td>GTA CTT TTA GTT TGA GTG CCG GCT CCA GAA TAA</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
<tr>
<td>TviMCA5C201G</td>
<td>GTG CGT ATG ACA GCT GTT TTT GAT GGC TGT CAT</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TviMCA5C201G</td>
<td>CCA AAA GAG AGG CTG AAT GAC AGG CAT CAA AAA</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
<tr>
<td>TviMCA5C202G</td>
<td>GCG TAT GAC AGC TGT TTT TGA TTG TGG CCA TCC</td>
</tr>
<tr>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>TviMCA5C202G</td>
<td>CCA AAA GAG AGG CTG AAT GGC CAC AAT CAA AAA</td>
</tr>
<tr>
<td>reverse</td>
<td></td>
</tr>
</tbody>
</table>

Sequences in bold correspond to the point mutations.

AMC standard curve

To quantify the hydrolysis of fluorogenic peptide substrates by the purified recombinant and native MCAs, an AMC calibration curve was constructed. The AMC standards ranging from 5 to 15 000 nM (50 μl) were incubated with MCA assay buffer (50 mM Tris-HCl buffer, pH 7.2, 150 mM NaCl, 10 mM CaCl₂, 5 mM DTT, 50 μl) at 37°C for 10 min and the fluorescence (Ex₃60nm and Em₄60nm) measured using a FLUORStar Optima Spectrophotometer from BMG Labtech (Offenburg, Germany) (Appendix B2).
The slope of the calibration curve was used to determine the velocity of the enzymes when hydrolysing different substrates.

Appendix B2: AMC standard curve to link the fluorescence from the hydrolysis of fluorogenic peptide substrates by the MCAs to their velocity. Dilutions of AMC, in triplicate, were incubated with MCA assay buffer at for 10 min at 37°C and the excitation and emission fluorescence measured at 360 and 460 nm respectively. The equation of the trendline is given by $y = 3.6124x$ with a correlation coefficient of 0.9909.

Analysis of the generated megaprimer after mutagenesis

Using the primers shown in Appendix B1, along with the plasmid DNA templates of the WT TcoMCA5-pET28a and TviMCA5-pET32a, the point mutation within the plasmid was performed using the Q5 high-fidelity master mix. Successful mutagenesis resulted in bands at approximately 7 000 and 7 500 bp for TcoMCA5 and TviMCA5 respectively. Only a few mutants are shown in Appendix B3.

Appendix B3: High-fidelity amplification of TcoMCA5 and TviMCA5 mutants using the megaprimer method. Samples of the PCR amplification of point mutants were electrophoresed on a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide.
Alignment of sequenced WT and mutant TcoMCA5 and TvMCA5

To determine whether the resulting clones after transformation of the mutant plasmids, into competent NEB 5-alpha *E. coli* cells, possessed the desired mutations, the plasmid DNA was isolated and sequenced using the gene forward primer (Table 2.1). The results show that each of the selected clones were positive for the desired mutations (Appendix B4).

Appendix B4: Sequence alignment of the mutant clones of TcoMCA5 and TvMCA5. The plasmid DNA of (A) TcoMCA5 and (B) TvMCA5 mutants was sequenced using the forward gene primer at the Central Analytical Facilities (CAF), Stellenbosch University, and the data analysed using the BioEdit software (Hall, 1999) and compared to that from GenBank®.
Secondary catalytic Cys of *TbbMCA2*, *TcoMCA5* and *TviMCA5*

Appendix B5: Visualisation of the proximity of the catalytically important residues in *TbbMCA2*, *TcoMCA5* and *TviMCA5*. The residues comprising the catalytic dyad (His158 and Cys213; His147 and Cys202), Cys adjacent to the catalytic Cys (Cys212 and Cys201) and the secondary catalytic Cys (Cys92 and Cys81) of *TbbMCA2* 4AF8 (pink), *TcoMCA5* (purple) and *TviMCA5* (turquoise) were visualised using the Discovery Studio (Dassault Systèmes BIOVIA).
Appendix B6: Lineweaver-Burke plots of the hydrolysis of various fluorogenic peptide substrates by recombinant TcoMCA5H147AC202G and native TcoMCA5. Recombinant (A) TcoMCA5H147AC202G (0.5 µg/ml) and (B) native TcoMCA5 (7.5 µg/ml) were incubated in MCA assay buffer before the addition of 0 to 30µM of various fluorogenic peptide substrates in triplicate and duplicate respectively. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex360nm and Em460nm. After the outliers were removed, the kinetic parameters, K_m and V_{max} were determined using the Hyper32® software.
Molecular weight comparison between non-reducing zymograms and reducing SDS-PAGE gels

Appendix B7: Molecular weight comparison of active MCA5 from a non-reducing zymogram with MCA5 on a reducing SDS-PAGE gel. (A) A direct comparison of gelatin containing non-reducing SDS-PAGE gel, also known as a zymogram, to reducing SDS-PAGE gels of (B) immunoaffinity purified native TcoMCA5 (green) detected in a western blot, and (C) nickel affinity purified recombinant TcoMCA5H147AC202G (pink).

Clan CD peptidases resistance to classical E-64 inhibitor

Appendix B8 is taken directly from Mottram et al. (2003).

Appendix B8: Chemical structure of (a) the generic clan CA inhibitor E-64 and (b) aza-peptide epoxide inhibitors. The P₂ binding sites are indicated in green, which is a leucine residue in the case of E-64. The P₁ site of the aza-peptide epoxide inhibitors is indicated in blue. E-64 lacks a corresponding P₁ residue, which accounts for the compound’s lack of activity towards clan CD peptidases. The active epoxide functional group, that covalently binds to the thiol of the active site Cys in cysteine peptidases, is shown in red.
Resultant velocity after inhibitor screening

Appendix B9: Impact of varying concentrations of various inhibitors on the activity of recombinant TcoMCA5H147AC202G. Recombinant TcoMCA5H147AC202G (0.5 µg/ml) was incubated in MCA assay buffer containing 10 µM Z-Gly-Gly-Arg-AMC, before the addition of 1, 10 and 100 µM of various peptidase inhibitors, in triplicate, diluted in assay buffer without substrate. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex360nm and Em460nm. No change in velocity was observed for calpain I, bestatin, AEBSF, 1,10 phenanthroline, Z-Phe-Ala-FMK, Z-Val-Ala-Asp-FMK, iodoacetic acid and iodoacetate.

Determination of inhibition kinetic constant

Appendix B10: Determination of the inhibition constants for antipain and leupeptin against recombinant TcoMCA5H147AC202G. Using equation [D] in Section 3.2.6.5, the inhibition constant, K_i, for (A) antipain and (B) leupeptin was determined. The equation of the trendlines is given by (A) $y = 0.0088x - 0.01$ with a correlation coefficient of 0.9538 and (B) $y = 0.0137x - 0.0159$ with a correlation coefficient of 0.8910.
Effect of calcium

Appendix B11: The effect of varying concentrations of calcium on the velocity of recombinant TcoMCA5H147AC202G. Recombinant TcoMCA5H147AC202G (0.5 µg/ml) was incubated in MCA assay buffer containing 10 µM Z-Gly-Gly-Arg-AMC, before the addition of 0 to 100 mM CaCl₂, in triplicate, diluted in assay buffer without substrate. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex₃₆₀nm and Em₄₆₀nm.

Effect of various divalent cations

Appendix B12: The effect of varying concentrations of various divalent cations on the velocity of recombinant TcoMCA5H147AC202G. Recombinant TcoMCA5H147AC202G (0.5 µg/ml) was incubated in MCA assay buffer containing 10 µM Z-Gly-Gly-Arg-AMC, before the addition of 1 and 10 mM of various divalent cations diluted in assay buffer without substrate. This was done in triplicate. The resultant fluorescence from the hydrolysis of the AMC fluorophore, over 60 min, was measured at Ex₃₆₀nm and Em₄₆₀nm.
Interactions of the catalytic and adjacent Cys residues

Appendix B13: The interactions of the catalytic Cys202 and adjacent Cys201 in TcoMCA5. The 2D interaction map highlighting the Pi-sulfur interactions of the catalytic Cys with Tyr141 and Cys adjacent to the catalytic Cys, Cys201, with His200. The 2D interaction map for TviMCA5 is identical to that of TcoMCA5 and is thus omitted.
APPENDICES C

Commercial library

Appendix C1: Inhibitors and substrates used in literature for the characterisation of various MCAs. The chemical structures were obtained from the PubChem compound database (https://pubchem.ncbi.nlm.nih.gov/)(Kim et al., 2016).
Berg library

Appendix C2: Inhibitors designed based on the P1 site preference of TbbMCA2 for Arg and Lys residues. The chemical structures of the Berg library (Berg et al., 2012) were obtained from the Binding Database (Gilson et al., 2016)(http://www.bindingdb.org). The given numbers are the last three numbers from the bindingDB monomer ID. The IC50 values against recombinant TbbMCA2 are indicated in brackets as per Berg et al. (2012).
Appendix C3: Homology modelling of TcoMCA5 and TvMCA5. The alignment of the (A) TcoMCA5 and (B) TvMCA5 sequences to the TbbMCA2 4AF8 template is shown with the Qmean scores indicated in blue (high quality) and red/orange (low quality).
Correlation of the -CDocker interaction energies and the IC$_{50}$ values of the Berg ligands

A total of 31 compounds, consisting of seven substrates, four inhibitors and 19 Berg ligands were docked into the active site of TbbMCA2 4AF8, TcoMCA5 and TviMCA5, of which only the Berg ligands had an associated IC$_{50}$ value. Of the Berg ligands, only ten possessed an IC$_{50}$ value below 100 μM.

Appendix C4: Correlation of experimental IC$_{50}$ values of the Berg ligands and the -CDocker interaction energies of ligands docked into the active site of TbbMCA2, TcoMCA5 and TviMCA5. The alignment of the TbbMCA2 (pink), TcoMCA5 (purple) and TviMCA5 (turquoise) and the IC$_{50}$ values (black) as determined for the Berg ligands against TbbMCA2 (Berg et al., 2012).
2D interactions of ligands docked in the active site of *Tbb* MCA2 4AF8

Appendix C5: The inhibitor, substrate and Berg ligand which had the highest binding affinity at the active site for *Tbb*MCA2 4AF8, prepared with ‘all water’. The 2D interactions of the commercial inhibitor, antipain, commercial substrate, Z-Gly-Aly-Arg-AMC and Berg ligand, 777 docked in the active site of *Tbb*MCA2 4AF8.
Appendix C6.1: The commercial inhibitor which had the highest binding affinity at the active site for TcoMCA5 and TvMCA5 prepared with 'all water'. The 2D interactions of the commercial inhibitor, antipain, docked in the active site of TcoMCA5 and TvMCA5.
Appendix C6.2: The commercial substrate which had the highest binding affinity at the active site for *TcoMCA5* and *TvIMCA5* prepared with ‘all water’. The 2D interactions of the commercial substrate Z-Gly-Gly-Arg-AMC, docked in the active site of *TcoMCA5* and *TvIMCA5*.
Appendix C6.3: The Berg ligand which had the highest binding affinity at the active site for TcoMCA5 and TviMCA5 prepared with 'all water'. The 2D interactions of the Berg ligand, 777, docked in the active site of TcoMCA5 and TviMCA5.
APPENDICES D

pHEN1 phagemid plasmid used for scFv production

The map of the phagemid plasmid used in the Nkuku® phage display library is provided in Appendix D1, with the different resulting scFv formats and expected molecular weights when using suppressor and non-suppressor E. coli cells.

Appendix D1: Schematic diagram of the pHEN1 phagemid plasmid supplied in the Nkuku® phage display library. Adapted from Hoogenboom et al. (1991).

Phage binding and soluble scFv ELISAs

The phage binding ELISA format detects the pIII minor coat protein, which is fused to the myc-tagged scFv, when expressed in amber suppressor strains (Appendix D1). The soluble scFv ELISA format detected the myc tag using affinity purified chicken anti-myc IgY. This format is able to detect scFv from both amber suppressor and non-suppressor E. coli cells. The clones which had high absorbance values in both the phage binding and soluble scFv ELISA formats (Appendix D2 and D3) were used to define absorbance cut-off values, and noted in the decision matrix (Appendix D5).
Appendix D2: Phage binding ELISA of TcoOPB and TviOPB panned phages. ELISA plates were coated with (A and B) TcoOPB and (C) TviOPB (1 µg/ml in PBS, pH 7.2), blocked with 3% BSA-PBS and incubated with equal volumes of expression supernatant of (A) TcoOPB pan 3, (B) TcoOPB pan 4 and (C) TviOPB pan 4 together with 6% (w/v) BSA-PBS. Thereafter, mouse anti-M13 (1:8000) was added. Goat anti-mouse IgG HRPO conjugate and ABTS·H₂O₂ were used as the detection system. Absorbance values are the result after 60 min of development.
Appendix D3: Soluble scFv ELISA of TcoOPB and TviOPB panned phages. ELISA plates were coated with (A and B) TcoOPB and (C) TviOPB (1 µg/ml in PBS, pH 7.2), blocked with 3% BSA-PBS and incubated with equal volumes of expression supernatant (A) TcoOPB pan 3, (B) TcoOPB pan 4 and (C) TviOPB pan 4 together with 6% (w/v) BSA-PBS. Thereafter, affinity purified chicken anti-myc IgY (0.5 µg/ml) was added. Rabbit anti-chicken IgY HRPO conjugate and ABTS-H₂O₂ were used as the detection system. Absorbance values are the result after 60 min of development.
Colony PCR and fingerprinting

In order to narrow down the selection of clones which would be sequenced, the plasmid DNA from the positive clones, identified from the two ELISA formats (Appendix D2 and D3), was isolated and subjected to colony PCR and DNA fingerprinting using AluI (Appendix D4). The clones which resulted in a 1 000 bp amplified product (panel A), were digested using AluI resulting in the same pattern of DNA fragments (panel B).

Appendix D4: Screening for full length scFv clones by PCR amplification and DNA fingerprinting. The isolated plasmid DNA from phage binding and soluble scFv ELISA positive clones were subjected to (A) PCR amplification of the scFv genes and (B) digestion with AluI. Samples were electrophoresed on 1.5% (w/v) and 3% (w/v) agarose gels respectively, both containing 0.5 µg/ml ethidium bromide. (A) M= O’GeneRuler™, (B) M= 100 bp ladder (NEB).

Decision matrix for the selection of scFv clones for expression

The results from the phage binding ELISA, soluble scFv ELISA and colony PCR, were used to generate a decision matrix to facilitate the selection of clones to be used for the expression of scFv (Appendix D5).

Appendix D5: Positive clones resulting from the various techniques to determine the best clones for scFv expression.

<table>
<thead>
<tr>
<th></th>
<th>cutoff</th>
<th>% positive2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcoOPB pan3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phage binding</td>
<td>0.4*</td>
<td>8</td>
</tr>
<tr>
<td>Soluble scFv</td>
<td>0.5*</td>
<td>23</td>
</tr>
<tr>
<td>colony PCR</td>
<td>1 000 bp*</td>
<td>100</td>
</tr>
<tr>
<td>TcoOPB pan 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phage binding</td>
<td>0.4*</td>
<td>19</td>
</tr>
<tr>
<td>Soluble scFv</td>
<td>0.5*</td>
<td>8</td>
</tr>
<tr>
<td>colony PCR</td>
<td>1 000 bp*</td>
<td>33</td>
</tr>
<tr>
<td>TvOPB pan 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phage binding</td>
<td>0.3*</td>
<td>8</td>
</tr>
<tr>
<td>Soluble scFv</td>
<td>0.4*</td>
<td>12</td>
</tr>
<tr>
<td>colony PCR</td>
<td>1 000 bp*</td>
<td>93</td>
</tr>
</tbody>
</table>

* The absorbance value where the cut off was made for the selection of positive clones.
At 1 000 bp, a full length scFv was present. Anything below, would indicate a partial gene.
$ percentage positive was calculated by the division of the number of positive clones by the total number of clones tested and multiplied by 100.
Homology modelling and structure validation of modelled TcoOPB and clone E5 from TcoOPB pan 3

Enlarged sequence alignment of the TbbOPB template and TcoOPB query.

Appendix D6: Homology modelling of TcoOPB. The alignment of the TcoOPB sequence to the TbbOPB 4BP9 template is shown with the Qmean scores indicated in blue (high quality prediction) and red/orange (low quality prediction).

The validation of the generated structures, using the ProSA software (Wiederstein and Sippl, 2007) and the Ramachandran plots obtained from the Protein Data Bank (Berman et al., 2000) and the Discovery studio software (Dassault Systèmes BIOVIA), of TcoOPB (Fig. 5.6) and scFv clone E5 modelled (Fig. 5.7) is reported in Appendix D7.
Appendix D7: Z-score and Ramachandran plots as an indication of model quality. The resulting Z-score plots of the individually uploaded PDB files, TbbOPB (4BP9) and scFv (4NIK) along with the modelled TcoOPB and scFv clone E5 into the ProSA software (Wiederstein and Sippl, 2007). The Ramachandran plots for TbbOPB 4BP9 (Canning et al., 2013) and scFv 4NIK (Robin et al., 2014) was obtained from the PDB (Berman et al., 2000). Those for the TcoOPB and scFv clone E5 were generated using the Discovery Studio software (Dassault Systèmes BIOVIA).