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ABSTRACT 

Forage quality nutrient assessments are costly, labour intensive, time consuming, dangerous 

and usually results in spatially invariable data. These assessments are most commonly useful 

to policy makers, rangeland managers and farmers to obtain information relating to the 

concentrations of forage quality nutrients in a grassland ecosystem. Remote sensing offers a 

cost and time-effective alternative for obtaining accurate information relating to the 

concentrations of forage quality nutrients over local to broad scales. Hence, the aim of this 

research was to detect three forage fibre nutrients in KwaZulu-Natal, South Africa, using 

remotely sensed in-field hyperspectral data and satellite multispectral image data, in 

conjunction with the Random forest algorithm (RF).  

The first part of this study examined the effectiveness of known absorption features for 

detecting forage fibre nutrients, neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

Lignin using hyperspectral data. Results indicate successful correlations between the known 

absorption features and forage quality nutrients NDF, ADF and Lignin with coefficients (R2) 

ranging between 0.57 and 0.81 using RF. In comparison, using the entire hyperspectral dataset, 

the study identified additional wavebands which contributes to the accurate detection of the 

forage quality nutrients in a grassland environment. Overall, RF was capable reducing 

problems of dimensionality and multicollinearity within the large contiguous wavebands of the 

hyperspectral dataset, providing an ideal framework to detect forage quality nutrients.   

The second part of this study used high resolution RapidEye-5 multispectral image data 

to detect and map forage quality nutrients. More specifically, this study utilized the advanced 

sensor configurations of the RapidEye-5 image data to detect forage quality nutrients (NDF, 

ADF and Lignin) in conjunction with ancillary data and the Random forest algorithm. Results 

showed that the RF algorithm successfully mapped NDF, ADF and Lignin coefficients (R2) 

ranging between 0.67 and 0.74. In comparison, the study utilized Stochastic Gradient Boosting 

(SGB) algorithm as an alternative modelling technique, which produced very similar results 

ranging between 0.65 and 0.72 (R2). Overall, multispectral remote sensing in conjunction with 

a algorithm and ancillary data can detect and map forage quality nutrients NDF, ADF and 

Lignin in a grassland environment.  

Overall, the results from this study indicate that (i) remote sensing can produce timely 

and accurate models for detecting and mapping forage quality nutrients, (ii) RF is an effective 

method for waveband reduction and the accurate discrimination of high dimensional 

hyperspectral datasets, (iii) the inclusion of ancillary data should always be considered. 
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Chapter One 

Introduction  

1.1 Background 

Accurate determination of forage quality nutrients within grasslands is important to scientific 

research as well as for effective rangeland management practices. Conventionally, the quality 

of forage is assessed and monitored using wet chemistry and Near infrared spectroscopy 

(NIRS). Here, many studies have used wet chemistry and NIRS to determine forage quality 

(Curran, 1989; Curran et al., 2001; Elvidge, 1990; Kokaly & Clark, 1999; Norris et al., 1976; 

Osborne & Fearn, 1986; Starks et al., 2004; Stuth et al., 2003). However, these assessments 

are labour intensive, costly, time consuming, dangerous and usually spatially invariable 

(Pullanagari et al., 2013a). Remote sensing is a time-effective and cost-effective alternative for 

assessing and monitoring forage quality over a large area thereby providing valuable 

information on both local and global scales. More specifically, remote sensing can provide this 

information to policy makers, rangeland managers and farmers at a national level. 

 To date, hyperspectral data has been used in many studies to determine the quality of 

forage. Typically, several studies have used hyperspectral data for forage quality assessments 

(Albayrak, 2008; Kawamura et al., 2008; Kawamura et al., 2010; Knox et al., 2011; Kokaly & 

Clark, 1999; Pullanagari et al., 2013b; Zhao et al., 2007). The use of high resolution spectral 

and spatial sensors contain a large number of contiguous wavebands that make it possible to 

determine discrete biochemical information with high precision (Schellberg et al., 2008). 

Research has shown that hyperspectral remote sensing systems are capable of determining 

forage quality (Knox et al., 2011; Pullanagari et al., 2012; Zhao et al., 2007). However, infield-

hyperspectral studies are still point-based and require a large amount of time for processing a 

large amount of data.  

 A few studies have used multispectral data for the determination of forage quality 

(neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin). Hence, researchers 

acknowledged that multispectral wavebands are too broad and generalized to determine forage 

quality, coupled with low spectral and spatial resolutions. Nonetheless, technological 

advancements have provided more specialized multispectral platforms capable of analyzing 

more detailed vegetation properties. The latest inventions have advanced spatial, spectral, 

radiometric and temporal resolutions capable of detecting more discernable information 



3 | P a g e 

 

(Mutanga et al., 2016). New generation multispectral platforms are configured with the new 

Red-edge waveband, capable of potentially improving classification accuracies. Previous 

research suggests that a combination of high resolution and strategically placed wavebands, 

make it possible to accurately detect forage quality (Eitel et al., 2007). Hence, the selection of 

most appropriate multispectral platform for the correct application is imperative to attaining 

accurate results.  

 New generation RapidEye-5 multispectral satellite is configured with a Red-edge 

waveband that has the potential to considerably improve classification accuracies within most 

vegetation applications (Adelabu et al., 2014). RapidEye-5 imagery promises to advance the 

mapping of vegetation over a large area, at high resolution, at faster time (5 days), and with a 

lower cost (RapidEye, 2011). Researchers often use statistical approaches to improve the 

detection and prediction accuracies of forage quality. Hence, there are various statistical 

packages available, some which are popular in forage quality applications such as: partial least 

squares, neural networks, and random forest (Mutanga et al., 2016). Furthermore, including 

ancillary data can improve the prediction accuracy of forage quality nutrients. For example, 

Knox et al., 2011 found phenology, soil type, species, and geology as the best input ancillary 

data variables that are related to variations in nutrient levels in the dry season, hence these 

variables were included in the overall prediction model (Knox et al., 2011). 

 The first paper in this thesis assess the utility of hyperspectral remote sensing in 

determining key forage fibre grassland nutrients in Fort Nottingham Nature Reserve, KwaZulu-

Natal, South Africa. This paper focuses on the effectiveness of using known absorption features 

to detect forage fibre nutrients (neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

Lignin) using hyperspectral data and the random forest algorithm. Hyperspectral data can 

provide detailed information for the detection of forage fibre nutrients, however the technology 

is costly to small scale farmers, and time consuming. Problems of multicollinearity and 

dimensionality associated with hyperspectral data exist, providing a difficult task during 

analysis. Therefore, the second paper focuses on the effectiveness of RapidEye-5 multispectral 

imagery to detect and map forage fibre nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data. The RapidEye-5 multispectral sensor is a 5-waveband system 

including the red-edge waveband that promises to be an effective tool for mapping vegetation 

properties. Finally, the results from the hyperspectral analysis are compared with the results 

obtained from the RapidEye-5 image data. It was interesting to investigate the performance of 

both hyperspectral and multispectral remote sensing technologies in detecting and predicting 

forage fibre nutrients. 
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1.2 Aims and objectives 

The aim of this research was to assess the utility of hyperspectral and multispectral remote 

sensing in predicting key forage quality nutrients. The main objectives were as follows: 

¶ To assess the capability of hyperspectral remote sensing in detecting three forage fibre 

quality nutrients (NDF, ADF and Lignin) using Random Forest. 

¶  To evaluate the effectiveness of using known absorption features for selection of the 

most optimal subsets of hyperspectral wavebands.  

¶ To investigate the capability of high resolution RapidEye-5 multispectral imagery to 

detect and predict forage quality nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data.  

¶ To test the capability of the Stochastic Gradient Boosting algorithms in identifying the 

most important wavebands for detecting forage quality nutrients NDF, ADF and 

Lignin.  

¶ To compare the respective capabilities of in-field hyperspectral and multispectral 

remotely sensed data to detect and predict key forage quality nutrients.   

1.3 Outline of thesis 

This thesis consists of four chapters. The main structure of this thesis is within two core 

chapters (Chapter Two and Three), which form publishable papers and will be submitted to 

peer-reviewed journals. Since both these chapters have detailed sections covering the study 

area, literature review and methodology, these sections are not covered with in the introductory 

section of the thesis to avoid repetition. 

 Chapter Two assesses the capability of hyperspectral remote sensing to detect forage 

fibre nutrients NDF, ADF and Lignin using Random forest. This chapter primarily focuses on 

using known absorption features to detect these forage fibre nutrients and for the selection of 

the most optimal hyperspectral wavebands. The Random forest algorithm was used to analyze 

the large amount of hyperspectral contiguous wavebands (n = 1910), for variable selection and 

to produce the final prediction model.  

Chapter Three evaluates the effectiveness of RapidEye-5 multispectral image data (n 

= 5) to detect and predict forage quality nutrients (NDF, ADF and Lignin) using a specialized 

algorithm and ancillary data. The Stochastic gradient boosting algorithm was tested to identify 
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the most important wavebands used for the detection of NDF, ADF and Lignin. The ancillary 

data (Leaf Area Index, Chlorophyll, species type, species Count) was used in the main dataset.  

Chapter Four provides an overview of the study. Both aims and objectives are 

discussed in depth, and the most important findings are highlighted. A discussion of the most 

appropriate remote sensing approach for detecting and predicting forage quality nutrients is 

presented in this chapter. Lastly, the chapter examines the limitations and presents the 

recommendations for future research within this studies context.  
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Chapter Two 

Remote sensing of key grassland nutrients using hyperspectral techniques 

in KwaZulu -Natal, South Africa 

2.1 Abstract 

The concentration of forage fibre content is critical in explaining the palatability of forage 

quality for livestock grazers in tropical grasslands. Low grass quality negatively impacts on the 

health of livestock, creating a chain of undesirable impacts on animal performance; 

biodiversity; food security and state economies. Traditional methods of determining forage 

fibre content are usually time consuming, costly and require specialized laboratory analysis. 

With the potential of remote sensing technologies and their application across broad spatial 

extents, determination of key fibre attributes can be made more accurately. This study aims to 

determine the effectiveness of known absorption wavelengths for detecting forage fibre 

biochemicals, neutral detergent fibre (NDF), acid detergent fibre (ADF) and Lignin using 

hyperspectral data. Hyperspectral reflectance spectral measurements (350-2500 nm) of grass 

were collected and implemented within the random forest (RF) ensemble. Results show 

successful correlations between the known absorption features and the biochemicals with 

coefficients (R2) ranging from 0.57 to 0.81. In comparison, using the entire dataset, the study 

identified additional wavelengths which contributes to the accurate determination of forage 

quality in a grassland environment. Overall, the results showed that hyperspectral remote 

sensing in conjunction with the RF ensemble could discriminate each key biochemical 

evaluated. The study was successful in determining the effectiveness of using known 

absorption features for detecting fibre biochemicals NDF, ADF and Lignin using hyperspectral 

data. This study shows the potential to upscale the methodology to a space-borne multispectral 

platform with similar spectral configurations for an accurate and cost effective mapping 

analysis of forage quality. 

 

Keywords: fibre biochemical, tropical grassland, NDF, ADF, Lignin 
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2.2 Introduction  

Globally, grasslands comprise 26% of the total land cover; of which 80% is used for 

agricultural purposes and 68% are found in developing countries (Boval & Dixon, 2012). In 

South Africa, more than 70% of land surface comprises grassland vegetation which is mainly 

used for pastoral production (Mansour et al., 2013). Here, grasslands provide the primary feed 

base for grazing livestock which in turn provides the majority of low-income people with food, 

goods and services that are essential for sustaining their livelihoods (Boval & Dixon, 2012). 

Forage quality in grasslands is therefore a vital component in the management of grazing lands 

and livestock (Georgiadis & McNaughton, 1990). However, inadequate veld management 

practices, result in grazing pastures being overgrazed and overstocked especially during the 

dry season (Muchenje et al., 2008). It is evident in literature that pasture management is a major 

concern, particularly in tropical pasture systems where improper management can lead to 

unpalatable grasses. Unpalatable grasses have a ripple effect on the intake potential of 

livestock, later affecting livestock production levels and eventually food security in a country.  

Traditionally, the productivity of rangelands has been assessed and monitored using 

field based point assessments which are spatially invariable, expensive, harmful and often time 

consuming (Dabasso et al., 2012; Janļ²k et al., 2011; Stuth et al., 2003; Zhao et al., 2007). 

These methods usually involve extensive laboratory chemical analysis for determining forage 

quality (Zhao et al., 2007); and require personnel with specialized skills (Mutanga et al., 2004a; 

Zhao et al., 2007). Laboratory personnel are exposed to harmful chemicals and also, the 

hazardous waste produced from laboratory processes must be appropriately disposed of in 

order to reduce risk of environmental pollution (Zhao et al., 2007). Furthermore, supervised 

laboratory experiments require a large amount of time for analysis that hinder immediate 

solutions and are not  practical and logical for broad grassland ecosystems as is in many cases 

of grazing lands in South Africa (Mutanga et al., 2004a; Stuth et al., 2003). Nonetheless, this 

information becomes relevant when rangeland managers make informed decisions on the use 

of expensive dietary supplements to minimize grazing; nutrient deficiencies and when 

maintaining production levels (Mbatha & Ward, 2010). However, using conventional 

approaches over broad tropical grazing grasslands is challenging. To date, remote sensing is an 

efficient technology available for mapping land cover dynamics across broad geographic 

extents (Kuemmerle et al., 2013) and may serve as a viable alternative. 
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Remote sensing offers possibilities to provide accurate information related to forage 

quality in grazing lands, thereby reducing the tedious procedure of rigorous sampling and 

laboratory analysis (Mutanga et al., 2004b). The 1970s inventory of near infrared reflectance 

spectroscopy (NIRS) was used to assess forage quality and provided fairly accurate predictions 

of ADF, NDF and Lignin concentrations contained in dried ground forage (Kawamura et al., 

2008; Mutanga et al., 2004b; Starks et al., 2004; Stuth et al., 2003; Zhao et al., 2007). NIRS 

analysis provided a fairly cost effective and quick estimation of forage nutrient composition 

(Stuth et al., 2003; Zhao et al., 2007). In effect, many laboratories have replaced wet chemistry 

as the standard analytical procedure for assessing and estimating plant biochemicals (Mutanga 

et al., 2004b). A study by Starks et al., (2004) successfully used in-field hyperspectral 

spectrometry for the prediction of nitrogen, NDF and ADF and compared the estimates 

obtained using NIRS and laboratory chemical methods. The study showed that forage 

composition estimates from the radiometer were equivalent to those from the NIRS. However, 

there are many challenges with the use of NIRS analysis. For example, when applying NIRS 

across different vegetation types, in conjunction with a multiple linear regression to predict 

canopy chemistry, it has yielded inconsistent results (Mutanga et al., 2004b; Starks et al., 2004; 

Stuth et al., 2003). According to Mutanga et al., (2004b) problems of overfitting and spectral 

variability exist that are independent of the biochemical concentrations of forage. In addition, 

NIRS requires time for collecting, drying, and grinding vegetation samples. However, the 

advent of in-field hyperspectral remote sensing proved significant in successfully detecting and 

predicting forage quality biochemicals.  

For example, Mutanga et al., (2004b) applied ócontinuum removal on absorption 

featuresô to predict macronutrients (N; P; K; Ca and Mg) in tropical rangelands using in-field 

hyperspectral remote sensing. As a result, these absorption features accounted for 69% of the 

wavelengths selected using a stepwise regression and is an important step towards the remote 

sensing and mapping of rangelands (Mutanga et al., 2004b). Similarly, Kawamura et al., (2010) 

successfully predicted pasture biomass and forage fibre quality variables NDF, ADF, Lignin 

in Hokkaido, Japan. Genetic algorithm - partial least squares (GA-PLS) successfully estimated 

pasture mass and quality parameters in a mixed grass pasture. Results of 77%, 76% and 62% 

were obtained for NDF, ADF and Lignin, respectively (Kawamura et al., 2010). Zhao et al., 

(2007) successfully demonstrated the potential of hyperspectral remote sensing to estimate 

forage fibre quality variables; NDF, ADF and crude protein (CP) using canopy reflectance data 

of grass pastures in the wet season. The study produced accuracies of 52% and 20% for NDF 

and ADF, respectively through utilizing the MAXR regression algorithm, and found that forage 
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quality variables can be rapidly and non-destructively predicted using canopy reflectance data 

(Zhao et al., 2007). Furthermore, a study by Pullanagari et al., (2012) successfully mapped 

forage quality variables using the PLS regression algorithm and yielded 75%, 82%, 71% 

accuracies for NDF, ADF and Lignin, respectively. The study stated that the information 

produced from using in-field hyperspectral remote sensing of forage quality could help pastoral 

farmers improve productivity and business resilience by enabling them to make more accurate 

and time effective decisions (Pullanagari et al., 2012). In addition, Knox et al., (2011) 

successfully mapped forage quality variables (N; P and ADF) in the dry season on savanna 

grasslands using hyperspectral Carnegie Airborne Observatory sensor (CAO) in Kruger 

National Park, South Africa. The neural networks algorithm was used to generate forage quality 

maps and produced an R2 of 62% for ADF. The frequency of fire  appeared to impact nutrient 

levels when mapped on a g gī1 basis (Knox et al., 2011). It is evident in literature that most 

studies use all wavebands as input in the model to predict biochemical ñfishing expeditionò 

and therefore results in selection of wavebands that are independent of the biochemical of 

concern. There are also problems of dimensionality and overfittings using many wavebands. A 

few studies focus on using known absorption features to detect forage quality nutrients. 

In summary, research suggests the need for improved methods to evaluate the current 

status and the potential of grassland systems, to guide management decisions and yield better 

quality grasslands for livestock production (Ash et al., 2011; Boval & Dixon, 2012; Fynn et 

al., 2015; Kuemmerle et al., 2013; Swanepoel et al., 2015). Moreover, a small amount of 

rangeland managers utilizes remote sensing as a tool to inform their decision making. Whilst 

many studies focused on remote sensing of chlorophyll and nitrogen to predict pasture quality 

(Clevers & Gitelson, 2013; Clevers & Kooistra, 2012; Pellissier et al., 2015; Ramoelo et al., 

2012a; Ullah et al., 2012), not many focused on determining fibre content as the key limiting 

intake potential variable to ruminants. Within this context, this research aims to detect NDF, 

ADF and Lignin as some of the key limiting variables of forage quality and to determine their 

most important wavelengths using known absorption features on tropical mixed grass 

vegetation.  
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2.3 Materials and Methods 

2.3.1 The study site 

The study site is located in Fort Nottingham Nature Reserve, KwaZulu-Natal, South Africa 

(latitude 29° 24' 9.62" S and longitude 29° 53' 48.95" E) (Figure 1). The reserve occupies an 

area of 1227 ha and is characterized by an extensive area of the Eastern Mist belt Forest and 

Drakensberg Foothill Moist Grassland of the KwaZulu-Natal midlands. Festuca costata (blue 

fescue), Tristachya leucothrix (hairy trident grass) and Themeda triandra (red oat grass) are 

the dominant grass species occurring in the study area (Mucina & Rutherford, 2006). Festuca 

costata and Tristachya leucothrix are native to Southern Africa while Themeda triandra are 

native to Kenya. The study site consists of eleven cattle grazing camps with an annual spring 

and summer rainfall of approximately 950 mm per annum. The site topography is characterized 

by a diversity of habitat split between a moderately undulating Drakensberg Foothill Moist 

Grassland plateau (at approximately 1750m amsl) leading to densely forested south and east 

facing slopes that merge into lower lying remnant Drakensberg Foothill Moist Grassland flats. 

The most dominant soils found at the study area are: Clovelly; Hutton; Griffin and Oatsdale 

(Mucina & Rutherford, 2006). The study site is prone to wild fires during the late dry season 

that have a detrimental effect on the ecology of the grasslands and contributes to an altered 

vegetation species composition and abundance. Approximately 778.2 ha of the land is mainly 

used for cattle grazing that is currently leased from uMngeni Municipality. The study site was 

preferred due to heterogeneity of grass species and the importance of grazing in the local 

communityôs livelihood.
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Figure 1. Location of the study site in Fort Nottingham Nature Reserve, KwaZulu-Natal, South Africa
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2.3.2 Field sampling 

A stratified random sampling method was used to select field sampling points using Hawths 

tool in ArcGIS 10.2. A total of 140 sample points were established across the eleven existing 

leased grazing camps. All sample points were uploaded into a Trimble GeoExplorer 6000 series 

GeoXH GPS with a centimeter-level accuracy of less than 10 cm and was used to locate each 

point. A 1 x 1m quadrant was overlaid at the center of each of the 140 points to declare 

subjectivity over the three existing grass species. Within each quadrant, two measurements 

were taken: a series of non-destructive spectral measurement using a spectrometer device and 

a destructive sample of the grass species present. The destructive sample was taken 

immediately after the spectral measurements were taken. Grass samples were clipped at 1 cm 

above ground, pooled and bagged (brown bag) for drying and later chemical analysis (Knox et 

al., 2011). 

2.3.3 Chemical analysis 

Samples collected (n = 140) were transported to the Department of Animal Science laboratory 

at the University of KwaZulu-Natal for chemical analysis. All samples were oven dried at 65 

degrees Celsius for 72 hours and then later, grinded to 1 millimeter using a sieve. Milled 

samples were analyzed for chemical composition on a dry matter (DM) basis. A series of three 

tests were performed on each sample and included NDF, ADF and Lignin. These key nutrients 

were then analyzed sequentially according to Van Soest et al., (1991) (Van Soest et al., 1991) 

using an ANKOM 220/200 Fibre Analyzer (Ankom Technology, New York, USA). NDF was 

determined with Ŭ-amylase. 

2.3.4 In-situ field spectral measurements 

Spectral reflectance measurements were carried out between the dates of 28th of April to the 

04th of May 2015, using a hand-held field analytical spectral device (ASD) FieldSpec® 3 

spectrometer (350 nm to 2500 nm). ASD reflectance measurements were made on clear days 

between 10:00 and 14:00 hours (CAT) for all 140 randomly selected sample points (Zhao et 

al., 2007). To decrease atmospheric noise, the ASD was positioned to point on the 

representative grass species, one meter above ground at nadir position for each spectral 

measurement, yielding a ground field of view (FOV) of about 18 centimeters. The narrow FOV 

allows focus on a pure target (i.e. an undisturbed patch of grass) whereas  the short distance 
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from the sensor minimizes atmospheric obscurities as well as signal-to-noise problems 

(Mutanga et al., 2015). To derive the representative reflectance spectra for each sample point, 

6 ï 10 spectral measurements were made by moving over the 1 x 1m canopy (Adjorlolo et al., 

2012a; Mutanga et al., 2015). Subsequently, spectral measurements at each sample point were 

averaged into a single spectral measurement and converted from radiance to reflectance using 

ViewSpec Pro software (ASD Inc. Boulder, CO, version 6.0.11). A Spectralon (Labsphere, 

Inc., Sutton, NH, USA) reference panel (white reference) was used to calibrate the sensor. 

Calibration was performed before each sample point to offset any change in irradiance of the 

sun and atmospheric condition (ASD, 2008).  
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2.4 Data analysis 

2.4.1 Spectra evaluation and absorption features 

Prior to algorithmic analysis, all sample spectra were visually analyzed for noise (Knox et al., 

2012). Noisy variables were consistently seen in the short-wave infrared (SWIR) spectral 

regions which could be accounted for by the seasonal variation of the grasses. Therefore, 

spectral regions between 1824-2064 nm of the electromagnetic spectrum were excluded from 

analysis due to high levels of noise associated within these regions. It is important to note that 

regression analysis was run on two sets of data (known absorption features dataset (table 1) 

and the entire hyperspectral dataset (350 ï 2500 nm)) within this study. Only wavelengths that 

are physically linked to each fibre biochemical were selected as the known absorption features 

dataset. This physical link between biochemical and wavelengths are also known as absorption 

features. The establishment of these specific wavelengths have been extensively studied by 

(Curran, 1989; Curran et al., 2001; Fourty et al., 1996; Knox et al., 2012; Kumar et al., 2002; 

Mutanga & Kumar, 2007) (Table 1). These studies have determined these physically linked 

wavelengths through the association of excitation and reaction of molecular bonds at specific 

wavelengths (Knox et al., 2012). A further regression analysis was run on a combined dataset 

(Known absorption features dataset + Variable selection dataset). The convergence of these 

two datasets were aimed at improving the models discrimination (R2) of each biochemical 

within RF. 

Table 1. Interpretation of known absorption features in reflectance of biochemicals NDF, 

ADF and Lignin from previous research  

 

Wavelength  Absorption Mechanism  Absorption Compounds 

(Nm)   

 

ADF   NDF 

 

430   Electron transition   Chlorophyll a     410ï450 

460   Electron transition   Chlorophyll b     455, 460 

700ï800  Red edge    Nitrogen, protein     720ï745 

930   C-H stretch, 3rd overtone   Oil      935 

970   O-H bend, 1st overtone   Water, starch     960 

990   O-H stretch, 2nd overtone   Starch      995 
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1120   C-H stretch, 2nd overtone   lignin     1115ï1120 

1200  O-H bend, 1st overtone   Water, cellulose,   1195 

starch, lignin  

1420  C- H stretch, C--H deformation lignin  

1450  O-- H stretch, 1st overtone, Starch, sugar, lignin  

C-- H stretch, C-- H deformation water 

1580   O-H stretch, 1st overtone   Starch, cellulose  1580 

1670  Stretch OH   lignin, starch protein 

1685   C-H stretch, 1st overtone   lignin      1675ï1685 

1690   C-H stretch, 1st overtone   lignin, starch,    1700 

protein, nitrogen 

1760      lignin  

1940  O- H stretch, O- H deformation Water, lignin , protein, 

nitrogen, starch, cellulose 

1950  Stretch OH, deformation OH Water, lignin , protein,  

nitrogen, starch, cellulose 

2050   N-H asymmetric stretch +   Protein      2050 

Amide II  

2060   N = H bend, 2nd overtone/N =  Protein, nitrogen    2060 

H bend/N-H deformation 

2080   O-H stretch/O-H deformation  Sugar, starch    2070 

2100   2 × O-H deformation +   Starch, cellulose     2090  

2 × CO stretch 

2240   C-H stretch    Protein   2245 

2270  Stretch CH, stretch C = C  lignin  

2276   O-H stretch + C-C deformation  Cellulose, lignin  

2280   C-H stretch/CH2 deformation  Starch, cellulose    2285 

2294   N-H stretch + C = O stretch  Protein      2290 

2310   C-H bend, 2nd overtone   Oil    2315  2310ï2315 

2320   C-H stretch/CH2 deformation  Starch      2320ï2325 

2336   C-H stretch + C-H deformation  Cellulose, starch, lignin     2335 

2340   C-H stretch/O-H deformation/  Cellulose     2340 

C-H deformation/O-H stretch 

2380  Stretch OH, aromatic deformation lignin  

 

Source: (Curran, 1989) (Himmelsbach et al., 1988) (Elvidge, 1990) (Osborne & Fearn, 1986) (Kumar et al., 2002) 

(Kawamura et al., 2008) (Fourty et al., 1996). The known absorption compounds and wavelengths are depicted 

in bold font. 
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2.4.2 Random forest regression analysis  

In this study, the random forest (RF) ensemble (Breiman, 2001) was implemented using the 

ñrandomForestò package (Venables & Smith, 2005) in R statistical software (Team, 2013). RF 

is a machine learning algorithm developed to enhance the classification and regression trees 

(CART) method. A large ensemble of un-pruned regression trees (ntree) are constructed using 

a systematic approach called bootstrapping. Bootstrap samples are created from many 

regression trees (generally between 500 and 2000 trees) to create a final prediction that is taken 

from an average of all individual tree outputs (Dye et al., 2011; Lawrence et al., 2006; Prasad 

et al., 2006). The resultant trees in the ensemble were used to assign each input spectral 

waveband to a class membership of the response variables (i.e. NDF, ADF and Lignin). When 

bootstrap samples are drawn, approximately one third of the samples are left out. The samples 

that are left out are called out-of-bag (OOB) samples (Breiman, 2001). OOB samples are used 

to calculate an unbiased assessment of the classification accuracy (i.e. OOB error) and to 

determine variable importance (Adjorlolo et al., 2013; Breiman, 2001; Peerbhay et al., 2015). 

Within the training data set (approximately 70%), trees are grown to a maximum length and 

based on the maximum number of votes that a class receives, the ensemble of trees assigns 

each waveband to a class (Adjorlolo et al., 2012a; Breiman, 2001). In each tree, a randomly 

chosen subset of the total number of variables (mtry) is determined by the best split (the random 

selection of variables) at each node (Abdel-Rahman et al., 2013; Breiman, 2001; Peerbhay et 

al., 2015). It is important that the algorithm is well parameterized according to two main 

variables: ntree, number of regression trees grown based on a bootstrap sample of observation; 

mtry, number of predictors tested at each node (Ramoelo et al., 2015b). The mtry function is 

significant as it is a determinant of solving the ósmall n large pô problem whereby the user is 

given the option to choose a small subset of variables (Dye et al., 2011). Furthermore, studies 

constitute that the mtry default parameter value is confident in consistently yielding accurate 

results (Adjorlolo et al., 2013; Dye et al., 2011; Peerbhay et al., 2015).  

Furthermore, RF offers variable importance measures embedded in its system. Variable 

importance measures provide the researcher with good indicators of the effect of any predictor 

variable against the response variable. The permutation measure of variable importance is used 

to determine the importance of each predictor by measuring the percentage increase in the mean 

square error when the OOB data for each variable is permuted, while the others are unchanged 

(Breiman, 2001). In this study, the percentage increase in mean square error (MSE) was used 

to predict the most important wavelengths to detect NDF, ADF and Lignin. It is the increase in 
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mean square error of predictions (estimated with out-of-bag-CV) as a result of a variable being 

permuted. The higher percentage gives more importance to a specific waveband. High variable 

importance scores suggests high weighting on a particular variable in the model (Ramoelo et 

al., 2015b). The RF algorithm was preferred due its robustness and accurate method for band 

selection, specifically when using high dimensional data (Breiman, 2001; Dye et al., 2011; 

Mutanga et al., 2015; Peerbhay et al., 2015). 

2.4.3 Accuracy assessment (R2) 

The R-square (R2) (Albayrak, 2008; Knox et al., 2011; Pullanagari et al., 2012) was the 

preferred accuracy assessment used to assess the performance of the RF method. The final data 

set was split into training and test (Congalton & Green, 2008). The square of correlation 

between predicted and observed values was calculated, values closer to 1, predict better results. 
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2.5 Results 

The results from chemical analysis performed on the grass samples collected in the field are 

presented in table 2. 

Table 2. Summary of chemical analysis results obtained from 140 tropical mixed grass 

samples collected in the field 

 

Nutrient    Mean (g/kg)  Range (g/kg)  Std. Dev. (g/kg) 

 

NDF    127.48   116.48 ï 193.16 6.623980369 

ADF    91.80   85.06 ï 100.86 3.427728864 

Lignin    91.87   85.27 ï 100.99 3.428042785 

  

2.5.1 Detecting NDF, ADF & Lignin concentrations using known absorption features 

dataset 

Using the known absorption features (Table 1) for NDF, ADF and Lignin, the random forest 

model (ntree = 500 and mtry = 40) successfully determined NDF, ADF and Lignin biochemicals, 

however the fit of the model as measured by R2 was low, the model still explains 59% of the 

variation in NDF. Lignin was successfully predicted with an R2 of 0.81 and ADF an R2 of 0.79, 

whilst NDF was predicted with an R2 of 0.59 (Figure 2). 
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Figure 2. Regression results of NDF, ADF and Lignin biochemicals using the known 

absorption features 
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Figure 3. Variable importance of NDF, ADF and Lignin biochemicals using known 

absorption features  

2.5.2 Detecting NDF, ADF & Lignin using the entire hyperspectral dataset  

Whilst, the ntree and mtry values remained consistent for each biochemical, the entire 

hyperspectral dataset was used in the final model to predict each biochemical. Using the entire 

hyperspectral dataset, the random forest model (ntree = 500 and mtry = 40) successfully predicted 

the key ADF and Lignin biochemicals used in this study. Again, NDF was unsuccessfully 

predicted. More specifically, NDF was predicted with a low R2 of 0.47, while ADF and Lignin 

were predicted with a high R2ôs of 0.88 and 0.87, respectively (Figure 4). 
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Figure 4. Regression results of NDF, ADF and Lignin using the entire hyperspectral 

dataset 

2.5.3 Variable importance using the entire hyperspectral dataset  

Figure 5 depicts the most effective variables used in the prediction model. For NDF, 

wavelengths in the blue (352, 368, 385, 386), red (696), and shortwave region (1137, 1344, 

1708, 2470, 2495 and 2497) were highly important, while for ADF, wavebands specifically 

along the blue (403, 407, and 420), and shortwave region (1380, 2428, 2470, 2487 and 2497) 

showed the most importance. For Lignin, wavelengths located in the blue (407, 408) and 

shortwave region (2428, 2470 and 2487) showed the most influence (figure 5). Furthermore, 

RF modelling offers three measures of variable importance: (1) based on the number of times 

a candidate variable is selected; (2) the Gini index that was proposed by (Breiman et al., 1984) 

in the original classification and regression trees method; (3) the permutation of a variable as 

an ensemble of variable importance (Strobl et al., 2008). In this study, the permutation of a 

variable as an ensemble of variable importance, measured as a percentage increase in MSE was 

an accurate measure in determining variable importance and is illustrated in figure 5.  
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Figure 5. Variable importance of NDF, ADF and Lignin biochemicals using the entire 

hyperspectral dataset 

 

For comparison purposes, we executed a combination of selected variable importance 

wavebands derived from the entire hyperspectral dataset and known absorption features 






































































