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ABSTRACT

Forage quality nutrient assessments are costly, labour intensive, time consuming, dangerous
and usually results in spatially invariable data. These assessments are most commonly useful
to policy makers, rangeland managers and farmers to obtain informmatadiing to the
concentrations of forage quality nutrients in a grassland ecosystem. Remote sensing offers a
cost and timeeffective alternative for obtaining accurate information relating to the
concentrations of forage quality nutrients over local talrscales. Hence, the aim of this
research was to detect three forage fibre nutrients in KwelXatal, South Africa, using
remotely sensed ifield hyperspectral data and satellite multispectral image data, in
conjunction with the Random forest algoritiiRF).

The first part of this study examined the effectiveness of known absorption features for
detecting forage fibre nutrientseutral detergent fibre (NDF), acid detergent fibre (ADF) and
Lignin using hyperspectral datResults indicate successful rations between the known
absorption features and forage quality nutrients NDF, ADF and Lignin with coefficiedts (R
ranging between 0.57 and 0.81 using RF. In comparison, using the entire hyperspectral dataset,
the study identified additional wavebandhich contributes to the accurate detection of the
forage quality nutrients in a grassland environment. Overall, RF was capable reducing
problems of dimensionality and multicollinearity within the large contiguous wavebands of the
hyperspectral dataset,qviding an ideal framework to detect forage quality nutrients.

The second part of this study used high resolution Rapi8kwyaltispectral image data
to detect and map forage quality nutrients. More specifically, this study utilized the advanced
sensorconfigurations of the RapidEy® image data to detect forage quality nutrients (NDF,
ADF and Lignin) in conjunction with ancillary data and the Random forest algorithm. Results
showed that the RF algorithm successfully mapped NDF, ADF and Ligefficierts (F)
rangingbetween 0.67 and 0.74. In comparison, the study utittedhastic Gradient Boosting
(SGB) algorithm as an alternative modelling technique, which produced very similar results
ranging between 0.65 and 0.72)FOverall, multispectral rene sensing in conjunction with
a algorithm and ancillary data can detect and map forage quality nutrients NDF, ADF and
Lignin in a grassland environment.

Overall, the results from this study indicate that (i) remote sensing can ptodabe
and accuratenodelsfor detecting and mapping forage quality nutrients, (ii) RF is an effective
method for wavebandeduction and the accuratéiscrimination of high dimensional
hyperspectral datasetdi) the inclusion of ancillary data should always be considered.
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Chapter One
Introduction

1.1Background

Accuratedetermination oforagequality nutrientswithin grasslandss important toscientific
research as wedls foreffectiverangelandnanagemenpractices Conventionallythe quality
of forageis assessed and monitored usiwgt chemistryand Near infrared spectroscopy
(NIRS). Here, many studies have usedt chemistry andNIRS to determine forage quality
(Curran, 1989; Curraet al, 2001; Elvidge, 1990; Kokaly & Clark, 1999; Noratsal, 1976;
Osborne & Fearn, 1986; Stargsal, 2004; Stuthet al, 2003) However,theseassessments
are labour intensive, costly, time consumjndangerousand usually spatially invable
(Pullanaga et al, 2013a) Remote sensing a timeeffective and cosgtffective alternativéor
assessingand monitoringforage qualityover a largearea thereby providing valuable
information on both local and global scales. More specifically, remote ser@irgrovide this
information to policy makers, rangeland managers and farabarsational level

To date hyperspectral data bdeen usedih many studieso determinghe quality of
forage Typically, several studies have udegberspectral data fdorage qualityassessments
(Albayrak, 2008; Kawamuret al, 2008; Kawamurat al, 2010; Knoxet al, 2011; Kokaly &
Clark, 1999; Pullanagast al, 2013b; Zhacet al, 2007) The use of high resolution spectral
and spatial sensors contain a large number of contiguous wavdhahaske it possible to
determine discrete biochemical information with high precigi®ohellberget al, 2008)
Research has shown that hypecépd remote sensingystemsare capable of determining
forage qualityKnox et al,, 2011; Pullanagast al, 2012; Zhaeet al, 2007) However infield-
hyperspectral studies are still peldsed and require a large amount of time for processing a
large amount of data.

A few studies have used multispectral data for the determination of forage quality
(neutral detergent fibre (NDF), acid detergent fi®F) and Lignir). Hence researchers
acknowledged that multispectral wavebands are too broad and generalized to determine forage
quality, coupled with low spectral and spatial resolutions. Nonetheless, technalog
advancements have providetbre specialzed multispectral platforms capable of analyzing
more detailed vegetation properties. The latest inventions &dwancedspatial, spectral,

radiometric and temporal resolutions capable of detecting misernableinformation
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(Mutangaet al, 2016) New generation multispectral platforms are configundgith the new
Rededge wavebandcapable ofpotentially improving classifiation accuraciesPrevious
research suggestsata combination of high resolution and strategically placed wavebands,
make it possible to accuratedgtectforage quality(Eitel et al, 2007) Hence the selectiomf

most appropriate multispectral platfofior the correct applicatiois impeative to attaining
accurate results.

New generation RapidEy® multispectralsatellite is configured with a detedge
waveband that Isthe potential to considerably improve classification accuracies withst
vegetation applicationfAdelabuet al, 2014) RapidEye5 imagerypromises taadvancehe
mayping of vegetation over a large areahagh resolution, at faster time (5 days), and with a
lower cost(RapidEye, 2011)Researchers often use statistical approa¢besnprove the
detection and prediction accuracies of forage quaklitgnce, here are various statistical
packages availablspme which arpopularin forage qualityapplicationssuch aspartial least
squaresneural networks, and random foréstutangaet al, 2016) Furthermorejncluding
ancillary data can improve the prediction accuracjoodge quality nutrientd=or example,

Knox et al, 2011 found phenology, soil type, species, and gedsgye best input ancillary
datavariables thatrerelated to variations in nutrient levels in the dry season, hence these
variables were included in the overall prediction m@Helox et al, 2011)

The first paper in this thesis assess the utility of hyperspaemabte sensing in
determining keyorage fibre grassland nutrients in Fort Nottingham Nature Reserve, KwaZulu
Natal, South Africa. This paper focuses on the effectiveness of using known absorption features
to detect forage fibre nutrienfseutral deterg# fibre (NDF), acid detergent fibre (ADF) and
Lignin) using hyperspectral data and the random forest algorithyperspectral dataan
providedetailed information for the detection of forage fibre nutrients, however the technology
is costlyto small scak farmers,and time consuming Problems of multicollinearity and
dimensionality associated with hyperspectral datest providing a difficult task during
analysis Therefore, the second paper focuses ortfeetiveness of RapidEy® multispectral
imagey to detect and map forage fibre nutrients (NDF, ADF and Lignin) using a specialized
algorithm and ancillary data. The RapidEyenultispectral sensas a 5-wavebandsystem
including the reeedge wavebanthat promises$o bean effective tool for mappingegetation
properties Finally, the results from the hyperspectral analysis are compared with the results
obtained from the RapidEy®image datat was interesting to investigate the performance of
both hyperspectral and multispectral remote sensifmtdegies in detecting and predicting

forage fibrenutrients
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1.2 Aims and objectives

The aimof this research was to assess the utility of hyperspectral and multispectral remote

sensing in predicting key forage quality nutrients. The main objectivesasdofiows:

1 To assess the capability of hyperspectral remote sensing in detecting three forage fibre
quality nutrients (NDF, ADF and Lignin)sing Random érest.

1 To evaluate the effectiveness of using known absorption features for selection of the
most opimal subsets of hyperspectral wavebands.

1 To investigate the capability dfigh resolution RapidEy® multispectral imagery to
detect and predict forage quality nutrieM¥F, ADF and Lignin)using a specialized
algorithm and ancillary data.

1 To test thecapability of the Stochastic Gradient Boosting algorithms in identifying the
most important wavebands for detecting forage quality nutrients NDF, ADF and
Lignin.

1 To compare the respective capabilitiesimffield hyperspectral and multispectral

remotelysensed data to detect and predict key forage quality nutrients.
1.3Outline of thesis

This thesisconsists offour chaptersThe main structure of this thesis is within two core
chapters (Chapter Two and Three), which form publishable papers and will be submitted to
peerreviewed journals. Since both these chapters have detailed sections covering the study
area, literature rewe and methodology, these sections are not covered with in the introductory
section of the thesi® avoid repetition.

Chapter Two assesses the capability of hyperspectral remote sensing to detect forage
fibre nutrients NDF, ADF and Lignin using Randomefsir This chapter primarily focuses on
using known absorption features to detect these forage fibre nutrients and for the selection of
the most optimal hyperspectral wavebands. The Random forest algorithm was used to analyze
the large amount of hyperspeatcontiguous wavebands (n = 191for variable selection and
to produce the final prediction model.

Chapter Three evaluates the effectiveness of Rapidbymultispectral image data (n
= b) to detect and predict forage quality nutrients (NDF, ADF andih)gusing a specialized
algorithm and ancillary data. The Stochastic gradient boosting algorithm was tested to identify
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the most important wavebands used for the detection of NDF, ADF and Lidr@rancillary

data (Leaf Area Index, Chlorophytieciesype, species Count) was used in the main dataset.
Chapter Four provides an overview of the studBoth aims and objectives are

discussed in depth, and the most important findings are highlighted. A discussion of the most

appropriate remote sensing apptodor detecting and predicting forage quality nutrients is

presented in this chapter. Lastly, the chapter examines the limitations and presents the

recommendations for future research within this studies context.
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Chapter Two

Remote sensing of kegrassland nutrients using hyperspectral techniques

in KwaZulu -Natal, South Africa

2.1 Abstract

The concentration dforage fibre contenis critical in explainng the palatability of forage
quality for livestock grazeris tropical grasends Low grass gality negatively impacts on the
health of livestock, creating a chain of undesirable impacts on animal performance;
biodiversity; food security and state economiBsditional methods of determininprage

fibre content are usuallyme consumingcostly and require specialized laboratory analysis
With the potential ofremote sensing technolieg and their application across broad spatial
extentsdetermination of key fibre attributesin bemademore accuratelyThis study aims to
determine the effectaness of known absorption wavelengths for detecting forage fibre
biochemicals, neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin using
hyperspectral data. Hyperspectral reflectance spectral measuremer25(850m) of grass

were colleted and implemented within the random forest (RF) ensemble. Results show
successful correlations between the known absorption features and the biochemicals with
coefficients (R) ranging from 0.57 to 0.81n comparison, using the entire datasie¢ study
identified additional wavelengths which contributes to the accurate determination of forage
guality in a grassland environment. Overall, the results showed that hyperspectral remote
sensing in conjunction with the RF ensembleuld discriminate each keyidchemical
evaluated.The study was successful in determining the effectiveness of using known
absorption features for detecting fibre biochemicals NDF, ADF and Lignin using hyperspectral
data.This study shows the potential to upscale the methodologgpaaeborne multispectral
platform with similar spectral configurations for an accurate and cost effective mapping

analysis of forage quality.

Keywords: fibre biochemical, tropical grassland, NDF, ADF, Lignin
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2.2 Introduction

Globally, grasslands comige 26% of the total landover; of which 80% is used for

agricultural purposeand 68% are found in developing countriBsval & Dixon, 2012) In

South Afica, more than 70% of land surface comprises grassland vegetation which s mainl

used for pastoral productigMansouret al, 2013) Here, gasslands provide thimaryfeed

base for grazing livestoakhich in turn provides the majority of leimcome people with food,

goods and services that are essential for sustaining their liveliBodal & Dixon, 2012)

Forage quality in grasslands is therefore a vital component in the management of grazing lands

and livestock(Georgiadis & McNaughton, 1990Howeve, inadequate veld management

practices, result in grazing pastures being overgrazed and overstocked especially during the

dry seasoiiMuchenjeet al, 2008) It is evident in literature thaggture management is a major

concern, particularly in tropicgbasture systemwhere improper management can lead to

unpaldable grasses. Unpalatable grasses have a ripple effetiteomtake ptential of

livestock, later Hecting livestock production levebnd eventudy food security in a country.
Traditionally, the productivity of rangelands has been assessed and nexbnising

field based point assessments which are spatially invariable, expensive, harmful and often time

consuming(Dabasscet al, 2012 etal)20Xl] Stuktet al., 2003; Zhacet al, 2007)

These methods usually involve extensive laboratory chemical analysis for determining forage

quality (Zhaoet al, 2007) and require personnel wisipecializedkills (Mutangaet al, 2004a;

Zhao et al, 2007) Laboratory personnel are exposed to harmful chemicals and also, the

hazardous waste produced from laboratory processiss Ioe appropriately disposed of in

order to reduce risk of environmental pollutiGthaoet al, 2007) Furthermore, supervised

laboratory experiments require a large amount of time for analysis that hinder immediate

solutions and are nqgtractical and logicdlor broad grassland ecosysteas is in many cases

of grazing lands in South Africg@Mutangaet al, 2004a; Stuttet al, 2003) Nonetheless, this

information becomes relevant when rangeland managers make informed deorsibie use

of expensive dietary supplements to minimize grazing; nutrient deficiencies and when

maintaining production levelg§Mbatha & Ward, 2010) However, using conventional

approaches over broad tropical grazing grasslands is challenging. To date, remote sensing is an

efficient technology available for mapping land cover dynamics across broad geographic

externts (Kuemmerleet al, 2013)and may serve as a viable alternative.
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Remote sensing offers possibilitiesgmvide accurate information related to forage
quality in grazing lands, thereby reducing the tediptecedureof rigorous sampling and
laboratory analysigMutangaet al, 2004b) The 1970s inventory of near infrared reflectance
spectroscopy (NIRS) was used to assess forage qualiprevidedfairly accurate predictions
of ADF, NDF and Lignin concentrations contained in dried ground fofidgeramuraet al,

2008; Mutangaet al, 2004b; Starket al, 2004; Stutket al, 2003; Zhacet al, 2007) NIRS
analysis provided a fairly cost effective and quick estimation of forage nutrient compositio
(Stuthet al, 2003; Zhaeet al, 2007) In effect, many laboratories have replaced wet chemistry
as the standard analytical procedure for assesasid@stimatinglantbiochemicalfMutanga

et al, 2004b) A study by Staks et al, (2004) successfully used ifield hyperspectral
spectrometry for the prediction of nitrogen, NDF and ADF aodhpare the estimates
obtained usingNIRS and laboratory chemical methodehe study showed thdbrage
composition estnates from the radiometer wesguivalent to those from the NIRBowever,

there are many challenges with the use of NIRS analysis. For example, when applying NIRS
across different vegetation types, in conjunction witimudtiple linear regressioto predict
canopy chemistry, it has ya#d inconsistent resullutangaet al, 2004b; Starkst al, 2004;
Stuthet al, 2003) According to Mutangat al, (2004b) problems of overfitting and spectral
variability exist that are independent of the biochemical concentrations of forage. In addition,
NIRS requires time for collecting, drying, and grinding vegetation sanplewever, the
advent of infield hyperspectral remote sensing proved significant in successfully detecting and
predicting forage quality biochemicals

For example Mutangaet al, (2004db)appl i ed oécontinuum r emovV
feat ur es 6 ronotrieptNe B K;cCa andngn tropical rangelandssingin-field
hyperspectral remote sensigs a result, these absorption features accounted for 69% of the
wavelengths selected using a stepwise regressidis an important step towards the remote
sensing and mapping of rangelaidsitangaet al, 2004b) Similarly, Kawamureet al., (2010)
successfully predicted pasture biomass and forage dbality variables NDF, ADF,ignin
in Hokkaido, JaparGenetic algorithm partial least squard&A-PLS)successfullyestimaed
pasture rass and quality parameters in a mixgdsspastureResults of77%, 76% and 62%
were obtained for NB, ADF and Lignin, respectivelfKawamuraet al, 2010) Zhaoetal.,

(2007) successfully demonstrated the potential of hyperspectral remote sensing to estimate
forage fibre quality variable®lDF, ADF and crude protein (CP) using canopy reflectance data
of grass pasturas the wet seasoi he studyproduced accuraceof52% and 20% for NDF

and ADF, respectivelthroughutilizing theMAXR regressioralgorithm and found that forage
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guality variablesan be rapidly and nedestructivelypredicted usinganopy reflectance data
(Zhaoet al, 2007) Furthermore, a study by Pullanagarial, (2012) successfullynapped
forage quality variables usindgné PLSregression algorithnand yielded 75%, 82%, 71%
accuracies for NDF, ADF andidnin, respectively. The studstatedthat the information
produced from using #field hyperspectralemotesening of forage qualitycould help pastoral
farmersimprove productivity and business resilience by enabling them to make more accurate
and time effective decisions(Pullanagariet al, 2012) In addition, Knoxet al, (2011)
successfully mapped forage quality variallds P and ADF)in the dry seasoron savanna
grasslands using hyperspectral Carnegie Airborne Observatory sensor (CAO) in Kruger
National Park, South Africd.heneural networks algorithmvas usedo generate forage quality
mapsand produced an®f 62% for ADF.The frequency fofire appearedo impact nutrient

l evel s when map plndxetoah 2041) Igis eygiderdt in bteratureghat most
studiesuse allwaveb ands as i nput in the model to pred
and therefore results in selectionwévebands that are independent of the biochemical of
concernThere are also probies of dimensionality and overfittings using mavgvebandsA

few studies focus on using known absorption featuresteectiforage quality nutrients.

In summary, research suggests the need for improved methods to evaluate the current
status and the potential of grassland systems, to guide management decisions and yield better
quality grasslands for livestock productiphsh et al, 2011; Boval & Dixon, 2012; Fynat
al., 2015; Kuemmerleet al, 2013; Swanepoedt al, 2015) Moreover, a smalamount of
rangeland managers utilizemmote sensing as a tdol inform their decision making. Whilst
many studies focused on remote sensing of chlorophyll and nitrogen to predict pasture quality
(Clevers & Gitelson, 2013; Clevers & Kooistra, 2012; Pellissteal, 2015; Ramoelet al,
2012a; Ullahet al, 2012) not many focused on determining fibre content as the key limiting
intake potential variable to ruminants. Within this context, this research aims to detect NDF,
ADF and Lignin as some of the key limiting variables of forage quality and to determine their
most important wavelengths using known absorption features on tropigad ngrass
vegetation.
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2.3 Materials and Methods

2.3.1The study site

The study site is located in Fort Nottingham Nature Reserve,ZNeNatal, South Africa
(latitude29° 24'9.62" S and longitude29° 53'48.95"E) (Figure 1).The reserve occupies an
area of 1227 ha and characterizedy an extensive area of the Eastern Mist belt Forest and
Drakensberg Foothill Moist Grassland of the KwazZNlatal midlandsFestucacostata (blue
fescue) Tristachyaleucothrix(hairy trident gas9 and Themeddriandra (red oat gragsare

the dominant grass species occurring in the study(®reaina & Rutherford, 2006)estuca
costata and Tristachyaleucothrixare native to Southern Africa whilhemedariandra are

native to Kenya. Thetudy site consists of eleven cattle grazing camps with an annual spring
and summerainfall of approximately 950 mm per annum. The site topograptlyasacterized

by a diversity of habitasplit between a moderately unduat Drakensberg FoothiMoist
Grassland plateau (at approximately 1758&msl) leading to densely forest south and east
facing slopeshat merge into lower lying remnant Drakensberg Foothill Moist Grassland flats.
The most dominant soils found at the study area @tevelly; Hutton;, Griffin and Oatsdale
(Mucina & Rutherford, 2006)The study site is prone to wild fires during the late dry season
that have a detrimental effect on the ecology of the grasslandsoatributesto an altered
vegetation species composition and abundafipproximately 778.2 ha of the land is mainly
used for cattle grazing that is currently leased from uMngeni Municipality. The study site was
preferred due to heterogeneity of grass species and the importance of grazing in the local

communityoés | ivelihood.
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Figure 1. Location of the study site in Fort Nottingham Nature Reserve, KwAulu-Natal, South Africa
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2.3.2Field sampling

A stratified random sampling method was used to select field sampling points using Hawths
tool in ArcGIS 10.2. A total of 140 sample points were established across the eleven existing
leased grazing camps. All sample points were uploadedirrimble GeoExplorer 6000 series
GeoXH GPSwith acentimeteflevel accuracy of less than 10 aind was usetb locate each

point. A 1 x 1m quadrant was overlaid the center of each of the 140 poindsdeclare
subjectivity over the three existing grass species. Within each quadrant, two measurements
were taken: a series of nalestructive spectral measuremasing a spectrometer device and

a destructive sample of the grass species present. The destructive sample was taken
immediately after the spectral measurements were taken. Grass samples were clipped at 1 cm
above groundpooled and baggdgtrown bag¥or drying and later chemical analygksnox et

al., 2011)

2.3.3 Chemical analysis

Sample<ollected (i = 140 were transported to the Department of Animal Science laboratory
at the University of KwaZukNatal for chemical analysis. All samples were oven dried at 65
degrees Celsius for 72 hours and then later, grindedmndlliineter using a siee. Milled
samples weranalyzedor chemical composition on a dry matter (DM) basis. A series of three
tests were performed on each sample and included ADF andLignin. These key nutrients
werethenanalyzedsequentiallyaccording to Van Soest al, (1991)(Van Soeset al, 1991)
usingan ANKOM 220/200 FibreAnalyzer(Ankom Technology New York, USA. NDF was
det er mi nanglasevi t h U

2.3.4In-situ field spectral measurements

Spectral reflectance measurements were carried out between the dattobApal to the

04" of May 2015, using dandheld field analyticalspectral évice (ASD) FieldSpec® 3
spectrometer (350 nm to 2500 nrmASD reflectance measurements were made on clear days
between 10:00 and4100 hours (CAT) dr all 140 randomly selectedample pointgZhaoet

al.,, 2007) To decrease atmospheric noise, the ASD was positioned itd po the
representative grasspecies one meter above ground at nadir positfon each spectral
measurement, yielding a ground field of view (FOV) of aboutelfimeters The narrow FOV

allows focus on a pure target (i.en andisturbed patch of grgsshereasthe short distance
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from the sensominimizes atmospheric obscuritieas well as signaio-noise problems
(Mutangaet al, 2015) To derive the representative reflectance spectra for each sample point,
61 10 spectral measurements were made by moving over the 1 x 1m ¢Ad@pijolo et al,
2012a; Mutangat al, 2015) Subsequently, spectral measurements at each samplevprent
averagednto a singlespectral reasuremerdéind convegdfrom radiance to reflectanaesing
ViewSpec Pro software (ASD Inc. Boulder, CO, version 6.0.A1$pectralon (Labsphere,
Inc., Sutton, NH, USA) referengeanel (white reference) was ustxcalibrate the sensor
Calibration was pdormed beforeeachsample point to offset any change in irradiance of the
sunand atmospheric conditiqghASD, 2008)
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2.4 Data analysis
2.4.1Spectra evaluation and absorption features

Prior to algorithmic analysis, all sample spectra were visaalffyzedor noise(Knox et al,

2012) Noisy variables were consistently seen in shertwave infrared (SWIR) spectral
regions which could be accounted for by the seasonal variation of the grasse$oréher
spectral regions between 182@64nm of the electromagnetic spectrum were excluded from
analysis due to high levels of noise associated within these reljiaisnportant to note that
regression analysis was run on two sets of data (krabsorpion featuresdataset (table 1)

and te entire hyperspectral dataset (3500 nm) within this study. @ly wavelengths that
arephysically linked to each fibre biochemica¢re selectedsthe known absorption features
datasetThis physical link betwaebiochemical and wavelengths are also known as absorption
features. The establishment of these specific wavelengths have been extensively studied by
(Curran, 1989; Curraet al, 2001; Fourtyet al, 1996; Knoxet al, 2012; Kumaet al, 2002;
Mutanga & Kumar, 2007(Table 1). These studies have determineddhghysically linked
wavelengths through the association of excitation and reaction of molecular bonds at specific
wavelengthgKnox et al, 2012) A further regression analysis was mma combined dataset
(Known absorption features dataset + Variable selection dataset). The convergence of these
two datasets were aimed at improving the models discriminati®nofReach biochemical

within RF.

Table 1.Interpretation of known absorption features in reflectance of biochemicals NDF,
ADF and Lignin from previous research

Wavelength Absorption Mechanism Absorption Compounsl
(Nm)

ADF NDF
430 Electron transition Chlorophyll a 4101450
460 Electron transition Chlorophyll b 455,460
700 800 Red edge Nitrogen, protein 7201 745
930 C-H stretch, 3rd overtone 0]] 935
970 O-H bend, 1st overtone Water, starch 960
990 O-H stretch, 2nd overtone Starch 995
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1120
1200

1420
1450

1580
1670
1685
1690

1760
1940

1950

2050

2060

2080
2100

2240
2270
2276
2280
2294
2310
2320
2336
2340

2380

C-H stretch, 2nd overtone

O-H bend, 1st overtone

C- H stretch, G-H deformation
O-- H stretch, 1st overtone,
C-- H stretch, G- H deformation
O-H stretch, 1st overtone
Stretch OH

C-H stretch, 1st overtone

C-H stretch, 1st overtone

O- H stretch, O H deformation

Stretch OH, deformation OH

N-H asymmetric stretch +
Amide Il

N = H bend, 2nd overtone/N =
H bend/NH deformation

O-H stretch/GH deformation
2 x OH deformation +

2 x CO stretch

C-H stretch

Stretch CH, stretchC=C
O-H stretch + GC deformation
C-H stretch/CH2 deformation
N-H stretch + C = O stretch
C-H bend, 2nd overtone

C-H stretch/CH2eformation
C-H stretch + GH deformation
C-H stretch/GH deformation/
C-H deformation/GH stretch

lignin

Water, cellulose, 1195
starch,lignin

lignin

Starch, sugatignin

water

Starch, cellulose 1580
lignin, starch protein

lignin

lignin, starch,

protein, nitrogen

lignin

Water,lignin, protein,
nitrogen, starchcellulose
Water,lignin, protein,
nitrogen, starch, cellulose

Protein

Protein, nitrogen

Sugar, starch
Starch cellulose

Protein 2245
lignin

Cellulose Jignin

Starch, cellulose

Protein

o]] 2315
Starch

Cellulose, starcHignin

Cellulose

Stretch OH, aromatideformation lignin

11151120

16751685
1700

2050

2060

2070
2090

2285
2290
2310 2315
23202325
2335
2340

Source(Curran, 1989jHimmelsbactet al, 1988)(Elvidge, 1990)YOsborne & Fearn, 198@Kumaret al, 2002)

(Kawamuraet al, 2008)(Fourty et al, 1996) Theknown absorption compounds and wavelengths are depicted

in bold font.
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2.4.2Random forestregression analysis

In this study, the random forest (RF) ensen{Bleeiman, 2001was implemented using the
AandomFor e s(Yepablps& Srkith, @5) R statistical softwar€Team, 2013)RF

is a machine learning algorithm developed to enhance the classification and regression trees
(CART) method. A large ensemble of-pruned regression trees§¢ are onstructed using

a systematic approach called bootstrapping. Bootstrap samples are created from many
regression trees (generally between 500 and 2000 trees) to create a final prediction that is taken
from an average of all individual tree outp(iDy/e et al, 2011; Lawrencet al, 2006; Prasad

et al, 2006) The resultant trees in the ensemble were used to assign each input spectral
waveband to a class membership of the response variables (i.e. NDF, ADF and Lignin). When
bootstrap samples are drawn, approximately one third of the samples are [Efteocsdimples

that are left out are called eot-bag (OOB) sample@reiman, 2001)O0OB samples are used

to calculate an unbiased assessmahthe classification accurady.e. OOB error)and to
determine variable importan¢adjorlolo et al, 2013; Breinan, 2001; Peerbhast al, 2015)

Within the training data set (approximately 70%), trees are grown to a maximum length and
based on the maximum number of votes that a class receives, the ensemble of trees assigns
each waveband to a cla@sdjorlolo et al, 2012a; Breiman, 2001)n eachtree,a randomly

chosen subset of the total number of variaptes) is determined by the best ggthe random
selection of variablesgit each nodéAbdelRahmaret al, 2013; Breiman, 2001; Peerbhety

al., 2015) It is important that the algorithm is well parameterized according to two main
variablesnyes NUMber of regression trees grown based on a bootstrap sample of observation;
My, NuMbe of predictors tested at each ngd@amoeloet al, 2015b) The myy function is
significant as it is a determinant of solvir
given the option to choose a small subset of varigblgs et al, 2011) Furthermore, studies
constitute that thenry default parameter value is confident in consistently yielding accurate
results(Adjorlolo et al, 2013; Dyeet al, 2011; Peerbhagt al, 2015)

Furthermore, RF offers variable importance measures embedded in its system. Variable
importance measures provide the researcher with good indicators of the effect of any predictor
variable against the response variable. gérenutation measure wérnable importance is used
to determine the importance of each predictor by measuring the percentage increase in the mean
square error when the OOB data for each variable is permuted, while the others are unchanged
(Breiman, 2001)In this study, the percentage increase in mean square error (MSHE}&hS

to predict the most important wavelengths to detect NDF, ADF and Ligisrthe increase in
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mean square erraf predictiongestimated with oubf-bagCV) as a result adivariable being
permuted The highelpercentaggives more importance to pecific waveband. High variable
importance scores suggests high weighting on a particular variable in the(Ranwleloet

al., 2015b) The RF algorithm was preferred due its robustness and accurate method for band
selection, specifically when using high dimensional d&eeiman, 2001; Dyet al, 2011;
Mutangaet al, 2015; Peerbhagt al, 2015)

2.4.3Accuracy assessment (B

The Rsquare (R (Albayrak, 2008; Knoxet al, 2011; Pullanagarét al, 2012)was the
preferred accuracy assessment used to assess the performance of the RF metholdddtae fina
set was split intdraining andtest (Congalton & Green, 2008)The square ofarrelation

between predicted and observed values was calculated, valuetatbgeredict better results.
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2.5Results

The results from chemical alysis performed on the grass sampelected in tle field are

presented inable 2

Table 2. Summary of chemical analysis results obtained from 140 tropicainixed grass

samples collected in the field

Nutrient Mean @/kg) Range ¢/kg) Std. Dev.(g/kg)
NDF 127.48 1164871 193.16 6.623980369
ADF 91.80 85.061 100.86 3427728864
Lignin 91.87 85.271 100.99 3.428042785

2.5.1Detecting NDF, ADF & Lignin concentrations usingknown absorption features

dataset

Using the known absorption features (Table 1) for NDF, ADF and Lignin, the random forest
model (ree= 500 and my, = 40) successfully determin®&DF, ADF andLignin biochemicals,
howeverthe fit of the model as measured b§wRas low, the model still explas 3% of the
variation in NDF Lignin wassuccessfully predictedith an R of 0.81and ADF an Rof 0.79

whilst NDF waspredictedwith an R of 0.5 (Figure 2).

NDF

1 | I
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T T I 1
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Figure 2. Regression results of NDF, ADF and Lignin

absorption features
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Figure 3. Variable importance of NDF, ADF and Lignin biochemicals using known

absorption features

2.5.2Detecting NDF, ADF & Lignin using the entire hyperspectral dataset

Whilst, the ngee and myy values remained consistent for each biochemita, entire
hyperspectral datasetaisused in the finemodel to predict each biochemicllsing the entire
hyperspectral dataset, the random forest magel< 500 andnyy = 40) successfully predicted

the key ADF and Lignin biochemicals used in this study. Again, NDF was unsuccessfully
predicted. More sgeifically, NDF was predictedith a low R of 0.47, while ADF and Lignin

were predicteavith ahighR6 s o f 0 ., 8Spectively (Figure 8)7

NDF

Predicted
110 120 130 140 15p 160 170 180

RZ2=0.47

120 140 160 180
Observed

20|Page



ADF Lignin

oo oo
> >
- .CF" @ - o

o s O o e

=) oEe e =) & :;’,?»-a &
3 y o 8 0%, = i o Sos °
L = ! P 8 « o & i
o O o2 s%o 0 RS- o %, a0
5 o258 = Wi
g ®oop o5 Bo o £ o o goode o °
a, o "o, O = ° 00 g%o’o

o %56 2% o @Byl 00
o S8 % e = SRR L LA
=N 6?.6'" o =N o $0.5 %
o 'Dés’ o
< o oo | - o
%0 o0
-1 -1 >
2 hl—
3 R?=088 3 R°=087
I T T 1 I T T ]
85 90 95 100 85 90 95 100
Observed Observed

Figure 4. Regression results of NDF, ADF and Lignin using the entiryperspectral

dataset

2.5.3Variable importance using the entire hyperspectral dataset

Figure 5 depicts the most effective variables used in the prediction model. For NDF,
wavelengths in the blue (352, 368, 385, 386), red (696), and shortwave region13487
1708,2470, 2495 and 2497) were highly important, while for ADF, wavebands specifically
along the blue (403, 407, and 420), and shortwave region (1380, 2428, 2470, 2487 and 2497)
showed the most importance. For Lignin, wavelengths located in tiee (807, 408) and
shortwave region (2428, 2470 and 2487) showed the most influence (figure 5). Furthermore,
RF modelling offers three measures of variable importance: (1) based on the number of times
a candidate variable is selected; (2) the Gini indeixwaa proposed biBreimanetal., 1984)

in the original classification and regression trees method; (3) the permutation of a variable as
an ensemble of variable importan@trobl et al., 2008) In this study, the permutation of a
variable as an ensemble of variable importamzsgsured as@ercentagecrease in MSE was

anaccurataneasuren determining variable impanbceand is illustrated in figure.5
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Figure 5. Variable importance of NDF, ADF and Lignin biochemicalsusing the entire

hyperspectral dataset

For comparison purposes, we executed a combination of selected variable importance

wavebands derived from the entire hyperspectral dataset and known absorption features
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