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ABSTRACT

The epitopes defined by HIV-1 broadly neutralizing antibodies (bNAbs) are valuable templates for vaccine design, and
studies of the immunological development of these antibodies are providing insights for vaccination strategies. In addi-
tion, the most potent and broadly reactive of these bNAbs have potential for clinical use. We previously described a family
of 12 V1V2-directed neutralizing antibodies, CAP256-VRC26, isolated from an HIV-1 clade C-infected donor at years 1, 2,
and 4 of infection (N. A. Doria-Rose et al., Nature 509:55—62, 2014, http://dx.doi.org/10.1038/nature13036). Here, we re-
port on the isolation and characterization of new members of the family mostly obtained at time points of peak serum neu-
tralization breadth and potency. Thirteen antibodies were isolated from B cell culture, and eight were isolated using trim-
eric envelope probes for differential single B cell sorting. One of the new antibodies displayed a 10-fold greater
neutralization potency than previously published lineage members. This antibody, CAP256-VRC26.25, neutralized 57% of
diverse clade viral isolates and 70% of clade C isolates with remarkable potency. Among the viruses neutralized, the me-
dian 50% inhibitory concentration was 0.001 pg/ml. All 33 lineage members targeted a quaternary epitope focused on V2.
While all known bNAbs targeting the V1V2 region interact with the N160 glycan, the CAP256-VRC26 antibodies showed
an inverse correlation of neutralization potency with dependence on this glycan. Overall, our results highlight the ongoing
evolution within a single antibody lineage and describe more potent and broadly neutralizing members with potential clin-
ical utility, particularly in areas where clade C is prevalent.

IMPORTANCE

Studies of HIV-1 broadly neutralizing antibodies (DbNAbs) provide valuable information for vaccine design, and the most potent
and broadly reactive of these bNAbs have potential for clinical use. We previously described a family of V1V2-directed neutraliz-
ing antibodies from an HIV-1 clade C-infected donor. Here, we report on the isolation and characterization of new members of
the family mostly obtained at time points of peak serum neutralization breadth and potency. One of the new antibodies,
CAP256-VRC26.25, displayed a 10-fold greater neutralization potency than previously described lineage members. It neutralized
57% of diverse clade viral isolates and 70% of clade C isolates with remarkable potency: the median 50% inhibitory concentra-
tion was 0.001 pg/ml. Our results highlight the ongoing evolution within a single antibody lineage and describe more potent and
broadly neutralizing members with potential clinical utility, particularly in areas where clade C is prevalent.

N eutralizing antibodies (NAbs) against HIV-1 are likely to be a
major component of an effective vaccine-induced immune
response. Cross-reactive NAbs commonly arise during HIV-1 in-
fection, though only a small subset of infected patients produces
NAbs with a high neutralization breadth and potency (1-4). In
contrast, the HIV-1 envelope glycoprotein (Env) vaccine im-
munogens tested to date have failed to elicit cross-reactive neu-
tralizing antibodies (5, 6). Thus, studying the development of
broadly neutralizing antibodies (bNAbs) in infected individuals
may provide important lessons for vaccine design (5, 7-10). In
addition, the isolation of bNADbs from selected donors has greatly
aided our understanding of the HIV-1 Env structure (11-13) and
vulnerability to neutralizing antibodies (14-16), and such anti-
bodies have the potential to be used for the prevention or treat-
ment of HIV-1 infection (8, 17).
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NAbs directed to the VI1V2 region of HIV-1 Env are of partic-
ular interest for vaccine design, as this site is antigenic and com-
monly targeted in HIV infection (18, 19). To date, families of
V1V2-directed bNAbs have been isolated from only four different
donors (20-23). These antibodies typically have a long, anionic
heavy chain complementarity-determining region 3 (CDRH3),
which penetrates the glycan shield, and heavy chain variable (VH)
gene mutation levels of 10 to 20%. They bind to the apex region of
the intact trimer and bind poorly or not at all to most monomeric
forms of the protein. Negative-stain electron microscopy studies
show that such antibodies bind with a stoichiometry of one per
trimer and likely interact with more than one protomer (21, 24),
consistent with the location of V1V2 at the apex of the trimer (11,
12). This category of antibodies typically relies on glycan residues,
specifically, N156 and N160 in V2 (23). Glycan dependence some-
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times results in incomplete neutralization, referred to as the pla-
teau effect (23, 25, 26), due in part to the microheterogeneity of
glycoforms at these residues, resulting in a resistant subpopula-
tion within a virus preparation (27).

Our group has extensively studied the antibodies from donor
CAP256, who developed high-titer plasma neutralizing antibodies
to the V1V2 region that first appeared at 1 year and peaked at 3
years of HIV-1 infection (21, 28, 29). This donor was infected with
a clade C virus and 15 weeks later was superinfected with a differ-
ent clade C virus. We isolated 12 V1V2-directed antibodies at
multiple time points over 4 years of infection; all were somatically
related and termed the CAP256-VRC26 lineage, where CAP256
denotes the donor and VRC26 denotes the antibody lineage.
Members of this antibody lineage have a very long CDRH3 of 35 to
37 amino acids and modest levels of V-gene mutation (8 to 15%
sequence divergence compared with that of the germ line). 454
pyrosequencing of virus from early time points showed that the
long CDRH3 was present at the origin of the lineage and allowed
accurate inference of an unmutated common ancestor (UCA) that
was able to bind and neutralize the superinfecting virus (21).

Here, we report on the isolation and characterization of 21 new
members of the CAP256-VRC26 family. These antibodies were
isolated either by B cell culture or by single-cell sorting with trim-
eric Env probes. One of the antibodies, CAP256-VRC26.25
(where the antibody name indicates donor-lineage.clone), neu-
tralizes 57% of HIV-1 isolates, including 70% of clade C isolates,
with an overall 10-fold greater potency than the previously de-
scribed family members. Structure, epitope mapping, and phylo-
genetic analyses provide a deeper understanding of the origin and
evolution of this important lineage.

MATERIALS AND METHODS

Study subject. Centre for the AIDS Programme of Research in South
Africa (CAPRISA) participant CAP256 was enrolled into the CAPRISA
Acute Infection Study (30) that was established in 2004 in KwaZulu-Na-
tal, South Africa, for follow-up and subsequent identification of HIV se-
roconversion. CAP256 was one of the seven women in this cohort who
developed neutralization breadth (31). The CAPRISA 002 Acute Infection
Study was reviewed and approved by the research ethics committees of the
University of KwaZulu-Natal (E013/04), the University of Cape Town
(025/2004), and the University of the Witwatersrand (MMO040202).
CAP256 provided written informed consent for study participation. Sam-
ples were drawn between 2005 and 2009.

B cell cultures. Peripheral blood mononuclear cells (PBMCs) isolated
from CAP256 blood draws at week 193 were stained with LIVE/DEAD
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Fixable Aqua (Invitrogen), CD19-Cy7-phycoerythrin (PE), IgM-Cy5-PE,
IgD-PE, CD16-Pacific Blue, and CD3-Cy7-allophycocyanin (APC) (BD
Pharmingen). The IgD-negative (IgD™) IgM-negative (IgM ™) B cells
were bulk sorted on a BD FACSAria II flow cytometer as described previ-
ously (19). Cells were plated at 2 B cells per well in 384-well plates and
cultured for 14 days in the presence of CD40L-expressing irradiated
feeder cells, interleukin-2 (IL-2) (Roche), and interleukin-21 (IL-21)
(Gibco), as described previously (32, 33). Culture supernatants were
screened by microneutralization against HIV-1 ZM53.12 and CAP210.E8
Env pseudoviruses as described in reference 34.

Expression and purification of trimeric HIV-1 Env BG505 SOSIP.
664 probes. An Avi tag (GLNDIFEAQKIEWHE) was inserted at the C
terminus of the previously described construct BG505 SOSIP.664.T332N
gp140, referred to here as BG505 SOSIP (35). For BG505 SOSIP.K169E-
Avi, lysine (K) 169 was mutated to a glutamic acid (E) by site-directed
mutagenesis. Both constructs were transfected and purified as described
previously (12). Briefly, HEK 293 cells were cotransfected with BG505
SOSIP and furin plasmid DNAs at a 4:1 ratio. Transfection supernatants
were harvested and purified through either a VRCO01 or a 2G12 antibody
affinity column. Proteins were eluted with 3 M MgCl,, 10 mM Tris, pH
8.0. The eluate was concentrated and applied to a Superdex 200 column
equilibrated in 5 mM HEPES, pH 7.5, 150 mM NacCl, 0.02% azide or
phosphate-buffered saline. The fractions corresponding to the trimeric
proteins were pooled, concentrated, flash-frozen in liquid nitrogen, and
stored at —80°C. The proteins were biotinylated at the Avi tag sequence
using BirA ligase and then conjugated to streptavidin-APC or streptavi-
din-PE (Invitrogen) as described previously (36).

The probes were assessed for the correct antigenicity by binding to
antibody-coated beads. Anti-mouse kappa light chain beads (Becton
Dickinson, San Jose, CA) were incubated with anti-human IgG (Becton
Dickinson), washed, incubated with 2 pg/ml antibody CAP256-
VRC26.09, PGT128, or F105, and washed again. BG505 SOSIP-streptavi-
din-APC or BG505 SOSIP.K169E-streptavidin-PE (1.5 pg) was then in-
cubated with the beads, and the beads were washed and analyzed on an
LSR II flow cytometer (Becton Dickinson).

Cell sorting. PBMCs from week 159 were stained for IgG-positive
(IgG™) B cells using LIVE/DEAD Fixable Aqua (Invitrogen), IgG-fluores-
cein isothiocyanate, CD19-Cy7-PE, IgM-Cy5-PE, CD14-PE-Texas Red
(ECD), CD4-ECD, CD3-Cy7-APC, and CD8-Brilliant Violet 711 (BD
Pharmingen). At the same time, they were stained with BG505 SOSIP-
streptavidin-APC and BG505 SOSIP.K169E-streptavidin-PE. Cells that
were BG505 SOSIP-streptavidin-APC positive (APC") IgG* CD19™"
were sorted using a BD FACSAria IT flow cytometer into single wells of a
96-well plate containing RNase inhibitor (New England Biolabs), Super-
Script reverse transcriptase buffer (Invitrogen), dithiothreitol, and Igepal
as described previously (36).

Isolation and expression of CAP256-VRC26 family genes. Kappa
and lambda light chain gene and IgG heavy chain gene variable regions
were amplified from neutralization-positive B cell culture wells as de-
scribed in reference 33 or from 96-well sort plates as described in reference
36. Briefly, cells were lysed and subjected to reverse transcription-PCR
(RT-PCR) as described in reference 37 using a modified primer set (see
Table S1 in the supplemental material). These primers were developed by
our group or were described previously (see Table S1 in the supplemental
material) (37-39). Briefly, cells were lysed and subjected to RT-PCR as
described previously (37) using a modified primer and a round of nested
PCR with 3 different multiplex primer pools, which were used to amplify
either the heavy chains or the light chains. The amplicons were subcloned,
expressed, and purified as described in reference 19. For antibodies
CAP256-VRC26.13 to CAP256-VRC26.21, wells that previously yielded
VRC26-lineage lambda chains but no heavy chains were subjected to RT-
PCR using IgA-specific 3" primers. All heavy chains were subcloned and
expressed as IgG1 regardless of the class of the original amplicon.

Neutralization assays. Single-round-of-replication Env pseudovi-
ruses were prepared, titers were determined, and the pseudoviruses were
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used to infect TZM-bl target cells as described previously (40, 41). The
neutralization breadth of CAP256-VRC26.25, CAP256-VRC26.26, and
CAP256-VRC26.27, as well as that of previously described antibodies, was
determined using a previously described panel (19, 36) of up to 200 geo-
graphically and genetically diverse Env pseudoviruses representing the
major subtypes and circulating recombinant forms. The remaining
CAP256-VRC26 antibodies were assayed on a 46-virus subset of this
panel, along with the autologous virus strains CAP256.2.00.C7] (a pri-
mary infecting [PI] strain) and CAP256.206.c9 (a superinfecting [SU]
strain). The data were calculated as a reduction in the number of lumi-
nescence units compared with the number for the control wells and are
reported as the 50% inhibitory concentration (ICs,; in micrograms per
microliter) for monoclonal antibodies (MAbs).

N160 glycan mutant Env pseudoviruses were generated by site-di-
rected mutagenesis as described previously (28, 42). All N160 glycan mu-
tants had the N160K mutation, except for ConC, which had the N160A
mutation. The N156 mutants (this study) were generated as N156A mu-
tants by site-directed mutagenesis (GeneImmune, New York, NY). The
BG505 pseudovirus had the wild-type sequence (threonine) at position
332, unlike the BG505 SOSIP probe, which bears a T332N mutation (35).

Neutralization and autoreactivity data for CAP256-VRC26.25 were
generated with a variant that had the amino acid change K126Q in the
light chain, which was inserted during subcloning. We confirmed that this
single amino acid change did not alter the neutralization data.

Autoreactivity. CAP256-VRC26.01 to CAP256-VRC26.32 and UCA
antibodies were assayed at 25 and 50 wg ml ™~ ! for autoreactivity to HEp-2
cells (Inverness Medical Professional Diagnostics) by indirect immuno-
fluorescence and for binding to cardiolipin as described previously using
a Quanta Lite ACA IgG III assay (INOVA Diagnostics Inc., San Diego,
CA) (43). The UCA and seven of the antibodies with the broadest activity
were further evaluated on a panel of autoantigens using an AtheNA Multi-
Lyte ANA-II Plus test system (Alere, Orlando, FL) to detect semiquanti-
tatively IgG antibodies to 9 separate analytes, SSA, SSB, Sm, RNP, Scl-70,
Jo-1, centromere B, double-stranded DNA (dsDNA), and histone, as re-
ported previously (43); values of >120 at 25 wg ml~ ' were considered
positive (43).

Next-generation sequencing analysis. 454 pyrosequencing was per-
formed on PBMCs from week 34, the results for which are reported here,
as well as PBMCs from weeks 38, 49, 59, 119, 176, and 206, the results for
which were described previously (21). mRNA was prepared from 10 mil-
lion to 15 million PBMC:s as follows: cells were lysed in 600 .l buffer RLT
(Qiagen) per 10 million PBMCs and run over a QIAshredder (Qiagen).
The flowthrough was applied to the DNA column from an Allprep kit
(Qiagen), and that flowthrough was used for subsequent purification us-
ing an Oligotex kit (Qiagen). cDNA was synthesized using SuperScript II
reverse transcriptase (Invitrogen) and oligo(dT),,_, primers with incu-
bation at 70°C for 1 min, chilling on ice, and then synthesis at 42°C for 2 h.
Individual PCRs were performed with Phusion polymerase (Thermo) for
30 cycles. Primers (21) consisted of pools of 5 to 7 oligonucleotides spe-
cific for all lambda chain gene families or for VH3 family genes and had
adapters for 454 next-generation sequencing. For PBMCs from week 176
only, heavy chain PCR was performed with primers for all VH families
and mixed lambda chain and kappa chain primers were used for the light
chain (21). PCR products were gel purified (Qiagen). Pyrosequencing of
the PCR products was performed on a GSFLX sequencing instrument
(Roche-454 Life Sciences, Bradford, CT, USA) on a half chip per reaction
(full chips were used for PBMCs from week 176). On average, ~250,000
raw reads were produced.

Next-generation sequencing data from each time point were pro-
cessed through an Antibodyomics pipeline (https://github.com/scharch
/SONAR) as previously described (21, 44). Briefly, a series of Python
scripts was used to check transcripts for appropriate length (300 to 600
nucleotides), provide calls for germ line V and J gene assignments by
BLAST analysis, and check for in-frame junctions and open reading
frames. Reads for which the V and J genes were successfully assigned and
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that had an in-frame junction and no stop codons were clustered using
the CDHit program (45) at 97.25% identity, and singletons were dis-
carded. In order to better account for possible errors introduced dur-
ing sequencing, we restricted our analysis to sequences appearing at
least twice in any one data set. This resulted in approximately 50%
fewer final heavy chain sequences than we previously reported, but the
phylogenetic structure of the lineage remained the same. In addition,
we used a CDRH3 signature contained in all previously reported se-
quences as a less computationally intensive way of finding related
heavy chain sequences. Thus, heavy chain sequences that matched the
CAP256-VRC26 VH and JH assignments and that had CDRH3s that
were at least 30 amino acids long and that had a YY motif were selected
and combined across all time points. Light chains that matched the
CAP256-VRC26 VL and JL assignments and that had a light chain
complementarity-determining region 3 (CDRL3) with at least 92%
sequence identity to a known CAP256-VRC26 family member were
manually inspected, and those with a recombination pattern matching
that of the known antibodies were combined across all time points.
Selected heavy and light chains from all time points were reclustered so
that sequences observed at multiple time points are represented only
once in the final data set. A final manual inspection was used to remove
sequences with apparent PCR crossover or homopolymer indel errors.

Heavy and light chain trees were built using the FASTML program
(46), and the light chain tree was manually edited to match the heavy
chain arrangement as previously described (21). Ancestral sequences were
inferred from these trees using the DNAML program (47) as previously
described (21).

CAP256-VRC26.25 Fab crystallization and structure determina-
tion. Fab was prepared by inserting an HRV3C recognition site (GLEVL
FQGP) after Lys 235. Purified IgG was incubated with HRV3C protease
overnight at 4°C, and the digested protein was passed over protein A
agarose to remove the Fc fragment and subsequently purified over a Su-
perdex 200 gel filtration column. The Fab preparation was then screened
against 576 crystallization conditions using a Mosquito crystallization ro-
bot. Initial crystals were grown by the vapor diffusion method in sitting
drops at 20°C by mixing 0.1 wl of protein with 0.1 pl of reservoir solution.
Crystals were manually reproduced in hanging drops by mixing 1.0 wl
protein complex with 1.0 pl reservoir solution. Crystals grown in a reser-
voir solution of 23% polyethylene glycol (PEG) 8000 and 0.1 M HEPES,
pH 7.5, were flash frozen in liquid nitrogen with 20% PEG 400 as a cryo-
protectant. Diffraction data were collected at a wavelength of 1.00 A at the
SER-CAT beamline ID-22 (Advanced Photon Source, Argonne National
Laboratory). All diffraction data were processed with the HKL2000 suite
(48), and model building and refinement were performed in the COOT
(49) and PHENIX (50) programs, respectively. Ribbon diagram represen-
tations of protein crystal structures were made with the PyMOL program
(51), and electrostatics were calculated and rendered with the UCSF Chi-
mera program (52). Data collection and refinement statistics are shown in
Table S2 in the supplemental material.

Amino acid frequency analysis. The resistance score for a given
amino acid (or a gap) was defined as the ratio of its number of occurrences
in sequences from resistant strains to its overall number of occurrences for
the given residue position (53). A higher score indicates that the amino
acid was preferentially found among sequences from resistant strains,
with a score of 1 indicating that the amino acid was found only among
sequences from resistant strains. Associations were analyzed using Fish-
er’s exact test with the Bonferroni correction for multiple comparisons.
Alignments were generated using the MUSCLE algorithm implemented
in Geneious software, version 8.1.7 (54). Logo plots were generated with
the Weblogo application (http://weblogo.berkeley.edu/) (55) and manu-
ally colored by the use of Inkscape software (https://inkscape.org).

Accession numbers. Sequences from this study are available in
GenBank under the following accession numbers: for the heavy and light
chain sequences for CAP256-VRC26.13 to CAP256-VRC26.33, GenBank
accession numbers KT371076 to KT371117; for 454 pyrosequencing data
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FIG1 Schematics of CAP256-VRC26 antibody isolation. (A) Timeline of antibody isolation. Numbers above the line indicate the week postinfection. The names
of the antibodies isolated at each time point are shown below the line. (B) Schematic of high-throughput B cell culture method. Sorted IgD™ IgM ™ B cells were
plated at a density of ~2 cells per well into 384-well plates, followed by assessment by a microneutralization assay (Microneut) on day 14. (C) Schematic of probe
sorting method. IgG™ B cells bound to APC-labeled BG505 SOSIP were sorted into 96-well plates, followed by reverse transcription-PCR to recover the IgG

genes.

sets from CAP256 at week 34, Sequence Read Archive accession numbers
SRR2126754 and SRR2126755; and for pyrosequencing data sets of bioin-
formatically identified lineage members from week 34, GenBank acces-
sion numbers KT371118 to KT371320. Coordinates and structure factors
for CAP256-VRC26.25 have been deposited with the Protein Data Bank
(PDB) under accession number 5DT1.

RESULTS

Isolation of new antibodies. To further understand the
CAP256-VRC26 lineage and in an attempt to find broader and
more potent members, we isolated antibodies from time points
of peak serum neutralization potency and breadth (Fig. 1A).
We used several methods to isolate an additional 21 antibodies.
These included repeated PCR amplifications with cDNA from
wells from the original B cell cultures, using the new primers
described below; a B cell culture of PBMCs from week 193 (Fig.
1B); and single-cell sorting with antigen-specific probes (Fig.
1C), using a PBMC sample from week 159 (at the peak of neu-
tralization breadth in plasma [28, 29]). The recovered antibod-
ies are named as follows: donor-lineage.clone, for example,
CAP256-VRC26.25. For brevity, in some figures we refer to
them as donor.clone, for example, CAP256.25.

(i) B cell cultures. The B cell culture method used here involves
sorting of IgM ™ IgD ™ B cells, followed by culture for 2 weeks and
then microneutralization assays of culture supernatants (32, 34)
(Fig. 1B). Previous B cell cultures from donor CAP256 (21)
yielded multiple wells from which VRC26-lineage lambda chains,
but not IgG heavy chains, were recovered. We used IgA-specific 3’
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primers (39) with new sets of multiplex 5’ primers (see Materials
and Methods and Table S1 in the supplemental material) and
recovered nine VRC26-lineage heavy chains from these wells.
Some of these may have derived from IgA™ B cells, as IgA ™" B cells
were not excluded in the sorting. Unexpectedly, two wells yielded
both IgG and IgA amplicons with identical variable regions but
distinct constant regions (Fig. 2A). We concluded that class
switching had occurred in the well during the 2-week culture. The
combination of CD40L and IL-21 was previously shown to sup-
port IgG-to-IgA class switching in human B cells (56-58). We
therefore made the assumption that all such wells originally con-
tained IgG™ B cells. All antibody sequences were subcloned and
expressed as IgG1. This strategy yielded 9 antibodies (CAP256-
VRC26.13 to CAP256-VRC26.21) derived from the PBMCs from
weeks 119 and 206. We subsequently performed a B cell culture
with B cells derived from week 193 and, using the new primer sets
described in the Materials and Methods and Table S1 in the sup-
plemental material, recovered four additional antibodies
(CAP256-VRC26.22 to CAP256-VRC26.25).

(ii) Single-cell sort with trimer probes. The recent develop-
ment of the trimer mimic BG505 SOSIP (35) provides a probe that
can be used to sort B cells expressing antibodies to quaternary
epitopes (59). The broader antibodies of the CAP256-VRC26 lin-
eage neutralize BG505, and thus, we chose to use this probe with
the goal of isolating lineage members with broader neutralization
capacities (Fig. 1C). To increase the specificity of the probe for the
CAP256-VRC26 lineage, we assessed potential mutations that
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would knock out V1V2 antibody binding and neutralization: us-
ing an Env pseudovirus of BG505, we made a variant with a dele-
tion of the N160 glycan (the N160K mutant) and a variant with a
mutation in V2 strand C (the K169E mutant). While the N160K
mutation rendered BG505 resistant to PG9-, CHOl-, and
PGT145-lineage antibodies, neutralization by CAP256 plasma
and CAP256-VRC26.09 was more affected by the K169E mutation
than by the N160K mutation (Fig. 2B). We therefore made a
K169E mutation in the BG505 SOSIP trimer. Wild-type and mu-
tant molecules were fluorescently labeled, and their antigenicity
was assessed by binding them to beads coated with known anti-
bodies (Fig. 2C). The BG505 SOSIP wild-type probe bound
strongly to PGT128 and CAP256-VRC26.09 and did not bind to
the weakly neutralizing antibody F105. The K169E mutant had
similar binding, but as expected, it did not bind to CAP256-
VRC26.09. As a control, YU2-gp140-foldon, which does not pres-
ent quaternary epitopes (60, 61), was observed to bind PGT128
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and F105 but not CAP256-VRC26.09 (Fig. 2C). Using the BG505
SOSIP probe pair, we sorted single IgG™ B cells from week 159
(Fig. 2D), a time point at which the donor’s plasma showed peak
neutralization breadth and potency (28, 29). We amplified and
subcloned Ig genes from cells that were positive for the wild-type
probe but did not bind the K169E probe. Fourteen wells yielded
heavy chain amplicons, light chain amplicons, or both. In 11 of the
14 wells, the amplicon(s) matched the VRC26 lineage, and 8 such
wells yielded heavy chain-light chain pairs. All eight pairs were
expressed and had neutralizing activity, thus producing lineage
members CAP256-VRC26.26 to CAP256-VRC26.33.
Characteristics of the new CAP256-VRC26 antibodies. The
21 new CAP256-VRC26 antibodies showed a range in the levels of
nucleotide mutations from the sequences of the germ line genes:
mutations in 4.2 to 18% of the nucleotides compared with the
sequences of the VH3-30*18 alleles and 2.5 to 15% of the nucleo-
tides compared with the sequences of the VL1-51%02 alleles
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TABLE 1 Genetic and neutralization characteristics of CAP256-VRC26 antibodies”

% mutation from the

sequence of the following

allele: Neutralization of 46 strains
Source
(wk, isolation CDRH3 length % neutralization Median IC,,
method) Antibody name VH3-30*18 VL1-51%02 (no. of amino acids) breadth (pg/ml)
Wk 59, culture CAP256-VRC26.01 8.3 3.9 35 20 3.32
Wk 119, culture CAP256-VRC26.02 8.7 4.9 35 17 0.44
CAP256-VRC26.03 8.7 7.4 35 35 0.06
CAP256-VR(C26.04 9.0 8.1 35 30 0.27
CAP256-VRC26.05 10 5.6 35 22 0.02
CAP256-VRC26.06 11 7.4 36 17 0.69
CAP256-VR(C26.07 12 7.7 35 13 5.00
CAP256-VRC26.08 12 9.8 37 46 0.08
CAP256-VRC26.09 14 9.8 37 46 0.02
Wk 206, culture CAP256-VRC26.10 12 3.9 35 24 0.35
CAP256-VR(C26.11 13 14 35 26 1.04
CAP256-VR(C26.12 15 8.4 35 7 0.21
CAP256-VRC26.13 15 9.5 35 7 0.09
Wk 119, culture CAP256-VRC26.14 10 7.7 35 24 0.75
CAP256-VRC26.15 10 6.7 35 33 0.34
CAP256-VRC26.16 10 7.7 35 28 0.67
CAP256-VRC26.17 12 8.1 35 28 0.14
CAP256-VRC26.18 12 7.4 35 26 1.66
Wk 206, culture CAP256-VRC26.19 13 10 35 46 0.16
CAP256-VRC26.20 16 13 37 2 1.87
CAP256-VRC26.21 18 14 37 13 0.58
Wk 193, culture CAP256-VRC26.22 16 13 37 46 0.04
CAP256-VRC26.23 9.7 6.3 35 7 0.03
CAP256-VRC26.24 4.2 2.5 35 7 0.46
CAP256-VRC26.25 12 9.8 36 63 0.003
Wk 159, sorting with CAP256-VRC26.26 17 9.8 37 59 0.05
new probes CAP256-VRC26.27 16 9.5 37 59 0.05
CAP256-VRC26.28 15 12 37 41 0.08
CAP256-VRC26.29 15 13 37 46 0.09
CAP256-VRC26.30 16 13 37 28 0.76
CAP256-VRC26.31 15 10 37 20 1.66
CAP256-VRC26.32 11 15 35 20 0.10
CAP256-VRC26.33 9.4 6.5 35 22 0.27

“ Italics indicate results for antibodies published previously (21); bold font indicates the results for antibodies that are newly reported here.

(Table 1). Similarly, they varied in the rates of mutations from the
inferred sequence of the UCA: 7 to 23% of the nucleotides com-
pared with the sequence of the UCA heavy chain and 3.6 to 17% of
the nucleotides compared with the sequence of the UCA lambda
chain (see Table S3 in the supplemental material). All had the long
CDRH3s that are characteristic of this lineage (Table 1; see Table
S3 in the supplemental material): 35 or 37 amino acids, as seen
previously (21), or 36 amino acids in the case of CAP256-
VRC26.25. As was observed with the initial set of MAbs, the new
MADbs showed no or marginal autoreactivity when tested in mul-
tiple assays (see Fig. S1 in the supplemental material).

Like the original 12 lineage members, the new CAP256-VRC26
antibodies showed a range of neutralization breadth and potency.
With a 46-virus multiclade panel, their neutralization breadth
varied from 2% to 63% (Table 1; see also Table S4 in the supple-
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mental material). The member of the lineage with the broadest
neutralization breadth and the most potency was CAP256-
VRC26.25, which had a median IC5, 0f 0.003 g/ml for this panel,
which makes it 10-fold more potent than the most potent family
members described previously (21). Two others, CAP256-VRC26.26
and CAP256-VR(C26.27, also had broader neutralization than previ-
ous relatives but were not as potent as CAP256-VRC26.25. The anti-
bodies CAP256-VRC26.19, CAP256-VRC26.22, and CAP256-
VRC26.29 were similar to CAP256-VRC26.08 in neutralization
breadth, neutralizing 46% of this panel (Table 1).

We also isolated antibodies that showed less neutralization
breadth and potency than previously isolated family members.
The sequence of the antibody with the lowest level of somatic
mutation, CAP256-VRC26.24, showed only 4.2% divergence
from the sequence of the heavy chain germ line and 2.5% from the
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sequence of the light chain. Its neutralization capacity was less
broad than that of other early lineage members and it was less
potent than other early lineage members, such as CAP256-
VRC26.01 (Table 1). Other poor neutralizers included CAP256-
VRC26.13; notably, it differed from CAP256-VRC26.12 by only 2
nucleotides or a single amino acid, even though they originated
from different culture wells. An independent well yielded se-
quences that were 100% identical to the sequence of CAP256-
VRC26.13. While these closely related lineage members were not
broadly neutralizing, they did potently neutralize the autologous
CAP256 superinfecting (SU) strain (see Table S4 in the supple-
mental material).

Like the previously identified members of the lineage (21), the
new CAP256-VRC26 antibodies are highly dependent on a qua-
ternary epitope and target V1V2. We assayed for binding to gp120
derived from HIV-1 strain CAP210, which is potently neutralized
by all lineage members except CAP256-VRC26.20. None of the
antibodies bound to this gp120 (see Fig. S2 in the supplemental
material). CAP256-VRC26.25 was further tested on 10 additional
clade C gp120s, with no binding being observed; however, it
bound strongly to the BG505 SOSIP molecule, confirming the
trimer preference of these antibodies. In addition, none of the 33
antibodies were able to neutralize R166A and K169E mutants in
HIV-1 strain ConC (see Fig. S3A in the supplemental material),
BG505.w2, or ZM53.12, and the 33 antibodies showed modest
effects on ConC with mutations at amino acids 167 and 168, sim-
ilar to the donor CAP256 plasma (28). Thus, the epitope recog-
nized by the new CAP256-VRC26 antibodies is similar to that
recognized by the previously described relatives.

Glycan independence of CAP256-VRC26 antibodies. The
PGY-like broadly neutralizing antibodies (PG9/PG16, CH01-04,
and the PGT145/PGDM1400-family antibodies) target a V1V2
epitope with quaternary epitope specificity (20, 22, 23, 59). These
antibodies have been shown to require both glycan and protein
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contacts on Env (62, 63), with a strict dependence on the glycan at
N160 (20, 22, 23, 42) and with contacts to other glycans, typically
at N156 (62). We therefore investigated the glycan requirements
of the CAP256-VRC26 antibodies. Removing the glycan at N156
did not abrogate neutralization; it conferred a slight decrease in
potency against HIV-1 strains BG505 and ZM53 and variable ef-
fects against Q461.e2, similar to the effect that we observed with
PGY (see Fig. S3B in the supplemental material). However, re-
moving the glycan at N160 had more dramatic effects. As ex-
pected, V1V2-directed antibodies PG9, PG16, CHO1, and PGT145
were unable to neutralize glycan N160 mutants (Fig. 3A). In con-
trast, CAP256-VRC26 antibodies were affected in a potency-de-
pendent manner. The N160 mutations had little effect on the
susceptibility of viruses that were potently neutralized by
CAP256-VRC26 antibodies but did reduce or abrogate the sensi-
tivity of viruses that were less potently neutralized (Fig. 3B). When
the data for all antibodies were combined, wild-type viruses with
an ICs, of >0.1 g/ml were more likely to show a neutralization
reduction of at least 10-fold than the more potently neutralized
viruses (P = 0.029, Fisher’s exact test). Thus, the CAP256-VRC26
antibodies can maintain potent neutralization of viruses, despite
the lack of the N160 glycan.

Phylogenetic analysis of the lineage. To deepen our under-
standing of the CAP256-VRC26 lineage, we placed the 12 previ-
ously cloned antibodies, together with the 21 new lineage mem-
bers, within the context of total B cell transcripts. A revised
algorithm (see Materials and Methods) was used to analyze 454
pyrosequencing-derived sequences from week 34 (64) and reana-
lyze all sequences from weeks 38 to 206 (21). Phylogenetic trees
derived from maximum likelihood analysis of the transcripts of all
members of the lineage, along with the 33 cloned antibody se-
quences, are displayed in Fig. 4. As noted previously (21), the tree
for heavy chain sequences bifurcates into an upper branch and a
lower branch. Sequences that map to the upper branch are plen-
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tiful among B cell transcripts from weeks 34 to 59 but are rare
among B cell transcripts obtained at week 119 or later. In contrast,
the lower branch contains sequences from all time points. One
notable feature of the sequences in the lower branch is a Cys-Cys
which may stabilize the CDRH3 structure (21); it appears at week
49 and sequences from all subsequent times of the lower branch.
Week 34 sequences do not contain Cys-Cys and appear in both the
upper and lower branches of the tree.

The placement of the cloned antibodies on these trees led to
several observations. The CAP256-VRC26.24 sequence is 4% mu-
tated from the germ line sequence, clustered with week 59 se-
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quences, and is located in the top (CAP256-VRC26.01) branch,
yet it was isolated from week 193 PBMCs; we speculate that it is
derived from a long-lived memory cell. CAP256-VRC26.25, the
antibody with the broadest neutralization and greatest potency,
has a 1-amino-acid insertion in the CDRH3 sequence compared
to the UCA sequence (see Table S3 in the supplemental mate-
rial) and lacks close relatives in the pyrosequencing data set,
and its closest relatives are weakly neutralizing. Six of the eight
antibodies that were derived from the probe sort, including the
CAP256-VRC26.26 and CAP256-VRC26.27 antibodies with
very broad neutralization capacities, cluster with other broad
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transparent.

neutralizers, CAP256-VRC26.08, CAP256-VRC26.09, and
CAP256-VRC26.22; all of these bear a 2-amino-acid inser-
tion in the CDRH3 sequence compared to the UCA sequence.
However, weak neutralizers CAP256-VRC26.20, CAP256-
VRC26.30, and CAP256-VRC26.31 also appear in this cluster
and have this insertion. Thus, the antibodies that are the most
closely genetically related do not always display the same level
of neutralizing activity.

CAP256-VRC26.25 structure. To investigate the differences in
neutralization potency and breadth among these antibodies, we
solved the crystal structure of the CAP256-VRC26.25 antigen-
binding fragment (Fab) to 2 A. The structure was well defined,
including the electron density for the entire CDRH3. Like the
other lineage members, this antibody has a long CDRH3 project-
ing away from the body of the Fab (Fig. 5A). A disulfide bond was
observed near the base of the CDRH3, as expected, and density
confirming the two computationally predicted sulfated tyrosines
was also visible (Fig. 5B). We compared this structure to the struc-
tures solved previously for seven other lineage members; of these,
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CAP256-VRC26.03 had a complete CDRH3 structure, while sev-
eral others contained disordered regions of various lengths in the
CDRH3 (21). Notably, the CDRH3 of CAP256-VRC26.25 bends
in a considerably different direction than the others. The angle of
rotation between the CDRH3s of Fabs CAP256-VRC26.03 and
CAP256-VRC26.25, aligned by framework regions, is 79 degrees
(Fig. 5B). When all structures are overlaid (Fig. 5C), we observe
that the UCA and the early antibody CAP256-VRC26.01 bend
in a similar direction, CAP256-VRC26.03, CAP256-VRC26.04,
CAP256-VRC26.06, CAP256-VRC26.07, and CAP256-VRC26.10
bend in nearly the opposite direction, and CAP256-VRC26.25
bends in a direction different from the direction of all of these. The
angle likely depends on the identity of amino acid at position 100V
or 100W. The Gly of CAP256-VR(C26.25 inserted at the base of the
CDRH3 allows additional flexibility in the initial projection of the
CDRH3, providing a different range of angles for the antibody to
initially engage the viral spike (Fig. 5D). Thus, stabilization of the
overall CDRH3 structure combined with a local flexibility at the
base may contribute to the improved neutralization breadth and
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FIG 6 Neutralization breadth and potency of CAP256-VRC26.08, CAP256-VRC26.25, and selected broadly neutralizing antibodies. The neutralization of a
multiclade virus panel (n = 183) was assessed by a TZM-bl pseudovirus assay. (A) Neutralization breadth-potency curves for V1V2-directed bNAbs. Curves show
the percentage of virus neutralized at any given ICs, or ICy,. (B, C) Neutralization by bNAbs directed to diverse epitopes. Each dot shows the value for a single

virus. Bars, median value of viruses that are neutralized. (B) ICys; (C) ICqs.

potency of CAP256-VRC26.25 compared to those of the other
lineage members.

CAP256-VRC26.25 has broad neutralization and is highly
potent. CAP256-VRC26.25 is the most potent member of the lin-
eage. On a multiclade panel of 183 Env pseudoviruses, it neutral-
ized 57% of isolates with a median ICs, of 0.001 pg/ml (Fig. 6; see
also Table S5 in the supplemental material), which makes it 10-
fold more potent than the previously published CAP256-
VRC26.08 variant. We also compared CAP256-VRC26.08 and
CAP256-VRC26.25 to the V1V2-directed antibodies PGDM 1400,
PGY, and CHO1 (Fig. 6A) and additional antibodies to other neu-
tralization epitopes (Fig. 6B and C; see also Table S5 in the sup-
plemental material). A remarkable characteristic of CAP256-
VRC26.25 is the highly potent neutralization of some viruses. This
can be seen as the leftward shift of the potency-breadth plots com-
pared to the locations of the results for the other antibodies (Fig.
6A) and as dots close to an IC5, 0f 0.0001 pg/ml on the scatter plot
(Fig. 6B).

We also examined the completeness of neutralization. Like
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other V1V2-directed broadly neutralizing antibodies (23, 65), the
CAP256-VRC26 antibodies neutralize some viruses to a maxi-
mum of less than 90%. About 30% of sensitive viruses were neu-
tralized with this plateau effect. This fraction is very similar to that
for the V1V2-directed bNAb PGDM1400 (see Fig. S4 in the sup-
plemental material).

To further characterize and compare the new CAP256-
VRC26-lineage antibodies, we tested variants CAP256-VRC26.08,
CAP256-VRC26.25, CAP256-VR(C26.26, and CAP256-VRC26.27
on a multiclade panel of Env pseudoviruses (see Table S5 in
the supplemental material). CAP256-VRC26.26 and CAP256-
VRC26.27 have neutralization capacities nearly as broad as the
neutralization capacity of CAP256-VRC26.25 at a cutoff of 50
pg/ml but less so at an IC5, of <0.01 pg/ml (Fig. 7A), confirming
the superior potency of CAP256-VRC26.25. We also analyzed the
neutralization breadth within different HIV-1 clades (Fig. 7B).
Against clade C, CAP256-VRC26.25 had a neutralization breadth
of 70% at the ICs, level (Fig. 7B; see also Fig. S5 in the supplemen-
tal material), with even greater coverage of strains from clade G
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non-B 158

other: AC, ACD, AD, CD

% Neutralized CAP256- CAP256- CAP256- CAP256-
(IC80) VRC26.08 VRC26.25 VRC26.26 VRC26.27

<50ug/ml 37 49 49 43
<10ug/ml 34 48 42 42
<1.0ug/ml 28 42 83) B85)
<0.1ug/ml 20 33 28 28
<0.01ug/ml 14 18 21 22

% of viruses neutralized (IC80<50)

Clade N CAP256- CAP256- CAP256- CAP256-
VRC26.08 VRC26.25 VRC26.26 VRC26.27
A 26 27 38 35
AE 21 33 48 48
AG 16
B 40 0 10 8 3
BC 10
C 57
D 8
G 7
other 13
All 198
non-B 158

FIG 7 Neutralization breadth, potency, and clade dependency of CAP256-VRC26 antibodies. The neutralization of large virus panels was assessed by a TZM-bl
pseudovirus assay. (Left) ICss; (right) ICg,s. (A) Values indicate the percentage of viruses (1 = 198) neutralized at the given cutoff; (B) values indicate the

percentage of viruses neutralized within each virus clade.

and circulating recombinant forms AG and BC. While CAP256-
VRC26.25 neutralized 70% of non-clade B strains overall, it neu-
tralized only 15% of clade B strains. To understand the basis of this
preference, we performed an amino acid frequency analysis (53)
for positions 154 to 184 in V2. Specifically, based on sequence
alignments, we searched for amino acids that were preferen-
tially found among CAP256-VRC26.25-resistant strains versus
CAP256-VRC26.25-sensitive strains for each residue position in
V2 (Fig. 8A). Amino acids that were associated with resistance
were found in at least one position among positions 166, 167, and
169 in 59% of resistant strains. These amino acids were observed
in 71% of clade B strains and in 80% of resistant clade B strains.
Conversely, the amino acid K or R at position 169 occurred in 86%
of sensitive strains but in only 5% of clade B strains, with similar
proportions occurring for D or E at position 164 (Fig. 8B). The
occurrence of resistance-associated amino acids at one or more of
these positions was statistically significant (P < 0.001 for each
comparison, Fisher’s exact test), as was the occurrence of the sen-
sitivity-associated amino acids at positions 164 and 169. Thus, the
characteristics of clade B sequences at V2 positions 164, 166, 167,
and 169 may explain much of the resistance found in clade B
strains.

DISCUSSION

The data in this study provide a more comprehensive picture of
the CAP256-VRC26 bNAD lineage. Using modified PCR primers,
B cell culture, and trimeric Env-based probes, we isolated 21 new
members of the CAP256-VRC26 family. Several of these new an-
tibodies showed an increased neutralization breadth and potency
compared to those of previously published antibodies of this lin-
eage, particularly against HIV-1 clade C strains and other subtypes
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prevalent in sub-Saharan Africa. CAP256-VRC26.25 in particular
showed exceptional potency, with a median IC;, against neutral-
ized viruses of 0.001 pg/ml.

We isolated new clonal relatives of the CAP256-VRC26 lineage
by two methods: B cell culture and antigen-specific B cell sorting.
The differential BG505 SOSIP and BG505 SOSIP.K169E protein
sorting approach proved to be a highly efficient and specific
method for isolating new members of the CAP256-VRC26 lin-
eage. Here, 11/14 sorted cells yielded CAP256-VRC26-lineage
members, and two of the three most broadly neutralizing lineage
members were isolated from the probe sort. The availability of
nearly native trimers has potential for use in sorting for V1V2-
directed and other quaternary epitope-specific antibodies in other
donors (59), while the K169E mutant described here may have
utility for additional donors with serum neutralization depen-
dence on this V2 residue. However, this method has some limita-
tions. Not all Env epitopes are displayed on the BG505 SOSIP
molecule: the MPER region of gp41 is not contained in this con-
struct, and some antibodies may not recognize the BG505 se-
quence. With regard to differential sorting with a knockout mu-
tant, not all donors have neutralization activity that can be
matched to that of a wild-type probe-mutant probe pair. Thus,
the advantage of B cell culture is that it does not require a probe or,
indeed, any a priori knowledge of the antibody specificity. Addi-
tionally, since the wells are screened by neutralization, there may
be selection for the detection of highly potent antibodies. How-
ever, B cell culture is more labor-intensive and time-consuming
than single-cell sorting and is most successful when the donor has
high plasma neutralization titers (N. A. Doria-Rose and N. Longo,
unpublished observations). In addition, culture conditions can
induce in vitro class switching, which complicates the recovery
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Clade B

Non-B

% of sequences with the indicated amino acid

Association Position  Amino Acid Sensitive Resistant Non-Clade B Clade B

. 164 DorE 84% 42% 85% 3%
Sensitivity

169 Ror K 86% 33% 81% 5%

166 G,1,Q,S,orT 0% 23% 6% 20%

. 167 TorG 0% 18% 2% 25%
Resistance

169 EorV 2% 34% 3% 55%

one or more of the above 2% 59% 10% 73%

FIG 8 CAP256-VR(C26.25 resistance analysis of amino acids in Env V2. (A) (Top) Amino acid frequency analysis. A total of 198 sequences were analyzed (see
Fig. S6 in the supplemental material). The resistance score for each possible amino acid at a given residue position was defined as the ratio of its number of
occurrences in sequences from CAP256-VRC26.25-resistant viruses to its overall number of occurrences. A higher score indicates that the amino acid was
preferentially found among sequences from resistant viruses, with a score of 1 indicating that the amino was found only among sequences from resistant viruses.
Amino acids that occurred at least 3 times at the given position are shown. (Bottom) Logo plot showing the frequency of all amino acids at each position for clade
B (n = 40) and non-clade B (n = 158) sequences. Red, amino acids associated with resistance; green, amino acids associated with sensitivity. (B) Frequency of
amino acids at positions associated with resistance or sensitivity. Values indicate the percentage of sequences in a given category that bear the indicated amino
acids. For example, 84% of Env sequences from sensitive strains have D or E at position 164. A total of 125 sensitive strains and 73 resistant strains were analyzed.

P was <0.001 for each comparison (Fisher’s exact test with the Bonferroni correction).

of sequences by PCR, though this can be overcome by using IgA
constant region primers. Of note, the most potent member of
the lineage (CAP256-VRC26.25) was isolated from a B cell cul-
ture, attesting to the advantages of high-throughput functional
screening.

Phylogenetic analysis of the complete CAP256-VRC26 lineage
shows two main branches. The first branch, which included
CAP256-VRC26.01 and CAP256-VRC26.24, may be an evolu-
tionary dead end, in that members of the branch could not be
detected in the B cell transcripts from time points after week 119.
We recently showed that the antibodies in this branch were unable
to tolerate viral escape mutations and were no longer selected for
(64). The Cys-Cys disulfide bond in CDRH3 emerged in the sec-
ond branch, and that sublineage continued to evolve, with se-
quences being observed at all time points. Within this sublineage,
however, antibodies with broad or narrow heterologous neutral-
ization are intermingled. This suggests that individual amino acid
changes, rather than overall sequence relatedness, have greater
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effects on the neutralization capacity. Similarly, the levels of mu-
tation compared with the sequence of the germ line V gene or that
of the UCA did not correlate with neutralization. A similar pattern
has been noted for other bNAD lineages (22, 59, 66). These obser-
vations suggest that somatic variant antibodies with a variety of
antiviral capacities frequently evolve side-by-side during chronic
HIV infection. The concurrent diversification of the viral quasi-
species may drive this evolution: while some antibody mutations
may improve the binding to specific autologous viral variants en-
countered in the germinal center, they may not be the same mu-
tations that improve the neutralization breadth against heterolo-
gous viruses.

The CAP256-VRC26 antibodies share many characteristics
with the three other published lineages of V1V2 directed broadly
neutralizing antibodies: the PG9, PGT145, and CHO1 lineages (20,
22,23, 59). These antibodies have long, anionic CDRH3s, exhibit
incomplete neutralization of some viruses (65), and share epitope
requirements: they are highly quaternary epitope specific and pre-
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fer positive charges in strand C of V2 (53), and their activity is
knocked out by a K169E mutation. However, in contrast to the
three other lineages, which show a strong dependence on the N160
glycan (Fig. 3) (42), the CAP256-VRC26 antibodies showed vari-
able and limited dependence on this glycan. The more potent that
the antibody-mediated neutralization was, the less dependent it
was on the presence of the N160 glycan. We speculate that potent
neutralization is mediated mainly by protein-protein contacts but
that more weakly recognized strains are bound via contacts with
both protein and glycan. It is also possible that alternative glycans
are bound when the N160 glycan is missing. Future structural
studies may provide a better understanding of the mechanism.
Notably, a mutant form of PG9 with increased potency was shown
to neutralize some viruses lacking the N160 glycan (67); this ob-
servation is consistent with the notion that the very high potency
of CAP256-VRC26.25 may relate to the lack of N160 glycan de-
pendency.

CAP256-VRC26.25 neutralized 15% of clade B HIV-1
strains and 70% of non-clade B HIV-1 strains. Amino acids
associated with sensitivity or resistance were noted at positions
164, 166, 167, and 169. The residues associated with sensitivi-
ty—D or E at position 164 and R or K at position 169—were
rare in clade B; conversely, resistance-associated amino acids
were more common in clade B strains than non-clade B strains.
Of note, several of these preferences mirror the neutralization
activity of the donor’s plasma (28); furthermore, escape muta-
tions that arose in the CAP256 donor virus near the time point
of CAP256-VRC26.25 isolation include S at position 166 and E
at position 169 (21, 64), both of which were associated with
resistance in this virus panel.

In summary, we isolated 21 new members of the CAP256-
VRC26 lineage, including 3 variants that have a broader neutral-
ization capacity than the previously isolated family members. The
best variant, CAP256-VRC26.25, was 10-fold more potent than
the previously published members of this lineage, and its overall
potency (IC5, = 0.001 pg/ml) was comparable to or better than
that of existing bNAbs. In addition, the neutralization capacity of
CAP256-VRC26.25 was quite broad, neutralizing ~60% of all vi-
ruses and ~ 70% of non-clade B viruses, including clade C viruses.
The mechanism of its outstanding potency may relate to the re-
duced dependence on N160 glycan, the unique CDRH3 confor-
mation, or other structural features that have yet to be elucidated.
The high potency of this antibody may make it an attractive can-
didate for clinical development for prevention of infection or as
part of antiretroviral regimens to treat HIV-1 infection.
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