Palladium Complexes of (Benzoimidazol-2-ylmethyl) amine Ligands: Synthesis and Applications as Catalysts in Methoxycarbonylation of olefins

By

Thandeka Adelinah Tshabalala

209510478

Thesis

Submitted in fulfillment of the requirement for the degree Master of Science

In Chemistry

In the Faculty of Science and Agriculture

At the University of KwaZulu-Natal

Supervisor: Dr Stephen O. Ojwach
DECLARATION

I declare that the thesis, (Benzoimidazol-2-ylmethyl) amine ligands: synthesis and applications as catalysts in methoxycarbonylation of olefins, is my original work and has never been presented for the award of any degree at any other university before and that all the information, references and sources I have used and or quoted have been indicted and acknowledged by means of complete physical references.

Name: Thandeka Adelinah Tshabalala

Signature:.. Date:..

Supervisor: Dr Stephen Ojwach

Signature:.. Date:..
DEDICATION

DEDICATED TO MY PARENTS MR AMOS
AND MRS THEMSEN
TSHABALALA AND MY SON, ASAVELA

KHUSI
UNIVERSITY OF
KWAZULU-NATAL
INYUVESI
YAKWAZULU-NATALI
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xvi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
</tbody>
</table>

General introduction to the synthesis and applications of olefins and the role of transition metal catalysts

1.1. General Introduction

1.2 Synthesis of α-olefins

1.2.1. Ethylene oligomerisation

1.2.2. Fischer Tropsch synthesis

1.3 Applications of olefins

1.3.1. Application of α-olefins as detergents

1.4 Conversion of α-olefins to fine chemicals and pharmaceutical products
1.4.1 Oxidation of olefins

1.4.2 Metathesis of olefins

1.4.3 Reaction of α-olefins with carbon monoxide

1.4.3.1 Hydroformylation

1.4.3.2 Methoxycarbonylation

1.4.3.2.1 Mechanism of palladium (II) catalyzed methoxycarbonylation reactions

1.4.3.2.2 Significance of the methoxycarbonylation products

REFERENCES

CHAPTER 2

Review of palladium complexes as α-olefin methoxycarbonylation

2.1. General Introduction

2.2. Palladium – based catalysts for methoxycarbonylation

Reactions

2.2.1 Phosphine-donor palladium based catalysts for methoxycarbonylation reactions

2.2.2 Chiral phosphine-donor palladium catalysts in asymmetric methoxycarbonylation reactions

2.2.3 Metallocenic and non-metallocenic diphosphine palladium catalysts in methoxycarbonylation reactions
2.2.4 Mixed nitrogen and phosphine-donor palladium catalysts in methoxycarbonylation reactions

2.3 Rationale of Study

2.4 Aims and Objectives of the Study

REFERENCES

CHAPTER 3

Benzimidazolylmethylamine palladium(II) complexes: Synthesis and molecular structures

3.1 Introduction

3.2 Experimental section

3.2.1 Materials and instrumentation

3.2.2 Synthesis of benzoimidazol-2-ylmethyl) amine ligands

3.2.2.1 N-(1H-benzoimidazol-2-ylmethyl)-2-aniline (L1)

3.2.2.2 N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline (L2)

3.2.2.3 N-(1H-benzoimidazol-2-ylmethyl)-2-thioaniline(L3)

3.2.2.4 N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline(L4)

3.2.3 Synthesis of neutral and cationic complexes

3.2.3.1 Synthesis of neutral complexes

3.2.3.1.1 [[N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]PdCl2] (C1)
3.2.3.1.2 \([N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]PdClMe\)(C2)

3.2.3.1.3 \([N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline]PdCl_2\)(C3)

3.2.3.1.4 \([N-(1H-benzoimidazol-2-ylmethyl)-2methoxyaniline]

\[[PdClMe] \text{(C4)}\]

3.2.3.1.5 \([N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline]

\[[PdCl_2] \text{(C5)}\]

3.2.3.1.6 \([N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline]

\[[PdClMe] \text{(C6)}\]

3.2.3.2 Synthesis of cationic complexes

3.2.3.2.1 \([N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]PdCl(PPh_3)\]

\(\text{BAr}_4 \text{ (C7)}\)

3.2.3.2.2 \([N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]PdMe(PPh_3)\]

\(\text{BAr}_4 \text{ (C8)}\)

3.2.3.2.3 \([N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline]

\[[PdCl(PPh_3)] \text{BAr}_4 \text{ (C9)}\]

3.2.3.2.4 \([N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline]

\[[PdMe(PPh_3)] \text{BAr}_4 \text{ (C10)}\]
3.2.3.2.5 \([N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline]\)

\([\text{PdMe(PPh}_3\text{)}] \text{BAR}_4 \text{ (C11)}\) 58

3.3 Results and Discussion 59

3.3.1 Synthesis and characterization of Pd complexes 59

3.4 Solid state structure of complexes C8a, C9a and C11a 68

3.5 Conclusion 72

REFERENCES 73

CHAPTER 4

Methoxycarbonylation of olefins catalyzed by (Benzoimidazol-2-yl) methyl amine Pd complexes

4.1 Introduction 75

4.2 Experimental 76

4.2.1 Materials and instrumentation 76

4.2.2 General procedure for the methoxycarbonylation reactions 77

4.3 Results and discussion 78

4.3.1 Catalytic screening of palladium complexes in methoxycarbonylation reactions 78
4.3.2 Effect of catalysts structure on methoxycarbonylation of 1-hexene 80

4.3.3 Effect of triphenyl phosphine (PPh₃) on methoxycarbonylation of 1-hexene 83

4.3.4 Effect of acid promoters on methoxycarbonylation reactions 84

4.3.5 Effect of reaction conditions in methoxycarbonylation reactions 86

4.3.6 Effect of olefin substrate on methoxycarbonylation using C10 88

4.4 Conclusion 91

REFERENCES 92

CHAPTER 5

General concluding remarks and future prospects

5.1. General conclusions 95

5.2. Future prospects 96
ABSTRACT

Compounds N-(1H-benzoimidazol-2-ylmethyl)-2-aniline (L1), N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline (L2), N-(1H-benzoimidazol-2-ylmethyl)-2-thioaniline (L3) and N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline (L4) were prepared by reaction of 2-(chloromethyl) benzimidazole with the appropriate aniline. Ligands L1–L4 were reacted with either [PdCl2(COD)] or [PdClMe(COD)] to form palladium complexes [PdCl2(L1)], [PdClMe(L1)], [PdCl2(L2)],[PdClMe(L2)], [PdCl2(L4)] and [PdClMe(L4)].

Treatment of the neutral complexes C1 – C6 with one equivalent of PPh3 in the presence of the halide abstractor NaBAR4 (Ar = 3,5-(CF3)2C6H3) led to the formation of the cationic species [(PdCl(L1))BAR4, [(PdMe(L1))BAR4, [(PdCl(L2))BAR4, [(PdMe(L2))BAR4 and [(PdMe(L4))BAR4. All the new compounds were characterized by combination of 1H and 31P NMR spectroscopy, mass spectrometry, X-ray crystallography of complexes C8, C9 and C11 and elemental analysis (for complexes).

The palladium complexes were investigated as catalyst in methoxycarbonylation of olefins. Methoxycarbonylation of 1-hexene using C2, C4, C6, C8-C11 was studied in order to investigate the effect of catalyst structure and PPh3 ligand on activity and selectivity. Complex C10 bearing electron donating OCH3 substituent on phenyl group was the most active, while the corresponding analogue containing the Br substituent on phenyl group was the least active. Complex C9 with Pd-Cl showed lower catalytic activity, compared complex C10 with Pd-Me. Addition of PPh3 to the
palladium complexes resulted in higher catalytic activities and high regioselectivity towards the linear esters. The activity also dependent in the identity of acid promoter where HCl gave highest active system while no activity was observed with

\(p \)-TsOH. The effects of pressure, temperature, catalysts concentration, identity of the olefin and time was also investigated. Increasing the catalysts concentration, chain length and time resulted in higher catalytic activities and higher regioselectivity towards the branched ester.
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>89</td>
</tr>
</tbody>
</table>

3.1 Crystal data and structure refinement parameters for C11

3.2 Selected bond lengths [Å] and bond angles [˚] for C11

4.1 Effect of catalyst structure in the methoxycarbonylation of 1-hexene

4.2 Effect of reaction conditions in the methoxycarbonylation of 1-hexene using C10

4.3 Effect of olefin in the presence of PPh₃ with C10 as catalyst
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Chart depicting the various uses of linear olefins in the chemical and petrochemical industries</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Hydroformylation of alkenes to aldehyde and associated products</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Monodentate alkyl phosphine ligand ((P(nBu)_3)) and monodentate aryl phosphine ligand ((PPh_3))</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Bidentate alkyl phosphine ligand ((dtbpp)) and bidentate aryl phosphine ligand ((BINAP))</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Palladium complexes providing high activity and selectivity for methoxycarbonylation of styrene and ethene under mild conditions</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Monodentate phosphines previously used in asymmetric methoxycarbonylation of styrene</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Chiral phosphetanes</td>
<td>29</td>
</tr>
<tr>
<td>2.6 Diphosphine ligands containing metallocenic fragments</td>
<td>30</td>
</tr>
<tr>
<td>2.7 Complex containing non-metallocenic organometallic ligand</td>
<td>31</td>
</tr>
</tbody>
</table>
2.8 Pd-catalysts with P, N-donor ligands 32
2.9 (Benzoimidazol-2-yl) methyl amine ligands that will be used for this study 34
3.1 1H NMR spectrum of L4 and complex C5 showing a shift in the CH$_2$ and aromatic protons in the respective compounds 62
3.2 1H NMR spectrum of complex C6 showing CH$_2$ protons as broad peaks 63
3.3 1H NMR spectrum of C8 and C2 showing a signal shift in the CH$_2$ and CH$_3$ protons 64
3.4 31PNMR spectra of C8 in CDCl$_3$ solution showing a singlet peak 65
3.5 31PNMR spectra of C9 in CDCl$_3$ solution showing three peaks 66
3.6 ESI-MS for C5 showing the fragmentation pattern 67
3.7 Crystal structure for [N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline]PdMe(PPh$_3$)$_2$] BAr$_4$ (C11a) 70
3.8 Crystal structure for [N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]PdMe(PPh$_3$)$_2$] BAr$_4$ (C8a) 71
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Crystal structure of $[N-(1H\text{-}benzoimidazol\text{-}2\text{-}ylmethyl)}$-2-methoxyaniline$]$$\text{PdCl(PPh}_3\text{)}_2$$ \text{BAr}_4$ (C9a)</td>
</tr>
<tr>
<td>4.1</td>
<td>GC spectra for C10 entry 16 using 1-hexene as a substrate</td>
</tr>
<tr>
<td>4.2</td>
<td>GC spectra and MS spectra for the branched ester at a retention time of 4.70 min and linear ester at a retention time of 5.19 min for 1-hexene using C10 as the catalyst</td>
</tr>
<tr>
<td>4.3</td>
<td>Plot of percentage conversion and regioselectivity for complexes C2 – C11 in the methoxycarbonylation of 1-hexene</td>
</tr>
<tr>
<td>4.4</td>
<td>Graph of percentage conversion and regioselectivity using complex C10 showing the influence of time on the methoxycarbonylation reactions</td>
</tr>
<tr>
<td>4.5</td>
<td>The affect of substrate on percentage conversion and regioselectivity towards branched products using catalyst C10</td>
</tr>
<tr>
<td>5.1</td>
<td>Palladium complexes containing less bulky ligands</td>
</tr>
<tr>
<td>5.2</td>
<td>Water soluble catalyst for biphasic catalysis</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>SCHEME</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Oxidation of olefins to glycols</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Silver based catalyst, catalytic oxidation method</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Grubbs and Schrock catalysts used for olefin metathesis</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Methoxycarbonylation of olefins in the presence of a stoichiometric amount of (\text{PdCl}_2) and methanol</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Methoxycarbonylation of alkenes in the absence of a suitable oxidant</td>
<td>13</td>
</tr>
<tr>
<td>1.6 Hydride cycle for palladium catalyzed methoxycarbonylation reactions</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Carbomethoxy cycle for palladium catalyzed methoxycarbonylation reactions</td>
<td>16</td>
</tr>
<tr>
<td>1.8 Formation of detergents from esters</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Generation of the hydride intermediate using an acid promoter</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Neutral and cationic palladium complexes proposed by Aguire et. al.</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Synthesis of the(benzoimidazol-2-ylmethyl) amine ligands</td>
<td>59</td>
</tr>
<tr>
<td>3.2 Synthesis of the neutral palladium complexes</td>
<td>60</td>
</tr>
<tr>
<td>3.3 Synthesis of the cationic palladium complexes</td>
<td>60</td>
</tr>
<tr>
<td>4.1 Palladium complexes used for the methoxycarbonylation reactions</td>
<td>76</td>
</tr>
<tr>
<td>4.2 Major products obtained in the methoxycarbonylation of 1-hexene</td>
<td>78</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>COD</td>
<td>Cyclooctadiene</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>p-TsOH</td>
<td>para-toluene sulfonic acid</td>
</tr>
<tr>
<td>L</td>
<td>Ligand</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>PPh₃</td>
<td>Triphenyl phosphine</td>
</tr>
<tr>
<td>LAB</td>
<td>Linear alkyl benzene</td>
</tr>
<tr>
<td>LABS</td>
<td>Linear alkyl benzene sulfonates</td>
</tr>
<tr>
<td>CM</td>
<td>Cross metathesis</td>
</tr>
<tr>
<td>ADMET</td>
<td>Acyclic diene metathesis polymerization</td>
</tr>
<tr>
<td>ROMP</td>
<td>Ring-opening metathesis polymerization</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

First of all, I would like to convey my warmest gratitude to my supervisor Dr Stephen Ojwach, who gave me the opportunity to conduct my study in his research group. I would like to also thank him for his guidance, generous contribution of knowledge and experience, valuable comments, attending conferences, his patience with me and encouragement from the start until the end of my study. My deepest gratitude also goes to Aloice Ogweno for the language corrections he made on some parts of my thesis. Thanks also to Dr Matthew Akerman for the X-RD data collection and analysis interpretation. Special thanks to C* change program for financial support and bursaries, without which my study at UKZN would have not been possible. I wish to thank my colleagues and friends at the department of chemistry for sharing with me numerous coffees, launches and laughter at all time. Last but not least, I would like to thank the almighty God for his guidance and encouragement when I felt like giving up.
CHAPTER ONE

Synthesis and applications of olefin and the role of transition metal catalysts

1.1. General Introduction

Olefins are a family of organic compounds with a chemical formula C_nH_{2n} containing at least one double bond. The reactivity of the olefin is controlled by the location of the double bond (terminal or internal) and this makes the olefins useful for a number of applications. The olefins can either be branched or linear and this significantly influences their physical and chemical properties. Originally thermal cracking of waxes and chlorination/dehydrochlorination of linear paraffin’s was used for the manufacturing of linear α-olefins and linear internal olefins. Linear olefins can also be manufactured by dehydration of alcohols in the vapor phase. Olefins are used as substrates in a variety of catalytic reactions such as polymerization, oligomerisation, carbonylation and hydrogenation.

1.2. Synthesis of α-olefins

Linear α-olefins are very significant from an industrial perspective; examples include C_4 – C_{12} linear α-olefins and higher blends of C_{20} – C_{24}, C_{24} – C_{30} and C_{20} – C_{30} ranges. Oligomerisation of ethylene and Fischer Tropsch synthesis are the two main routes used for the preparation of the α-olefins industrially.
1.2.1. Ethylene oligomerisation

Oligomerisation is by far the most widely used in the conversion of lower olefins (C\textsubscript{2} - C\textsubscript{4}) into industrially significant higher olefins (C\textsubscript{8} - C\textsubscript{30}).2 The use of organometallic complexes in the oligomerisation process has been studied.3 In the oligomerisation of ethylene, straight and branched chain olefins are produced. The straight chain olefins have been found to be more useful than branched olefins; because of high biodegradability of the products.4 The \(\alpha\)-olefins can be produced by the oligomerisation of ethylene in a non-selective manner. Such processes (non-selective) typically generate anathematical distribution (Poisson) of olefins.5 Non-selective ethylene oligomerisation reactions include the Shell Higher Olefin Process, Albemarle and Chevron Processes, and the Idemitsu process.6

1.2.2. Fischer Tropsch synthesis

Fischer- Tropsch synthesis converts biomass, coal and natural gas to hydrocarbon products which are used as transportation fuels. Fischer- Tropsch synthesis is, however, also known for producing chemicals such as olefins, which are of much higher value than low value fuels.7 The total olefin content and \(\alpha\)-olefin selectivity depends on the ratio of hydrogen to carbon monoxide, pressure and catalysts.8 A higher operating pressure gives more \(\alpha\)-olefins.8

Sasol (South Africa) produces \(\alpha\)-olefins through Fischer- Tropsch synthesis and has recently built a large scale commercial plant for the synthesis of 1-pentene and 1-hexene
from fluid bed Fischer-Tropsch synthesis reactors. The purification method employed by Sasol involves a number of distillation steps to separate the olefins from other products. To reduce the cost of product separation, Fujimoto and co-workers have demonstrated that it can be accomplished by Fischer-Tropsch synthesis in supercritical fluids. They studied Fischer-Tropsch synthesis on silica supported cobalt–lanthanum and/or alumina supported ruthenium catalyst, in a supercritical n-hexane and they showed advantages of this operation, including higher olefin selectivity, relative to gas phase and liquid phase operation.

1.3. Applications of olefins

Imagine life today without packaging, detergents, sun creams or lubricants. Products would not be as fresh and crisp, clothes would not be protected and our cars would under perform. α-olefins and internal olefins help to provide all of these benefits. Linear α-olefins are valuable commodity chemicals used as precursors in many areas of industry, such as detergents (C$_{10}$ – C$_{30}$), synthetic lubricants, plasticizer alcohols, as well as co-monomers in the synthesis of linear low-density polyethylene (LLDPE), as is depicted in figure 1.1.

Among the α-olefins, 1-hexene and 1-octene are particularly pleasing as they allow the formation of co-polymers displaying excellent chemical and physical properties. The lower linear α-olefins C$_4$- C$_8$ can be used for the synthesis of linear aldehyde through
oxo-synthesis by a process known as hydroformylation. The linear aldehydes can be used for the synthesis of a carboxylic acid or linear alcohols.15

Figure 1.1: Chart depicting the various uses of linear olefins in the chemical and petrochemical industries.13
1.3.1. Application of α-olefins as detergents

Detergents have shown slower growth than plasticizers with less biodegradable surfactants, but growth is occurring as biodegradable surfactants are being replaced by α-olefins. The application of 1-decene is in the synthesis of lubricant base stock and it can be used to make surfactants.\(^{16}\) C\(_{16}\)–C\(_{18}\) linear α-olefins are applied as hydrophobes in oil-soluble surfactants.\(^{16}\) The α-olefins are used as intermediates for the production of olefin sulfonate surfactants. C\(_{14}\)–C\(_{16}\) α-olefin sulfonate blends are used in liquid hand soaps.\(^{16}\) C\(_{4}\)–C\(_{8}\) linear α-olefins may be reacted with benzene via Lewis acid catalysis to produce linear alkyl benzene (LAB). LAB is then sulfonated and neutralized to produce linear alkyl benzene sulfonates (LABS), which are employed in laundry detergents, dishwashing soaps and all-purpose cleaner.\(^{16}\)

α-olefins can also be used for the manufacturing of alkyl dimethyl amines. Hydrogen peroxide oxidation of alkyl dimethyl amines produces amine oxide which is used in dishwashing detergents, shampoos and bubble baths. α-olefins can be used to produce alkane sulfonates by reacting them (α-olefins) with sodium bisulfate via free-radical mechanism.
1.4. Conversion of α-olefins to fine chemicals and pharmaceutical products

There are a number of applications of linear α-olefins; these include their use in the conversion to fine chemicals and pharmaceutical products. Transition metal catalysts have played a major role in the conversion of linear α-olefins to fine chemicals and pharmaceutical products. These involve: oxidation of α-olefins to olefin derivatives such as epoxy compounds, aldehyde, and ketone and metathesis of olefins to fine chemicals. The α-olefins can also be converted to aldehydes, alcohols, carboxylic acids and methyl esters via the reaction of α-olefins with carbon monoxide.

1.4.1. Oxidation of olefins

Oxidation of olefins to olefin derivatives such as epoxides, aldehydes and ketones is one of the significant chemical productions. In the oxidation of olefins, oxygen is used as an oxidant to produce the corresponding epoxide. For example, the world production capacity of ethylene oxide is currently about 17.1 Mt/a. At low temperatures, dilute KMnO$_4$ olefins are oxidized to glycols (Scheme 1.1).17 There is 75% production of glycols i.e. ethylene glycol used in making polyesters and antifreeze, triethyl glycol (solvent, plasticizer and gas dehydration) and higher glycols.17
Scheme 1.1: Oxidation of olefins to glycols.

The catalytic oxidation methods employing silver based catalysts such as Ag /Al₂O₃ discovered in the 1940’s (Scheme 1.2)¹⁸ has been used by developed countries instead of non-catalytic oxidation methods such as chlorohydrin process; this is done in order to prevent pollution.¹⁹
The oxidation of olefins to ketones and aldehydes can be achieved by a process known as the Wacker oxidation. This process was discovered for the first time by Smidt and co-workers.20,21 The Wacker oxidation has been applied in many areas of industry22 i.e. plants with production capacity of 15 000 tons of acetaldehyde per year have been developed.21 Recently the Wacker oxidation has been used for conversion of terminal olefins to methyl ketones via the for the production of natural and non-natural products.23

1.4.2. Metathesis of olefins

Olefin metathesis is the exchange of substituent’s between different olefins by the scission and regeneration of carbon-carbon double bonds (Scheme 1.3).24 The catalysts used for the olefin metathesis are the Grubbs24 and Schrock catalysts25 (Scheme 1.3). Olefin metathesis can be applied in the production of pharmaceutical drugs, monocyclic compounds and the production of propylene.26
There are six types of olefin metathesis: cross metathesis (CM), ring-closing metathesis (RCM), acyclic diene metathesis polymerization (ADMET), ring-opening cross metathesis (ROCM), ring-opening metathesis polymerization (ROMP) and intermolecular enyne metathesis. All of these methods are employed in the production of small, medium and polymeric molecules as well as novel materials.
1.4.3. Reaction of alpha olefins with carbon monoxide

The reactions of carbon monoxide with olefins fall into two main categories: methoxycarbonylation which is the addition reaction of carbon monoxide to the double bond of the olefin to produce an ester respectively and hydroformylation which converts α-olefins to aldehydes and alcohols.

1.4.3.1. Hydroformylation

Hydroformylation is an important industrial process for the synthesis of aldehydes, alcohols, carboxylic acids and esters. Figure 1.2 summarizes some of the possibilities for hydroformylation reactions.
Otto Roelen was the first person to discover hydroformylation in 1938. He was able to observe that ethylene, H₂ and CO can be converted into propanal at higher pressures. The production of HCo(CO)₄ as an active catalyst for the hydroformylation under H₂/CO pressure using cobalt salts was discovered by Roelen. The general mechanism for the hydroformylation was proposed in 1960 and 1961 by Heck and Breslow. Hydroformylation of olefins can be used for the manufacturing of C₃ - C₄₀ aldehydes and alcohols. The resulting aldehydes are converted to detergents. Hydroformylation of ethylene can lead to the formation of propionaldehyde and n-
propanol as major products. Propionaldehyde and n-propanol can be applied as solvent precursors in the manufacture of pharmaceuticals, pesticides and perfumery products.31

1.4.3.2. Methoxycarbonylation

Methoxycarbonylation is the addition reaction of CO and an alcohol (methanol) to the double bond of the olefin to produce an ester. The methoxycarbonylation of olefins can be achieved in several appropriate ways. The first example is the methoxycarbonylation of olefins in the presence of a palladium (II) salt for example PdCl\textsubscript{2} and methanol (Scheme 1.4).32

\begin{center}
\begin{align*}
\text{Scheme 1.4: Methoxycarbonylation of olefins in the presence of a stoichiometric amount of PdCl}_2 \text{ and methanol.}
\end{align*}
\end{center}
In the absence of a suitable oxidant the methoxycarbonylation of alkenes with Pd(II) salts and methanol (or other alcohols) is designated methoxycarbonylation (Scheme 1.5).32 Both the branched and linear products in Scheme 1.5 can be used as valuable building blocks for other functionalized olefins, such as carboxylic acid, aldehydes and many more.

![Scheme 1.5: Methoxycarbonylation of alkenes in the absence of a suitable oxidant](image)

Seayad \textit{et al.} have proposed a mechanism of methoxycarbonylation of styrene employing Pd(OAc)\textsubscript{2} and p-TsOH as a promoter in methanol solution.33 Several years later, a mechanism for the methoxycarbonylation of 1-(4-isobutylphenyl) ethanol employing a homogeneous PdCl\textsubscript{2} (PPh\textsubscript{3})\textsubscript{2}/TsOH/LiCl catalyst system was also proposed.34 An anionic Pd(0) species containing coordinated Cl- has been suggested as the likely species in the catalytic cycle in the presence of TsOH and LiCl. Liu \textit{et al.}35 also reported the hydride and methoxycarbonyl cycles using [Pd(dipp)CH\textsubscript{3}](TsOH)] for Pd-catalyzed reactions.
1.4.3.2.1 Mechanism of palladium (II) catalyzed methoxycarbonylation reactions

Scheme 1.6 represents a proposed hydride cycle for the methoxycarbonylation of olefins using nitrogen donor palladium-based catalysts and HCl as an acid promoter in methanol solution. The hydride cycle (Scheme 1.6, ligands omitted) starts with the addition of PPh₃ as a stabilizer and HCl (acid promoter) to A, resulting in a cationic species B which upon reduction with methanol results in intermediate C and forms D. Coordination of the substrate, followed by insertion into the Pd-H bond then leads to the formation of Pd-alkyl complex F or K, which is converted into an acyl complex H or M by migratory insertion of CO. Nucleophilic attack of methanol on the acyl carbonyl leads to the formation of I (linear ester) or N (branched ester) depending on regioselectivity.
Scheme 1.6: Hydride cycle for palladium catalyzed methoxycarbonylation reactions

Scheme 1.7 represents a proposed methoxycarbonyl cycle for the methoxycarbonylation of olefins using nitrogen donor palladium-based catalysts. The methoxycarbonyl cycle starts with a Pd-OMe complex O. Then, the insertion of CO into the Pd-OMe leads to the production of methoxycarbonyl complex P or T. Coordination and insertion of the
appropriate substrate followed by methanolysis to produce the products S (linear ester) or W (branched product) depending on regioselectivity and regenerate the catalysts.

Scheme 1.7: Carbomethoxy cycle for palladium catalyzed methoxycarbonylation reactions.
1.4.3.2.2 Significance of the methoxycarbonylation products

The ester products obtained from the methoxycarbonylation reactions can be used for the formation of detergents, surfactants as well as perfumes. Scheme 1.8 is a representation of a possible route for the formation of detergents from esters.36 Addition of sulfur trioxide to the linear ester X results in the formation of Y which upon addition of NaOH to the olefin sulfonate Y results in the formation of methyl ester sulfonate (MES). MES is used as an anionic surfactant in liquid soaps and detergents to clean wool.36

Scheme 1.8: Formation of detergents from esters.
From this chapter, it is clear that the significance of α-olefins from the academic and industrial point of view is clearly evident. This therefore justifies current research efforts being spent in the design of transition metal catalysts active for the methoxycarbonylation of higher α-olefins such as 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene and 1-octadeceneto produce esters (branched and linear). This is mainly aimed at designing and developing active, stable and selective catalysts. In the next chapter, a review of Pd(II) complexes as olefin methoxycarbonylation catalyst is described.
References

CHAPTER TWO

Review of palladium complexes as alpha olefin methoxycarbonylation.

2.1. General Introduction

Transition metal complexes such as Pd1-5, Rh6, Ru7, Co8 and Ni9 complexes have been used along with phosphine ligands in most methoxycarbonylation reactions. To date palladium-catalysts were found to be most active and have generated the most interest in the methoxycarbonylation of olefins. This is due to the fact that the electrophilicity of the palladium metal centers results in rapid rates of olefin insertion and coordination.10 The high regioselectivity towards the branched or linear products can be obtained, depending on the catalytic system used and reaction conditions employed. In the next sections, we review a range of palladium complexes supported by different donor ligands that have been used as catalysts in the methoxycarbonylation reactions.

2.2 Palladium – based catalysts in methoxycarbonylation reactions

Palladium has been extensively and successfully used as catalysts in methoxycarbonylation reactions. The palladium can either be Pd0 (Pd metal and PdL\textsubscript{4}) or Pd(II) (PdX\textsubscript{2} and PdX\textsubscript{2}L\textsubscript{2}) species.2 It has been established that palladium catalysts tend to decompose to palladium black11,12 or form dinuclear complexes13 if not stabilized. This transformation renders the systems inactive.14
Substances such as acid promoters play a major role in the stabilization and activity of palladium catalysts.15 The role of acid promoters is to transform the Pd(0) to Pd(II) which is very active and then form palladium-hydride species (Scheme 2.1).16,17

\[
Pd^0 + HX \rightarrow HPdX
\]
\[
HPdX + HX \rightarrow PdX_2 + H_2
\]

Scheme 2.1: Generation of the hydride intermediate using an acid promoter.

The hydride intermediate from scheme 2.1 initiates the catalytic cycle by reacting with the hydrocarbon substrates18,19,20 leading to an increase in the reaction rates.21,22,23

The choice of Brønsted acid in the methoxycarbonylation reaction is significant because it is able to determine the type of the counterion available for the palladium species.24 Strongly coordinating anions reduce the rate of the addition of CO to an olefin, whereas weakly coordinating or non-coordinating anions increase the rate of the addition of CO.25,26 Strong Brønsted acids such as methanesulfonic acid (MSA) and \(p \)-toluenesulfonic acid (\(p \)-TsOH) are used to achieve the required reaction rates27 and they contain weakly coordinating anions.

Although the counterion plays an important role in achieving the required reaction rates, a substrate also plays a significant role in determining which promoter would allow most reaction activity. Therefore the order of activity has been determined when
different Brønsted acids are used and the order varies with the substrate used. For instance if styrene is used as a substrate, the activity decreases in the order p-toluene sulfonic acid (p-TsOH) > methane sulfonic acid (MSA) > trifluoro methanesulfonic acid > trifluoro acetic acid > hydrochloric acid. However when propene is used the series differs, trifluoro methanesulfonic acid > sulfuric acid > p-toluene sulfonic acid (TSA) > hydrochloric acid.

2.2.1 Phosphine-donor palladium based catalysts in methoxycarbonylation reactions

The ligand plays a critical role in catalyst stability (by preventing the formation of palladium black), activity as well as selectivity in methoxycarbonylation reactions. The steric and electronic effects of the ligand affect the reaction outcome. Various ligands such as phosphine systems have been used in the methoxycarbonylation reactions to improve or direct reactivity.

The methoxycarbonylation of ethene has been studied both experimentally and theoretically, catalyzed by phosphine ligands of types 1 and 2. It was found that monodentate phosphines (Figure 2.1) favor methoxycarbonylation of ethene to methyl propanoate, while bidentate phosphines (Figure 2.2) switch selectivity to polyketones.
Fine-tuning the ligand is essential in regulating the performance of methoxycarbonylation reactions. For example, 2-Pyridyl ligands work best for all alkyne conversions but are inactive in the conversion of alkenes.34,35 The bulky bidentate alkyl phosphines are preferred for alkenes.36,37 It has also been discovered that the
increased basicity and steric bulk of the bidentate alkyl phosphine ligands alters the selectivity of Pd catalysts from polyketones to esters.2 Recent computational studies also confirmed that methoxycarbonylation prevails over polymerization when bidentate alkyl phosphine ligands are used.2

Drent’s group at Shell38 carried out extensive ligand screening for the methoxycarbonylation of olefins using [Pd(AOc)\textsubscript{2}L\textsubscript{2}/L] system in the presence of acid promoters such as \textit{p}-TsOH and HCl.38 Drent’s group at Shell38 established that trialkyl monodentate phosphine ligands such as P(nBu)\textsubscript{3} are more effective than aryl monodentate phosphine ligands like PPh\textsubscript{3} in the methoxycarbonylation of olefins in the [Pd(AOc)\textsubscript{2}L\textsubscript{2}/L] catalyst system. In the presence of an acid promoter (HCl), the aryl monodentate phosphine (PPh\textsubscript{3}) are more effective than trialkyl monodentate phosphine ligands (P(nBu)\textsubscript{3}) in the methoxycarbonylation reactions.39

Palladium complexes of the type Pd(OTs)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2} (5) and [(Pd(MeCN)\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}](Bf\textsubscript{4})\textsubscript{2} (6) (Figure 2.3) are well known to give high catalytic activities as well as selectivity in the methoxycarbonylation of styrene and ethene under mild conditions.40,41 Rio and co-workers42 discovered that the palladium catalysts containing mono-phosphine ligands favour the formation of branched esters, while palladium catalysts containing diphosphine ligands lead to the formation of linear esters.42 In a further study, Guiu and co-workers43 observed that both the bite angle of the chelate and electronic effects
of the ligand influence strongly the selectivity of the reaction towards the branched esters.43

![Chemical structures](image)

Figure 2.3: Palladium complexes providing high activity and selectivity for methoxycarbonylation of styrene and ethene under mild conditions.

\textbf{2.2.2 Chiral phosphine-donor palladium catalysts in asymmetric methoxycarbonylation reactions}

Asymmetric methoxycarbonylation of styrene has been studied to obtain 2-arylpropionic acids, which are used as non-steroidal anti-inflammatory drugs.44 Palladium-based systems containing bidentate diphosphine ligands have been used for this reaction and they afford low regio- and enantioselectivity to the branched product45 whereas palladium catalysts containing monodentate phosphine ligands provide high regioselectivities to the branched ester. Commetti and Chiusoli46 reported the use of neomentyldiphenyl phosphate 7 (Figure 2.4), later Nozaki and co-workers47 used phospholane ligand 8 and recently the same authors reported on the application of palladium complexes with binaphthol-derived phosphine 9 in the
methoxycarbonylation of vinylarenes achieving 53 % ee and 100 % regioselectivity to the branched esters. A similar behaviour was observed by Rio and co-workers for related palladium-catalyzed methoxycarbonylation of styrene, where they observed that palladium complexes containing monodentate ligands result in higher regioselectivity towards the branched esters, but low enantioselectivity, while palladium systems bearing bidentate ligands result in higher regioselectivity towards the linear esters.

![Figure 2.4: Monodentate phosphines used in asymmetric methoxycarbonylation of styrene.](image)

In another related study, Mufioz and co-workers reported the asymmetric methoxycarbonylation of styrene catalyzed by palladium complexes containing monodentate chiral phosphetane ligands (Figure 2.5). From their study, they discovered that, under mild conditions, the chemo- and regioselectivity towards the branched esters was higher.
2.2.3 Metalloocene and non-metalloocene diphosphine palladium catalysts in methoxycarbonylation reactions

Several chelating diphosphine ligands have been studied with those containing metallocenic fragments due to the fact that mono- and bidentate diphosphine ligands display low-regio- and enantioselectivity. Bianchini and co-workers50, have proven in their study that palladium complexes with 1,1-bis(diphenylphosphino) ferrocene(ddf) \textbf{13} (Figure 2.6), 1,1-bis(diphenylphosphino) octamethylferrocene (dppomf) \textbf{14} (Figure 2.6), 1,1-bis(diphenylphosphino) ruthenocene(ddpr) \textbf{15} and 1,1-bis(diphenylphosphino) osmocene (dppo) \textbf{16} (Figure 2.6) can catalyse the methoxycarbonylation of styrene, with high regioselectivity (up to 85\%) towards the linear esters.50 The selectivity to linear esters was proven by Gusev and co-workers51, whereby they stated that the steric and electronic properties of these mellocenes containing phosphine ligands should form M-
Pd (M = Fe, Ru and Os) bonds during the catalytic cycle thus favouring the formation of linear products. However, the branched ester is the most desirable ester.

Figure 2.6: Diphosphine ligands containing metalloenic fragments.
Recently Zuniga and co-workers52 reported palladium-catalysed methoxycarbonylation of vinylarenes using \textit{trans-}[\eta^5-C_5H_4PPh_2]Re(CO)_3PdCl_2(NCMe) 17 (Figure 2.7), a non-metallocenic organometallic ligand. They observed that the catalytic system \textit{trans-}[\eta^5-C_5H_4PPh_2]Re(CO)_3PdCl_2(NCMe) 17 (Figure 2.7) in the presence of HCl and methanol gave good catalytic activity, as well as high regioselectivity towards the branched esters (94\%).52

![Figure 2.7: Complex containing non-metallocenic organometallic ligand.](image)

\textbf{2.2.4 Mixed nitrogen and phosphine-donor palladium catalysts in methoxycarbonylation reactions}

Heterobidentate P,N-donor ligands have been used in metal-catalyzed methoxycarbonylation of olefins.53 Pd (II) complexes containing these types of ligands were observed to be active in methoxycarbonylation reactions. Their activity in the methoxycarbonylation reactions results from the ease of substitution of the N-donor
fragment by CO ligand. In 2007, Aguire et al.53 reported the methoxycarbonylation of olefins catalysed by palladium complexes bearing \(P, N\)-donor ligands (Figure 2.8).

\[
\begin{align*}
\text{R} = \text{H: Ph}_2\text{PNHpy} \\
\text{R} = \text{Me: Ph}_2\text{PNMepy}
\end{align*}
\]

Figure 2.80: Pd-catalysts with \(P, N\)-donor ligands.

Aguire et al.53 observed that (Ph\(_2\)PNHPh) or (Ph\(_2\)PNMepy) catalytic system increases activity.53 It was also observed that neutral complex 21 (Scheme 2.3) affords low conversions and selectivities towards the branched product. In addition, extensive decomposition of the neutral complexes to palladium black was observed.53 Addition of PPh\(_3\) to the neutral complexes (Scheme 2.3) dramatically improves the catalytic activities up to 99\%, as well as higher regioselectivity (90\%) towards the branched ester.53 No decomposition was observed upon addition of PPh\(_3\) indicating that PPh\(_3\) enhances stability of the relevant cationic species.53
Based on the literature review, the current work is aimed at producing a balance between catalysts stability and activity. Our ligand design (benzoimidazol-2-yl) methyl amines (Figure 2.9) is hemilabile in nature and should impact stability. The palladium complexes used for methoxycarbonylation reaction will be the cationic complexes (Figure 2.9). They were chosen due to the fact that the neutral complexes are not stable. The cationic complexes have metal-phosphine bonding which can be described by σ donation from the phosphorus lone pair to the metal center and π back bonding from a filled metal orbital to the σ^* P-R orbitals. Thus the π back bonding capabilities of the triphenylphosphine ligand will result in a more positive Pd-metal center which will promote coordination of substrates for the methoxycarbonylation reaction. It has been reported that the diphosphine ligands have the disadvantage to
produce products in low-regio and enantioselectivity53, therefore in this study the phosphine (PPh\textsubscript{3}) ligand will be used instead of the diphosphine ligand. Triphenylphosphine (PPh\textsubscript{3}) also acts as a stabilizer.

Figure 2.9: (Benzoimidazol-2-yl) methyl amine ligands that will be used for this study.
2.4 Aims and Objectives of the Study

General objective

- To develop efficient palladium catalysts for the methoxycarbonylation of higher olefins and fully understand the catalytic reactions.

Specific objectives

- To synthesize the (benzoimidazol-2-ylmethyl) amine ligands and their palladium complexes.
- To apply the palladium complexes as catalysts in the methoxycarbonylation of olefins.
- To investigate the effects of catalyst structure and reaction conditions in methoxycarbonylation reactions.
References

CHAPTER THREE

Palladium(II) complexes of (benzoimidazol-2-ylmethyl) amine ligands: Synthesis, Characterization and Molecular Structures

3.1. Introduction

From the literature review in chapter 2, it is evident that the stability and activity of palladium catalysts in methoxycarbonylation reactions of olefins depend on the nature of the ligand coordinated to the metal center. Hemilabile ligands discovered by Jeffery and Rauchfuss in 1979 have the ability to occupy the vacant coordination site and hence stabilize active species during a catalytic cycle. The other classes of ligands that have been employed in methoxycarbonylation reactions are the phosphine type ligands. Bidentate phosphine ligands are reported to lead to co-polymer formation while monodentate phosphine ligands result in ester formation in the presence of methanol. An illustration is the use of Pd(OTs)₂(PPh₃)₂ and [Pd(MeCN)₂(PPh₃)₂](BF₄)₂ which, when combined with HCl an acid promoter gives high activities and selectivities for the methoxycarbonylation reactions, resulting in the formation of branched and linear esters respectively.

In this chapter, the synthesis of hemilabile ligands is reported. These have been utilized in the production of neutral and cationic palladium complexes. The aim was to make a range of cationic(benzoimidazol-2-yl) methyl amine Pd(II) complexes for application as
potential catalysts in the methoxycarbonylation of olefins. The methoxycarbonylation of a range of olefins by these catalysts will be discussed in chapter four.

3.2. **Experimental section**

3.2.1 **Materials and instrumentation**

All moisture and air sensitive reactions were performed under dry nitrogen positive pressure conditions. Methanol, acetone, diethyl ether, dichloromethane, absolute ethanol, ethyl acetate, DMSO-d$_6$, potassium iodide (KI), sodium hydroxide (NaOH) and potassium hydroxide (KOH) were purchased from Merck. Chloroform (CDCl$_3$) was purchased from Sigma Aldrich. The chemicals, 2-chloromethylbenzimidazole, aniline (≥99.5%), 2-methoxyaniline (≥99.5%), 2-aminothiophenol (≥99%), and 2-bromoaniline (98%) were purchased from Sigma Aldrich and were used without further purification. NaBAr$_4$ (Ar = 3,5-(CF$_3$)$_2$C$_6$H$_3$) was obtained from Boulder Scientific and used as received. Starting materials [PdCl$_2$(COD)]6 and [PdClMe(COD)]7 were synthesized following literature methods. Thin-layer chromatography analysis was carried out on silica gel 60 F$_{254}$ plates, eluting with the solvents indicated and visualized using a UV light. Column chromatography was performed using silica gel 60 PF$_{254}$.

Nuclear magnetic resonance spectra (NMR spectra) were acquired at 400 MHz for 1H, 100 MHz for 13C and 162 MHz for 31P on a Bruker avance spectrometer equipped with Bruker magnet (9.395 T). All the spectra were obtained at 25℃. The abbreviations s, d, t, q and m denote singlet, doublet, triplet, quartet and multiplet. The chemical shift in
nuclear magnetic spectroscopy are all in ppm relative to CHCl₃ δ_H: 7.26 ppm and δ¹³C: 77.6 ppm and DMSO-d₆ δ_H: 2.50 ppm. Coupling constants are measured in Hertz, Hz. Elemental analyses were carried out using CHNS-O Flash 2000 Thermoscientific analyzer. Mass spectral analyses were conducted using micromass LCT premier mass spectrometer with Thermo LTQ XL.
3.2.2 Synthesis of (benzoimidazol-2-ylmethyl) amine ligands

3.2.2.1 N-(1H-benzoimidazol-2-ylmethyl)-2-aniline(L1)

![Chemical structure]

2-(chloromethyl) benzimidazole (1.66 g, 10.0 mmols) was dissolved in ethanol (20 ml) before adding aniline (0.94 g, 10.0 mmols) and KI (1.66 g, 10.0 mmols). The solution was then refluxed at 80°C for 6 h. A solution of NaOH (0.40 g, 10 mmols) in a 1:1 water/ethanol mixture was added to the mixture and the reaction was further refluxed for 2 h, the solution was cooled to room temperature and poured into ice/water to give a pale yellow precipitate. The mixture was filtered and the solvent removed in vacuo to afford L1 as a brown solid. Yield = 1.25 g (56%). 1H NMR (CDCl$_3$): $^\delta$ (ppm): 4.65 (s, 2H, H$_a$); 6.61 (t, 1H, 3J$_{HH}$= 7.20 Hz, H$_b$); 6.70 (d, 2H, 3J$_{HH}$ = 7.90 Hz, H$_c$); 6.98 (t, 2H, 3J$_{HH}$ = 7.70 Hz, H$_d$); 7.38 (dd, 2H, 3J$_{HH}$ = 7.13 Hz, H$_e$); 7.68 (dd, 2H, 3J$_{HH}$ = 7.50 Hz, H$_f$). 8.30 (s, 1H, N-H). 13C NMR (DMSO-d$_6$): $^\delta$ 42.38; 112.92; 116.93; 121.73; 129.34; 129.93; 138; 148.92; 154.17. MS (ESI) m/z (%) 224 (M$^+$, 100). HRMS-ESI ([M$^+$-H$^+$]): m/z calc: 223.1; found: 222.1.
3.2.2.2

N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline (L2)

2-(chloromethyl) benzimidazole (1.68g, 10.3 mmol), 2-methoxyaniline (0.86 ml, 7.26 mmol) and KI (1.67g, 10.0 mmol) were dissolved in 50.0 ml of absolute ethanol and refluxed at 80°C for 6 h. KOH (0.44 g, 7.88 mmol) was dissolved in water and ethanol and was added to the mixture and refluxed for 2 h at 80 °C. The resultant solution was poured into ice/water and filtered. The sticky brown product was dissolved in methanol and evaporated in vacuo. The resultant brown product was purified by column chromatography using ethyl acetate: hexane (5: 3) to give L2 as an analytically pure solid. Yield = 0.99 g (48%).

H NMR (CDCl₃): δ (ppm):

- 3.80 (s, 3H, Hₐ)
- 4.65 (s, 2H, Hₖ)
- 6.58 (d, 1H, J_HH = 6.90 Hz, Hₗ)
- 6.76 (m, 4H, Hₘ, Hₙ, and Hₒ)
- 7.24 (dd, 2H, J_HH = 5.40 Hz, Hₖ)
- 7.54 (dd, 2H, J_HH = 2.00 Hz, Hₗ)
- 8.75 (s, 1H, N-H)

C NMR (DMSO-d₆): δ

- 42.20
- 55.77
- 110.00
- 110.26
- 116.88
- 121.44
- 138.08
- 147.07
- 154.06

MS (ESI) m/z (%): 254 (M⁺, 100).

HRMS-ESI ([M + Na⁺]: m/z calc: 276.3; found: 276.1.
Compound **L3** was prepared according to the procedure described for **L1** using 2(chloromethyl) benzimidazole (0.93 g, 5.58 mmol), 2-aminothiophenol (0.60 ml, 5.58 mmol), KI (0.92 g, 5.59 mmol) and KOH (0.32 g, 7.88 mmol). The crude product was dissolved in CH$_2$Cl$_2$ (20 ml), filtered off and the solvent removed to afford **L3** as a yellow solid. Yield = 1.39 g (89%). 1H NMR (CDCl$_3$): H (ppm): 4.20 (s, 2H, H$_a$); 5.56 (s, 1H, S-H); 6.53 (t, 1H, 3J$_{HH}$ = 7.88, H$_b$); 6.64 (d, 1H, 3J$_{HH}$ = 6.30, H$_c$); 6.72 (d, 1H, 3J$_{HH}$ = 8.93, H$_d$); 7.01 (t, 1H, 3J$_{HH}$ = 7.35, H$_e$); 7.24 (dd, 2H, 3J$_{HH}$ = 7.88, H$_f$); 7.52 (dd, 2H, 3J$_{HH}$ = 5.25, H$_g$). 8.25 (s, 1H, N-H). 13C NMR (DMSO-d$_6$): δ 32.06; 114.95; 115.48; 116.54; 130.23; 131.59; 135.46; 135.86; 149.75; 150.20; 151.93. MS (ESI) m/z (%) 257 (M$^+$, 100). HRMS-ESI ([M$^+$- H$^+$]): m/z calc: 254.33; found: 254.12.
Compound L4 was prepared according to the procedure described for L1 using 2(chloromethyl) benzimidazole (1.08 g, 6.45 mmol), 2-bromothiophenol (1.11 ml, 6.45 mmol), KI (0.73 g, 6.45 mmol) and KOH (0.37 g, 6.45 mmol). Mixture was poured into ice/water; this resulted in the formation of a bright yellow precipitate. The precipitate was dissolved in methanol and filtered. The resultant filtrate was evaporated in vacuo. The product was purified by column chromatography using 5:1 diethyl ether: hexane solvent system to yield L4 as a pale yellow precipitate. Yield = 1.53 g (79%). ▼ H NMR (DMSO-d$_6$): δ 4.60 (s, 2H, H$	ext{a}$); 5.94 (t, 1H, $^3J_{HH}$ = 7.11, H$	ext{b}$); 6.66 (t, 1H, $^3J_{HH}$ = 8.29, H$	ext{c}$); 6.67 (d, 1H, $^3J_{HH}$ = 1.50, H$	ext{d}$); 7.12 (d, 1H, $^3J_{HH}$ = 2.81, H$	ext{e}$); 7.14 (d, 2H, $^3J_{HH}$ = 3.43, H$	ext{f}$); 7.44 (d, 2H, $^3J_{HH}$ = 1.70, H$	ext{g}$). ▼ C NMR (DMSO-d$_6$): 55.36; 109.26; 112.08; 118.31; 121.90; 129.09; 132.73; 145.22; 153.34. MS (ESI) m/z (%) 302 (M$^+$ + H, 100). HRMS-ESI ([M$^+$]): m/z calc: 302.22; found: 302.01.
3.2.3 Synthesis of neutral and cationic complexes

3.2.3.1 Syntheses of neutral complexes

3.2.3.1.1 \([\{N-(1H-benzoimidazol-2-ylmethyl)-2-aniline\}PdCl_2\} \) (C1)

![Chemical structure of C1](image)

To a solution of \(L1\) (0.10 g, 0.45 mmol) in CH\(_2\)Cl\(_2\) (10 ml) was added a solution of [Pd(COD)Cl\(_2\)] (0.13 g, 0.45 mmol) in CH\(_2\)Cl\(_2\) (10 ml). The mixture was stirred overnight under nitrogen, filtered and the material isolated recrystallized from CH\(_2\)Cl\(_2\)-hexane to give a light yellow solid. Yield = 0.13 g (80%). \(^1\)H NMR (DMSO): \(\delta\) (ppm): 4.58 (s, 2H, Ha); 6.62 (t, 1H, \(^3\)J\(HH\) = 4.70, Hb); 6.78 (d, 2H, \(^3\)J\(HH\) = 7.50, Hc); 7.26 (t, 2H, \(^3\)J\(HH\) = 5.09, Hd); 7.38 (dd, 2H, \(^3\)J\(HH\) = 7.83, He); 7.46 (dd, 2H, \(^3\)J\(HH\) = 8.22, Hf); 13.28 (s, 1H, N-H). \(^{13}\)C NMR (DMSO-d\(_6\)): 42.31; 113.56; 115.33; 117.20; 123.00; 129.65; 137.91; 138.90; 143.50. MS (ESI) m/z (%) 224 (M+- Cl\(_2\) - Pd, 92%). Anal. Calc. for C\(_{14}\)H\(_{13}\)N\(_3\)PdCl\(_2\): C, 41.97; H, 3.27; N, 10.49. Found: C, 41.92; H, 3.88; N, 10.99.
Complex C2 was synthesized following the procedure described for C1. L1 (0.20 g, 0.89 mmol) in Et₂O (10 mL) and [PdCl(COD)Me] (0.21 g, 0.89 mmol) in Et₂O (10 mL). The material was isolated, recrystallized from CH₂Cl₂-hexane to give a light yellow solid. Yield = 0.218 g (87%). ¹H NMR (CDCl₃): δH (ppm): 0.82 (s, 3H, Hₐ); 5.50 (s, 2H, Hₖ); 6.63 (d, 2H, ³Jₜₖ = 6.74, H₂); 6.78 (t, 1H, ³Jₜₖ = 7.58, H₃); 7.07 (t, 2H, ³Jₜₖ = 3.21, Hₜ); 7.33 (dd, 2H, ³Jₜₖ = 5.90, Hₙ); 7.50 (dd, 2H, ³Jₜₖ = 7.75, Hₚ); 13.15 (s, 1H, N-H). MS (ESI) m/z (%) 224 (M+ - Cl₂-Pd, 85%). Anal. Calc. for C₁₅H₁₆N₃PdCl: C, 47.39; H, 4.24; N, 11.05. Found: C, 48.93; H, 4.04; N, 10.99.
3.2.3.1.3 \([\{\text{N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyanilin}e\}\text{PdCl}_2]\) (C3)

Complex C3 was synthesized following the procedure described for C1 using L2 (0.20 g, 0.83) and [Pd(COD)Cl2] (0.22 g, 0.83 mmol) in CH2Cl2 (10 mL). Yield = 0.27 g (77%). 1H NMR (DMSO): H (ppm): 0.78 (s, 3H, Ha); 4.90 (s, 2H, Hb); 6.48 – 6.57 (d, 1H, \(3^J_{HH} = 7.60, \) Hc); 6.59 (t, 1H, \(3^J_{HH} = 5.36, \) Hd); 6.61(d, 1H, \(3^J_{HH} = 4.98, \) He); 6.69 (d, 1H, \(3^J_{HH} = 6.51, \) Hf); 6.84 (dd, 2H, \(3^J_{HH} = 4.80, \) Hg); 7.07 (dd, 2H, \(3^J_{HH} = 7.66, \) Hh); 13.18 (s, 1H, N-H). 13C NMR (DMSO-d6): 36.50; 55.99; 114.10; 115.40; 118.25; 121.95; 123.01; 129.10; 137.93; 138.65; 141.55; 144.77. MS (ESI) m/z (%) 254 (M+-Cl2-Pd, 100%). Anal. Calc. for C15H13N3PdCl2.075CH2Cl2: C, 38.97; H, 3.06; N, 8.66. Found: C, 39.01; H, 3.66; N, 8.76.
3.2.3.1.4 \([N-(1H\text{-}benzoimidazol-2-ylmethyl})\text{-}2\text{methoxyaniline}]\text{PdClMe}\) (C4)

Complex C4 was synthesized following the procedure described for C1 using L2 (0.10 g, 0.41 mmol) and \([\text{PdCl(COD)Me}]\) (0.10 g, 0.350 mmol) in Et2O (10 mL). Yield = 0.09 g (63\%). \(^1\text{H} \text{NMR (DMSO-d}_6\text{)}\): \(\text{H} (\text{ppm})\): 0.78 (s, 3H, H\text{a}); 3.84 (s, 3H, H\text{b}); 4.91 (s, 2H, H\text{c}); 5.17 (s, 2H, H\text{c}); 6.50 (d, 1H, \(3\text{J}_{\text{HH}}=3.74\), H\text{d}); 6.58 (t, 1H, \(3\text{J}_{\text{HH}}=3.21\), H\text{e}); 6.69 (d, 1H, \(3\text{J}_{\text{HH}}=3.34\), H\text{i}); 6.81 (t, 1H, \(3\text{J}_{\text{HH}}=5.23\), H\text{g}); 7.35 (dd, 2H, \(3\text{J}_{\text{HH}}=6.86\), H\text{h}); 7.51 (dd, 2H, \(3\text{J}_{\text{HH}}=7.77\), H\text{i}). 13\text{C} \text{NMR (DMSO-d}_6\text{)}: 28.30; 45.88; 55.99; 114.30; 115.10; 115.35; 118.20; 121.90; 123.00; 129.10; 137.85; 138.70; 141.50; 144.70. MS (ESI) \text{m/z} (%) 254 (M+ - Cl2 - Pd, 97\%). Anal. Calc. for C\text{16}H\text{18}N\text{3}PdClO: C, 46.85; H, 4.42; N, 10.24. Found: C, 47.11; H, 4.11; N, 8.58.
Complex C5 was prepared according to the procedure for C1 using L4 (0.10 g, 0.33 mmol) and [Pd(COD)Cl2] (0.086 g, 0.33 mmol) CH2Cl2 (10 mL). Yield = 0.08 g (51%).

1H NMR (DMSO-d6): δ (ppm): 5.11 (s, 2H, H-a); 6.30 (d, 1H, 3JHH = 5.56, H-b); 6.61 (t, 1H, 3JHH = 8.70, H-c); 7.02 (t, 1H, 3JHH = 7.67, H-d); 7.32 (dd, 1H, 3JHH = 7.63, H-e); 7.38 (dd, 2H, 3JHH = 7.53, H-f); 7.48 (d, 2H, 3JHH = 7.98, H-g); 13.25 (s, 1H, N-H). 13C NMR (DMSO-d6): 37.33; 114.85; 115.30; 115.99; 119.48; 123.00; 128.88; 132.50; 137.90; 138.86; 141.55; 146.90. MS (ESI) m/z (%) 482 (M$^+$-2H, 12%). Anal. Calc. for C14H12N3BrPdCl2.0.25 CH2Cl2: C, 34.18; H, 2.52; N, 8.39. Found: C, 34.37; H, 2.51; N, 8.05
3.2.3.1.6 \[[N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline]PdClMe\] (C6)

Complex C6 was prepared according to the procedure for C2 using L4 (0.10 g, 0.34 mmol) and [PdCl(COD)Me] (0.10 g, 0.34 mmol). Yield = 0.09 (58%) \[^1\text{H}\text{NMR (DMSO-d}_6\text{):}\]

\[
\delta_{\text{H}} \text{ (ppm): 0.80 (s, 3H, H}_a); 4.61 (s, 2H, H}_b); 5.01 (s, 2H, H}_b); 6.27 (d, 1H, J_{HH} = 6.67, H}_c); 6.56 (t, 1H, J_{HH} = 5.64, H}_d); 7.06 (t, 1H, J_{HH} = 6.77, H}_e); 7.15 (d, 1H, J_{HH} = 7.89, H}_f); 7.31 (dd, 2H, J_{HH} = 6.78, H}_g); 7.48 (dd, 2H, J_{HH} = 7.33, H}_h); 13.01 (s, 1H, \text{N-H}). MS (ESI) m/z (%) 482 (M^+ - Cl, 22%).
\]

Anal. Calc. for C_{15}H_{15}N_{3}BrPdCl: C, 39.24; H, 3.29; N, 9.15. Found: C, 38.94; H, 3.87; N, 8.99.
3.2.3.2 Syntheses of cationic complexes

3.2.3.2.1 $[\{N-(1H-benzoimidazol-2-ylmethyl)-2-aniline\}PdCl(PPh_3)]\text{BAR}_4$ \text{(C7)}

To a suspension of C1 (0.036 g, 0.090 mmol) in CH_2Cl_2 (10 mL), PPh_3 (0.023 g, 0.09 mmol) and NaBAR_4 (Ar_4 = 3,5-(CF_3)_2C_6H_3) (0.080 g, 0.090 mmol) were added and stirred under inert atmosphere for 24 h. The reaction mixture was filtered to remove NaCl and the filtrate concentrated to approximately 3 mL and recrystallized from hexane: CH_2Cl_2. C7 was obtained as a yellow crystalline solid. Yield = 0.060 g (83%). \(^1\text{H NMR (CDCl}_3\): \(\delta\) (ppm): 5.61 (s, 2H, CH_2), 6.51 (d, 2H, Ph-aniline), 6.57 (t, 1H, Ph-aniline), 6.59 (d, 2H, Ph-aniline), 7.17 (6H, PPh_3), 7.25 (d, 2H, Bzim), 7.37 (8H, BAR_4), 7.56 (9H, PPh_3), 7.71 (4H, BAR_4), 7.74 (d, 2H, Bzim). 9.52 (s, 1H, N-H). \(^3\text{P NMR (CDCl}_3\): \(\delta\) (ppm): 35.1, 29.6. Anal. Calc. for C_{64}H_{43}BCIF_{24}N_3PPd: C, 51.50; H, 2.90; N, 2.80. Found: C, 51.41; H, 2.98; N, 3.01.
3.2.3.2.2 \([N-(1H\text{-}benzimidazol\text{-}2\text{-}ylmethyl})\text{-}2\text{-}aniline]PdMe(PPh₃)]BAr₄ (C8)

Complex C8 was prepared following the same procedure described for C7. C2 (0.034 g, 0.09 mmol), PPh₃ (0.023 g, 0.090 mmol) and NaBAr₄ (Ar₄ = 3,5-(CF₃)₂C₆H₃) (0.080 g, 0.090 mmol) were used. Yield = 0.050 g (71%). \(^1\)H NMR (CDCl₃): \(^1\)H (ppm): 1.29 (s, 3H, CH₃), 5.61 (s, 2H, CH₂), 6.12 (t, 1H, Ph-aniline), 6.27 (d, 2H, Ph-aniline), 7.08 (d, 2H, Ph-aniline), 7.19 (6H, PPh₃), 7.35 (d, 2H, Bzim), 7.44 (8H, BAr₄), 7.50 (9H, PPh₃), 7.71 (4H, BAr₄), 7.73 (d, 2H, Bzim). 9.75 (s, 1H, N-H). \(^{31}\)P NMR (CDCl₃): \(^{31}\)P (ppm): 37.8. Anal. Calc. for C₆₅H₄₅BF₂₉N₃Pd: C, 53.10; H, 2.95; N, 2.86. Found: C, 53.26; H, 2.65; N, 2.81.
Complex C9 was prepared according to the procedure for C7 using C3 (0.038 g, 0.090 mmol), PPh3 (0.023 g, 0.090 mmol) and NaBAR4(Ar₄ = 3,5-(CF₃)₂C₆H₃) (0.08 g, 0.090 mmol). Yield = 0.062 g (83%). ³¹H NMR (CDCl₃): δH (ppm): 3.40 (s, 3H, CH₃), 5.49 (s, 2H, CH₂), 6.60 (d, 1H, Ph-aniline), 6.73 (t, 1H, Ph-aniline), 6.83 (d, 1H, Ph-aniline), 6.89 (t, 1H, Ph-aniline), 7.21 (6H, PPh₃), 7.29 (d, 2H, Bzim), 7.43 (8H, BAR₄), 7.52 (9H, PPh₃), 7.73 (4H, BAR₄), 7.74 (d, 2H, Bzim). 10.02 (s, 1H, N-H).³¹PNMR (CDCl₃): δ (ppm): 38.6, 30.7.

3.2.3.2.4 [[N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline]PdMe(PPh₃)]

BAr₄ (C10)

Complex C10 was prepared according to the procedure for C7 using C4 (0.018 g, 0.09 mmol), PPh₃ (0.011 g, 0.090 mmol) and NaBAR₄ (Ar₄ = 3,5-(CF₃)₂C₆H₃) (0.037 g, 0.09 mmol). Yield = 0.082 g (81%). ¹H NMR (CDCl₃): H (ppm): 0.95 (s, 3H, CH₃), 3.43 (s, 3H, OCH₃), 5.52 (s, 2H, CH₂), 6.47 (d, 1H, Ph-aniline), 6.69 (t, 1H, Ph-aniline), 6.75 (d, 1H, Ph-aniline), 6.98 (t, 1H, Ph-aniline), 7.21 (6H, PPh₃), 7.34 (d, 2H, Bzim), 7.36 (8H, BAr₄), 7.50 (9H, PPh₃), 7.71 (4H, BAr₄), 7.72 (d, 2H, Bzim), 9.06 (s, 1H, N-H). ³¹P NMR (CDCl₃) δH (ppm): 30.7. Anal. Calc. for C₆₆H₄₅BF₂₄ON₃PPd: C, 52.46; H, 3.05; N, 2.82. Found: C, 52.94; H, 1.39; N, 3.09.
3.2.3.2.5 \([\{N-(1H\text{-}benzoimidazol\text{-}2\text{-}ylmethyl}\text{-}2\text{-}bromoaniline}\text{PdMe(PPh}_3\text{)}]\) \(\text{BAR}_4\) (C11)

Complex C11 was prepared according to the same procedure for C7 using C6 (0.041 g, 0.09 mmol), PPh\(_3\)(0.023 g, 0.090 mmol) and NaBAR\(_4\) (Ar\(_4\) = 3,5-(CF\(_3\))\(_2\)C\(_6\)H\(_3\)) (0.08 g, 0.09 mmol). Yield = 0.06 g (76\%). \(^1\)H NMR (CDCl\(_3\)): \(\delta\) (ppm): 0.98 (s, 3H, CH\(_3\)), 5.65 (s, 2H, CH\(_2\)), 6.33 (d, 1H, Ph-aniline), 6.60 (t, 1H, Ph-aniline), 7.10 (d, 1H, Ph-aniline), 7.20 (t, 1H, Ph-aniline), 7.25 (6H, PPh\(_3\)), 7.38 (d, 2H, Bzim), 7.40 (8H, BAR\(_4\)), 7.59 (9H, PPh\(_3\)), 7.63 (d, 2H, Bzim), 7.74 (4H, BAR\(_4\)), 9.03 (s, 1H, N-H) \(^{31}\)P NMR (CDCl\(_3\)): 30.6. Anal. Calc. for C\(_{65}\)H\(_{45}\)BBF\(_{24}\)N\(_3\)PPd: C, 50.30; H, 2.92; N, 2.70. Found: C, 50.61; H, 2.72; N, 2.87.
3.3. Results and discussion

3.3.1. Synthesis and characterization of Pd complexes

Compounds L1 – L4 were prepared by reaction of 2(chloromethyl) benzoimidazole with the appropriate aniline derivative and was obtained in low to good yields (48 – 89%) Scheme 3.1 following the literature procedure.5,8 L2 was obtained in low yields (48%) possibly due to purification by column chromatography. L1 and L3 did not require any purification and were thus obtained in high yields.

Scheme 3.1: Synthesis of the (benzoimidazol-2-ylmethyl) amine ligands.

Reactions of compounds L1 - L4 with either [PdCl\textsubscript{2}(COD)] or [PdClMe(COD)] produced the corresponding neutral complexes C1-C6 in low to good yields (38-87%), Scheme 3.2.9
Scheme 3.2: Synthesis of the neutral palladium complexes.

To generate the cationic species, that could be readily used as methoxycarbonylation catalysts, were treated with 1 equivalent of NaBAr₄ (Ar = 3,5-(CF₃)₂C₆H₃) in the presence of triphenylphosphine (PPh₃) to afford complexes in good to high yields (66 – 97%), Scheme 3.3.

Scheme 3.3: Synthesis of the cationic palladium complexes.
All the new compounds synthesized were characterized by 1H, 13C (for all the ligands and some of the complexes) and 31P NMR spectroscopies, mass spectrometry (for some of the complexes), elemental analyses and single X-ray crystallography for C8a, C9a and C11a. 1H NMR spectra of L1, L2, L3 and L4 gave signature peaks of the CH$_2$’s protons as singlets at 4.86, 4.65, 4.20 and 4.60 ppm respectively. For L2, an upfield peak at 3.86 ppm was observed in the 1H NMR spectrum which was assigned to the OCH$_3$ protons. The aromatic protons for L1, L2, L3 and L4 were observed further downfield between 5.94 – 7.69 ppm. 13C NMR spectra of L1 – L4 were consistent with 1H NMR data. For instance L1 – L4 showed upfield peaks at 42.38, 42.20, 55.77 and 55.36 ppm assigned to the CH$_2$ carbon. In addition, L2 gave a signal at 55.77 ppm corresponding to the OCH$_3$ carbon.

The CH$_2$ peaks were demonstrative in the next step to verify complexation of the (benzoimidazol-2-ylmethyl) amine ligands to the palladium salts. For example, the 1H NMR spectra of L4 and corresponding complex C5 (Figure 3.1) showed downfield shift of CH$_2$ protons at 5.11 ppm in complex C5 compared to 4.60 ppm in L4 indicating that complexation has occurred. Similar trends were observed for all the complexes and their corresponding ligands.
Figure 3.1: 1H NMR spectrum of L4 and complex C5 showing a shift in the CH$_2$ and aromatic protons in the respective compounds.

One interesting observation in the 1H NMR data was the appearance of broad signals for CH$_2$ at 4.61 ppm and 5.01 ppm for complex C6 (Figure 3.2). Similar trend was recorded for complex C4. In addition, two sets of aromatic protons were also reported. This reveals the presence of two isomers, which may arise from unsymmetrical nature of complexes C4 and C6 due to Pd-Me bond as opposed to the symmetric PdCl$_2$ in complex C5. This observation was also reported by Ojwach and co-workers10 using (pyrazol-1-ylmethyl)pyridine palladium complexes, where two signals for the CH$_2$ linker protons were discovered at about 5.28 and 5.58 ppm.10 Figure 3.2 shows 1H NMR spectrum of complex C6 respectively that illustrates the above discussion.
Figure 3.2: 1H NMR spectrum of complex C6 showing CH$_2$ protons as broad peaks.

1H NMR spectroscopy was also used to deduce the formation of the cationic complexes. For instance; the CH$_3$ and CH$_2$ signals for complex C8 were recorded at 1.28 ppm and 6.22 ppm respectively, compared to upfield signals at 0.81 ppm and 5.12 observed in the corresponding neutral complex C2 (Figure 3.3). In addition aromatic signals at 7.15 & 7.50 ppm and 7.44 & 7.71 ppm confirmed the presence of PPh$_3$ and BAr$_4^-$ groups.11
The cationic complexes C7–C11 were further characterized by 31P NMR in order to determine the presence and nature of the coordination of PPh$_3$ ligand upon chloride abstraction. Complexes C8, C10 and C11 containing Pd-Me bonds displayed singlets between 30.6 – 37.8 ppm. This data was consistent with typical values of between 30.59 - 35.70 ppm observed for a range of mono-coordinated PPh$_3$ compounds. Figure 3.4 shows the 31P NMR spectrum for complex C8.
Figure 3.4: 31PNMR spectra of C8 in CDCl$_3$ solution showing a singlet peak.

Interestingly, instead of a single signal, the 31PNMR spectrum of the cationic chloride-coordinated Pd compounds C7 and C9 (Figure 3.5) showed two signals at about 29.60 – 38.60 ppm. From Figure 3.5, the 31P NMR spectra of complex C9 gave two signals at 30.69 and 38.62 ppm. This observation might be due to the existence of cis (P cis N) and trans (P trans N) isomers in the CDCl$_3$ solvent used to acquire the NMR data. The reason why this phenomenon was not observed for the Pd-Me complexes is still unclear to us.
Figure 3.5: 31PNMR spectra of C9 in CDCl$_3$ solution showing two peaks.

The compounds were also characterized by electron-spray ionization mass spectrometry (ESI-MS). For example complex C6 showed fragmentation pattern consistent with the loss of Cl$^-$ ion (m/z = 423.96) (Figure 3.6). This was followed by the loss of PdMeCl fragment to produce a peak at m/z = 304 corresponding to L4 (Figure 3.6). However, C1 – C4 showed the fragment peak corresponding to the ligand (M$^+$-Cl$_2$-Pd). Even though the presence of the ligand does not confirm complex formation but does indicate complexation (complex = ligand + metal).
Complexes C1 – C11 were also characterized by elemental analysis. Micro-analyses results were found to be in satisfactory agreement with the calculated data for the proposed structures of C1 – C11 shown in Scheme 3.2 and proved the purity of the compounds. However, elemental analysis for C2 did not meet the anticipated purity standards even after further purification. The micro-analyses data for C7 – C11 were consistent with one ligand unit and one PPh$_3$ per Pd-metal in the coordination sphere. This rules out the possible presence of two phosphine ligands within the complex coordination sphere [Pd(L)X(PPh$_3$)$_2$] (X = Cl or Me) in the bulk material.
3.4 Solid state structure of complexes C8a, C9b and C11c

In order to verify the proposed coordination modes of (benzoimidazol-2-ylmethyl) amine ligands, solid state structures of complexes C8a, C9 and C11a were determined. A summary of crystallographic data and structure refinement parameters for C11a is represented in Table 3.1, while Table 3.2 contains selected bond lengths and angles for C11a. Solid state structures of C8a, C9a and C11a are shown in Figures 3.7–3.9 respectively. Complex C11a crystallizes in the triclinic space group P-1 with Z = 2. The structure of C11a (Figure 3.7) showed that the (benzoimidazol-2-ylmethyl) amine ligand is coordinated to Pd in a monodentate fashion via Bzim-Nitrogen N(2). Also, two triphenylphosphines are coordinated to Pd(II) center and are trans to each other. The distorted square geometry is completed by a CH3 ligand trans to N(2) of the benzoimidazolylmethyl amine ligand. The bond length of Pd(01)-N(2) of 2.1290 (19) Å, is very similar to that observed in other palladium (II) complexes.19–20 In addition, Pd(01)-P(003) and Pd(01)-P(004) bond lengths of 2.3003 (8) and 2.3311 (8) Å, respectively are in agreement with other structurally characterized palladium phosphine complexes.20–22 Significant distortions for the ideal square planar geometry were evident both in bond angles of N(2)-Pd(01)-P(003) of 94.19(5)° and C(1)-Pd(01)-P(004) of 87.54(7)°, respectively, arising from the steric demands of the two bulkier PPh3 groups.
The quality of the crystals data and refinement parameters for \textbf{C8a} (Figure 3.8) and \textbf{C9a} (Figure 3.9) were not good enough for discussion of bond parameters. The coordination chemistry and atom connectivity was however, not in doubt.

Table 3.1. Crystal data and structure refinement parameters for \textbf{C11a}

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C83 H57 B Br F24 N3 P2 Pd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1811.38</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P-1</td>
</tr>
<tr>
<td>Volume</td>
<td>3848(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.12 x 0.07 x 0.05</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>0.908</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.09 to 26.03°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-17<=h<=16, -18<=k<=18, -24<=l<=24</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>57888</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0321</td>
</tr>
<tr>
<td>Completeness to theta = 25.00°</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9560 and 0.8989</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>15010 / 0 / 1045</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.026</td>
</tr>
<tr>
<td>(R^1), (wR^2) [(I > 2\sigma(I))]</td>
<td>0.0351, 0.0782</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.027 and -1.643 e.Å⁻³</td>
</tr>
</tbody>
</table>

\(aR1 = \sum |F_0| - |F_c| / \sum F_0. \)

\(bR2 = \left[\sum [w(F_0^2 - F_c^2)]^2 \right] ^{1/2} / \sum [w(F_0^2)]^{1/2}. \)
Table 3.2. Selected bond lengths [Å] and bond angles [°] for C11a

<table>
<thead>
<tr>
<th>Bond Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(01)-C(1)</td>
<td>2.069(2)</td>
</tr>
<tr>
<td>Pd(01)-N(2)</td>
<td>2.1290(19)</td>
</tr>
<tr>
<td>Pd(01)-P(003)</td>
<td>2.3003(8)</td>
</tr>
<tr>
<td>Pd(01)-P(004)</td>
<td>2.3311(8)</td>
</tr>
<tr>
<td>C(1)-P(003)</td>
<td>2.049(18)</td>
</tr>
<tr>
<td>C(1)-P(004)</td>
<td>2.049(18)</td>
</tr>
</tbody>
</table>

C(1)-Pd(01)-N(2) 178.97(9) C(1)-Pd(01)-P(003) 85.13(7)
N(2)-Pd(01)-P(003) 93.16(5) N(2)-Pd(01)-P(004) 94.19(5)
C(1)-Pd(01)-P(004) 87.54(7) C(1)-Pd(01)-P(004) 87.54(7)

Figure 3.7: Crystal structure for [[N-(1H-benzoimidazol-2-ylmethyl)-2-bromoaniline] [PdMe(PPh3)2] BAr4 (C11a).
Figure 3.8: Crystal structure for \([\text{[N-(1H-benzoimidazol-2-ylmethyl)-2-aniline]} \text{[PdMe(PPh}_3\text{)}_2]\text{BAR}_4 (\text{C8a})]\).

Figure 3.9: Crystal structure for \([\text{[N-(1H-benzoimidazol-2-ylmethyl)-2-methoxyaniline]} \text{[PdCl(PPh}_3\text{)}_2]\text{BAR}_4 (\text{C9a})]\).

The hemilability nature of the benzoimidazolyl amine ligands resulted in one coordinating group of the secondary amine \(N-H\) functionality linking the aromatic ring
being easily displaced from the palladium metal center during crystallization, while the other \(N \) atom remained firmly bound. Similar results were obtained by Attandoh et al.5 using the same benzoimidazolyl amine ligands. However these results are in disagreement with the elemental analyses and \(^{31}\text{P} \) NMR data which correspond to one \(\text{PPh}_3 \) group in the proposed structures. Thus it is reasonable to deduce that the change in coordination chemistry occur during crystallization process.

3.5 Conclusion

In conclusion, four benzoimidazolyl amine ligand derivatives (\(\text{L1–L4} \)) were synthesized and fully characterized by NMR techniques and high resolution mass spectroscopy. Reactions of benzoimidazolyl amine ligands (\(\text{L1–L4} \)) with either [\(\text{PdClMe(COD)} \)] or [\(\text{PdCl}_2(\text{COD}) \)] gave the corresponding Pd(II) complexes (\(\text{C1–C6} \)) in good yields. Treatment of palladium complexes (\(\text{C1–C6} \)) with one equivalent of \(\text{PPh}_3 \) in the presence of \(\text{NaBAr}_4 \) (\(\text{Ar}_4 = 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3 \)), afforded the cationic complexes (\(\text{C7–C11} \)) respectively, in good yields, respectively. The solid state structures of \(\text{C8a, C9a} \) and \(\text{C11a} \) showed that the benzoimidazolyl amine ligands are coordinated to Pd(II) in a monodentate fashion via Bzim-Nitrogen donor. The presence of two \(\text{PPh}_3 \) groups in trans-position and monodentate coordination of ligands \(\text{L1–L4} \) confirmed the hemilability of the potentially bidentate ligands \(\text{L1–L4} \).
References

CHAPTER FOUR

Methoxycarbonylation of olefins catalyzed by (Benzoimidazol-2-yl) methyl amine Pd complexes.

4.1 Introduction

The literature review presented in Chapter 2 indicates that Pd catalysts are among the best candidates for methoxycarbonylation of olefins. In recent years, a number of palladium complexes containing varied ligand architectures have been reported to show high activity as well as selectivity for methoxycarbonylation of olefins such as styrene\(^1\), 1-hexene\(^2\) or ethene\(^3\) under mild reaction conditions. Under low partial pressures of carbon monoxide and moderate temperatures, some of these catalyst systems show high regioselectivity (>90 \(^\circ\)) to branched isomers.\(^4\)\(^-\)\(^12\) Toniolo and Cavinato employed \([\text{PdCl}_2(\text{PPh}_3)_2]\)\(^{13}\)\(^-\)\(^14\) in the presence of HCl as an acid promoter\(^{15}\)\(^-\)\(^16\) and PPh\(_3\) to enhance stability and avoid catalyst decomposition to palladium black. Other palladium based catalysts of the type \([\text{PdCl}_2(\text{Ph}_2\text{PNHpy}-k^2\text{P,N})]\) and \([\text{PdCl}(\text{Ph}_2\text{PNHpy}-k^2\text{P,N})(\text{PPh}_3)]\)Cl in the presence of PPh\(_3\) and p-TsOH as an acid promoter were found to be active in the methoxycarbonylation of styrene. However, they were less active in 1-hexene and cyclohexene reactions.\(^2\)

In this Chapter, experimental results on the catalytic evaluation of some of the palladium complexes synthesized in chapter 3 (Scheme 4.1) in the methoxycarbonylation of styrene, 1-hexene, 1-octene, 1-nonene and 1-decene are
discussed. The effects of catalyst design, identity of substrate, reaction conditions such as temperature, pressure and nature of acid promoter have been systematically studied and are herein reported.

![Palladium complexes used for the methoxycarbonylation reactions.](image)

Scheme 4.1: Palladium complexes used for the methoxycarbonylation reactions.

4.2 Experimental

4.2.1 Materials and instrumentation

The catalytic methoxycarbonylation of olefins were performed in a stainless steel autoclave equipped with a temperature control unit and a sampling valve. Styrene, C6 – C10 α-oleifns, p-TsOH, hydrochloric acid (HCl), oxalic acid, sulfuric acid (H2SO4), HBr and PPh3 were obtained from Sigma Aldrich. Toluene and methanol were purchased from Merck chemicals. The palladium complexes used were prepared in chapter 3. GC-MS analyses were run under the following standard chromatography conditions: -25 m CPSil 19 capillary column, 1.2 mm film thickness, Helium carrier column gas 5 psi,
injector temperature 250 °C, oven program 50 °C for 4 minutes rising to 200 °C at 20 °C/min and holding at 200 °C.

4.2.2 General procedure for the methoxycarbonylation reactions

The catalytic methoxycarbonylation reactions were performed in a stainless steel autoclave equipped with temperature control unit and a sample valve. In a typical experiment, C10 (48.78 mg, 0.0799 mmol), PPh3 (41.95 mg, 0.160 mmol), HCl (0.0247 mL, 0.799 mmol) and 1-hexene (2 mL, 15.93 mmol) were dissolved in a mixture of methanol (20 mL) and toluene (40 mL). The reactor was evacuated and the catalytic solution was introduced to the reactor. The reactor was purged three times with CO, and then set at the required pressure, heated to the desired temperature and the reaction initiated by stirring at 500 rpm. At the end of the reaction time, the reaction was cooled, CO was vented off and the samples were taken for GC analysis to determine the changes in concentration of reactants and products. GC-MS was also used to determine the molecular weights and identity of the resulting esters. The branched and linear esters were assigned using authentic samples.
4.3 Results and discussion

4.3.1 Catalytic screening of palladium complexes in methoxycarbonylation reactions

Preliminary evaluation of complexes C2, C4, C6, C8-C11 in the methoxycarbonylation of 1-hexene were performed at 60 bar of CO, 90 °C and [1-hexene]: HCl: [Pd] = 200: 10: 1 (Scheme 4.2). The major products were methyl heptanoate (linear product 1) and methyl 2-methylhexanoate (branched product 2).

Scheme 4.2: Major products obtained in the methoxycarbonylation of 1-hexene.

The methoxycarbonylation products were characterized by gas chromatography and GC-MS. Figures 4.1 and 4.2 represent a typical GC and GC-MS trace for 1-hexene respectively. From Figure 4.2, m/z peak at 145.12 was observed at 4.70 and 5.19 minutes corresponding to both methyl heptanoate (linear product) and methyl 2-methylhexanoate (branched product). Similar GC-MS spectra were observed for all the substrates, acid catalysts.
Figure 4.1: GC spectra of methoxycarbonylation product obtained from 1-hexene using complex C10 (0.07 mmol), solvent: toluene (40 mL) and methanol (30 mL); Pd/1-hexene ratio, 200:1, Pd/HCl ratio; 1:10; P$_{CO}$ = 60 bar; temperature; 90°C; time 24 h.

Figure 4.2: GC spectra (A) and MS spectra for the branched ester (B) at a retention time of 4.70 min and linear ester (C) at a retention time of 5.19 min for 1-hexene using complex C10.
4.3.2 Effect of catalysts structure on methoxycarbonylation of 1-hexene

The catalytic activities of complexes C2, C4, C6, C8-C11 in the methoxycarbonylation of 1-hexene were studied in order to investigate the effect of complex structure on catalytic activity. The effect of ligand substituent in the phenyl group was observed to influence the catalytic activity. For example, complex C10 bearing electron donating OCH₃ group was the most active (Table 4.1, entries 7 and Figure 4.3), while the corresponding complex C11, containing the electron withdrawing Br substituent was the least active (Table 4.1, entry 8). This trend is consistent with OCH₃ resulting in very stable Pd(II) complexes while the Br substituent is likely to form unstable Pd(II) complexes and promotes the reduction of the catalytically active Pd(II) to less active Pd(I)/Pd(0) species.¹⁷-²⁰

Another factor that affected the catalytic activity was the Pd-Cl/Me bond on the complex structure. Complex C9 containing Pd-Cl bond showed lower catalytic activity (Table 4.1, entry 6, Figure 4.3) compared to C10 bearing Pd-Me bond which gave higher catalytic activity (Table 4.1, entry 7, Figure 4.3). The possible reason might be the ease of CO coordination and insertion into Pd-Me bond. Another reason would be the high stability exhibited by the PdCl₂ complexes hence not highly reactive towards the alkene substrate (do not easily dissociate to create a vacant site for substrate coordination).

We also compared the behavior of the neutral versus cationic palladium complexes. From the results obtained it was evident that the catalytic activity was higher for the neutral complexes. For example, the neutral complex C2 (78%) was the more active
(Table 4.1, entries 1), compared to the corresponding cationic complex C8 (47%), Table 4.1, entries 5. However, the neutral complex C4 (Table 4.1, entries 3) was comparable with its cationic analogue C10. This might be due to the higher activities of the methoxy containing complexes.

Table 4.1: Effect of catalyst structure in the methoxycarbonylation of 1-hexene.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>PPh\textsubscript{3}</th>
<th>Conversion (%)b</th>
<th>b/l ratio (%)c</th>
<th>TOF(h-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C2</td>
<td>2</td>
<td>78</td>
<td>41/59</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>C3</td>
<td>2</td>
<td>52</td>
<td>43/57</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>C4</td>
<td>2</td>
<td>80</td>
<td>40/60</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>C6</td>
<td>2</td>
<td>39</td>
<td>40/60</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>C8</td>
<td>2</td>
<td>47</td>
<td>32/68</td>
<td>3.9</td>
</tr>
<tr>
<td>6</td>
<td>C9</td>
<td>2</td>
<td>47</td>
<td>45/55</td>
<td>3.9</td>
</tr>
<tr>
<td>7</td>
<td>C10</td>
<td>2</td>
<td>86</td>
<td>37/63</td>
<td>7.1</td>
</tr>
<tr>
<td>8</td>
<td>C11</td>
<td>2</td>
<td>29</td>
<td>40/60</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>C8</td>
<td>-</td>
<td>15</td>
<td>55/45</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>C10</td>
<td>-</td>
<td>37</td>
<td>52/48</td>
<td>3.1</td>
</tr>
<tr>
<td>11</td>
<td>C11</td>
<td>-</td>
<td>10</td>
<td>68/32</td>
<td>0.8</td>
</tr>
</tbody>
</table>

aReaction conditions: Pre-catalysts (0.07 mmol), solvent: toluene 40 mL and methanol 30 mL; Pd/1-hexene ratio 200:1, Pd/ HCl ratio; 1:10; P (CO) = 60 bar; temperature: 90°C; time 24 h; b % of 1-hexene converted after 24 h reaction, c branched/linear ester ratio.
The nature of the complex structure was seen to also affect the regioselectivity of the esters produced. From Table 4.1, it is apparent that, the cationic complexes bearing the PPh$_3$ ligand gave lower percentages of the branched esters compared to their respective neutral complexes. For example, while the neutral and cationic complexes C2 and C8 produced 41% and 32% of the branched esters respectively (Table 4.3, entries 1 vs 5).

This is expected due to the presence of the bulkier PPh$_3$ groups in the cationic complexes which may hinder the isomerization process to give the branched esters. However, the cationic complex C9 showed relatively higher regioselectivity towards the branched ester (45%) for reasons not clear to us.
4.3.3 Effect of triphenyl phosphine (PPh$_3$) on the methoxycarbonylation of 1-hexene

The catalytic performance of complexes C8, C10 and C11 in the methoxycarbonylation of 1-hexene was studied upon addition and absence of PPh$_3$ in order to evaluate the effect of triphenyl phosphine (PPh$_3$) on their catalytic activities and selectivity. We observed that addition of PPh$_3$ to the palladium complexes (Table 4.1, entries 5, 7 and 8) resulted in higher catalytic activity. From literature reports, it is believed that the presence of PPh$_3$ improves the stability of the resultant catalyst by limiting decomposition to Pd(0). Indeed, extensive decomposition of the complexes to palladium black was observed in the absence of PPh$_3$. The same observations have also been extensively reported by Aguirre and coworkers.

It was also found that addition of PPh$_3$ played a significant role in product regioselectivity. For instance, it was seen that addition of PPh$_3$ to the palladium complexes decreased the amount of the branched ester (37 - 40%) formed during the reaction (Table 4.1, entries 5, 7 and 8). In the absence of PPh$_3$ (Table 4.1, entries 9 - 11) high regioselectivity towards the branched products was observed (52 - 68%). This trend could largely be attributed to steric factors. Therefore this observation can be explained by the steric hindrance caused by the addition of the bulky PPh$_3$ ligand thus disfavors the formation of more sterically hindered branched isomer. Similar results were obtained by Zuniga et al and Seayad et al for the palladium catalyzed methoxycarbonylation of styrene. Where they observed that in the absence of PPh$_3$ there
was high regioselectivity towards the branched ester (45–86) and the addition of the presence of PPh₃ to the palladium complexes decreased the amount of the branched ester (21–34%).

4.3.4 Effect of acid promoters on methoxycarbonylation reactions

The nature of the acid promoter is another important feature to consider in the methoxycarbonylation reactions. The key function of the acid promoter is to stabilize the active Pd(II) species by limiting decomposition to Pd(0) black. This is achieved by coordination of the Pd(II) to the anions from the acid. The catalytic activity of C₁₀ was studied in the methoxycarbonylation of 1-hexene in order to investigate the effect of the acid promoters on activity. Table 4.2, entry 12 showed that there was no activity in the existence of weakly coordinating anions, such as TsO⁻, derived from the addition of p-TsOH. When HCl was used as an acid promoter (Table 4.2, entry 13), high catalytic activity (86%) and activity (TOF = 7.1) was observed. These results are not surprising since Zuniga et al. and Claver et al. have reported similar observations (but p-TsOH showed lower activity) for the methoxycarbonylation of styrene by using other Pd-catalytic systems and HCl as the acid source. When sulfuric acid was used as the acid promoter (Table 4.2, entry 14), the activity was lower (TOF = 3.5) and low conversion (47%) to the products was observed (Table 4.2, entry 19). This observation was expected because both p-TsOH and H₂SO₄ are non- or weakly coordinating anions and when used in the presence of monodentate phosphine ligands in this case PPh₃ results in
rapid alkylation. This loss of phosphine inevitably leads to unstable palladium species.29 Compared to HCl (coordinating anion) this confirmed the stabilizing effect of additional chloride anions13 and hence no loss of phosphine.

The acid promoter also plays an important role in product selectivity. For example, when HCl was used as an acid promoter high regioselectivity towards the linear ester was observed (Table 4.2, entry 13, 63%), while high regioselectivity towards the branched ester was obtained (Table 4.2, entry 14, 47%) when H\textsubscript{2}SO\textsubscript{4} was used.
Table 4.2: Effect of reaction conditions in the methoxycarbonylation of 1-hexene using C10.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Acid</th>
<th>Pco/ bar</th>
<th>T/°C</th>
<th>[substrate]/[Pd]</th>
<th>Time</th>
<th>Conv (%)</th>
<th>b/l ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>p-TsOH</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>24</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>24</td>
<td>86</td>
<td>37/63</td>
</tr>
<tr>
<td>14</td>
<td>H₂SO₄</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>24</td>
<td>42</td>
<td>47/53</td>
</tr>
<tr>
<td>15</td>
<td>HCl</td>
<td>50</td>
<td>90</td>
<td>200:1</td>
<td>24</td>
<td>50</td>
<td>38/62</td>
</tr>
<tr>
<td>16</td>
<td>HCl</td>
<td>60</td>
<td>60</td>
<td>200:1</td>
<td>24</td>
<td>86</td>
<td>36/64</td>
</tr>
<tr>
<td>17</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>400:1</td>
<td>24</td>
<td>55</td>
<td>31/69</td>
</tr>
<tr>
<td>18</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>100:1</td>
<td>24</td>
<td>89</td>
<td>50/50</td>
</tr>
<tr>
<td>19</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>12</td>
<td>49</td>
<td>28/72</td>
</tr>
<tr>
<td>20</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>32</td>
<td>92</td>
<td>47/53</td>
</tr>
<tr>
<td>21</td>
<td>HCl</td>
<td>60</td>
<td>90</td>
<td>200:1</td>
<td>36</td>
<td>99</td>
<td>55/45</td>
</tr>
</tbody>
</table>

*a Reaction conditions: Solvent: toluene 40 mL and methanol 30 mL; Pd/ acid ratio; 1:10; time 24 h; b% of hexene converted after 24 h reaction; c Molar ratio between branched and linear ester.

4.3.5 Effect of reaction conditions in methoxycarbonylation reactions

The effect of carbon monoxide pressure on the performance of complex C10 was investigated. Complex C10 was chosen for further of the reaction conditions on catalyst performance due to higher catalytic activity shown initially (Table 4.1, entry 7). Carbon monoxide pressure substantially influences the catalytic activity. For example, at higher pressures (Table 4.2, entry 13), the catalytic activity increases (86%), while at lower
pressures (Table 4.2, entry 15) lower catalytic activity was observed. This observation might be due to the faster insertion of CO at higher pressures which results in higher conversion to the products. A temperature study of the methoxycarbonylation of 1-hexene with C10 as the catalysts showed that at higher temperatures (90 °C), there is large decomposition of the catalysts at the end of the reaction. However, similar conversions were observed at a temperature of 90 °C (Table 4.2, entry 13) and 60 °C (Table 4.2, entry 16). Similar results were observed by Aguirre et al. The catalyst concentration is another important parameter to consider. It was observed that at higher catalyst concentration of 1:100 (Table 4.2, entry 18), higher catalytic activity (89%) was obtained, while at lower catalyst concentration of 1:400 (Table 4.2, entry 17), lower catalytic activity (55%) was observed. Similar observations were also made by Vavasori and coworkers. We also investigated the effect of time on catalytic activity. It was evident from the results that the reaction time influences the catalytic activity. At 12 h (Table 4.2, entry 19) lower conversion to the products (49%) was observed, while increasing the reaction time to 36 h (Table 4.2, entry 21) resulted in higher percentage conversions of 99% (Figure 4.4).

The regioselectivity towards the branched/linear was also investigated using the reaction conditions. Changing the carbon monoxide pressure from 50 to 60 bar (Table 4.2, entries 13 and 15) resulted in no effect in regioselectivity. Increasing the temperature from 60 to 90 °C (Table 4.2, entries 13 and 16) resulted in no effect in
regioselectivity. However, the reaction time and catalyst concentration affected the regioselectivity. For instance, increasing reaction time from 12 h to 36 h resulted in high regioselectivity towards the branched ester from 28% to 55% (Figure 4.4). It was also observed that increasing the catalyst concentration from 1:100 to 1:400 (Table 4.2, entries 13, 17 and 18) resulted in high regioselectivity towards the branched from 31% to 50%.

![Figure 4.4: Graph of % conversion and regioselectivity using complex C10 showing the influence of time on the methoxycarbonylation reactions.](image)

4.3.6 Effect of olefin substrate on methoxycarbonylation using C10

Complex C10 was used to investigate the effect of substrates such as; styrene, 1-octene, 1-nonene and 1-decene on the methoxycarbonylation reactions (Table 4.3). It was clear from the results obtained that the catalytic activity was significantly affected by the nature of the substrate. For example, when 1-hexene was used, higher catalytic activity of up to 86% compared to conversions of 26% recorded for 1-decene (Table 4.3, entries 23 vs 26). It is therefore apparent that increasing the chain length from 1-hexene to 1-
decene resulted in lower catalytic activities. The lower catalytic activity when the chain length is increased might be due to the increased steric hindrance.

The regioselectivity towards the branched/linear esters was also affected by the nature of the alkene substrate. It was generally observed that with increase in chain length, the regioselectivity towards the branched ester was favored. For instance, while 37% of the branched ester was obtained for 1-hexene, 67% branched esters were obtained using 1-decene as the substrate (Table 4.3, entries 23 vs 26). This phenomenon could be partly apportioned to the higher number of possible isomers present in the higher alkenes compared to lower alkenes. For example, while 1-hexene has four internal isomers, 1-decene contains eight possible internal isomers.

Table 4.3: Effect of olefin in the presence of PPh₃ with C10 as catalyst

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conversion (%)</th>
<th>b/l Ratio (%)</th>
<th>TOF (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Styrene</td>
<td>88</td>
<td>18/82</td>
<td>7.3</td>
</tr>
<tr>
<td>23</td>
<td>1-Hexene</td>
<td>86</td>
<td>37/63</td>
<td>7.1</td>
</tr>
<tr>
<td>24</td>
<td>1-Octene</td>
<td>36</td>
<td>54/46</td>
<td>3.0</td>
</tr>
<tr>
<td>25</td>
<td>1-Nonene</td>
<td>24</td>
<td>58/42</td>
<td>2.0</td>
</tr>
<tr>
<td>26</td>
<td>1-Decene</td>
<td>10</td>
<td>67/33</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Reaction conditions: Solvent: toluene 40 mL and methanol 30 mL; Pd/substrate ratio 200:1, Pd/HCl ratio; 1:10; P (CO) = 60 bar; temperature: 90°C; time 24 h; aMolar ratio between branched and linear ester.
Figure 4.5: The effect of substrate on percentage conversion and regioselectivity towards branched product using catalyst C10.
4.4 Conclusion

In conclusion, the synthesized complexes were all active in the methoxycarbonylation reactions. Both the electronic and steric factors affected the catalytic behavior of the catalysts. Complexes bearing electron donating groups were found to be more active than those bearing electron-withdrawing groups. Thus stability of the resultant catalytically active species could be said to play a major role in determining activity. Addition of PPh₃ to the complexes gave higher catalytic activities and high regioselectivity towards linear esters. The use of HCl as an acid promoter resulted in higher catalytic activity compared to non- or weakly-coordinating acids p-TsOH and H₂SO₄. High reaction temperatures, pressure and catalyst concentration resulted in higher catalytic activities. The reactivity and selectivity of the substrates were largely affected by the chain length. Increasing the olefin chain length resulted in lower catalytic activities and high regioselectivity towards the branched ester.
References

CHAPTER FIVE

General concluding remarks and future prospects

5.1 General conclusions

In summary, this thesis has presented a systematic investigation of (benzoimidazol-2-ylmethyl) amine palladium complexes as potential methoxycarbonylation catalysts. The synthesized benzoimidazolyl amine palladium complexes were characterized by 1H NMR, elemental analysis, 31P NMR ($C_7 - C_{11}$ cationic complexes) and X-ray analyses for some cationic complexes. The solid state structures of C_8a, C_9b and $C_{11}c$ showed that the (benzoimidazol-2-ylmethyl) amine ligands are coordinated to Pd(II) in a monodentate fashion via Bzim-nitrogen atom. However these results were in disagreement with the elemental analysis data. The elemental analyses showed one ligand unit and one PPh$_3$ per-metal ion. The 31P NMR for complexes C_8, C_9 and C_{11} confirmed the presence of mono-coordinated PPh$_3$ ligand.

The palladium complexes bearing electron donating groups were most active and most stable, while the palladium complexes containing electron withdrawing groups were least active and less stable. Addition of PPh$_3$ to the palladium complexes resulted in higher catalytic activities and higher regioselectivity towards the linear esters. No activity was observed in the presence of weakly coordinating anions, such as TsO$^-$ derived from p-TsOH. While H$_2$SO$_4$ (weakly coordination anion) as the acid promoter
resulted in lower catalytic activity. The use of HCl (strongly coordinating anion) gave higher catalytic activity. The effect of reaction conditions such as pressure, temperature, catalyst concentration and time were also investigated. It was observed that at high pressure there was high conversion to the products. No effect on catalytic activity was observed when the temperature was decreased. Increasing the catalysts concentration, chain length and time resulted in an increase in conversion to products and higher regioselectivity towards the branched ester was observed. Therefore the performance of the palladium complexes in methoxycarbonylation of olefins depends on catalysts structure, olefin substrate, acidic medium and reaction conditions. The key attribute of these palladium complexes is the 100% chemoselectivity towards the formation of esters.

5.2 Future prospects

This study revealed that the benzoimidazolyl Pd(II) complexes were active towards the methoxycarbonylation of olefins. However, one needs to modify the catalysts structure to improve selectivity towards the branched esters. This is due to the fact that branched esters are essential in pharmaceutical industries as they are applied in non-steroidal anti-inflammatory drugs such as aspirin, ibuprofen, naproxen and ketoprofen. This could be achieved by synthesizing palladium complexes that contain less bulky ligands to reduce steric hindrance around the metal atom as shown in Figure 5.1.
Figure 5.1: palladium complexes containing less bulky ligands.

Another way of obtaining branched esters would be to investigate the methoxycarbonylation of internal olefins. Furthermore one needs to investigate the effects of other acidic medium. An example will be to investigate the effect of oxalic acid because it has been observed in literature that it provides high regioselectivity towards the branched esters. We will also use HBr and HI to investigate the effect of HX with X = Cl, Br, I, which will show us the acid conversion.

The major setbacks of homogeneous catalysts are product separation from the reaction mixture and catalyst recovery. This can be achieved by heterogenizing the catalysts and the product into two immiscible, separate phases. Therefore the biphasic reactions offer a possible answer to the problem. Therefore we will design water soluble catalyst for biphasic catalysis and an example of such catalysts is shown in Figure 5.2. The triphenyl
phosphine tri-sulfonate ligand in the complexes in 5-III and 5-IV could be used as water soluble phosphines.

Figure 5.2: Water soluble catalyst for biphasic catalysis.