APOPTOSIS IN PERIPHERAL BLOOD MONONUCLEAR CELLS OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) INFECTED PATIENTS UNDERGOING HIGHLY ACTIVE ANTIRETROVIRAL THERAPY

BY

LESHERN KARAMCHAND

B.Sc., B.Med.Sc. (Hons), (UND)

Submitted in partial fulfillment of the requirements for the degree of M.Med.Sci in the

Discipline of Medical Biochemistry, Faculty of Health Sciences

University of KwaZulu-Natal

2008
ABSTRACT

Highly active antiretroviral therapy (HAART) is currently the only treatment that effectively reduces the morbidity and mortality of individuals infected with Human Immunodeficiency Virus-1 (HIV-1). Standard HAART regimens typically comprise 2 nucleoside reverse transcriptase inhibitors and either one non-nucleoside reverse transcriptase inhibitor or a protease inhibitor. These drugs bind to and inhibit the HIV-1 Reverse Transcriptase and Protease enzymes respectively, thereby suppressing viral replication.

The nucleoside reverse transcriptase inhibitors promote mitochondrial (mt) dysfunction by strongly inhibiting mt polymerase gamma (Pol-γ) and subsequently, mtDNA replication. In contrast, the non-nucleoside reverse transcriptase inhibitors, efavirenz (EFV) and nevirapine (NVP) do not inhibit Pol-γ although EFV has been shown to induce mt depolarisation ($\Delta\psi_m^{low}$) \textit{in vitro} at supra-therapeutic concentrations. However, the capacity of non-nucleoside reverse transcriptase inhibitor drugs to induce mt toxicity \textit{in vivo} previously remained undetermined. The objective of this study was to determine the influence of EFV and NVP on peripheral lymphocyte mt transmembrane potential ($\Delta\psi_m$) and apoptosis in HIV-1–infected patients treated with these non-nucleoside reverse transcriptase inhibitors.

Thirty-two HIV-1–infected patients on HAART between 4 and 24 months (12 on EFV, 20 on NVP) and 16 HAART-naive HIV-1–infected patients were enrolled into this study. All participants were black South African patients. Spontaneous peripheral lymphocyte apoptosis and $\Delta\psi_m^{low}$ were measured \textit{ex vivo} by flow cytometry for all patients.
CD4 T-helper apoptosis for the EFV and NVP cohorts was 19.38% ± 2.62% and 23.35% ± 1.51% (mean ± SEM), respectively, whereas total lymphocyte Δψm\text{low} was 27.25% ± 5.05% and 17.04% ± 2.98%, respectively. Both parameters for each cohort were significantly lower (\(P < 0.05\)) than that of the HAART-naive patients. The NVP cohort exhibited both a significant time dependent increase in peripheral lymphocyte Δψm\text{low} (\(P = 0.038\)) and correlation between T-helper apoptosis and Δψm\text{low} (\(P = 0.0005\)). These trends were not observed in the EFV cohort.

This study provides evidence that both EFV and NVP induce peripheral lymphocyte Δψm\text{low} in HIV-1-infected patients on non-nucleoside reverse transcriptase inhibitor–based HAART, which in the case of NVP is sufficient to induce the apoptosis cascade.
DECLARATION

This study represents the original work by the author and has not been submitted in any form to another University. The use of work by others has been duly acknowledged in the text.

The research described in this study was carried out in the Discipline of Medical Biochemistry, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, under the supervision of Prof. A.A. Chuturgoon and Dr. H. Dawood.

L. Karamchand
I would like to thank:

- **My Parents and brother**, for their steadfast spiritual and emotional support, love and patience during my undertaking of this research. I am truly grateful for the sacrifices that you have made for me in these recent years to help me achieve my ambitions.

- **The National Research Foundation (NRF)**, for granting me the Masters Prestigious and Equity scholarship which funded my research.

- **Prof. A.A. Chuturgoon**, whose mentorship has helped me develop both personally and as a scientist in leaps and bounds. I am eternally grateful to you for allowing me the freedom to fully explore my ideas.

- **Dr. H. Dawood**, for her invaluable clinical expertise and co-supervision of my research project.

- **The Nursing Staff of the King Edward VIII Family Clinic**, for their assistance with the recruitment of patients into my study.

- **Devan Moodley and Kristina Naidoo**, for their friendship and support that helped me through the many long hours in the laboratory.

- **Sandika Baboolal**, for her friendship and having faith in me. You truly are an inspiration to me.
ABBREVIATIONS

ψ HIV-1 RNA Packaging Signal
Δψ̅mt mitochondrial inner transmembrane potential
Δψ̅m̅t low mitochondrial depolarisation
3TC Lamivudine
ABC Abacavir
ADP Adenosine Diphosphate
AIDS Acquired Immune Deficiency Syndrome
AIF Apoptosis Inducing Factor
Annexin-V-FITC Annexin-V-Fluorescein Isothiocyanate
ANT Adenine Nucleotide Transporter
Apaf-1 Apoptotic Protease-Inducing Factor-1
APC Allophycocyanin
ARV Antiretroviral
Asp Aspartate
ATP Adenosine Triphosphate
AZT Zidovudine
BCL-2 B-cell CLL/Lymphoma 2
CA Capsid (p24)
CAD Caspase-activated DNase
CAP-3 Cytotoxicity-dependant APO-1 associated protein
CARD Caspase Recruitment Domain
Caspase Cysteine-dependant aspartate-specific protease
CCR5 CC-chemokine Receptor 5
CD4, CD8, CD95 Cluster of Differentiation 4/ 8/ 95
CD4⁺/CD8⁺ Cluster of Differentiation 4/ 8 positive
CRF Circulating Recombinant Form
CTL Cytotoxic T Lymphocyte
CXCR4 CXC-chemokine Receptor 4
CYP₄₅₀ Cytochrome P450
CyP-D Cyclophilin D
Cys Cysteine
d4T Stavudine
dATP deoxy-Adenosine Triphosphate
ddC Zalcitabine
ddI Didanosine
DD Death Domain
DED Death Effector Domain
DIS Dimer Initiation Site
DISC Death-Inducing Signalling Complex
dsDNA Double-stranded Deoxyribonucleic Acid
EFV Efavirenz
Env Envelope
FADD Fas-associated death domain
FasL Fas Ligand
FL1-H, FL2-H, FL3-H Fluorescence 1/2/3-Height
FTC Emtricitabine
gp41, gp120, gp160 Glycoprotein 41/120/160
Gag Group Antigen
GagPol Group Antigen-Polymerase polypeptide
gRNA Genomic Ribonucleic Acid
HAART Highly Active Antiretroviral Therapy
HIV-1/-2 Human Immunodeficiency Virus-1/-2
HLA Human Leukocyte Antigen
IAP Inhibitor of Apoptosis
ICAD Inhibitor of Caspase-activated DNase
IDV Indinavir
IN Integrate (p31)
IMM Inner Mitochondrial Membrane
JNK Jun N-terminal kinase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>KiloDalton</td>
</tr>
<tr>
<td>LDS</td>
<td>Lipodystrophy Syndrome</td>
</tr>
<tr>
<td>LTR</td>
<td>Long Terminal Repeat</td>
</tr>
<tr>
<td>LPV</td>
<td>Lopinavir</td>
</tr>
<tr>
<td>MA</td>
<td>Matrix (p17)</td>
</tr>
<tr>
<td>MOMP</td>
<td>Mitochondrial Outer Membrane Permeabilisation</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>NC</td>
<td>Nucleocapsid (p7)</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear Factor-kappa B</td>
</tr>
<tr>
<td>NFV</td>
<td>Nelfinavir</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Non-Nucleoside Reverse Transcriptase Inhibitor</td>
</tr>
<tr>
<td>NRTI</td>
<td>Nucleoside/Nucleotide Reverse Transcriptase Inhibitor</td>
</tr>
<tr>
<td>NRTI-TP</td>
<td>Nucleoside Reverse Transcriptase Inhibitor Triphosphate</td>
</tr>
<tr>
<td>NVP</td>
<td>Nevirapine</td>
</tr>
<tr>
<td>OMM</td>
<td>Outer Mitochondrial Membrane</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly (ADP-ribose) Polymerase</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin Chlorophyll Protein</td>
</tr>
<tr>
<td>PI</td>
<td>Protease Inhibitor</td>
</tr>
<tr>
<td>PIC</td>
<td>Preintegration complex</td>
</tr>
<tr>
<td>PKCδ</td>
<td>Protein Kinase C delta</td>
</tr>
<tr>
<td>Pol</td>
<td>HIV-1 Polymerase</td>
</tr>
<tr>
<td>Pol-γ</td>
<td>Mitochondrial Polymerase gamma</td>
</tr>
<tr>
<td>PpI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PR</td>
<td>HIV-1 Protease</td>
</tr>
<tr>
<td>PrBS</td>
<td>Primer Binding Site</td>
</tr>
<tr>
<td>PS</td>
<td>Phosphatidylserine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PT</td>
<td>Permeability Transition</td>
</tr>
<tr>
<td>PTPC</td>
<td>Permeability Transition Pore Complex</td>
</tr>
<tr>
<td>RSX4</td>
<td>CCR5-CXCR4 dual-tropic</td>
</tr>
<tr>
<td>RIP</td>
<td>Receptor Interacting Protein</td>
</tr>
<tr>
<td>RNase H</td>
<td>Ribonuclease H</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT</td>
<td>HIV-1 Reverse Transcriptase</td>
</tr>
<tr>
<td>RTV</td>
<td>Ritonavir</td>
</tr>
<tr>
<td>Smac/DIABLO</td>
<td>Second mitochondria-derived activator of caspase/ direct IAP-binding protein with low pI</td>
</tr>
<tr>
<td>SQV</td>
<td>Saquinavir</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Single-stranded Ribonucleic Acid</td>
</tr>
<tr>
<td>TAR</td>
<td>Trans-activation Response element</td>
</tr>
<tr>
<td>tBID</td>
<td>Truncated BID</td>
</tr>
<tr>
<td>T_hL</td>
<td>T-helper Lymphocyte</td>
</tr>
<tr>
<td>TK 1/2</td>
<td>Thymidine Kinase 1/2</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumour Necrosis Factor alpha</td>
</tr>
<tr>
<td>TNFR1/2</td>
<td>Tumour Necrosis Factor Receptor 1/2</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNFR-associated Death Domain</td>
</tr>
<tr>
<td>TRAF2</td>
<td>TNFR-associated factor 2</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>TRAIL-R1/2</td>
<td>TRAIL Receptor 1/2</td>
</tr>
<tr>
<td>tRNA<sub>Lys3</sub></td>
<td>transfer Ribonucleic Acid Lysine 3</td>
</tr>
<tr>
<td>UCP</td>
<td>Uncoupling Protein</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage-Dependant Anion Channel</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter 1
Legend
Page

Figure 1.1 Organisation of the HIV-1 genome (HXB2 strain). The position of the start and stop
codons of each gene are designated by numbers at the top left and bottom right
corners respectively of the gene boxes. The reading frame of each gene is indicated
to the left side of the diagram. The spliced exons of the tat and rev genes are
indicated by shaded boxes. The position of the pol start codon (2085) is shifted -1
relative to the start codon of gag-pl (2086).
4

Figure 1.2 Schematic diagrams of the immature (A) and mature (B) HIV-1 virion. The
immature virion notably lacks a capsid core, with the structural and enzymatic
proteins still contained as part of the Gag and GagPol polyproteins. The virion
attains maturity and rendered infectious upon PR-mediated auto-catalytic cleavage
of Gag and GagPol polyproteins.
8

Figure 1.3 Schematic diagram of the intrinsic and extrinsic apoptosis induction pathways.
Signals from all pathways notably converge at the mitochondrion, culminating in
the activation of the proteolytic caspase cascade.
17

Figure 1.4 Schematic overview of the Fas type I (A) and type II (B) pathways. In type I cells,
DISC formation predominates following Fas-FasL ligation leading directly to the
activation of procaspase-8 and procaspase-3, independently of the mitochondria. In
type II cells, DISC formation is limited and is characterised by mitochondrial PT
followed by the release of cytochrome c into the cytoplasm and caspase activation.
18

Figure 1.5 Chemical structures of the NRTIs (nucleoside derivatives) commonly prescribed in
South Africa for the treatment of HIV-1 infection.
21
Figure 1.6 Chemical structures of the NNRTIs commonly prescribed in South Africa for the treatment of HIV-1 infection.

Figure 1.7 Ribbon representation of HIV-1 RT in complex with EFV (grey). The p66 and p51 subunits of HIV-1 RT are coloured red and green respectively. Residues located in the DNA polymerase and RNase H active sites are indicated with yellow spheres.

Figure 1.8 Chemical structures of the PIs commonly prescribed in South Africa for the treatment of HIV-1 infection. Other drugs in this class include Indinavir (IDV), Nelfinavir (NFV) and Saquinavir (SQV).

Chapter 2 Legend Page

Figure 1 Flow cytometric scatter plots of HIV-1–infected patient lymphocytes stained with (A) Annexin-V-FLUOS and (B) JC-1 dye. A, Live, apoptotic and necrotic lymphocytes were gated as, Live cells: Annexin-V-FITC log FL1-H < 10²; Ppl log FL3-H < 10²; Apoptotic cells: Annexin-V-FITC log FL1-H ≥ 10²; Ppl log FL3-H < 10²; Necrotic cells: Annexin-V-FITC log FL1-H ≥ 10²; Ppl log FL3-H ≥ 10². B, JC-1 dimerises in lymphocytes with an intact $\Delta \psi_m$ resulting in a higher red fluorescence emission detected in the FL2-H channel in addition to green fluorescence detected in the FL1-H channel (i). JC-1 remains in monomeric state in lymphocytes with a collapsed $\Delta \psi_m$ and emits only green fluorescence (FL1-H) (ii).

Figure 2 A, Spearman correlation between total lymphocyte $\Delta \psi_m^{low}$ and T_H apoptosis in regimen 1b-treated patients; (B) Spearman correlation between duration of regimen 1b treatment and total lymphocyte $\Delta \psi_m^{low}$.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Legend</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Clinical parameters of HAART-naive and HAART-treated HIV-1 – infected patients</td>
<td>33</td>
</tr>
<tr>
<td>Table 2</td>
<td>Lymphocyte Apoptosis and Δψ<sub>m</sub><sup>low</sup> data for HAART-naive and HAART-treated HIV-1 – infected patients</td>
<td>33</td>
</tr>
<tr>
<td>Table 3</td>
<td>Analysis of lymphocyte apoptosis and Δψ<sub>m</sub><sup>low</sup> according to duration of HAART</td>
<td>35</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT i
DECLARATION iii
ACKNOWLEDGEMENTS iv
ABBREVIATIONS v
LIST OF FIGURES ix
LIST OF TABLES xi
TABLE OF CONTENTS xii

INTRODUCTION 1

CHAPTER 1: LITERATURE REVIEW 3
1.1 THE HUMAN IMMUNODEFICIENCY VIRUS-1 (HIV-1) 3
1.1.1 THE HIV-1 GENOME 3
1.1.2 GENETIC VARIANTS OF HIV-1 5
1.1.3 VIRAL ULTRASTRUCTURE 6
1.1.4 HOST CELLS 9
1.1.5 VIRAL LIFE CYCLE 10
1.2 THE PATHOGENESIS OF HIV-1 12
1.2.1 APOPTOSIS 12
1.2.1.1 Caspases 13
1.2.1.2 The Extrinsic Pathway 14
1.2.1.3 The Intrinsic (Mitochondrial) Pathway 19
1.3 ANTI-RETROVIRAL DRUGS 20
1.3.1 The Nucleoside Reverse Transcriptase Inhibitors 21
1.3.1.1 Mitochondrial Toxicity of the NRTIs 22
1.3.2 The Non-Nucleoside Reverse Transcriptase Inhibitors 23
1.3.2.1 Mitochondrial Toxicity of the NNRTIs 25
1.3.3 The Protease Inhibitors 27
1.3.3.1 Mitochondrial Protective Effect of PIs 28
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>29</td>
</tr>
<tr>
<td>Lymphocyte Mitochondrial Depolarization and Apoptosis in HIV-1--Infected</td>
<td>30</td>
</tr>
<tr>
<td>HAART Patients</td>
<td></td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>38</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Human Immunodeficiency Virus (HIV) is the aetiological agent of the acquired immunodeficiency syndrome (AIDS). Infection with either HIV-1 or HIV-2 leads to immune compromisation with the onset of opportunistic infections and development of AIDS-related diseases. However HIV-1 is the primary cause of the present global AIDS pandemic. As at December 2007, approximately 33.2 million people worldwide were living with HIV-1. During 2007 alone, there were approximately 2.5 million new infections and 2.1 million AIDS-related deaths worldwide (UNAIDS-WHO 2007).

At present, 68% and 90% of the world’s HIV-1 infected adults and children respectively live in Sub-Saharan Africa, with 76% of the total AIDS-related deaths in 2007 occurring in this region. AIDS is the single largest cause of mortality in Sub-Saharan Africa, making this region the most seriously affected by HIV. The majority of adults in Sub-Saharan Africa that are infected with HIV-1 are women (prevalence of 61%), a characteristic unique to this region (UNAIDS-WHO 2007). South Africa currently has the largest number of HIV-1 infections in the world, the HIV-1 prevalence being highest in the KwaZulu-Natal province (39%) (Department of Health South Africa, 2007).

To date numerous multi-national attempts at producing an effective vaccine against HIV-1 have been unsuccessful. The treatment of HIV-infected patients with anti-retroviral (ARV) drugs currently remains the only effective method of retarding the progression of HIV-1 infection to AIDS. ARV drugs are typically administered as a “cocktail” of three drugs which constitutes highly active anti-retroviral therapy (HAART). When managed correctly, HAART is highly
effective in reducing the morbidity and mortality of individuals infected with HIV-1. However, despite dramatically improving the prognosis of patients infected with HIV-1, HAART remains ineffective in eradicating the virus from an individual once infected. Of the estimated 5.5 million South Africans that are already infected with HIV-1, approximately 1 million individuals presently require ARV therapy, of which only about 300000 are receiving it. In light of this statistic, the South African National AIDS Council adopted a decisive AIDS management strategy only in April 2007 to tackle the South African epidemic. This strategy set two main objectives to be achieved by the end of 2011, these being, firstly to halve the national infection rate and secondly, to increase the accessibility of ARV therapy to 80% of the infected individuals that require it.

The high cost of ARV drugs, poor health care infrastructure and lack of trained doctors and nurses presents major impediments to the successful implementation of HAART in South Africa’s rural regions. Furthermore, the need for HIV-1 infected patients to be on life-long HAART together with the narrow therapeutic range of ARV drugs predisposes these patients to the risk of developing short- and long-term adverse toxic side-effects. Of even greater concern is the emergence of drug-resistant viral mutants that arise during patient-initiated treatment interruptions. These are the potential dire consequences of HAART when it is not monitored stringently. This emphasises the need for ARV drug rollout programmes to be coupled with efficient mechanisms to ensure patient adherence to HAART regimens and to closely monitor their development of adverse drug side-effects.
CHAPTER 1

LITERATURE REVIEW

1.1 THE HUMAN IMMUNODEFICIENCY VIRUS-1 (HIV-1)

1.1.1 THE HIV-1 GENOME

HIV-1 and its subtypes are retroviruses and belong to the family of lentiviruses. The HIV-1 genome is a 9.2 kilobase (kb) single-stranded (ss) positive (+) RNA molecule. HIV-1 virions contain two copies (dimers) of genomic (g) ssRNA, which upon infection are integrated as double-stranded (ds) DNA proviruses into the host cell genome. The organisation of the HIV-1 genome is typical of retroviruses: 5′ LTR-gag-pol-env-LTR 3′ (LTR: Long Terminal Repeat; gag: Group Antigen; pol: Polymerase; env: Envelope) (Fig. 1.1).

The LTRs are transcription regulatory sequences that flank either end of the protein-coding sequence and are each subdivided into three regions designated U3, R and U5 [1]. The U3 region contains binding sites for cellular transcription factors such as Nuclear Factor-kappa B (NF-κB) [2, 3]. The R region contains the trans-activation response element (TAR) to which Tat protein binds and maintains high transcription levels of the proviral dsDNA [4, 5]. The U5 region contains a binding site for transfer RNA lysine 3 (tRNA^{Lys}) [1], which acts as a primer for the reverse transcription of viral ssRNA into dsDNA [6].
Figure 1.1. Organisation of the HIV-1 genome (HXB2 strain). The position of the start and stop codons of each gene are designated by numbers at the top left and bottom right corners respectively of the gene boxes. The reading frame of each gene is indicated to the left side of the diagram. The spliced exons of the tat and rev genes are indicated by shaded boxes. The position of the pol start codon (2085) is shifted -1 relative to the start codon of gag-pl (2086) [7].
The sequence between the U5 region and the \textit{gag} AUG start codon contains the 5' leader domain, consisting of the primer binding site (PrBS), dimer initiation site (DIS) and packaging signal (\psi) [8, 9]. These regions adopt secondary and tertiary structures that divert the viral mRNA strand from translation and into packaging as gRNA dimers in assembling virions [10, 11].

The \textit{gag} region encodes the major structural proteins of the virus, p17 Matrix (MA), p24 Capsid (CA), p7 Nucleocapsid (NC) and p6, which are initially translated as a single p55 Gag polyprotein precursor [12]. The \textit{pol} gene is located immediately downstream from the \textit{gag} gene, with its reading frame shifted -1 relative to that of \textit{gag} (Fig. 1.1, frame 3). The Protease (PR), p51 Reverse Transcriptase (RT), p15 RNase H and p31 Integrase (IN) enzymes are encoded by the \textit{pol} gene. The \textit{env} region encodes the gp120 and gp41 proteins which are involved in recognising and attaching to the host cell. The HIV-1 genome also encodes the genes of the regulatory (\textit{tat} and \textit{rev}) and accessory (\textit{vif}, \textit{vpr}, \textit{vpu} and \textit{nef}) proteins, whose reading frames are indicated relative to the \textit{gag}, \textit{pol} and \textit{env} genes (Fig. 1.1).

\subsection*{1.1.2 GENETIC VARIANTS OF HIV-1}

HIV-1 is comprised of three major groups, designated M (main), O (outlier) and N (non-M non-O). Group M is further sub-divided into 9 clades or subtypes (A-D, F-H, J and K). The subtypes are classified and distinguished from each other on the basis of phylogenetic analysis of full length viral genomes, with each subtype represented by its own consensus sequence [13]. Subtype C accounts for 50\% of the HIV-1 infections worldwide and is the most prevalent subtype in China, India and Central, Eastern and South Africa [14]. Subtypes A, B, G and D
represent 12, 10, 6 and 3% respectively of the total worldwide prevalence of HIV-1 group M, and subtypes F, H, J and K account for approximately 1% [14].

The remaining 18% of group M is represented by circulating recombinant form (CRF) viruses [14]. The CRFs are viruses whose genomic sequences are recombinants (mosaics) of more than one phylogenetic subtype and are common in geographic regions with a high prevalence of more than one viral subtype. To date 43 group M CRFs have been identified [15]. Inter-subtype recombination occurs when a host cell is productively super-infected with two distinct viral subtypes, with the gRNA strands of each subtype being compatible to form heterodimers during viral packaging [16]. Following infection, the viral genomic ssRNA is reverse transcribed into dsDNA, during which HIV-1 RT frequently switches between the two packaged copies of viral gRNA templates [17], a process known as copy choice [18]. The switching of RT between heterozygous RNA strands during multiple-subtype super-infection [19], results in the synthesis of recombinant proviral DNA [20]. If the new recombinant proviral genome confers enhanced immune evasion [21, 22] and/or anti-retroviral (ARV) drug resistance [23], the virus is then transmitted as a CRF.

1.1.3 VIRAL ULTRASTRUCTURE

Mature HIV-1 virions have a spherical morphology and range between 100 – 120nm in diameter. A lipid bilayer envelope, of host cell origin, encapsulates the virion into which approximately 72 Env-glycoprotein complexes are integrated. Each complex is a trimer of the non-covalently linked external-gp120 and transmembrane-gp41 heterodimer [24, 25] (Fig. 1.2B). The gp120 moiety contains binding sites for the CD4-ligand and chemokine co-receptor (CCR5 or CXCR4),
the latter formed by the V1/V2 and C4 regions and V3 loop [26]. GP41 contains the HR1 and HR2 helices and hydrophobic fusion peptide that penetrates and anchors the virion into the host cell membrane [27, 28]. Host cell receptors such as Human Leukocyte Antigen (HLA) class I and II are also incorporated into the viral envelope during budding [29].

MA (p17) proteins form a shell lining the inner surface of the viral envelope through the interaction of the N-myristylated terminal of MA with the host membrane cytoplasmic leaflet [30]. The hollow viral conical core is produced from the assembly of CA (p24) proteins into hexameric rings [31]. The capsid core contains two copies of viral ssRNA in complex with NC protein and RT and IN enzymes [32] (Fig. 1.2B). The aspartyl protease (PR), tRNA\textsubscript{Lys} [6, 33] and p6 [34], vpr [35], vif [36] and nef [37] proteins are also packaged within the capsid core (Fig. 1.2B).
Figure 1.2. Schematic diagrams of the immature (A) and mature (B) HIV-1 virion [38]. The immature virion notably lacks a capsid core, with the structural and enzymatic proteins still contained as part of the Gag and GagPol polyproteins. The virion attains maturity and is rendered infectious upon PR-mediated auto-catalytic cleavage of Gag and GagPol polyproteins.
1.1.4 HOST CELLS

The CD4 ligand, a 58kDa monomeric glycoprotein, is expressed on the surface of T-helper lymphocytes, bone marrow and thymic T-cell progenitors, monocytes and macrophages, dendritic and microglial cells [39]. CD4 is the primary receptor for HIV-1 [40, 41], whilst the chemokine receptors CCR5 [42-44] and CXCR4 [45] (G-protein-coupled 7-transmembrane receptors) are the major co-receptors utilised by HIV-1 \textit{in vivo}. CXCR4 is mainly expressed on naive CD4\(^+\) T-helper lymphocytes (T\(_\text{H}\)L), whereas activated memory CD4\(^+\) T\(_\text{H}\)Ls, monocytes and macrophages express CCR5 [46, 47]. Viruses that utilise either only CCR5 or only CXCR4 are designated R5- and X4-tropic respectively, whilst viruses capable of utilising both co-receptors are designated R5X4 [48].

The most significant long-term cellular reservoirs of HIV-1 are memory CD4\(^+\) T\(_\text{H}\)L [49, 50] and macrophages [51], due to the long life span of these cells. Immature dendritic cells, such as Langerhans cells, present in the genital epithelium, also support the replication of HIV-1 and play an important role during the early stages of sexual transmission of the virus [52]. Furthermore, circulating and follicular dendritic cells are capable of trapping extracellular virions on their membrane processes [53], and upon interaction with CD4\(^+\) T\(_\text{H}\)Ls in lymph nodes facilitate infection of these cells [54]. Epithelial dendritic cells express 10-fold more surface CCR5 than CXCR4 [55], and thus selectively propagate R5 strains [56]. HIV-1 R5 strains are preferentially transmitted via the sexual route [47] and predominate during the early stages of infection. The phenotypic switch from the R5 to the X4 or R5X4 strains \textit{in vivo} generally occurs only several years after infection, which is accompanied by accelerated CD4\(^+\) T\(_\text{H}\)L loss and progression to AIDS [57]. In contrast to this observation, X4 viruses are far less frequent than R5 viruses in
individuals who are infected with subtype C HIV-1 [58]. The switch in viral tropism is
determined by amino acid changes primarily in the V3 loop of gp120 [59-61].

1.1.5 VIRAL LIFE CYCLE

The viral life cycle is a series of 6 sequential stages: 1) viral attachment and entry, 2) reverse
transcription, 3) integration, 4) transcription, 5) translation, 6) viral assembly, budding and
maturation. The initial binding event between the viral particle and host cell is the interaction of
gp120 with the host cell CD4 receptor. GP120-CD4 binding induces a conformational change in
gp120 that exposes its chemokine co-receptor binding site [62], with subsequent binding to either
CCR5 or CXCR4. Co-receptor recruitment in turn triggers the insertion of the gp41 hydrophobic
fusion peptide [63] into the host cell membrane thereby inducing the HR1 and HR2 domains of
gp41 to adopt a stable six-helix bundle structure [64]. The viral envelope and host cell membrane
then fuse delivering the p24 capsid core into the host cell cytoplasm where it is subsequently
disassembled.

Capsid disassembly (viral uncoating) releases the dimeric gRNA which is reverse transcribed into
dsDNA by the viral RT enzyme [65]. The preintegration complex (PIC), a complex of linear
dsDNA with IN, MA, NC, PR, RT, and Vpr proteins [32, 66], is transported along microtubules
[67] towards the nucleus. Active transport of the PIC across the nuclear pore complex [68] into
the nucleus is mediated by MA and Vpr [69-71], a feature that allows HIV-1 to replicate in
interphasic or quiescent cells [72]. Productive infection is achieved when the viral linear dsDNA
is integrated, as the provirus, into the host cell genome by viral IN [73]. Viral transcription is
activated by the binding of cellular factors, such as NFkB, to the proviral LTR [74]. Multiple-
spliced mRNAs are initially produced from which the regulatory proteins, Tat, Nef and Rev, are expressed. Rev promotes the accumulation of non-spliced or singly-spliced mRNAs [75] which are directed to cytoplasmic polysomes [76] for translation or packaging as gRNA dimers.

P55 Gag, GagPol and gp160 are the predominant viral proteins synthesised during the late stages of the viral replication cycle. Following glycosylation in the endoplasmic reticulum, gp160 is cleaved in the Golgi apparatus by cellular proteases into the gp120 and gp41 subunits [77], which are subsequently inserted into the plasma membrane. The PR, RT, RNase H and IN enzymes are derived from the GagPol polyprotein. Gag and GagPol are synthesised in an approximately 20:1 ratio, the latter produced following a -1 ribosomal frameshift during translation [78].

Viral particles are assembled from the oligomerisation of Gag and GagPol polyproteins under the host cell membrane [31, 79] (Fig. 1.2A). Viral assembly and budding is mediated via three specific domains of p55 Gag polyprotein precursor, designated the M (membrane targeting), I (interaction) and L (late assembly) domains. The N-myristylated terminal in the MA (M) domain of p55 Gag facilitates the insertion of Gag into the host plasma membrane [80, 81]. The NC (I) domain of p55 Gag chaperones the dimerisation of viral ssRNA [82, 83] via its two zinc-finger motifs [84, 85] and also facilitates the switch of newly synthesised viral mRNA to gRNA [11, 86]. This directs the packaging of viral RNA into progeny virions. The I-domain also mediates Gag-Gag interactions at the plasma membrane [79, 87]. The p6 (L) domain mediates viral budding [88] and promotes the incorporation of Vpr into the assembling virions [89]. The budding viral particle composed of Gag and GagPol precursors (Fig. 1.2A) is immature and non-infectious. During budding, viral PR cleaves the Gag and GagPol polyproteins into their
individual structural protein and enzymatic components (Fig. 1.2B), which is essential for viral maturation and viral budding to occur with maximum efficiency [90].

1.2 THE PATHOGENESIS OF HIV-1

The hallmark feature of HIV-1 – infected patients is a progressive decline in their CD4+ T_hL and to a lesser degree, CD8+ cytotoxic T-lymphocyte (CTL) levels, resulting in immunodeficiency which renders the patient susceptible to opportunistic infections and malignancies. The primary mechanism of T-cell depletion during HIV-1 infection is elevated CD4+ T_hL and CD8+ CTL apoptosis [91-95]. Rapid disease progression has been shown to correlate with both elevated patient viral load [96] and CD4+ T_hL apoptosis [97] levels, whilst the latter correlates inversely with CD4+ T_hL counts [98]. Paradoxically, the majority of CD4+ T_hL cells undergoing apoptosis are uninfected by HIV-1 [99].

1.2.1 APOPTOSIS

Apoptosis is a controlled energy-dependant, physiological death process that maintains cellular homeostasis in multicellular animal organisms by removing individual unwanted as well as aberrant and virus-infected cells, whilst maintaining the integrity of adjoining cells. Apoptotic cells are morphologically distinguishable from normal cells by the appearance of chromatin condensation, nuclear fragmentation, plasma membrane blebbing and cell shrinkage that ultimately results in cellular fragmentation into smaller membrane-bound vesicles (apoptotic bodies) [100, 101]. The regulated biochemical and morphological disintegration of an apoptotic cell is executed by the class of proteolytic enzymes known as caspases.
1.2.1.1 CASPASES

Caspases (cysteine-dependant aspartate-specific proteases) [102] are highly specific proteases which catalyse a cysteine (Cys)-mediated hydrolysis of peptide bonds that immediately follow aspartate (Asp) residues [103]. Initially synthesised as inactive single chain proenzymes (zymogens), procaspases are activated by proteolytic cleavage at two Asp sites flanking the linker segment that separates the large (17-20kDa) and small (9-12kDa) subunits [103, 104]. The active caspase is a heterotetramer of two large and two small subunits [105-107]. This mechanism of activation facilitates the recruitment of latent procaspases in an amplifying proteolytic cascade [108-110]. Caspases involved in apoptosis belong to two classes based on their point of action in the caspase cascade: (a) the initiators, subdivided into the intrinsic (caspase-9) and extrinsic (caspases-2, -8 and -10) apoptosis pathway activators, and (b) effectors (caspases -3, -6 and -7) [111, 112].

Initiator caspases possess autocatalytic activity i.e. the ability to auto-activate [113]. However, autocatalytic activation of the initiator caspases occurs only upon recruitment and oligomerisation [114, 115] of several procaspase-2/8/10 and procaspase-9 molecules to either the cell surface death receptors (extrinsic pathway) or apoptosome (intrinsic pathway) respectively. The death effector domains (DED) [116, 117] and caspase recruitment domains (CARD) [118] are located in the long N-terminal peptides of procaspase-8/-10 and procaspases-2/-9 respectively. These domains mediate the targeting and association of the intrinsic and extrinsic initiator caspases with the complementary DEDs of the death receptor or CARD of the apoptosome respectively [108, 119]. Once activated, the initiator caspases cleave and activate the downstream effector procaspases [120-122]. Both procaspases-3 and -7 can also be cleaved and activated directly by
granzyme-B [123] [proteases delivered into a cell via perforin (pore-forming proteins) channels inserted by natural killer cells and CTLs].

Effector caspases usually mediate only a single cleavage of a protein substrate which either activates or inactivates that protein [104]. A broad range of cellular substrates are cleaved by effector-caspases including apoptotic and survival signalling kinases (MEK kinase-1 [124], protein kinase C delta (PKCδ) [125], phosphatidylinositol-3 kinase/Akt-1 and Raf-1 [126]), pro- and anti-apoptotic BCL-2 family proteins (Bid [127], BCL-2 [128], BCL-XL [129]), structural proteins (nuclear lamins [123, 130], actin [131], α-fodrin [132, 133] and gelsolin [134]), the DNA repair protein poly (ADP-ribose) polymerase (PARP) [135] and the endonuclease CAD/ICAD [136, 137]. The translocation of phosphatidylserine (PS) from the inner plasma membrane leaflet to the outer leaflet early in apoptosis is also caspase dependant [138], which triggers the removal of the apoptotic cell by macrophages [139]. The inhibitor of apoptosis proteins (IAPs) XIAP, c-IAP1 and c-IAP2, expressed in mammalian cells, bind directly to and inhibit active caspase-3 and -7 [140, 141].

During HIV-1 infection, lymphocyte apoptosis is mediated primarily via the death receptor (extrinsic) and/or mitochondrial (intrinsic) pathways.

1.2.1.2 THE EXTRINSIC PATHWAY

The cell surface transmembrane death receptors belong to the tumour necrosis factor (TNF) superfamily, and are characterised by cysteine-rich extracellular domains [142] and an intracellular cytoplasmic "death domain" (DD) sequence [143]. Death receptor-induced T-cell apoptosis in HIV-1 infected patients is mediated primarily by the ligation of Fas (CD95/APO1)
TNFR1/2 [148-150] and TNF-related apoptosis-inducing ligand (TRAIL-R1/2) [151-153] receptors by their respective cognate ligands (FasL, TNF and TRAIL/APO2L) (Fig. 1.3). T-cells (T_HL and CTL) of HIV-1 infected patients exhibit increased expression of particularly Fas [154-157] and TNFR1 receptors [158-160] (including their cognate ligands), thus enhancing their susceptibility to Fas- and TNF-mediated apoptosis respectively. Both TNFR1 and TRAIL-R1/2 receptors share similar mechanisms of caspase activation with the Fas receptor (Fig. 1.3).

Upon binding of homotrimeric FasL, Fas receptors undergo trimerisation [161] resulting in the recruitment and aggregation of Fas-associated death domain (FADD) adapters [162] to the receptors’ cytoplasmic domains. Fas/FADD interactions are mediated by the DD motifs located in both proteins [162-163]. FADD additionally contains an N-terminal DED motif that facilitates the recruitment of multiple procaspase-8 zymogens [117, 164] (via their DED motifs) to Fas. CAP-3 (cytotoxicity-dependant APO-1 associated protein), which contains a DED motif, is also recruited to FADD and functions in procaspase-8 recruitment [117]. This multi-protein complex is known as the death-inducing signalling complex (DISC) [165]. Oligomerisation at the membrane induces procaspase-8 auto-activation which in turn activates procaspase-3 zymogens [113-115]. The above pathway is distinctive of cells, such as the H9 cell line, that undergo apoptosis via the type-I Fas signaling pathway (Fig. 1.4). The type-I Fas pathway typically bypasses mitochondria leading directly to caspase activation. In type-II Fas cells, such as the Jurkat cell line, DISC formation is restricted which leads to mitochondrial permeabilisation and subsequent activation of caspases-8 and -3 downstream of mitochondria [166] (Fig. 1.4). Consequently, only type-II Fas-mediated apoptosis can be blocked by the over-expression of anti-apoptotic Bcl-2 and Bcl-X_L proteins, which inhibit mitochondrial permeabilisation [166].
In TNF-mediated apoptosis the adapter molecule, TNFR-associated death domain (TRADD), facilitates the binding between the DDs of TNFR1 and FADD [167]. Upon receptor ligation, TRADD additionally recruits the secondary adapters RIP (receptor interacting protein) and TRAF2 (TNFR-associated factor 2) which both activate the NF-κB and JNK survival signalling pathways [168-170], thereby counteracting the apoptotic signal. Furthermore, HIV-1 induces the production and secretion of TNFα by lymphocytes and peripheral blood mononuclear cells (PBMCs) [171]. TNFα induces the autocrine activation of NFκB [172-173] which in turn binds to the HIV-1 LTR [3] thereby inducing transcription of the HIV-1 provirus [174] and further stimulating TNFα production.
Figure 1.3. Schematic diagram of the intrinsic and extrinsic apoptosis induction pathways [175].

Signals from all pathways notably converge at the mitochondrion, culminating in the activation of the proteolytic caspase cascade.
Figure 1.4. Schematic overview of the Fas type I (A) and type II (B) pathways [166]. In type I cells, DISC formation predominates following Fas-FasL ligation leading directly to the activation of procaspase-8 and procaspase-3, independently of the mitochondria. In type II cells, DISC formation is limited and is characterised by mitochondrial PT followed by the release of cytochrome c into the cytoplasm and caspase activation.
1.2.1.3 THE INTRINSIC (MITOCHONDRIAL) PATHWAY

The mitochondrion is the central organelle at which signals from numerous intracellular stresses converge, including calcium accumulation, reactive oxygen species (ROS), sphingolipids and DNA damage, resulting in mitochondrial outer membrane permeabilisation (MOMP) [176-178]. MOMP is induced by the opening of the permeability transition pore complex (PTPC). The PTPC, a transmembrane channel between the inner and outer mitochondrial membranes (IMM, OMM), is formed primarily by the interaction of VDAC (voltage-dependant anion channel) in the OMM with ANT (adenine nucleotide transporter) and cyclophilin D (CyP-D) in the IMM [179].

Opening of the PTPC is regulated by the pro- and anti-apoptotic BCL-2 (B-cell CLL/Lymphoma 2) family of proteins (Fig. 1.3). The anti-apoptotic proteins include BCL-2, BCL-XL, BCL-W and MCL1, whilst the pro-apoptotic subfamily is subdivided into the pore-forming proteins (Bak and Bax) and BH3 domain-only proteins (BID, BAD, BIM, BIK, BMF, NOXA, PUMA and HRK) (Fig. 1.3). BCL-XL inhibits the opening of the PTPC by integrating into the OMM and binding directly to the VDAC [180], whilst Bax, Bak and BIM promote PTPC opening by binding to VDAC [181, 182]. Furthermore, MOMP is also induced upon homo-oligomerisation of Bax and Bak in the OMM [183, 184]. Bax can be directly activated by p53 tumour suppressor protein to induce MOMP [185], whilst both Bax and Bak homo-oligomerisation is induced by truncated BID (tBID) [184, 186, 187] (Fig. 1.3). Death receptor ligation results in caspase-8 cleavage of cytosolic BID to tBID [127, 188, 189]. tBID also directly induces MOMP by forming homo-oligomer pores in the OMM [190] and thus relays apoptotic signals from the cell surface to the mitochondria (Fig. 1.3).
Following MOMP, small pro-apoptotic proteins, including cytochrome c [191], second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/Diablo) and Omi/HtrA2 (IAP inhibitors) [192, 193], apoptosis-inducing factor (AIF) and endonuclease G (nucleases) [194, 195], are released from the mitochondrial intermembrane space into the cytosol. The release of cytochrome c is accompanied by the collapse of the mitochondrial inner transmembrane potential ($\Delta \psi_m$) [196], known as permeability transition (PT) or depolarisation ($\Delta \psi_m^{low}$), which irreversibly commits the cell to apoptosis [197, 198]. In the cytosol, cytochrome c assembles with dATP, apoptotic protease-inducing factor-1 (Apaf-1) and procaspase-9 (the latter two interacting via their CARD motifs) to generate the apoptosome [199-201]. Formation of the apoptosome induces auto-catalytic activation of procaspase-9, which subsequently recruits and activates procaspase-3 [202] (Fig. 1.3).

Peripheral circulating T-cells of HIV-1 infected patients are characterised by an increase in $\Delta \psi_m^{low}$ [203], an event crucial to T-cell apoptotic death during AIDS [204]. The collapse of $\Delta \psi_m$ and PS-externalisation are early apoptotic events both of which can be measured flow cytometrically on whole cells stained with the JC-1 and Annexin-V-FITC fluorophores respectively [205, 206].

1.3 ANTI-RETROVIRAL DRUGS

The anti-retroviral (ARV) drugs currently licensed in South Africa (SA) for the treatment of HIV-1 infection target and inhibit the viral RT and PR enzymes, thereby retarding viral progeny synthesis. The ARV drug classes comprise the nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitor (NNRTIs) and protease
inhibitor (PIs). The co-administration of at least two NRTIs with either one NNRTI or PI constitutes highly active anti-retroviral therapy (HAART) and is now standard of care of HIV-1 infected individuals [207]. HAART dramatically reduces plasma viral load with a concomitant increase in circulating CD4$^+$ T$_{H}$Ls [208-210]. However, HAART targets only actively replicating virus and is ineffective in eliminating dormant virus in reservoir and sanctuary sites [211]. This necessitates an HIV-1 infected individual to be on life-long HAART to maintain suppression of viral replication. Ex vivo studies have reported the persistence of T-lymphocyte apoptosis in patients undergoing HAART, particularly with NRTI-NNRTI based regimens [212, 213]. In addition to their anti-viral properties, NRTIs, NNRTIs and PIs modulate lymphocyte apoptosis at the level of the mitochondrion, which will be discussed further.

1.3.1 THE NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didanosine (ddI)</td>
<td>Lamivudine (3TC)</td>
<td>Stavudine (d4T)</td>
<td>Zidovudine (AZT)</td>
</tr>
<tr>
<td>(Adenosine analogue)</td>
<td>(Cytidine analogue)</td>
<td>(Thymidine analogue)</td>
<td>(Thymidine analogue)</td>
</tr>
</tbody>
</table>

Figure 1.5. Chemical structures of the NRTIs (nucleoside derivatives) [214] commonly prescribed in South Africa for the treatment of HIV-1 infection.
The NRTIs are dideoxynucleoside derivatives that lack a 3'-OH group on the deoxyribose sugar moiety. Within the cell, NRTIs are phosphorylated in a step-wise manner by various cellular kinases to their 5'-triphosphate derivatives (NRTI-TPs) [215-217]. Thymidine analogues are most efficiently phosphorylated in activated PBMCs, whereas ddI, 3TC and zalcitabine (ddC) are preferentially phosphorylated in resting PBMCs [218, 219]. The NRTI-TPs compete with endogenous deoxyribonucleotides for the catalytic site of RT. Incorporation of an NRTI-TP at the 3'-end of the elongating viral DNA strand results in premature termination of reverse transcription [216, 220].

1.3.1.1 MITOCHONDRIAL TOXICITY OF THE NRTIs

In light of their mechanism of action, NRTI-TPs also potentially compete as substrates for cellular DNA polymerases α, β, ε and γ [221]. However, mitochondrial DNA polymerase-gamma (Pol-γ), the enzyme required for replication of mitochondrial DNA (mtDNA), is most potently inhibited by NRTI-TPs [221, 222]. The in vitro hierarchy of Pol-γ inhibition by NRTI-TPs, in descending order, is as follows: ddC ≥ ddI ≥ d4T > 3TC > emtricitabine (FTC) > AZT > abacavir (ABC) [221]. Pol-γ inhibition results in mtDNA depletion, which has been observed in vitro in NRTI-treated cell lines [223-225] and in vivo in fat [226, 227], skeletal muscle [228, 229] and liver tissue [230] of patients presenting with lipodystrophy syndrome (LDS). Whilst mtDNA depletion was reported in human peripheral lymphocytes exposed both in vivo [231, 232] and in vitro [233, 234] to NRTIs, individuals asymptomatic for LDS whilst undergoing HAART did not exhibit lymphocyte mtDNA depletion [235].
mtDNA depletion results in decreased synthesis of mtDNA-encoded respiratory chain complex subunits [232, 233], which manifests predominantly during long-term HAART [236, 237]. This ultimately compromises oxidative phosphorylation resulting in increased anaerobic respiration and lactic acid production, culminating in elevated serum lactate levels (hyperlactatemia) [233, 238-240]. AZT-induced respiratory chain dysfunction also increases the generation of ROS within the mitochondrion [241-243], resulting in apoptosis [244]. Cells lacking mtDNA undergo apoptosis via induction of PT [245] possibly as a result of ROS-mediated attack of the ANT and/or VDAC components of the PTPC, independent of pro-apoptotic Bcl-2 proteins [246, 247].

1.3.2 THE NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS

![Chemical structures of the NNRTIs](Image)

Figure 1.6. Chemical structures of the NNRTIs [214] commonly prescribed in South Africa for the treatment of HIV-1 infection.

NNRTIs are a heterogeneous class of small (<600Da) hydrophobic non-nucleoside analogue compounds that specifically inhibit HIV-1 RT, but not HIV-2 RT [248]. In contrast to NRTIs, NNRTIs do not require intracellular metabolism for activation. NNRTIs non-competitively inhibit reverse transcription by binding to the “NNRTI-binding pocket”, located allosterically to
the substrate binding (DNA polymerase) site in the p66 subunit of HIV-1 RT [249, 250] (Fig. 1.7). The NNRTI-binding pocket is spatially and functionally associated with the DNA polymerase site [251, 252] (Fig. 1.7), which upon binding a NNRTI drug locks the DNA polymerase site in an inactive conformation [253].

In addition, EFV (but neither NVP nor Delavirdine) enhances the intracellular proteolytic processing of Gag and GagPol polyproteins with a concomitant decrease in viral particle production [254]. This is mediated by the binding of EFV to RT embedded in the GagPol polyprotein thereby promoting the oligomerisation of GagPol polyproteins. This induces premature activation of the PR enzyme embedded within GagPol, and subsequent cleavage of the polyproteins into their constituent structural and enzyme subunits. As a result, this decreases the amount of full-length Gag and GagPol polyproteins that are necessary for viral assembly and budding from the host cell membrane [254].
Figure 1.7. Ribbon representation of HIV-1 RT in complex with EFV (grey). The p66 and p51 subunits of HIV-1 RT are coloured red and green respectively. Residues located in the DNA polymerase and RNase H active sites are indicated with yellow spheres [255].

1.3.2.1 MITOCHONDRIAL TOXICITY OF THE NNRTIs

In contrast to the NRTIs, much less is known about the apoptosis-inducing potential of the NNRTIs and the mechanism/s thereof. EFV has been shown to induce apoptosis in vitro in both the Jurkat cell line and PBMCs, which were characterised by a dose-dependant increase in Δψm[^low], cytochrome c release, procaspase-9 and -3 activation and PS externalisation [256]. This finding suggests a mitochondrial mechanism of NNRTI-induced lymphocyte cytotoxicity,
however the precise mechanism of NNRTI-induced mitochondrial PT in lymphocytes remains unknown.

NNRTIs appear to influence the expression of uncoupling proteins (UCPs) in brown adipocytes. UCPs are proton transporters, present in the IMM, that catalyse a regulated discharge of the proton gradient across the IMM i.e. reduction of the $\Delta \psi_m$. UCP1 is expressed exclusively in brown adipose tissue, UCP3 in brown adipose and muscle tissue, UCP4 and B MCP1 in the brain, whilst UCP2 expression is widespread [257]. In an in vitro study, both d4T and NVP significantly induced the UCP1 mRNA expression in treated brown adipocytes, with the level of induction by NVP being significantly higher than by d4T [258]. Neither of these drugs influenced the expression of UCP2 mRNA, whilst EFV had no effect on the expression of UCP1 and UCP2 mRNA in brown adipocytes with respect to the control [258].
1.3.3 THE PROTEASE INHIBITORS

Figure 1.8. Chemical structures of the PIs [214] commonly prescribed in South Africa for the treatment of HIV-1 infection. Other drugs in this class include Indinavir (IDV), Nelfinavir (NFV) and Saquinavir (SQV).

The importance of HIV-1 PR in viral maturation lends itself as a potent target for the inhibition of viral replication. PIs are transition state peptidomimetic analogues that bind more tightly than the natural substrates to aspartate residues in the PR catalytic active site, thus competitively inhibiting the PR enzyme [214, 259]. Inhibition of HIV-1 PR results in the production of immature and non-infectious viral particles.
1.3.3.1 MITOCHONDRIAL PROTECTIVE EFFECT OF PI

Numerous studies reported that after initiation of PI-containing HAART, patients exhibited marked increases in their circulating CD4⁺ Tₜ,L counts before significant decreases in plasma viral RNA load [209, 260-262]. This has been attributed to the independent inhibition of lymphocyte apoptosis by PI drugs both ex vivo and in vitro [263, 264]. Phenix et al [265] reported that NFV inhibited Jurkat cell apoptosis within 1 hour of treatment, at clinically achievable concentrations, in the presence of apoptotic stimuli. NFV blocked PTPC opening at the level of the ANT and thus the collapse of Δψm and cytochrome c release in the presence of apoptotic stimuli, but did not inhibit active caspase-3, -6, -7, or -8 proteolytic activity [265]. NFV however did not inhibit Fas-mediated apoptosis in the type-I Fas H9 cell line [265]. The inhibition of ANT function in PTPC formation by NFV was also confirmed in another independent study [266].

Several studies subsequent to Phenix et al [265] reported the inhibition of Δψm-low and mitochondrial-driven apoptosis by protease inhibitors [267-270]. In addition, Matarrese et al [269] reported the novel finding that LPV, IDV and SQV reduced UCP2 protein expression, in a dose-dependent manner, in T-lymphocytes isolated from human PBMCs, with a concomitant reduction in mitochondrial PT and ROS production. Thus PIs maintain the integrity of the lymphocyte mitochondrial Δψm by preventing opening of the PTPC and UCP-mediated discharge of the Δψm.
CHAPTER 2

SCIENTIFIC PAPER PUBLICATION

PREFACE

The following paper published in the Journal of Acquired Immune Deficiency Syndromes (48(4); August 2008, 381-388), documents the persistence of peripheral lymphocyte mitochondrial depolarisation and apoptosis in Black South African HIV-1 infected patients undergoing HAART that contained either one of the NNRTIs, EFV or NVP.

This study was undertaken in light of the lack of literature regarding the potential of the above NNRTIs to induce lymphocyte mitochondrial dysfunction and apoptosis in vivo.
Lymphocyte Mitochondrial Depolarization and Apoptosis in HIV-1-Infected HAART Patients

Lesher Karamchand, MSc,* Halima Dawood, MD, FCP,t and Anil A. Chuturgoon, PhD*

INTRODUCTION

Highly active antiretroviral therapy (HAART) is currently the only treatment that effectively reduces the morbidity and mortality of individuals infected with HIV-1.1 HAART results in a reduction in plasma viral load with a subsequent increase in circulating CD4+ helper (T4) lymphocytes2 and decreases the risk of opportunistic infections.3 However, the long-term use of HAART regimens typically comprise 2 nucleoside reverse transcriptase inhibitors (NRTIs) and either one nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI).7 Continuous suppression of viral replication requires long-term therapy during which patients develop severe side effects. Lipodystrophy syndrome (LDS), the result of long-term NRTI therapy, is characterized by dyslipidemia, body fat redistribution, and metabolic abnormalities.8,9

NRTI-associated LDS is attributed to the mitochondrial (mt) toxicity of this drug class,6,10 which is mediated by the inhibition of the mt enzymes DNA polymerase gamma (Pol-γ),11,12 adenylate kinase,13 thymidine kinase (TK) type-2,14 and ADP/ATP translocator.15 The inhibition of Pol-γ, the enzyme responsible for mitochondrial DNA (mtDNA) replication, is however the most significant contributor to mt toxicity. The in vitro hierarchy of Pol-γ inhibition by NRTIs (triphosphorylated) in descending order is as follows: zalcitabine (ddC) ≥ didanosine (dDI) ≥ stavudine (d4T) > lamivudine (3TC) > emtricitabine (FTC) > zidovudine (AZT) > abacavir (ABC).12 mtDNA depletion and deletion have been observed in vitro in NRTI-treated cell lines16 and in vivo in fat,17 skeletal muscle,18 and liver tissue19 of LDS patients.

In recent studies, human peripheral lymphocytes exposed in vivo20,21 and in vitro22,23 to NRTI-containing HAART also exhibited significant mtDNA deletion. Furthermore, reduced expression and activity of mtDNA-encoded complexes of the mt respiratory chain were observed in NRTI-treated T lymphocytes24 and peripheral blood mononuclear cells (PBMCs) of LDS patients, respectively.25 Impairment of respiratory chain enzyme expression inhibits oxidative phosphorylation,25 with possible induction of apoptosis via the mt pathway.26 Conversely, PIs have been shown to prevent apoptosis, at the mt level by preventing collapse of the mt transmembrane potential (Δψmt).27 The effect of NNRTIs on mitochondria is less well documented, although efavirenz (EFV) has been reported to induce apoptosis in vitro via the mt pathway in the Jurkat cell line and primary T cells of uninfected donors.28 However, the in vivo effect of the commonly prescribed NNRTIs, EFV, and nevirapine (NVP) on patient lymphocyte mitochondria remains unknown. We therefore assessed ex vivo mt depolarization (Δψmmt) and apoptosis in lymphocytes of
HIV-1-infected patients who were treated with either Efavirenz (EFV) or Nelfinavir (NVP) as a component of triple-drug HAART, for 4–24 months.

METHODS

Study Design and Patient Recruitment

The study was approved by the University of KwaZulu-Natal, Biomedical Research Ethics Administration (H129/04). Patients were recruited from an antiretroviral rollout clinic at a tertiary-level hospital after obtaining informed consent. All patients were black South Africans with HIV-1 infection. Thirty-two patients on NNRTI-based HAART were enrolled (8 males: 24 females). Sixteen HIV-1-infected patients (5 males: 11 females) who were HAART naive were recruited as control subjects.

Drug Regimens

Three HAART regimens are currently prescribed to HIV-1-infected patients in South Africa: regimen 1a: stavudine (d4T), lamivudine (3TC), and EFV; regimen 1b: d4T, 3TC, and NVP; and regimen 2: zidovudine (AZT), didanosine (ddI), and lopinavir/ritonavir. Only patients on regimen 1a or 1b (males: females; 6:6 and 2:18, respectively) were recruited. Patients on PI-based regimens were excluded so as to preclude the antiproliferative effects of the PIs (lopinavir/ritonavir) on PBMCs. HAART drugs were dosed as follows: regimen 1a/1b: d4T [30 mg/12 h if body weight (body weight < 60 kg, 40 mg/12 h if body weight ≥ 60 kg)]; 3TC (150 mg/12 h); and EFV (600 mg/24 h)/NVP (200 mg daily for initial 2 weeks, followed by 200 mg/12 h). Four of the 32 patients on NNRTI-based HAART (2 from each regimen) were treated with AZT (300 mg/12 h) instead of d4T. All HIV-infected patients were 18 years and older and 50 years and younger. Patients in the NNRTI-based HAART group were on therapy for a minimum of 4 months and did not have signs and symptoms of LDS. Patients with an abnormal liver function profile were excluded. Patients with a current diagnosis or undergoing treatment for opportunistic infections or malignancy were excluded. All patients were on trimethoprim and sulfamethoxazole (160/800 mg daily) as prophylaxis against Pneumocystis carinii pneumonia and Toxoplasma gondii.

Flow Cytometry Reagents

Monoclonal anti-human CD4-APC antibody, BD TriTEST CD4-FTC/CD8-PE/CD3-PerCP antibody kit, and JC-1 MitoScreen kit were from Becton Dickinson (BD Biosciences, San Jose, CA). The Annexin V-FLUOS kit was purchased from Roche Diagnostics GmbH (Penzberg, Germany). Histopaque-1077 and 0.4% trypan blue solution were purchased from Roche Diagnostics GmbH (Penzberg, Germany). The Annexin-V-FLUOS kit was distinguished from apoptotic cells by staining with propidium iodide. PBMCs were incubated with 100 μL Annexin-V-FLUOS reagent and 5 μL CD4-APC in the dark at RT for 15 minutes.

CD4 Count and Viral Load Determination

HIV-1 plasma viral loads for all HAART-treated patients were below the lower detection limit of the assay and

RESULTS

Clinical Parameters

HIV-1 plasma viral loads for all HAART-treated patients were below the lower detection limit of the assay. All statistical analyses were performed using GraphPad InStat v3.06. Differences between the control and HAART regimens for lymphocyte apoptosis and Δδm were compared by parametric unpaired t tests (2-tailed P value). Viral loads and CD4 T cells were also compared by parametric unpaired t tests. Differences between total lymphocyte and nonlymphoid cells using FlowJo v7.1 software (Tree Star, Inc). Lymphocytes were gated on their fluorescent probes for the respective assays (Fig. 1).
Lymphocyte Apoptosis During NNRTI Therapy

Figure 1. Flow cytometric scatter plots of HIV-1-infected patient lymphocytes stained with (A) Annexin-V-FLUOS and (B) JC-1 dye. A, Live, apoptotic, and necrotic lymphocytes were gated as live cells: Annexin-V-FITC log FL1-H < 10^5; Ppl log FL3-H < 10^2; apoptotic cells: Annexin-V-FITC log FL1-H < 10^2; Ppl log FL3-H < 10^2; necrotic cells: Annexin-V-FITC log FL1-H < 10^2; Ppl log FL3-H > 10^2. B, JC-1 dimerizes in lymphocytes with an intact Δψm resulting in a higher red fluorescence emission detected in the FL2-H channel in addition to green fluorescence detected in the FL1-H channel (i). JC-1 remains in monomeric state in lymphocytes with a collapsed Δψm and emits only green fluorescence (FL1-H) (ii). Ppl, propidium iodide; FL, fluorescence.

Apoptosis and Δψm

Mean total lymphocyte apoptosis of the HAART-naive cohort was significantly lower than that of both regimen la and lb cohorts, with the only other comparison being significant (P < 0.0001). Both regimen la and lb cohorts had significantly higher mean CD4 T_H counts than the HAART-naive cohort (P = 0.014 and P = 0.0008, respectively) (Table 1).

Correlation of Apoptosis and Δψm With Duration of HAART

Regimen lb (NVP) patients demonstrated a significant time-dependent increase in lymphocyte Δψm (Fig. 2B, P = 0.0005; r = 0.704). Such a correlation was not observed for regimen la (EFV) patients. Furthermore, total and T_H lymphocyte apoptosis correlations against treatment duration were not significant in either regimen la or lb cohorts.

Patients in each cohort were stratified into 1 of 4 subcategories, according to their respective durations on HAART up to the point of recruitment (Table 3). Statistical differences between each cohort for the corresponding subcategories with regard to lymphocyte apoptosis and Δψm were tested. Between the initial 4-6 months of therapy, both mean total lymphocyte and T_H apoptosis in the regimen la (EFV) cohort were significantly lower than that of the regimen lb (NVP) cohort (P = 0.004 and P = 0.027, respectively).
However, during this period, mean total lymphocyte Δm_{low} in the regimen 1a (EFV) cohort was nearly 4 times greater than that of the regimen 1b (NVP) cohort ($P = 0.006$). Furthermore, mean T_H apoptosis of the regimen 1a (EFV) cohort, during months 13–18, was approximately 1.8 times lower than that of the regimen 1b (NVP) cohort for the same period ($P = 0.019$). Comparisons between the other subcategories were not statistically significant.

In addition, the subcategories within each regimen were compared against each other for the respective assays. The regimen 1a (EFV) cohort exhibited significant time-dependent increases in both total lymphocyte and T_H apoptosis parameters up to only the 12th month of treatment ($P = 0.026$ and $P = 0.029$, respectively). This was the only significant trend noted for regimen 1a, whereas no significant trends in the total lymphocyte and T_H apoptosis parameters were observed for regimen 1b. In regimen 1b, however, the only significant trend observed was a time-dependent increase in lymphocyte Δm_{low} between 4 and 18 months (4–6 months < 7–12 months and 4–6 months < 13–18 months) of treatment (Table 3 and Fig. 2B). Conversely, regimen 1a patients exhibited a nonsignificant time-dependent decrease in lymphocyte Δm_{low} up to 18 months of treatment. Notably, total lymphocyte apoptosis was consistently higher than T_H apoptosis in all subgroups of both regimens, a finding similar to the comparison of the means of these parameters (Table 1).

DISCUSSION

Elevated T_H and cytotoxic T-lymphocyte apoptosis is the primary mechanism of HIV-1-induced T-lymphocyte depletion, however, the majority of T_H that are committed to apoptosis are uninfected bystander cells. Bystander T_H apoptosis is primarily mediated by Fas ligand- and/or tumor necrosis factor-related apoptosis-inducing ligand-dependent activation-induced cell death, whereas infected T_H cells are spared from autonomous Fas- or TNF-related apoptosis-inducing ligand-mediated apoptosis via the inhibition of apoptosis signal-regulating kinase-1 by Nef protein. In the HAART-naive cohort, mean T_H apoptosis was higher than, although not significantly different from total lymphocyte apoptosis. Significant reductions in T_H apoptosis below total lymphocyte apoptosis and that of HAART-naive T_H apoptosis in both treatment cohorts suggest the reduction of apoptosis in bystander and directly infected T_H cells by HAART (Table 2). This is further supported by the absence of detectable plasma virus and significantly higher peripheral T_H counts in patients of both treatment cohorts.

Furthermore, the loss of Δm_{low} is a crucial event in T_H apoptosis during HIV-1 infection. A mean lymphocyte Δm_{low} of ~45% in our HAART-naive cohort that was significantly higher than in both HAART cohorts corresponds with this finding. However, the lack of a significant correlation between lymphocyte apoptosis and lymphocyte Δm_{low} in the HAART-naive cohort seemed paradoxical. This could be explained by the effect of the soluble HIV-1 viral protein R on mitochondria, whereby it promotes the loss of Δm_{low} in both infected and uninfected cells by inducing the opening of the mitochondrial permeability transition pore complex. Viral protein R, however, does not induce the release of apoptosis-inducing factor from the permeabilized mitochondria into the cytoplasm. The subsequent translocation of phosphatidylserine from the cytoplasmic to the extracellular plasma membrane surface, as catalyzed by apoptosis-inducing factor, would be reduced and thus also the binding of Annexin-V to the depolarized lymphocyte.

TABLE 1. Clinical Parameters of HAART-Naive and HAART-Treated HIV-1-Infected Patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>HAART-Naive HIV-1-Infected Patients (n = 16)</th>
<th>HAART-Treated HIV-1-Infected Patients Regimen 1a (n = 12)</th>
<th>HAART-Treated HIV-1-Infected Patients Regimen 1b (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4$^+$ T_H count (cells/µL)</td>
<td>144 ± 23.25</td>
<td>254 ± 45.32</td>
<td>315 ± 40.70</td>
</tr>
<tr>
<td>Plasma viral load (log_{10} copies/mL)</td>
<td>4.40 ± 0.24</td>
<td>1.06 ± 0.02</td>
<td>1.22 ± 0.10</td>
</tr>
<tr>
<td>Duration on HAART (months)</td>
<td></td>
<td>12 ± 1.73</td>
<td>9 ± 1.11</td>
</tr>
</tbody>
</table>

All values are reported as mean ± SEM.* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$ (Difference from HAART-naive cohort).

* $P = 0.037$; ** $P < 0.0006$; *** $P = 0.0001$; **** $P = 0.017$; ***** $P < 0.0001$ (Difference from HAART-naive cohort).

* $P = 0.039$ (Correlation between T_H apoptosis and Δm_{low}).

* $P = 0.030$; ** $P < 0.0026$; *** $P < 0.0001$ (Difference between total and T_H lymphocyte apoptosis).

* $P = 0.141$; ** $P = 0.035$; *** $P = 0.0004$ (Correlation between total and T_H lymphocyte apoptosis).
We report reduced but persistent spontaneous peripheral lymphocyte apoptosis and Δψm_{low} during HAART in our study, with similar levels of lymphocyte apoptosis reported in previous in vivo studies. T_H lymphocyte apoptosis was consistently lower than total lymphocyte apoptosis in both HAART cohorts, suggesting that other lymphocyte subsets, such as CD8 cytotoxic T lymphocytes and B cells, were concurrently undergoing apoptosis. de Oliveira Pinto et al. noted a significant persistence of lymphocyte apoptosis in over 70% of their chronically treated (up to 55 months) HAART patients. The persistence of lymphocyte apoptosis in this cohort may be attributed to mt toxicity via NRTI-induced (d4T and 3TC) mtDNA depletion, which is however predominant during chronic therapy. NRTI-induced lymphocyte mtDNA depletion is, however, most prevalent in LDS patients compared with patients without LDS, the latter which comprised our study subjects. Furthermore, PBMCs (lymphocytes and monocytes) intrinsically lack cytosolic TK1 but retain mt expression of TK2. Hence, in peripheral lymphocytes, the initial monophosphorylation step of AZT and d4T (thymidine analogues), as catalyzed by TK1/2, is localized to the mitochondrion, thus ultimately restricting the incorporation of these triphosphorylated NRTIs into nuclear DNA. In addition, the triphosphates of d4T and 3TC are poor inhibitors of α, β, and ε nuclear DNA polymerases. When analyzed as a separate group, the lymphocyte apoptosis and Δψm_{low} parameters of the 4 AZT-treated patients were not statistically different from those of cohorts la and lb (data not shown). These factors therefore preclude the induction of peripheral lymphocyte apoptosis in our acutely treated subjects via NRTI-induced mtDNA and nuclear DNA damage.

Mean lymphocyte Δψm_{low} was significantly higher in the regimen la cohort (EFV) than in the regimen lb cohort (NVP); however, we noted a nonsignificant time-dependent decrease in Δψm_{low} lymphocytes in the former between 4 and 18 months of treatment but a significant time-dependent decrease in Δψm_{low} lymphocytes in the latter.
increase in Δψmlow lymphocytes in the latter group. Furthermore, there was a positive significant correlation between TH apoptosis and lymphocyte Δψmlow in the regimen 1b cohort (Fig. 2A), which suggests that NVP induces apoptosis in peripheral lymphocytes via the collapse of Δψm in vivo at therapeutic concentrations. Interestingly, we noted that neither total lymphocyte nor TH apoptosis correlated with lymphocyte Δψmlow in the regimen 1a cohort. Although the plasma concentrations of EFV achieved during therapy may be sufficient to disrupt Δψm in peripheral lymphocytes, only a small percentage of these cells may develop mitochondrial permeabilization with the subsequent release of cytochrome c and apoptosome formation, thereby committing them to apoptosis. In addition, immune activation has been shown to persist, although at a lower level, during HAART. Activated lymphocytes express high levels of surface Fas and Fas ligand, rendering them susceptible to apoptosis by activation-induced cell death. Apoptosis in these cells may occur via the type 1 Fas pathway, which bypasses mitochondria. These 2 factors provide a plausible explanation for the lack of correlation between lymphocyte Δψmlow and apoptosis in the EFV cohort. de Oliveira Pinto et al. reported the highest levels of apoptosis in peripheral lymphocytes of HAART patients following Fas receptor ligation in vitro, a finding that supports our theory.

In contrast to our findings for EFV-treated patients, Pilon et al. reported concentration-dependent increases in apoptosis and Δψm low in EFV-treated Jurkat cells and PBMCs in vitro. However, the concentrations of EFV assayed by Pilon et al. exceed the peak plasma levels achieved by a daily dose of 600 mg EFV (Cmax = 5.6 μM; Cmin = 12.9 μM). Furthermore, in circulation, EFV is 99% bound to plasma albumin (compared with 60% for NVP), thereby reducing the availability of EFV to peripheral-circulating lymphocytes.

Uncoupling proteins are proton transporters, present in the inner mt membrane, that mediate a regulated dissipation of the Δψm. Rodriguez de la Concepcion et al. reported a significant induction of uncoupling protein 1 expression in brown adipocytes mediated by both NVP and d4T in vitro, with the degree of induction by NVP being significantly higher than that of d4T. The collapse in PBMC Δψm could be mediated by NVP in vivo, via the induction of other uncoupling protein isoforms in PBMCs. This effect could be exacerbated during cotreatment with d4T, as in the case with our regimen 1b–treated patients. A decrease in ATP synthesis via oxidative phosphorylation will lead to an increase in Δψmlow.

Notably, lymphocyte Δψmlow in EFV-treated patients was approximately 4 times higher than in NVP-treated patients within the 4–6 months period of treatment. However, this difference could be attributed to the patient numbers of the EFV cohort being considerably lower than that of the NVP cohort at this period of treatment. It must be noted that the varying degrees of toxicity in patients treated with EFV and NVP may be attributed to interpatient variations in the biotransformation of these drugs, due to polymorphic variants of the hepatic cytochrome P450 2B6 (CYP 2B6) gene. The influence of NRTIs sulfamethoxazole and trimethoprim on the induction or inhibition of hepatic CYP 2B6 is negligible because the NRTIs are not metabolized by the hepatic CYP450 system, whereas trimethoprim and sulfamethoxazole are selective inhibitors of only CYP 2C8 and 2C9, respectively, at concentrations achievable in vivo.

This pilot study provides evidence that the NNRTIs, EFV, and NVP are potential inducers of mt toxicity at concentrations achieved in vivo during clinical therapy. This mechanism of toxicity has important implications in the etiology of NNRTI-induced adverse effects including central nervous system toxicity, Stevens–Johnson syndrome, and toxic epidermal necrolysis. Because neither EFV nor NVP are inhibitors of Pol-γ, the exact mechanism by which EFV and NVP induce mt toxicity requires further investigation. The foremost limitation of this study is that the in vivo toxicity of each NNRTI drug could not be determined alone, as triple-drug therapy is now standard of care for the treatment of HIV-1 infection. We have however provided plausible explanations that exclude the involvement of NRTIs in the induction of lymphocyte apoptosis and mt depolarization in our treatment.
groups. Furthermore, because both EFV and NVP are extensively metabolized by the CYP3A4 system, the time-dependent lymphocyte ΔpH trends could indeed be influenced by the polymorphic variability of this enzyme system in individual patients. Finally, patients on EFV showed increased mt toxicity as compared with patients on NVP. This may indicate a synergism between JAT and NVP in mt toxicity induction and warrants further investigation.

ACKNOWLEDGMENTS

We acknowledge and thank the patients at the Family Health clinic, King Edward VIII Hospital, Durban, South Africa, for their contribution to this study and the nursing staff for their assistance during the study. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the National Research Foundation.

REFERENCES

5. Badley AD, Parato K, Cameron DW, et al. Dynamic correlation of lymphocyte Ai|jm trends could indeed be influenced by the National Research Foundation.

CONCLUSION

The mechanisms by which the NRTIs and PIs modulate lymphocyte mitochondrial function, both
in vivo and in vitro, are documented extensively in the literature. By contrast, literature pertaining
to the potential of the NNRTIs to mediate lymphocyte mitochondrial toxicity is scarce. The data
from this novel pilot study strongly implicates the NNRTIs, EFV and NVP, in promoting
lymphocyte Δψm low at concentrations achieved in vivo during clinical management of HIV-1
infected patients. This is supported by the persistence of lymphocyte Δψm low in both the EFV and
NVP patient cohorts, in the absence of detectable viral replication. Furthermore this study
demonstrates that NVP promotes lymphocyte apoptosis through the induction of lymphocyte
Δψm low. Evidence in support of this includes the significant direct correlation between CD4+ TθL
apoptosis and Δψm low and a significant therapy duration-dependant increase in lymphocyte
Δψm low in the NVP patient cohort.

These findings have two important clinical implications. Firstly, the NNRTIs, especially NVP,
may exacerbate the mitochondrial toxicity of NRTIs and thereby hasten onset of LDS in patients
treated with these drug class combinations. Secondly, considering the mechanisms of HIV-1 –
mixed lymphocyte mitochondrial toxicity, the NNRTIs may inadvertently promote the decline
of CD4+ TθL cells in patients that develop NNRTI-resistant viral mutants as a result of poor
adherence to HAART. In contrast to the NRTIs, NNRTI drugs do not inhibit mt Pol-γ, which
suggests that the NNRTIs employ a different mechanism of mt toxicity to the NRTIs. Previous
studies reported the induction of mt UCP expression by NVP. This presents a plausible
explanation of the observed increase in NVP-induced collapse of lymphocyte Δψm in this study,
however further investigations into this potential mechanism of action are now warranted.
REFERENCES

[38] NIH AIDS Research and Reference Reagent Program. [online] [cited 30 June 2008]; Available from: https://www.aidsreagent.org/program_info.cfm#10

[93] Oyaizu N, McCloskey TW, Coronesi M, Chirmule N, Kalyanaraman VS, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood. 1993;82(11):3392-400.

Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. Embo J. 1997;16(9):2271-81.

